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Face signatures, including size, shape, texture, skin tone, eye color, appearance, and

scars/marks, are widely used as discriminative, biometric information for access con-

trol. Despite recent advancements in facial recognition systems, presentation attacks

on facial recognition systems have become increasingly sophisticated. The ability

to detect presentation attacks or spoofing attempts is a pressing concern for the in-

tegrity, security, and trust of facial recognition systems. Multi-spectral imaging has

been previously introduced as a way to improve presentation attack detection by uti-

lizing sensors that are sensitive to different regions of the electromagnetic spectrum

(e.g., visible, near infrared, long-wave infrared). Although multi-spectral presenta-

tion attack detection systems may be discriminative, the need for additional sensors

and computational resources substantially increases complexity and costs. Instead,

we propose a method that exploits information from infrared imagery during training

to increase the discriminability of visible-based presentation attack detection sys-

tems. We introduce (1) a new cross-domain presentation attack detection framework

that increases the separability of bonafide and presentation attacks using only visible

spectrum imagery, (2) an inverse domain regularization technique for added training

stability when optimizing our cross-domain presentation attack detection framework,

and (3) a dense domain adaptation subnetwork to transform representations between



visible and non-visible domains.
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Chapter 1

Introduction

Faces are among the most prevalent biometric modalities (face, iris, fingerprint, voice)

which are used in consumer devices such as personal cell phone, tablet, and computer

identity authentication, as well as in commercial security systems, for airport security,

and at border crossings. One advantage of using faces for biometric recognition is

that acquisition of facial imagery can be contactless, covert and non-intrusive. Cur-

rently, deep learning networks are nearing human level performance on face recogni-

tion tasks (Taigman et al. (2014); Guo and Zhang (2019)). However, the ubiquity

of facial recognition systems and increasing vulnerabilities, such as identity spoofing

or presentation attacks (PAs), necessitates enhanced security measures to prevent

failures in enrollment, authentication, or identification.

PAs describe the process of altering or obscuring facial signatures to gain access

or evade detection. We study the issue of presentation attack detection (PAD) using

multiple imaging domains to enhance the information in visible imagery to better

differentiate between genuine (bonafide) and attack samples.
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1.1 Presentation Attack Detection

The primary objective of PAD is to equip biometric systems with the ability to

identify intentional attacks on the system. Because PAs include instances where a

person may be trying to avoid detection, it is necessary to build a system that is

sensitive to intentional obfuscations of appearance. Face PAs can include complete

obfuscations, such as printed image, video replay, or mask style attacks, or partial

obfuscations, such as wearing glasses, make-up, or wigs. The partial obfuscations

are generally more challenging to detect because these attacks are often acceptable

societal behaviors and practices. Figure 1.1 shows several examples of PA instruments.

Figure 1.1: Examples of different PA types that a face biometric system may en-
counter.

It is evident from Figure 1.1 that some of the PA instruments would not easily

confuse a human observer, but automatic facial recognition systems (without PAD)
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are more susceptible to deception. Especially considering that there are two primary

objectives of PA, to avoid identification, and to spoof another’s identity.

1.2 Multi-Spectral Imaging

Visible light based cameras are ubiquitous, with components proliferating in consumer

electronics, commercial security systems, law enforcement technology, and military

surveillance. Visible cameras convert energy from reflected light in the visible spec-

trum (400 to 700 nm) to voltage levels that non-linearly map to pixel intensities.

However, cameras can be designed to harness different regions of the electro-magnetic

(EM) spectrum and thus capture different information about the subject. (examples:

thermal, near infrared cameras, radio wave based imaging in astronomy)

Research in heterogeneous face recognition, specifically visible to near infrared

(NIR) and visible to thermal, must overcome differences in quality, resolution, tex-

ture, and geometry between these imaging domains [Hu et al. (2017)]. The Struc-

tural Similarity (SSIM) Index was developed by Wang et al. (2004) to measure the

“degradation” or structural differences between two images of the same scene. SSIM

evaluates differences in local image structure rather than only using pixel-wise com-

parisons. Three main components for evaluation are used, luminance, contrast, and

structure, each based on local means and variances.

Given two different images, x and y, SSIM(x,y) is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(1.1)

where µx, and µy are the local mean values and σx, σy, and σxy are the local stan-

dard deviations. C1 and C2 are constants that are included in the calculation of the

luminance and contrast comparisons to add stability when the squared terms in the
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denominator approach zero. C1 and C2 are determined by

C1 = (K1L)
2, (1.2)

C2 = (K − 2L)2 (1.3)

where L is the dynamic range of the image and K1 and K2 are both small constants

K1, K2 ≪ 1.

Klare and Jain (2010) and Klare and Jain (2013) have shown that NIR to visible

face recognition can be performed through linear discriminant analysis (LDA) ap-

plied on a collection of random subspaces. Results showed that shared or“common”

discriminative projections can be learned such that NIR and visible images can be

matched directly through these subspace projections.

Figure 1.2: Imaging different regions of the electromagnetic spectrum provides differ-
ent information on the subject.

In Figure 1.3 the domain shift from visible to infrared imagery in PAD data is

shown using a sub-sample of the multi-spectral images used in this research. The

SSIM value is measured between source and target images for the visible to thermal
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(a) SSIM val = 0.374 (b) SSIM val = 0.507 (c) SSIM val = 0.342

(d) SSIM val = 0.187 (e) SSIM val = 0.322

(f) Colorbar

Figure 1.3: SSIM map comparisons where same domain pairs are compared with cross
domain pairs of bonafide face images. (a) Visible to Visible (b) Thermal to Thermal
(c) NIR to NIR (d) Visible to Thermal (e) Visible to NIR

and visible to NIR scenarios. By taking 100 images from each of the presentation

attack sub categories in the WMCA dataset, we also investigate how the domain gap

is effected by the type of attack. The average SSIM value for visible-thermal and

visible-NIR pairs are shown in Table 1.1 for each category.

Both Figure 1.3 and Table 1.1 indicate that generally speaking there is higher

similarity, or a smaller domain gap, between visible and NIR images. This agrees

with the findings in Hu et al. (2017) where bonafide faces were evaluated across

multiple infrared imaging domains.
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Table 1.1: Average SSIM values are computed for each of the presentation sub cate-
gories.

Presentation Thermal NIR
Bonafide 0.183 0.374

Facial Disguise 0.155 0.303
Fake Face 0.187 0.306
Print 0.070 0.204
Video 0.086 0.187

1.2.1 Near Infrared

Near Infrared (NIR) light inhabits the part of the EM spectrum just beyond visible

light, in the range of 800 to 2,500 nm. Like visible imaging, NIR imaging is still

reliant on reflected energy. An NIR imaging system requires a light source that emits

in the NIR spectrum as well as specialized filters that only transmit within a narrowly

defined range.

Several works have used NIR as well as shortwave infrared (SWIR) as the primary

media for the PAD problem. Steiner et al. (2016) used a SWIR images to perform

”skin detection” as an anti-spoofing pre-processing step for an FR system. Heusch

et al. (2020) uses the shortwave infrared channel (SWIR) of the HQ-WMCA dataset

for PAD. Raghavendra et al. (2017) fused 7 different spectral bands within visible

and NIR wavelengths for pad.

1.2.2 Thermal

Thermal imaging sensors, such as cooled thermal imagers or microbolometers, are

often sensitive to radiation from mid-wave infrared (MWIR) or long-wave infrared

regions of the EM spectrum; 3-5 micron or 7-14 micron respectively.

Thermal images capture information based on the temperature of an object or

scene. Everything warmer than 0 Kelvin radiates thermal energy and the spectral
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emissions are described, in idealized form, by black body radiation. Planck’s law

characterizes black body radiation with the following equation,

Bν(ν, T ) =
2hν3

c2
1

ehν/kT − 1
, (1.4)

where Bν is the spectral radiance for a given frequency and temperature, ν is the

frequency of the electromagnetic radiation, T is the temperature of the black-body, h

is Planck’s constant, and k is the Boltzmann constant. Unlike visible images, thermal

images are acquired using focal plane arrays composed to narrow band gap semicon-

ductors, e.g. indium antimonide (InSb), lead selenide (PbSe), or mercury cadmium

telluride (HgCdTe). These semiconductors convert low energy (0.05-1.3 eV) from

infrared photons to electric voltages which are quantized to discrete pixel intensity

values representing relative (or absolute) surface temperatures. Since thermal focal

plane arrays are sensitive to thermal emissions, the imagery produced lacks the high

frequency detail and texture information present in reflection-dominant (e.g. visible)

imagery.

Images of human faces captured by thermal cameras maintain some basic struc-

tures in common with visible face imagery. Boundaries between different regions are

distinguished by changes in temperature from one area to the next. Thermal images

depend a lot more on the content of an object than just the surface appearance, and

regions with high capillary density will appear brighter (warmer) than areas with less

blood flow or that protrude farther from the body (ears, nose). Any areas covered

by hair such as the scalp or chin under a beard appear darker since hair has no

mechanism for producing body heat.

