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HIGHLIGHTS 
 UAV imagery can be used to characterize newly-emerged corn plants. 
 Size and shape features used in a random forest model are able to predict days after emergence within a 3-day window. 
 Diameter and area were important size features for predicting DAE for the first, second, and third week of emergence. 

ABSTRACT. Assessing corn (Zea mays L.) emergence uniformity soon after planting is important for relating to grain pro-
duction and making replanting decisions. Unmanned aerial vehicle (UAV) imagery has been used for determining corn 
densities at vegetative growth stage 2 (V2) and later, but not as a tool for quantifying emergence date. The objective of this 
study was to estimate days after corn emergence (DAE) using UAV imagery and a machine learning method. A field exper-
iment was designed with four planting depths to obtain a range of corn emergence dates. UAV imagery was collected during 
the first, second, and third weeks after emergence. Acquisition height was approximately 5 m above ground level, which 
resulted in a ground sampling distance of 1.5 mm pixel-1. Seedling size and shape features derived from UAV imagery were 
used for DAE classification based on a random forest machine learning model. Results showed that 1-day DAE could be 
distinguished based on image features within the first week after initial corn emergence with a moderate overall classifica-
tion accuracy of 0.49. However, for the second week and beyond, the overall classification accuracy diminished (0.20 to 
0.35). When estimating DAE within a 3-day window (-1 to +1 day), the overall 3-day classification accuracies ranged from 
0.54 to 0.88. Diameter, area, and the ratio of major axis length to area were important image features to predict corn DAE. 
Findings demonstrated that UAV imagery can detect newly-emerged corn plants and estimate their emergence date to assist 
in assessing emergence uniformity. Additional studies are needed for fine-tuning the image collection procedures and image 
feature identification to improve accuracy. 

Keywords. Corn emergence, Image features, Random forest, Unmanned aerial vehicle. 

orn is one of the most important food crops in the 
world as well as a vital source for animal feed and 
biofuel (Klopfenstein et al., 2013; Shiferaw et al., 
2011). Based on the latest report from the Food 

and Agriculture Organization of the United Nations (FAO, 
2020), total global corn (maize) production in 2018 was 
more than 1.1 billion tons, with a harvested area of close to 
200 million ha. To maximize corn grain yield, management 
is needed to optimize seedling emergence uniformity (i.e., 
emergence time) and seedling spatial uniformity (i.e., plant 
spacing). Temporal variation in seedling emergence leads to 
consistent yield reductions (Andrade and Abbate, 2005; Liu 

et al., 2004; Nafziger et al., 1991). Nafziger et al. (1991) 
showed that the average harvested yield of corn decreased 
by 6% and 12% when planting was delayed 10 to 12 days 
and 22 days, respectively. Meanwhile, Liu et al. (2004) 
found that the average yield decreased by 4.3% and 8.7% 
with planting delays of 12 and 21 days, respectively. In a 
separate study, the average yield of corn with an emergence 
difference of three days was about 12% less than that of the 
corn in control plots with uniform emergence (Andrade and 
Abbate, 2005). 

Evaluating the temporal variation in seedling emergence 
is also necessary for making replanting decisions, by as-
sessing the effect of the variation in both the time of emer-
gence and the proportion of delayed plants on final grain 
yield (Nafziger et al., 1991). As stated by Lauer (1997), the 
first step in making replanting decisions is crop scouting at 
multiple regions of the field to determine the plant popula-
tion and its uniformity. However, this method is labor-inten-
sive, subjective, and spatially inadequate for fields with var-
iable soil conditions that influence seed germination and 
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emergence. With the advantages of unmanned aerial vehi-
cles (UAV), optical sensors, advanced image processing, 
and analytic technologies, the time and labor needed for crop 
scouting can be greatly reduced (Shuai et al., 2019), and a 
more precise and accurate estimation of plant density can be 
acquired. 

