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Adviser: Jamie Radcliffe

This dissertation considers several problems in extremal graph theory with the aim

of finding the maximum or minimum number of certain subgraph counts given local

conditions. The local conditions of interest to us are saturation and covering. Given

graphs F and H, a graph G is said to be F -saturated if it does not contain any

copy of F , but the addition of any missing edge in G creates at least one copy of

F . We say that G is H-covered if every vertex of G is contained in at least one

copy of H. In the former setting, we prove results regarding the minimum number

of copies of certain subgraphs, primarily cliques and stars. Special attention will be

given to the somewhat surprising challenge of minimizing the number of cherries, i.e.

stars with two vertices of degree 1, in triangle-saturated graphs and its connection to

Moore graphs. In the latter setting, we are interested in maximizing the number of

independent sets of a fixed size in H-covered graphs, primarily when H is a star, path,

or disjoint union of edges. Along the way, we will introduce and prove several results

regarding a new style of question regarding graph saturation, namely determining

for which graphs F there exist trees that are F -saturated. We will call such graphs

tree-saturating.
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Chapter 1

Introduction

The problems considered in this dissertation belong to the field of extremal graph

theory, an area of mathematics concerned with the way in which certain properties

of graphs influence the counts of various substructures. In one of his books [6], Béla

Bollobás says,

“Extremal graph theory, in its strictest sense, is a branch of graph theory developed

and loved by Hungarians.”

We will mention just a few of the Hungarians - and other mathematicians - whose

work has shaped the history of extremal graph theory, leading up to the problems

considered in these pages. This begins in 1941 when Turán determined the maximum

number of edges in a graph with a fixed number of vertices n and no complete sub-

graphs Kt [33]. The unique optimal graph, known as the Turán graph, is given by the

complete multipartite graph with parts as equal of size as possible. See Figure 1.1 for

the optimal K5-free graph on 12 vertices. Notice that any copy of K5 must include

at least two vertices of the same color, but no such pairs are adjacent. When t = 3,

the optimal graph is a complete bipartite graph with sides as equal as possible. This

fact, along with the optimal edge count of ⌊n2

4
⌋ was known previously by Mantel [27].

The problem of determining the maximum number of edges allowed in an F -free
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Figure 1.1: The K5-free graph on 12 vertices with ex(12, K5) edges

graph on n vertices received a significant amount of attention over the ensuing decades

[31]. This maximum count is referred to as the extremal number of F and is denoted

ex(n, F ). The graph property that we are most interested in is directly related to

this.

Definition 1. We say that a graph G is F -saturated if it does not contain any copy

of F , but the addition of any missing edge in G creates at least one copy of F .

Note that every time we refer to a copy of F , we are saying that there is a

subgraph of G isomorphic to F . This subgraph is not necessarily induced. That is,

we are considering a subset of the vertices and a subset of the edges on those vertices.

There is a version of graph saturation that looks at induced subgraphs [28], but that

will not be considered in this dissertation.

Since F -saturated graphs are F -free, ex(n, F ) is always attained by an F -saturated

graph and has the most edges among such graphs. Restricting our scope from F -free

graphs to F -saturated graphs also allows one to consider the minimization counterpart

to the problem of finding an extremal number. We write sat(n, F ) to denote the

minimum number of edges among all F -saturated graphs on n vertices. Turán’s

Theorem provides a value for ex(n,Kt) for all t ≥ 3 as well as the unique extremal
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Figure 1.2: K3 +K9; The K5-saturated graph on 12 vertices with sat(12, K5) edges

graph. The following theorem of Erdős, Hajnal, and Moon determines the value of

sat(n, F ) along with a unique optimal construction as well.

Theorem 1 (Erdős, Hajnal, and Moon, 1964). For every n ≥ t ≥ 2,

sat(n,Kt) = (n− t+ 2)(t− 2) +

(
t− 2

2

)
.

The graph Kt−2 +Kn−t+2 is the unique extremal example.

The graph in Figure 1.2 is an example of a complete split graph. Kt−2+Kn−t+2 is

the disjoint union of a clique on t−2 vertices and an independent set, a set of vertices

with no edges, on n− t + 2 vertices, along with all (t− 2)(n− t + 2) edges between

the two sets. As illustrated in the case where t = 5, a copy of Kt must include at

least two vertices on the right, and the addition of any edge within that independent

set will create a copy of Kt. We will refer to these graphs simply as split graphs for

the remainder of this dissertation, and we will see that their property of minimizing

edges among clique-saturated graphs is not the only thing that is special about them

when it comes to graph saturation.
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Saturation numbers have been well-studied and a collection of some of these results

can be found in [17]. Now, in extremal graph theory, we are not only concerned with

counting edges. In fact, counting edges is simply a special case of counting the number

of copies of some given subgraph in a host graph. An important result of this type

is a generalization of Turán’s Theorem proved independently by Zykov in [35] and

Erdős in [11], which states that the same graph which maximizes the number of

edges among Kt-saturated graphs on n vertices also maximizes the number of copies

of smaller cliques Kr among such graphs. On the other end, Bollobás proved that

the same graph which minimizes the number of edges among Kt-saturated graphs

also minimizes the number of copies of smaller cliques Kr among such graphs [4].

Interestingly, this minimization result extends to counting subgraphs in hypergraphs;

however, the maximization problem for hypergraphs is notoriously open in even the

smallest cases.

Other results regarding the number of copies of a given subgraph in graphs with

certain properties can be found in [1, 15, 25]. More recently, Alon and Shikhelman

began a systematic study of the minimum number of copies of a target graph H

among F -saturated graphs on n vertices for various choices of H and F [3]. We will

write exH(n, F ) to denote this generalized extremal number. Note that by definition

exK2(n, F ) = ex(n, F ).

Inspired by this, Kritschgau, Methuku, Tait, and Timmons [23] introduced the

generalized saturation number, which we will denote satH(n, F ), to give the minimum

number of copies ofH among F -saturated graphs on n vertices. In addition to proving

general results, they focused on the cases where at least one of H and F was a clique

or cycle. Extending one of their results and proving a conjecture of Kritschgau et al.,

Chakraborti and Loh [8] showed the following.
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Theorem 2 (Chakraborti and Loh, 2019). For every t > r ≥ 2, there exists a

constant nr,t such that, for all n ≥ nr,t, we have

satKr(n,Kt) = (n− t+ 2)

(
t− 2

r − 1

)
+

(
t− 2

r

)
.

Furthermore, for n sufficiently large, the (complete) split graph Kt−2 +Kn−t+2 is the

unique extremal graph.

In addition, Chakraborti and Loh showed that for n sufficiently large the split

graph minimizes copies of cycles amongKt-saturated graphs. Inspired by their results,

Chakraborti and Loh asked if the split graph minimizes the number of copies of any

F among Kt-saturated graphs. In Chapter 2 we demonstrate that this is not the

case when F is a star Sr with r ≥ 3. In fact, the split graph is far from optimal in

this scenario. However, when we consider copies of S2, which we will call cherries

throughout, we prove the following.

Theorem 3. For all n ≥ t ≥ 3,

satS2(n,Kt) =
t− 2

2
n2 +O(n3/2).

Chapter 2 deals with this question of minimizing stars in clique-saturated graphs

as well as other problems concerned with the generalized saturation number satH(n, F ).

In particular, we look at the other variations involving stars and cliques, namely

satKr(n, St) and satSr(n, St). Taking advantage of strong structural constraints on

star-saturated graphs, we prove the following concerning which Kt-saturated graph

minimizes the number of copies of Sr. The graph KRt,n(m), which is a Kt-saturated

graph on n vertices with an additional parameter m, will be described in detail in

Chapter 2.
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Theorem 4. For all n ≥ 2t− 1 with t ≥ 2 and r < t,

satSr(n, St) = min
0≤m≤t−1

sr(KRt,n(m)).

Note also that

sr(KRt,n(m)) =


m
(
m−1
r

)
+ (n−m)

(
t−1
r

)
if (t− 1)(n−m) is even

m
(
m−1
r

)
+ (n−m)

(
t−1
r

)
+
(
m−1
r−1

)
if (t− 1)(n−m) is odd.

When counting cliques in star-saturated graphs we will focus on determining values

of n for which satKr+1(n, St) = 0. As a sufficient criteria for this to occur, we prove

the following.

Theorem 5. Let r ≥ 3 and t ≥ 3 be fixed. There exists an n-vertex, r-partite,

St-saturated graph if

n ≥ max

(
t+ 1, min

0≤c≤r−2

{
(r − c)

⌈
t− 1

r − c− 1

⌉
+ r − c

})
. (1.1)

We prove similar, but not quite matching, necessary conditions for the existence of

such graphs and show that loosening the restriction from r-partite graphs toKr+1-free

graphs does not change the bounds on n asymptotically.

We also consider satSr(n,Kt) in a more restricted setting, proving that the split

graph is still not optimal for minimizing copies of Sr with r ≥ 3 when we consider

graphs with a linear maximum degree. We will also discuss the problem of counting

cherries in triangle-free graphs and its connection to Moore graphs of diameter 2, and

we will look at generalized saturation numbers involving paths.

Inspired by observations made while investigating these generalized saturation

problems, we introduced a new style of problem related to graph saturation. That
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is, given a graph H, does there exist a tree T such that H is T -saturated? If so,

we call H tree-saturating. Similar questions can be asked for other classes than trees

such as triangle-free graphs or r-partite graphs. This topic is the focus of Chapter 3.

Here, our primary result characterizes the spiders, trees with a single vertex of degree

greater than 2, which are tree-saturating.

In Chapter 4 we direct our attention to a regime separate from but with similarities

to graph saturation. Another way of stating our definition for graph saturation is that

a graph G is F -saturated if every non-edge of G is contained in at least one copy of

F when that edge is added. A similar property that we can consider is the following.

Definition 2. We say that a graph G is H-covered if every vertex of G is contained

in at least one copy of H.

This concept was first formally discussed by Chakraborti and Loh in [7]. One of

their primary results proves that for a given graph H the minimum number of copies

of Kt among H-covered graphs on n vertices is given by the solution to an integer

program. When t = 2, this provides the minimum number of edges in such graphs.

Equivalently, it provides the maximum number of independent sets of size 2.

The authors comment that the structure of graphs minimizing independent sets

of larger size seems to be quite different. This is where we pick up in Chapter 4. In

addition to looking at small graphs, choices of H that we address include stars, paths,

and disjoint sets of edges. We point out how some known results in extremal graph

theory allow us to quickly address star-covered graphs, and we prove the following

main result concerning paths and which path-covered graph maximizes independent

sets of size t.

Theorem 6. Let G be a Pk-covered graph on n vertices and let S be the spider with
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n− k − 1 legs of length 1 and one leg of length k − 2. Then for all t ≥ 3,

it(G) ≤ it(S).

In addition, we prove the following structure for an mK2-covered graph on n

vertices that maximizes independent sets of size t.

Theorem 7. Let G be an mK2-covered graph on n vertices with m ≥ 2. Then for

all t ≥ 3 there exists a graph Hℓ = K1,n−2ℓ−1 ∪ ℓK2 for some ℓ ≥ m − 1 such that

it(G) ≤ it(Hℓ).

This chapter is partially dedicated to determining which value of ℓ is optimal for

given values of n, m, and t.

We conclude in Chapter 5 with a discuss of problems for future work. Some of

these are tangential to the work in this dissertation, and others are extensions and

generalizations of our results.

1.1 Notation

We end our introduction by providing some notation that will be used throughout

the dissertation as well as some important terminology, beginning with some standard

graph theory.

Given a graph G and a vertex v ∈ V (G), we write d(G) to denote the degree of

v in G. The maximum and minimum degrees of G are denoted by ∆(G) and δ(G),

respectively. Given two vertices v and u, we write d(v, u) to denote the distance

between v and u; that is, the smallest number of edges on a path from v to u in G.

The diameter of G is the maximum value of d(v, u) for all pairs v and u. We will

only consider diameters in connected graphs. The complement of G, denoted G is
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the graph on the same vertex set as G whose edge set is given by
(
V (G)
2

)
\E(G). We

say that G is r-partite if there exists a partition of the vertices into r parts such that

each part is an independent set. We write N(v) to denote the neighborhood of v;

that is, the set of vertices u such that u is adjacent to v. N [v] = N(v)∪ {v} is called

the closed neighborhood of v. We write N2(v) to denote the set of vertices u such

that d(u, v) = 2. To avoid ambiguity at times, we will write NG(v) to denote the

neighborhood of v in G.

Given a pair of graphs G and H, we write G ∪ H to denote the disjoint union

of these graphs. That is, we take the union of their vertex sets and edge sets. The

disjoint union of k copies of G is written kG. The join of G and H, written G+H,

is the graph obtained from G∪H by adding edges between u and v for all u ∈ V (G)

and v ∈ V (H).

When discussing asymptotic results, we will make use of standard notation to

relate various functions. In what follows, all constants are taken to be positive real

numbers. In particular, given two functions f(n) and g(n), we write f(n) = O(g(n))

if there exist constants C > 0 and n0 such that f(n) ≤ C ·g(n) for all n ≥ n0. Slightly

stronger than this big-O notation is little-o notation. We write f(n) = o(g(n)) if for

every constant C > 0 there exists n0 such that f(n) < C · g(n) for all n ≥ n0. These

will frequently be used when considering upper bounds on various quantities. Note

that when there are multiple variables in play, we will write Ok and ok to indicate

that we are considering behavior as k tends to infinity.

Similarly, we define big-Omega and little-omega as follows. We write f(n) =

Ω(g(n)) if there exist constants c > 0 and n0 such that f(n) ≥ c · g(n) for all

n ≥ n0. We write f(n) = ω(g(n)) if for every constant c > 0 there exists n0 such that

f(n) > c · g(n) for all n ≥ n0. Just as big-O and little-o allow us to consider upper

bounds on long term behaviors, big-Omega and little-omega allow us to consider lower
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bounds.

We end this discussion of asymptotic terminology by defining big-Theta notation.

That is, we write f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

In the following chapters, we will be counting many substructures within graphs.

Given a graph G, we write sr(G) to denote the number of copies of Sr in G. Similarly,

we write kr(G) and ir(G) to denote the number of cliques and independent sets of

size r respectively.

Additional notation and definitions will be provided as need for them arises.



11

Chapter 2

Generalized Saturation Problems

In this chapter we prove several minimization results dealing primarily with clique-

saturation and star-saturation. Most of the attention in this chapter will be dedicated

to satKr(n, St), satSr(n, St), and satSr(n,Kt). In the final of these, we discuss the

remaining challenge regarding satS2(n,K3). We also briefly consider the problem of

counting paths in clique-saturated graphs and a more general problem for trees and

cliques. Recall that satH(n, F ) denotes the minimum number of copies of H among

all F -saturated graphs on n vertices.

2.1 Counting Cliques in Star-Saturated Graphs

This section is concerned with understanding satKr(n, St); that is, the minimum num-

ber of copies of Kr among St-saturated graphs on n vertices. In what follows, we will

focus more specifically on finding conditions for which satKr(n, St) = 0. We begin

this endeavor by stating a structural lemma regarding star-saturated graphs, which

was observed by Kaszonyi and Tuza [22]. We include a short proof since it provides

further insight into the structure of these graphs.

Lemma 1 (Kaszonyi and Tuza, 1986). Let G be an St-saturated graph on n vertices.

Then the maximum degree of G is t−1, and all vertices of degree less than t−1 form
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a clique.