However, a bonafide thermal face signature is significantly more challenging to

fake since simple spoofing mediums, such as print or video based methods, do not
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exhibit heat signatures that resemble human faces.

For this reason, thermal imagery frequently increases the performance of PAD

systems. In one of the first PAD frameworks to use thermal imagery, Dhamecha

et al. (2013) employed a patch-based “biometric” vs. “non-biometric” classification

system that used thermal data to help identify which regions of the face might be

under disguise.

1.3 Multi-Spectral PAD

Despite the benefits of combining information from multi-modal cameras for PAD

applications, the added cost and complexity of using multiple sensors (e.g., visible,

NIR, thermal, and depth) severely limits the use of PAD to local controlled access

environments. Therefore, to leverage current (and future) surveillance camera in-

frastructure that is mostly comprised of visible cameras, we aim to learn to extract

discriminative information (e.g., infrared imagery) from visible imagery using new

domain adaptation objectives.

Recently, George et al. (2020) introduced the Wide Multi-Channel presentation

Attack (WMCA) dataset that contains both 2D and 3D presentation attacks with

spatially and temporally synchronized imagery across four different sensor domains.

The WMCA dataset contains eight different kinds of presentation attack instruments

(PAIs) that fall under four main categories. These attack categories include facial

disguise (plastic halloween masks, paper glasses, funny eye glasses), fake face (man-

nequin, flexible silicon masks, paper masks), photo (print/electronic images), and

video.

Other multi-modal PAD datasets include: Casia-Surf(Zhang et al. (2020a)), MLFP

(Agarwal et al. (2017)), Multispectral-Spoof (MSSpoof) (Chingovska et al. (2016)),
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3DMAD (Erdogmus and Marcel (2013)), as well as Casia-Surf CeFa (Liu et al. (2021)).

Many approaches utilize information from all available imaging modes in order to

carry out the PAD task, which requires complex and expensive sensor suites to per-

form PAD.

In this work, we enhance the performance of PAD systems that utilize readily avail-

able visible spectrum cameras and equipment by harnessing the auxiliary information

present in supplementary image domains during the training process. However, NIR

cameras with filters and thermal cameras need not be present at deployment. Our

primary contributions include:

1.4 Contributions and Thesis Organization

This thesis makes contributions to the problem of face PAD through domain adap-

tation principles. The proposed framework, including CD-PAD, IDR, and DDA,

enhances visible-based PAD performance by learning to predict information from

discriminative infrared imagery with visible imagery during development. The orga-

nization of the following chapters is presented below.

• Chapter 2 lays out the related work that has been done utilizing multi-spectral

PAD imagery and domain adaptation techniques employed in computer vision

applications.

• Chapter 3 formalizes the methods used in the proposed framework and provides

network architecture used.

• Chapter 4 provides details regarding the datasets used in experimentation, ab-

lation studies of architectural components, and both qualitative and quantitave

analysis of experimental results.
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• Chapter 5 includes further discussion into the methods used in this thesis.

• Chapter 6 provides discussion regarding limitations due to data quality.

• Chapter 7 explains the conclusions of the work and potential for further inves-

tigation.
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Chapter 2

Background

PAD spans a variety of approaches that harness information from visible cameras as

well as those that rely on input from multi-spectral arrays. This chapter explains the

relevant existing research on different PAD methods starting with those that have

been developed for visible input data and then expanding to multi-modal approaches

that require data from multiple imaging domains. Lastly, we discuss the general

problem of domain adaptation and several approaches that we apply to the PAD

task.

2.1 Visible Spectrum PAD

This section covers prior research in PAD applied to visible imagery which includes

approaches such as image quality/artifact analysis, liveness detection, and SVM and

deep learning methods.

2.1.1 Quality-based Methods

Quality-based, or texture-based, methods encompass approaches to PAD that special-

ize in two-dimensional(2D) two dimensional attacks by focusing on image degradation.

The unifying theme of these methods is that they recognize that both print attacks
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and video replay attacks introduce subtle patterns that are not present in a bonafide

face sample.

Local Binary Patterns (LBP) is a method originally designed for texture analysis

by Ojala et al. (2002). LBP is an operator that assigns each pixel a value depending

on the pattern of the neighboring pixels (default follows the outer ring of a 3x3 block

surrounding the center pixel, but other radius sizes can be used). Histograms of the

resulting scores were then used to classify the types of patterns seen (various textiles,

scale patterns, animal skin, etc) showing the method to be rotationally invariant.

Figure 2.1: Example of the local binary pattern calculation process for a 3x3 region.
Source Määttä et al. (2011)

LBP was recognized as a useful approach for 2D PAD applications due to the

subtle patterns introduced by the attack media (print, video display) and has driven

early research in texture analysis based approaches to PAD.

Inspired by the assumptions behind classic image de-noising techniques, that a

degraded image can be resolved into the original image and some kind of additive

noise, Jourabloo et al. (2018) developed a method that they call “Face De-spoofing”.

Textures created by the spoofing medium (artifacts due to printing, screen quality)

are treated as a specific type of noise. The spoofing noise was then modeled from

a given attack sample while reconstructing the bonafide face from the spoof image.

The spoof “noise” is used by the system to make a decision regarding the bonafide

status of the presentation.
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Other texture based methods methods (e.g., de Souza et al. (2017)) have used

local binary patterns (LBP) to address 2D attacks, like print or replay PAs. LBP

image representations have been primarily applied to visible imagery for PAD since

infrared and depth imagery exhibit relatively fewer high frequency details (e.g., tex-

ture) compared with visible images.

One drawback to texture based methods is that they are primarily equipped to

handle 2D attacks (i.e. print, video replay) and are not suitable for more subtle 3D

attacks. Another issue faced by texture based methods is described by Agarwal et al.

(2019) who show that “that simple intensity transforms such as Gamma correction,

log transform, and brightness control can help an attacker to deceive face presentation

attack detection algorithms.” The Gamma corrections are defined by,

Iout = α · Iγin (2.1)

where α is a constant set to 1, γ = 0.5, and Iin and Iout represent the intensity of a

given input pixel and the intensity of the same pixel after Gamma correction. Log

transformations enhances the darker areas of an image and is defined as,

Iout = c · log(1 + Iin) (2.2)

where c is a constant defining the amount of the transformation applied to the image,

c = 2, and 4 in this evaluation.

Atoum et al. (2017) introduced a dual CNN method utilizing randomly selected

local regions from the face. One of the CNNs uses these image patches to generate

individual scores for each patch that rate the likelihood that the given patch came

from a spoof or bonafide image. Dividing the image into smaller pieces addresses

the concern of overfitting caused by many PAD datasets containing a relatively small
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number of subjects (compared to large scale face datasets used for FR). The second

CNN is used to generate an estimation of the depth map for the input face image,

such that bonafide presentations produce a face shaped map and attacks produce a

flat depth map. This approach is suitable for detection of 2D attacks only since a

mask will still produce a depth map resembling that of a human face. Several other

methods Liu et al. (2018), Shao et al. (2019), have similarly used depth estimation

as a regularization technique as one part of their PAD pipeline.

Shao et al. (2019) present a dataset domain generalizing approach that trains on

three combined PAD datasets and is evaluated on a disjoint dataset. The proposed

method used a mutli-adversarial framework to learn the generalized feature space.

This approach also uses depth estimation as an auxiliary regularizing technique for

PAD.

Zero-shot learning refers to the problem where a network learns from a set of

examples of “known” classes and then learns to identify novel classes. Early applica-

tions of zero-shot learning to PAD by Arashloo et al. (2017), Xiong and AbdAlmageed

(2018) involved only 2D attacks, where either print or video replay attack types would

be present during training and the remaining attack type evaluated at test time. Liu

et al. (2019) utilized a Deep Tree Network to perform zero-shot face anti-spoofing on

a wider range of attacks that include several kinds of 3D attacks (i.e. multiple mask

types, partial paper obfuscations).

2.1.2 Liveness detection

Liveness detection is a general approach to PAD based on the simple assumption that

by detecting “signs of life” it can be determined whether or not a given presentation is

real. These liveness cues have included: detection of a pulse, eye and head movements,

etc.
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The detection of heart rate using video frames is Remote Photoplethysmography

(rPPG), a technique that hinges on the fact that light reflected from the skin will

have different RGB color values depending on the blood flow beneath the surface.

Liveness detection methods that use rPPG information extract patches from high

arterial density (usually the forehead) for the best chances of detecting a signal.

Liu et al. (2018) use rPPG as a means of auxiliary supervision (in addition to depth

estimation) for a deep learning PAD model. Figure 2.2 illustrates the combined rPPG

and depth estimation approach.