Research has shown the usefulness of UAV red-green-
blue (RGB) imagery in determining corn plant density and 
spacing estimation at early stages. Gnädinger and 
Schmidhalter (2017) used aerial images to determine corn 
post-emergence plant density at vegetative growth stages V3 
to V5 (i.e., three to five visible leaves; Ransom et al., 2020) 
and achieved an accuracy of R2 = 0.89. Varela et al. (2018) 
demonstrated the potential of using high-resolution RGB im-
ages with a spatial resolution of 2.4 mm pixel-1 to estimate 
corn stand count at the V2 to V3 growth stages based on su-
pervised learning techniques. In addition, UAV imagery was 
used to estimate corn plant spacing (Zhang et al., 2018) and 
corn plant density at about two weeks after emergence 
(Shuai et al., 2019). The results from Shuai et al. (2019) 
showed precision of at least 96% when estimating the num-
ber of plants and R2 of 0.89 to 0.91 when estimating the plant 
spacing. All these studies showed promising results for using 
UAV imagery in detecting and counting corn seedlings as 
well as estimating plant spacing. However, none of them 
used UAV imagery for detecting corn emergence at much 
earlier stages (i.e., pre-growth stage V2) and quantifying 
emergence date of seedlings. 

Previous research has also used UAV-derived image fea-
tures, including size and shape (e.g., area, diameter, major 
axis length, minor axis length, solidity, and eccentricity) to 
estimate wheat density (Jin et al., 2017) and detect corn at 
an early growth stage (Varela et al., 2018). Jin et al. (2017) 
used these features in a support vector machine to estimate 
the wheat density and achieved R2 values from 0.80 to 0.91 
at different experiment sites. Varela et al. (2018) used image 
features in a decision tree to classify corn and non-corn ob-
jects (weeds) and found that aspect ratio, axis-diameter ra-
tio, convex area, thinness, and solidity were significant im-
age features in the classification. In addition, the size and 
shape used in artificial neural network modeling were effec-
tive image features for distinguishing different varieties of 
corn seed (accuracy of 0.88 to 0.92, Chen et al., 2010) and 

rice seed (accuracy of 0.70 to 0.95, Chaugule and Mali, 
2014). 

Our review of the literature did not reveal any previous 
research on determining plant emergence date based on im-
age features. Because corn emerges across a range of days, 
early and late emerging seedlings have different size and 
shape characteristics. These characteristics could be identi-
fied using image features and would be useful in classifying 
the number of days after emergence (DAE) for each individ-
ual plant seedling. The overall objective of this study was to 
estimate the DAE using size and shape features extracted 
from UAV imagery. Specific objectives were (1) to extract 
size and shape features from corn plant images, (2) to build 
a random forest (RF) machine learning model to predict corn 
plant DAE, and (3) to identify important image features in 
predicting plant DAE. 

MATERIALS AND METHODS 
EXPERIMENTAL SITE AND SETUP 

The experiment was conducted at the Bay Farm Research 
Facility of the University of Missouri, Columbia, Missouri 
(38° 52 45.3 N, 92° 12 15.3 W) with 18 plots arranged in 
a randomized complete block design, as shown in figure 1a. 
Treatments included four planting depths (3.8, 5.1, 6.4, and 
7.6 cm) with four replications (with an additional replication 
for the 5.1 and 7.6 cm depths). This range of depths produced 
variability in corn emergence date. Each plot was 3.0 m long 
and included four rows of corn with an inter-row spacing of 
0.76 m and average intra-row spacing of 17.7 cm. Only the 
middle two rows were selected for manual measurement and 
image analysis, as shown in figure 1b. All corn was planted 
on 9 April 2019 with no-till using a custom-built John Deere 
four-row planter that was equipped with MaxEmerge XP 
row units (Deere & Co., Moline, Ill.) adjusted to plant seeds 
at the four defined depths. Corn emergence was checked 
daily beginning on 22 April (first emergence) until complete 
emergence (29 April), with newly-emerged plants marked 
with unique color stakes for each day. Emergence was not 
checked on 28 April due to time constraint, and the plants 
that emerged on 28 April were therefore grouped with the 
plants that emerged on 29 April. 