Proof. Since G is St-saturated, it must be St-free. Thus the maximum degree of G is

at most t−1. Adding any missing edge can increase the maximum degree by at most

1. Since G is St-saturated, the new edge must force the maximum degree to become

t. Thus G has maximum degree exactly t− 1.

To prove the second part of the statement, suppose that u and v are vertices in G

with degrees d(u) < t−1 and d(v) < t−1. If u is not adjacent to v, then the addition

of the edge uv will only increase their degrees, and the resulting graph will still have

maximum degree less than t, a contradiction to G being St-saturated. Therefore all

vertices of degree less than t− 1 must form a clique in G.

Since we are interested in determining when satKr(n, St) = 0, it is natural to begin

with the case where r = 3 since the existence of a triangle-free, St-saturated graph

on n vertices means that satKr(n, St) = 0 for all r ≥ 3. The following result provides

us with a necessary and sufficient condition for such graphs to exist. Note that for

t = 1 we need n ≥ 2, and for t = 2 we need n ≥ 3 for St-saturated graphs to exist.

Moreover, there is a unique S2-saturated graph on n vertices for all n ≥ 3. When n

is even, the graph is a collection of disjoint edges. When n is odd, it is a collection

of disjoint edges and an isolated vertex. S1-saturated graphs are simply independent

sets on at least 2 vertices. Since these cases are trivial, we state our result for t ≥ 3.

Proposition 1. Let t ≥ 3. There exists an St-saturated graph on n vertices that is

K3-free if and only n ≥ 2t− 2.

Proof. If n is even and n ≥ 2t− 2, then there exists a (t− 1)-regular bipartite graph

on n vertices that can be constructed in the following way. Begin by considering

the complete bipartite graph Kn
2
,n
2
and delete n

2
− (t − 1) perfect matchings. Such
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matchings exist by Hall’s Theorem. The resulting graph is certainly St-saturated

because it is (t − 1)-regular. When n is odd, consider G ∪K1 where G is a (t − 1)-

regular bipartite graph on n − 1 vertices. The resulting graph is still St-saturated

since the disjoint union does not create a copy of St, but the addition of any missing

edge must involve at least one vertex of degree t− 1. G ∪K1 is also bipartite, hence

K3-free.

For the other direction, let G be St-saturated and K3-free. If G has no vertices

of degree t− 1, then by Lemma 1 G is complete and contains triangles. This means

there is a vertex v ∈ G with degree t − 1. For any two vertices x, y ∈ N(v), at

least one of them must have degree t− 1. Otherwise x is adjacent to y and {v, x, y}

form a copy of K3. Without loss of generality, the degree of x is t − 1. Since G is

K3-free, N(v)∩N(x) = ∅ and N(x) contains t−2 vertices outside of N [v]. Therefore

n ≥ 2t− 2.

Since triangle-free graphs are Kr-free for all r ≥ 3, the following is immediate.

Corollary 1. For all r ≥ 3 and all t ≥ 3,

satKr(n, St) = 0

for n ≥ 2t− 2.

Proposition 1 gives us a cutoff for the values of n which require St-saturated graphs

to contain at least one copy of K3. It tells us, for instance, that any S5-saturated

graph that is K3-free must have at least 8 vertices. Although there does not exist

an S5-saturated graph on 6 vertices that is K3-free, there does exist an S5-saturated

graph on 6 vertices that is K4-free. The graph in Figure 2.1 is an example.
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Figure 2.1: An example of a K4-free, S5-saturated graph on fewer than 8 vertices

As stated in the beginning of this section, we are interested in determining the

values of n for fixed r and t such that satKr(n, St) = 0. We will provide a partial

solution to this problem. Shifting to Kr+1-free graphs, we will focus especially on

the existence of St-saturated graphs that are r-partite. Again due to the triviality

of the cases where t is equal to 1 or 2, we will only consider t ≥ 3. We remind the

reader that r-partite graphs are always Kr+1-free; however Kr+1-free graphs are not

necessarily r-partite.

Before stating our bounds on n, we state a theorem of Hoffman and Rodger, and

we provide a construction that will aid us in our proof [21].

Theorem 8 (Hoffman and Rodger, 1992). Given a complete multipartite graph K,

χ′(K) = ∆(K) if and only if it is not overfull. Here χ′ denotes the chromatic index

of K, and we say that a graph G is overfull if

|E(G)| > ∆(G)

⌊
|V (G)|

2

⌋
.

In particular, the complete r-partite graph on ar vertices, Ka,...,a, is overfull if and

only if ar is odd.

Proposition 2. Let a, r be positive integers. If ar is even, then there exists a k-

regular spanning subgraph of the r-partite graph Ka,...,a for all k ≤ a(r − 1).
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Proof. Consider the complete r-partite graph Ka,...,a. If ar is even, then Ka,...,a is not

overfull as

|E(Ka,...,a)| = a(r − 1)
ar

2
= ∆(Ka,...,a)

⌊
V (Ka...,a)

2

⌋
.

By Theorem 8, the chromatic index of this graph is equal to the maximum degree.

That is, we can find a proper edge coloring using a(r − 1) colors. In particular, the

color classes form a 1-factorization of Ka,...,a. We delete perfect matchings until we

are left with a k-regular subgraph for any k ≤ a(r − 1).

We are now ready to state our first result regarding the existence of St-saturated,

r-partite graphs.

Theorem 5. Let r ≥ 3 and t ≥ 3 be fixed. There exists an n-vertex, r-partite,

St-saturated graph if

n ≥ max

(
t+ 1, min

0≤c≤r−2

{
(r − c)

⌈
t− 1

r − c− 1

⌉
+ r − c

})
. (2.1)

Proof. Suppose Inequality 2.1 holds for some 0 ≤ c ≤ r− 2. Let a, b be non-negative

integers such that n = a(r − c) + b with b < r − c. That is, a = ⌊ n
r−c

⌋. In addition,

let k, d be non-negative integers such that b = kt + d with d < t. We will consider

two cases and exhibit an r-partite, St-saturated graph on n vertices in each case.

Begin by supposing a(r − c) is even. By rewriting Inequality 2.1, focusing on

the second expression on the right hand side, we see that t − 1 ≤ a(r − c − 1). By

Proposition 2, there exists a (t−1)-regular, (r−c)-partite graph G on a(r−c) vertices.

Taking the disjoint union G ∪ kKt ∪Kd yields an r-partite, St-saturated graph on n

vertices.

Similarly, when a(r− c) is odd, there exists a (t− 1)-regular, (r− c)-partite graph

G on (a− 1)(r− c) vertices. Thus G∪ ℓKt ∪Km where b+ r− c = ℓt+m with m < t
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provides an r-partite, St-saturated graph on n vertices.

With regards to the lower bounds on n, we note that if n < t+1, then there is no

St-saturated graph on n vertices, and hence none that is r-partite. We now provide a

necessary condition for the existence of St-saturated, r-partite graphs that is related

to the second bound in Theorem 5.

Proposition 3. For all r ≥ 3 and t ≥ 3, if there exists a graph G on n vertices that

is St-saturated and r-partite, then n ≥ r(t−1)
r−1

.

Proof. Suppose there exists an St-saturated, r-partite graph G on n vertices with

n < r(t−1)
r−1

. As remarked before stating this proposition, it must be the case that

n ≥ t+1. Let a, b be non-negative integers such that n = ar+ b with b < r. Since G

is r-partite, there exists a partition P1, . . . , Pr of the vertices of G with |Pi| ≤ |Pi+1|

for all 1 ≤ i ≤ r − 1 such that no two vertices in a given Pi are adjacent. We have

two cases to consider.

Begin by supposing that |P1| < |Pr|. If a = 0, then G has b vertices with b < r.

Since G is St-saturated, we have b ≥ t+ 1, and, by assumption, b < r(t−1)
r−1

. It follows

that t+ 1 < r(t−1)
r−1

. Rearranging, we obtain the following equivalent inequalities.

t+ 1 <
r(t− 1)

r − 1

(t+ 1)(r − 1) < r(t− 1)

rt+ r − t− 1 < rt− r

2r < t+ 1

This is a contradiction since b < r and b ≥ t+1. Thus it must be the case that a ≥ 1.
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Now, since |P1| < |Pr|, it follows that

|Pr| ≥
⌈n
r

⌉
= a+ 1.

For any vertex u ∈ Pr, we have d(u) ≤ n − a − 1. Since each Pi is an independent

set, it can contain at most one vertex of degree less than t − 1 by Lemma 1. In

particular, since a ≥ 1, Pr must contain at least one vertex of degree exactly t − 1.

Thus n − a − 1 ≥ t − 1. Since n < r(t−1)
r−1

by assumption, we have the following

equivalent inequalities:

t+ a <
r(t− 1)

r − 1

(t+ a)(r − 1) < r(t− 1)

rt+ ar − t− a < rt− r

a(r − 1) + r < t

a(r − 1) + r − 1 < a(r − 1) + b− 1.

Similarly, noting that n = ar + b, we having the following equivalences:

n− a− 1 ≥ t− 1

ar + b− a− 1 ≥ t− 1

a(r − 1) + b ≥ t.

Taken all together, we see that a(r − 1) + b ≥ t > a(r − 1) + r, contradicting the

assumption that b < r. This completes the case where |P1| < |Pr|.

Finally, we consider the case where each of the r parts in our partition have equal

size. It follows that b = 0 and n = ar. Every vertex in G has degree at most a(r−1).
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Since n < r(t−1)
r−1

, we have that a(r− 1) < t− 1. This means that if we add an edge to

G, the maximum degree in the resulting graph will be at most t− 1, a contradiction

to the assumption that G is St-saturated. This completes the proof.

In addition to bridging the gap between these bounds, we would like to know

which value of c for given r and t minimizes the lower bound on n in Theorem 5.

If our bound did not include ceilings, this would be a straightforward computation

as demonstrated in the lemma below. However, finding a general solution using the

bound in the theorem is more complicated. Although we do not have a general

solution, we determine which value of c provides the smallest bound on n in Theorem

5 for the existence of r-partite, St-saturated graphs in two special cases. These cases

rely on the more straightforward situation which we now address.

Lemma 2. Let r ≥ 3 and t ≥ 3 be fixed. Then

n2(c) = (r − c)

(
t− 1

r − c− 1

)
+ r − c

is minimized on the interval (−∞, r − 2] when c = r − 1−
√
t− 1.

Proof. Taking the derivative of n2 with respect to c, we obtain

n′
2(c) =

t− 1

(r − c− 1)2
− 1.

Setting this equal to 0, we have c = r − 1±
√
t− 1. Since c ≤ r − 2 and

n′′
2(r − 1−

√
t− 1) > 0,

our function is minimized at c = r − 1−
√
t− 1.
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Proposition 4. For all r ≥ 3, if t ≤ (r − 1)2 + 1 and t = k2 + 1 for some integer

k, then r − 1 −
√
t− 1 is the minimizing c-value in Theorem 5. The corresponding

lower bound on n is n ≥ (k + 1)2 = t+ 2
√
t− 1.

Proof. Let

n1(c) = (r − c)

⌈
t− 1

r − c− 1

⌉
+ r − c

and

n2(c) = (r − c)

(
t− 1

r − c− 1

)
+ r − c.

That is, n1(c) provides the lower bounds on n for the (r − c)-partite construction

in Theorem 5. By Lemma 2, n2(c) is minimized when c = r − 1 −
√
t− 1 on the

interval [0, r − 2]. Since n1(c) ≥ n2(c) for all c, it follows that n1(c) is minimized

at c = r − 1 −
√
t− 1 if n1(r − 1 −

√
t− 1) = n2(r − 1 −

√
t− 1). This is true

precisely when t = k2 + 1 for some integer k. We finally note that in this setting

n1(r − 1−
√
t− 1) = t+ 2

√
t− 1.

Proposition 5. For all r ≥ 3, if t ≥ (r − 1)2 + 1 and r − 1 divides t − 1, then

0 is the minimizing c-value in Theorem 5. The corresponding lower bound on n is

n ≥ r
(
t−1
r−1

)
+ r.

Proof. Define n1(c) and n2(c) as in the previous proof. Since t ≥ (r−1)2+1, we have

that r− 1−
√
t− 1 ≤ 0. Thus n2(c) is increasing on the interval [0, r− 2]. It follows

that n1(c) is minimized at c = 0, if n1(0) = n2(0). This is true precisely when t−1
r−1

is an integer. That is, when r − 1 divides t − 1. We finally note that in this setting

n1(0) = r
(
t−1
r−1

)
+ r.

Note that when t ≤ (r− 1)2 +1, Proposition 4 shows that the minimizing c-value

for Theorem 5 is not always 0. That is, perhaps somewhat surprisingly, starting
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with fewer parts than what we’re permitted leads to a smaller lower bound on n for

infinitely many choices of r and t.

In what remains of this section, we provide necessary conditions for the existence

of St-saturated graphs on n vertices that are Kr+1-free. We are continuing to consider

cliques on r + 1 vertices rather than r for ease of comparison with our bounds on n

that guaranteed the existence of St-saturated, r-partite graphs.

Lemma 3. Let G be an St-saturated graph on n vertices with m vertices of degree

less than t− 1 and no copy of Kr+1. Then

n ≥ r

r − 1

t− 1

2
+

√(
t− 1

2

)2

− m(r − 1)(t−m)

r

 .

Proof. Since G is Kr+1-free, we have by Turán’s Theorem that

e(G) ≤ r − 1

r
· n

2

2
.

Using the structure of St-saturated graphs described in Lemma 1 at the beginning of

this section, we also have that

e(G) ≥ 1

2
(n−m)(t− 1) +

(
m

2

)

for some value of m, where m is the number of vertices of degree less than t − 1.

These two bounds together provide the desired inequality.

Considering the case where t ≥ 2r, we provide a general bound independent of

the existence of St-saturated, Kr-free graphs with specific m. We also demonstrate

when these bounds are at least t + 1 since that is the trivial necessary condition for
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the existence of an St-saturated graph, and we want to be sure that the bound we

provide has value.

Proposition 6. Let G be an St-saturated graph on n vertices with no copy of Kr+1

where t ≥ 2r and r ≥ 2. Then

n ≥ r

r − 1

t− 1

2
+

√(
t− 1

2

)2

− (r − 1)(t− r)

 .

Furthermore, this bound is at least t+ 1 whenever t ≥ r(r + 1)− 1.

Proof. We begin by noting that the bound in Lemma 3 is minimized atm = r. This is

because m ≤ r by Lemma 1 and because the bound in Lemma 3 is decreasing in m for

m < t/2. Plugging this value in for m yields the desired bound. Letting n(t) denote

this bound, we observe that when t = r(r + 1)− 1, we have n(t) = r(r + 1) = t+ 1.

In addition,

n′(t) =
r

r − 1

1

2
+

1

2

t− 2r + 1√
1
4
(t− 1)2 − (r − 1)(t− r)

 ≥ r

r − 1
> 1

for all t ≥ 2r. By the racetrack principle, n(t) ≥ t + 1 whenever t ≥ r(r + 1) − 1 as

desired.

Finally, we observe that the bound in Lemma 3 is asymptotically equivalent to

the bound in Proposition 3. That is, our lower bound on n needed for the existence

of St-saturated, r-partite graphs cannot be lowered too much when we loosen our

restriction to Kr+1-free graphs.

Corollary 2. Let r be fixed. If there exists an St-saturated graph on n vertices with
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no copy of Kr+1 where t ≥ 2r and r ≥ 3, then

n ≥ r(t− 1)

r − 1
−Ot(1).

