
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

Spring 5-2022

Symbolic NS-3 for Efficient Exhaustive Testing Symbolic NS-3 for Efficient Exhaustive Testing

Jianfei Shao
University of Nebraska-Lincoln, jianfei.shao@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Computer Sciences Commons, and the Digital Communications and Networking

Commons

Shao, Jianfei, "Symbolic NS-3 for Efficient Exhaustive Testing" (2022). Computer Science and Engineering:
Theses, Dissertations, and Student Research. 220.
https://digitalcommons.unl.edu/computerscidiss/220

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/220?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages

SYMBOLIC NS-3 FOR EFFICIENT EXHAUSTIVE TESTING

by

Jianfei Shao

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Lisong Xu

Lincoln, Nebraska

May, 2022

SYMBOLIC NS-3 FOR EFFICIENT EXHAUSTIVE TESTING

Jianfei Shao, M.S.

University of Nebraska, 2022

Adviser: Lisong Xu

Exhaustive testing is an important type of simulation, where a user exhaustively sim-

ulates a protocol for all possible cases with respect to some uncertain factors, such as

all possible packet delays or packet headers. It is useful for completely evaluating the

protocol performance, finding the worst-case performance, and detecting possible design

or implementation bugs of a protocol. It is, however, time consuming to use the brute force

method with current NS-3, a widely used network simulator, for exhaustive testing. In

this paper, we present our work on Sym-NS-3 for more efficient exhaustive testing, which

leverages a powerful program analysis technique called symbolic execution. Intuitively,

Sym-NS-3 groups all the cases leading to the same simulator execution path together

as an equivalence class, and simulates a protocol only once for each equivalence class.

We present our design choices and implementation details on how we extend current

NS-3 to support symbolic execution, and also present several exhaustive testing results to

demonstrate the significantly improved testing speeds of Sym-NS-3 over current NS-3.

iii

DEDICATION

First and foremost, I would like to thank my advisor Dr. Lisong Xu. He paid a lot of time

and patience during my master’s program. Especially during the pandemic, he not only

took care of my research, but also my life. It would be impossible for me to complete this

thesis without Dr. Xu.

Next, I would like to show my gratitude to my committee members, Dr. Byrav Ra-

mamurthy and Dr. Hamid Bagheri. They have provided very important guidance and

feedback on my thesis.

In addition, I am indebted to all my lab members, Nan Jiang, Tianqi Fang, Minh Vu,

Phuong Ha, and Mingrui Zhang. Thank you all for the accompany and support.

Besides, I also want to thank all my friends I met in UNL these years.

Most importantly, I want to thank my parents, Hong Shao and Minzhu Tang for their

love and support.

iv

ACKNOWLEDGMENTS

The work presented in this thesis was supported in part by NSF CCF-1918204.

v

Contents

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Related work 4

3 Motivating Example 6

3.1 An exhaustive testing problem . 6

3.2 Brute force using current NS-3 . 7

3.3 Symbolic execution using Sym-NS-3 . 8

4 Sym-NS-3 Overview 9

4.1 Architecture of Sym-NS-3 . 9

4.2 Symbolic execution . 10

4.3 Design goals . 11

4.3.1 Easy to use . 12

4.3.2 Easy to develop . 12

vi

4.3.3 Efficient . 12

5 Symbolic Variable Management 13

5.1 Managing symbolic variables . 13

5.2 Method 1: In-module direct symbolization 15

5.3 Method 2: Assignment symbolization using new attributes 16

5.4 Method 3: Assignment symbolization using existing attributes (as illustrated

in the motivating example) . 17

5.5 Comparison of the three methods . 18

6 Making Sym-NS-3 More Efficient 20

6.1 Symbolic IP address . 21

6.2 How current NS-3 simulates IP routing? . 21

6.3 Why current NS-3 is not symbolic execution friendly? 23

6.4 Proposed techniques for more efficient IP simulations in Sym-NS-3 24

6.5 Is IP-Efficient Sym-NS-3 correct? . 26

6.5.1 Step 1: Basic Sym-NS-3 with an unsorted table generates the same

simulation result as Basic Sym-NS-3 with the corresponding sorted

table . 26

6.5.2 Step 2: IP-Efficient Sym-NS-3 with a sorted table generates the same

simulation result as Basic Sym-NS-3 with the same sorted table . . . 28

6.6 Is IP-Efficient Sym-NS-3 efficient? . 30

6.6.1 Part 1: IP-Efficient Sym-NS-3 has less symbolic comparisons than

Basic Sym-NS-3 . 30

6.6.2 Part 2: IP-Efficient Sym-NS-3 generates less branches than Basic

Sym-NS-3 . 32

vii

7 Experiments 34

7.1 Simulation setup . 34

7.2 Exhaustive testing on TCP performance . 34

7.3 Exhaustive testing on reachability . 36

7.4 Evaluating IP-Efficient SymEx . 37

8 Conclusions and Future work 39

8.1 Conclusions . 39

8.2 Shortcomings . 39

8.3 Future work . 39

Bibliography 40

A Source Code of Basic Sym-NS-3 in Chapter 5 45

B Source Code of IP-Efficient Sym-NS-3 in Chapter 6 54

C Source Code of Examples and Experiments 61

C.1 Brute force using current NS-3 for the motivating example in Chapter 3 . . . 61

C.2 Symbolic execution using Sym-NS-3 for the motivating example in Chapter 3 64

C.3 Exhaustive testing on TCP performance in Chapter 7.2 66

C.4 Exhaustive testing on reachability in Chapter 7.3 70

C.5 Evaluating IP-Efficient SymEx in Chapter 7.4 73

viii

List of Figures

1.1 Network topology of the motivating example. 2

4.1 Architectures of the brute force and symbolic execution methods. 10

4.2 Three branches are generated during the symbolic execution of Code 4.1. 10

5.1 Different methods to manage symbolic variables in Sym-NS-3. 19

7.1 Network topology of the TCP performance testing. 35

7.2 Network topology of the reachability testing. 36

7.3 IP-Efficient SymEx is more efficient than Basic SymEx. 38

ix

List of Tables

6.1 Routing table example of current NS-3 . 22

6.2 Sorted routing table in Sym-NS-3 . 24

7.1 Exhaustive TCP performance testing by SymEx 35

7.2 Exhaustive reachability testing by SymEx . 37

7.3 Additional table entries for node 2 . 38

1

Chapter 1

Introduction

NS-3 is a popular network simulator that has been widely used in the networking com-

munity. It is usually used to evaluate the normal-case or special-case performance of a

network protocol, where a user simulates the protocol for some normal or special cases. In

this thesis, we consider an important type of simulation (referred to as exhaustive testing

hereinafter), where a user exhaustively simulates a protocol for all possible cases with

respect to some uncertain factors, such as all possible packet delays or headers. Exhaustive

testing is useful for completely evaluating the performance of a protocol for all possible

cases, finding the worst-case performance of a protocol among all possible cases, and for

detecting possible design or implementation bugs of a protocol as many bugs happen only

in corner cases.

It is, however, time consuming to use the current NS-3 for exhaustive testing, because

a user needs to enumerate and simulate a protocol in each possible case (referred to as

the brute force method). Let’s consider a simple motivating example, where we need to

exhaustively test a protocol in the network shown in Fig. 1.1, where the propagation delay

di of link i = 0, 1 could be any value of between 1 ms and 1000 ms with a resolution of 1

ms. Thus, the test space (d0, d1) contains a total of 103 × 103 = 106 possible testing cases.

2

The brute force method runs NS-3 to enumerate and individually simulate each of the 106

cases in the test space, and thus takes a long time. The details can be found in Chapter 3.

node 0 node 1 node 2
link 0 link 1

delay d0 delay d1

Figure 1.1: Network topology of the motivating example.

In this thesis, we present our work on Symbolic NS-3 (Sym-NS-3 for short), which

extends NS-3 to support the symbolic execution method [20, 8] that is a powerful and popular

program analysis technique widely used in the software testing and verification community.

Intuitively, the symbolic execution method divides the test space (d0, d1) into equivalence

classes, each equivalence class containing all the cases leading to the same simulator

execution path. The symbolic execution method simulates all the cases in an equivalence

class together instead of individually as the brute force method. By doing so, the symbolic

execution method can more efficiently exhaustively test the same test space (d0, d1) than

the brute force method. The details can also be found in Chapter 3.

We make the following contributions in this thesis:

• Symbolic variable management: We present our design choices and implementation of

the symbolic variables in Sym-NS-3 that are the foundation of symbolic execution. A

symbolic variable takes a set of values instead of a single value as a normal variable.

We have explored multiple different ways to introduce symbolic variables to Sym-

NS-3 so that Sym-NS-3 users can easily manage symbolic variables and Sym-NS-3

developers can easily maintain and upgrade Sym-NS-3.

• More efficient packet semantics testing: There are two types of exhaustive testing: 1)

packet dynamic testing: checking a protocol with all possible packet dynamic (e.g.,

delays), 2) packet semantics testing: checking a protocol for all possible packet header

3

and payload semantics. We have already presented several techniques to further

improve the testing speed of Sym-NS-3 for packet dynamic testing in our previous

work [33], and we present several techniques to further improve the testing speed of

Sym-NS-3 for packet semantics testing in this thesis.

• Simulations: We present several exhaustive testing simulations to demonstrate how

to use Sym-NS-3 and the significantly improved testing speeds of the symbolic

execution method using Sym-NS-3 compared to the brute force method using current

NS-3.

4

Chapter 2

Related work

Symbolic execution has been used to test network protocols. KleeNET [27], SymTime [14],

SPD [32], and Chiron [18] test network protocols with symbolic packet delays or loss.

DiCE [9], SymbexNet [29], NICE [10], SOFT [23], Chiron [18], BUZZ [15], SymNet [31],

PIC [24], and MAX [21] test network protocols with symbolic packet headers. Different

from these works that consider only simple and specific network environments, Sym-NS-3

attempts to support general network environments by leveraging NS-3.

S2E [11] is a powerful, modular and flexible symbolic execution platform, which uses

KLEE and QEMU to serve both Windows and Linux. Since S2E is written in C, it is

convenient to combine with NS-3 written in C++ as Sym-NS-3.

There is little work on extending NS-3 for exhaustive testing. VeriSim [4] extends NS-2

for formal trace analysis. To the best our knowledge, Sym-NS-3 is the only one to extend

NS-3 by leveraging symbolic execution.

There is a large body of work on improving the efficiency of symbolic execution

engines, such as compositional symbolic execution [16, 13], redundant path elimination [5],

path prioritization using static analysis information [6, 2], path merging [22, 1, 28], state

mapping methods [25, 26], and combination with random testing [17, 30, 12]. Sym-NS-3 is

5

complementary to and can be used together with these techniques.

6

Chapter 3

Motivating Example

In this chapter, we present a simple exhaustive testing example to illustrate the difference

between the brute force method of current NS-3 and the symbolic execution method of our

proposed Sym-NS-3. All the code is available at https://github.com/JeffShao96/

Symbolic-NS3.

3.1 An exhaustive testing problem

Let’s consider a network shown in Fig. 1.1, where three nodes are connected by two

point-to-point links. Nodes 0 and 2 each simultaneously sends a UDP packet to node 1.

The propagation delay di of link i = 0, 1 could be any value between 1 ms and 1000 ms. An

exhaustive testing problem is to find the maximum and minimum of diff among a total of

106 testing cases (i.e., combinations) of d0 and d1, where diff is the arrival time difference at

node 1 between the packets from node 0 and node 2.

https://github.com/JeffShao96/Symbolic-NS3
https://github.com/JeffShao96/Symbolic-NS3

7

3.2 Brute force using current NS-3

To find the range of diff using the brute force method with the current NS-3, we write the

shell script repeatCurrentDemo.sh as shown in Code 3.1 to enumerate all possible 106

cases of d0 and d1, and run an NS-3 simulation for each case.

Code 3.1: Shell script repeatCurrentDemo.sh to enumerate all possible cases

1 . . .

2 for delay0 in {1 . . 1 0 0 0}

3 do

4 for delay1 in {1 . . 1 0 0 0}

5 do

6 ./ waf −−run "currentDemo --d0=$delay0 --d1=$delay1"

7 done

8 done

9 . . .

We also write the NS-3 script currentDemo.cc as shown in Code 3.2 to simulate

the network according to the link delays specified in the arguments. To simplify the

example, we calculate diff directly in this script instead of modifying file udp-server.cc

to measure the packet arrival times and then calculate diff at the receiver.

Code 3.2: NS-3 script currentDemo.cc to simulate each case

1 . . .

2 p2p [0] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d0))) ;

3 p2p [1] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d1))) ;

4 . . .

5 . . .

6 Time D i f f = Time (d0) −Time (d1) ;

7 std : : cout<<"Diff is "<<Diff<<std : : endl ;

8 . . .

Overall, it takes a total of about six days to run the code, and the total reported range

of diff is [-999, 999] ms.

8

3.3 Symbolic execution using Sym-NS-3

To find the range of diff using the symbolic execution method with our Sym-NS-3, we

write only one script symDemo.cc as shown in Code 3.3 to simulate the network with

two symbolic link delays, each in the range of [1, 1000] ms. To simplify the example, we

calculate diff directly in the script instead of modifying udp-server.cc.

Code 3.3: Sym-NS-3 script symDemo.cc

1 symDemo . cc } , l a b e l ={ l s t : sym ns3 }]

2 . . .

3 Ptr<Symbolic> sym0 = CreateObject<Symbolic >() ;

4 sym0−>SetMinMax (1 , 1000) ;

5 u i n t 3 2 t d0 = sym0−>GetSymbolicUintValue () ;

6 Ptr<Symbolic> sym1 = CreateObject<Symbolic >() ;

7 sym1−>SetMinMax (1 , 1000) ;

8 u i n t 3 2 t d1 = sym1−>GetSymbolicUintValue () ;

9 . . .

10 p2p [0] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d0))) ;

11 p2p [1] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d1))) ;

12 . . .

