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Gene expression and transcriptome analysis are currently one of the main focuses of 

research for a great number of scientists. However, the assembly of raw sequence data to 

obtain a draft transcriptome of an organism is a complex multi-stage process usually 

composed of pre-processing, assembling, and post-processing. Each of these stages 

includes multiple steps such as data cleaning, error correction and assembly validation. 

Different combinations of steps, as well as different computational methods for the same 

step, generate transcriptome assemblies with different accuracy. Thus, using a 

combination that generates more accurate assemblies is crucial for any novel biological 

discoveries. Implementing accurate transcriptome assembly requires a great knowledge 

of different algorithms, bioinformatics tools and software that can be used in an analysis 

pipeline. Many pipelines can be represented as automated scalable scientific workflows 

that can be run simultaneously on powerful distributed and computational resources, such 

as Campus Clusters, Grids, and Clouds, and speed-up the analyses. 

    In this thesis, we 1) compared and optimized de novo transcriptome assembly pipelines 

for diploid wheat; 2) investigated the impact of a few key parameters for generating 

accurate transcriptome assemblies, such as digital normalization and error correction 



 

methods, de novo assemblers and k-mer length strategies; 3) built distributed and scalable 

scientific workflow for blast2cap3, a step from the transcriptome assembly pipeline for 

protein-guided assembly, using the Pegasus Workflow Management System (WMS); and 

4) deployed and examined the scientific workflow for blast2cap3 on two different 

computational platforms. 

    Based on the analysis performed in this thesis, we conclude that the best transcriptome 

assembly is produced when the error correction method is used with Velvet Oases and the 

“multi-k” strategy. Moreover, the performed experiments show that the Pegasus WMS 

implementation of blast2cap3 reduces the running time for more than 95% compared to 

its current serial implementation. The results presented in this thesis provide valuable 

insight for designing good de novo transcriptome assembly pipeline and show the 

importance of using scientific workflows for executing computationally demanding 

pipelines. 
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Chapter 1 

Introduction 

 

1.1. Motivation 

Transcriptome assembly is the process of reconstructing the transcriptome of an organism 

using millions of short, sequenced RNA-Seq data. These short sequences, commonly 

produced by Illumina systems, are assembled into contigs (transcripts). RNA-Seq has 

established as a powerful technique to understand the molecular mechanisms of 

organisms, identify expressed genes, as well as address various biological questions [40]. 

While RNA-Seq provides meaningful information, it poses various bioinformatics 

challenges. The two main challenges are: 1) conducting accurate analysis to extract 

biologically relevant information; and 2) data handling (storage and processing).  

    The analysis of RNA-Seq data is composed of multiple stages, pre-processing, 

assembly and post-processing, and each stage is composed of multiple steps (e.g., 

trimming, quality check, assembly, annotation). All these steps are executed as part of an 

assembly analysis pipeline. For each of these steps, multiple efficient computational 

methods and algorithms exist. However, even though these methods tackle the same 

problem, different results may be obtained. Some reasons for this may be different 

algorithmic implementations, different parameter settings available, different species, 

different sequencing protocols, as well as different datasets used [66]. All of this poses 

the question of what tools and parameter settings can be used to produce good and 
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accurate assembly. While new tools and methods are frequently developed, currently 

there is no optimal assembly pipeline for analyzing all RNA-Seq data [66]. Merging the 

contigs from different assembly tools and different k-mer lengths seems to be the best 

way to obtain a comprehensive de novo transcriptome assembly [65][67]. The choice of 

tool for a specific step can significantly affect the downstream analysis and the biological 

discovery. Thus, having more comparative analyses of transcriptome assembly pipelines 

and evaluating the advantages and disadvantages of each tool is crucial for building 

accurate and good de novo transcriptome assemblies. 

    Due to the affordable sequencing technologies, RNA-Seq datasets are large and require 

significant data storage and computing time for its analysis. Not many biological labs that 

generate the data have large storage systems, computing resources, or computing skills 

for analyzing the data [68]. Some analyses can take anywhere from a few days to several 

months, and some analyses need to be conducted on the entire datasets, while some 

analyses can be modular and independent and performed only on a subset. Researchers 

mostly want to analyze the RNA-Seq data in a quick, easy, automated, and scalable 

manner on various computational platforms. Thus, using scientific automated workflows 

and parallelizing strategies across a single or multiple computational platforms is crucial 

for an efficient execution of these analyses. Some scientific workflows can be spilt into 

multiple sub-workflows that can be executed in parallel on powerful computational and 

distributed resources. Each workflow is composed of multiple computational tasks with 

different execution order. In the recent years, many Workflow Management Systems 
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(WMS) have been developed to support researchers build scientific workflows for 

efficient data processing and significant acceleration of their analyses [69]. 

 

1.2. Thesis contributions 

In this thesis, we address the two main bioinformatics challenges when analyzing RNA-

Seq data: 1) conducting accurate analysis to extract biologically relevant information; and 

2) data handling (storage and processing). To tackle the challenge for conducting 

accurate analysis, we first designed and compared multiple de novo transcriptome 

assembly pipelines. Next, we investigated the impact of a few key methods for generating 

accurate transcriptome assemblies, such as digital normalization and error correction 

methods, de novo assemblers, as well as various k-mer length strategies. Based on our 

experiments, we propose a set of suggestions for choosing a good strategy for optimizing 

de novo transcriptome pipelines. Secondly, to approach the data handling and processing 

challenge, we converted the serial implementation of blast2cap3, a step from the 

transcriptome assembly pipeline for protein-guided assembly into a distributed and 

scalable scientific workflow using the Pegasus Workflow Management System (WMS). 

Next, we deployed and examined the scientific workflow for blast2cap3 on two different 

computational platforms, a Campus Cluster and distributed Grid. The conducted 

experiments show that the Pegasus WMS implementation of blast2cap3 significantly 

reduces the running time and show the importance of using scientific workflows for 

executing computationally demanding pipelines. 
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1.3. Thesis outline 

In Chapter 2, Analysis of Transcriptome Assembly Pipelines for Wheat, we developed 

and compared 21 de novo transcriptome assembly pipelines for diploid wheat and 

investigated the impact of a few key parameters for generating accurate transcriptome 

assemblies, such as digital normalization and error correction methods, de novo 

assemblers and k-mer length strategies, on the overall assembly accuracy. 

    In Chapter 3, Evaluating Distributed Platforms for Protein-Guided Scientific 

Workflow, we built distributed and scalable scientific workflow for blast2cap3, a step 

from the transcriptome assembly pipeline for protein-guided assembly, using the Pegasus 

Workflow Management System (WMS). Next, we deployed and evaluated the scientific 

workflow for blast2cap3 on two different computational platforms, a Campus Cluster and 

distributed Grid. 

    Finally, in Chapter 4 we present the conclusions of this thesis.
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Chapter 2 

Analysis of Transcriptome Assembly Pipelines for Diploid Wheat 

 

2.1. Introduction 

With the recent advance of sequencing technologies, transcriptome sequencing (RNA-

Seq) has emerged as a powerful tool for obtaining large amount of functional genomic 

data in both model and non-model organisms [39]. The assembly of raw sequence data to 

obtain a draft transcriptome of an organism is a complex multi-stage process usually 

composed of pre-processing, assembly and post-processing. Each of these stages includes 

multiple steps such as data cleaning, contaminant removal, error correction, de novo or 

reference-based assembly, redundancy removal, and assembly validation. In order to 

implement all these steps, a great knowledge of different algorithms, various 

bioinformatics tools and software is required [40]. The assembly pipeline is used to 

simplify the entire assembly process by automating various steps of the pipeline for 

producing correct transcripts. A general transcriptome assembly pipeline with some 

common steps and the tools used for those steps is shown on Figure 1. 
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Figure 1. General transcriptome assembly pipeline with some common steps and the tools used for those 

steps. The rectangles colored in green represent steps that are part of the pre-processing stage. The 

rectangles colored in blue represent steps that are part of the assembly stage, while the rectangles colored in 

orange show steps part of the post-processing stage. 

 

    There are several available tools that examine the quality of the sequenced reads, their 

length, quality scores, duplication levels and overrepresented sequences. FastQC [41], 

FASTX-Toolkit [42], and the R package qrqc [43] are some of the widely used tools. 