 

Figure 1. (a) Schematic of plots arranged in randomized complete block design and (b) example UAV image of a study plot captured at about 5 m 
height on 3 May 2019 (DAE 5 to 12). 
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UAV IMAGE COLLECTION 
Aerial images were collected using a Phantom 4 Ad-

vanced UAV imaging system (DJI, Shenzhen, Guangdong, 
China) with an onboard camera that has a field-of-view 
(FOV) of 84° and an image size of 4864  3648 pixels 
(20M pixels). The DJI Go 4 app was used to set the UAV 
height at 5 m above ground level (AGL), resulting a ground 
sampling distance (GSD) of 1.5 mm pixel-1. The GSD is the 
distance between two consecutive pixel centers measured on 
the ground (Orych, 2015). The camera was adjusted to ver-
tically face down toward the field, i.e., nadir view (Lillesand 
et al., 2004), to acquire images of each plot. The images were 
taken manually using the default camera settings (auto white 
balance and ISO range). Aerial image data were collected on 
26 April and on 3, 11, and 15 May. The aerial images col-
lected on 26 April were to test the capability of the UAV 
images to detect corn within the first week after first emer-
gence (DAE 1 to 5 in this study). The aerial images collected 
on later dates represented 5 to 12, 13 to 20, and 17 to 24 days 
after first emergence. Figure 2 summarizes the timeline of 
corn emergence and the dates of aerial image collection. 

IMAGE PROCESSING AND FEATURE EXTRACTION 
Small corn seedlings from DAE 1 to 5 were difficult to 

identify due to their small size. Additionally, identifying 
seedlings was particularly difficult at the no-till research site 
because abundant ground residue and patches of winter an-
nual weeds obscured the seedlings (fig. 1b). Therefore, each 
corn seedling was manually cropped from the UAV images 
to simplify the image processing procedure. To identify corn 
seedlings in the images, a contrast enhancement procedure 
based on linear contrast stretch was performed on each 

image using the decorrstretch function in MATLAB 
(R2017b, MathWorks, Natick, Mass.) (Gnädinger and 
Schmidhalter, 2017). Linear contrast stretch expands the 
original pixel values in the image linearly into a new distri-
bution (Chandpa et al., 2014). The decorrstretch function in 
MATLAB transforms the pixel values of each band into the 
color eigenspace of a 3  3 (three bands of R, G, and B) cor-
relation matrix, followed by stretching them to equalize the 
band variances and transforming the color range to a normal-
ized interval between 0.01 and 0.99 (using the “Tol” and 
“0.01” arguments in the decorrstretch function). This func-
tion enhanced the color differences between corn seedlings 
and the background (soil or residue) (fig. 3) to segment the 
corn seedlings accurately. The contrast-enhanced images in 
RGB color space were converted to HSV (hue, saturation, 
value) color space to eliminate the luminance effect. The 
Color Thresholder app in MATLAB was used to determine 
the threshold value for each band in HSV color space to seg-
ment the images (fig. 3). 

Size and shape features were then extracted using the re-
gionprops function in MATLAB or computed using the 
equations listed in table 1. The actual values (in mm or mm2) 
of the calculated image features listed in table 1 were com-
puted using the product of the number of pixels of the stated 
image features and the GSD. The GSD of each image was 
determined using reference boards with known dimensions 
and the length of color stakes in each UAV image. This GSD 
determination is useful to show the needed GSD ranges for 
detecting the small newly-emerged plants. 

RANDOM FOREST MACHINE LEARNING MODEL 
A random forest (RF) modeling method was used to pre-

dict corn plant DAE. The RF model is a type of classification 
and regression tree (CART) machine learning method em-
ploying ensembles of classifications (James et al., 2013; Ro-
driguez-Galiano et al., 2012). Advantages offered by an RF 
model include fast training, higher accuracy, less potential 
for overfitting (when using a large number of trees), 
measures of variable importance, ability to capture non-lin-
ear correlations between variables and predictors, and no re-
quirement for data distribution assumptions such as normal-
ity (Belgiu and Drăguţ, 2016; James et al., 2013; O’Brien 

Figure 2. Corn emergence dates and UAV image collection dates. 