13 . . .

14 Symbolic D i f f =sym0−sym1 ;

15 D i f f . PrintRange ("Diff") ;

It takes a total of about a minute to execute the code using a symbolic execution engine,

which is several orders of magnitude faster than the brute force method. The total reported

range of diff is also [-999, 999] ms, the same as the range reported by the brute force

method.

9

Chapter 4

Sym-NS-3 Overview

4.1 Architecture of Sym-NS-3

Fig. 4.1 illustrates the different architectures of the brute force method with current NS-3

and the symbolic execution method with Sym-NS-3. Both current NS-3 and Sym-NS-3 use

NS-3 style script to execute in the experiment. Different from the brute force method that

directly executes NS-3, the symbolic execution method uses symbolic execution platform

S2E [11] to symbolically execute Sym-NS-3 in virtual machines. S2E emulates the virtual

machines using the QEMU machine emulator [3] and conducts symbolic execution using

the KLEE symbolic execution engine [7]. Instead of execute directly, S2E passes NS-3 style

script from Host operating system to the guest operating system on the virtual machine.

Different from the brute force method where each variable can take only a value at a time,

the symbolic execution method introduces symbolic variables, each of which can take a set

of values described by a group of constraints.

10

Sym-NS-3 Simulator

Symbolic execution platform

Guest operating system

Host operating system

NS-3 Simulator

Operating system

a) brute force method

with current NS-3

b) symbolic execution method

with Sym-NS-3

Figure 4.1: Architectures of the brute force and symbolic execution methods.

line 3: d0 > d1

line 5: d0 == d1

initial constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 3: d0 > d1 final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 3: d0 <= d1

line 5: d0 == d1

final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 3: d0 <= d1

line 5: d0 != d1

add constraint

d0 > d1

TRUE FALSE

add constraint

d0 <= d1

add constraint

d0 == d1

TRUE

add constraint

d0 != d1

FALSE

Branch 1

Branch 2 Branch 3

Figure 4.2: Three branches are generated during the symbolic execution of Code 4.1.

4.2 Symbolic execution

We use the C-like pseudocode shown in Code 4.1 as an example to explain how S2E works.

S2E initially runs the code on a single virtual machine. Lines 1 and 2 define two symbolic

variables d0 and d1 with the same initial constraints, and thus each of them initially takes

11

a set of values in the range of 1 and 1000. When S2E reaches an if statement involving

symbolic variables, such as lines 3 and 5, it checks both possibilities by forking the current

virtual machine into two virtual machines (called branches). For example, when the if

statement at line 3 is executed, S2E forks the current virtual machine into two virtual

machines, where the true branch continues to line 4 with additional constraint d0 > d1 and

the false branch continues to line 5 with additional constraint d0 <= d1. Similarly for the

if statement at line 5.

Finally, S2E stops with three branches as illustrated in Fig. 4.2, where the final con-

straints for each branch are also listed. Using these final constraints, S2E can then calculate

the possible range of variable diff defined in line 10. Specifically, the range of diff is [1, 999]

ms for branch 1, [0, 0] ms for branch 2, and [-999, -1] ms for branch 3. The total range of

diff is the union of these ranges and thus is [-999, 999] ms.

Code 4.1: An example for symbolic execution

1 sym 1<= d0 <= 1000

2 sym 1<= d1 <= 1000

3 i f (d0 > d1) {

4 / / s i m u l a t e a c c o r d i n g l y

5 } e lse i f (d0==d1) {

6 / / s i m u l a t e a c c o r d i n g l y

7 } e lse{

8 / / s i m u l a t e a c c o r d i n g l y

9 }

10 d i f f = d0 − d1 ;

4.3 Design goals

Sym-NS-3 is designed with the following design goals.

12

4.3.1 Easy to use

It is easy for current NS-3 users to use Sym-NS-3 for exhaustive testing. Specifically, a

Sym-NS-3 user writes a Sym-NS-3 testing script in a way very similar to a NS-3 user

writing an NS-3 testing script.

4.3.2 Easy to develop

It is easy for Sym-NS-3 developers to maintain and upgrade Sym-NS-3. Specifically,

Sym-NS-3 makes as little change as possible to current NS-3, especially, existing NS-3

modules.

4.3.3 Efficient

It is more efficient to conduct exhaustive testing using Sym-NS-3 than current NS-3.

Although symbolic execution already makes Sym-NS-3 more efficient for exhaustive

testing than brute force with current NS-3, we propose several techniques to further

improve the efficiency of Sym-NS-3.

13

Chapter 5

Symbolic Variable Management

In this chapter, we describe how to design Sym-NS-3 so that a Sym-NS-3 user can easily

use symbolic variables (i.e., the first design goal) and a Sym-NS-3 developer can easily

develop Sym-NS-3 (i.e., the second design goal).

5.1 Managing symbolic variables

An exhaustive testing simulates a network in all possible cases with respect to some

uncertain factors, which can be tested using symbolic variables in Sym-NS-3. For example,

the motivating example simulates a network for all possible link delays d0 and d1, and

they are tested using symbolic variables in Chapter 3.3.

There are two different ways to change a normal variable to a symbolic variable in

Sym-NS-3.

• Direct Symbolization: We can use S2E functions to make a normal variable symbolic.

For example, function s2e_make_symbolic(&x,sizeof(x),"x") makes vari-

able x a symbolic variable by marking sizeof(x) number of bytes at address &x

symbolic.

14

• Assignment Symbolization: If a normal variable y is set to the value of an expression

involving a symbolic variable x, variable y also becomes a symbolic variable. For

example, if symbolic variable x has a symbolic value between 1 and 1000, variable y

will have a symbolic value between 2 and 1001 after executing assignment y = x+1.

We need to provide users with the following types of functions to manage the symbolic

variables.

• Initialization functions: We need to provide users with functions to set the initial

constraint of a symbolic variable. For example, d0 in the motivating example should

be defined as a symbolic variable with an initial constraint of between 1 and 1000 ms.

• Operation functions: We need to provide users with functions to operate on symbol

variables, such as functions to perform math operations (e.g., addition, subtraction)

of symbolic variables, and functions to change the type of a symbolic variable (e.g.,

change from unsigned to time).

• Inquiry functions: Different from a normal variable that takes a single value, a symbolic

variable takes a set of values described by a group of constraints. Furthermore, the

constraints of a symbolic variable may change as the simulation continues. For

example, the three branches in Fig. 4.2 each has a different group of constraints for

symbolic variables d0 and d1. Thus, we need to provide functions for users to inquire

and print out the current range of a symbolic variable, such as the max, min, and

sample values.

We have explored three different methods to manage the symbolic variables in Sym-NS-

3. Below we explain these methods using the propagation delay of link 0 in the motivating

example, which is a point to point channel. The propagation delay of PointToPointChannel

15

in NS-3 is defined as a Time variable named m_delay. We have explored three different

methods to make m_delay symbolic in Sym-NS-3.

5.2 Method 1: In-module direct symbolization

This method directly modifies existing NS-3 modules that are involved in an exhaustive test.

For the motivating example, this method directly modifies PointToPointChannel by

adding new channel attributes and modifying its code accordingly. For example, Code 5.1

shows a different script symDemo.cc implemented using this method. Specifically, we

add three new channel attributes SymbolicMode, DelayMin, and DelayMax. If attribute

SymbolicMode is true, function s2e_make_symbolic(&m_delay,sizeof(m_delay)

,"m_delay") is called to make m_delay symbolic, and then its minimum and maximum

values are set to DelayMin, and DelayMax, respectively.

Code 5.1: Sym-NS-3 script symDemo.cc using Method 1

1 . . .

2 p2p [0] . SetChannelAttr ibute ("SymbolicMode" , BooleanValue (t rue)) ;

3 p2p [0] . SetChannelAttr ibute ("DelayMin" , TimeValue (Time ("1ms"))) ;

4 p2p [0] . SetChannelAttr ibute ("DelayMax" , TimeValue (Time ("1000ms"))) ;

5 . . .

We first adopted this method at the beginning of our project, because the advantage

of this method is that it can flexibly implement more module-specific functionalities. For

example, instead of all the packets on the link experiencing the same symbolic delay

m_delay, we can introduce a new attribute to specify only a certain type of packets

experiencing the symbolic delay (e.g., only data packets of a specific TCP flow), and a new

attribute to specific that different packets experiencing different symbolic delays (e.g., to

introduce packet reordering).

16

We later explored other methods, because this method has two disadvantages that make

it hard to develop (i.e., the second design goal). First, this method makes a big change to

an NS-3 module, because we need to modify and add many functions to the NS-3 module

in order to add and implement all the new channel attributes and to implement the

initialization, operation, and inquiry functions to manage the symbolic variables. Second,

this method makes big changes to many NS-3 modules, because we have to modify each

NS-3 module for which we need to add symbolic variables. For example, if we want to

exhaustively test other channels, such as wireless channels, we need to modify all these

channels.

5.3 Method 2: Assignment symbolization using new

attributes

Method 2 makes less change to existing NS-3 modules than method 1 by defining and

managing symbolic objects using a new class called Symbolic, which we have developed

for Sym-NS-3. For example, Code 5.2 shows a different script symDemo.cc implemented

using this method. It first creates a symbolic variable symObj0 which is a Symbolic class

variable. The Symbolic class implements all the functions to manage symbolic variables,

such as initialization, operation, and inquiry functions, so that existing NS-3 modules do

not need to implement these functions as in Method 1. For example, line 3 sets the initial

range of symObj0 using function SetMinMax.

Method 2 still changes PointToPointChannel by adding a new attribute SymbolicDelay,

which takes a pointer value of symObj0whose value is then assigned to variable m_delay.

The advantage of this method is that it can flexibly implement the same module-

specific functionalities as Method 1 while making less changes to existing NS-3 modules

17

than Method 1. For example, similar to Method 1, instead of all the packets on the link

experiencing the same symbolic delay m_delay, Method 2 can also introduce a new

attribute to specify only a certain type of packets experiencing the symbolic delay (e.g.,

only data packets of a specific TCP flow). But different from Method 1, Method 2 does not

need to change PointToPointChannel to implement the initialization, operation, and

inquiry functions to manage symbolic variables.

Code 5.2: Sym-NS-3 script symDemo.cc using Method 2

1 . . .

2 Ptr<Symbolic> symObj0 = CreateObject<Symbolic >() ;

3 symObj0−>SetMinMax (1 , 1000) ;

4 . . .

5 p2p [0] . SetChannelAttr ibute ("SymbolicDelay" , PointerValue (symObj0)) ;

6 . . .

The disadvantage of this method is that it still makes changes (although just adding

new attributes) to many NS-3 modules, because we have to modify each NS-3 module for

which we need to add symbolic variables.

5.4 Method 3: Assignment symbolization using existing

attributes (as illustrated in the motivating example)

This method does not modify existing NS-3 modules at all. Because it does not add any

new attributes to an NS-3 module, we have to use the existing attributes. For example,

Code 5.3 shows script symDemo.cc implemented using this method, which is just the

one illustrated in the motivating example in Chapter 3.3. It first creates the same sym-

bolic variable symObj0 as Method 2. But it gets the corresponding symbolic unsigned

integer d0 from symObj0, and then passes d0 to p2p[0] (i.e., link 0) using the exist-

18

ing PointToPointChannel attribute Delay. Note that variable d0 is also a symbolic

variable with the same set of values as symObj0.

The advantage of this method is that it does not make any changes to the existing NS-3

modules. As a result, is very easy for Sym-NS-3 developers to maintain and upgrade

Sym-NS-3 (i.e., the second design goal), and it is also easy to apply this method to any

NS-3 modules and any module attributes, in addition to PointToPointChannel and its

Delay attribute used in the example.

Code 5.3: Sym-NS-3 script symDemo.cc using Method 3
1 . . .

2 Ptr<Symbolic> symObj0 = CreateObject<Symbolic >() ;

3 symObj0−>SetMinMax (1 , 1000) ;

4 u i n t 3 2 t d0 = symObj0−>GetSymbolicUintValue () ;

5 . . .

6 p2p [0] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d0))) ;

7 . . .

The disadvantage of this method is that it uses only the existing attributes of NS-3

modules, and thus supports only limited module-specific functionalities. For example, all

the packets on the link have to experience the same symbolic delay, and we cannot specify

only a certain type of packets experiencing the symbolic delay.

5.5 Comparison of the three methods

Fig. 5.1 compares the above three methods to manage symbolic variables. Method 1 makes

the biggest changes to existing NS-3 modules, whereas Method 3 does not make any

changes. On the other side, Methods 1 and 2 support more module-specific functionalities

than Method 3 that supports only the basic module-specific functionalities.

While all three methods make Sym-NS-3 easy to use for current NS-3 users (i.e., the

first design goal), Method 3 is the easiest for the Sym-NS-3 developers to develop (i.e., the

19

Changes to existing NS-3 modules

Supported

module

functionality

less

high

more

method 3

method 2 method 1

none

Figure 5.1: Different methods to manage symbolic variables in Sym-NS-3.

second design goal). Therefore, for the current release of Sym-NS-3, we choose Method 3

so that symbolic variables can be used with all current NS-3 modules.

20

Chapter 6

Making Sym-NS-3 More Efficient

Although the methods proposed in the previous chapter already make Sym-NS-3 more

efficient for exhaustive testing than current NS-3, we have noticed that we can make

Sym-NS-3 even more efficient by redesigning some of NS-3 modules (i.e., the third design

goal). Intuitively, this is because NS-3 was not originally designed and implemented for

symbolic execution, and thus we have proposed some techniques to redesign and make it

symbolic execution friendly.

We have proposed two types of techniques for two general types of exhaustive testing

using Sym-NS-3. 1) Exhaustive packet dynamic testing: It tests a network protocol in a net-

work with all possible packet dynamic, such as all possible packet delays in the motivating

example. For this type of testing, Sym-NS-3 changes some time-related variables to sym-

bolic variables, such as d0 in the motivating example. As a result, the timestamps of events

also become symbolic variables. In our previous work [33], we have proposed several

techniques to redesign the event schedulers of Sym-NS-3 so that it can more efficiently

compare the symbolic timestamps of the events.