Many software packages have been developed to remove the artificial elements from the 

sequenced reads. Tools such as Cutadapt [44], Scythe [45] and TagCleaner [46] trim off 

the adaptors from the raw reads, while Sickle [47] and Prinseq [48] remove the low-
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quality bases. The digital normalization algorithm reduces the memory and the 

computational requirements for the transcriptome assembly by decreasing the differences 

in gene coverage in RNA-Seq, discarding redundant data and removing most errors [49], 

while the error correction method indicates significant improvements on the assembly 

accuracy [50]. After the data is cleaned and filtered in the pre-processing stage, the next 

step is to generate the transcriptome assembly from the filtered reads. There are two basic 

approaches in generating a transcriptome assembly: reference-based approach and de 

novo approach [51][52]. Most of the de novo assemblers are based on k-mer lengths and 

de Bruijn graphs. Velvet Oases [53], SOAPdenovo-Trans [54], Trinity [55], Trans-

AbySS [56] are some of the widely used de novo transcriptome assembly tools. 

    In this Chapter, we develop and analyze 21 different de novo transcriptome assembly 

pipelines using three de novo assemblers with different range of k-mer lengths and 

different tools and packages for different assembly steps. We evaluate the performance of 

the pipelines when the digital normalization algorithm, the error correction method and 

the combination of both are used. Moreover, we investigate the range of k-mer lengths 

that need to be combined with the “multi-k” method to produce more accurate and full-

length transcriptomes [15]. We additionally compare the generated transcriptome 

assemblies based on a few common metrics, such as N50 and the number of transcripts, 

as well as the utilized computational resources, such as memory and runtime. By 

comparing the performance of these tools and assemblies generated, we draw conclusions 

and provide guidelines for developing good transcriptome assemblies for a given 

application. 
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2.2. Materials and Methods  

Here, we implement de novo transcriptome assembly pipelines which incorporate the pre-

processing, assembly, and post-processing stages, as well as the assembly annotation. All 

the experiments in this Chapter are performed on Tusker1, one of the High-Performance 

Computing Clusters at the University of Nebraska Holland Computing Center (HCC) 

[57]. 

 

2.2.1. Dataset 

For the evaluation of the de novo transcriptome assembly pipelines, the diploid wheat 

Triticum Urartu (T. urartu) dataset is used. The sequencing of the dataset was performed 

on Illumina HiSeq2000 machine at the University of California Davis (UCD) Genome 

Center using 100 bp paired-end protocol. This produced a total of 82 GBs of sequence 

data with 248.5 million reads. The raw sequence T. urartu data is publicly available and it 

was downloaded from the NCBI Sequence Archive database under the NCBI BioProject 

PRJNA191053 [29]. 

 

2.2.2. Software tools 

 
1 After the experiments for this Chapter were completed, Tusker has been decommissioned and parts of it 

have been incorporated into Rhino, another High-Performance Computing Cluster at University of 

Nebraska Holland Computing Center. Since most Clusters are built the same way, the analyses performed 

here can easily be executed on other Campus and High-Performance Computing Clusters. 
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    Adapter removal. The sequencing technologies attach adapters to one or both ends of 

the reads. This usually occurs when the read length of the sequenced molecule is shorter 

than the read length of the sequencer. Because these adapters are not part of the original 

sequences, the adapters need to be removed prior to the assembly process. There are 

multiple tools available that allow adapter removal. 

    Scythe is an adapter removal tool that uses Naive Bayesian approach [45]. It only 

checks for adapters at the 3’ end. The poor-quality base trimming of reads can remove the 

bases that help in identifying the adapters. Therefore, it is recommended to run adapter 

removal tools before trimming the poor-quality bases in any assembly pipeline. 

 

    Trimming poor-quality bases. The sequences with poor- and low-quality base pairs 

can cause problems in the RNA-Seq analysis, and it can lead to misassembled, 

complicated, and even impossible assembly process. Therefore, those sequences need to 

be removed before the assembly. The quality score of 10 denotes a 1 in 10 chance of an 

incorrect base, and a quality score of 20 denotes a 1 in 100 chance of an incorrect base. 

For this work, we trim the poor-quality bases with quality score less than 20.  

    Sickle is a sliding window quality trimmer which is used after Scythe [47]. 

 

    Detecting and removing common contaminants. Some organisms are under the 

influence of different environmental or living contaminators. Homo sapiens DNA, 

Escherichia coli DNA, wheat mitochondrial and chloroplast sequences and wheat rRNA 

are considered as commonly known contaminants for wheat and can influence the 
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generated transcriptome assembly [18]. Therefore, they need to be removed prior to the 

assembly. 

    BLAT (BLAST-like alignment tool) is an alignment tool like BLAST in many ways 

[58]. It is more accurate and about 500 times faster than the existing tools for 

mRNA/DNA alignments. After finding the common contaminants by aligning the raw 

reads with BLAT, the aligned reads are removed. The number of reads is reduced in this 

process, and the assembly quality is improved. 

 

    Digital normalization. The NGS produces millions of sequencing reads. The de novo 

sequence assembly of that large number of reads requires huge computational resources 

and time. Therefore, the pre-processing steps are important to reduce the size of raw data 

which might contain many redundant and low-quality reads. The digital normalization is 

a part of the pre-processing step that significantly reduces the size of the dataset which in 

turn reduces the memory and time requirements for de novo assembly process. It removes 

high coverage reads from the dataset and normalizes the coverage to a pre-specified value 

into nice Gaussian distributions. 

    Ksenia V. Krasileva et al. [18] tested the effect of digital normalization by comparing 

two assemblies: one with digital normalization, and second one without digital 

normalization. Although the number of reads was reduced in the first assembly, both 

datasets have identical distribution of the number of reference genes assembled at 

different levels of coverage. This result shows that digital normalization has no negative 
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effect on the quality of the assemblies, but reduces memory and runttime complexity, and 

does not require additional sequences and references. 

    Khmer is a software package that contains a set of bioinformatics programs, including 

functionality for digital normalization [49]. 

 

    Error correction. Error correction algorithm can be applied on RNA-Seq raw 

sequencing data and can significantly impact the quality of the assembly. The error 

correction algorithm removes mismatch and indel errors from the reads. 

    Seecer is an error correction algorithm for RNA-Seq datasets based on hidden Markov 

models (HMM) [50]. Seecer does not depend on a reference genome and can work well 

with datasets with non-uniform coverage and alternative splicing. 

 

    De novo assembly. De novo assembly of plant genomes is a challenging task. In this 

work, we chose three assemblers, Velvet Oases [53], Trinity [55] and SOAPdenovo-

Trans [54]. Velvet Oases and SOAPdenovo-Trans use multiple k-mers and Trinity uses 

single k-mer length to generate the transcripts.  

    Velvet is one of the most widely used de novo genome assemblers. It is based on de 

Bruijn graphs and k-mer approach. Oases is a software package used to generate 

transcripts from the assembly generated from Velvet. Therefore, the input to Oases is the 

contigs produced by the Velvet assembler. Trinity is another transcriptome assembler 

which is also based on the de Bruijn graph. It is a modular assembler consisted of three 

independent modules: Inchworm, Chrysalis, and Butterfly. These three modules are used 
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sequentially to produce transcripts. SOAPdenovo-Trans is a transcriptome assembler 

based on the de Bruijn graph and derived from SOAPdenovo2. The SOAPdenovo-Trans 

approach is composed of two steps - contig assembly and transcriptome assembly. 

    Both Velvet Oases and SOAPdenovo-Trans support different k-mer lengths, while 

Triniy has a fixed k-mer length of 25. Here, we run both Velvet-Oases and SOAPdenovo-

Trans with a range of k-mer lengths (k=21, 25, 31, 35, 41, 45, 51, 55, 61, 63, 71, 81, 91). 

 

    Merging multiple assemblies and redundancy removal. Yann Surget-Groba and 

Juan I. Montoya-Burgos [15] proposed the multiple-k method in which various lengths 

for k are used for the de novo transcriptome assembly. Their experimental results show 

that the multiple-k method improves the transcript diversity of the assembly and increases 

its contiguity. 