 

Figure 3. Segmented corn images at different DAE using contrast enhancement and segmentation with threshold values from HSV color space. 
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and Ishwaran, 2019; Rodriguez-Galiano et al., 2012). To de-
velop the RF model, a dataset consisting of the response var-
iable (DAE) and 17 image features (table 1) was established 
with 70% of the images as training data and 30% of the im-
ages as testing data. The number of observations was 310 for 
26 April, 627 for 3 May, and 624 for both 11 and 15 May. 
For every tree branch built in the RF model, only four fea-
tures were randomly selected, instead of using the full set of 
features to decorrelate the trees and build a reliable model 
(James et al., 2013). Because an RF model does not overfit 
even when using a large number of trees, studies have sug-
gested that the ideal number of trees ranges from 64 to 500 
(Belgiu and Drăguţ, 2016; James et al., 2013; Oshiro et al., 
2012). In this study, open-source software (RStudio ver. 
1.2.1335, RStudio, Boston, Mass.) was used for conducting 
RF modeling using the randomForest package (Breiman and 
Cutler, 2018). The default value of 500 trees in the package 
was used. 

The model performance was evaluated using the test data 
with two metrics, i.e., accuracy of each class and overall ac-
curacy of the classification (Kuhn, 2019). The accuracy of 
each class was defined as the ratio of the number of seedlings 
correctly classified to each DAE class to the total number of 
actual samples (seedlings) in each DAE class. The overall 
accuracy was defined as the ratio of the number of correctly 

classified seedlings in all DAE classes to the total number of 
actual seedlings in all DAE classes. An additional metric, 
i.e., 3-day accuracy, was also defined to study the potential 
of UAV imagery for predicting the DAE within a 3-day win-
dow. The 3-day accuracy was the ratio of the number of sam-
ples predicted one day before and one day after the actual 
DAE (-1 to +1 DAE) to the total number of actual samples 
in each DAE class. To clarify, 1-day accuracy in DAE means 
that the predicted DAE was the same as the actual DAE, 
while 3-day accuracy in DAE means that the predicted DAE 
was within a 3-day window centered on the actual DAE. 

The importance of the image features to the DAE predic-
tion was evaluated using the mean decrease in the Gini index 
(Belgiu and Drăguţ, 2016; James et al., 2013). The Gini in-
dex is used to measure the variance impurity (purity), i.e., 
the variance of a distribution associated with each class, 
where a small value implies that a node has observations pre-
dominantly from a single class (James et al., 2013). The 
mean decrease in Gini index was defined as the ratio of the 
total decrease in Gini index from all the nodes when the fea-
ture was used to the number of trees used (James et al., 
2013). A large value in the mean decrease in Gini index im-
plied an important feature. This approach was used in this 
study to identify the important features in predicting DAE. 
An analysis of variance (ANOVA) test (Sawyer, 2009) at a 

Table 1. Size and shape features (SF1 to SF7) extracted from each corn image. 
Feature Description or Equation Reference 

Area Total pixel number of a segmented seedling in images. MATLAB[a] 
Perimeter Pixel number around the boundary of a segmented seedling. MATLAB[a] 

Diameter 
Pixel number of the diameter of an equivalent circle with  

the same area as the segmented seedling. 
MATLAB[a] 

Major axis length Pixel number of the major axis of an equivalent ellipse of the segmented seedling. MATLAB[a] 
Minor axis length Pixel number of the minor axis of an equivalent ellipse of the segmented seedling. MATLAB[a] 

Eccentricity 
Ratio of the distance between the foci of the ellipse and its major axis length  

(ellipse with eccentricity 0 is a circle and 1 is a line segment). 
MATLAB[a] 

Solidity Proportion of pixels in the convex hull that are also in the region. MATLAB[a] 

Aspect ratio 
Major axis length

Minor axis length
 Najafabadi and Farahani, 2012 

Roundness 
4 Area

Perimeter


 Najafabadi and Farahani, 2012 

Compactness 
2Perimeter

Area 
 Najafabadi and Farahani, 2012 

SF1 
1

Compactness 
 Changule and Mali, 2014 

SF2 
Major axis length

Area
 Changule and Mali, 2014 

SF3 3

Area

Major axis length  
 Changule and Mali, 2014 

SF4 2

Area

Major axis length
 

2
 

 
 

 
Changule and Mali, 2014 

SF5 
Area

Major axis length Minor axis length
 

2 2
 

 
Changule and Mali, 2014 

SF6 
Minor axis length

Area 
  

SF7 3

Area

Minor axis length  
  

[a] Image features extracted using the regionprops function in MATLAB (R2017b). 
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0.05 significance level ( = 0.05) was performed to deter-
mine the significance of the difference between the DAEs of 
the two top-ranked features identified at earlier imaging 
dates (first and second weeks of emergence). When the 
ANOVA showed a significant result, a pairwise comparison 
known as Tukey’s honestly significant difference (HSD, 
 = 0.05) test (Abdi and Williams, 2010) was computed to 
compare the feature mean difference between DAEs. The 
statistical analysis was performed using the aov and Tuk-
eyHSD functions in RStudio. 