2) Exhaustive packet semantics testing: It tests a network protocol for packets with all

possible header and payload semantics, such as all possible destination IP addresses. For

21

this type of testing, Sym-NS-3 changes the packet header fields or packet payload to

symbolic variables. In this thesis, we consider the destination IP address field of a packet,

which is one of the most important fields of a packet header. Below, we propose two

techniques to redesign the IP routing protocol of Sym-NS-3 so that it can more efficiently

handle packets with symbolic destination IP addresses.

6.1 Symbolic IP address

A symbolic IP address can be used for exhaustive testing of a packet with a set of destina-

tion IP addresses. For example, a reachability test [19, 31] checks whether a packet from a

node can reach another node. However, it is time consuming to find all possible nodes

that can be reached by a packet from a node, if we exhaustively try all possible destination

IP addresses for the packet. With the help of a symbolic destination IP address, we can

more efficiently find all possible nodes that can be reached from a node. Code 6.1 shows

how a symbolic IP address can be defined in Sym-NS-3.

Code 6.1: Defining a symbolic IP address in Sym-NS-3

1 Ptr<Symbolic> symObj0 = CreateObject<Symbolic >() ;

2 Ipv4Address symIP0 = symObj0−>GetSymbolicIpv4Add () ;

6.2 How current NS-3 simulates IP routing?

We describe how current NS-3 simulates IP routing table in this section, and then explain

why it is not friendly to symbolic execution and how we modify it in the following sections.

Below we briefly demonstrate how current NS-3 maintains a routing table, checks a table

entry for possible match, and finds the best match for the whole table, as each of them will

be redesigned in Sym-NS-3.

22

NS-3 maintains an unsorted routing table, where a new table entry is added to the end

of the table. For example, Table 6.1 shows a possible routing table at a node.

Table 6.1: Routing table example of current NS-3

Destination Mask Interface Metric

127.0.0.0 255.0.0.0 0 1

0.0.0.0 0.0.0.0 1 1

10.1.0.0 255.255.0.0 2 10

10.2.0.0 255.255.0.0 2 10

For a table entry entry with network destination entry.ip and mask entry.mask,

NS-3 checks whether the destination IP address dst of a packet matches the entry using

function IsMatch as illustrated in Pseudocode 6.2.

Code 6.2: Pseudocode of function IsMatch in NS-3
1 IsMatch (IP Address dst , Table Entry entry)

2 i f ((dst & entry . mask) == (entry . ip & entry . mask))

3 return true ;

4 e lse

5 return f a l s e ;

Code 6.3: Pseudocode of function Lookup in NS-3
1 Lookup (IP Address dst , IP Table t a b l e)

2 for each entry in the t a b l e

3 i f IsMatch (dst , entry)

4 i f (entry . masklen > bestmatch . masklen)

5 bestmatch = entry ;

6 e lse i f ((entry . masklen = bestmatch . masklen) and

7 (entry . metr ic < bestmatch . metr ic))

8 bestmatch = entry ;

9 return bestmatch ;

NS-3 checks every table entry to find the best match, which is the entry with the longest

mask among all matching entries. If there are multiple matching entries with the same

23

longest length of masks, the one with the shortest metric is the best match. The code is

illustrated as function Lookup in Pseudocode 6.3. For example, if dst=10.1.0.1, there are

two matching entries in Table 6.1: the entry for 10.1.0.0 and the entry for 0.0.0.0. Because

the former has a longer mask than the latter, the best match is the former.

6.3 Why current NS-3 is not symbolic execution friendly?

The efficiency of symbolic execution mainly depends on the number of symbolic comparisons

that are the conditional statements involving symbolic variables, such as lines 3 and 5

in Code 4.1. There are two reasons. First, each symbolic comparison takes a non-trivial

amount of time for the constraint solver of symbolic execution to determine whether the

symbolic comparison is true or false or both with the current branch constraints. Second,

if the symbolic comparison could be both true and false, symbolic execution forks the

current branch (i.e., virtual machine) into two branches, a true branch and a false branch

with correspondingly updated constraints. However, branch forking (i..e, virtual machine

forking) takes a significant amount of time and space.

The IP routing simulation of current NS-3 is not friendly to symbolic execution, because

it compares a symbolic destination IP address with each entry of a routing table. As an

example, if we symbolically run Pseudocode 6.3 on Table 6.2 with a symbolic destination

IP address dst, then there are 4 symbolic comparisons in Pseudocode 6.3 because it calls

line 2 of Pseudocode 6.2 for each of 4 table entries. If the range of dst is from 10.1.0.0 to

10.2.255.255, there are two best matches: entry 10.1.0.0 and entry 10.2.0.0. As a result, there

are finally two branches:

• one branch returns entry 10.1.0.0 (interface 2) for dst between 10.1.0.0 and 10.1.255.255,

• the other branch returns entry 10.2.0.0 (interface 2) for dst between 10.2.0.0 and

24

10.2.255.255.

6.4 Proposed techniques for more efficient IP simulations

in Sym-NS-3

We redesign the simulation of IP routing in Sym-NS-3 to make it more friendly to symbolic

execution and thus more efficient. Specifically, we propose two techniques: 1) the table

sorting technique that reduces the number of symbolic comparisons and thus reduces the

number of times to call the constraint solver, and 2) the group comparison technique that

reduces the number of branches (i.e., virtual machines).

The table sorting technique sorts a routing table according to the priority of each table

entry. An entry with a longer mask is given a higher priority. If tie occurs, a shorter metric

is given a higher priority. If tie still occurs, the interface is used to break the tie. All the

entries with the same length of masks, same metric, and same interface belong to the same

priority group. For example, Table 6.2 shows the sorted result of Table 6.1. With a sorted

routing table, Sym-NS-3 only needs to find the first matching priority group, but does not

need to check all the remaining entries. By doing so, Sym-NS-3 can reduce the number of

symbolic comparisons.

Table 6.2: Sorted routing table in Sym-NS-3

Destination Mask Interface Metric Priority group

10.1.0.0 255.255.0.0 2 10 1

10.2.0.0 255.255.0.0 2 10 1

127.0.0.0 255.0.0.0 0 1 2

0.0.0.0 0.0.0.0 1 1 3

The group comparison technique checks all the table entries within the same priority group

25

together using only one symbolic comparison. Specifically, it replaces function IsMatch

in Pseudocode 6.2 with Pseudocode 6.4, which returns the same result but without using a

symbolic comparison. The actual code implements the logical not operator ! at line 2 in

the pseudocode using a sequence of bit-wise operations.

Code 6.4: Pseudocode of function IsMatch in Sym-NS-3

1 IsMatch (IP Address dst , Table Entry entry)

2 return ! ((dst&entry . mask) ˆ (entry . ip&entry . mask)) ;

It also replaces function Lookup in Pseudocode 6.3 with Pseudocode 6.5, which checks

whether there is at least one matching entry in a priority group using only one symbolic

comparison (i.e., line 6). Thus it generates at most one new branch for all the entries in a

priority group.

Code 6.5: Pseudocode of function Lookup in Sym-NS-3

1 Lookup (IP Address dst , IP Table t a b l e)

2 for each p r i o r i t y group in the t a b l e

3 f l a g = f a l s e ;

4 for each entry in the p r i o r i t y group

5 f l a g = f l a g | IsMatch (dst , entry) ;

6 i f (f l a g)

7 return the group ;

Our techniques are inspired by SymNet [31], which proposes a new symbolic execution

friendly language to model computer networks including routing tables, whereas our

techniques modify NS-3 code to be friendly to symbolic execution.

In the following two sections, we will prove that these two techniques are correct and

efficient. Specifically, we will prove that IP-Efficient Sym-NS-3 is correct and more efficient

with respect to Basic Sym-NS-3.

• Basic Sym-NS-3 refers to Pseudocode 6.3 and Pseudocode 6.2 with the symbolic

variable management proposed in Chapter 5.

26

• IP-Efficient Sym-NS-3 refers to Pseudocode 6.5 and Pseudocode 6.4 (i.e., the tech-

niques proposed in this chapter) with the symbolic variable management proposed

in Chapter 5.

6.5 Is IP-Efficient Sym-NS-3 correct?

In this section, we prove that IP-Efficient Sym-NS-3 is correct. That is, we prove that Basic

Sym-NS-3 (i.e., Pseudocode 6.3, Pseudocode 6.2) with an unsorted table (e.g., unsorted Ta-

ble 6.1) generates the same simulation result as IP-Efficient Sym-NS-3 (i.e., Pseudocode 6.5,

Pseudocode 6.4) with the corresponding sorted table (e.g., sorted Table 6.2). Specifically,

we prove the correctness using two steps.

• Step 1: Basic Sym-NS-3 with an unsorted table generates the same simulation result

as Basic Sym-NS-3 with the corresponding sorted table.

• Step 2: IP-Efficient Sym-NS-3 with a sorted table generates the same simulation result

as Basic Sym-NS-3 with the same sorted table.

6.5.1 Step 1: Basic Sym-NS-3 with an unsorted table generates the same

simulation result as Basic Sym-NS-3 with the corresponding

sorted table

We prove that Basic Sym-NS-3 with an unsorted table (e.g., unsorted Table 6.1) generates

the same simulation result as Basic Sym-NS-3 with the corresponding sorted table (e.g.,

sorted Table 6.2) using the following theorem. For example, if dst=10.1.0.1, Basic Sym-NS-

3 with both unsorted Table 6.1 and sorted Table 6.2 returns the same best matching entry

10.1.0.0 with interface 2.

27

Theorem 1 Basic Sym-NS-3 (i.e., Pseudocode 6.3 and 6.2) with both an unsorted table and the

corresponding sorted table finds the same best matching entry, assuming that both tables have a

unique best matching entry.

Proof: The for loop between line 2 to line 8 in Pseudocode 6.3 checks each entry of a table

(unsorted or sorted). At the beginning of the loop, the IsMatch function at line 3 checks

whether the dst matches the current entry. If it does not match, the for loop then checks

the nextentry. If the dst matches the current entry, the for loop checks whether the

current entry is the new best matching entry. Recall that the best matching entry is the

entry with the longest mask among all matching entries. If there are multiple matching

entries with the same longest length of masks, the entry with the shortest metric is the best

matching entry. Specifically, line 4 checks whether the mask length of the current entry

is longer than the current best matching entry bestmatch. Lines 6 and 7 check whether

entry has the same mask length as bestmatch but with a shorter metric.

Because there is no break, continues or return in the for loop between line 2

to line 8 in Pseudocode 6.3, all entries in the routing table are checked. Therefore, the

returned bestmatch is the best matching entry among all entries of the table. Under

the assumption that the table has a unique best matching entry, bestmatch is the same

independent of the order of the table entries. As a result, Pseudocode 6.3 always returns

the same best matching entry independent of the order of the table entries.

To have a better understanding of the above theorem, let’s consider an example using

Pseudocode 6.3 with unsorted Table 6.1 and sorted Table 6.2 for dst=10.1.0.1.

• For unsorted Table 6.1, the second entry (i.e., the one with destination 0.0.0.0) is the

first matching entry for dst=10.1.0.1, and then bestmatch is set to the second entry.

Next, the third entry (i.e., the one with destination 10.1.0.0) is the next matching entry.

28

Compared with the second entry, the third entry has a longer mask length. Therefore,

bestmatch is changed to the third entry. Since the last entry does not match the

destination, the return value of Pseudocode 6.3 is the third entry with interface 2 and

destination 10.1.0.0.

• For sorted Table 6.2, the first entry (i.e., the one with destination 10.1.0.0 is the

first matching entry for dst=10.1.0.1, and then bestmatch is set to the first entry.

Next, the last entry (i.e., the one with destination 0.0.0.0) is the next matching entry.

Compared with the first entry, the last entry has a shorter mask length. Therefore,

bestmatch is not changed. Finally, the return value of Pseudocode 6.3 is the first

entry with interface 2 and destination 10.1.0.0.

We can see that Pseudocode 6.3 with unsorted Table 6.1 and sorted Table 6.2 returns

the same best matching entry with interface 2 for dst=10.1.0.1.

6.5.2 Step 2: IP-Efficient Sym-NS-3 with a sorted table generates the

same simulation result as Basic Sym-NS-3 with the same sorted

table

We prove that IP-Efficient Sym-NS-3 with a sorted table (e.g., sorted Table 6.2) generates the

same simulation result as Basic Sym-NS-3 with the same sorted table using the following

theorem. For example, if dst=10.1.0.1, both IP-Efficient Sym-NS-3 and Basic Sym-NS-3

with sorted Table 6.2 return the same interface 2.

Theorem 2 Both IP-Efficient Sym-NS-3 (i.e., Pseudocode 6.5 and 6.4) and Basic Sym-NS-3 (i.e.,

Pseudocode 6.3 and 6.2) with the same sorted table return the same interface.

29

Proof: Theorem 1 proves that Basic Sym-NS-3 returns the best matching entry, and be-

low we prove that IP-Efficient Sym-NS-3 returns the priority group containing the best

matching entry.

As shown in Pseudocode 6.5, IP-Efficient Sym-NS-3 processes all the entries in the same

priority group together, which are sorted and arranged when each entry is inserted to the

routing table. Specifically, a Boolean variable flag is initialized at the beginning of the

group loop (Line 3). The flag is used to indicate whether this group contains at least one

matching entry (Lines 4 and 5). If flag becomes true, there is at least one matching entry

in the current priority group. Note that, all priority groups are sorted in the table, and thus

the first priority group with a true flag is the group containing the best matching entry

and is returned by Pseudocode 6.5 (Lines 6 and 7).