    Although the multiple-k method improves the assemblies, there is no right way to 

determine the range of k lengths that produces the best assembly. For this purpose, for 

each de novo assembler we investigated the quality of the assembly when groups of 5, 8, 

and 10 different k lengths were merged (5 k lengths (k=45, 51, 55, 61, 63), 8 k lengths 

(k=21, 31, 41, 51, 61, 71, 81, 91), and 10 k lengths (k=21, 25, 31, 35, 41, 45, 51, 55, 61, 

63)). The 5 k lengths are chosen because the individual assemblies for these k lengths 

have the highest N50 metric. The 8 k lengths contain the whole range from 21 to 91, 

while the 10 k lengths are based on the work of Ksenia V. Krasileva et al. [18]. After all 

the individual assemblies are merged, they are furthered clustered such that the 

redundancy is removed. 
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    CD-HIT is a clustering tool that was initially designed for proteins, but it also can be 

used for DNA and RNA datasets [59]. CD-HIT groups a dataset into clusters if the 

sequences meet a predefined similarity threshold. The similarity threshold usually is a 

sequence identity that is calculated as number of identical amino acids or nucleotides in 

the alignment divided by the full length of the shorter sequence. 

    However, CD-HIT does not merge partially overlapping transcripts, thus blast2cap3 is 

used [17]. Blast2cap3 is a protein-guided assembly approach that first clusters transcripts 

based on a similarity to a common protein, and then passes each cluster to CAP3 [60]. 

CAP3 is used to remove redundancy by merging overlapping reads with minimum 

identity and similarity of 99% into a single transcript. Before running CAP3, more 

repetitive sequences were removed using the Triticeae Repeat Sequence Database 

(TREP) (BLASTN and BLASTX, E-value cutoff 1e-10) [61] to lower the risk of merging 

incorrect transcripts. 

 

2.3. Results and Discussion 

2.3.1. Pre-processing stage 

The overall read quality of the 248.5 million 100 bp raw T. urartu Illumina paired-end 

reads is assessed using FastQC. After this initial quality check, the first step from the pre-

processing stage is to remove the artificially added Illumina adaptors and trim off the 

reads with average quality score under 20 and length less than 20bp. The adapters were 

removed using Scythe, and the poor-quality bases were trimmed using Sickle.  
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    Next, we investigate the importance of using digital normalization, and error correction 

on the reads before the assembly by using the programs Khmer, Seecer and combination 

of both (Khmer-Seecer). For better understanding of the results, we denote the datasets of 

the processed reads generated from Khmer, Seecer and Khmer-Seecer with Pipeline K, 

Pipeline S and Pipeline KS, respectively.  

    Afterwards, common contaminants from several environmental contaminants were 

detected and removed.  

    The total number of reads after each step of the pre-processing stage is shown on 

Figure 2. As it can be seen on the Figure, the removal of adapters changes the length of 

the reads, but not their number. On the other hand, during the trimming process if one of 

the paired-end reads is trimmed, the other read is saved as a single-end read in a separate 

output file. From the results generated when Khmer, Seecer, and Khmer-Seecer are used, 

we observe a huge difference in the total number of reads after Khmer and Seecer. When 

Khmer is used, the total number of reads is reduced to 57,359,540, while when Seecer is 

used, the total number of corrected reads is 246,593,875. The digital normalization 

algorithm removes redundant reads and errors and evens out the coverage. Because of its 

deep analyses, the digital normalization significantly reduces the size of the data set. The 

error correction method removes errors from the raw data just by reducing the read 

length, but not the total number of reads. When the combined approach of both Khmer 

and Seecer is used, we notice that the total number of reads is same as the number of 

reads when only Khmer is used. Therefore, we can say that the error correction method is 

just a part of the more general digital normalization approach. Next, with the removal of 
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common contaminants, such as Homo Sapiens DNA, Escherichia coli DNA, wheat 

mitochondrial and chloroplast sequences and wheat rRNA, with BLAT, the datasets sizes 

reduce slightly to 56,700,858 corrected reads for Pipeline K and Pipeline KS, and 

246,593,875 reads for Pipeline S. 

 

 

Figure 2. Distribution of total number of reads by different steps of the pre-processing stage for Pipeline K, 

Pipeline KS, and Pipeline S. 

 

2.3.2. De novo transcriptome assembly 

After the pre-processing stage, the paired- and single-end reads from Pipeline K, Pipeline 

KS and Pipeline S are used for the transcriptome assembly. In this work, three de novo 

assemblers, Velvet Oases, SOAPdenovo-Trans and Trinity are individually used and 
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evaluated. Assemblies are carried out using the three datasets Pipeline K, Pipeline KS 

and Pipeline S. For Velvet Oases and SOAPdenovo-Trans 13 individual assemblies are 

constructed when the k-mer length is 21, 25, 31, 35, 41, 45, 51, 55, 61, 63, 71, 81 and 91 

respectively. 

    For each assembler and dataset, the importance of the k-mer length is further 

investigated by comparing the final assembly pipeline outputs when 5 k-mer lengths 

(k=45, 51, 55, 61, 63), 8 k-mer lengths (k=21, 31, 41, 51, 61, 71, 81, 91), and 10 k-mer 

lengths (k=21, 25, 31, 35, 41, 45, 51, 55, 61, 63) are grouped together, respectively. 

Therefore, we have 9 different assembly pipelines for Velvet Oases, 9 different assembly 

pipelines for SOAPdenovo-Trans and 3 different assembly pipelines for Trinity. For 

better understanding of the results, we denote the assemblies generated from Khmer, 

Seecer and Khmer-Seecer with K-Xk, S-Xk and KS-Xk, respectively, where X is the 

group of k-mer lengths they belong to (|k|=5, 8, 10). 

    One of the commonly used metrics to compare the generated assemblies is N50. N50 is 

a weighted median statistic which value represents the length of the shortest transcript 

(contig) in the group of longest sequences that together represent at least 50% of the total 

number of nucleotides in the set of sequences. Figure 3 and Figure 4 show the 

distribution of the N50 lengths for all 13 assemblies with different k-mer lengths for 

Velvet Oases and SOAPdenovo-Trans with Pipeline K, Pipeline KS and Pipeline S, 

respectively. Since Trinity uses only one value for k of 25, the N50 length for Pipeline K 

is 2,714 bp, for Pipeline KS is 2,791 bp and for Pipeline S is 2,471 bp. In general, the 

higher the N50 value is, the more complete the assembly is. As it can be seen on the 
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Figures, Pipeline S shows the lowest N50 values for the three assemblers. Moreover, 

when Velvet Oases is used, the higher N50 values are within the k-mer length range of 35 

and 45. When SOAPdenovo-Trans is used, the higher N50 values are within the k-mer 

length range of 35 to 81. For the two assemblers, the k-mer lengths of 21 and 91 produce 

the lowest N50 values. This is because low k-mer lengths produce more repetitive 

sequences that cannot unambiguously map, and high k-mer lengths produce sequences 

that are hard to further extend and overlap. This can also be observed on Figure 5 and 

Figure 6, where the distribution of the number of transcripts generated from different k-

mer lengths for Velvet Oases and SOAPdenovo-Trans is shown respectively. 

 

 

Figure 3. Distribution of N50 value for different k-mer lengths for Velvet Oases for Pipeline K, Pipeline KS 

and Pipeline S respectively. 
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Figure 4. Distribution of N50 value for different k-mer lengths for SOAPdenovo-Trans for Pipeline K, 

Pipeline KS and Pipeline S respectively. 

 

 

Figure 5. Distribution of the number of transcripts generated from different k-mer lengths for Velvet Oases 

for Pipeline K, Pipeline KS and Pipeline S respectively. 
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Figure 6. Distribution of the number of transcripts generated from different k-mer lengths for 

SOAPdenovo-Trans for Pipeline K, Pipeline KS and Pipeline S respectively. 

 

2.3.3. Post-processing stage 

After the assembly process, the next stage is the post-processing. Since the “multi-k” 

strategy introduces redundancy, it needs to be further removed using CD-HIT, blast2cap3 

and CAP3. Also, to lower the possibility of merging incorrect transcripts, repetitive 

sequences are identified and removed using the Triticeae Repeat Sequence Database 

(TREP) and BLAST. 