Figure 2.2: Bonafide vs. attack input and liveness signals. Source: Liu et al. (2018)

Heusch and Marcel (2018) apply the method of long-term spectral statistics (LTSS),

first developed for speech based presentation attack detection, as a means of enhanc-

ing performance of face presentation attack detection through rPPG signals. LTSS is

a general approach to signal processing, where the discrete Fourier Transform (DFT)

is applied to an input signal, typically audio, to generate the first and second or-

der statistics of the frequency components of the signal. For this study, Heusch and
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Marcel (2018) use three different algorithms to generate the rPPG signals which are

then processed using LTSS. They found that using LTSS in an rPPG based PAD

pipeline improves over other rPPG based methods. The approach has the highest

performance out of rPPG based methods, however it does not meet the state of the

art performance for the datasets used. The authors of the study believe that rPPG

is a promising method against subtle unseen 3D attacks, but there is still progress to

be made.

2.2 Fusion based methods

We define fusion methods as any approach to PAD that utilizes multiple sources of

information (visible, depth, thermal, etc) to make the final decision regarding the

bonafide status of the presentation. Fusion can occur at different levels within the

deep learning pipeline (score level fusion, feature level fusion, data level fusion). Tech-

niques that rely on fusion have the advantages of utilizing complementary information

from different sensing domains, but have the downside of requiring additional sensors

deployed in the system.

Jiang et al. (2019) aimed to harness the complementary information in both vis-

ible and near infrared imaging modalities by building a multi-level fusion network.

Information is combined through data level fusion, concatenating visible and NIR im-

ages, feature level fusion, concatenating the feature vectors output of the CNN, and

score level fusion, concatenating the scores based on the individual modality inputs.

Three separate branches of the network, sometimes containing two data streams in-

dividually, are integrated for this fusion technique to create a model with potentially

high complexity and computational costs. This research does provide useful insight

into which fusion level provides the best benefit. An ablation study shows that the
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results of the score level fusion network are only slightly less accurate than the full

multi-fusion network indicating that while there is a net gain from providing the dif-

ferent levels, the other channels might not provide enough benefit to outweigh the

cost.

Raghavendra et al. (2018) investigated a specific niche of PAD which the authors

refer to as disguise detection. This is specifically the issue of a subject choosing

to adorn their face in such a way that their identity is concealed without creating

an appearance that is obviously unnatural (i.e. facemasks, headcoverings). The

specific mode of presentation attack studied is the application of a realistic false

beard. Data was collected over 8 narrow spectral bands that include both visible

and NIR wavelengths (530 to 1000 nm). The approach is focused on selecting image

regions of 11x11 pixels from the moustache region of the face to train a deeply coupled

autoencoder to generate the spectral signatures of the image patches and ultimately

produce a decision for the presentation. This approach has the limitation of being

tailored to a very specific attack scenario that is not necessarily common for all FR

systems and will not generalize to other attack types.

To quantify the threat to security systems that is actually posed by increasingly

realistic 3D masks Bhattacharjee et al. (2018) created the XCSMAD dataset with

the latest in 3D modeled silicon masks. Using 3D imaging technology, life-like silicon

masks can be manufactured that capture more detail than the cheap, mass produced

masks that had previously been studied for obfuscation attacks. Three popular face

recognition models, VGG-Face, Light CNN, and FaceNet, were evaluated with the

XCSMAD dataset. The end result shows that the FR systems in the study are more

than 10 times as likely to match a silicon mask to a real identity as they are likely

to match a bonafide sample to an incorrect identity. This indicates a vulnerability to

more advanced 3D attacks.
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Kotwal et al. (2019) investigate the problem of increasingly subtle advancements

in the technology behind custom made 3D masks for impersonation attacks. In this

paper, both score level fusion and feature level fusion are evaluated on multi-modal

imagery that includes visible, NIR, high-resolution thermal, and low-resolution ther-

mal images. For the first time, it was proposed to use a pre-trained FR network as a

feature extractor for PAD without fine tuning any layers. Results of single mode ab-

lation studies show that infrared range imaging provides more discriminable features

than visible imagery for the proposed method as well as all of the baseline methods

evaluated.

2.3 Multi-Channel Presentation Attack Detection

In George and Marcel (2021); George et al. (2020) the Multi-Channel Convolutional

Neural Network (MCCNN) was introduced for PAD. First, George et al. (2020) pro-

posed a multi-channel (i.e., multi-modal) fusion approach that combined information

from four imaging modalities: visible, near infrared (NIR), longwave “thermal” in-

frared (LWIR), and depth to perform PAD using the MCCNN architecture. Then, in

George and Marcel (2021) the MCCNN is used to address the concern of novel “un-

seen” attacks. For the same purpose, Zhang et al. (2020b) developed an autoencoder

network that utilizes the WMCA dataset to perform anomaly-based spoof detection.

The fundamental difference between these approaches and our work is that they ex-

ploit multi-modal imagery during inference. Instead, we exploit multi-modal imagery

offline in order to enhance the discriminability of visible-based PAD.
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2.4 Domain Adaptation

Within the field of deep learning, domain adaptation refers to the task of generalizing

so that the information learned from a source dataset can be applied to a disjoint

dataset with a different underlying distribution, or domain shift. For example, two

datasets that contain the exact same classes (handwritten numbers, cats vs dogs,

etc.) will have statistical differences based on the fact that data collection practices

will differ slightly, lighting conditions change, and so on. This is a significant concern

in areas of study that involve the face, such as facial recognition, where regional and

ethnic differences can affect things like skin tone, facial structure, and hair style to

the extent that it is important to ensure that a deep learning model will perform

appropriately outside of the context on which it was trained.

Transfer learning is a simple approach to domain adaptation where a model that

has been pre-trained on a, usually, large scale dataset is “fine tuned” using a portion

of the target data Weiss et al. (2016). The model parameters do not need to be trained

from scratch, which can be especially useful for applications where the target dataset

is of limited size. This approach is used in Nikisins et al. (2019) where pre-training on

RGB visible imagery creates a base model that is fine tuned on multi-channel PAD

data.

There are several works that recognize that the domain differences between several

visible based PAD datasets is not insignificant. These approaches focus on using do-

main adaptation techniques to improve dataset generalization for PAD tasks. In this

area of PAD research, four benchmark PAD datasets are used to create four different

evaluation scenarios, where three of the datasets are used in training and one is left

out for evaluation (Wang et al. (2020)). To this end, Mohammadi et al. (2020) used

a “feature divergence measure” based on the symmetric Kullback-Leibler divergence
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of a given filter between domains A and B to address PAD dataset generalization.

Domain adaptation is also used to describe the process of bridging the gap between

different types of data in which the domain gap is much more significant. Here we

study the process of extracting infrared-like features from visible light based imagery.

As expressed in Section 1.2, the differences between the infrared data and visible data

are not trivial and require a nuanced approach to domain adaptation.

In the following sections several existing approaches to domain adaptation are

introduced and will be evaluated in relation to the problem of cross domain PAD in

Chapter 4.

2.4.1 Maximum Mean Discrepancy

The Maximum Mean Discrepancy (MMD) Gretton et al. (2007) is a measure that was

proposed to evaluate the similarity between two distributions by computing distance

between their reproducing kernel Hilbert space (RKHS) embeddings. MMD has been

used as a metric for minimizing the distance between source and target domain rep-

resentations Long et al. (2013); Rozantsev et al. (2019). A 3D CNN framework for

PAD tasks was introduced in Li et al. (2018) that incorporated MMD regularization

between dataset domains for improved generalization.

Let S = {s1, ..., sN} and T = {t1, ..., tN} be the sets of features of the source and

target domains. In this particular problem each set has the same number of elements

N , although in general that need not be the case. Then the squared MMD of S and

T can be expressed as

MMD2(S, T ) =
N∑
i,j

k(si, sj)

N2
+

N∑
i,j

k(ti, tj)

N2

− 2
N∑
i,j

k(si, tj)

N2
,

(2.3)
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where k(·, ·) is the kernel associated with the RKHS.

The main disadvantage of MMD is that there is no discrimination between bonafide

and attack instances. Therefore, we investigate an alternative to MMD for domain

adaptation in the context of PAD for facial recognition systems.

2.4.2 Siamese Networks for PAD

Siamese networks (Bromley et al. (1993)) have been used to tackle both domain adap-

tation problems Motiian et al. (2017) de Freitas Pereira et al. (2019) and PAD tasks

Perez-Cabo et al. (2019). In de Freitas Pereira et al. (2019), a siamese network imple-

menting contrastive loss is used for heterogenous face recognition between different

imaging domains where images are mapped to a shared embedding space. Siamese

networks work well when imaging domains are sufficiently close (see Lezama et al.

(2017)). However, when imaging domains are further apart, they have been shown

to under-perform. Moreover, siamese networks, which are trained to ideally perform

well on multiple domains at the same time, end up performing sub-optimally in all

domains. Instead, we focus on modeling the complex interrelationships between two

domains for PAD.