Because all the entries in a priority group has the same interface, Pseudocode 6.5 (i.e.,

IP-Efficient Sym-NS-3) returns the interface of the priority group, which is the same as the

interface of the best matching entry returned by Pseudocode 6.3 (i.e., current NS-3).

To have a better understanding of the above theorem, let’s consider an example using

IP-Efficient Sym-NS-3 with Pseudocode 6.5 and Basic Sym-NS-3 with Pseudocode 6.3 with

sorted Table 6.2 for dst=10.1.0.1.

• For Basic Sym-NS-3, the return value of Pseudocode 6.3 is the first entry with interface

2 and destination 10.1.0.0.

• For IP-Efficient Sym-NS-3, the return value of Pseudocode 6.5 is the first priority

group with interface 2. This is because the first entry of the group matches dst and

thus flag of the group becomes true.

We can see that both Basic Sym-NS-3 and IP-Efficient Sym-NS-3 with sorted Table 6.2

returns the same interface 2 for dst=10.1.0.1.

30

6.6 Is IP-Efficient Sym-NS-3 efficient?

In this section, we prove that IP-Efficient Sym-NS-3 is more efficient that Basic Sym-NS-3.

Note that although Sym-NS-3 needs additional time to sort a routing table, the time to call

constraint solvers and fork virtual machines is significantly more time consuming than the

time to sort a routing table. The time to call constraint solvers is the number of symbolic

comparisons, and the time of virtual machines is the number of branches. Therefore, we

prove the efficiency in two parts.

• Part 1: IP-Efficient Sym-NS-3 with a sorted table has less symbolic comparisons than

Basic Sym-NS-3 with the corresponding unsorted table.

• Part 2: IP-Efficient Sym-NS-3 with a sorted table generates less branches than Basic

Sym-NS-3 with the corresponding unsorted table.

6.6.1 Part 1: IP-Efficient Sym-NS-3 has less symbolic comparisons than

Basic Sym-NS-3

We prove that IP-Efficient Sym-NS-3 with a sorted table (e.g., sorted Table 6.2) has less sym-

bolic comparisons than Basic Sym-NS-3 with the unsorted table (e.g., unsorted Table 6.1)

using the following two theorems. For example, if we search for a symbolic dst in the

range of 10.1.0.0 to 10.2.255.255, Basic Sym-NS-3 with unsorted Table 6.1 has 4 symbolic

comparisons, because the table has 4 entries. In contrast, IP-Efficient Sym-NS-3 with sorted

Table 6.2 has only 1 symbolic comparison.

Theorem 3 If an unsorted table has e entries, Basic Sym-NS-3 (i.e., Pseudocode 6.3 and 6.2) has e

symbolic comparisons for a symbolic dst.

31

Proof: Function Lookup defined in Pseudocode 6.3 does not have any break, continues

or return in the for loop between line 2 to line 8. Therefore, all e entries in the routing

table are checked by function IsMatch defined in Pseudocode 6.2. Because dst is sym-

bolic, each time function IsMatch is called, there is a symbolic comparison. Therefore,

there is a total of e symbolic comparisons.

Theorem 4 If a sorted table has g priority groups (i.e., 1, 2, ..., g) and the first matching group for

a symbolic dst is m, IP-Efficient Sym-NS-3 (i.e., Pseudocode 6.5, Pseudocode 6.4) has m symbolic

comparisons for dst. We have m ≤ g ≤ e.

Proof: First, we can see that IP-Efficient Sym-NS-3 has only one symbolic comparison for

each priority group. This is because function IsMatch defined in Pseudocode 6.4 does

not have any comparison for each entry of a priority group, and function Lookup defined

in Pseudocode 6.5 has only one symbolic comparison at line 6 of the for loop for each

priority group. Second, we can see that function Lookup defined in Pseudocode 6.5 stops

as soon as it find the first matching priority group at lines 6 and 7.

Therefore, if the first matching group for dst is m, IP-Efficient Sym-NS-3 has m sym-

bolic comparisons.

Because m is a number between 1 and g, and because the upper bound of g is e (i.e.,

when each priority group has only one entry), we have m ≤ g ≤ e.

To have a better understanding of the above theorems, let’s consider the example using

Basic Sym-NS-3 with unsorted Table 6.1 and IP-Efficient Sym-NS-3 with sorted Table 6.2

for the symbolic dst in the range of 10.1.0.0 to 10.2.255.255.

• Basic Sym-NS-3 checks all the 4 entries in the routing table. Thus, there are a total of

4 symbolic comparisons.

32

• IP-Efficient Sym-NS-3 has only 1 symbolic comparison. Because Pseudocode 6.5

calls line 6 only once for the two entries in priority group 1 and then returns priority

group 1 (i.e., interface 2). Also note that the remaining priority groups (i.e., last two

entries) of Table 6.2 are not checked. Therefore, there is only 1 symbolic comparison.

6.6.2 Part 2: IP-Efficient Sym-NS-3 generates less branches than Basic

Sym-NS-3

We prove that IP-Efficient Sym-NS-3 generates less branches than Basic Sym-NS-3 using

the following theorem. For example, if we search for a symbolic dst in the range of

10.1.0.0 to 10.2.255.255, Basic Sym-NS-3 generates 2 branches whereas IP-Efficient Sym-NS-

3 generates only 1 branch.

Theorem 5 IP-Efficient Sym-NS-3 generates no more branches than Basic Sym-NS-3 for a sym-

bolic dst.

Proof: For each best matching entry in a table for a symbolic dst, Basic Sym-NS-3 generates

a branch. Note that because a symbolic dst covers a range of IP addresses, there might

be multiple best matching entries. Thus, the number of branches generated by Basic

Sym-NS-3 is the number of best matching entries in a table.

The number of branches generated by IP-Efficient Sym-NS-3 is the number of corre-

sponding priority groups containing these best matching entries. Because each priority

group contains at least one entry, the number of corresponding priority groups is no more

than the number of best matching entries. In the best case, the number of corresponding

priority group is 1 if it contains all the best matching entries. In the worse case, the number

of corresponding priority groups is equal to the number of best matching entries if each

priority group contains only one entry.

33

Therefore, the number of branches generated by IP-Efficient Sym-NS-3 is no more than

that of Basic Sym-NS-3.

To have a better understanding of the above theorem, let’s consider an example using

Basic Sym-NS-3 with unsorted Table 6.1 and IP-Efficient Sym-NS-3 with sorted Table 6.2

for the symbolic dst in the range of 10.1.0.0 to 10.2.255.255.

• Basic Sym-NS-3 finds two best matching entries, which are the third entry with

interface 2 for IP 10.1.0.0 10.1.255.255 and fourth entry with interface 2 for IP 10.2.0.0

10.2.255.255. Therefore, it generates 2 branches.

• IP-Efficient Sym-NS-3 finds only the first matching priority group, which contains

two entries with IP 10.1.0.0 10.1.255.255 and IP 10.2.0.0 10.2.255.255, both with

interface 2. Therefore, it generates only 1 branch.

34

Chapter 7

Experiments

7.1 Simulation setup

We evaluate the following three methods.

1. Brute force using current NS-3, which is referred to as Brute Force.

2. Symbolic execution using Sym-NS-3 with only the symbolic variable management

proposed in Chapter 5, which is referred to as Basic SymEx.

3. Symbolic execution using Sym-NS-3 with both the symbolic variable management

proposed in Chapter 5 and the techniques proposed in Chapter 6 for more efficient

IP simulations, which is referred to as IP-Efficient SymEx.

7.2 Exhaustive testing on TCP performance

In this group of simulations, we exhaustively test the TCP performance in a network shown

in Fig. 7.1, which has different and independent delays in different directions between

nodes 0 and 1. Delay d0 from node 0 to node 1 is in the range of [1, 1000] ms, and delay

35

d1 from node 1 to node 0 is also in the range of [1, 1000] ms. Node 0 starts to establish a

TCP connection to node 1 at time 0 with an initial congestion window of 1 segment, and

then sends a total of 2 data segments to node 1. The TCP performance is measured by the

number of segments received by node 1 within 2000 ms.

node 0 node 1
delay d0

delay d1

Figure 7.1: Network topology of the TCP performance testing.

Brute Force runs a total of 1000 × 1000 = 106 NS-3 simulations for all possible combi-

nations of d0 and d1, and is estimated to take about 6 days. Basic SymEx uses two symbolic

variables, one for d0 and the other for d1, and takes about 3 hours. Basic SymEx finally

generates about 140 branches (i.e., equivalence classes of d0 and d1 values leading to the

same simulator execution paths). To help us verify the correctness of the reported TCP

performance, we also print out the ranges of 2d0 + d1 (i.e., the time for the three-way hand-

shake) and 3d0 + 2d1 (i.e., one round-trip time after the three-way handshake) for each

branch. The result of all the branches is summarized and aggregated in Table 7.1. Note

that the link data rate is 5 Mbps, and the transmission time of a segment is slightly less

than 1 ms. We can see that Basic SymEx exhaustively reports all possible TCP performance

for all possible combinations of d0 and d1 in the specified ranges, and such information is

very time consuming to obtain using Brute Force with NS-3.

Table 7.1: Exhaustive TCP performance testing by SymEx

2d0 + d1 (ms) 3d0 + 2d1 (ms) Number of received segments

[1999, 3000] [2999, 5000] 0

[1000, 1998] [1999, 3497] 1

[3, 1331] [5,1998] 2

36

7.3 Exhaustive testing on reachability

In this group of simulations, we exhaustively test the reachability from node 0 to all other

nodes in a network shown in Fig. 7.2. Specifically, node 0 sends a ping packet with a

destination IP in the range of 10.0.0.0 and 10.255.255.255, and reports the round-trip time

(RTT) if it receives a reply. The routing table of each node is automatically created by NS-3

function PopulateRoutingTables.

node 0 node 1

node 2

node 3

node 4

node 5

node 6

node 7

5ms

1ms

3ms

7ms

30ms

50ms

70ms

10.1.0.1 10.1.0.2

10.2.0.1

10.3.0.1

10.4.0.1

10.2.0.2 10.5.0.1 10.5.0.2

10.3.0.2

10.6.0.1 10.6.0.2

10.4.0.2

10.7.0.1 10.7.0.2

Figure 7.2: Network topology of the reachability testing.

Brute Force runs a total of 2563 NS-3 simulations for each possible destination IP

address, and is estimated to take about 100 days. Basic SymEx uses one symbolic variable

for all the destination IP addresses, and takes about 15 minutes. Basic SymEx finally

generates about 30 branches. The result of all branches is summarized in Table 7.2. We can

see that Basic SymEx exhaustively reports all possible ping RTTs for all possible destination

IP addresses in the specified range.

37

Table 7.2: Exhaustive reachability testing by SymEx

Destination IP Ping RTT (ms)

10.1.0.1 0

10.1.0.2, 10.1.255.255, 10.2.0.1

10.2.255.255, 10.3.0.1, 10.3.255.255 10

10.4.0.1, 10.4.255.255

10.2.0.2, 10.5.0.1, 10.5.255.255 70

10.3.0.2, 10.6.0.1, 10.6.255.255 110

10.4.0.2, 10.7.0.1, 10.7.255.255 150

10.5.0.2 72

10.6.0.2 116

10.7.0.2 164

All other IP addresses No reply

7.4 Evaluating IP-Efficient SymEx

The previous two groups of simulations have relatively small routing tables, so there

is not much difference between Basic SymEx and IP-Efficient SymEx. In this group of

simulations, we use a big routing table to demonstrate the different performance of Basic

and IP-Efficient SymEx. Specifically, we manually add the following n additional entries

to the routing table of node 2 in Fig. 7.2 for the reachability simulations.

The simulation results shown in Fig. 7.3 indicate that the number of branches generated

by Basic SymEx increases proportionally as the number n of additional table entries

increases, whereas that of IP-Efficient SymEx remains unchanged. Accordingly, the testing

38

Table 7.3: Additional table entries for node 2

Destination Mask Interface Metric

10.5.1.0 255.255.255.0 2 default

...

10.5.n.0 255.255.255.0 2 default

time of Basic SymEx increases proportionally as n increases, whereas that of IP-Efficient

SymEx increases only slightly.

 50

 100

 150

 200

 250

 300

 50 100 150 200 250

N
u

m
b

e
r

o
f

b
ra

n
c
h

e
s

Number of additional table entries

Basic SymEx
IP−Efficient SymEx

Figure 7.3: IP-Efficient SymEx is more efficient than Basic SymEx.

39

Chapter 8

Conclusions and Future work

8.1 Conclusions

In this thesis, we present our current progress on Sym-NS-3 for more efficient exhaustive

testing. Specifically, we present our design choices and implementation on how we extend

current NS-3 to support symbolic execution, and also the significantly improved testing

speeds of Sym-NS-3 over current NS-3.

8.2 Shortcomings

One big problem with symbol execution is the path explosion. Therefore, Sym-NS-3 cannot

deal with too many symbolic variables at the same time.

8.3 Future work

In the future, we plan to study and improve the performance of Sym-NS-3 for other types

of symbolic variables, such as symbolic data rates of channels.

40

Bibliography

[1] T. Avgerinos, A. Rebert, S. Cha, and D. Brumley. Enhancing symbolic execution

with veritesting. In Proceedings of International Conference on Software Engineering,

Hyderabad, India, June 2014. 2

[2] D. Babic, L. Martignoni, S. McCamant, and D. Song. Statically-directed dynamic

automated test generation. In Proceedings of ACM ISSTA, Toronto, Canada, July 2011.

2

[3] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of USENIX

ATC, Anaheim, CA, April 2005. 4.1

[4] K. Bhargavan, C. Gunter, M. Kim, I. lee, D. Obradovic, O. Sokolsky, and

M. Viswanathan. Verisim: Formal analysis of network simulations. IEEE Trans-

actions on Software Engineering, 28(2):129–145, February 2002. 2

[5] S. Bugrara and D. Engler. Redundant state detection for dynamic symbolic execution.