    Once the post-processing stage is complete, the 21 transcriptome assemblies are 

evaluated based on the previously used assembly quality metrics. The distribution of the 

N50 length is shown on Figure 7. The post-processing steps significantly increase the 

N50 lengths for Velvet Oases. On the other hand, for the three assemblies generated with 

Trinity, we can notice that these additional post-processing steps actually decrease the 
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N50 lengths. SOAPdenovo-Trans does not show big improvement with the post-

processing steps either. 

 

 

Figure 7. Distribution of N50 value for different k-mer lengths in the post-processing stage for Velvet 

Oases, SOAPdenovo-Trans and Trinity for Pipeline K, Pipeline KS and Pipeline S respectively. 

 

2.3.4. Mapping raw reads to each assembly 

To get assembly statistics for the number of raw reads mapped to the resulting transcripts 

we use Bowtie2 [62] and Samtools [63] to perform the mapping and examine the 

resulting .bam files. The percentages of paired- and single-end reads mapped more than 

once to the resulting transcripts, as well as the overall alignment rate is shown on Table 1 

(part A). All three assemblers, datasets and groups of k-mer lengths show a high 

alignment rates which tells us that most of the raw reads are used in the transcriptome 

assembly. Parallel to the final transcriptome assemblies, we also map the raw reads to the 

transcripts generated before the post-processing stage. These results are also shown in 

Table 1 (part A). From these results, we can observe that in most cases, the overall 

alignment rates are either same or slightly higher for the assemblies obtained before the 
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post-processing stage. While the alignment rates are very close in both stages, the 

assemblies generated with Pipeline S show slightly higher alignment percentage. 

 

Table 1. Assembly annotation summary statistics for all 21 assembly pipelines. Part A: Alignment rates 

when the raw reads are mapped to the transcripts. Part B: Alignment rates when the transcripts are mapped 

against the TriFLDB database. 

assembler 
dataset 

Pipelin

e * 

A. Map raw reads against transcripts B. Map transcripts against the TriFLDB database 

paired-end  

reads aligned 

more 
than once 

single-end reads 

aligned more 

than once 

overall  

alignment 

rate 

total number of 

transcripts 

transcripts 

aligned more 

than once 

overall  

alignment 

rate 

after 

post-

proces-
sing 

before 

post-

proces-
sing 

after 

post-

proces-
sing 

before 

post-

proces-
sing 

after 

post- 

proces- 
sing 

before 

post- 

proces- 
sing 

after 

post-

proces- 
sing 

before 

post-

proces-
sing 

after 

post-

proces-
sing 

before 

post-

proces-
sing 

after 

post- 

proces-
sing 

before 

post- 

proces-
sing 

Velvet 

Oases 

K-5k 64.32 68.50 4.76 4.87 97.34 97.35 210,463 285,535 47.58 39.09 62.55 57.96 

K-8k 70.45 73.11 4.91 4.96 97.99 98.00 409,262 606,175 47.42 35.59 62.79 56.14 

K-10k 71.23 73.25 4.91 4.94 97.95 97.96 377,440 790,870 41.45 37.00 57.51 56.29 

Velvet 

Oases 

KS-5k 63.98 68.10 4.78 4.88 97.49 97.50 206,450 280,393 46.64 38.54 62.16 57.78 

KS-8k 70.11 72.67 4.92 4.97 98.11 98.12 399,845 587,113 47.42 35.64 62.77 56.09 

KS-

10k 
70.84 72.89 4.92 4.95 98.10 98.11 367,166 765,377 40.90 36.61 57.07 55.91 

Velvet 
Oases 

S-5k 79.51 80.58 1.47 1.49 99.30 99.31 356,696 428,340 56.89 46.28 67.85 62.42 

S-8k 81.90 82.88 1.49 1.51 99.46 99.46 466,964 593,277 54.62 41.83 66.22 59.31 

S-10k 81.15 81.91 1.50 1.51 99.50 99.51 441,723 867,719 47.83 42.14 61.21 58.97 

Trinity 

K 63.47 68.19 4.66 4.90 97.65 97.66 407,585 410,383 32.89 20.95 46.39 35.24 

KS 63.06 67.90 4.66 4.91 97.77 97.78 403,359 576,175 32.76 32.55 46.19 47.37 

S 52.89 78.11 1.07 1.48 98.95 98.96 291,401 568,944 20.75 32.47 33.66 47.20 

SOAP 

denovo-

Trans 

K-5k 17.80 21.93 2.16 2.51 97.69 97.69 108,464 121,305 25.01 23.58 43.48 41.43 

K-8k 28.45 32.57 2.82 3.15 98.36 98.36 130,594 145,822 25.20 22.43 43.52 40.28 

K-10k 23.51 32.04 2.57 3.13 98.38 98.38 130,328 163,532 23.18 22.24 40.30 40.42 

SOAP 

denovo-
Trans 

KS-5k 17.33 21.35 2.15 2.48 97.83 97.83 106,096 118,832 24.99 23.56 43.55 41.55 

KS-8k 27.50 31.68 2.78 3.10 98.46 98.46 128,455 144,689 24.86 22.33 43.28 40.37 

KS-

10k 
23.01 31.32 2.55 3.09 98.49 98.49 128,432 163,184 23.12 22.21 40.22 40.41 

SOAP 
denovo-

Trans 

S-5k 25.91 30.65 0.75 0.82 99.32 99.32 111,523 123,813 25.83 24.16 44.39 42.11 

S-8k 43.76 47.95 0.98 1.05 99.58 99.58 135,806 149,507 26.27 23.17 44.84 41.10 

S-10k 33.39 43.61 0.86 1.01 99.55 99.55 134,221 166,237 23.92 22.79 41.05 40.82 

 

2.3.5. Annotation of the final transcriptome assemblies 

To test the overall quality of the assembly pipelines and techniques, we align the 

resulting transcripts to 19,200 sequences from full length common cDNA wheat dataset 

from TriFLDB with average read length of 1,652.9 bp using BLASTN [64]. The total 
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number of transcripts, the number of transcripts aligned more than once and the overall 

alignment rate before and after the post-processing stage is shown in Table 1 (part B).  

    Here, we observe that better alignment rate occurs when Velvet Oases is used as the de 

novo assembler with all datasets. Moreover, the best alignment rates are achieved when 

the Seecer dataset is used. For Velvet Oases, the best assembly is produced with Pipeline 

S when the 5 k assemblies with highest N50 are used in the merging process. For 

SOAPdenovo-Trans, slightly better results are observed when the group of 8 k values is 

used with Pipeline S. Using all the assemblies for various k-mer lengths did not improve 

the assembly quality. While the post-processing steps slightly improve the overall 

alignment rate for all pipelines, interestingly, when Trinity was used as transcriptome 

assembler, Pipeline S showed lower alignment rate after the post-processing step.  

 

2.3.6. Comparison of digital normalization algorithm, correction method, and 

combination of both 

One of the objectives addressed in this work, is to investigate the importance of using a 

digital normalization algorithm, an error correction method or combination of both on the 

reads before the assembly step. For this purpose, we individually apply Khmer, Seecer 

and Khmer-Seecer (combination of both) to the trimmed and filtered raw reads.  

    When Seecer is used with the trimmed and filtered reads, the total number of reads in 

Pipeline S is reduced by 1,938,921 reads. For all three assemblers and three groups of k-

mer lengths, the assemblies generated with Pipeline S give the highest alignment rates. 

When Khmer is used with the trimmed and filtered reads, the total number of reads in 
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Pipeline K is reduced by 77% (57,359,540). The same number of reads occurs when the 

combined approach of both Khmer and Seecer is used as well. After the post-processing 

stage, slightly higher N50 lengths and alignment rates are generated for Pipeline KS 

compared to Pipeline K. 

    The digital normalization algorithm significantly reduces the computational and 

assembly costs. However, Seecer outperforms this algorithm in the number of aligned 

reads and full-length assemblies. 