2.4.3 Domain Invariance Loss

The Domain Invariance Loss (DIL) Fondje et al. (2020); Poster et al. (2021) is a

regularization technique proposed for domain adaptation for thermal-to-visible facial

recognition tasks. DIL uses a domain classification network that learns the probability

that the features produced from an image belong to either the visible (Pvis) or thermal

domain (Ptherm). Since the ultimate goal is similarity between the visible and thermal

representations, the domain classifier is trained such that the two distributions are

indistinguishable from each other. Specifically, the domain classification labels are
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constant, i.e., Pvis = Ptherm = 0.5. The potential disadvantage of this approach is that

the labels are always the same, which implies there is a risk of models never learning

patterns associated with either domain. Therefore, we consider an alternative where

such patterns are learned and used in a regularizing fashion.



23

Chapter 3

Cross-Domain Presentation Attack Detection Framework

The proposed PAD framework (Fig. 3.1) aims to enhance visible-based PAD us-

ing new “high-level” domain adaptation principles. First, we define the problem:

cross-domain presentation attack detection (CD-PAD). Then, we introduce the core

components of our framework:

1. a base network architecture–to extract discriminative image representations,

2. a new dense domain adaptation (DDA) subnetwork–to learn a mapping between

visible (source) and infrared (target) imagery,

3. a new CD-PAD objective function–to encourage task-level (i.e., inference level)

domain adaptation,

4. a new inverse domain regularization function– to disentangle spectral informa-

tion (domain specific) from PA information.

3.1 Preliminaries

Enhancing PAD performance from visible spectrum imagery requires exploitation of

subtle cues (e.g., specular reflections) to differentiate between bonafide faces and PAs.
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Figure 3.1: Schematic of CD-PAD with IDR regularization. The gray layers represent
the convolutional layers that are not re-trained. All blue layers (DDA subnet, IDR,
and CD-PAD classifier layers) are adapted during training. The DDA subnet is
inserted into the inference model to learn the transformation of source imagery to the
target embedding space. Bounding boxes at the output visually represent the final
decision of the network.

To emphasize such subtle cues, we introduce a new CD-PAD framework. The CD-

PAD problem is where discriminative information from a target domain is used to

boost the quality of information extracted from the source domain. For example, by

predicting infrared image representations from visible imagery, CD-PAD significantly

improves the quality of visible-based PAD and reduces PAD system complexity (e.g.

number/type of sensors) and cost.

Let S = {xs
1, x

s
2, . . . , x

s
n} and T = {xt

1, x
t
2, . . . , x

t
m} denote the sets of source (e.g.,

visible) and target (e.g., infrared) domain images, respectively. Here, n is the number

of images from the source domain and m is the number of images from the target

domain.

Let (xs
i , x

t
j) denote a pair of source and target images with corresponding labels

ysi and ytj. Unlike methods that use restrictive Euclidean distance metrics to bridge

domain gaps, CD-PAD performs inference level domain adaptation which relaxes the
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requirements for precise image registration/alignment and synchronous acquisition.

Instead, the key requirement for CD-PAD is that both source and target labels sets,

denoted by Ys and Y t respectively, must have overlapping labels. Mathematically,

this requirement is

Y t ⊇ Ys, (3.1)

where yt ∈ Y t and ys ∈ Ys.

The main goal under our proposed CD-PAD framework is to learn a target domain

PAD classifier, P (yt|ft(xt
j)) that is sufficiently discriminative when used with source

domain data, i.e., P (yt|fs(xs
i )), where ft is the mapping from the target domain to the

associated latent subspace and fs maps source imagery to the same “target” latent

subspace. The primary objective for CD-PAD is to find an optimal source-to-target

mapping fs, such that fs(x
s
i ) ≈ ft(x

t
j).

3.2 Base Architecture

George et al. (2020) showed that additional spectral data can increase the discrimi-

native power of multi-modal PAD systems. However, many extant security systems

employ visible spectrum cameras and use visible enrollment face imagery. Therefore,

we propose a method that consists of training a PAD network to extract discrimina-

tive (e.g, infrared) representations from visible imagery while leveraging non-visible

information only during training. The network contains two nearly identical data

streams—one for processing source imagery and one for target imagery—consisting

of CNNs with architectures based on the Light CNN network (Wu et al. (2018)).

Both streams are fed into the proposed CD-PAD classifier. The primary difference is

that the source stream is modified to include the addition of the DDA subnetwork,

which is described in section 3.3.
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Table 3.1: Light CNN Architecture for 124× 118 pixel image

Layer Filter Size Output Shape Params
/Stride (H ×W × C)

Conv1 5× 5/1 124 × 118 × 96 2,496
MFM1 — 124 × 118 × 48 –
Pool1 2× 2/2 62 × 59 × 48 –

Resblock1

[
3× 3/1
3× 3/1

]
× 1 62 × 59 × 48 83,136

Conv2a 1× 1/1 62 × 59 × 96 4,704
MFM2a — 62 × 59 × 48 –
Conv2 3× 3/1 62 × 59 × 192 83,136
MFM2 — 62 ×59 × 96 –
Pool2 2× 2/2 31 × 30 × 96 –

Resblock2

[
3× 3/1
3× 3/1

]
× 2 31× 30 × 96 332,160

Conv3a 1× 1/1 31 × 30 × 192 18,624
MFM3a — 31 × 30 × 96 –
Conv3 3× 3/1 31 × 30 × 384 332,160
MFM3 — 31 × 30 × 192 –
Pool3 2× 2/2 16 × 15 × 192 –

Resblock3

[
3× 3/1
3× 3/1

]
× 3 16 × 15 × 192 1,327,872

Conv4a 1× 1/1 16 × 15 × 384 74,112
MFM4a — 16 × 15 × 192 –
Conv4 3× 3/1 16 × 15 × 256 442,624
MFM4 — 16 × 15 × 128 –

Resblock4

[
3× 3/1
3× 3/1

]
× 4 16 × 15 × 128 590,336

Conv5a 1× 1/1 16 × 15 × 256 33,024
MFM5a — 16 × 15 × 128 –
Conv5 3× 3/1 16 × 15 × 256 295,168
MFM5 — 16 × 15 × 128 –
Pool4 2× 2/2 8 × 8 × 128 –
Linear — 512 4,194,816
MFM6 — 256 –

The Light CNN is a deep learning model that was designed to tackle face recog-

nition, while also being robust to the issue of noisy labels in large face datasets and

maintaining a small footprint with respect to storage requirements and computational
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complexity. A major advantage of Light CNN is the application of the Max Feature

Map (MFM) activation function. The MFM layer implements a type of neural inhibi-

tion by taking two feature maps and only passing the element-wise maximum values

to the next layer. The MFM operating on two input feature maps can be expressed

mathematically as,

x̂k
ij = max(xk

ij, x
k+N
ij ). (3.2)

Figure 3.2 shows the MFM process. Several works including those by, Kotwal et al.

(2019), George et al. (2020), and Kotwal et al. (2020) have found that Light CNN

makes a favorable feature extractor for PAD when the model is pre-trained for face

recognition.

Figure 3.2: Shown are the two types of MFM used in Light CNN. Left: MFM 1/2
favors the strongest out of two neuron activations. Right: MFM 2/3 only suppresses
one neuron out of three and keeps the two highest values. Source: Wu et al. (2018)

We use the Light CNN weights that have been pre-trained on the MSCeleb-1M

dataset (Wu et al. (2018)), which is a large-scale face dataset containing 10 million

images, as the feature extractor for both streams of the CD-PAD network. Then,

transfer learning is applied to both streams to re-use relevant model parameters. This

approach is similar to that used by George et al. (2020), except that our two-stream

network is trained in a domain adaptive manner instead of a multi-modal fusion

manner, meaning that only visible imagery is required during deployment opposed to
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requiring both visible and infrared imagery. Table 3.1 summarizes each layer of the

Light CNN architecture, which is comprised of convolution (Conv), Max-Feature-Map

(MFM), max pooling, and residual layers.

3.3 DDA Sub-network

We select a developed architecture that would best enable the network to learn the

mapping from source to target domain considering the constraints of the problem.

In the simplest architecture, one layer connects directly to the next such that infor-

mation flows in the following manner. The input and output of a given layer can be

represented by the equations

yi = A(xi−1), (3.3)

xi−1 = Wi−1 · xi−1 (3.4)

where y is the post-activation for a given layer and x is the pre-activation, A()̇ is

the nonlinear activation function of the layer, and Wi−1 represents the layer weights.

This works just fine for small networks. However, the problem of vanishing gradient

arises as networks grow deeper.

We explore two different connection types for cross domain PAD.

Dense connection – each layer l is connected to all previous (L− l) layers.

yi = A([x0, x1, . . . , xi−1])

Residual connection – The activation of layer l is summed with its input.

yi = A(xi−1) + xi−1

Dense connections in neural networks were introduced by Huang et al. (2017)

to address the vanishing gradient issue by giving each layer a direct connection to
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the objective function. Due to the information sharing from concatenating all of the

feature maps from previous layers, densely connected networks can perform well with

fewer parameters than other leading architectures.