In Proceedings of USENIX ATC, San Jose, CA, June 2013. 2

[6] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Proceedings of

IEEE/ACM Conference on Automated Software Engineering, L’Aquaila, Italy, September

2008. 2

41

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic generation of

high-coverage tests for complex systems programs. In Proceedings of USENIX OSDI,

San Diego, CA, December 2008. 4.1

[8] C. Cadar and K. Sen. Symbolic execution for software testing: three decades later.

Communications of the ACM, 56(2):82–90, February 2013. 1

[9] M. Canini, V. Jovanovic, D. Venzano, B. Spasojevic, and O. Crameri. Toward online

testing of federated and heterogeneous distributed systems. In Proceedings of USENIX

ATC, Portland, OR, June 2011. 2

[10] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A NICE way to test

OpenFlow applications. In Proceedings of USENIX NSDI, San Jose, CA, April 2012. 2

[11] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E platform: design, implementa-

tion, and applications. ACM Transactions on Computer Systems, 30(1), February 2012. 2,

4.1

[12] C. Cho, D. Babic, P. Poosankam, K. Chen, E. Wu, and D. Song. MACE: model-

inference-assisted concolic exploration for protocol and vulnerability discovery. In

Proceedings of USENIX Conference on Security (SEC), San Francisco, CA, August 2011. 2

[13] M. Dobrescu and K. Argyraki. Software dataplane verification. In Proceedings of

USENIX NSDI, Seattle, WA, April 2014. 2

[14] O. Dustmann. Symbolic execution of discrete event systems with uncertain time.

Lecture Notes in Informatics, S-12:19–22, 2013. 2

[15] S. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar. BUZZ: Testing context-dependent

policies in stateful networks. In Proceedings of USENIX NSDI, Santa Clara, CA, March

2016. 2

42

[16] P. Godefroid. Compositional dynamic test generation. In Proceedings of POPL, Nice,

France, January 2007. 2

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing.

In Proceedings of ACM Programming Language Design and Implementation, Chicagi, IL,

June 2005. 2

[18] E. Hoque, O. Chowdhury, S. Chau, C. Nita-Rotaru, and N. Li. Analyzing operational

behavior of stateful protocol implementations for detecting semantic bugs. In Proceed-

ings of IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

2017. 2

[19] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static checking

for networks. In Proceedings of USENIX NSDI, San Jose, CA, April 2012. 6.1

[20] J. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, July 1976. 1

[21] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi. Finding

protocol manipulation attacks. In Proceedings of ACM SIGCOMM, Toronto, Canada,

August 2011. 2

[22] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging in symbolic

execution. In Proceedings of ACM Programming Language Design and Implementation,

Beijing, China, June 2012. 2

[23] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic. A SOFT way for

OpenFlow switch interoperability testing. In Proceedings of ACM Conference on emerging

Networking EXperiments and Technologies (CoNEXT), Nice, France, December 2012. 2

43

[24] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan, and T. Millstein. Analyz-

ing protocol implementations for interoperability. In Proceedings of USENIX NSDI,

Oakland, CA, May 2015. 2

[25] R. Sasnauskas, O. Dustmann, B. Kaminski, K. Wehrle, C. Weise, and S. Kowalewski.

Scalable symbolic execution of distributed systems. In Proceedings of ICDCS, Min-

neapolis, MN, June 2011. 2

[26] R. Sasnauskas, P. Kaiser, R. Jukic, and K. Wehrle. Integration testing of protocol

implementations using symbolic distributed execution. In Proceedings of IEEE ICNP,

Austin, TX, October 2012. 2

[27] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise, S. Kowalewski, and K. Wehrle.

KleeNet: discovering insidious interaction bugs in wireless sensor networks before

deployment. In Proceedings of ACM/IEEE IPSN, Stockholm, Sweden, April 2010. 2

[28] K. Sen, G. Necula, L. Gong, and W. Choi. MultiSE: Multi-path symbolic execution

using value summaries. In Proceedings of ESEC/FSE, Italy, October 2015. 2

[29] J. Song, C. Cadar, and P. Pietzuch. SymbexNet: Testing network protocol implemen-

tations with symbolic execution and rule-based specifications. IEEE Transactions on

Software Engineering, 40(7):695–709, July 2014. 2

[30] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbette, Y. Shoshitaishvili,

C. Kruegel, and G. Vigna. Driller: augmenting fuzzing through selective symbolic

execution. In Proceedings of NDSS, San Diego, CA, Feburary 2016. 2

[31] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. SymNet: Scalable symbolic

execution for modern networks. In Proceedings of ACM SIGCOMM, Brazil, August

2016. 2, 6.1, 6.4

44

[32] W. Sun, L. Xu, and S. Elbaum. SPD: Automatically test unmodified network programs

with symbolic packet dynamics. In Proceedings of IEEE Globecom, San Diego, CA,

December 2015. 2

[33] M. Vu, L. Xu, S. Elbaum, W. Sun, and K. Qiao. Efficient systematic testing of network

protocols with temporal uncertain events. In Proceedings of IEEE INFOCOM, Paris,

France, April 2019. 1, 6

45

Appendix A

Source Code of Basic Sym-NS-3 in

Chapter 5

Code A.1: Sym-NS-3 SymboClass.h

1 / * −*− Mode : C++; c− f i l e − s t y l e : ” gnu ” ; indent − t a b s −mode : n i l ; −*− * /

2 # ifndef SYMBOLIC H

3 # define SYMBOLIC H

4 # include "ns3/object.h"

5 # include "ns3/nstime.h"

6 # include "ns3/ipv4-address.h"

7

8 namespace ns3 {

9

10 / * . . . * /

11 c l a s s Symbolic : public Object

12 {

13

14 public :

15

16 s t a t i c TypeId GetTypeId (void) ;

17

18 Symbolic () ;

19 Symbolic (u i n t p t r t v) ;

46

20 v i r t u a l ˜ Symbolic () {} ;

21

22 void SetMax (u i n t p t r t v) ;

23 void SetMin (u i n t p t r t v) ;

24 void SetMinMax (u i n t p t r t min , u i n t p t r t max) ;

25 void SetMax (Time v) ;

26 void SetMin (Time v) ;

27 void GetSymbolic () ;

28 u i n t p t r t GetSymbolicUintValue () ;

29 Ipv4Address GetSymbolicIpv4Add () ;

30 Time GetSymbolicTime () ;

31 void PrintRange () ;

32 s t a t i c void PrintRange (char const * name , u i n t p t r t v) ;

33 s t a t i c void PrintRangeTime (char const * name , Time t) ;

34 void PrintRange (char const * name) ;

35 void PrintSignedRange () ;

36 void PrintSignedRange (char const * name) ;

37 s t a t i c void Stop (char const * name) ;

38 s t a t i c void P r i n t (const char * s) ;

39 s t a t i c void P r i n t (u i n t p t r t v) ;

40

41 u i n t p t r t GetUpperBound () ;

42 u i n t p t r t GetLowerBound () ;

43

44 u i n t p t r t m symbolic ;

45 u i n t p t r t m min ;

46 u i n t p t r t m max ;

47

48 fr iend Symbolic operator − (const Symbolic & l , const Symbolic & r) ;

49 fr iend Symbolic operator − (const Time & l , const Symbolic & r) ;

50 fr iend Symbolic operator − (const Symbolic & l , const Time &r) ;

51 fr iend Symbolic operator + (const Symbolic & l , const Symbolic & r) ;

52 fr iend Symbolic operator + (const Time & l , const Symbolic & r) ;

53 fr iend Symbolic operator + (const Symbolic & l , const Time &r) ;

54

55 } ;

56

57 i n l in e Symbolic operator − (const Symbolic & l , const Symbolic & r)

58 {

47

59 return Symbolic (l . m symbolic − r . m symbolic) ;

60 }

61

62 i n l in e Symbolic operator − (const Time & l , const Symbolic & r)

63 {

64 return Symbolic (l . GetTimeStep () + r . m symbolic) ;

65 }

66

67 i n l in e Symbolic operator − (const Symbolic & l , const Time &r)

68 {

69 return Symbolic (l . m symbolic − r . GetTimeStep ()) ;

70 }

71

72 i n l in e Symbolic operator + (const Symbolic & l , const Symbolic & r)

73 {

74 return Symbolic (l . m symbolic + r . m symbolic) ;

75 }

76

77 i n l in e Symbolic operator + (const Time & l , const Symbolic & r)

78 {

79 return Symbolic (l . GetTimeStep () + r . m symbolic) ;

80 }

81

82 i n l in e Symbolic operator + (const Symbolic & l , const Time &r)

83 {

84 return Symbolic (l . m symbolic + r . GetTimeStep ()) ;

85 }

86

87 }

88

89 # endif / * SYMBOLIC H * /

Code A.2: Sym-NS-3 SymboClass.cpp

1 # include "symbolic.h"

2

3

4 namespace ns3 {

5

48

6 / * . . . * /

7 NS LOG COMPONENT DEFINE ("Symbolic") ;

8

9 NS OBJECT ENSURE REGISTERED (Symbolic) ;

10

11 TypeId

12 Symbolic : : GetTypeId (void)

13 {

14 s t a t i c TypeId t i d = TypeId ("ns3::Symbolic")

15 . SetParent<Object> ()

16 . SetGroupName ("Symbolic")

17 . AddConstructor<Symbolic> ()

18 . AddAttribute ("Max" , "The Symbolic Max Value" ,

19 UintegerValue (0 x f f f f) ,

20 MakeUintegerAccessor (&Symbolic : : m max) ,

21 MakeUintegerChecker<u i n t p t r t> ())

22 . AddAttribute ("Min" , "The Symbolic Min Value" ,

23 UintegerValue (0) ,

24 MakeUintegerAccessor (&Symbolic : : m min) ,

25 MakeUintegerChecker<u i n t p t r t> ())

26 ;

27 return t i d ;

28 }

29

30 Symbolic : : Symbolic ()

31 :

32 m symbolic (0) ,

33 m min (0) ,

34 m max(0 x f f f f f f f f)

35

36 {

37 NS LOG FUNCTION NOARGS () ;

38 }

39

40 Symbolic : : Symbolic (u i n t p t r t v)

41 :

42 m symbolic (v) ,

43 m min (0) ,

44 m max(0 x f f f f f f f f)

49

45

46 {

47 NS LOG FUNCTION NOARGS () ;

48 }

49

50

51 void

52 Symbolic : : SetMax (u i n t p t r t v)

53 {

54 m max=v ;

55 }

56

57 void

58 Symbolic : : SetMin (u i n t p t r t v)

59 {

60 m min=v ;

61 }

62

63 void

64 Symbolic : : SetMinMax (u i n t p t r t min , u i n t p t r t max)

65 {

66 SetMin (min) ;

67 SetMax (max) ;

68 }

69

70 void

71 Symbolic : : SetMax (Time v)

72 {

73 m max=v . GetTimeStep () ;

74 }

75

76 void

77 Symbolic : : SetMin (Time v)

78 {

79 m min=v . GetTimeStep () ;

80 }

81

82 void

83 Symbolic : : GetSymbolic ()

50

84 {

85 i f (s 2 e i s s y m b o l i c (&m symbolic , s i ze of (m symbolic)) != 1)

86 {

87 s2e make symbolic (&m symbolic , s i ze of (m symbolic) ,"symbolic_value") ;

88 i f (m symbolic<m min)

89 {

90 s 2 e k i l l s t a t e (0 ,"Out of Range, Lower") ;

91 }

92 e lse i f (m symbolic>m max)

93 {

94 s 2 e k i l l s t a t e (0 ,"Out of Range, Upper") ;

95 }

96 }

97 }

98

99 u i n t p t r t

100 Symbolic : : GetSymbolicUintValue ()

101 {

102 GetSymbolic () ;

103 return m symbolic ;

104 }

105

106 Ipv4Address

107 Symbolic : : GetSymbolicIpv4Add ()

108 {

109 GetSymbolic () ;

110 Ipv4Address returnAddress ;

111 returnAddress . Se t (m symbolic) ;

112 return returnAddress ;

113 }

114

115 Time

116 Symbolic : : GetSymbolicTime ()

117 {

118 GetSymbolic () ;

119 return Time (m symbolic) ;

120 }

121

122 void

51

123 Symbolic : : PrintRange ()

124 {

125 u i n t p t r t upper ;

126 u i n t p t r t lower ;

127 s 2 e g e t r a n g e (m symbolic ,&lower ,&upper) ;

128 s 2 e p r i n t f ("The range of Symbolic Variables is %ld,%ld" , lower , upper) ;

129 }

130

131 void

132 Symbolic : : PrintRange (char const * name , u i n t p t r t v)

133 {

134 i f (s 2 e i s s y m b o l i c (&v , s i ze of (v)) != 1)

135 {

136 s 2 e p r i n t f ("%s is not a symbolic variable." ,name) ;

137 } e lse{

138 u i n t p t r t upper ;

139 u i n t p t r t lower ;

140 s 2 e g e t r a n g e (v,&lower ,&upper) ;

141 s 2 e p r i n t f ("The range of %s Variables is %ld,%ld" ,name , lower , upper) ;

142 s 2 e p r i n t f ("The range of %s Variables is %lu,%lu" ,name , lower , upper) ;

143 }

144 }

145

146 void

147 Symbolic : : P r i n t (const char * s) {

148 s 2 e p r i n t f ("%s" , s) ;

149 }

150

151 void

152 Symbolic : : P r i n t (u i n t p t r t v) {

153 s 2 e p r i n t f ("UInt Value %lu" , v) ;

154 s 2 e p r i n t f ("Int Value %ld" , v) ;

155 }

156

157 void

158 Symbolic : : PrintRangeTime (char const * name , Time t)

159 {

160 i f (s 2 e i s s y m b o l i c (&t , s i ze of (t)) != 1)

161 {

52

162 s 2 e p r i n t f ("%s is not a symbolic Time." ,name) ;