RESULTS AND DISCUSSION 
GROUND SAMPLING DISTANCE 

The ground sampling distance (GSD) was different in 
each image due to the variation of actual flight heights. Alt-
hough the UAV was set to fly at a nominal height of 5.0 m, 
the actual height varied based on the launch location of the 
UAV and the field slope. The computed GSD ranged from 
0.55 to 1.54 mm pixel-1 in different plots for UAV images 
captured on different days. Figure 4 shows images taken on 
26 April for two plots with the lowest (0.55 mm pixel-1) and 
highest (0.94 mm pixel-1) computed GSD. The small plants 
at DAE 1 and 2 were detectable using the described image 
processing workflow. This result supports the conclusion 
that a range of GSD from 0.55 to 0.94 mm pixel-1 can be used 
to detect corn at DAE 1 and 2. 

CLASSIFICATION ACCURACY FOR EACH IMAGE DATE 
The classification accuracies of the RF model using data 

from different imaging dates are shown in figure 5. The 
number in each grid square indicates the ratio between the 
predicted number of samples for each DAE and the actual 
number of samples for the DAE, with darker blue color in-
dicating a higher ratio. Diagonal grid squares show the clas-
sification accuracy for each DAE, while the row of squares 
at the bottom of each grid indicates the 3-day accuracy. As 
shown in figure 5a, during the first week of emergence, 

approximately half of the samples were predicted correctly 
for all DAE classes. The classification accuracy ranged from 
0.45 to 0.56, with the exception of DAE 5, which had an ac-
curacy of only 0.20. Figure 5a also shows that 36% of DAE 1 
plants were predicted as DAE 2 plants, and more than 20% 
of DAE 2 plants were predicted as either DAE 1 or DAE 3 
plants. 

Figure 6 show representative plants for each DAE to il-
lustrate potential reasons for the low classification accuracy. 
It can be seen that plants for both DAE 1 and DAE 2 could 
be described as “through surface” or “spike” (Poncet et al., 
2019), having similar size and shape. The similarity in size 
and shape of newly-emerged plants may have caused the 
misclassification of plants between DAE 1 and DAE 2. In 
contrast, plants in DAE 3 could be described as having their 
first leaf open, which increases the distinction in size and 
shape compared to DAE 1 and DAE 2 and might be a reason 
for the slightly improved accuracy for DAE 3 (56%). An-
other possible reason for the low accuracy was that some of 
the plants in DAE 3 were in the transition stage from spike 
to first leaf, causing 30% of the plants in DAE 3 to be pre-
dicted as DAE 2. Similar results were shown for DAE 4 
(about 50% of the samples were predicted as DAE 2 and 
DAE 3) and for DAE 5 (80% of the samples were predicted 
as DAE 4), for which the second leaf was becoming visible 
but the plant size and shape were similar in both DAEs. 

Figure 5b shows the classification accuracy for the sec-
ond week of emergence (DAE 5 to DAE 12). Less than half 
of the samples for all DAE classes were predicted correctly, 
with accuracy ranging from 0.21 to 0.43. About 30% of 
DAE 5 plants were predicted as DAE 7 and DAE 8, which 
had two leaves open (fig. 6). The low classification accuracy 
might be due to the lack of distinctive features for some 
plants transitioning from one leaf to two leaves, i.e., some 
DAE 5 plants may have transitioned to two-leaf plants. Sim-
ilarly, about 75% of DAE 7 plants were predicted to have 
emerged earlier. The prediction for 1-day DAE was best 
from DAE 8 through DAE 10, but still not better than about 

 

Figure 4. UAV images captured on 26 April at two computed ground sampling distances (GSD). Blue and green color stakes indicate emergence 
dates of 26 April (DAE 1) and 25 April (DAE 2), respectively. 
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40%. There was a combination of over- and under-prediction 
for these DAEs that could be due to the similar plant charac-
teristics during these days, with two open leaves and no sub-
stantial differences (fig. 6). Meanwhile, both DAE 11 and 
DAE 12 had the third leaf visible (fig. 6), which could have 
improved the classification (the highest classification accu-
racy was 0.43 for DAE 12 among the other DAEs). How-
ever, more than half of these plants were classified as earlier 
DAEs because they were transitioning from two leaves to 
three leaves. 