Proof. Note that the number of vertices, that is m, of degree less than t − 1, in a

Kr+1-free graph is at most r since these vertices form a clique in St-saturated graphs

by Lemma 1. In particular, m < t
2
. By Proposition 6, the following holds as t ≥ 2r.

n ≥ r

r − 1

t− 1

2
+

√(
t− 1

2

)2

− m(r − 1)(t−m)

r


≥ r

r − 1

(
t− 1

2
+

t− 1

2
− m(r − 1)t

r(t− 1)

)
=

r

r − 1
(t− 1−Ot(1))

=
r(t− 1)

r − 1
−Ot(1).

We end by noting that the second inequality above can be seen from the fact that

3r
2r+1

(2t− 1) ≤ t2 whenever t ≥ 2r.

2.2 Counting Stars in Star-Saturated Graphs

2.2.1 General results for stars in star-saturated graphs

We now turn to counting copies of stars Sr in St-saturated graphs. We write sr(G)

to denote the number of copies of Sr in a given graph G where Sr is the complete

bipartite graph K1,r. Note that if t ≤ r, then satSr(n, St) = 0 trivially as an St-

saturated graph must be St-free. That is, any St-saturated graph has no vertex of

degree at least t, and hence none of degree at least r. Our focus is therefore on

the situation where t > r, and we will consider the cases where t is odd and even
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separately. As in the previous section, we ignore the case where t = 1 since the only

S1-saturated graph on n vertices is an independent set.

As was the case in the previous section, we will give a construction that is especially

useful for us. In particular, this construction will provide us with a candidate for an

St-saturated graph with satSr(n, St) copies of Sr. We will build this graph in two

steps.

First, given a < b, we let Ra,b denote a graph on b vertices that is as close to

a-regular as possible. More specifically, when ab is even, Ra,b is an a-regular graph

on b vertices. When ab is odd, Ra,b has one vertex of degree a− 1 and b− 1 vertices

of degree a.

Lemma 4. An Ra,b exists if and only if b ≥ a+ 1.

Proof. It is well known that a-regular graphs exist on b vertices if and only if b ≥ a+1

and ab is even. That is, a regular Ra,b exists when ab is even. We now proceed to the

irregular case. When b ≥ a+1 and ab is odd, we can obtain a graph on b vertices that

is a-regular with the exception of one vertex of degree a− 1 in the following manner.

Label the vertices 0, 1, . . . , b − 1. Add edges between vertices with labels i and j if

and only if

|i− j| ≤ a− 1

2
mod b.

This gives us an (a− 1)-regular graph. Finally for 1 ≤ i ≤ b−1
2
, add an edge between

the vertices labeled i and i + b−1
2

mod b. We aren’t reusing any edges at this point

since b ≥ a + 1, and the degree of every vertex increases by 1 when we add these

edges, except for the vertex labeled 0. Its degree remains a − 1. Thus every vertex

has degree a with the exception of one vertex, namely the one labeled 0, of degree

a− 1, and hence Ra,b exists. Necessity of the inequality b ≥ a + 1 is clear because a

graph can not have any vertex of degree a if there are fewer than a+ 1 vertices.
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Utilizing the regularity of Ra,b, or near regularity in the case where ab is odd, we

define our candidate extremal graphs for satSr(n, St). They are essentially the disjoint

union of a clique and a regular graph. To be precise, for m ≤ t− 1 we let

KRt,n(m) =


Km ∪Rt−1,n−m if (t− 1)(n−m) is even

Km ∪Rt−1,n−m + e if (t− 1)(n−m) is odd,

where in the second case e is an edge between the vertex of degree t−2 in Rt−1,n−m and

an arbitrary vertex of the clique Km. Note that KRt,n(m) exists provided Rt−1,n−m

exists, which by Lemma 4 is the case precisely when n−m ≥ t. Having constructed

this graph KRt,n(m), we now immediately state and prove our theorem showing this

graph does in fact minimize the number of copies of small stars Sr among St-saturated

graphs on n vertices for some choice of m.

Theorem 4. For all n ≥ 2t− 1 with t ≥ 2 and r < t,

satSr(n, St) = min
0≤m≤t−1

sr(KRt,n(m)).

Note also that

sr(KRt,n(m)) =


m
(
m−1
r

)
+ (n−m)

(
t−1
r

)
if (t− 1)(n−m) is even

m
(
m−1
r

)
+ (n−m)

(
t−1
r

)
+
(
m−1
r−1

)
if (t− 1)(n−m) is odd.

Proof. We begin by considering the case where t is odd. By Lemma 1, if G is St-

saturated, then G contains a clique A containing all of the vertices with degree smaller

than t− 1. Let A have size m, and let B = V (G) \A. We have two cases to consider.

If G has no edges between A and B, then G contains exactly m
(
m−1
r

)
+ (n−m)

(
t−1
r

)
copies of Sr. The first term counts stars centered in A, and the second term counts
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stars centered in B. Since t− 1 is even, there exists a (t− 1)-regular graph Rt−1,n−m

on n−m vertices for all n−m ≥ t. This inequality holds since we assume n ≥ 2t− 1

and m ≤ t − 1. Thus an St-saturated graph with precisely the above count is given

by KRt,n(m).

Now, if there exist vertices u ∈ A and v ∈ B such that u is adjacent to v, then

our graph contains all of the previously counted stars, along with at least
(
m−1
r−1

)
stars

centered at u containing the edge uv. This means than an St-saturated graph G with

|A| = m and any such edge must have at least as many copies of Sr as KRt,n(m).

Thus an St-saturated graph with minimum number of copies of Sr is given by some

KRt,n(m) for some m ≤ t− 1.

We now consider the case where t is even. For a given m ≤ t− 1, if n−m is even,

we can find a (t− 1)-regular graph on n−m vertices, and the argument is the same

as before. That is, among St-saturated graphs with m vertices of degree less than

t − 1, KRt,n(m) is a minimal example with respect to copies of Sr. When n −m is

odd, we can construct a graph Rt−1,n−m on n−m vertices that is (t− 1)-regular with

the exception of one vertex v of degree t− 2. Thus we can construct an St-saturated

graph KRt,n(m) by taking the disjoint union of Km with Rt−1,n−m and adding an

edge from v to an arbitrary vertex in the clique Km. Since every St-saturated graph

with m vertices of degree less than t − 1 has at least m
(
m−1
r

)
+ (n −m)

(
t−1
r

)
many

copies of Sr and there is no (t − 1)-regular graph on n − m vertices, this adds the

fewest possible copies of Sr. That is, we must have at least one edge between A

and B, introducing
(
m−1
r−1

)
copies of Sr. Therefore the generalized saturation number

satSr(n, St) is obtained by minimizing sr(KRt,n(m)) over all values of m between the

two scenarios.

We note that the above theorem does not hold when n < 2t− 1. This is because
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it is possible for an St-saturated graph to have fewer than t vertices of degree t− 1.

This means we can’t consider the disjoint union of a small clique and a (t−1)-regular

graph. In this setting, it turns out than an optimal graph does not need to have that

structure. For example, a quick check shows that the graph in Figure 2.2 minimizes

the number of copies of S3 among S5-saturated graphs on 6 vertices and has only 4

vertices of degree 4.

Figure 2.2: An S5-saturated graph that does not satisfy the criteria in Theorem 4

In light of the fact that Theorem 4 is concerned with a minimum count over choices

of m, we now introduce additional notation to more concisely discuss that optimal

choice. Given n, r, and t with n ≥ max{2t− 1, t+ 1}, we define

m0(n, r, t) := argmin
m

sr(KRt,n(m)).

That is, m0(n, r, t) is the value of m for which KRt,n(m) attains the generalized

saturation number satSr(n, St). If the generalized saturation number is achieved for

multiple values of m, we take the smallest one for definiteness. We shall see later in

this section that there are instances where KRt,n(m) is optimal for multiple choices

of m. Our goal now is to identify the value of m0(n, r, t) for given values of n, r, and

t. Kaszonyi and Tuza [22] showed that the number of edges in an St-saturated graph

is minimized when m = ⌊ t
2
⌋ or ⌊ t+1

2
⌋, answering our question for r = 1. This solution

does not hold for all r ≥ 1 though. Rather m0(n, r, t) depends on both r and t. The
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value of n does not matter for n ≥ 2t − 1 when t is odd since we are simply getting

more vertices of degree t− 1 as we increase n. The particular value of n does matter

when t+1 ≤ n < 2t− 1 though. This is because there may not exist a (t− 1)-regular

graph on n−m as demonstrated by the example in Figure 2.2.

Although we are unable to provide a closed form for m0(n, r, t) for arbitrary pairs

of r and t, there is more we can say about the optimal choice, or in some cases, choices.

We will focus on the case where t is odd since we are guaranteed that KRt,n(m) is

the disjoint union of Km and a (t − 1)-regular graph Rt−1,n−m We begin with the

observation that

D(m) := sr(KRt,n(m+ 1))− sr(KRt,n(m)) = (r + 1)

(
m

r

)
−
(
t− 1

r

)
. (2.2)

That is, D(m) denotes the change in the number of copies of Sr as we increase m, the

number of vertices of degree less than t− 1, by 1 from m to m + 1. This is done by

replacing Km with Km+1 and Rt−1,n−m with Rt−1,n−m−1. Note that in this difference,

(r + 1)
(
m
r

)
= m

(
m−1
r−1

)
+
(
m
r

)
is the number of new stars centered in the clique Km+1,

and
(
t−1
r

)
is the number of stars that were lost from the (t− 1)-regular portion. The

following is an immediate consequence of this observation.

Lemma 5. If t is odd, then for all n ≥ 2t− 1 with t > r, we have m0(n, r, t) ≥ r. In

particular, m0(n, t− 1, t) = t− 1.

Proof. If m < r, then
(
m
r

)
= 0 and so D(m) < 0. That is,

sr(KRt,n(m+ 1)) < sr(KRt,n(m))

whenever m < r. Therefore the minimum must be attained when m ≥ r. To prove

the second statement, we observe that when r = t− 1, we have D(t− 1) = t− 1 > 0.
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Since D is an increasing function, it follows that m0(n, t− 1, t) = t− 1.

For fixed t and r, we extend the definition of D in Equation 2.2 to all real numbers

as follows:

D(x) := (r + 1)

(
x

r

)
−
(
t− 1

r

)
.

Now,
(
x
r

)
is convex and increasing in x for all x ≥ r−1. It follows that those properties

hold for D(x) as well. Thus D(x) has a unique root on the interval (r − 1,∞) as

D(r − 1) = −
(
t−1
r

)
. Our next theorem takes advantage of this structure.

Theorem 9. For fixed n, r, and t with n ≥ 2t− 1 and t > r, let x denote the unique

root of D(x) in the interval (r − 1,∞). Then

m0(n, r, t) = ⌈x⌉.

Furthermore, when x ̸∈ Z, this is the unique minimizing value of m in Theorem 4.

When x ∈ Z, both x and x + 1 simultaneously minimize the number of copies of Sr

among St-saturated graphs on n vertices.

Proof. As stated previously, D(x) has a unique root x and is increasing on the interval

(r − 1,∞). Let m ≥ r be an integer. If m < x, then D(m) < 0 and

sr(KRt,n(m+ 1)) < sr(KRt,n(m)).

If m > x, then D(m) > 0 and

sr(KRt,n(m+ 1)) > sr(KRt,n(m)).

If x ̸∈ Z, then it follows that sr(KRt,n(m)) is minimized when m is the first integer



29

larger than x, namely ⌈x⌉, and this choice of m is unique.

On the other hand, if x ∈ Z, then D(x) = 0 and

sr(KRt,n(x+ 1)) = sr(KRt,n(x)).

Therefore sr(KRt,n(m)) is minimized by x and x + 1 simultaneously. These are the

only optimal choices for m as D(x− 1) < 0 and D(x+ 1) > 0.

Before proceeding to asymptotic results, we conclude the discussion on general

results for satSr(n, St) by providing two lower bounds on the value of m0(n, r, t) and

giving a more precise answer for the case where r = 2. The second lower bound will

be of additional interest in the following section on asymptotic results. Before stating

these results, we prove a simple lemma regarding binomial coefficients.

Lemma 6. If a ≥ c ≥ 2 and b > 1 where a, b ∈ R and c ∈ Z, then

bc
(
⌊a/b⌋
c

)
<

(
a

c

)
.

Proof. Note that if ⌊a/b⌋ < c, then the inequality holds trivially as the left hand side

of our inequality is equal to 0, and the right hand side is positive. Suppose then that

⌊a/b⌋ ≥ c. Then we have the following

bc(⌊a/b⌋)c = bc(⌊a/b⌋)(⌊a/b⌋ − 1) · · · (⌊a/b⌋ − (c− 1))

≤ a(a− b)(a− 2b) · · · (a− b(c− 1))

and

(a)c = a(a− 1)(a− 2) · · · (a− (c− 1)).
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Since 0 < a − bk < a − k for all 1 ≤ k ≤ c − 1 and b > 1, the desired inequality

holds.

With this lemma in hand, we are ready to state and prove our next lower bounds

on the optimal choice for m in terms of minimizing copies of Sr among St-saturated

graphs.

Corollary 3. If t ≥ 3 is odd and r ≥ 2 with t > r, then for all n ≥ 2t− 1, we have

m0(n, r, t) ≥
t+ 1

2
.

Proof. Since r ≥ 2, we know that 2r > r + 1. Let m ≤ t−1
2

be an integer. Applying

Lemma 6 with a = t− 1, b = 2, and c = r, we obtain the following

(r + 1)

(
m

r

)
< 2r

(
m

r

)
≤ 2r

(
t−1
2

r

)
<

(
t− 1

r

)
.

Thus

D(m) = (r + 1)

(
m

r

)
−
(
t− 1

r

)
< 0.

This means that satSr(n, St) is not attained by KRt,n(m), and m0(n, r, t) >
t−1
2
.

Corollary 4. If t ≥ 3 is odd and r ≥ 2 with t > r, then for all n ≥ 2t− 1, we have

m0(n, r, t) >
t− 1

(r + 1)1/r
.

Proof. Note that

D
(⌊

t− 1

(r + 1)1/r

⌋)
= (r + 1)

(⌊
t−1

(r+1)1/r

⌋
r

)
−
(
t− 1

r

)
.
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Applying Lemma 6 with a = t−1, b = (r+1)1/r, and c = r, we see that this quantity

is strictly less than 0. Since t−1
(r+1)1/r

is not an integer for all r ≥ 2, it must be the case

that m0(n, r, t) >
t−1

(r+1)1/r
.

This is all we will say with regards to the value of m0 for arbitrary r and t.

However, when r = 2, finding m0(n, r, t) simply amounts to solving a quadratic

equation and applying Theorem 9. The following is thus immediate.

Proposition 7. For all t ≥ 3 and n ≥ 2t − 1, the value of x as in Theorem 9 for

r = 2 is given by

x =
1

2
+

1

6

√
12t2 − 36t+ 33.

We can say a little more when r = 2.

Proposition 8. There are two optimal choices for m that simultaneously minimize

the number of copies of S2 among St-saturated graphs if and only if t is given by the

following where i ≥ 0 is some non-negative integer

t(i) =
1

4

(
(1 +

√
3)(2 +

√
3)i − (

√
3− 1)(2−

√
3)i − 2

)
+ 2.