He et al. (2016) took a different approach to the problem of vanishing gradients

and degradation faced by deep networks. The authors restrict the layers of their

network to explicitly fit a residual mapping F(x) + x. These networks employ skip

connections to build residual blocks, shown in Figure 3.3.

Figure 3.3: The basic building block of a Residual Network. Source: He et al. (2016)

Table 3.2: DDA Subnetwork Architecture for 124× 118 pixel image

Layer Inputs Output Shape Params
BatchNorm Pool3 16× 15× 192 384

δconv1 BatchNorm 16× 15× 48 82,992
δconv2 δconv1 16× 15× 48 20,784
δconv3 [δconv1, δconv2] 16× 15× 48 41,520
δconv4 [δconv1, δconv2, δconv3] 16× 15× 48 62,256
δ [δconv1, δconv2, δconv3, δconv4] 16× 15× 192 —

A domain adaptive subnetwork is added to the visible (source) stream of the CD-

PAD network to learn the mapping from the source to target domain. We propose

a new Dense Domain Adapation (DDA) subnetwork which is composed of a dense

block Huang et al. (2017) that consists of four convolutional layers as shown in Table
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3.2. Mathematically, the DDA subnetwork is represented as

δ(u) = Concat{δconv1(u), δconv2(u),

δconv3(u), δconv4(u)},
(3.5)

where

δconv1(u) = ReLU(Conv(BatchNorm(u))), (3.6)

δconv2(u) = ReLU(Conv(δconv1(u))), (3.7)

δconv3(u) = ReLU(Conv([δconv2(u), δconv1(u)])), (3.8)

δconv4(u) = ReLU(Conv([δconv3(u), δconv2(u), δconv1(u)])), (3.9)

with Conv(·) respresenting a 3× 3 convolution and ReLU(·) the rectified linear unit

activation function. The parameters of the DDA subnetwork are optimized using our

proposed CD-PAD loss (section 3.4).

The DDA subnetwork (Eq. 3.5) is motivated by the Residual Spectrum Transform

(RST) subnetwork used by Fondje et al. (2020) who introduced a residual transforma-

tion [He et al. (2016)] based subnetwork to bridge domain gaps for thermal-to-visible

face recognition. The effects of subnetwork type (i.e., residual versus dense) and place-

ment within the Light CNN on the overall performance of CD-PAD are described in

Section 4.6.2. The dense architecture was selected for the DDA subnetwork primarily

due to superior performance observed in the context of cross domain PAD.

The DDA subnetwork receives the output of the Pool3 max pooling layer shown in

the Light CNN architecture in Table 3.1 as input to the BatchNorm layer. The dense

output of DDA is then passed to the Resblock3 layer of Light CNN and through the

remainder of the network. Figure 3.4 illustrates the connections between the layers
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Figure 3.4: Diagram showing the connections between densely connected layers of
the DDA subnetwork

of the DDA subnetwork.

3.4 Cross Domain Presentation Attack Detection

The proposed CD-PAD framework alternates training between the source and target

domains to optimize information extracted from target domain face imagery to guide

the adaptation of source domain representations. First, the PAD classifier is trained

exclusively on the target data. The target domain classifier and Light CNN are trained

in a manner to avoid over-fitting to the target data. We found that over-training on

target data can lead to under-performing on source imagery (i.e., visible based PAD).

Results from detailed source-target trade off ablation studies (shown in section 4.6.1)

indicate when the target learning phase of training is complete. The PAD classifier

weights are optimized by minimizing the Binary Cross Entropy (BCE) loss function

between the labels and predictions by,

L(xt, yt) =(1− yt) log(1− f(xt;wt))

+ yt log(f(xt;wt)),

(3.10)

where xt and yt are the source and target input images and labels from Section 3.1

and wt refers to the classifier weights that are trained using the target imagery.
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After this initial phase, the trained classifier optimizes the parameters of the DDA

subnetwork that transform the source domain image representations to representa-

tions to exhibit properties similar to target domain imagery. In the domain adaptive

phase, the classifier weights, wt, remain fixed so that the objective function can only

be minimized by transforming the feature representation of the visible domain. For

the domain adaptive training, the BCE loss function is

L(xs, ys) =(1− ys) log(1− f(xs;wt))

+ ys log(f(xs;wt)),

(3.11)

where wt represents the classifier parameter weights that had previously been trained

on the target data.

The CD-PAD framework ultimately works due to the fundamental assumption in

Eq. 3.1, where we assume that both target and source domain span the same label

sets. Due to the asynchronous, alternating training strategy used by CD-PAD, target

and source imagery are not required to be precisely synchronized or co-registered.

Therefore, CD-PAD is more flexible and extensible than existing domain adapta-

tion methodologies, especially those that optimize Euclidean distances between cor-

responding pairs or triplets.

After training the CD-PAD framework, only the source stream (i.e., inference

model in Fig. 3.1) is used for deployment of the PAD system. This provides a very

efficient and cost effective solution for PAD.

3.5 Inverse Domain Regularization

Lastly, we propose a new inverse domain regularization(IDR) technique that aims to

help guide the transformation of source domain representations to the target domain
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subspace. Unlike Fondje et al. (2020) who used domain invariance loss to force a

matching domain classification for both domains, we train a domain classifier to cor-

rectly differentiate between source and target domains. After learning the distinction,

inverting the labels of the source data is what drives the domain adaptation provided

by IDR.

First, the IDR domain classifier is trained with correct domain labels for each of

the input images and learns to appropriately discriminate between the two domains.

Using the same notation from Section 3.1, let P t(xi) be the probability that a given

training image xi comes from the target domain. The IDR classifier is trained to

predict P t(xs
i ) = 0 and P t(xt

i) = 1, a correct classification of the feature domains

for each of the input images. Next, in order to guide the network to map the source

images to the target feature space, we implement the domain inversion of IDR. In this

domain adaptive stage of training, the domain classifier parameters are fixed while the

DDA subnetwork is updated. Here, the labels for the source images are intentionally

labeled incorrectly as target images. The DDA subnetwork in the source channel

must then adapt to transform the source features so that they will be identified as

the target class by the domain classifier, or mathematically, that P t(xs
i ) = 1. The

bottom line is that IDR aims to reduce differences between source and target image

representations in a class agnostic manner and thus complements the CD-PAD loss

by imposing additional constraints.
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Chapter 4

Experiments and Results

In this Chapter we describe the datasets used for evaluation of the CD-PAD method

as well as the evaluation metrics that measure performance. Both qualitative and

quantitative results for the full CD-PAD framework are presented in Sections 4.4 and

4.5. Lastly, multiple ablation studies evaluating the effects of different components

of the CD-PAD framework are included in Section 4.6.

4.1 Datasets

To train any deep learning model, obtaining a dataset of sufficient size and quality is

important. The best Presentation Attack datasets contain several modes of attacks,

offering the ability to predict how a network will perform on an unknown or “unseen”

attack type. For this project we focus only on PAD datasets that contain both visible

and infrared imagery. Information about the datasets used for analysis is provided in

Sections 4.1.1 through ??.

4.1.1 WMCA

For training and evaluation on the WMCA dataset, the “grandtest” protocol referred

to by George et al. (2020) is used. The data is split into three subsets: train, dev,
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and test. For each domain, the subsets contain 28,223, 27,850, and 27,740 images

respectively. The distribution of attack categories are consistent across each of the

sets and individual subjects do not appear in multiple subsets. The test subset

contains 5,750 bonafide images, 1,649 facial disguise images, 13,041 fake face images,

4,200 photo attack images, and 3,100 video attack images.

4.1.2 MSSpoof

To show CD-PAD’s potential for generalization, we also evaluate on the MSSpoof

(Chingovska et al. (2016)) dataset. MSSpoof contains both visible and NIR imagery

of 21 individuals. Like WMCA, MSSpoof is split into three identity disjoint subsets:

train, dev, and test. All of the PAs in the MSSpoof dataset are print style attacks.

The training subset contains 594 visible images and 577 NIR images, the dev subset

contains 398 visible images and 395 NIR images, and the test subset contains 396

visible images and 395 NIR images.

4.1.3 CASIA-SURF

CASIA-SURF is a largescale PAD dataset that contains three different imaging

modalities: depth, NIR, and visible. All the attack types are variations of the stan-

dard print attack where a printed photograph is presented to the FR system. The

print attacks in CASIA-SURF can be split in to 3 categories: photos with eye regions

cut out, photos with eyes and nose cut out, and photos with eyes, nose, and mouth

cut out. The dataset contains 1000 unique subjects and a total of 492,522 images.