163 } e lse{

164 PrintRange (name , t . GetTimeStep ()) ;

165 }

166 }

167

168 void

169 Symbolic : : PrintRange (char const * name)

170 {

171 u i n t p t r t upper ;

172 u i n t p t r t lower ;

173 s 2 e g e t r a n g e (m symbolic ,&lower ,&upper) ;

174 s 2 e p r i n t f ("The range of %s Variables is %ld,%ld" ,name , lower , upper) ;

175 s 2 e p r i n t f ("The range of %s Variables is %lu,%lu" ,name , lower , upper) ;

176 }

177

178 void

179 Symbolic : : Stop (char const * name)

180 {

181 s 2 e k i l l s t a t e p r i n t f (0 , name) ;

182 }

183

184 u i n t p t r t

185 Symbolic : : GetUpperBound ()

186 {

187 u i n t p t r t upper ;

188 u i n t p t r t lower ;

189 s 2 e g e t r a n g e (m symbolic ,&lower ,&upper) ;

190 return upper ;

191 }

192

193 u i n t p t r t

194 Symbolic : : GetLowerBound ()

195 {

196 u i n t p t r t upper ;

197 u i n t p t r t lower ;

198 s 2 e g e t r a n g e (m symbolic ,&lower ,&upper) ;

199 return lower ;

200 }

53

201

202 }

54

Appendix B

Source Code of IP-Efficient Sym-NS-3 in

Chapter 6

Code B.1: Sym-NS-3 Ipv4StaticRouting::LookupStatic

1 Ptr<Ipv4Route>

2 Ipv4Sta t i cRout ing : : LookupStatic (Ipv4Address dest , Ptr<NetDevice> o i f)

3 {

4 NS LOG FUNCTION (t h i s << dest << " " << o i f) ;

5 Ptr<Ipv4Route> r t e n t r y = 0 ;

6 / * when s e n d i n g on l o c a l m u l t i c a s t , t h e r e have t o be i n t e r f a c e s p e c i f i e d * /

7 i f (dest . I s L o c a l M u l t i c a s t ())

8 {

9 NS ASSERT MSG (o i f , "Try to send on link-local multicast address, and no interface index is

given!") ;

10

11 r t e n t r y = Create<Ipv4Route> () ;

12 r t e n t r y −>S e t D e s t i n a t i o n (dest) ;

13 r t e n t r y −>SetGateway (Ipv4Address : : GetZero ()) ;

14 r t e n t r y −>SetOutputDevice (o i f) ;

15 r t e n t r y −>SetSource (m ipv4−>GetAddress (m ipv4−>GetInter faceForDevice (o i f) , 0) . GetLocal ()

) ;

16 return r t e n t r y ;

17 }

55

18

19 u i n t 1 6 t masklenRec = 3 2 ;

20 u i n t 3 2 t i n t e r f a c e R e c = 0 ;

21 u i n t 3 2 t metricRec = 0 x f f f f f f f f ;

22 u i n t 8 t matchRst = 1 ; / / must be non− z e r o

23 Ipv4RoutingTableEntry * jRec = NULL;

24 bool sendFlag = f a l s e ;

25 for (NetworkRoutesI i = m networkRoutes . begin () ;

26 i != m networkRoutes . end () ;

27 i ++)

28 {

29 Ipv4RoutingTableEntry * j =i −> f i r s t ;

30 u i n t 3 2 t metr ic =i −>second ;

31 Ipv4Mask mask = (j)−>GetDestNetworkMask () ;

32 u i n t 1 6 t masklen = mask . GetPref ixLength () ;

33 Ipv4Address entry = (j)−>GetDestNetwork () ;

34 u i n t 3 2 t i n t e r f a c e I d x = (j)−>G e t I n t e r f a c e () ;

35 / / NOT SUPPORT send through t h e r e q u e s t e d i n t e r f a c e , i g n o r e d

36 NS LOG LOGIC ("Searching for route to " << dest << ", checking against route to " << entry

<< "/" << masklen << ", Metric is "<< metr ic << ", Interface is " << j −>G e t I n t e r f a c e ()

) ;

37 i f (i n t e r f a c e R e c != i n t e r f a c e I d x) {

38 NS LOG LOGIC("Changed Interface") ;

39 i f (matchRst == 0){

40 sendFlag = t rue ;

41 break ;

42 }

43 e lse{

44 masklenRec = masklen ;

45 metricRec = metr ic ;

46 i n t e r f a c e R e c = i n t e r f a c e I d x ;

47 matchRst = mask . MatchCalc (dest , entry) ;

48 }

49 } e lse i f (metricRec != metr ic) {

50 NS LOG LOGIC("Changed metric") ;

51 i f (matchRst == 0){

52 sendFlag = t rue ;

53 break ;

54 }

56

55 e lse{

56 masklenRec = masklen ;

57 metricRec = metr ic ;

58 i n t e r f a c e R e c = i n t e r f a c e I d x ;

59 matchRst = mask . MatchCalc (dest , entry) ;

60 }

61 } e lse i f (masklenRec != masklen) {

62 NS LOG LOGIC("Changed masklen") ;

63 i f (matchRst == 0){

64 sendFlag = t rue ;

65 break ;

66 }

67 e lse{

68 masklenRec = masklen ;

69 metricRec = metr ic ;

70 i n t e r f a c e R e c = i n t e r f a c e I d x ;

71 matchRst = mask . MatchCalc (dest , entry) ;

72 }

73 } e lse{

74 NS LOG LOGIC("In the same group") ;

75 matchRst = mask . MatchCalc (dest , entry , matchRst) ;

76 }

77 jRec = j ;

78 }

79 i f (matchRst == 0)

80 sendFlag = t rue ;

81 i f (sendFlag) {

82 r t e n t r y = Create<Ipv4Route> () ;

83 r t e n t r y −>S e t D e s t i n a t i o n ((jRec)−>GetDest ()) ;

84 r t e n t r y −>SetSource (m ipv4−>SourceAddressSelect ion (i n t e r f a c e R e c , (jRec)−>GetDest ())) ;

85 r t e n t r y −>SetGateway ((jRec)−>GetGateway ()) ;

86 r t e n t r y −>SetOutputDevice (m ipv4−>GetNetDevice (i n t e r f a c e R e c)) ;

87 }

88 i f (r t e n t r y != 0)

89 {

90 NS LOG LOGIC ("Matching route via " << r t e n t r y −>GetGateway () << " at the end") ;

91 }

92 e lse

93 {

57

94 NS LOG LOGIC ("No matching route to " << dest << " found") ;

95 }

96 return r t e n t r y ;

97 }

Code B.2: Sym-NS-3 Ipv4StaticRouting::AddNetworkRouteTo

1 void

2 Ipv4Sta t i cRout ing : : AddNetworkRouteTo (Ipv4Address network ,

3 Ipv4Mask networkMask ,

4 Ipv4Address nextHop ,

5 u i n t 3 2 t i n t e r f a c e ,

6 u i n t 3 2 t metr ic)

7 {

8 NS LOG FUNCTION (t h i s << network << " " << networkMask << " " << nextHop << " " << i n t e r f a c e <<

" " << metr ic) ;

9

10 Ipv4RoutingTableEntry route = Ipv4RoutingTableEntry : : CreateNetworkRouteTo (network ,

11 networkMask ,

12 nextHop ,

13 i n t e r f a c e) ;

14

15 Ipv4RoutingTableEntry * route Pt r = new Ipv4RoutingTableEntry (route) ;

16 u i n t 1 6 t masklen = networkMask . GetPref ixLength () ;

17

18 for (NetworkRoutesI i = m networkRoutes . begin () ;

19 i != m networkRoutes . end () ;

20 i ++)

21 {

22 Ipv4RoutingTableEntry * j =i −> f i r s t ;

23 u i n t 3 2 t metricTmp =i −>second ;

24 Ipv4Mask maskTmp = (j)−>GetDestNetworkMask () ;

25 u i n t 1 6 t masklenTmp = maskTmp . GetPref ixLength () ;

26 u i n t 3 2 t interfaceIdxTmp = (j)−>G e t I n t e r f a c e () ;

27

28 i f (masklen > masklenTmp) {

29 m networkRoutes . i n s e r t (i , make pair (routePtr , metr ic)) ;

30 return ;

31 } e lse i f (masklen < masklenTmp) {

58

32 continue ;

33 } e lse{

34 i f (metr ic < metricTmp) {

35 m networkRoutes . i n s e r t (i , make pair (routePtr , metr ic)) ;

36 return ;

37 } e lse i f (metr ic > metricTmp) {

38 continue ;

39 } e lse{

40 i f (i n t e r f a c e <= interfaceIdxTmp) {

41 m networkRoutes . i n s e r t (i , make pair (routePtr , metr ic)) ;

42 return ;

43 } e lse{

44 continue ;

45 }

46 }

47 }

48 }

49 m networkRoutes . push back (make pair (routePtr , metr ic)) ;

50 }

51

52 void

53 Ipv4Sta t i cRout ing : : AddNetworkRouteTo (Ipv4Address network ,

54 Ipv4Mask networkMask ,

55 u i n t 3 2 t i n t e r f a c e ,

56 u i n t 3 2 t metr ic)

57 {

58 NS LOG FUNCTION (t h i s << network << " " << networkMask << " " << i n t e r f a c e << " " << metr ic) ;

59

60 Ipv4RoutingTableEntry route = Ipv4RoutingTableEntry : : CreateNetworkRouteTo (network ,

61 networkMask ,

62 i n t e r f a c e) ;

63

64 Ipv4RoutingTableEntry * route Pt r = new Ipv4RoutingTableEntry (route) ;

65 u i n t 1 6 t masklen = networkMask . GetPref ixLength () ;

66

67 for (NetworkRoutesI i = m networkRoutes . begin () ;

68 i != m networkRoutes . end () ;

69 i ++)

70 {

59

71 Ipv4RoutingTableEntry * j =i −> f i r s t ;

72 u i n t 3 2 t metricTmp =i −>second ;

73 Ipv4Mask maskTmp = (j)−>GetDestNetworkMask () ;

74 u i n t 1 6 t masklenTmp = maskTmp . GetPref ixLength () ;

75 u i n t 3 2 t interfaceIdxTmp = (j)−>G e t I n t e r f a c e () ;

76

77 i f (masklen > masklenTmp) {

78 m networkRoutes . i n s e r t (i , make pair (routePtr , metr ic)) ;

79 return ;

80 } e lse i f (masklen < masklenTmp) {

81 continue ;

82 } e lse{

83 i f (metr ic < metricTmp) {

84 m networkRoutes . i n s e r t (i , make pair (routePtr , metr ic)) ;

85 return ;

86 } e lse i f (metr ic > metricTmp) {

87 continue ;

88 } e lse{

89 i f (i n t e r f a c e <= interfaceIdxTmp) {

90 m networkRoutes . i n s e r t (i , make pair (routePtr , metr ic)) ;

91 return ;

92 } e lse{

93 continue ;

94 }

95 }

96 }

97 }

98 m networkRoutes . push back (make pair (routePtr , metr ic)) ;

99 }

Code B.3: Sym-NS-3 Ipv4Mask::MatchCalc

1 u i n t 8 t

2 Ipv4Mask : : MatchCalc (Ipv4Address a , Ipv4Address b , u i n t 8 t record) const

3 {

4 NS LOG FUNCTION (t h i s << a << b << record) ;

5 u i n t 3 2 t temp = ((a . Get () & m mask) ˆ (b . Get () & m mask)) ;

6 u i n t 8 t tempRec = 0 ;

7 for (i n t i = 0 ; i < 3 2 ; i ++){

60

8 u i n t 8 t index = temp & 1 ;

9 temp = temp >> 1 ;

10 tempRec = tempRec | index ;

11 }

12 record = record & tempRec ;

13 return record ;

14 }

61

Appendix C

Source Code of Examples and

Experiments

C.1 Brute force using current NS-3 for the motivating

example in Chapter 3

Code C.1: repeatCurrentDemo.sh

1 # !/ bin/bash

2 for delay0 in {1 . . 1 0 0 0}

3 do

4 for delay1 in {1 . . 1 0 0 0}

5 do

6 ./ waf −−run "currentDemo --d0=$delay0 --d1=$delay1"

7 done

8 done

Code C.2: currentDemo.cc

1 # include <iostream>

2 # include <fstream>

3 # include <s t r i n g>

62

4 # include <c a s s e r t>

5

6 # include "ns3/core-module.h"

7 # include "ns3/network-module.h"

8 # include "ns3/internet-module.h"

9 # include "ns3/point-to-point-module.h"

10 # include "ns3/applications-module.h"

11

12 / / Network Topo logy

13 / /

14 / / snda −−−−−−−rcv −−−−−−− sndb

15 / / p o i n t −to − p o i n t

16 / /

17

18 using namespace ns3 ;

19

20 NS LOG COMPONENT DEFINE ("CurrentNS3ScriptExample") ;

21

22 i n t

23 main (i n t argc , char * argv [])

24 {

25 Time : : Se tReso lut ion (Time : : MS) ;

26

27 u i n t 3 2 t d0 = 0 ;

28 u i n t 3 2 t d1 = 0 ;

29 CommandLine cmd (F I L E) ;

30 cmd . AddValue ("d0" , "The delay for link between snd1 and rcv." , d0) ;

31 cmd . AddValue ("d1" , "The delay for link between snd2 and rcv." , d1) ;

32 cmd . Parse (argc , argv) ;

33

34

35 std : : vector<PointToPointHelper> p2p (2) ;

36 p2p [0] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d0))) ;

37 p2p [1] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d1))) ;

38

39 NodeContainer nodes ;

40 nodes . Create (3) ;

41

42 std : : vector<NodeContainer> nodeAdjacencyList (2) ;

63

43 nodeAdjacencyList [0] = NodeContainer (nodes . Get (0) , nodes . Get (2)) ;

44 nodeAdjacencyList [1] = NodeContainer (nodes . Get (1) , nodes . Get (2)) ;

45

46 std : : vector<NetDeviceContainer> devices (2) ;