Proof. By Theorem 9 and Proposition 7, there are two optimal choices for m precisely

when m = 1
2
+ 1

6

√
12t2 − 36t+ 33 is an integer. This is the case when we can write

√
12t2 − 36t+ 33 in the form 6k + 3 where k is an integer. Equivalently, we need

(t − 1)(t − 2) = 3(k + 1)k. Now, the second member of the Diophantine pair (x, y)

that satisfies 3(x2+x) = y2+y is given by y = y(i) where y(i) satisfies the recurrence

(see OEIS sequence A001571 [32])

y(i) = 4y(i− 1)− y(i− 2) + 1 with y(0) = 0 and y(1) = 2.
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Solving the linear recurrence, we find that

y(i) =
1

4

(
(1 +

√
3)(2 +

√
3)i − (

√
3− 1)(2−

√
3)i − 2

)
.

Therefore, since we are interested in y = t − 2, we see that the values of t for

which there are two optimal choices of m are given by t(i) = y(i) + 2.

2.2.2 Asymptotic results for stars in star-saturated graphs

In addition to general questions regarding the number of small stars in star-saturated

graphs, we can address asymptotic questions. Here we focus on the case where t is

odd and n ≥ 2t − 1 for convenience. As noted earlier, this setting guarantees that

KRt,n(m) exists as the disjoint union of a clique Km and a (t − 1)-regular graph on

the remaining n−m vertices. Utilizing our general results from the previous section,

we immediately proceed to our asymptotic results.

Theorem 10. Let r = o(
√
t) with t odd and r ≥ 2. Then for all n ≥ 2t− 1, we have

m0(n, r, t) = (1 + ot(1))
t− 1

(r + 1)1/r
.

Proof. As in Theorem 9, we need to solve for the value of x such that

(r + 1)

(
x

r

)
=

(
t− 1

r

)
. (2.3)

Let x be the unique solution to Equation 2.3 on the interval (r− 1,∞). Observe that

in order for this equality to hold, x must be less than t− 1. By Corollary 3, we know
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that x ≥ ⌊t/2⌋ and so x = Θ(t). It is well known that when k = o(
√
n),

(
n

k

)
= (1 + on(1))

nk

k!
.

Since r = o(
√
t), x = Θ(t), and n ≥ 2t − 1, we can apply this to our equality and

obtain the following.

(r + 1)(1 + ox(1))x
r = (1 + ot(1))(t− 1)r.

Thus, since x = Θ(t),

x = (1 + ot(1))
t− 1

(r + 1)1/r
.

Applying Theorem 9 gives us the desired result.

With slightly less precision than our previous theorem, we consider the more

general case where r = o(t). Before stating our theorem, we note the following useful

result. A short proof can be found in [10]. See also [26] for a discussion of the result.

Lemma 7. If k = o(n), then log
(
n
k

)
= (1 + on(1))k log

n
k
.

We are now ready to state and prove our final result concerning satSr(n, St).

Theorem 11. Let r = o(t) with t odd and r ≥ 2. Then for all n ≥ 2t − 1, we have

that

m0(n, r, t) =

(
t− 1

(r + 1)1/r

)1+ot(1)

.

Proof. Let x be the unique solution to Equation 2.3 on the interval (r − 1,∞). As

mentioned in the proof of the previous theorem, x = Θ(t). We now take the logarithm
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of both sides in our equality, and we observe the following.

log

(
(r + 1)

(
x

r

))
= log

(
t− 1

r

)
, so

log(r + 1) + log

(
x

r

)
= log

(
t− 1

r

)

By Lemma 7,

log(r + 1) + (1 + ox(1))r log

(
x

r

)
= (1 + ot(1))r log

(
t− 1

r

)

Solving for x in this equation and using the fact that x = Θ(t), we get

x =

(
t− 1

(r + 1)1/r

)1+ot(1)

.

By Theorem 9, m0(n, r, t) = ⌈x⌉, and the result follows.

This concludes our section concerning satSr(n, St), although determining the exact

value of m0 for arbitrary r and t is still very much of interest, even in the case where

n ≥ 2t− 1 and t is odd.

2.3 Counting Stars in Clique-Saturated Graphs

Having considered the minimum number of cliques of a given size in star-saturated

graphs and counting stars in star-saturated graphs, we move to counting stars in

clique-saturated graphs. Clique-saturated graphs have been of interest since the proof

of Turán’s Theorem, which established the maximum number of edges among clique-

saturated graphs. From the other end, Theorem 1 gives the minimum number of

edges among clique-saturated graphs. This gives us the exact value of satS1(n,Kt)

since S1 is simply an edge. As we noted in Chapter 1, the split graph Kt−2 +Kn−t+2
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attains the minimum edge count for Theorem 1. For n sufficiently large, Chakraborti

and Loh showed that this graph is the unique Kt-saturated graph minimizing the

number of copies of Kr for all r < t, as well as the number of copies of Cr [8].

We will show in this section that the split graph is far from optimal when we want

to minimize stars Sr for r ≥ 3; however, it is a good place to start. In particular, it

gives us the following upper bound

satSr(n,Kt) ≤ sr(Kt−2 +Kn−t+2) = (n− t+ 2)

(
t− 2

r

)
+ (t− 2)

(
n− 1

r

)
.

Here the first term counts stars centered in the independent setKn−t+2 and the second

counts stars centered in the clique Kt−2. Our first result in this section shows that

this count is asymptotically best for r = 2 when t ≥ 3. Using terminology introduced

by Erdős and Rényi, we will refer to copies of S2 as cherries [12]. We now prove

Theorem 3

Theorem 3. For all n ≥ t ≥ 3,

satS2(n,Kt) =
t− 2

2
n2 +O(n3/2).

Proof. Note that, since

satS2(n,Kt) ≤ s2(Kt−2 +Kn−t+2) = (n− t+ 2)

(
t− 2

r

)
+ (t− 2)

(
n− 1

r

)
,

we have the desired upper bound on our generalized saturation number. it remains to

be shown that we can not achieve a lower count asymptotically. To this end, let G be

a Kt-saturated graph on n vertices with m edges, and suppose that G has satS2(n,Kt)

copies of S2. We begin by noting two lower bounds on the number of cherries in a
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Kt-saturated graph on n vertices. First, since G is Kt-saturated, the addition of any

missing edge must create a copy of Kt using that new edge. Thus every pair of non-

adjacent vertices must have at least t− 2 common neighbors, giving us t− 2 cherries

with the non-adjacent pair as the endpoints. This gives us the bound

s2(G) ≥ (t− 2)

[(
n

2

)
−m

]
.

For our second bound, we note that we can also count cherries by pulling pairs of

vertices from a given vertex’s neighborhood. That is,

s2(G) =
∑

v∈V (G)

(
d(v)

2

)

=
∑

v∈V (G)

d(v)2

2
−m

=
n

2

 1

n

∑
v∈V (G)

d2i

−m

≥ n

2

 1

n

∑
v∈V (G)

di

2

−m

= 2m2/n−m.

The last inequality in this string uses Cauchy’s inequality. We now have a lower

bound on the number of cherries that is increasing in m and another bound that is

decreasing in m. Since both bounds must be satisfied, it suffices to determine the

value of m for which these bounds agree. This occurs when

m =
1

8

[
2− 2(t− 2)n+

√
4(t− 2)2n2 − 8(t− 2)n+ 4 + 16(t− 2)(n3 − n2)

]
.
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Evaluating our lower bounds at this choice of m, we see that s2(G) = t−2
2
n2+O(n3/2)

as desired.

It turns out that for t ≥ 4, the split graph is not only asymptotically tight, but

it is in fact the unique extremal graph minimizing the number of cherries among

Kt-saturated graphs. This was recently proved by Ergemlidze, Methuku, Tait, and

Timmons [14]. Now, in the situation where t = 3, the optimal number of edges with

regards to the two bounds in the previous proof is m = n
2

√
n− 1. Such a graph is

(
√
n− 1)-regular and has the property that every pair of non-adjacent vertices has

a unique common neighbor. The graph with this property is the Moore graph of

diameter 2 and girth 5, where the girth of a graph is the length of its smallest cycle.

Definition 3. A Moore graph is a d-regular graph of diameter k with

1 + d
k−1∑
i=0

(d− 1)i

vertices. Equivalently, it is a graph of diameter k and girth 2k + 1.

That is, a Moore graph has the largest possible number of vertices among d-regular

graphs with diameter k. The fact that this is the maximum number of vertices in

such a graph can be seen by counting the number of vertices a given distance from a

vertex v. In particular, there are d vertices distance 1 from v and at most d(d − 1)

vertices distance 2 from v. This is obtained when the vertices with distance 2 from

v have unique neighbors in N(v). Similarly, there are at most d(d− 1)i−1 vertices at

distance i from v.

In the case where k = 2, we see that the number of vertices is n = d2 + 1. That

is, d =
√
n− 1, as in the situation previously described. Furthermore, these graphs

are strongly regular since every pair of non-adjacent vertices have the same number
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Figure 2.3: Hoffman-Singleton graph

of common neighbors, namely 1, and every pair of adjacent vertices have the same

number of common neighbors, namely 0. The first of these gives the bijection between

non-edges and cherries, and the second is a consequence of being triangle-free.

It is known that such Moore graphs exist on 5, 10, and 50 vertices, as well as

possibly 3250 vertices [20]. The three known graphs are C5, the Petersen graph P ,

and the Hoffman-Singleton graph. The last of these is a 7-regular graph on 50 vertices

pictured in Figure 2.3. We will now discuss in more detail the connection between

Moore graphs and the problem of determining the value of satS2(n,K3).

2.3.1 Cherries in Triangle-Saturated Graphs

As we just mentioned, Moore graphs of diameter 2 and girth 5, when they exist,

minimize the number of cherries among K3-saturated graphs. In particular, they

contain fewer copies of S2 than the split graph, which, in the case of K3-saturated

graphs, is itself a large star. Since there are few enough graphs on a small number

of vertices, a quick check shows that for n ∈ {3, 4, 6, 7, 8, 9}, the K3-saturated graph
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on n vertices with the minimum number of cherries is that large star K1,n−1, or Sn−1.

With the exception of n = 6, this is the unique extremal graph. This leads to the

following question.

Question 1. For what values of n, is

s2(K1,n−1) = satS2(n,K3)?

To better understand what is necessary for a K3-saturated graph to contain fewer

cherries than K1,n−1, we can consider bounds on the number of edges m that such a

graph can contain. In Figure 2.4, we present constraints on such a graph using the

lower bounds from Theorem 3. The upper bound on the number of edges to allow

for a graph to have fewer than
(
n−1
2

)
cherries is provided by Proposition 9. Whether

there exists a graph on n vertices in this window for given values of n is another

matter. Connected to our earlier remarks, there exists a graph at the intersection of

the red and blue curves precisely when there exists a Moore graph of diameter 2 on n

vertices. More generally, a graph that falls on the blue curve must be regular, and a

graph that falls on the red line must have a bijection between non-edges and cherries.

We now state an upper and lower bound on the number of edges for us to consider,

the former being necessary to beat the split graph.

Proposition 9. Let G be a K3-saturated graph on n vertices and m edges such that

s2(G) < s2(K1,n−1). Then

m <
n

4
+

1

4

√
4n3 − 11n2 + 8n.

Proof. The second bound in our proof of Theorem 3 states that s2(G) ≥ 2m2/n−m.

Setting s2(G) <
(
n−1
2

)
, the number of cherries in K1,n−1, and solving for m yields the
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m

s2(G)

n
√
n−1
2

n− 1

2m2/n−m

(
n
2

)
−m

y =
(
n−1
2

)

Figure 2.4: Window of interest where a graph on m edges contains fewer cherries
than K1,n−1

desired inequality.

Proposition 10. Let G be a K3-saturated graph on n vertices and m edges with

maximum degree ∆. Then

m ≥ (n− 1)2

2∆
+

1

2
∆.

Proof. Let ∆ and δ denote the maximum and minimum degrees of G respectively.

Setting k = 3 in Theorem 4 of [2], we obtain the inequality

δ∆ ≥ n− 1 (2.4)

For our graph to have the smallest degree sum possible, we want n − 1 vertices of
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degree δ and a single vertex of degree ∆. Thus

2m =
∑
v∈G

d(v) ≥ (n− 1)δ +∆ ≥ (n− 1)2

∆
+∆.

We note that Inequality 2.4 in our previous proof presents a very powerful obser-

vation of Alon, Erdős, Holzmann, and Krivelevich concerning clique-saturated graphs

in general. This observation that a small minimum degree forces a clique-saturated

graph to have a large maximum degree will show up again in the conclusion of Section

2.3.

We now return our attention to Moore graphs and what makes them so special.

As stately previously, these graphs satisfy the two lower bounds on the cherry count

in the proof of Proposition 3 since they are regular and have the property that every

non-edge corresponds to a unique cherry. To help describe how close a graph is to

having this property, we introduce the following notation and definition.

Definition 4. Let x, y ∈ V (G) with x not adjacent to y. Let c(xy) denote the number

of cherries with x and y as endpoints. We say that the non-edge xy is a flaw of

order i if c(xy) = i with i ≥ 2.

With this terminology, we are ready to state a lower bound on the number of

cherries in a K3-saturated graph in terms of its edges and flaws.

Proposition 11. Let G be a K3-saturated graph on n vertices and m edges. If G

contains a flaw of order i, then

s2(G) ≥
(
n

2

)
−m+ (i− 1) +

(
i

2

)
.
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Proof. We begin by noting that there is an injection from the set of non-edges to

cherries since G is K3-saturated. That is,

s2(G) ≥
(
n

2

)
−m.

We will now count cherries not included in this injection. To this end, let xy be a

non-edge in G such that c(xy) = i ≥ 2. That is, xy is a flaw of order i, and only one

of the cherries involving xy has been accounted for in our initial count. Now, since

G is K3-free by assumption, N(x)∩N(y) must be an independent set. Furthermore,

c(uv) ≥ 2 for every pair u, v ∈ N(x) ∩N(y) since {x, u, v} and {y, u, v} each induce

a copy of S2. Thus G has at least
(
i
2

)
flaws of order 2, separate from the non-edge

xy. For each of these flaws, only one cherry could have been included in the original

count. Therefore we can guarantee that

s2(G) ≥
(
n

2

)
−m+ (i− 1) +

(
i

2

)

as desired.

This tells us that having a single large flaw guarantees many flaws in our graph,

pushing us further from the ideal situation presented by the Moore graph. In hopes of

staying closer to to a Moore graph, it is natural to consider a construction for graphs

that begins with a Moore graph. In particular, we shall consider blow-ups of a Moore

graph.

Definition 5. A blow-up B of a graph G is obtained by replacing one or more

vertices of G with independent sets. We refer to vertices in an independent set that

replaced a vertex v as clones of v. A pair of vertices x, y are adjacent in B if they

were adjacent in G, if x is a clone of a vertex adjacent to y in G, or if x and y are
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n Cherries Extremal Graph(s) Notes
3 1 K1,2 K1,2 is the only K3-saturated graph on 3 vertices
4 3 K1,3 Only options are C4 and K1,3

5 5 C5 Only options are K1,4, K2,3, and C5

6 10 C⋆
5 Only options are K1,5, K2,4, K3,3, and C⋆

5

K1,5

7 15 K1,6 There are 6 candidate graphs
8 21 K1,7 Verified with Sage
9 28 K1,8 Verified with Sage
10 30 P The Petersen graph P is a Moore graph

Table 2.1: K3-saturated graphs on n vertices minimizing the cherry count

Figure 2.5: K3-saturated graphs on 3 vertices with the minimum number of cherries

clones of vertices which were adjacent in G.