The accuracy of predicting 1-day DAE for the third and 
fourth imaging dates (figs. 5c and 5d; 11 and 15 May) was 
generally worse than for the earlier imaging dates, ranging 
from 0.00 to 0.43 accuracy. The poor classification accuracy 
for these DAEs might be due to emergence of the third leaf 
and its expansion over a three- to four-day window (DAE 15 
to 19 in fig. 6) with an insignificant increase in size. Alt-
hough the third leaf provides additional features for image 
analysis, the fact that its emergence and expansion occur 
over about four to five days diminishes the ability of nadir-
view images to accurately classify DAE. Similarly, the 
fourth leaf emerged and expanded over many days (DAE 20 

to 24 in fig. 6), which confounded the 1-day DAE prediction. 
Additionally, at the fourth leaf stage, older leaves on the 
lower parts of the plants were blocked by newer leaves, 
which caused the image features to be less sensitive for dif-
ferentiating plants at different DAEs. In general, these re-
sults support that 1-day DAE prediction is best for emer-
gence through the two-leaf stage; after that, the sensitivity in 
predicting DAE classes is reduced. 

Another reason for DAE misclassification was the limited 
number of plants evaluated. The total number of plants that 
emerged from 22 to 29 April was 627. The plant number 
ranged from 120 to 170 for emergence dates 24 to 26 April 
but was less than 70 for the other dates. The small datasets 
for training and testing potentially skewed the model sensi-
tivity (O’Brien and Ishwaran, 2019). Additionally, although 
the camera was adjusted to obtain nadir images, seedlings 
that were not at the centers of images had a somewhat 
oblique view, resulting in errors due to image distortion (Sei-
fert et al., 2019). 

Occasionally, the emergence and growth of seedlings 
may not be uniform due to varying soil and residue condi-
tions, which caused some variability in the image features 

 

Figure 5. Heat maps of classification accuracy and 3-day accuracy (-1 to +1 DAE) of each DAE class on each imaging date (emergence dates are 
shown in parentheses). 
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from plant to plant. One of the most vital factors affecting 
corn emergence and seedling growth in the first six weeks is 
soil temperature (Alessi and Power, 1971). Studies showed 
that lower soil temperature caused by residue from no-till 
(similar to the field in our study) delayed corn emergence, 
early growth, and development (Al-Darby and Lowery, 
1987; Bollero et al., 1996). Figures 7a and 7b show two ex-
amples of residue distribution and its influence on growth 
rate for plants that emerged on the same day (DAE 5). In 
figure 7a, a DAE 5 plant was classified correctly with the 
common feature of the second visible leaf (fig. 6). In con-
trast, figure 7b also shows a DAE 5 plant, but this plant was 
growing in low-residue conditions and was misclassified as 
DAE 7. The low-residue conditions enabled higher soil tem-
perature (i.e., darker soil absorbed more sunlight) and more 
rapid growth. Figure 7c and 7d show another example of im-
age feature variability caused by the orientation of the cole-
optile (a protective sheath covering the first leaf). In fig-
ure 7c, a DAE 1 plant was classified correctly with the cole-
optile emerging vertically from the soil surface. In figure 7d, 
the coleoptile did not emerge vertically from the soil surface 

but instead was forced to grow horizontally as it encountered 
surface residue, and the plant was misclassified as DAE 2. 