 

2.3.7. Comparison of the efficiency of different k-mer lengths 

The k-mer length (k value) affects the accuracy of the overall assembly. Shorter k-mer 

lengths are better for less expressed transcripts, while larger k-mer lengths produce higher 

coverage. From Figure 7, we can observe that the group of 10 k-mer lengths gives the 

worst N50 value. On the other hand, better performance is observed when the group of 5 

and the group of 8 k-mer lengths are used for Velvet Oases (Pipeline K-5k, Pipeline KS-

5k, Pipeline S-5k) and SOAPdenovo-Trans (Pipeline K-8k, Pipeline KS-8k, Pipeline S-

8k), respectively. Moreover, from Table 1, when the raw reads are mapped against the 

transcripts, lower alignment rate occurs when |k| is 5, while the highest is when |k| is 8. 

On the other hand, when the transcripts are aligned to the TriFLDB database, lower 

alignment rate is observed for |k| of 10, while for both |k| of 5 and 8, the alignment rates 

are significantly better. Even though we cannot claim the best range of k-mer lengths that 

produces the best assembly, we believe that using all the assemblies for various k-mer 

lengths does not improve the assembly quality. On the contrary, these values need to be 
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chosen based on the highest N50 value and/or additional metrics that need to be further 

investigated. 

 

2.3.8. Comparison of three de novo transcriptome assemblers 

To compare the performance of each assembler, we measure the number of assembled 

transcripts, and their N50 length. Moreover, for each generated assembly, we calculate 

the number of paired- and single-end reads aligned more than once when the raw reads 

are mapped against the transcripts. Also, the overall alignment rate is calculated when the 

transcripts are mapped against the TriFLDB database.  

    During the post-processing steps, SOAPdenovo-Trans is constantly reporting the 

lowest number of transcripts and the lowest N50 lengths. The performance of Trinity is 

second, while Velvet Oases has the highest N50 for all three datasets (Pipeline K, 

Pipeline KS, Pipeline S) and three groups of k-mer lengths (|k|=5, 8, 10). The percentage 

of paired- and single-end reads mapped more than once against the transcripts is shown 

on Table 1 (part A). The overall alignment rate when the transcripts are mapped against 

the TriFLDB database is shown on Table 1 (part B). 

 

2.3.9. Comparison of computational resources used for each assembly 

Transcriptome assembly pipelines are composed of multiple steps that require lots of 

computational resources. The memory and the runtime can be one of the main 

bottlenecks, especially when the de novo assembly is generated. Here, we compare the 

maximum memory and runtime utilized for each assembly with different k-mer lengths. 
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    Figure 8 shows the distribution of maximum memory in GBs for each assembler and 

used k-mer length. The smaller the k-mer length is, the more memory is needed. While 

SOAPdenovo-Trans used the least memory (ranging from 21 GBs to 161 GBs), Velvet 

Oases used the most (ranging from 34 GBs to 478 GBs). On the other hand, the memory 

used by Trinity varied from 85 GBs to 193 GBs. Both Pipeline K and Pipeline KS used 

significantly less memory than Pipeline S. This just shows how important digital 

normalization is for being able to assemble transcripts with limited computational 

resources. 

 

 

Figure 8. Maximum memory in GBs used by Velvet Oases, SOAPdenovo-Trans and Trinity for k-mers 

with different lengths for Pipeline K, Pipeline KS and Pipeline S. 

 

    Figure 9 shows the total running time in hours for each assembler and different k-mer 

length. In general, assemblies with smaller k-mer lengths and assemblies that only used 

the error correction method (Pipeline S) took longer to run. SOAPdenovo-Trans had the 

shortest running time across all datasets and k-mer lengths used ranging from 0.3 to 4.4 

hours. The runtime of Trinity was 48.5, 46.7, 64.1 hours for Pipeline K, Pipeline KS and 

Pipeline S respectively. While the runtime for Velvet Oases for Pipeline K and Pipeline 

KS varied between 0.4 and 2.6 hours, the runtime was significantly higher for Pipeline S, 
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especially for the lower k-mer lengths. Namely, Velvet Oases ran for 140, 54, 25 and 16 

hours for k-mer lengths of 21, 25, 31, and 35 for Pipeline S respectively. Due to the huge 

difference in runtime for different k-mer lengths, the selection of k-mer lengths is crucial. 

 

 

Figure 9. Runtime in hours used by Velvet Oases, SOAPdenovo-Trans and Trinity for k-mers with different 

lengths for Pipeline K, Pipeline KS and Pipeline S. 

 

2.4. Conclusion 

In this Chapter, we developed a bioinformatics assembly pipeline, and analyzed different 

tools used for the different steps of the pipeline. Analyzing 9 different assemblies 

generated by Velvet Oases, 9 different assemblies generated by SOAPdenovo-Trans, and 

3 different assemblies generated by Trinity, we can observe that using the error correction 

method with Velvet Oases and merging the individual k-mer assemblies with highest N50 

produce the most stable base for further transcriptome biological analysis. 

    Moreover, with the experiments provided here, we find the following useful insights 

for choosing the best strategy for optimizing de novo transcriptome assembly pipelines: 



 27 

• Both the digital normalization algorithm and error correction method are useful 

pre-processing steps; 

• Using the digital normalization algorithm significantly reduces the computational 

resources; 

• The “multi-k” method gives better overall assembly results; 

• From the results obtained here, we believe that the single k-mer assemblies with 

highest N50 lengths combined together with the “multi-k” strategy lead to better 

transcriptome; 

• In our experiments Velvet Oases remains the best de novo transcriptome 

assembler; 

• SOAPdenovo-Trans utilizes the least memory and runs the fastest; 

• Shorter k-mer lengths require more powerful computational resources; 

• The post-processing stage improves the overall transcriptome quality. 

    Utilizing error correction methods, as well as merging assemblies with k-mer lengths 

that have good metrics can improve the overall quality of the transcriptome assembly and 

provide stable base for further transcriptome biological analysis. Developing a multi-

stage assembly pipeline is an important and crucial part for generating accurate and 

meaningful transcriptome assembly. Since choosing the optimal tools and parameters for 

building quality transcriptome assembly pipelines is a difficult task, the experiments 

performed as part of this thesis provide useful guidelines for choosing the best strategy 

for optimizing de novo transcriptome assembly pipelines. 
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Chapter 3 

Evaluating Distributed Platforms for Protein-Guided Scientific Workflow 

 

3.1. Introduction  

The advances in life sciences and information technologies have led to proliferation of 

scientific data that needs to be stored and analyzed. The analysis of this so called “big 

data” is done by using a complex set of multitudes of software tools. A sequential series 

of these tools is known as an analysis pipeline [32]. The “big data” is too large to be 

processed by using only local computational resources. A possible approach to this 

problem is to make better use of multiple distributed resources including multi-core 

computers. 

    Scientists use various workflow systems to conduct their research modularly. This 

indicates that the whole scientific workflow can be decomposed into multiple sub-

workflows that can be executed in parallel on distributed resources. Each workflow is 

composed of computational tasks, the order of execution of which is determined by the 

dependencies among the tasks [4]. The advantages of scientific workflows include 

automated complex analysis, real-time results and improved time performance that allow 

scientists to easily design, execute, debug, modify and re-run their experiments [20]. 

    Over the past decade, several scientific workflows have been created and introduced. 

Pegasus Workflow Management System (Pegasus WMS) automatically maps high-level 

scientific workflows organized as directed acyclic graph (DAG) onto available 

distributed resources [5]. DAGMan (Directed Acyclic Graph Manager) is a meta-
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scheduler that submits jobs to Condor [7] in an order defined in DAG, and processes the 

results afterwards [6]. Taverna [8] is an open-source workflow system that graphically 

connects bioinformatics web services together into a coherent flow. Kepler [9] also has a 

visual interface and separates the structure of the workflow model from its model of 

computation. The number of applications using scientific workflow systems has been 

steadily increasing [10]. 

    The resources required by scientific workflows may exceed the capabilities of the local 

computational resources. Therefore, the scientific workflows are usually executed on 

distributed platforms, such as Campus Clusters or Grids. Grids such as Open Science 

Grid (OSG) [11] and XSEDE [12] allow distributed computing where the computational 

resources are spread on a geographically remote location. Beside the Cluster and Grid 

execution platforms, lately the scientists are analyzing the benefits of using Clouds for 

these scientific workflows. Cloud computing platforms like the commercial Amazon 

Elastic Compute Cloud [13] or the academic FutureGrid [14] provide rentable 

computational and storage resources over the Internet. Despite the advantages and 

disadvantages of Clusters, Grids and Clouds [33], the execution of scientific workflows 

deals with different challenges depending on the chosen computational platform. 