For evaluation, the data is split so that the training subset contains bonafide

faces and only half of the attack types (curved print with eyes/mouth/nose cut, flat

print with eye/mouth/nose cut, and curved print with eyes/nose cut) so that the test
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and validation subsets contain unseen attacks. Additionally there are 2 evaluation

protocols for both within modal and cross modal evaluation

4.2 Implementation

All models were trained in PyTorch (Paszke et al. (2019)) and updated using the

ADAM optimizer (Kingma and Ba (2015)) with a learning rate of 1x10−4. Features

were generated using the Light CNN (Wu et al. (2018)) framework initialized with

weights pre-trained for facial recognition. During the first phase of training, the

fully-connected PAD classification layers are trained on thermal data. In the final

cross domain training stage the weights of the DDA subnetwork in the visible data

stream are made trainable. The second stage of training uses the same optimizer

and learning rate. Networks trained with inverse domain regularization required an

additional stage of training, wherein only layers in the parallel domain classification

network are updated. Data augmentation is utilized during training with random

horizontal flipping with a probability of 0.5, and random rotation of maximum 10

degrees.

Preprocessing on the MSSpoof dataset included 5-point facial landmark regis-

tration and tight cropping around the face. Image cropping is utilized to alleviate

potential problems with over-fitting as a result of the limited quantity of data in

MSSpoof. Restricting the network to only learn from information contained in the

face prevents it from focusing on background details that are often dataset specific.



37

4.3 Evaluation Metrics

4.3.1 ROC Analysis

The Reciever Operating Characteristic curve (ROC curve) is a tool used to analyze

the performance of binary classification systems. The ROC curve is a plot of the True

Positive Rate (TPR) vs. False Positive Rate (FPR) where the decision threshold τ is

swept from the minimum to the maximum value of the decision scores that are under

evaluation. In a binary classification system there are four different decision scenarios

that relate to the ROC analysis. For input where the ground truth label is positive,

the system may either return a positive or negative score producing True Positive

(TP) or False Negative (FN) decisions respectively. Alternately a sample might have

a ground truth label of negative. Then a positive score would give a False Positive

(FP) decision and a negative score would give a True Negative (TN) decision. The

FPR and TPR are given by the equations,

TPR(τ) =
TP (τ)

TP (τ) + FN(τ)
, (4.1)

FPR(τ) =
FP (τ)

FN(τ) + TN(τ)
. (4.2)

where τ is the decision threshold.

4.3.2 ACER Metrics

Results are reported according to the ISO/IEC 30107-3 standard metrics for pre-

sentation attack detection, Attack Presentation Classification Error Rate (APCER),

Bonafide Presentation Classification Error Rate (BPCER), and the Average Classifi-

cation Error Rate (ACER) ISO/IEC 30107-3:2017. APCER designates the proportion

of presentation attacks incorrectly identified as bonafide presentations, and BPCER
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is the proportion of incorrectly identified bonafide presentations. The metrics are

defined as follows:

APCER(τ) =
FP (τ)

FP (τ) + TN(τ)
, (4.3)

BPCER(τ) =
FN(τ)

FN(τ) + TP (τ)
, (4.4)

ACER(τ) =
APCER(τ) +BPCER(τ)

2
, (4.5)

where FN, FP, TN, and TP are the number of false negatives, false positives, true

negatives, and true positives for a given threshold τ as introduced in Sec. 4.3.1.

Results are reported by giving the BPCER value at selected APCER values of

1% and 5%. This provides a consistent operating point for comparison in the ROC

curves and provides insight into the performance at both a low and slightly less strict

false positive rate.

4.4 Qualitative Analysis

Quantitative metrics are important for providing a hard line of comparison between

different methods, but do not always give the full picture behind the performance of

a model. In this section we present qualitative analysis of the models that provide

more visual context for the performance.

4.4.1 WMCA

To illustrate the enhancements due to CD-PAD, we evaluate the feature represen-

tations of the visible imagery (bonafide and PA samples) using the t-Distributed

Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton (2008)) method
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to visualize the data. The t-SNE representations for the visible baseline and the CD-

PAD adapted visible features are shown in Fig. 4.1. Data samples used for the

t-SNE visualization are randomly selected from the test set. The adapted features

are generated from a CD-PAD + IDR network trained with thermal imagery as the

target domain. It is clear from the plots that the cross domain adaptation causes

the bonafide samples to be more tightly clustered in the feature space and have less

overlap with the attack samples.

Figure 4.1: Compared to the single mode visible baseline, our method shows better
separability between bonafide and all attack data points.
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4.4.2 MSSPOOF

To illustrate the effects of the CD-PAD framework, analysis of the raw predictions for

the MSSPOOF test set are shown. Since PAD is treated as a 2 class (binary) problem,

the final layer generates a confidence score in the range of [0,1] that indicates whether

or not the image is a bonafide presentation.

Figure 4.2: Histograms showing the distribution of scores
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4.5 Quantitative Results

Next, we compare the performance of CD-PAD with visible and infrared (thermal or

NIR) baseline models using WMCA and MSSpoof. The thermal and NIR specific

models represent the upper performance bounds that can be attained by adapting

visible data via our CD-PAD framework.

4.5.1 WMCA

We compare the results of the CD-PAD method using two different target domains,

thermal and NIR, against networks trained for the PAD task on single modal data.

The CD-PAD method improves upon the quality of the attack detector when only

visible data is available in a deployment scenario.

Table 4.1: CD-PAD results where NIR is the target domain using the WMCA dataset

Method BPCER @
1% APCER

BPCER @
5% APCER

AUC

MCCNN(NIR)
George et al. (2020)

5.93 ± 6.54 1.54 ± 1.94 0.997 ± 0.003

MCCNN(Visible)
George et al. (2020)

74.59 ± 9.87 43.72 ± 9.43 0.895 ± 0.029

Siamese network 26.08 ± 3.16 11.18 ± 1.97 0.957 ±0.008
CD-PAD 18.7 ± 1.77 9.95 ± 1.31 0.962 ± 0.008
CD-PAD+DIL 19.84 ± 0.34 11.2 ± 1.41 0.970 ± 0.002
CD-PAD+MMD 20.9 ± 4.1 13.1 ± 2.24 0.977 ± 0.001
CD-PAD+IDR 17.13± 1.38 9.27 ± 2.13 0.980 ± 0.000

The effects of using NIR imagery as the visible adaptation target are shown in

Table 4.1. The CD-PAD network greatly improves over the visible baseline. With

NIR as the target domain CD-PAD achieves an average of 18.7% BPCER at a 1%

APCER operating point, improving over the visible baseline by 55.89%. Adding IDR

to the CD-PAD framweork results in an additional improvement of 1.57%.
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Table 4.2: CD-PAD results where thermal is the target domain using the WMCA
dataset

Method BPCER @
1% APCER

BPCER @
5% APCER

AUC

MCCNN(Thermal)
George et al. (2020)

3.83 ± 2.45 0.0 ± 0.0 0.998 ± 0.001

MCCNN(Visible)
George et al. (2020)

74.59 ± 9.87 43.72 ± 9.43 0.895 ± 0.029

Siamese network 36.18 ± 3.17 19.89 ± 6.86 0.939 ± 0.014
CD-PAD 24.3 ± 2.36 8.75 ± 1.64 0.973 ± 0.003
CD-PAD+DIL 19.31 ± 1.25 7.88 ± 2.83 0.981 ± 0.006
CD-PAD+MMD 48.24 ± 0.79 23.4 ± 1.98 0.948 ± 0.001
CD-PAD+IDR 12.42 ± 0.52 6.90 ± 1.56 0.982 ± 0.007

Table 4.2 shows the results when thermal imagery is available for cross domain

training. When CD-PAD is used on its own, the visible based PAD results are

boosted. CD-PAD shows a marked improvement in the BPCER at low APCER

operating points in the ROC curve. CD-PAD achieves an average of 24.3% BPCER

at a 1% APCER operating point, and improves by 50.29% over the visible baseline.

Including additional domain adaptation loss components had varying effects on the

CD-PAD performance. Introducing MMD to help guide domain adaptation actually

hurt performance. However, the combination of CD-PAD and IDR using the thermal

target imagery achieved the biggest improvement in visible based PAD on WMCA

decreasing the BPCER at a 1% APCER by 62.17%.

4.5.2 MSSpoof

In Table 4.3, we evaluate the CD-PAD method using the MSSpoof dataset where

visible source imagery is adapted to the target NIR domain. Once again, CD-PAD

improves upon training the model on visible imagery alone. The network trained on

visible imagery achieves an average of 42.85% BPCER at a 1% APCER operating
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point, and the CD-PAD network achieves 13.75% for the same metric. Adding IDR to

the CD-PAD framework offers a small performance boost to the BPCER score at 1%

APCER, improving the CD-PAD performance by 0.27%. The overall improvement

due to CD-PAD + IDR

Table 4.3: CD-PAD results using MSSpoof. NIR is the target domain.