The size of the independent sets that replace vertices in G are not required to

be the same size. Note that any blow-up of a Moore graph is K3-saturated. In

particular, adding an edge between vertices that are clones of the same vertex will

create a triangle involving those two vertices and any common neighbor. Any other

added edges will create the same triangles that they would have in the original Moore

graph. At this point, we remind the reader of our remark that K1,5 was not the

unique K3-saturated graph on 6 vertices with the minimum number of cherries. The

other graph with the same cherry count, 10, is given by the single vertex blow-up of

C5, the smallest Moore graph of diameter 2. Call this graph C⋆
5 . See Table 2.1 for a

summary of the optimal graphs on up to 10 vertices.
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In the case of C⋆
5 , we see that cloning a single vertex in C5 results in an optimal

configuration; however, a 7-vertex blow-up of C5, whether that means cloning two

vertices once or a single vertex twice, results in a K3-saturated graph with more

cherries that K1,6. As we move to larger Moore graphs, there is a little more wiggle

room. We make this clear with the following pair of results. We write α(G) to denote

the size of the largest independent set in G.

Proposition 12. Let M be a Moore graph with diameter 2 on n vertices. Let Mk

be a graph on n + k vertices obtained by cloning k vertices (possibly with repetition)

of M , and let α = α(M). Then for all k ≤ α, s2(Mk) is minimized when the cloned

vertices form an independent set I of size k. Furthermore, s2(Mk) is independent of

the choice of I.

Proof. Let Mk be obtained from M by cloning k vertices, possibly with repetitions,

where k ≤ α. Since M is strongly regular, s2(M1) is independent of the cloned

vertex. Let k ≥ 2 and let Mk be obtained from an optimal choice of Mk−1 by cloning

a vertex v. Call the new vertex v′. Let a denote the number of times vertices in

NM(v) have been cloned already. Similarly, let b denote the number of times vertices

in V (M)−NM [v] have been cloned, and let c denote the number of times that v has

already been cloned. By these definitions, a + b + c = k − 1. We now count the

number of cherries that are created by the addition of v′. There are

(√
n− 1 + a

2

)

copies centered at v′ since the degree of v was
√
n− 1 + a in Mk−1. The number of
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cherries that use v′ as a leaf is

∑
u∼v

dMk−1
(u) ≥ (

√
n− 1 + a)(

√
n− 1 + c) + b. (2.5)

Equality holds when there is a unique vertex in NMk−1
(v) that is adjacent to each

of the cloned vertices from V (M) − NM [v]. That is, when there is a unique cherry

involving v and each of the clones of vertices in V (M) − NM [v]. Observing that

Inequality 2.5 holds with equality and is minimized when a = c = 0, we obtain the

desired result. That is, the number of cherries is minimized when v′ is not adjacent

to any of the previously added vertices. By induction Mk−1 is obtained by cloning

an independent set, and hence so is Mk. Since the cherry counts obtained by adding

v′ only depend on it being non-adjacent to the other clones, it follows that s2(Mk) is

independent of the independent set cloned.

This proposition tells us that the optimal way of cloning vertices in a Moore graph

to minimize the number of cherries is to clone the vertices of an independent set once.

We are now interested in determining how large of an independent set we can blow

up in a Moore graph to be obtain a graph on n vertices that contains fewer cherries

than K1,n−1. Our next proposition resolves this question.

Proposition 13. Let M be a d-regular Moore graph with diameter 2. Let Mk be a

graph on d2 + 1 + k vertices obtained by cloning an independent set of size k ≤ α in

M . Then s2(Mk) ≤ s2(K1,d2+k) if and only if k ≤ d − 1. Equality holds only when

k = d− 1.

Proof. We first observe that α ≥ d since the neighborhood of any vertex in a K3-

saturated graph must be an independent set. We now note thatM contains (d2+1)
(
d
2

)
cherries. Construct Mk by cloning an independent set I of size k. Call the set of
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newly added vertices I ′. Since all of the cloned vertices belong to an independent

set, we gain k
(
d
2

)
cherries centered in I ′. Since each pair of non-adjacent vertices in

M has a unique common neighbor, there are
(
k
2

)
cherries whose ends are both in I ′.

The number of cherries with exactly one end in I ′ is d2k since we have k choices for

the vertex in I ′, d choices for its neighbor, and d choices for the second leaf using

neighbors from the original vertices of M . Altogether, we have

s2(Mk) = (d2 + 1 + k)

(
d

2

)
+ d2k +

(
k

2

)
.

Setting s2(Mk) ≤ s2(K1,d2+k), we obtain k ≤ d− 1 as desired. We now observe that

s2(Md−1) = s2(K1,d2+d−1).

Lastly, we note that

s2(Mk)− s2(Mk−1) = d2 + k > d2 + k − 1 = s2(K1,d2+k)− s2(K1,d2+k−1),

and therefore s2(Mk) < s2(K1,d2+k) whenever k < d− 1.

We note that when M is the Hoffman-Singleton graph, this proposition tells us

that we can clone the vertices of an independent set of up to 5 vertices and still

contain fewer copies of S2 than a large star K1,n−1. There is a tie if we clone an

independent set of size 6. Although we do not know if there exists a Moore graph

with diameter 2 on 3250 vertices, this result tells us that if such a graph exists, then

we can clone the vertices of an independent set of up to 55 vertices and still contain

fewer cherries than the star on as many vertices.

Perhaps the main takeaway from these results is that there exist K3-saturated
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Figure 2.6: K3-saturated graphs with defect 2

graphs G on n vertices which are not Moore graphs such that s2(G) < s2(K1,n−1).

We mentioned earlier that Moore graphs have the largest possible number of vertices

among d-regular graphs of diameter k. We are only concerned with the case where

k = 2, and since we are interested in values of n for which Moore graphs don’t exist,

it is of interest to consider graphs with almost as many vertices as possible given the

constraints just mentioned. We will say that a graph with maximum degree d and

diameter 2 has defect δ if it has d2 + 1 − δ vertices. That is, it has δ fewer vertices

than the maximum.

It turns out that you can’t be too close to a Moore graph in this regard. For

example, Erdős, Fajtlowicz, and Hoffman proved that the cycle C4 is the only K3-

saturated graph with maximum degree d on d2 vertices [13]. Thus we can’t find a

K3-saturated graph with defect 1 on more than 4 vertices. Their proof, perhaps un-

surprisingly considering standard proofs regarding Moore graphs, relies on an analysis

of the eigenvalues of the adjacent matrix of a potential graph. They do however pro-

vide graphs with defect 2. See Figure 2.6. For additional results concerning graphs

of diameter 2 and defect 2, see [9, 29, 30]

We end our discussions related to Moore graphs, defects, and cherries by proving

the following results. We pay special attention to the presence of cycles on 4 vertices

and the role that they play in counting cherries.

Proposition 14. If G is a d-regular, K3-saturated graph on n vertices such that every
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vertex is contained in a unique copy of C4, then G ∼= C4.

Proof. Since G is d-regular, it has nd
2
edges and

(
n
2

)
− nd

2
non-edges. Since every vertex

is contained in exactly one copy of C4, there are
n
2
flaws of order 2 and none of higher

order. That is, the remaining
(
n
2

)
− nd

2
− n

2
non-edges give rise to unique cherries.

Therefore

n

(
d

2

)
= s2(G) =

n

2
+

(
n

2

)
− nd

2
.

This holds only when n = d2. Since K3-saturated graphs have diameter 2, it follows

from the aforementioned result of Erdős, Fajtlowicz, and Hoffman in [13] that G ∼=

C4.

Proposition 15. Suppose G has diameter 2, maximum degree d, and defect δ. Then

the following hold.

1. G is regular or δ ≥ d.

2. If G is K3-free and δ < d, then every vertex of G is contained in at least one

copy of C4.

Proof. Let G be a graph with diameter 2, maximum degree d, and defect δ. If G is

not regular, then there exists a vertex of degrees less than d − 1. Considering the

vertices by their distance from said vertex, we have that

n ≤ 1 + (d− 1) + (d− 1)2 = d2 + 1− d.

This is less than d2 + 1− δ if d > δ. Since G has defect δ, it follows that δ ≥ d.

Now, suppose G is K3-free and has defect δ < d. Since δ < d, G is d-regular. If a

vertex v is in no copy of C4, then by considering its neighbors and those at distance
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2, we have n ≥ 1 + d + d(d − 1) = d2 + 1, a contradiction. Therefore every every

vertex must be contained in a copy of C4.

Proposition 16. If G has diameter 2 and has d2 + 1 − δ vertices with maximum

degree d and minimum degree ℓ, then

ℓ ≥ d− δ

d
.

Equivalently,

δ ≥ d2 − dℓ = d(d− ℓ).

Proof. If G has minimum degree ℓ and maximum degree d, then

n ≤ 1 + ℓ+ ℓ(d− 1) = ℓd+ 1.

Since n = d2 + 1 − δ, we have d2 + 1 − δ ≤ ℓd + 1. Rearranging gives the desired

inequalities.

Proposition 17. Suppose G is d-regular with diameter 2 and n = d2 +1− δ vertices

such that some vertex is contained in exactly ρ copies of C4. Then δ ≥ ρ with equality

when G is K3-free.

Proof. Let v ∈ G be a vertex contained in ρ copies of C4. Since v is in ρ copies of C4,

there exist exactly ρ vertices in N2(v) with two edges to vertices in N(v). Every other

vertex in N2(v) must have one such edge. Since G is d-regular and there are ρ pairs

of vertices in N(v) with a common neighbor in N2(v) vertices are adjacent to two

vertices in N(v), |N(v)| = d and |N2(v)| ≤ d(d − 1) − ρ. Adding the vertices based

on their distance from v, we obtain n ≤ d2 + 1− ρ. If G is K3-free, then N(v) is an

independent set, and these inequalities are equalities, and the proof is complete.
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Note that although copies of C4 can overlap in different ways, it does not matter.

Finally, we state one last result that connects to our mission of finding graphs with

fewer cherries than a large star.

Proposition 18. Let G be a d-regular graph on d2 + 1− δ vertices with diameter 2.

Then s2(G) < s2(K1,d2−δ) if and only if δ ≤ d− 2.

Proof. Note the following.

s2(G) = (d2 + 1− δ)

(
d

2

)
and s2(K1,d2−δ) =

(
d2 − δ

2

)
.

Thus

s2(K1,d2−δ)− s2(G) =
1

2

(
δ3 + δ(1− d− d2) + d3 − 2d2 + d

)
.

Setting this equal to 0, we have that

δ =
1

2

(
d2 + d− 1±

√
d4 − 2d3 + 7d2 − 6d+ 1

)
.

Call these roots δ+ and δ−. We now note that d2 < δ+ and d− 2 < δ− < d− 1. We

end by observing that when δ = d− 2, we have

s2(G) = (d2 − d+ 3)

(
d

2

)
=

1

2
(d2 − d+ 3)(d2 − d) =

1

2
(d4 − 2d3 + 4d2 − 3d)

s2(K1,d2−δ) =

(
d2 − d+ 2

2

)
=

1

2
(d2 − d+ 2)(d2 − d+ 1) =

1

2
(d4 − 2d3 + 4d2 − 3d+ 2).

That is, the d-regular graph has fewer copies of S2 than the star for δ = d − 2 and

therefore also for all δ ≤ d − 2. Similarly, the star contains fewer copies of S2 for

δ = d and hence all δ ≥ d− 1.
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2.3.2 Counting Larger Stars in Clique-Saturated Graphs

We end our section on satSr(n,Kt) by considering the number of copies of Sr in Kt-

saturated graphs for r ≥ 3. We begin this task with a pair of results proved by Alon,

Erdős, Holzman, and Krivelevich in [2], the first of which appeared in less general

form in the proof of Proposition 10. We provide a short proof due to its simplicity

and the insight it provides for Kt-saturated graphs.

Lemma 8 (Alon et al., 1996). Let G be a Kt-saturated graph on n vertices with

δ(G) = δ and ∆(G) = ∆. Then

δ ≥ (t− 2)(n− 1)

∆ + t− 3
.

Proof. Let v be a vertex of degree δ in G and let A = N(v) and B = V (G) \ N [v].

Since G is Kt-saturated, |N(v)∩N(u)| ≥ t− 2 for all u ∈ B. Also, every vertex in A

has at most ∆− 1 neighbors in B. Thus

(t− 2)(n− δ − 1) ≤ e(A,B) ≤ δ(∆− 1)

where e(A,B) is the number of edges uv where u ∈ A and v ∈ B. Rearranging yields

the desired inequality.

An immediate consequence of this result is that ∆(G) = Ω(n1/2) when G is Kt-

saturated. We now briefly describe a construction provided by the same authors that

produces a Kt-saturated graph with ∆(G) = Θ(n1/2). We build the vertex set as

follows.

1. Begin with a projective plane P of order q where q is a power of a prime and

q ≥ t− 1 (q ≥ 3 for t = 3).
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2. Label the points and lines of P . In particular, we label the points p0, . . . , pq2+q

and the lines ℓ0, . . . , ℓq2+q in such a way that pq2+q ∈ ℓi for all 0 ≤ i ≤ q and

piq+j ∈ ℓi for all 0 ≤ i ≤ q and 0 ≤ j ≤ q − 1.

3. Remove the point pq2+q and the q+1 lines it is contained in to obtain a truncated

projective plane P ′.

4. Make t− 2 copies of P ′.

5. Blow up each point into t− 1 vertices of the form (i, j, τ, s) where i is the level,

j is the position, τ is the type, and s is the copy of P ′. The type refers to which

of the t− 1 vertices we are considering from the blow-up of a given point. We

call this vertex set V0.

6. Introduce q2 independent sets V1, . . . , Vq2 of size about

⌊
1

q2
[n− (q2 + q)(t− 1)(t− 2)]

⌋
.

This gives us our vertex set. We define the graph’s adjacency rules as follows.

1. If u ∈ V0 and v ∈ Vk for some k ̸= 0, then u is adjacent to v if and only if the

point from which u originated belongs to the line ℓk.

2. For u, v ∈ V0, say u = (i, j, τ, s) and v = (i′, j′, τ ′, s′):

a) If i = i′, then u is adjacent to v if and only if the following conditions hold:

i. τ ̸= τ ′

ii. j ̸= j′ or s ̸= s′

b) If i < i′, then u is adjacent to v if and only if the following conditions hold:

i. s′ = s+ 1 in Zt−2 and j′ = j + α in Zq where α ∈ {1, . . . , q − 1}.
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We now state their theorem, the proof of which amounts to showing that the graph

described by the above construction is in fact Kt-saturated and has the appropriate

maximum degree.

Theorem 12 (Alon et al., 1996). For every t ≥ 3, there exists a Kt-saturated graph

G on n vertices with

∆(G) ≤

(
(t− 2)(2t− 3) + 1√
(t− 1)(t− 2) + 1

+ o(1)

)
√
n.

The following is immediate.

Corollary 5. For every t ≥ 3 and r ≥ 3,

satSr(n,Kt) = O(nr/2+1).

Proof. Let G be the graph given by Theorem 12. By the same theorem, G has

maximum degree ∆ = O(n1/2). Since

sr(G) =
∑
v∈G

(
d(v)

r

)
≤ n

(
∆

r

)
,

we have the desired upper bound on satSr(n,Kt).