THREE-DAY CLASSIFICATION ACCURACY FOR  
EACH IMAGE DATE AND OVERALL ACCURACY 

During the first week of emergence, the 3-day accuracy 
was high for each DAE (>0.85) except for DAE 4 (0.67) 
(fig. 5a). For the second imaging date (fig. 5b), the 3-day ac-
curacy was not as good as the first week, but still ranged 
from 0.36 to 0.84, with no consistent trend from day to day. 
Similar results were indicated for the last two imaging dates 
(figs. 5c and 5d). Figure 8 shows the overall prediction ac-
curacies of the 1-day DAE and 3-day DAE for each imaging 
date. On average, UAV imagery predicted the 1-day DAE 
with moderate overall accuracy (i.e., <0.5), but the accuracy 
greatly improved when the performance measure for DAE 
was expanded to a 3-day window. As with predicting 
1-day DAE, the DAE classification sensitivity using the 
3-day window was reduced as the plants matured. Prediction 
of plant emergence in a 3-day period is useful for studies on 
corn emergence uniformity. Previous studies on the effects 

 

Figure 6. Example cropped corn images from UAV images of different DAE on each imaging date. 

 

Figure 7. Example images of correctly classified and misclassified plants: (a) correctly classified DAE 5 plant surrounded by average residue for 
the field, (b) DAE 5 plant misclassified as DAE 7 plant surrounded by less residue, (c) correctly classified DAE 1 plant with coleoptile emerging 
vertically from soil surface (red circle), and (d) DAE 1 plant misclassified as DAE 2 plant with coleoptile growing horizontally (red circle). 
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of delayed emergence on yield used wider ranges, such as 
one to three weeks (Andrade and Abbate, 2005; Liu et al., 
2004; Nafziger et al., 1991). Only one study investigated the 
effects of delayed planting of 2, 5, 8, and 12 days on yield 
(Lawles et al., 2012). Moreover, indication of delay was 
based on delayed planting days without documenting the ex-
act emergence day. This might be due to the time-consuming 
and labor-intensive field work needed to record the exact 

emergence day. Therefore, the present study shows proof-
of-concept for using high-resolution UAV images for pre-
dicting DAE within a 3-day period. Additional automation 
of data processing would be needed to extend the scale of 
this process. 

IDENTIFICATION OF IMPORTANT IMAGE FEATURES 
It is useful to evaluate the importance of different image 

features on the performance of DAE estimation. Figure 9 
shows the variable importance of the important features de-
termined using the mean decrease in Gini index. Two fea-
tures, i.e., area and SF2 (ratio of major axis length to area) 
were consistently among the top five features for all imaging 
dates, and diameter was among the top three features for all 
dates. The fact that these three features were consistently 
strong contributors for predicting DAE suggests their im-
portance, and therefore they should be the focus of future 
studies. 

Figure 10 illustrates the mean diameter and area for the 
first two imaging dates (26 April and 3 May) at different 
DAEs. The diameter and area increased with increasing 
DAE, which corresponded to the plant growth with increas-
ing leaf size and additional visible leaves. These morpholog-
ical features captured through UAV images, provide 

Figure 8. Overall accuracies of exact DAE and DAE within a three-
day window for each imaging date. 

 

Figure 9. Variable importance of important features based on mean decrease in Gini index for four imaging dates. 
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phenological information that may be useful for crop growth 
modeling (Dodig et al., 2019; Wang et al., 2018). Interest-
ingly, minor axis length ranked as the most important feature 
for the first imaging date but was much less important for the 
subsequent imaging dates. 

Figure 11 shows the minor and major axis lengths of the 
ellipse region of corn plants at different DAEs. During the 
first week of emergence (fig. 11a), the ellipse region covered 
the complete area of the first leaf. Thus, the minor axis length 
increased with increasing leaf size. In contrast, for the sec-
ond week onward (figs. 11b to 11d), the ellipse region was 
the overall nadir view of the plant, in which the minor axis 
length could represent the width of one leaf or the center of 
the plant (at the whorl or near it, fig. 11d). This uncertainty 
caused inconsistent trends in this feature at different DAEs. 