    In this Chapter we build a scientific workflow for blast2cap3, the protein-guided 

assembly, using Pegasus WMS. We chose two execution platforms for this workflow, 

Campus Cluster, and distributed Grid. Furthermore, we compare the running time and 

used resources for both platforms when the workflow is executed serially and parallel 

with alternating number of tasks. 
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3.2. Materials and Methods 

3.2.1. BLAST2CAP3: Protein-Guided Assembly 

With the recent and rapid development of next-generation sequencing technologies 

(NGS), RNA-Seq has become a powerful way of creating and analyzing transcripts and 

quantifying gene expression levels of different organisms [40]. Obtaining draft 

transcriptome of a raw sequence data is a complex multi-stage process usually composed 

of pre-processing, de novo assembly, and assembly validation. The most widely used de 

novo assemblers that produce transcripts are based on de Bruijn graphs and k-mers 

[51][52]. After generating assemblies with multiple k-mer length, the resulting transcripts 

should be grouped together. This grouping causes high redundancy of transcripts. 

Therefore, the transcripts need to be further merged in larger ones. Assemblers like CAP3 

[16] are often used to merge transcripts based on overlapping regions and nucleotide 

similarity. However, because most of the produced transcripts code for a protein, a 

protein similarity should be also considered during the merging. Saturating the time and 

the memory limits and disregarding the protein similarity cause CAP3 to frequently lead 

to incorrect results. 

    Blast2cap3 [17] is a protein-guided assembly approach that first clusters the transcripts 

based on similarity to a common protein and then passes each cluster to CAP3. The 

recent use of blast2cap3 on the wheat transcriptome assembly [18] shows that blast2cap3 

generates fewer artificially fused sequences compared to assembling the entire dataset 

with CAP3. Moreover, it also reduces the total number of transcripts by 8-9% [18]. 
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    Before running blast2cap3, the assembled transcripts are aligned with protein datasets 

closely related to the organism for which the transcripts are generated. BLASTX [19] is 

used for this alignment. Afterwards, transcripts sharing a common protein hit are merged 

using CAP3. Therefore, blast2cap3 uses the assembled transcripts and the BLASTX 

alignments as input files. 

 

3.2.2. Pegasus Workflow Management System 

Pegasus Workflow Management System (Pegasus WMS) stands for Planning for 

Execution in Grids. Pegasus WMS is a framework that automatically maps high-level 

scientific workflows organized as directed acyclic graph (DAG) onto wide range of 

execution platforms, including Clusters, Grids, and Clouds [5]. Pegasus receives an 

abstract workflow and tries to simplify it before mapping it into a concrete workflow. 

The abstract workflow of Pegasus contains information and description of all executable 

files (transformations) and logical names of the input files used by the workflow. On the 

other hand, the concrete workflow specifies the location of the data and the execution 

platform [23]. The concrete workflow is then submitted to Condor’s DAGMan meta-

scheduler [6] for execution [21]. The high-level of abstraction of Pegasus allows 

scientists to ignore low-level configurations required by the middleware and the 

underlying execution platform [23]. 

    DAG-based workflows use nodes to define the tasks and use the edges to denote the 

task dependencies. In DAG-based workflows, the structure can be characterized as 

sequence and parallel [20]. The sequence structure is defined as an ordered series of 
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tasks, where one task starts after the previous task is completed. The parallel structure 

allows concurrently execution of tasks. Pegasus also allows clustering of small tasks into 

larger clusters that are scheduled and executed to the same remote site. This setting 

allows improvement of the performance and reducing the remote execution overheads 

[22]. 

    Pegasus uses DAX (directed acyclic graph in XML) files to specify an abstract 

workflow. The DAX file contains syntax for defining jobs, arguments, input and output 

files, and dependencies between the various tasks. This format is shared by many 

workflow tools. The DAX file can be created manually, or by using the Pegasus API. 

Pegasus uses Java, Perl, or Python libraries for writing DAX generators [22]. The abstract 

DAX is then mapped to one or more execution sites. This step is known as the planning 

stage. 

    Pegasus comes with a set of useful command-line tools that help users to submit and 

analyze the workflows, and generate useful statistics and plots about the workflow 

performance, running time, execution results, machines used, as well as for succeeded 

and failed tasks [22]. Pegasus-plan is used to plan the workflow, while pegasus-run is 

used to submit the workflow to DAGMan. After the workflow is submitted, it can be 

monitored using the pegasus-status command that shows information about the running 

jobs and the percentage of finished jobs. The whole workflow and the failed jobs can be 

debugged using the pegasus-analyzer tool. After the workflow execution ends, the 

resulting data can be summarized using pegasus-statistics and pegasus-plots. 
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    Pegasus is used in a number of large scientific applications built for physics, 

astronomy, biology, earthquake sciences, ocean sciences, limnology and many other 

domains [23][24][25][26]. Pegasus can use both single systems and heterogeneous set of 

resources for executing the scientific workflows. The used resources can be distributed 

across laptops, Campus Clusters, Grids and Cloud platforms. Furthermore, Pegasus can 

support workflows ranging from few computational tasks to a few millions. 

    Scalability and handling large sets of data and computations, portability and ease of 

use are just part of the advantages that Pegasus has. In case of a job or data transfer 

failure, Pegasus can retry the job or the entire workflow given number of times. If the job 

fails again, then Pegasus generates a rescue workflow that contains information of the 

work that remains to be done such that it can be modified and resubmitted later. 

Therefore, Pegasus has capabilities for provenance tracking, execution monitoring and 

management, and error recovery. 

 

3.2.3. Execution platforms 

The resources that these scientific workflows require can exceed the capabilities of the 

local computational resources. Therefore, the scientific workflows are usually executed 

on distributed platforms, such as Campus Clusters, Grids or Clouds. These platforms are 

usually a set of heterogeneous hosts that are connected via a network. The experiments 

performed in this work were executed on two different computational platforms – a 

Campus Cluster and distributed Open Science Grid. 
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    University of Nebraska Campus Cluster. Campus and other public clusters are 

shared by diverse communities of users and enforce fair-share scheduling and file and 

disk spaces quotas. These clusters are suitable for various types of jobs, such as serial, 

parallel, GPU, and high memory specific jobs, thus the high-performance. 

    Sandhills2 is one of the High-Performance Computing (HPC) Clusters at the University 

of Nebraska Holland Computing Center (HCC) [27]. Sandhills was acquired by 

combining grants from various research groups at University of Nebraska. It is used by 

faculty and students in disciplines like bioinformatics, nanoscale chemistry, subatomic 

physics, meteorology, genomics, and artificial intelligence. Sandhills was constructed in 

2011 and it has 1440 AMD cores housed in a total of 44 nodes. Each node has storage of 

approximately 1.5 TB. Sandhills is a heterogeneous cluster in terms of individual node 

resources.In order to use any of the HCC’s Clusters, users obtain an HCC account 

associated with a University of Nebraska faculty or research group.  

 

    Open Science Grid (OSG). The Open Science Grid (OSG) is a distributed, high-

throughput distributed computational platform for large-scale scientific research [28]. 

OSG is a national consortium of more than 100 academic institutions and laboratories 

that provide storage and tens of thousands of resources to OSG users. These sites share 

their idle resources via OSG for opportunistic usage. Because of its opportunistic 

approach, OSG as a platform is ideal for running massive numbers of independent jobs 

 
2 After the experiments for this Chapter were completed, Sandhills has been decommissioned and parts of it 

have been incorporated into Rhino, another High-Performance Computing Cluster at University of 

Nebraska Holland Computing Center. Since most Clusters are built the same way, the analyses performed 

here can easily be executed on other Campus and High-Performance Computing Clusters. 
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that require less than 10GB of RAM, less than 10GB of storage, and less than 24 hours 

running time. If these conditions are fulfilled, in general, OSG can provide unlimited 

resources with the possibility of having hundreds or even tens of thousands of jobs 

running at the same time. The OSG resources are Linux-based, and due to the different 

sites involved, the hardware specifications of the resources are different and vary. Access 

and use of OSG is free for academic purposes and the user’s institution does not need to 

be part of OSG to use this platform. 