Method BPCER @
1% APCER

BPCER @
5% APCER

AUC

MCCNN(NIR)
George et al. (2020)

16.27 ± 3.74 12.09 ± 3.1 0.977 ± 0.003

MCCNN(Visible)
George et al. (2020)

42.85 ± 0.54 27.67 ± 0.51 0.891 ± 0.025

CD-PAD 13.75 ± 0.59 9.25 ± 0.3 0.987 ± 0.001
CD-PAD+DIL 14.74 ± 2.39 8.11 ± 0.81 0.987 ± 0.001
CD-PAD+MMD 28.36 ± 3.76 17.54 ± 0.26 0.976 ± 0.037
CD-PAD+IDR 13.48 ± 2.02 10.46 ± 2.64 0.987 ± 0.002

4.5.3 CASIA-Surf

Table 4.4: CD-PAD results on Casia-Surf, where NIR is the target domain.

Method BPCER @
1% APCER

BPCER @
5% APCER

AUC

MCCNN(NIR)
George et al. (2020)

85.98± 0.07 65.93 ± 3.78 0.843 ± 0.028

MCCNN(Visible)
George et al. (2020)

65.64 ± 12.79 39.35 ± 15.89 0.911 ± 0.048

NIR (with DDA) 19.42 ± 9.93 3.64 ± 2.41 0.991 ± 0.004
Visible (with DDA) 63.16 ± 11.01 35.66 ± 13.95 0.923 ± 0.042
CD-PAD* 55.22 ± 4.2 21.94 ± 2.4 0.957 ±

0.003
CD-PAD*+DIL 58.40 ± 1.53 29.9 ± 0.45 0.944 ± 0.000
CD-PAD*+MMD 74.10 ± 1.36 33.87 ± 1.70 0.939 ± 0.002
CD-PAD*+IDR 78.7 ± 5.78 36.14 ± 5.61 0.929 ± 0.007

Table 4.4 shows the results of the CD-PAD method with adjustments made to

accommodate changes in image quality in the CASIA-Surf dataset (CD-PAD* indi-
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cates that the CD-PAD method involves two DDA subnetworks). Additional analysis

into the motivations behind the changes made to CD-PAD is explained in Chap-

ter 5. In the original single mode baselines, the network struggled to sufficiently

learn from the target data in order to offer an improvement through cross domain

training. For the experiment on CASIA-Surf, a DDA subnetwork is added to both

streams of the CD-PAD network. These subnetworks learn different transformations

and are not “shared” between the source and target streams. In this situation, the

best improvement is achieved by the CD-PAD framework without additional domain

regularization reducing the BPCER at 1% APCER by 7.94% and BPCER at 5%

APCER by 13.72%.

4.6 Discussion and Analysis

This section covers the analysis and ablation studies that went into developing the

CD-PAD framework. First, we analyze the trade-off on performance on the source

(visible) data when training at different durations on target imagery. Second, we

consider the CD-PAD method with and without various configurations of the DDA

subnetwork placed at varying depths in the base network architecture. Third, we

evaluate the performance of the network when changing the dimensionality of the

final embedding representation produced by the CD-PAD network.

4.6.1 Source-Target Trade Off Analysis

The key to CD-PAD is to find an IR-like embedding space that enhances the dis-

criminability of visible imagery. In Section 4.5, it is shown that the single mode IR

baselines significantly outperform the single mode visible baseline. We consider the

NIR and thermal baselines as an upper limit of what can be achieved through cross
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domain training. In Section 1.2 we used SSIM to show the domain gap between visible

and infrared imaging modalities.

Table 4.5: Varying training epochs used in Target learning stage of CD-PAD for
WMCA with NIR target domain without using the DDA subnet and finetuning LCNN
layers

Target Epochs BPCER @
1% APCER

BPCER @
5% APCER

AUC

1 68.52 ± 1.95 45.85 ± 0.94 0.884 ± 0.006
5 65.65 ± 1.21 52.27 ± 2.48 0.848 ± 0.003
10 55.36 ± 5.38 35.73 ±

10.99
0.909 ±
0.032

15 52.49 ± 4.45 40.92 ± 1.69 0.908 ± 0.009
20 57.30 ± 2.76 38.41 ± 1.88 0.908 ± 0.016
25 64.17 ± 2.59 45.26 ± 10.40 0.884 ± 0.002

Table 4.6: Varying training epochs used in Target learning stage of CD-PAD for
WMCA with Thermal target domain without the DDA subnet

Epochs Stage 1 BPCER @
1% APCER

BPCER @
5% APCER

AUC

1 86.66 ± 3.26 73.65 ± 3.85 0.763 ± 0.026
5 56.82 ± 13.37 41.46 ± 12.05 0.895 ± 0.033
10 73.83 ± 3.34 54.29 ± 1.73 0.881 ± 0.009
15 46.23 ±

3.01
32.87 ±
6.23

0.917 ±
0.013

20 54.16 ± 7.46 39.94 ± 6.72 0.905 ± 0.021
25 60.87 ± 4.43 39.08 ± 8.46 0.910 ± 0.012

In Table 4.5 and 4.6 results are shown for the CD-PAD method before adding

the DDA subnet, instead layers of the Light CNN are made trainable to transform

source representations. In both cases, performance declines beyond 15 epochs of

initial classifier training on target data.

In Tables 4.8 and 4.7, the DDA subnet is incorporated into the CD-PAD frame-

work to generate the results shown. The inclusion of the DDA subnetwork makes the

overall approach less sensitive to the issue of overtraining on target imagery. Per-
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Table 4.7: Varying training epochs used in Target learning stage of CD-PAD for
WMCA with Thermal target domain with the DDA subnet in use

Target Epochs BPCER @
1% APCER

BPCER @
5% APCER

AUC

1 40.10 ± 5.81 16.61 ± 5.31 0.945 ± 0.010
5 26.43 ± 4.02 11.55 ± 3.71 0.964 ± 0.010
10 26.02 ±

0.28
9.72 ± 3.99 0.971 ±

0.009
15 26.61 ± 8.64 14.62 ± 4.70 0.954 ± 0.013
20 27.48 ± 1.08 10.46 ± 2.39 0.969 ± 0.001
25 26.46 ± 0.47 12.87 ± 1.36 0.962 ± 0.001

Table 4.8: Varying training epochs used in Target learning stage of CD-PAD for
WMCA with NIR target domain when using the DDA subnet

Target Epochs BPCER @
1% APCER

BPCER @
5% APCER

AUC

1 24.04 ± 6.86 13.53 ± 3.83 0.960± 0.018
5 20.04 ± 2.30 12.70 ± 3.44 0.971 ± 0.008
10 18.09 ±

5.50
12.57 ±
4.66

0.964 ±
0.015

15 19.71 ± 1.07 11.64 ± 1.92 0.967 ± 0.001
20 28.94 ± 1.78 15.14 ± 1.37 0.955 ± 0.001
25 23.01 ± 2.90 8.87 ± 0.05 0.973 ± 0.004

formance peaks after 10 epochs, however continued training on target imagery only

causes the results to plateau instead of the steady increase in error rate seen when

trained without the subnet.

4.6.2 Subnetwork Ablation Study

A subnetwork ablation study was conducted to determine the optimal layer depth at

which to insert a domain adaptive subnetwork into the visible channel of the CD-PAD

network, and to evaluate different potential subnetwork architectures. The Light CNN

network contains four max pooling layers that conclude each convolutional block. For

each test, a trainable subnetwork is placed directly after one of the max pooling layers



47

to learn the transformation from the source to target domain. When a subnetwork is

used for domain adaptation, all of the pre-trained layers in the network remain fixed

during training.

Table 4.9 shows the effects of subnetwork type (residual or dense) and location

when using the CD-PAD method. For this ablation study, additional regularizing loss

functions are not implemented in the domain adaptive phase of training in order to

highlight the change in performance that can be attributed to the network architecture

alone.

For both architectures, the domain adaptive subnetwork shows the greatest effect

when placed after the third pooling layer in the Light CNN. The most drastic improve-

ments are seen in the lowest false positive rates where the CD-PAD network struggles

without having the support of additional domain regularization. All of the final re-

sults presented for the CD-PAD framework are generated using the domain adaptive

block at the third max pooling layer, which we refer to as the DDA subnetwork.

Table 4.9: Subnetwork ablation study

Network Details Visible / Thermal Visible / NIR
Subnet
Type

Layer BPCER @1%
APCER

BPCER @5%
APCER

BPCER @1%
APCER

BPCER @5%
APCER

None No DDA 41.69 ± 17.32 34.67 ± 15.99 64.32 ± 2.79 50.92 ± 4.71

Dense
Pool2 66.75 ± 8.45 53.32 ± 11.79 62.68 ± 9.99 71.47 ± 23.55
Pool3 29.64 ±17.89 13.78 ± 7.11 18.7 ± 1.77 9.95 ± 1.31
Pool4 66.61 ± 12.17 51.97 ± 19.99 71.47 ± 23.55 55.66 ± 19.44

Residual
Pool2 68.45 ± 10.99 45.11 ± 14.49 68.24 ± 12.9 50.11 ± 14.49
Pool3 39.75 ± 14.09 18.99± 10.17 20.69 ± 3.22 10.37 ± 1.06
Pool4 86.92 ± 10.77 66.21± 10.11 95.9 ± 1.05 79.64 ± 5.28

4.6.3 Embedding Dimensionality Study

In deep learning, high dimensionality is a topic of concern with respect to both model

weights and data representation. The final layers of a classification model are gener-
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ally comprised of one or more fully connected layers. Therefore, a high-dimensional

feature embedding can result in over parameterization in the classifier. We studied

the effect of increasing and decreasing the embedding dimensionality of the CD-PAD

target and inference networks. The results of this study for visible to thermal CD-

PAD are presented in Table 4.10, and the results for visible to NIR training are in

Table 4.11.