47 devices [0] = p2p [0] . I n s t a l l (nodeAdjacencyList [0]) ;

48 devices [1] = p2p [1] . I n s t a l l (nodeAdjacencyList [1]) ;

49

50 Interne tS tackHelper s tack ;

51 s tack . I n s t a l l (nodes) ;

52

53 Ipv4AddressHelper address ;

54 std : : vector<Ipv4Inter faceConta iner> i n t e r f a c e s (2) ;

55 for (u i n t 3 2 t i = 0 ; i < 2 ; i ++)

56 {

57 std : : os t r ings t ream subset ;

58 subset << "10.1." << i + 1 << ".0" ;

59 address . SetBase (subset . s t r () . c s t r () , "255.255.255.0") ;

60 i n t e r f a c e s [i] = address . Assign (devices [i]) ;

61 }

62

63 UdpServerHelper server (2 3 3 3) ;

64

65 Applicat ionContainer rcv = server . I n s t a l l (nodes . Get (2)) ;

66 rcv . S t a r t (Seconds (1 . 0)) ;

67 rcv . Stop (Seconds (1 0 . 0)) ;

68

69 UdpClientHelper snd1 (i n t e r f a c e s [0] . GetAddress (1) , 2333) ;

70 snd1 . S e t A t t r i b u t e ("MaxPackets" , UintegerValue (1)) ;

71

72 UdpClientHelper snd2 (i n t e r f a c e s [1] . GetAddress (1) , 2333) ;

73 snd2 . S e t A t t r i b u t e ("MaxPackets" , UintegerValue (1)) ;

74

75 Applicat ionContainer snd ;

76 snd .Add(snd1 . I n s t a l l (nodes . Get (0))) ;

77 snd .Add(snd2 . I n s t a l l (nodes . Get (1))) ;

78 snd . S t a r t (Seconds (1 . 0)) ;

79 snd . Stop (Seconds (1 0 . 0)) ;

80

81 Simulator : : Run () ;

64

82 Time D i f f = Time (d0) −Time (d1) ;

83 std : : cout<<"Diff is "<<Diff<<std : : endl ;

84 Simulator : : Destroy () ;

85 return 0 ;

86 }

C.2 Symbolic execution using Sym-NS-3 for the motivating

example in Chapter 3

Code C.3: symDemo.cc
1 # include <iostream>

2 # include <fstream>

3 # include <s t r i n g>

4 # include <c a s s e r t>

5

6 # include "ns3/core-module.h"

7 # include "ns3/network-module.h"

8 # include "ns3/internet-module.h"

9 # include "ns3/point-to-point-module.h"

10 # include "ns3/applications-module.h"

11 # include "ns3/symbolic-module.h"

12

13 / / Network Topo logy

14 / /

15 / / snda −−−−−−−rcv −−−−−−− sndb

16 / / p o i n t −to − p o i n t

17 / /

18

19 using namespace ns3 ;

20

21 NS LOG COMPONENT DEFINE ("SymNS3ScriptExample") ;

22

23 i n t

24 main (i n t argc , char * argv [])

25 {

65

26 Time : : Se tReso lut ion (Time : : MS) ;

27

28 Ptr<Symbolic> sym0 = CreateObject<Symbolic >() ;

29 sym0−>SetMinMax (1 , 1000) ;

30 u i n t 3 2 t d0 = sym0−>GetSymbolicUintValue () ;

31 Ptr<Symbolic> sym1 = CreateObject<Symbolic >() ;

32 sym1−>SetMinMax (1 , 1000) ;

33 u i n t 3 2 t d1 = sym1−>GetSymbolicUintValue () ;

34

35 std : : vector<PointToPointHelper> p2p (2) ;

36 p2p [0] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d0))) ;

37 p2p [1] . SetChannelAttr ibute ("Delay" , TimeValue (Time (d1))) ;

38

39 NodeContainer nodes ;

40 nodes . Create (3) ;

41

42 std : : vector<NodeContainer> nodeAdjacencyList (2) ;

43 nodeAdjacencyList [0] = NodeContainer (nodes . Get (0) , nodes . Get (2)) ;

44 nodeAdjacencyList [1] = NodeContainer (nodes . Get (1) , nodes . Get (2)) ;

45

46 std : : vector<NetDeviceContainer> devices (2) ;

47 devices [0] = p2p [0] . I n s t a l l (nodeAdjacencyList [0]) ;

48 devices [1] = p2p [1] . I n s t a l l (nodeAdjacencyList [1]) ;

49

50 Interne tS tackHelper s tack ;

51 s tack . I n s t a l l (nodes) ;

52

53 Ipv4AddressHelper address ;

54 std : : vector<Ipv4Inter faceConta iner> i n t e r f a c e s (2) ;

55 for (u i n t 3 2 t i = 0 ; i < 2 ; i ++)

56 {

57 std : : os t r ings t ream subset ;

58 subset << "10.1." << i + 1 << ".0" ;

59 address . SetBase (subset . s t r () . c s t r () , "255.255.255.0") ;

60 i n t e r f a c e s [i] =

61 address . Assign (devices [i]) ;

62 }

63

64 UdpServerHelper server (2 3 3 3) ;

66

65

66 Applicat ionContainer rcv = server . I n s t a l l (nodes . Get (2)) ;

67 rcv . S t a r t (Seconds (1 . 0)) ;

68 rcv . Stop (Seconds (1 0 . 0)) ;

69

70 UdpClientHelper snd1 (i n t e r f a c e s [0] . GetAddress (1) , 2333) ;

71 snd1 . S e t A t t r i b u t e ("MaxPackets" , UintegerValue (1)) ;

72

73 UdpClientHelper snd2 (i n t e r f a c e s [1] . GetAddress (1) , 2333) ;

74 snd2 . S e t A t t r i b u t e ("MaxPackets" , UintegerValue (1)) ;

75

76 Applicat ionContainer snd ;

77 snd .Add(snd1 . I n s t a l l (nodes . Get (0))) ;

78 snd .Add(snd2 . I n s t a l l (nodes . Get (1))) ;

79 snd . S t a r t (Seconds (1 . 0)) ;

80 snd . Stop (Seconds (1 0 . 0)) ;

81

82 Simulator : : Run () ;

83 i n t d i f f = d0 − d1 ;

84 Symbolic : : PrintRange ("Diff" , d i f f) ;

85 Simulator : : Destroy () ;

86 Symbolic : : Stop ("Program terminated") ;

87 return 0 ;

88 }

C.3 Exhaustive testing on TCP performance in Chapter 7.2

Code C.4: tcp-demo.sh

1 / / Network t o p o l o g y

2 / /

3 / / n0 −−−−−−−−−−− n1

4 / /

5 / / − Flow from n0 t o n1 us ing B u l k S e n d A p p l i c a t i o n .

6 / / − T r a c i n g o f queues and p a c k e t r e c e p t i o n s t o f i l e ” tcp −bulk −send . t r ”

7 / / and pcap t r a c i n g a v a i l a b l e when t r a c i n g i s tu rned on .

8

67

9 # include <s t r i n g>

10 # include <fstream>

11 # include "ns3/core-module.h"

12 # include "ns3/point-to-point-module.h"

13 # include "ns3/internet-module.h"

14 # include "ns3/applications-module.h"

15 # include "ns3/network-module.h"

16 # include "ns3/packet-sink.h"

17

18 using namespace ns3 ;

19

20 NS LOG COMPONENT DEFINE ("TcpBulkSendExample") ;

21

22 i n t

23 main (i n t argc , char * argv [])

24 {

25 u i n t 3 2 t maxBytes = 1000 ;

26 Config : : Se tDefau l t ("ns3::TcpSocket::InitialCwnd" , UintegerValue (1)) ;

27

28 / /

29 / / Allow t h e u s e r t o o v e r r i d e any o f t h e d e f a u l t s a t

30 / / run−time , v i a command− l i n e arguments

31 / /

32 CommandLine cmd (F I L E) ;

33 cmd . Parse (argc , argv) ;

34

35 / /

36 / / E x p l i c i t l y c r e a t e t h e nodes r e q u i r e d by t h e t o p o l o g y (shown a b o v e) .

37 / /

38

39 Time : : Se tReso lut ion (Time : : MS) ;

40

41 Ptr<Symbolic> symObj0 = CreateObject<Symbolic >() ;

42 symObj0−>SetMinMax (1 , 1000) ;

43 Time d0 = symObj0−>GetSymbolicTime () ;

44 Ptr<Symbolic> symObj1 = CreateObject<Symbolic >() ;

45 symObj0−>SetMinMax (1 , 1000) ;

46 Time d1 = symObj1−>GetSymbolicTime () ;

47

68

48 NodeContainer nodes ;

49 nodes . Create (2) ;

50

51 u i n t 3 2 t l i n k s = 2 ;

52 std : : vector<NodeContainer> nodeAdjacencyList (l i n k s) ;

53 nodeAdjacencyList [0] = NodeContainer (nodes . Get (0) , nodes . Get (1)) ;

54 nodeAdjacencyList [1] = NodeContainer (nodes . Get (0) , nodes . Get (1)) ;

55 std : : vector<PointToPointHelper> p2p (l i n k s) ;

56

57 std : : vector<NetDeviceContainer> devices (l i n k s) ;

58

59 p2p [0] . Se tDeviceAt t r ibute ("DataRate" , S tr ingValue ("5Mbps")) ;

60 p2p [1] . Se tDeviceAt t r ibute ("DataRate" , S tr ingValue ("5Mbps")) ;

61 p2p [0] . SetChannelAttr ibute ("Delay" , TimeValue (d0)) ;

62 p2p [1] . SetChannelAttr ibute ("Delay" , TimeValue (d1)) ;

63

64

65 for (u i n t 3 2 t i = 0 ; i < l i n k s ; i ++){

66 devices [i] = p2p [i] . I n s t a l l (nodeAdjacencyList [i]) ;

67 }

68

69 Interne tS tackHelper s tack ;

70 s tack . I n s t a l l (nodes) ;

71

72 Ipv4AddressHelper address ;

73 std : : vector<Ipv4Inter faceConta iner> i n t e r f a c e s (l i n k s) ;

74 for (u i n t 3 2 t i = 0 ; i < l i n k s ; i ++)

75 {

76 std : : os t r ings t ream subset ;

77 subset << "10." << i + 1 << ".0.0" ;

78 address . SetBase (subset . s t r () . c s t r () , "255.255.0.0") ;

79 i n t e r f a c e s [i] =

80 address . Assign (devices [i]) ;

81 }

82

83

84 Ipv4Stat icRout ingHelper ipv4RoutingHelper ;

85 std : : vector<Ptr<Ipv4Stat icRout ing>> remoteHostStaticRoutingNode (2) ;

86 for (u i n t 3 2 t i = 0 ; i < 2 ; i ++){

69

87 remoteHostStaticRoutingNode [i] = ipv4RoutingHelper . GetS ta t i cRout ing (nodes . Get (i)−>GetObject<

Ipv4 >()) ;

88 }

89 remoteHostStaticRoutingNode [0]−>RemoveRoute (2) ;

90 remoteHostStaticRoutingNode [0]−>RemoveRoute (1) ;

91 remoteHostStaticRoutingNode [1]−>RemoveRoute (2) ;

92 remoteHostStaticRoutingNode [1]−>RemoveRoute (1) ;

93 remoteHostStaticRoutingNode [0]−>AddNetworkRouteTo (Ipv4Address ("0.0.0.0") , Ipv4Mask ("0.0.0.0") ,

Ipv4Address ("10.1.0.2") , 1) ;

94 remoteHostStaticRoutingNode [1]−>AddNetworkRouteTo (Ipv4Address ("0.0.0.0") , Ipv4Mask ("0.0.0.0") ,

Ipv4Address ("10.2.0.1") , 2) ;

95 / /

96 / / C r e a t e a B u l k S e n d A p p l i c a t i o n and i n s t a l l i t on node 0

97 / /

98 u i n t 1 6 t port = 9 ; / / we l l −known e c h o p o r t number

99

100

101 BulkSendHelper source ("ns3::TcpSocketFactory" ,

102 InetSocketAddress (i n t e r f a c e s [0] . GetAddress (1) , port)) ;

103 / / S e t t h e amount o f d a t a t o send in b y t e s . Zero i s u n l i m i t e d .

104 source . S e t A t t r i b u t e ("MaxBytes" , UintegerValue (maxBytes)) ;

105 Applicat ionContainer sourceApps = source . I n s t a l l (nodes . Get (0)) ;

106 sourceApps . S t a r t (Seconds (0 . 0)) ;

107 sourceApps . Stop (Seconds (1 0 . 0)) ;

108

109 / /

110 / / C r e a t e a P a c k e t S i n k A p p l i c a t i o n and i n s t a l l i t on node 1

111 / /

112 PacketSinkHelper s ink ("ns3::TcpSocketFactory" ,

113 InetSocketAddress (Ipv4Address : : GetAny () , port)) ;

114 Applicat ionContainer sinkApps = sink . I n s t a l l (nodes . Get (1)) ;

115 sinkApps . S t a r t (Seconds (0 . 0)) ;

116 sinkApps . Stop (Seconds (1 0 . 0)) ;

117

118 / /

119 / / Now, do t h e a c t u a l s i m u l a t i o n .