 

3.2.4. Datasets 

For the purpose of this experiment, we used diploid wheat Triticum urartu dataset to 

create the transcriptome assembly. The public NCBI BioProject PRJNA191053 [29] 

contains all sequence libraries submitted by the UCD group. The assembled transcripts 

were generated using Velvet Oases [53] as a de novo assembler. Afterwards, these 

transcripts were aligned with protein datasets of closely related wheat organisms, such as 

Barley, Brachypodium, Rice, Maize, Sorghum and Arabidopsis [18]. 

    The input file “transcripts.fasta” is 404 MB big, and has 236,529 assembled 

transcripts. Moreover, the BLASTX tabular output, “alignments.out”, is 155 MB big and 

contains 1,717,454 protein hits. These two files, “transcripts.fasta” and “alignments.out” 

are used as input to blast2cap3. 

 

3.2.5. Current implementation of blast2cap3 
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Blast2cap3, the protein-guided assembly, is a Python script written by Vince Buffalo 

[17]. Beside Python modules [30], blast2cap3 also uses Biopython [31], and CAP3 [16]. 

The current implementation of blast2cap3 supports only serial execution. This means that 

first one cluster of similar transcripts is created and then is sent to CAP3. After the CAP3 

program terminates, this process is repeated consecutively for all possible clusters of 

transcripts. 

    When the existing implementation of blast2cap3 was run on Sandhills for the given 

input files “transcripts.fasta” and “alignments.out” with size of 404 MB and 155 MB 

respectively, the running time was 100 hours. Considering larger input files and datasets, 

the time requirements and complexity of running the protein-guided assembly grow. 

Blast2cap3 is only one step of the many steps that are part of transcriptome assembly 

pipelines that can be more computationally and data-intensive. 

    Each cluster of transcripts that is generated from blast2cap3 and uses CAP3 is an 

individual process. This means that as long as the final results from CAP3 for each 

cluster are concatenated at the end, the transcripts within the cluster can be generated and 

merged independently. 

    Therefore, an additional approach to blast2cap3 execution should be considered that 

requires not just a single computer, but multiple computational nodes that can take 

advantage of the modularity of blast2cap3 execution.  

 

3.2.6. Pegasus Workflow Management System implementation of blast2cap3 for 

Campus Cluster 
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The modularity of blast2cap3 allows us to decompose the existing approach on multiple 

tasks, some of which can be run in parallel. Therefore, this protein-guided assembly can 

be structured into a scientific workflow using the Pegasus Workflow Management 

System. The main reduction in the running time of the current implementation of 

blast2cap3 is expected to be reached when the merging of transcripts belonging in a 

cluster is done in parallel for all clusters. 

    The Pegasus WMS implementation of blast2cap3 for Campus Cluster is shown on 

Figure 10. 
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Figure 10. Pegasus WMS implementation of blast2cap3 for Campus Cluster, where the squares represent 

the input and output files, the ovals represent the tasks, and the arrows represent the dependencies between 

the tasks. 

 

    For this workflow, we first create lists of both input files, “transcripts.fasta” and 

“alignments.out”, respectively. These two tasks are independent of each other and can be 

run at the same time. Furthermore, in order to create multiple clusters of transcripts, the 

split() task is used to divide the big “alignments.out” file on “n” smaller files. For the 

purpose of these analyses, we use different values of “n”, such as 10, 100, 300, and 500. 
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    The number of tasks that merge the transcripts within a cluster depends on “n”, the 

number of clusters. From the workflow shown on Figure 10, we can notice that this task, 

run_cap3(), uses two input files, “transcripts_dict.txt” and “protein_n.txt”. 

    After “n” output files are generated from run_cap3(), the next step is to merge all these 

joined transcripts into one file. Knowing the transcripts that are joined helps us to 

combine all transcripts that are not joined into a new file. 

    The DAG structure of the workflow is helpful to define dependencies and execute a 

task if and only if its predecessor tasks have finished. 

 

3.2.7. Pegasus Workflow Management System implementation of blast2cap3 for OSG 

The Pegasus WMS implementation of blast2cap3 for OSG is shown on Figure 11. The 

workflow and the logic behind both execution platforms differ only in the way how 

certain tasks are defined. The resources provided by Sandhills, the Campus Cluster, 

contain the most frequently used libraries, modules and software tools. This means that 

the Python and Biopython libraries and the CAP3 executable required by blast2cap3 are 

already set and maintained on the Campus Cluster. On the other hand, the resources 

provided by OSG are more heterogeneous and most of the time belong to other academic 

institutions and laboratories that may provide different software and system 

configurations. 

    When the required libraries and executables like Python, Biopython and CAP3 are not 

installed on the remote node, the workflow execution fails. In order to avoid workflow 

failures, additional tasks that download and install the necessary software are executed 
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before the main tasks in the workflow. These modified tasks are represented with red 

rectangles on Figure 11.  

    Therefore, we can say that the Pegasus WMS implementation of blast2cap3 for OSG is 

a slightly modified version of the implementation of blast2cap3 for Campus Cluster. 

 

 

Figure 11. Pegasus WMS implementation of blast2cap3 for OSG, where the squares represent the input and 

output files, the ovals represent the tasks, the rectangles represent the tasks that has an additional step of 

downloading and installing the required libraries, and the arrows represent the dependencies between the 

tasks. 
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3.3. Results and Discussion 

Here, our objective is to evaluate the performance of a scientific workflow for protein-

guided assembly on a Campus Cluster and OSG. The experiments for this Chapter 

include creating and running a scientific workflow for blast2cap3, the protein-guided 

assembly. The workflow is run on two different execution platforms: Sandhills, the 

Campus Cluster, and the distributed Open Science Grid. Furthermore, the influence of the 

numbers of clusters of transcripts in blast2cap3 over the execution time is also 

investigated and compared. 

 

3.3.1. Performance evaluation  

After the scientific workflow was created using Pegasus WMS, it was run on each 

platform multiple times with different values for “n”. As mentioned previously, “n” 

determines the number of clusters of transcripts on which the input data, 

“alignments.out”, is divided. For the purpose of this work, we used “n” with values of 10, 

100, 300, and 500. 

 

3.3.2. Comparing running time on Campus Cluster and OSG for different values of 

“n” 

In order to compare the running time of the Pegasus WMS implementation of blast2cap3, 

we run the workflows when “n” is 10, 100, 300, and 500 respectively. After the workflow 

terminates, pegasus-statistics is used to generate general statistics for the workflow 
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execution. We use these statistics to compare the running time when blast2cap3 is run 

serially and when is run as a scientific workflow with different values of “n”. 

    The “Workflow Wall Time” statistic defines the total running time of the workflow 

from the start to its end. The comparison of this variable’s value for the different 

workflows executed on the different platforms is shown on Figure 12. 

 

 

Figure 12. Comparing workflow running time on Sandhills and OSG when blast2cap3 is executed serially 

and as scientific workflow with “n” equals 10, 100, 300, and 500 respectively. 

 

    On Figure 12 we can notice that the Pegasus WMS implementation of blast2cap3 

significantly reduces the time execution for approximately more than 95%. If the current 

sequential implementation of blast2cap3 for the given input files runs for 100 hours, the 

Pegasus WMS implementation runs for 3 hours in average. 

    Beside the difference between the serial and inherently parallel execution of 

blast2cap3, on Figure 12 we can also observe the difference in the running time on 

Campus Cluster and OSG platforms. Although OSG provides bigger variety of 

0

100000

200000

300000

400000

R
u

n
n

in
g 

ti
m

e 
in

 s
ec

o
n

d
s

Number of clusters used

Running time on Sandhills and OSG for 
different "n" clusters

Sandhills

OSG



 44 

computational resources than the Campus Cluster, for the experimental runs of our 

workflows, the Campus Cluster resulted in better running time. This difference is 

especially noticeable when “n”, the number of clusters used, is 10, 100, and 300. Some 

possible reasons for this occurrence are the additional tasks required for setting the proper 

software configuration on the OSG resources, as well as the common failures and 

workflow retries that happen when OSG is used as a platform. OSG is an opportunistic 

platform, so some larger jobs can be held and resubmitted when the resources are 

available. On the other hand, we encountered no failures when the workflow was 

executed on Sandhills. The Campus Cluster may need a long waiting time to access 

nodes with more memory and time resources, but after these resources are allocated, they 

are utilized until the tasks terminate. 