Our upper bound on satSr(n,Kt) for r ≥ 3 and t ≥ 3 comes from the very clever

construction of a graph. To find a lower bound, one needs to say something about

the general structure ofKt-saturated graphs and their degrees. Ergemlidze, Methuku,

Tait, and Timmons, did this, proving that the upper bound of the previous theorem

is of the correct order of n [14]. We now state their result.



54

Theorem 13 (Ergemlidze et al., 2021). For integers n ≥ t ≥ 3 and r ≥ 3,

satSr(n,Kt) = Θ(nr/2+1)

We end Section 2.3 by demonstrating that the split graph Kt−2+Kn−t+2 not only

fails to minimize stars among all Kt-saturated graphs for r ≥ 3 and t ≥ 3; it is still

not optimal for minimizing stars when considering families of Kt-saturated graphs

with linear maximum degree. The graph in Figure 2.7 will be the starting point for

our construction.

A

B

C

D

E

F

GH

I

Figure 2.7: K4-saturated graph G4,9 on 9 vertices

Proposition 19. Let t ≥ 4 and r ≥ 3. There exists a sequence (Gt,n) of Kt-saturated

graphs on n vertices with ∆(Gt,n) = Θ(n) and a constant nr,t such that

sr(Gt,n) < sr(Kt−2 +Kn−t+2)

for all n ≥ nr,t.

Proof. Consider the graph G4,9 in Figure 2.7. We obtain G4,n for n > 9 by blowing

up vertices A,C,E into independent sets of size as equal as possible. For t > 4, we

define Gt,n to be G4,n−t+4 + Kt−4. That is, we take the disjoint union of G4,n−t+4
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and Kt−4 and add all possible edges between the two sets of vertices. Since G4,n−t+4

is K4-saturated, joining t − 4 universal vertices, i.e. vertices adjacent to all other

vertices, results in a Kt-saturated graph. Given r and t, we can find a constant nr,t

such that sr(Gt,n) < sr(Kt−2 + Kn−t+2) for all n ≥ nr,t. Since Gt,n is obtained by

blowing up three vertices into independent sets of size as equal as possible, there are

three cases to consider. We address one of those cases in detail now and omit the

details for the other two cases.

We start by proving that sr(G(4, n)) < sr(K2 +Kn−2) for all n ≥ 9 and 3 ≤ r ≤

n− 1 in the case where n = 3k + 6. To this end, we observe that

s3(K2 +Kn−2) = 2

(
3k + 5

3

)
+ (3k + 4)

(
2

3

)
= 9k3 + 36k2 + 47k + 20

and

s3(G4,n) = 3k

(
4

3

)
+ 6

(
2k + 3

3

)
= 8k3 + 24k2 + 34k + 6.

Thus s3(G4,n) < s3(K2 +Kn−2) for all k ≥ 1. Similarly, an explicit count shows that

s4(G4,n) < s4(K2 + Kn−2) and s5(G4,n) < s5(K2 + Kn−2). For r ≥ 5, our counts

are simplified as the vertices of small degree contribute no copies of Sr. Now, when

2k + 3 < r < 3k + 6, the desired inequality is immediate as our star’s degree exceeds

the maximum degree of G4,n. That is, sr(G4,n) = 0 for r ≥ 2k+4. Assume then that

r ≤ 2k + 3. We now observe the following for r ≥ 6.

sr−1(K2 +Kn−2)− sr−1(G4,n) = 2

(
3k + 5

r − 1

)
− 6

(
2k + 3

r − 1

)
= 2

(
3k + 5

r

)
· r

3k + 6− r
− 6

(
2k + 3

r

)
· r

2k + 4− r

=
r

3k + 6− r

[
sr(K2 +Kn−2)− sr(G4,n) ·

3k + 6− r

2k + 4− r

]
<

r

3k + 6− r

[
sr(K2 +Kn−2)− sr(G4,n)

]
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The inequality at the end holds since r ≤ 2k + 3. By induction, we have that

sr−1(K2 +Kn−2)− sr−1(G4,n) > 0. This, along with the string of inequalities above,

gives us the desired result.

We now proceed to the more general case concerning Gt,n for all t ≥ 4 where

n = 3k + t+ 2. We observe that

sr(Gt,n) = (t− 4)

(
3k + t+ 1

r

)
+ 6

(
2k + t− 1

r

)
+ 3k

(
t

r

)

and

sr(Kt−2 +Kn−t+2) = (t− 2)

(
3k + t+ 1

r

)
+ (3k + 4)

(
t− 2

r

)
.

We proceed by induction on r and t. We have already shown that the desired in-

equality holds for all r ≥ 3 when t = 4. We next show that the inequality holds in

our case for all t ≥ 4 when r = 3 and n ≥ 11+3
√
33

2
t + 2. Substituting r = 3 in the

above equations, we see that

s3(Kt−2 +Kn−t+2)− sr(Gt,n) = k3 − 3k2(t− 8) + k(−6t2 + 36t− 35) + 6t− 10.

Rearranging and setting k = ct where c > 0 is a constant, we obtain

t3(c3 − 3c2 − 6c) + t2(24c2 + 36c) + t(6− 35c)− 10.

We want this difference to be positive. Note that

t2(24c2 + 36c) + t(6− 35c)− 10 > 0

for any choice of c and t. Thus we are guaranteed a positive difference whenever
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c3 − 3c2 − 6c ≥ 0. This happens when c ≥ 3+
√
33

2
. That is, when

n = 3k + t+ 2 ≥ 11 + 3
√
33

2
t+ 2.

We now let r ≥ 4. Since Gt,n and Kt−2 +Kn−t+2 both have universal vertices, it is

useful to look at how an individual vertex impacts our counts for stars. In particular,

notice the following.

sr(Gt,n) = sr(Gt−1,n−1) + sr−1(Gt−1,n−1) +

(
n− 1

r

)
sr(Kt−2 +Kn−t+2) = sr(Kt−3 +Kn−t+2) + sr−1(Kt−3 +Kn−t+2) +

(
n− 1

r

)
.

By induction, sr(Gt−1,n−1) < sr(Kt−3 + Kn−t+2) and sr−1(Gt−1,n−1) < sr−1(Kt−3 +

Kn−t+2). This along with the previous relationships completes our proof.

2.4 Counting Paths in Clique-Saturated Graphs

Although most of our attention with regards to generalized saturation numbers satH(n, F )

is directed to stars and cliques, we are interested in other choices of H and F as well.

In particular, we are interested in the broader topic of saturation involving trees and

cliques. Stars are a very simple tree structure to work with, which is part of why they

were a great starting point for us. Paths are another important tree, especially since

they are on the opposite end from stars in terms of trees with the largest (or smallest)

maximum degrees and diameters. We will let Pr+1 denote a path on r+1 vertices. As

was the case with stars, clarifying this notation is important since different authors

use different conventions. Before stating our first result concerning the number of

paths of fixed size in clique-saturated graphs, we state a closely connected result of

Kritschgau, Methuku, Tait, and Timmons [23] concerning cycles.
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Proposition 20 (Kritschgau et al., 2020). For t ≥ 5 and r ≤ 2t− 4,

satCr(n,Kt) = Θ(n⌊r/2⌋).

Since a path can be obtained from a cycle by deleting a single edge, it is not

surprising that this result is useful when it comes to counting paths in clique-saturated

graphs. Moreover, a slight refinement of this theorem’s proof, along with a similar

argument used by Chakraborti and Loh [8], leads us to the following result regarding

the order of n when counting paths in clique-saturated graphs.

Theorem 14. For t ≥ 4 and r ≤ 2t− 3,

satPr+1(n,Kt) = Θ(n⌈
r+1
2 ⌉).

If r ≥ 2t− 2, the split graph is Pr+1-free.

Proof. We begin by showing that the generalized saturation number is O(n⌈ r+1
2

⌉). We

do so by considering the split graph Kt−2+Kn−t+2. We can construct a path on r+1

vertices in this graph by using at most ⌈ r+1
2
⌉ vertices from the independent set. The

remaining vertices must come from the clique of order t − 2. Thus the number of

copies of Pr+1 in Kt−2 +Kn−t+2 is

1

2
(n− t+ 2)⌈ r+1

2
⌉(t− 2)⌊ r+1

2
⌋ + o(n⌈ r+1

2
⌉).

Our first term is obtained by choosing and ordering ⌈ r+1
2
⌉ vertices from the inde-

pendent set and ⌊ r+1
2
⌋ vertices from the clique. We multiply by 1

2
so that we don’t

count paths of the form v1v2 . . . v⌈ r+1
2

⌉ and v⌈ r+1
2

⌉ . . . v2v1 separately. The o(n⌈ r+1
2

⌉)



59

term accounts for any paths using fewer than k elements in the independent set. This

gives us the appropriate upper bound.

For the lower bound, let G be a Kt-saturated graph on n vertices, and let I

be an independent set of order ⌈ r+1
2
⌉ in G. There are ⌈ r+1

2
⌉! ways to order the

elements of I. Enumerate the elements v1, v2, . . . , v⌈ r+1
2

⌉. For each ordering we will

give a lower bound on the number of copies of Pr+1 containing it. For all 1 ≤ i ≤

⌈ r+1
2
⌉− 1, let Vi be a set of vertices such that Vi ⊆ N(vi)∩N(vi+1) and the subgraph

induced by Vi is a copy of Kt−2. Such copies exist since vi, vi+1 ∈ I which is an

independent set, and G is Kt-saturated. That is, they must have a copy of Kt−2 in

their common neighborhood. Since each Vi has t − 2 elements, we can pick distinct

ui ∈ Vi such that v1u1v2 · · · v⌈ r+1
2

⌉−1u⌈ r+1
2

⌉−1v⌈ r+1
2

⌉ is a path in G. This gives us at

least 1
2
⌈ r+1

2
⌉!(t− 2)⌈ r+1

2
⌉ copies of Pr+1 involving every element of I. The factor of 1

2

accounts for the double-counting of paths being read from left-to-right and right-to-

left. Chakraborti and Loh showed in [8] that any Kt-saturated graph contains Θ(nk)

independent sets of order k for any given k. This gives us the corresponding lower

bound, and we have that satPr+1(n,Kt) = Θ(n⌈ r+1
2

⌉) as desired.

For the second statement in the theorem, we note that when r ≥ 2t− 2, as is true

in general, a copy of Pr+1 in Kt−2 +Kn−t+2 must use at least ⌊ r+1
2
⌋ vertices from the

clique Kt−2. Thus

2t− 2 = 2(t− 2) + 2 ≥ 2

⌊
r + 1

2

⌋
+ 2 > r,

a contradiction. Therefore Kt−2 +Kn−t+2 is Pr+1-free.

Although we know the correct degree of n in satPr+1(n,Kt), we would still like to

know its asymptotic value. Furthermore, Chakraborti and Loh [8] showed that for n

sufficiently large in terms of r and t, the split graph minimizes the number of copies
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Figure 2.8: P6-saturated graph on 10 vertices and a P7-saturated graph on 14 vertices

of Cr in Kt-saturated graphs. This suggests the following question which is still open.

Question 2. For n sufficiently large, is the number of copies of Pr+1 in Kt-saturated

graphs is minimized by Kt−2 +Kn−t+2?

Having briefly considered the counting of paths in clique-saturated graphs, we end

this section by commenting on a solution to the problem of counting cliques in path-

saturated graphs. It turns out that for n sufficiently large, we can find path-saturated

graphs which are trees. Since this immediately resolves our problem, we will describe

this useful construction of Kaszonyi and Tuza [22].

When t is odd, consider a rooted tree with ⌊ t+1
2
⌋ levels in which every vertex,

except those at highest and lowest levels, have exactly two neighbors in the level

below. We require the vertex in the highest level, the root, to have degree at least 3.

The longest path in such a graph has t vertices, and a quick check reveals that the

graph is in fact Pt+1-saturated. When t is even, we take two copies of such a graph

and add an edge between the vertices at the highest level. We still require the vertices

at the highest level to have degree at least 3, but we only require two neighbors in

the level below. The resulting graph is Pt+1-saturated. A couple of examples are

given in Figure 2.8 and will be important in Chapter 3 when discussing rooted and

double-rooted trees.

We now state our proposition which follows immediately from the existence of
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Pt+1-saturated graphs provided by the discussed construction from [22].

Proposition 21. If t ≥ 3 is odd, then satKr(n, Pt+1) = 0 for all n ≥ 3 · 2 t+1
2

−1 − 2

and all r ≥ 3. If t ≥ 4 is even, then satKr(n, Pt+1) = 0 for all n ≥ 2
t
2
+1 − 2 and all

r ≥ 3.

2.5 General Cases

We now reach the end of our chapter on generalized saturated problems; that is,

determining the minimum number of copies of H in F -saturated graphs. To conclude

this discussion, we consider the more general questions of counting trees in clique-

saturated graphs and of counting cliques in tree-saturated graphs for arbitrary trees.

Some results for the traditional saturation problem, i.e. counting edges, on trees were

proved by Kaszonyi and Tuza [22]. Many additional results on this subject are due

to Faudree, Faudree, Gold, and Jacobson [16]. Here we prove some initial results

regarding the generalized saturation problem for trees and cliques. We let nT (G)

denote the number of copies of a tree T in G.

Proposition 22. Let T be a tree on r ≤ 2t − 4 vertices. For n sufficiently large,

there exists a Kt-saturated graph G on n vertices with minimum degree δ such that

nt(G) > 0 provided δ ∈ {t− 2, t− 1} or δ ≥ 2t− 5.

Proof. Our aim is to show that for any given tree T and Kt-saturated graph G,

these minimum degree restrictions guarantee at least one copy of T in G. Kritschgau

et al. [23] demonstrated the exact structure of Kt-saturated graphs with minimum

degree t − 2 and t − 1. In particular, when δ = t − 2, G is isomorphic to the split

graph Kt−2 + Kn−t+2. When δ = t − 1, G is isomorphic to (Kt−1 − e) + Kn−t+1

or Wt(m1, 1,m3,m4, 1) for some m1 + m3 + m4 = n − t + 1. Here e is any edge in
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m3m1

m4

Figure 2.9: K6-saturated graph W6(m1, 1,m3,m4, 1)

Kt−1, and Wt(m1,m2,m3,m4,m5) is the graph obtained by taking a wheel with five

vertices on the outer cycle and replacing the central vertex with a clique of size t− 3

and each vertex vi of the outer cycle with an independent set of size mi. Two vertices

are adjacent in Wt(m1,m2,m3,m4,m5) if and only if they replaced adjacent vertices

in the original wheel. See Figure 2.9 for an example with independent sets of size m1,

m2, and m3 labeled with these sizes.

We now note that each of the above graphs contains a complete bipartite graph

Kt−2,m for some m where the m vertices are taken from a large independent set of G.

Since T is a tree, it is bipartite, and we can partition the vertices into two sets, one

of which has size at most t − 2. For m ≥ r − t + 2, we have that T is a subgraph

of Kt−2,m, which in turn is a subgraph of our Kt-saturated graph. For n sufficiently

large, our necessary condition on n is satisfied, and nT (G) > 0.

Lastly, for the case where δ ≥ 2t−5, we note the well known result that if a graph

has minimum degree at least δ, then it must contain any tree on δ + 1 vertices.

Mimicking a technique of Kaszonyi and Tuza in [22], we provide a lower bound

on r for which satKr(n, F ) = 0 for a t-vertex graph F in terms of its independence

number. To this end, let u(F ) = t − α(F ) − 1 where α is the independence number
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of F . Let d be the minimum number of edges in a subgraph of G induced by an

independent set S of size α and one other vertex v. Note that the graph induced

by v and S is the star Sd and some number of isolated vertices. It is trivially true

that an F -saturated graph can not contain any copy of Kt since F has t vertices.