120 / /

121 NS LOG INFO ("Run Simulation.") ;

122 Simulator : : Stop (Seconds (2)) ;

70

123 Simulator : : Run () ;

124 Simulator : : Destroy () ;

125 NS LOG INFO ("Done.") ;

126 Time timeAdd0 = 2 * d0 + d1 ;

127 Time timeAdd1 = 3 * d0 + 2 * d1 ;

128 Symbolic : : PrintRangeTime ("2 d0 + 1 d1" , timeAdd0) ;

129 Symbolic : : PrintRangeTime ("3 d0 + 2 d1" , timeAdd1) ;

130 Ptr<PacketSink> s ink1 = DynamicCast<PacketSink> (sinkApps . Get (0)) ;

131 Symbolic : : P r i n t ("Total Bytes Received:") ;

132 Symbolic : : P r i n t (sink1 −>GetTotalRx ()) ;

133 Symbolic : : Stop ("Program terminated") ;

134 }

C.4 Exhaustive testing on reachability in Chapter 7.3

Code C.5: reachabilitySymEx.cc

1 # include <iostream>

2 # include <fstream>

3 # include <s t r i n g>

4 # include <c a s s e r t>

5

6 # include "ns3/core-module.h"

7 # include "ns3/network-module.h"

8 # include "ns3/internet-module.h"

9 # include "ns3/point-to-point-module.h"

10 # include "ns3/applications-module.h"

11 # include "ns3/internet-apps-module.h"

12 # include "ctime"

13

14

15

16 using namespace ns3 ;

17

18 NS LOG COMPONENT DEFINE ("ReachabilityTesting") ;

19

20 i n t

71

21 main (i n t argc , char * argv [])

22 {

23

24 Time : : Se tReso lut ion (Time : : MS) ;

25

26

27 CommandLine cmd ;

28 cmd . Parse (argc , argv) ;

29

30 NodeContainer nodes ;

31 nodes . Create (8) ;

32

33 u i n t 3 2 t l i n k s = 7 ;

34 std : : vector<NodeContainer> nodeAdjacencyList (l i n k s) ;

35 nodeAdjacencyList [0] = NodeContainer (nodes . Get (0) , nodes . Get (1)) ;

36 nodeAdjacencyList [1] = NodeContainer (nodes . Get (1) , nodes . Get (2)) ;

37 nodeAdjacencyList [2] = NodeContainer (nodes . Get (1) , nodes . Get (3)) ;

38 nodeAdjacencyList [3] = NodeContainer (nodes . Get (1) , nodes . Get (4)) ;

39 nodeAdjacencyList [4] = NodeContainer (nodes . Get (2) , nodes . Get (5)) ;

40 nodeAdjacencyList [5] = NodeContainer (nodes . Get (3) , nodes . Get (6)) ;

41 nodeAdjacencyList [6] = NodeContainer (nodes . Get (4) , nodes . Get (7)) ;

42 std : : vector<PointToPointHelper> pointToPoint (l i n k s) ;

43

44 std : : vector<NetDeviceContainer> devices (l i n k s) ;

45

46 pointToPoint [0] . SetChannelAttr ibute ("Delay" , S tr ingValue ("5ms")) ;

47 pointToPoint [1] . SetChannelAttr ibute ("Delay" , S tr ingValue ("30ms")) ;

48 pointToPoint [2] . SetChannelAttr ibute ("Delay" , S tr ingValue ("50ms")) ;

49 pointToPoint [3] . SetChannelAttr ibute ("Delay" , S tr ingValue ("70ms")) ;

50 pointToPoint [4] . SetChannelAttr ibute ("Delay" , S tr ingValue ("1ms")) ;

51 pointToPoint [5] . SetChannelAttr ibute ("Delay" , S tr ingValue ("3ms")) ;

52 pointToPoint [6] . SetChannelAttr ibute ("Delay" , S tr ingValue ("7ms")) ;

53

54 for (u i n t 3 2 t i = 0 ; i < l i n k s ; i ++){

55 pointToPoint [i] . Se tDeviceAt t r ibute ("DataRate" , S tr ingValue ("5Mbps")) ;

56 devices [i] = pointToPoint [i] . I n s t a l l (nodeAdjacencyList [i]) ;

57 }

58

59 Interne tS tackHelper s tack ;

72

60 s tack . I n s t a l l (nodes) ;

61

62 Ipv4AddressHelper address ;

63 std : : vector<Ipv4Inter faceConta iner> i n t e r f a c e s (l i n k s) ;

64 for (u i n t 3 2 t i = 0 ; i < l i n k s ; i ++)

65 {

66 std : : os t r ings t ream subset ;

67 subset << "10." << i + 1 << ".0.0" ;

68 address . SetBase (subset . s t r () . c s t r () , "255.255.0.0") ;

69 i n t e r f a c e s [i] =

70 address . Assign (devices [i]) ;

71 }

72

73 / / We use t h e f o l l o w i n g code , i t w i l l au to c r e a t e t h e r o u t i n g t a b l e t o c o n n e c t t o e a c h o t h e r .

74 Ipv4GlobalRoutingHelper : : PopulateRoutingTables () ;

75

76 / / Symbol Address

77 Ptr<Symbolic> symObj0 = CreateObject<Symbolic >() ;

78 symObj0−>SetMinMax (0 xa000000 , 0 x a f f f f f f) ;

79 Ipv4Address symIP0 = symObj0−>GetSymbolicIpv4Add () ;

80

81 V4PingHelper ping (symIP0) ;

82 Appl icat ionContainer pingApp = ping . I n s t a l l (nodes . Get (0)) ;

83 pingApp . S t a r t (Seconds (1 . 0)) ;

84 pingApp . Stop (Seconds (1 . 7)) ;

85

86

87 Simulator : : Stop (Seconds (1 . 7)) ;

88

89 Simulator : : Run () ;

90 Simulator : : Destroy () ;

91 symObj0−>PrintRange ("symIP0") ;

92 symObj0−>Stop ("Program terminated") ;

93 return 0 ;

94 }

73

C.5 Evaluating IP-Efficient SymEx in Chapter 7.4

Code C.6: IPEfficientSymEx.cc

1 # include <iostream>

2 # include <fstream>

3 # include <s t r i n g>

4 # include <c a s s e r t>

5

6 # include "ns3/core-module.h"

7 # include "ns3/network-module.h"

8 # include "ns3/internet-module.h"

9 # include "ns3/point-to-point-module.h"

10 # include "ns3/applications-module.h"

11 # include "ns3/internet-apps-module.h"

12 # include "ctime"

13

14 / / Network Topo logy

15 / /

16 / / snda −−−−−−−rcv −−−−−−− sndb

17 / / p o i n t −to − p o i n t

18 / /

19

20 using namespace ns3 ;

21

22 NS LOG COMPONENT DEFINE ("IP-EfficientSymEx") ;

23

24 i n t

25 main (i n t argc , char * argv [])

26 {

27

28 Time : : Se tReso lut ion (Time : : MS) ;

29 Config : : Se tDefau l t ("ns3::Ipv4L3Protocol::DefaultTtl" , UintegerValue (3)) ;

30

31 CommandLine cmd ;

32 cmd . Parse (argc , argv) ;

33

34 u i n t 3 2 t nodesNum = 8 ;

35 NodeContainer nodes ;

74

36 nodes . Create (nodesNum) ;

37

38 u i n t 3 2 t l i n k s = 7 ;

39 std : : vector<NodeContainer> nodeAdjacencyList (l i n k s) ;

40 nodeAdjacencyList [0] = NodeContainer (nodes . Get (0) , nodes . Get (1)) ;

41 nodeAdjacencyList [1] = NodeContainer (nodes . Get (1) , nodes . Get (2)) ;

42 nodeAdjacencyList [2] = NodeContainer (nodes . Get (1) , nodes . Get (3)) ;

43 nodeAdjacencyList [3] = NodeContainer (nodes . Get (1) , nodes . Get (4)) ;

44 nodeAdjacencyList [4] = NodeContainer (nodes . Get (2) , nodes . Get (5)) ;

45 nodeAdjacencyList [5] = NodeContainer (nodes . Get (3) , nodes . Get (6)) ;

46 nodeAdjacencyList [6] = NodeContainer (nodes . Get (4) , nodes . Get (7)) ;

47 std : : vector<PointToPointHelper> pointToPoint (l i n k s) ;

48

49 std : : vector<NetDeviceContainer> devices (l i n k s) ;

50

51 pointToPoint [0] . SetChannelAttr ibute ("Delay" , S tr ingValue ("5ms")) ;

52 pointToPoint [1] . SetChannelAttr ibute ("Delay" , S tr ingValue ("30ms")) ;

53 pointToPoint [2] . SetChannelAttr ibute ("Delay" , S tr ingValue ("50ms")) ;

54 pointToPoint [3] . SetChannelAttr ibute ("Delay" , S tr ingValue ("70ms")) ;

55 pointToPoint [4] . SetChannelAttr ibute ("Delay" , S tr ingValue ("1ms")) ;

56 pointToPoint [5] . SetChannelAttr ibute ("Delay" , S tr ingValue ("3ms")) ;

57 pointToPoint [6] . SetChannelAttr ibute ("Delay" , S tr ingValue ("7ms")) ;

58

59 for (u i n t 3 2 t i = 0 ; i < l i n k s ; i ++){

60 pointToPoint [i] . Se tDeviceAt t r ibute ("DataRate" , S tr ingValue ("5Mbps")) ;

61 devices [i] = pointToPoint [i] . I n s t a l l (nodeAdjacencyList [i]) ;

62 }

63

64 Interne tS tackHelper s tack ;

65 s tack . I n s t a l l (nodes) ;

66

67 Ipv4AddressHelper address ;

68 std : : vector<Ipv4Inter faceConta iner> i n t e r f a c e s (l i n k s) ;

69 for (u i n t 3 2 t i = 0 ; i < l i n k s ; i ++)

70 {

71 std : : os t r ings t ream subset ;

72 subset << "10." << i + 1 << ".0.0" ;

73 address . SetBase (subset . s t r () . c s t r () , "255.255.0.0") ;

74 i n t e r f a c e s [i] =

75

75 address . Assign (devices [i]) ;

76 }

77

78 / / We use f o l l o w i n g c o d e t o c r e a t e t h e r o u t i n g t a b l e .

79 Ipv4Stat icRout ingHelper ipv4RoutingHelper ;

80 std : : vector<Ptr<Ipv4Stat icRout ing>> remoteHostStaticRoutingNode (nodesNum) ;

81 for (u i n t 3 2 t i = 0 ; i < nodesNum ; i ++){

82 remoteHostStaticRoutingNode [i] = ipv4RoutingHelper . GetS ta t i cRout ing (nodes . Get (i)−>GetObject<

Ipv4 >()) ;

83 }

84

85 u i n t 3 2 t entryNum = 2 5 5 ;

86 for (u i n t 3 2 t i = 1 ; i <= entryNum ; i ++){

87 std : : os t r ings t ream subset ;

88 subset << "10.5." << i << ".0" ;

89 remoteHostStaticRoutingNode [2]−>AddNetworkRouteTo (Ipv4Address (subset . s t r () . c s t r ()) , Ipv4Mask

("255.255.255.0") , Ipv4Address ("10.5.0.2") , 2) ;

90 }

91

92 / / We use t h e f o l l o w i n g code , i t w i l l au to c r e a t e t h e r o u t i n g t a b l e t o c o n n e c t t o e a c h o t h e r .

93 Ipv4GlobalRoutingHelper : : PopulateRoutingTables () ;

94

95 / / Symbol Address

96 Ptr<Symbolic> symObj0 = CreateObject<Symbolic >() ;

97 symObj0−>SetMinMax (0 xa000000 , 0 x a f f f f f f) ;

98 Ipv4Address symIP0 = symObj0−>GetSymbolicIpv4Add () ;

99

100 V4PingHelper ping (symIP0) ;

101 Applicat ionContainer pingApp = ping . I n s t a l l (nodes . Get (0)) ;

102 pingApp . S t a r t (Seconds (1 . 0)) ;

103 pingApp . Stop (Seconds (1 . 5)) ;

104

105 Simulator : : Stop (Seconds (1 . 6)) ;

106

107 Simulator : : Run () ;

108 Simulator : : Destroy () ;

109

110 symObj0−>Stop ("Program terminated") ;

111 return 0 ;

76

112 }

	Symbolic NS-3 for Efficient Exhaustive Testing
	

	Contents
	List of Figures
	List of Tables
	Introduction
	Related work
	Motivating Example
	An exhaustive testing problem
	Brute force using current NS-3
	Symbolic execution using Sym-NS-3

	Sym-NS-3 Overview
	Architecture of Sym-NS-3
	Symbolic execution
	Design goals
	Easy to use
	Easy to develop
	Efficient

	Symbolic Variable Management
	Managing symbolic variables
	Method 1: In-module direct symbolization
	Method 2: Assignment symbolization using new attributes
	Method 3: Assignment symbolization using existing attributes (as illustrated in the motivating example)
	Comparison of the three methods

	Making Sym-NS-3 More Efficient
	Symbolic IP address
	How current NS-3 simulates IP routing?
	Why current NS-3 is not symbolic execution friendly?
	Proposed techniques for more efficient IP simulations in Sym-NS-3
	Is IP-Efficient Sym-NS-3 correct?
	Step 1: Basic Sym-NS-3 with an unsorted table generates the same simulation result as Basic Sym-NS-3 with the corresponding sorted table
	Step 2: IP-Efficient Sym-NS-3 with a sorted table generates the same simulation result as Basic Sym-NS-3 with the same sorted table

	Is IP-Efficient Sym-NS-3 efficient?
	Part 1: IP-Efficient Sym-NS-3 has less symbolic comparisons than Basic Sym-NS-3
	Part 2: IP-Efficient Sym-NS-3 generates less branches than Basic Sym-NS-3

	Experiments
	Simulation setup
	Exhaustive testing on TCP performance
	Exhaustive testing on reachability
	Evaluating IP-Efficient SymEx

	Conclusions and Future work
	Conclusions
	Shortcomings
	Future work

	Bibliography
	Source Code of Basic Sym-NS-3 in Chapter 5
	Source Code of IP-Efficient Sym-NS-3 in Chapter 6
	Source Code of Examples and Experiments
	Brute force using current NS-3 for the motivating example in Chapter 3
	Symbolic execution using Sym-NS-3 for the motivating example in Chapter 3
	Exhaustive testing on TCP performance in Chapter 7.2
	Exhaustive testing on reachability in Chapter 7.3
	Evaluating IP-Efficient SymEx in Chapter 7.4