Since changing the embedding size requires randomly initializing the final fully

connected layer of the Light CNN base network, all of the embedding sizes consid-

ered, 128 through 1024, have randomly initialized weights generated using the He

method (He et al. (2015)). We know how the CD-PAD network performs when the

base network is fully pretrained, this provides additional insight into whether or not

adapting additional parameters can help or harm performance.

Table 4.10: Varying the image embedding dimensionality for the thermal domain of
WMCA

Embed.
Size

Train Params BPCER @
1% APCER

BPCER @
5% APCER

AUC

128 4,404,053 54.90 ± 27.18 18.33 ±
7.39

0.926 ±
0.015

256 8,600,149 50.46 ±
23.49

21.06 ± 8.65 0.884 ± 0.050

512 16,992,341 81.01 ± 5.34 38.90 ± 7.15 0.896 ± 0.020
1024 33,776,725 62.37 ± 14.44 26.04 ± 6.11 0.912 ± 0.029

For a point of comparison, the CD-PAD network with the DDA subnetwork that

uses pre-trained weights in the fully connected layer only has 210,517 parameters

that can be adapted over the course of both stages of training. It is clear that

increasing the feature size to 1024 raises the over parameterization problem since

BPCER performance at 1% APCER increases by 20.68% and 25.83% for thermal

and NIR cross-domain training respectively compared against the “No DDA” baseline
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Table 4.11: Varying the image embedding dimensionality for the NIR domain of
WMCA

Embed.
Size

Train Params BPCER @
1% APCER

BPCER @
5% APCER

AUC

128 4,404,053 61.64 ±
1.58

11.97 ± 0.77 0.945 ± 0.007

256 8,600,149 70.09 ± 10.09 10.49 ±
3.20

0.967 ±
0.011

512 16,992,341 68.75 ± 3.95 11.01 ± 1.61 0.956 ± 0.005
1024 33,776,725 90.15 ± 4.37 50.75 ± 21.86 0.917 ± 0.026

from Table 4.9.
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Chapter 5

CASIA-SURF Development

In this chapter, the additional analysis involved in applying the CD-PAD method

to the CASIA-Surf dataset is expanded upon. Limitations of the data in the target

domain necessitated additional experimentation with the CD-PAD method.

5.1 Single Mode Baselines

First, the baseline expectation for PAD performance must be established for each of

the imaging modalities individually. Previously we have seen that infrared images

are more discriminable for the PAD task using thermal and NIR from WMCA and

NIR from MSSPOOF. Casia-Surf has significant quality differences, particularly in

the NIR domain, so it is unknown if it is suitable for the CD-PAD approach.

Comparing the results from the single mode baselines, the NIR image domain

does not show enough improvement over visible to provide a desirable “target” for

cross-domain training. In Figure 5.1 the ROC curves show that for this dataset

the NIR baseline has a higher BPCER for low values of APCER than the visible

baseline. Adding a DDA subnetwork to the target stream improved the single mode

PAD performance with NIR to a level that could make the NIR image representation

a suitable target.
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In Table 5.1 side by side comparisons are shown for the different single mode

baselines considered for CASIA-Surf. Introducing the DDA subnetwork into the single

mode networks provides a performance boost for NIR, but does not provide the

same effect for visible imagery. CD-PAD*, the modified CD-PAD network with an

additional “target” domain DDA subnetwork, is able to utilize the improvement in

the NIR domain.

While CD-PAD* does slightly improve results with CASIA-Surf, this study indi-

cates that for optimal cross-domain performance the quality of the “target” domain

data should at least be similar to the “source”.

Table 5.1: Results for single modal baselines on the Casia-Surf dataset

Method BPCER @ 1%
APCER

BPCER @ 5%
APCER

AUC

MCCNN(NIR)
George et al.
(2020)

85.98± 0.07 65.93 ± 3.78 0.843 ± 0.028

MCCNN(Visible)
George et al.
(2020)

65.64 ± 12.79 39.35 ± 15.89 0.911 ± 0.048

NIR (with DDA) 19.42 ± 9.93 3.64 ± 2.41 0.991 ± 0.004
Visible (with
DDA)

63.16 ± 11.01 35.66 ± 13.95 0.923 ± 0.042

CD-PAD 61.02 ± 14.37 26.18 ± 5.23 0.939 ± 0.015
CD-PAD* 55.22 ± 4.20 21.94 ± 2.40 0.957 ± 0.003
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Figure 5.1: ROC curves for the different single mode configurations for CAIA-Surf.
Adding an additional DDA subnetwork to the target stream
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Chapter 6

Discussion

6.1 Data Challenges

As generalizability is a concern for any deep learning model, it is important to evaluate

on multiple data sets to ensure that a new approach is not overly specific in its

effectiveness. For this research we specifically sought out PAD datasets that contain

mutliple imaging domains, namely visible and infrared.

6.1.1 CASIA-SURF

A primary concern with CASIA-Surf has to do with the relative scale of the source

and target data. In Table 6.1 the average number of pixels per raw image is compared

for the different subsets and split by domain. In biometric applications that use the

face the typical scale comparison metric is distance between the eyes, however face

landmark detection is primarily trained on visible imagery and this analysis could

not be performed with the NIR data. On average an image from the source domain

contains between three and four times as many pixels as an image in the target

domain.

Examples of a random selection of input images for each domain are shown in

Figure 6.1 where it is evident the lack of fine detail contained in some of the target
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Figure 6.1: Raw images in the CASIA-Surf dataset vary in size within both spectral
domains, however the scale issues are more pronounced in the NIR target domain.
Left: Examples of pre-processed visible images. Right: Examples of pre-processed
NIR images showing higher degree of pixelation.

images. This is less ideal for an application like CD-PAD where the NIR representa-

tion is used to enhance the Visible representation instead of acting as supplementary

information at evaluation time.

Table 6.1: Results for single modal baselines on the Casia-Surf CeFA dataset

subset Visible NIR Vis/NIR

Train 76415.35 ±
25258.45

20663.64 ±
6553.67

3.69

Test 78705.52 ±
26226.79

20641.35 ±
6672.19

3.81

Dev 83058.53 ±
28351.04

21656.62 ±
7127.36

3.83
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Chapter 7

Conclusions

We proposed a new domain adaptation framework called CD-PAD that utilized mutli-

modal data during training to improve visible based PAD for face recognition systems.

we proposed a new CD-PAD framework, a domain adaptation approach to PAD for

face recognition.

The goal of this framework was to utilize multi-modal face data during training

to improve PAD when deployed on a facial recognition system that is only comprised

of sensors and imagery in the visible spectrum.

qualitative analysis indicates an improvement in the clustering and separability of

the bonafide and attack feature space.

To this end, we introduced (1) a new CD-PAD framework that increases the

separability of bonafide and presentation attacks using only visible spectrum imagery,

(2) an IDR technique for enhanced PAD and stability during optimization, and (3) a

DDA subnetwork to transform representations between visible and infrared domains.

We found that our CD-PAD framework was able to significantly reduce the BPCER @

1% APCER by 57.46%, 62.17% and 29.37% on the WMCA (NIR), WMCA (thermal),

and MSSpoof (NIR) protocols. Moreover, we found that our proposed IDR resulted

in better PAD performance than previous MMD and DIL techniques. The results

imply that the CD-PAD framework is capable of providing very discriminative PAD
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while reducing the number/type of operation sensors, which enables less complex and

more cost efficient PAD systems.

Additional experiments on the CASIA-Surf dataset shows that CD-PAD does

require suitable image quality in the target domain. The modification of CD-PAD*

still provides a modest improvement of the BPCER at 1% APCER by 7.94% and

BPCER at 5% APCER by 13.72%.
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Guillaume Heusch and Sébastien Marcel. Pulse-based features for face presentation

attack detection. In 2018 IEEE 9th International Conference on Biometrics Theory,

http://papers.nips.cc/paper/3110-a-kernel-method-for-the-two-sample-problem.pdf
http://papers.nips.cc/paper/3110-a-kernel-method-for-the-two-sample-problem.pdf
http://www.sciencedirect.com/science/article/pii/S1077314219301183
http://www.sciencedirect.com/science/article/pii/S1077314219301183


60

Applications and Systems (BTAS), pages 1–8, 2018. doi: 10.1109/BTAS.2018.

8698579.

Guillaume Heusch, Anjith George, David Geissbühler, Zohreh Mostaani, and
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