The following proposition shows that we can find F -saturated graphs whose largest

cliques are significantly smaller. Before proving our result, we state a key lemma of

Kaszonyi and Tuza [22]. Here we say that a graph G is F -saturated for a family F

of forbidden subgraphs F1, . . . , Fk if G contains no Fi but the addition of any missing

edge creates at least one copy of some Fi.

Lemma 9 (Kaszonyi and Tuza, 1986). Let F ′ = {Fi \ {x} : x ∈ V (Fi), Fi ∈ F} and

suppose that some vertex x ∈ V (G) has degree d(x) = n− 1. Then G is F-saturated

if and only if G \ {x} is F ′-saturated.

We note that this notion of saturation in which a new edge creates a subgraph

from some list of forbidden subgraphs is of further interest in its own right, and there

are generalized saturation questions one could ask, but we will not go down that path

here. Instead we will state our last result for this section, utilizing this notion and

the previously stated lemma.

Proposition 23. Let F be a graph on t vertices. For n sufficiently large, satKr(n, F ) =

0 for all r ≥ t− α + d.

Proof. As defined above, we let u = t− α(F )− 1. Suppose G is F -saturated with u

vertices of degree n − 1. Pick u such vertices and remove them one by one. Setting

F = {F}, we have that G is F -saturated since G is F -saturated. After repeated

application of our most recent lemma, we obtain a graph G′ that is F ′-saturated

where Sd ∈ F ′. Thus the maximum degree of G′ is d − 1 and ω(G′) ≤ d where ω is
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the clique number of G. Hence the largest clique in G has size at most t− α+ d− 1.

Therefore G is Kt−α+d-free and consequently satKr(n, F ) = 0 for all r ≥ t−α+d.
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Chapter 3

Tree-saturating Graphs

In this chapter we will continue in the realm of graph saturation. Although the

primary question considered here is inspired by the ideas of the preceding chapter,

we will not be counting subgraphs. On the contrary, we will be focused solely on the

existence of graphs satisfying particular criteria, and we will begin by discussing the

reasoning that led to this line of investigation.

Based on the results in Chapter 2 for stars and paths, along with the fact that

among all trees T , the star St has the largest saturation number [22], one may suspect

that for any tree T there exist triangle-free graphs on n vertices for n sufficiently large

that are T -saturated. In other words, is

satK3(n, T ) = 0

for all trees T? A quick check shows that this is true for any tree T on t ≤ 6 vertices.

However, the graph T ∗ in Figure 3.1 shows that this does not hold for all trees. This

statement is formalized in our first proposition of the chapter.

Proposition 24. There does not exist a K3-free graph that is T ∗-saturated.

Proof. Suppose G is a T ∗-saturated graph that is K3-free. Since T ∗ has 7 vertices,
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Figure 3.1: Graph T ∗ for which no K3-free, T
∗-saturated graph exists

G must have at least 7 vertices as well. Since G is K3-free, the neighborhood of

any vertex must be an independent set. We now consider the possible degrees of

vertices in G. If G has a vertex v of degree 2, then adding the missing edge between

its neighbors x and y must create a copy of T ∗. In particular, this copy must use

the added edge xy. There are two cases to consider here. Either the added edge is

incident to the degree 3 vertex in the new copy of T ∗, or it is incident to a degree 1

vertex in the created copy of T ∗. If the former case, suppose x is that vertex of degree

3 in our copy of T ∗. Then we can replace the edge xy and the second edge incident

to y in T ∗ with the edges xv and vy, resulting in a copy of T ∗ that was already in G,

a contradiction to the assumption that the graph is T ∗-free. In the latter case, if y is

the vertex of degree 1 in our copy of T ∗, then we simply replace xy with xv in our

copy of T ∗, arriving at the same contradiction. Namely, the edges used in our copy

of T ∗ were already in G, but G is T ∗-free. Thus G has no vertex of degree 2.

Now, the maximum degree of G must be at least 3. Otherwise our graph is

a matching along with some isolated vertices, but such a graph is not T ∗-saturated.

We will only focus on a component containing a vertex of degree at least 3 as any edge

added within that component must create T ∗. Let v be a vertex of degree at least 3 in

G. If v has three neighbors a, b, c of degree at least 3, then their neighborhoods must

be precisely v and two other common vertices x and y. Otherwise G already contains

T ∗ using v as the vertex of degree 3 in our copy of T ∗. We also know that there must

be another vertex u in this component of G that does not belong to {v, a, b, c, x, y}.

This is because the graph induced by this vertex set has missing edges and not enough
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Figure 3.2: Example of a cycle with pendants. The dotted edge does not induce T ∗

when added.

vertices to create a copy of T ∗. A quick check shows that no matter which vertex we

join u to, we must already have a copy of T ∗ once again contradicting the condition

that G is T ∗-saturated.

We also note that if v has a unique neighbor of degree at least 3, then adding an

edge between two of its neighbors of degree 1 will not create a copy of T ∗ because

the use of this new edge requires v to play the role of the degree-3 vertex in T ∗, but

v originally has only 1 neighbor of degree greater than 1. Therefore every vertex

of degree at least 3 is adjacent to at least one vertex of degree 1 and exactly two

vertices of degree at least 3. Therefore G is isomorphic to a cycle whose vertices each

have at least one pendant, a neighbor of degree 1. However, these graphs are not

T ∗-saturated. This can be seen by adding an edge between a vertex on the cycle

and a pendant of a neighboring vertex as in Figure 3.2. This contradicts the only

remaining case. Therefore no K3-free graph G exists that is T ∗-saturated.

The existence of graphs H for which there do not exist H-saturated graphs with

certain properties, leads us to the following new definition.

Definition 6. Given a graph H, the set SAT(n,H) is the set of all H-saturated

graphs on n vertices. We say that H is tree-saturating if there exists a tree in
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SAT(n,H) for n sufficiently large.

Our motivating result above shows that there do not exist T ∗-saturated graphs

which are K3-free. Consequently, T
∗ is not tree-saturating. Our hope is to completely

characterize which connected graphs are tree-saturating. We do this fully when H is

a spider or not a tree. We provide some necessary conditions for when H is a tree as

well as some constructions for large classes of other trees including caterpillars.

Since we will dedicate our attention to trees, it is especially important to agree

on some terminology. We will say that a tree is rooted if there is a designated vertex

v that we call the root. This is beneficial as we can analyze the distance of a vertex

from the root and whether a path beginning at a vertex moves towards or away from

v. Given two vertices x and y, if there exists a path from x to v such that y is

an internal vertex on that path, we say that y is an ancestor of x and that x is a

descendant of y. Furthermore, if x is adjacent to y, then we say that y is the parent

of x and that x is a child of y.

3.1 Tree-Saturating Spiders

A spider is a tree with a unique vertex of degree at least 3. That is, the graph

consists of a star with a unique path beginning at each endpoint. Such graphs are

called spiders because we can view these paths as legs stemming out from that single

vertex of larger degree. In this section, we completely characterize the spiders S that

are tree-saturating. We already know that there exist saturated trees with respect

to paths [22] but none for stars with at least three edges. The latter half of this

statement is a consequence of Lemma 1 and the requirement that vertices of small

degree form a clique. In particular, you can have at most one vertex of degree 1

in St-saturated graphs with t ≥ 3, and trees need leaves. Thus our only concern is
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Figure 3.3: (1, 2, 2) spider S with a tree that is S-saturated

spiders with ℓ ≥ 3 legs and longest leg c ≥ 2.

Note that we can describe a spider by a weakly increasing integer sequence. For

example, (3, 4, 4, 6) corresponds to a spider with 4 legs whose lengths are 3, 4, 4, and

6 respectively. Here the length of a leg is the number of edges on the path from the

center vertex to the leaf. The special case where the sequence is all ones corresponds

to stars. For another example, (1, 2, 2) is a spider with legs of length 1, 2, and 2.

This spider is tree-saturating as demonstrated by the picture below. Note that we

can blow up the leaves in the graph on the right to obtain stars of arbitrarily large

size and preserve the property of being S-saturated for this spider S. This specific

example will be of interest later on.

We now define several classes of spiders, after which we state our main result of

the chapter.

Definition 7. Let S be a spider with ℓ legs and longest leg which has length c.

1. We say that S is Type 1 if S has a unique longest leg.

2. We say that S is Type 2 if S has exactly two legs of length c, and the next

longest is smaller than c− 1.
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3. We say that S is Type 2’ if ℓ ≥ 4, S has exactly two legs of length c, and the

next longest is exactly c− 1.

4. We say that S is Type 3 if ℓ ≥ 3 and S has at least three legs of length c.

Theorem 15. Let S be a spider with ℓ legs and longest leg length c. S is tree-

saturating if and only if S is Type 1, Type 2, Type 2’, or the (1, 2, 2)-spider.

Having already commented on the (1, 2, 2)-spider, we proceed with a set of lemmas

that address the different types of spiders and whether or not they are tree-saturating.

Lemma 10. Let S be a Type 1 spider. That is, S has ℓ legs and a unique longest leg

which has c edges. Then for n sufficiently large, there exists an n-vertex tree that is

S-saturated.

Proof. Let b be the second longest length of a leg in S. We will consider two cases.

Suppose b + c is odd. We will build a rooted tree T , beginning with a vertex v. Let

v have at least ℓ + 1 children, and let u ∈ V (T ) be another vertex. If the shortest

path between u and v has fewer than b+c−1
2

edges, then d(u) ≥ ℓ. If the shortest

path has b+c−1
2

edges, then u is a leaf. This graph T is a tree and is S-saturated. In

particular, T is S-free as the longest path in T has b+ c vertices, while S has a path

of length b + c + 1. However, a quick check shows that the addition of any missing

edge, whether within one of the ℓ+1 branches or between two, creates a leg of length

at least c centered at a vertex with ℓ− 1 additional legs of length b.

Otherwise b+c is even. In this case, we take two copies of the previously described

graph T with longest paths from the root vertices having b+c
2

− 1 edges. Finally, we

add an edge between the roots of the two trees to complete the construction of T ′.

As in the previous case, T ′ has a longest path on b + c vertices and can not contain

S. The addition of any missing edge induces a copy of S as desired.
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Figure 3.4: T as described in the previous proof where b + c is odd; a quasi-uniform
rooted tree of depth b+c−1

2
and degree 3

In either case, we have constructed a tree that is S-saturated. Noting that any

leaf in our graph can be blown up into an independent set of arbitrarily large size,

the proof is complete.

Note that since the vertices at the second lowest level, i.e. vertices adjacent to

leaves, have a lower bound on their degree, this construction provides S-saturated

graphs on n vertices for all n sufficiently large.

We now continue with the spiders S that are Type 2 and Type 2’. The S-saturated

graphs used in each situation will be very similar to the ones used in the previous

proof with some minor structural differences.

Lemma 11. Let S be a Type 2 spider. That is, S has ℓ legs, exactly two of longest

length c, and the next longest is smaller than c − 1. Then for n sufficiently large,

there exists an n-vertex tree that is S-saturated.

Proof. As in the proof of the previous lemma, we will build a rooted tree T starting

with two adjacent root vertices u and v. Let u and v each have at least ℓ children.
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Let w ∈ T be another vertex. If the shortest path from w to u or v has fewer than

c− 1 edges, then d(w) ≥ ℓ. That is, w has at least ℓ− 1 children. If the shortest path

has exactly c − 1 edges, then we make w a leaf. The graph T is a tree and is S-free

since there is no path on 2c edges.

We now show that T is S-saturated by considering the missing edges. Adding an

edge within the side hanging from u induces a copy of S rooted at u. Likewise for v.

Adding an edge between the two sides creates a copy rooted at u and a copy at v.

If we add an edge between v and u′ where u′ ∈ N(u), we obtain a copy of S rooted

at u′ since we have legs of length c beginning with the edges u′u and u′v, and the

graph has enough depth for the remaining legs. Finally, if we add an edge between

a descendent w′ of u′ and v, we obtain a copy rooted at v. One long leg, that is of

length c, uses u and one of its legs that does not contain u′, and the other long leg

goes up from w′ to u′ and back down as far as needed. The remaining legs are in the

v side of the graph.

We end by noting that any leaf can be blown up into a larger independent to

generate S-saturated graphs on more vertices.

Lemma 12. Let S be a Type 2’ spider. That is, S has ℓ ≥ 4 legs, exactly two of

longest length c, and the next longest has length exactly c− 1. Then for n sufficiently

large, there exists a tree T such that T is S-saturated.

Proof. Continuing the trend, we construct a tree T rooted at a vertex v of degree

ℓ− 1. For any vertex u ̸= v, we have d(u) ≥ ℓ+ 1 for any u whose shortest path to v

has at most c− 1 edges. If there are c edges, then u is a leaf. From this construction

T is a tree that is S-saturated. In particular, adding an edge between v and any

non-neighbor creates a copy rooted at v. A quick check shows that any other added

edge creates a copy rooted at u for some neighbor u of v.
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Note that when ℓ = 3, this construction forces v to have degree 2. We will show

shortly that this does not result in an S-saturated graph when S has longest leg of

length c ≥ 3.

We now prove that these are the only spiders S for which an S-saturated tree T

exists. To assist with this, we prove the following very useful and general lemma about

graph saturation. While this result may be known, we include it for completeness.

Lemma 13. Suppose G is an F -saturated graph and F ′ is a subgraph of F . Then G

is F ′-saturated or contains a copy of F ′.

Proof. Let G be an F -saturated graph, and suppose that G contains no copy of F ′

where F ′ is a subgraph of F . Since G is F -saturated, the addition of any missing

edge will create a copy of F . Since F ′ is a subgraph of F , we must have created a

copy of F ′ by adding this arbitrary missing edge. Since we must create F ′ by adding

any missing edge, and G contained no copy of F ′ to begin with, we have by definition

that G is F ′-saturated.

We now prove a result concerning triangle-free graphs that are S-saturated for

certain spiders S. The same result holds true for trees since they are triangle-free.

Lemma 14. If G is a triangle-free graph that is S-saturated for a spider S with ℓ ≥ 3

legs, none of which has length 1, then G has no vertices of degree 2.

Proof. Let G be a triangle-free S-saturated graph for some spider S with no legs of

length 1, and suppose that a vertex v ∈ V (G) have degree 2. Let x, y be the neighbors

of v in G. Since G is triangle-free, we have that x is not adjacent to y. Since G is

S-saturated, adding the edge xy must create a copy of S. Since S has at least 3 legs,

v can not be the root of this copy of S. Now, we can view the copy of S as having

directed edges from the root towards the leaves at the end of each leg. Without loss
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of generality, edge xy is directed from x to y. Then we have a directed path starting

at y that ends somewhere in G that corresponds to a leaf in S. Since S has no legs

of length 1 and a unique vertex of degree greater than 1, we are not using the edge

xv in this copy of S, even if S is rooted at x. Replacing the edge xy and the final

directed edge on the leg that uses xy with directed edges xv and vy, we obtain a copy

of S that does not use the added edge. That is, our copy of S was already in G to

begin with. This contradicts the fact that G was S-saturated. Therefore no vertex

in G can have degree exactly 2.

We now address the remaining possible spiders: spiders with at least three legs of

longest length c for any ℓ legs, and 3-legged spiders of the form (c− 1, c, c).