    The running time on Sandhills when “n” is 10 is 41,593 seconds. On the other hand, 

when “n” has value of 100, 300, and 500, the running time on Sandhills is around 10,000 

seconds. The usage of 100 or more clusters of transcripts improves the running time on 

Sandhills for approximately 80% compared to the running time of 10 clusters. Although 

the usage of more than 100 clusters doesn’t decrease this running time significantly, the 

selection of 300 clusters gives the optimum performance with the resources allocated 

from Sandhills for this experiment. We must emphasize that the running time for both 

platforms and the optimal number of used clusters of transcripts will vary for every new 

run due to the availability of the current resources. 
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3.3.3. Comparing running time per task on Campus Cluster and OSG for different 

values of “n” 

The running time of the submitted tasks and jobs varies among the two execution 

platforms and “n”, the number of clusters of transcripts. Here, we analyze the running 

time of the individual tasks from the workflow, both for the Campus Cluster and OSG 

when “n” is 10, 100, 300, and 500. In order to achieve this, we use “Kickstart Time”, 

“Waiting Time” and “Download/Install Time” statistics. 

    The “Kickstart Time” statistic defines the actual duration and running time of a job on 

the remote node. The “Waiting Time” statistic is a sum of the time spent waiting on the 

submit host and the time spent waiting on the remote host before the actual execution 

starts. The “Download/Install Time” statistic refers to the Pegasus WMS implementation 

of blast2cap3 for OSG and indicates the time spent for downloading and installing the 

Python and Biopython libraries and CAP3 executable required for this experiment. 

    On Figure 13 the running times per tasks are shown for both Sandhills and OSG 

execution platforms when “n” is 10, 100, 300, and 500 respectively. 
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Figure 13. Comparing blast2cap3 workflow running time per task for Sandhills and OSG when “n” is 10, 

100, 300, and 500 respectively. 
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    While the tasks for creating lists of the input files and for merging the final results have 

running time of few minutes, the higher consumption of time occurs when CAP3 is used 

for merging the transcripts within the clusters. 

    The “Waiting Time” value for the tasks ran on Sandhills is small and negligible. On the 

other hand, this value unevenly changes, increases and decreases, for the tasks ran on 

OSG. This observation once again shows that the resources available on OSG are 

opportunistic, and the OSG user cannot control the availability or the lack of resources 

over time. Unlike the Campus Cluster, failures and retries of the workflow were observed 

on OSG. This occurrence that is generally common and frequent on grids also increases 

the value of the “Waiting Time” statistic. 

    The “Kickstart Time” value per task on Sandhills slowly decreases when “n” increases. 

Higher values of “n” induce even more significantly greater reduction of the running time 

of the tasks ran on OSG. 

    However, the “Download/Install Time” value influences over the total running time of 

the tasks ran on OSG. Although some tasks on OSG have smaller running time than the 

tasks ran on Sandhills for the same value of “n”, they still exceed the running time of the 

tasks on Sandhills. This happens because an additional time is required for the tasks on 

OSG to download and install the necessary libraries and executables on the OSG 

resources. 
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3.4. Conclusion 

The expansion of scientific data leads to research that requires complex and data-

intensive analyses and simulations. Therefore, many scientists use workflows over 

distributed resources to manage these large and complex computational tasks. Workflow 

applications can be used in different scientific fields, such as biology, physics, 

astronomy, and many others. 

    In this Chapter we built a scientific workflow for blast2cap3, the protein-guided 

assembly, using the Pegasus Workflow Management System (Pegasus WMS). 

Furthermore, we describe our experience deploying this workflow on two different 

computational platforms: the University of Nebraska Campus Cluster, and the distributed 

Open Science Grid (OSG). Our objective was to compare and evaluate the performance 

of the built scientific workflow for both used platforms. Furthermore, we wanted to show 

the importance of using scientific workflows for executing computationally demanding 

granular tasks and pipelines. 

    The performed experiments for this work show that the Pegasus WMS implementation 

of blast2cap3 ran on both platforms significantly reduces the running time compared to 

the current serial implementation of blast2cap3 for more than 95%. This high percentage 

shows the importance and the efficiency of using scientific workflows. 

    Beside the difference between the serial and parallel execution of blast2cap3, we also 

observed the difference in the running times on both Campus Cluster and OSG execution 

platforms. Although OSG provides bigger variety of computational resources than the 

Campus Cluster, for our experiments, the workflows that ran on the Campus Cluster 
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resulted in better running time. Moreover, the selection of 300 clusters of transcripts 

gives the optimum performance with the resources allocated from Sandhills for the 

completed experiment. 

    While the Campus Clusters support the most frequently used software tools, the OSG 

resources may have different software configuration. Therefore, the tasks on OSG used 

more running time than the tasks running on the Campus Cluster because of downloading 

and installing the required libraries and tools for blast2cap3. In addition, the availability 

of resources on OSG is highly variable and opportunistic, and therefore the performance 

and the running time of the tasks vary significantly. Workflows running on OSG may 

result with excellent or very poor throughput depending on whether there are plenty or a 

few available resources. In addition, workflow failures and retries were observed on OSG 

that also increase the running time. The OSG staff works hard to promptly and efficiently 

address these issues. 

    However, if comparing only the actual duration and running time of tasks on both 

platforms, ignoring the “Waiting Time” and the “Download/Install Time”, OSG gives 

significantly better results. Hence, setting the proper software configuration on the OSG 

resources for less time will be considered as part of the future work.  

    Despite Campus Clusters and Grids, scientists are also investigating the use of Clouds 

for deploying scientific workflows. Using academic and commercial Clouds as an 

execution platform for the blast2cap3 workflow built in this work will be challenging, 

but important and useful further step of this research. 
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    Developing scientific workflows for applications from different scientific fields is a 

valuable and crucial step that connects complex and large granular tasks with thousands 

available powerful computational and distributed resources. The outcome of this process 

are automated complex analysis, real-time results and improved time performance that 

allow scientists to easily design, execute, modify, and re-run their experiments. 
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Chapter 4 

Conclusion 

 

In this thesis, we focus on two main bioinformatics challenges when analyzing RNA-Seq 

data: 1) developing accurate transcriptome assemblies; and 2) efficient data handling 

(storage and processing). For each challenge, we performed comprehensive analyses and 

deliver conclusions and suggestions that can improve the quality of transcriptome 

assembly pipelines, as well as reduce some of their computationally-intensive 

requirements.  

    To provide insights in building accurate transcriptome assemblies, we generated 21 

transcriptome assembly pipelines using different combinations of pre-processing and 

assembly methods, such as digital normalization, error correction, de novo assembly tools 

and k-mer length strategies. After a comprehensive evaluation of these assembly 

pipelines, we observed that using the error correction method with Velvet Oases and the 

“multi-k” strategy that combines the 5 k-mer assemblies with highest N50 value produces 

the best results when the transcripts are mapped against the raw sequences and the 

TriFLDB database. 

    To address the handling of data- and computationally-exhaustive transcriptome 

assembly pipelines, we selected blast2cap3, a serial and intensive step from the 

transcriptome assembly pipeline for protein-guided assembly. For this step, we built 

distributed and scalable scientific workflow and deployed it on two different 

computational platforms. This implementation for blast2cap3 reduced the running time 
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by 95% and showed that scientific workflows that can be parallelized and executed on 

various computational platforms can significantly affect the runtime of the analyses. 

    Knowing the advantages and disadvantages of the tools used in each step of the 

assembly pipeline, performing comprehensive comparisons, as well as utilizing efficient 

scientific workflows and computational platforms, are essential steps in the direction of 

building accurate assemblies and answering important biological questions rapidly. With 

the analyses performed in this thesis, we provide useful guidelines for choosing good 

strategies for optimizing de novo transcriptome assembly pipelines.  
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