FUTURE STUDY AND APPLICATIONS 
This study provided meaningful estimates of post-emer-

gence DAE using UAV images. To achieve this, it was nec-
essary to fly the imaging system at a low altitude (~5 m) to 
acquire sufficient GSD, which required a higher-resolution 
camera to achieve the equivalent GSD with a larger area per 
scene. In addition, manual identification of corn plants was 
required because of the presence of winter annual weeds 
growing alongside the emerging corn plants. Plant residues 
from the previous growing season also added a challenge to 
the image processing for predicting DAE. However, because 
conservation and no-till systems are often encouraged for 
soil conservation and health, this issue needs to be resolved. 
Future work should include more advanced image pro-
cessing or deep learning (DL) models to automate the 

 

Figure 10. Mean diameter and area for the first two imaging dates (26 April and 3 May) at different DAE. In each chart, bars with different letters 
are significantly different in the mean at p < 0.05 for the Tukey HSD test. 

 

Figure 11. Minor and major axes of corn plants at different DAE on four imaging dates (values in parentheses are minor axis lengths). 
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background removal (weeds and residues), such as using DL 
models to detect and segment single plants from each image. 

As automation of image processing is further refined, the 
time and labor needed for collecting field-scale UAV im-
agery for this type of analysis will become more reasonable. 
As a bridge to that goal, more large-scale field experiments 
on emergence uniformity evaluation using UAV images 
should be conducted. These studies might include other soil 
and crop management factors, such as investigating the ef-
fects of emergence uniformity due to different tillage sys-
tems (Lithourgidis et al., 2005), planting depths (Hussen et 
al., 2013; Molatudi and Mariga, 2009), and seed sizes (Mo-
latudi and Mariga, 2009). In addition, plant morphological 
features may be affected by environmental factors including 
soil and weather conditions, which may cause bias of DAE 
estimation using only image features. Therefore, in future 
work, the DAE estimation model should also include envi-
ronmental information such as growing degree day (GDD), 
soil apparent electricity conductivity (ECa), and soil infor-
mation from a real-time planting sensor (SmartFirmer, Pre-
cision Planting, Tremont, Ill.). 

To improve the classification accuracy, different ap-
proaches to UAV data collection could be tested. For exam-
ple, collecting a sequence of multiple images with varying 
sufficient overlaps, such as 85% front and 70% side overlaps 
for field-scale experiments as suggested by aerial image 
stitching software (Pix4D Inc., Denver, Colo.), to produce 
an orthomosaic (Lin and Medioni, 2007) will reduce the var-
iability of image features caused by imaging plants at 
oblique angles. In addition, orthomosaic generation can be 
useful for mapping emergence uniformity for the entire field 
and the proportion of early and delayed emergence. This 
would be beneficial in making replanting decisions 
(Nafziger et al., 1991). Another UAV data collection ap-
proach could be collecting a series of nadir and oblique 
(camera adjusted to vertical angles of 45° and 135°) images 
to generate 3D dense point clouds (Che et al., 2020; Karpina 
et al., 2016; Zhou et al., 2018). These 3D dense point clouds 
may be useful for extracting other features, such as plant 
height and total number of leaves. 

CONCLUSION 
This research demonstrated that UAV imagery can be 

used to detect newly-emerged corn plants and estimate emer-
gence dates, which will be valuable for evaluating plant 
emergence uniformity and replanting decisions. The re-
quired GSD to detect the small corn seedlings (DAE 1 to 5) 
during the first week after emergence ranged from 0.55 to 
0.94 mm pixel-1. UAV imagery was not able to predict the 
1-day DAE with high overall accuracies, but was capable of 
predicting DAE within a 3-day window (-1 to +1 DAE) with 
higher overall accuracies. DAE prediction was best for the 
first two weeks after emergence (from emergence through 
two-leaf stage). Afterward, sensitivity in predicting DAE 
was reduced. Diameter, area, and SF2 (i.e., minor axis 
length/area) were important features identified for differen-
tiating DAE for all imaging dates, with an additional feature 
(minor axis length) for the first week of emergence. Further 

studies should acquire multiple images and generate an or-
thomosaic to reduce image feature variability. More plant 
samples at each DAE should be included to obtain a more 
robust model and subsequently increase the actual DAE pre-
diction accuracy. Furthermore, additional environmental 
data should be included in the prediction model to reduce the 
DAE estimation bias. 

To conclude, this study serves as the first approach to es-
timating corn emergence date in field conditions using UAV 
imagery with a high overall 3-day estimation accuracy. The 
methods and results of this study may provide baseline in-
formation for researchers who will conduct similar projects 
in the future. 
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