Lemma 15. Let S be a Type 3 spider. That is, S has ℓ legs and at least 3 legs are

of longest length c. Then there is no tree T that is S-saturated.

Proof. We will perform induction on c. Note that when c = 1, the statement is true

because there are no star-saturated trees for ℓ ≥ 3. Now assume c ≥ 2 and that such

a tree T exists. Let S ′ be the Type 3 spider obtained from S by cutting all legs of

length c down by 1. By induction, T is not S ′-saturated. It follows by Lemma 13

that T must contain S ′ as a subgraph.

Let v be the root of some copy of S ′. Now, adding an edge to our graph can create

at most one new leg of length at least c for a spider in T rooted at any given vertex

since that leg must use the new edge. Since S has at least 3 legs of length c, the root

of any created copy of S must have already had at least two legs of length at least c.

At most one of these legs can include v. Since T is connected and acyclic, this means

that there must be a leg of length at least c independent of v. Thus v has at least

one leg of length at least c rooted to it.
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Let v′ be a vertex adjacent to v on a longest leg rooted at v, and let P denote

the set of vertices v′′ such that d(v′, v′′) < d(v, v′′); that is, the set of vertices which

are closer to v′ than v. Note that v′ ∈ P as d(v′, v′) = 0. We have two cases to

consider. First, suppose there exist x, y ∈ P with greatest depth relative to v such

that x, y ∈ N(u) for some u ∈ P .

Add the edge xy. This creates a copy of S rooted at some vertex r in P where r

belongs to the unique path between x and v. See Figure 3.5. This is because x and y

have distance at least c from v, and we must use the newly added edge in the created

copy of S. The leg using xy has length at most c. But there can be only one leg using

edges between r and v. Thus there must be another leg of length c going down from

the root r. But the greatest depth relative to the root r is c − 1, a contradiction.

Therefore xy does not induce a copy of S, and T is not S-saturated.

Otherwise any vertex x in P with greatest depth relative to v is adjacent to a

vertex u of degree 2. Let w be the unique other neighbor. Add the edge wx. Unless,

S has a longest leg of length c and at least two legs of length 1, then this edge can not

help create a copy of S rooted at w since the edge can not contribute to a leg that was

not already present. That is, the edges wu and ux could be used in place of wx and

xu. Thus our copy of S is rooted at some vertex r in P that is above w. However,

the added edge still can not contribute to a leg of S for the same reason. To complete

the proof, we note that the remaining case of a spider centered at w with longest leg

of length 2 and at least two legs of length 1 requires w to have another neighbor of

degree 2. Adding an edge between leafs adjacent to the degree 2 neighbors of w does

not induce a copy of S.

We end with the final special spider to consider.

Lemma 16. Let S be the (c− 1, c, c) spider for some c ≥ 3. There is no tree T such
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Figure 3.5: Sample T from previous proof with vertices on P

that T is S-saturated.

Proof. Suppose such a tree T exists. By the previous lemma, along with Lemma 13,

T is not S ′-saturated where S ′ = (c − 1, c − 1, c − 1) and therefore must contain S ′

as a subgraph. Let v be the root vertex in a copy of S ′. As in the previous proof,

there must be at least one leg of length at least c rooted at v. Since a second such

leg would give us a copy of S, this is the only such leg. If the greatest depth relative

to v is exactly c, then we add the edge xy where x, y ∈ N(v), x is in the leg of length

c, and y is in a shorter leg. This edge does not create a copy of S, meaning that T is

not S-saturated.

So assume that the long leg has length at least c+1, again letting x be the neighbor

of v in this leg. As with the previous proof, we consider two cases. Since T can not

have any vertices of degree 2 by Lemma 14 as S has no leg of length 1, x has at least

2 children.

One is on a longest leg rooted at v, but the other belongs to a path of length at

most c− 1 rooted at v. Otherwise, we already have a copy of S rooted at x. Call the

children u and w respectively. We now add the edge uw. This can’t induce a copy of
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S rooted at v because there is already a leg of length c using u that is rooted at v.

But it also can’t induce one at or below u because only one leg can go up from such

a vertex, and using v along with any other leg of length c− 1 gives us that long leg.

That is, the new edge can’t help. Therefore either T already had a copy of S or the

new edge doesn’t create a new copy. In either case T is not S-saturated.

With all of these lemmas in hand, our main theorem falls into place.

Theorem 15. Let S be a spider with ℓ legs and longest leg length c. S is tree-

saturating if and only if S is Type 1, Type 2, Type 2’, or the (1, 2, 2)-spider.

Proof. The result follows immediately from the preceding lemmas.

3.2 Arbitrary Tree-Saturating Trees

We move briefly into full generality and will return later to specific classes of trees.

Proposition 25. Let T be an arbitrary tree. If there exists a tree that is T -saturated,

then one of the following holds:

(a) T has a leaf that is adjacent to a vertex of degree 2, or

(b) (i) T has vertices u, v, x, y such that d(u) = d(v) = d(x) = d(y) = 2 and

{u, v, x, y} forms a path of length 4, and

(ii) T has a vertex w with at least two leaf neighbors and no pair of disjoint

paths on at least 4 vertices with w as an endpoint.

Proof. Let T ′ be a tree that is T -saturated, and suppose that T has no leaf that is

adjacent to a vertex of degree 2. Since T ′ is T -saturated, joining any two leaves in

T ′ must induce a copy of T that uses the new edge. If x, y are leaves with a common
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neighbor, then the edge xy can only be used to connect a leaf of T with a vertex of

degree 2. Since T has no such vertices, every leaf in T ′ is adjacent to a vertex of

degree 2.

Let v and x be leaves in T ′ with degree-2 neighbors u and y respectively. Adding

the edge vx must induce a copy of T . By assumption, T has no leaf adjacent to a

vertex of degree 2. Hence T must also contain edges uv and xy, along with the unique

additional edges incident to u and y. Thus u, v, x, y have degree 2 in T and satisfy

the desired adjacencies. That is, they form a path of length 4 in T and condition (bi)

holds.

In addition, if we let v′ be an arbitrary vertex of T ′ and u′ be a vertex of greatest

distance from v′ in T ′, we can force condition (bii) by considering the neighbors of u′.

In particular, u′ must be a leaf that is adjacent to a degree 2 vertex x′ with another

neighbor w. Add edge wu′. Since this must create a copy of T and T has no leaf

adjacent to a degree 2 vertex, the copy of T must use edges wu′ and wx′. If it only

needed one of them, then the graph would have already contained a copy of T .

This gives us a vertex w with at least two leaf neighbors. Since u′ is as far away

from v′ as possible, we can not find a path on 4 vertices with w as endpoint that is

disjoint from the unique path whose first edge is in the direction of v′. That is, in

our copy of T , the vertex w has two leaf neighbors and at most one path of at least

4 vertices with w as a endpoint.

We now briefly define a pair of graphs about which we have an immediate corollary.

The double star Dr,k is obtained by adding an edge between the central vertices of

stars Sr and Sk. The (r, k)-banana tree is obtained from r copies of Sk by adding

an edge from a leaf of each copy of Sk to an additional vertex. See Figure 3.6. The

following is immediate.
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Figure 3.6: Double star D5,5 (left) and (3, 4)-banana tree (right)

Figure 3.7: Non-spider that is tree-saturating

Corollary 6. Double stars Dr,k with r, k ≥ 2 and (r, k)-banana trees with r ≥ 2 and

k ≥ 3 are not tree-saturating.

Our proposition gives us some restrictions on the possible trees that can be tree-

saturating. If we look at small graphs (up to 7 vertices), the only tree-saturating

graphs are all spiders. However, it turns out that there are tree-saturating trees

which are not spiders once we look at larger numbers of vertices. Using Sage, we

found two such trees on 8 vertices, one of which is pictured in Figure 3.7. The code

used can be found at the following link https://cocalc.com/share/public_paths/

1ceae877274bbe6854d388524947034f85ac426c.

This actually gives us a way to find tree-saturating non-spiders for all n ≥ 8 by

cloning the leaves which are adjacent to vertices of degree 3 as many times as we want.

We can exhibit a saturated tree by taking a root vertex of degree at least 4 whose

children all have degree at least 3. Non-neighbors of the root are leaves. We can

make the non-leaves have arbitrarily high degree to account for the generalization to

larger values of n. Moving forward, we are interested in developing a stronger picture

of which trees are tree-saturating, and we will do so by beginning with caterpillars.

https://cocalc.com/share/public_paths/1ceae877274bbe6854d388524947034f85ac426c
https://cocalc.com/share/public_paths/1ceae877274bbe6854d388524947034f85ac426c
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3.3 Tree-Saturating Caterpillars

Spiders are built from a star by building a path off of each leaf. Caterpillars, on the

other hand, are obtained from a path by replacing interior vertices with stars St with

t ≥ 2. We focus on caterpillars using a different approach than what we used when

analyzing spiders. In particular, we will start with some tree T as our host graph and

provide some conditions for which caterpillars C it is the case that T is C-saturated.

To aid with our approach and to more easily describe our host trees, we introduce

some terminology, formalizing a description of the host graphs from our discussion of

spiders.

Definition 8. A quasi-uniform rooted tree T of depth k and degree d is a tree

with a designated root vertex v of degree at least 3 such that d(w, v) = k − 1 for all

leaves w and for which any vertex that is not a leaf has degree at least d. Similarly, a

quasi-uniform double-rooted tree T ′ of depth k′ and degree d′ is a tree with a pair

of adjacent root vertices u and v of degree at least 3 such that min{d(w, u), d(w, v)} =

k′−1 for all leaves w and for which any vertex that is not a leaf has degree at least d.

Note that we will refer to a vertex’s distance from the nearest root as its depth,

or level. Given a quasi-uniform rooted (or double-rooted) tree of depth k, we will

characterize the caterpillars with maximum path on 2k and 2k + 1 vertices that

saturate those trees. For an example of a quasi-uniform rooted tree, see Figure 3.4

or the the figures in the following proof. We will begin with the even case.

Proposition 26. Let C be a caterpillar with maximum path having 2k vertices with

k ≥ 3 and maximum degree ∆. For n sufficiently large, there exists a tree T on n

vertices such that T is C-saturated if the following both hold:

(a) C has a degree 2 vertex that is 1 edge away from an end of a maximum path
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(b) C has a degree 2 vertex that is k−d−1+ i edges from some end of a maximum

path for some 0 ≤ i ≤ k − d− 3 for all 0 ≤ d ≤ k − 3.

Proof. Let T ′ be a quasi-uniform rooted tree with depth k and degree ∆. We will

show that the two conditions above are both necessary and sufficient for T ′ to be

C-saturated. Consequently, we will have shown them to be sufficient conditions for

a caterpillar C to be tree-saturating. We begin by noting that the addition of any

missing edge between two internal vertices of T ′ will induce any caterpillar with

maximum path having 2k vertices. This is because the edge creates such a path

without using any leaves of T ′ internally and our degrees are sufficiently large.

Joining sibling leaves forces condition (a). That is, if T ′ is C-saturated, then C

must have a degree 2 vertex that is adjacent to the end of a maximum path in C.

Now, if we join a leaf w to any other vertex w′ that is not an ancestor of w, then w is

a degree 2 vertex in our copy of C that can be treated as being adjacent to an end of

C with w′ being the corresponding end. No additional restrictions are forced on us

from what we have already stated. This is because remaining vertices in the created

path have sufficiently large degrees.

The only other type of edge we can add is between w and an ancestor u of w.

Suppose that u is at level d for some 0 ≤ d ≤ k − 3. Here v is the unique vertex

at level 0. See Figure 3.8. Adding such an edge induces a copy of C with at least

k−d−1 vertices below level d after using the edge uw. This is because the maximum

path has 2k vertices, k of which are from a leaf in a different branch up to v, d to

reach u, and the additional 1 for vertex w itself. Similarly, C uses at most 2k−2d−4

vertices below level d after edge uw. This is done by going up from w to level d + 1

and back down to a leaf in the same main branch. Since we induce a copy of C by the

addition of any missing edge, one of these situations must yield a copy of C with w
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Figure 3.8: The two extreme cases in red for an edge between u and w in T ′

serving as a vertex of degree 2 that is k−d−1+ i edges from some end of a maximum

path in C for some 0 ≤ i ≤ k−d−3 for all 0 ≤ d ≤ k−3. Figure 3.8 illustrates what

the maximum path looks like in each case. We have now shown that condition (b) is

necessary. Since these conditions on C result in T ′ being C-saturated and since we

can clone leaves in T ′ to obtain larger C-saturated trees, the proof is complete.

We immediately proceed to the corresponding result concerning a caterpillar whose

maximum path has an odd number of vertices. The conditions are identical, but the

key construction in our proof is different.

Proposition 27. Let C be a caterpillar with maximum path having 2k + 1 vertices

with k ≥ 3 and maximum degree ∆. For n sufficiently large, there exists a tree T on

n vertices such that T is C-saturated if the following hold:

1. C has a degree 2 vertex that is 1 edge away from an end of a maximum path,

2. C has a degree 2 vertex that is k−d−1+ i edges from some end of a maximum

path for some 0 ≤ i ≤ k − d− 3 for all 0 ≤ d ≤ k − 3,

Proof. Let T ′′ be a quasi-uniform double-rooted tree with maximum depth k−1 from

its roots v and u and with degree ∆. The only new edge of interest to consider is

between u and a leaf w that is in a branch below v as all others have been accounted
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for in the previous proof. There must be at least 1 vertex below u that is used in

an induced copy of C. This situation can arise by starting at a leaf in a branch of v

that does not contain w and tracing all the way through to uw. On the other hand,

there can be at most k − 1 vertices used below u since that is the maximum depth.

Thus C must have a degree 2 vertex that is j edges from some end of a maximum

path for some 2 ≤ j ≤ k. Here the role of the degree 2 vertex is played by w. This

requirement along with those from the previous proposition provide necessary and

sufficient conditions for T ′′ to be C-saturated where C has the appropriate diameter.

This uses the fact that aside from vertex w, every vertex that we travel through in

our path on 2k + 1 vertices has as large of degree as we want.

We now consider caterpillars that don’t saturate a quasi-uniform rooted tree or a

quasi-uniform double-rooted tree for any choice of depth or degrees. In an attempt to

show that caterpillars which don’t saturate such graphs are in fact not tree-saturating,

we prove the following lemma.

Lemma 17. Every tree contains a pair of leaves u, v with at most one vertex of degree

at least 3 on the unique path from u to v.

Proof. Let T be a tree with vertices u1, . . . , ur of degree at least 3. Construct an

auxiliary graph T ∗ with vertex set {u1, . . . , ur}. A vertex ui is adjacent to uj in T ∗

if and only if there is no vertex of degree at least 3 on the unique path from ui to uj

in T . Since T was a tree, so is T ∗. In particular, it is connected and acyclic. Let us

be a leaf in T ∗. Then us is a vertex of degree at least 3 in T with a unique vertex

of minimum distance in {u1, . . . , ur} \ {us}, namely its neighbor in T ∗. Thus there

are at least two maximal paths beginning at us with no internal vertices of degree at

least 3. Let u and v be the ends of these two paths that are distinct from us. Then

us is the unique vertex of degree at least 3 on the path from u to v in T .
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Figure 3.9: Tree-saturating graph T on 9 vertices that is neither a spider nor a
caterpillar

With this lemma, we now prove that the first of our conditions for a caterpillar

to be tree-saturating via a quasi-uniform rooted (or double-rooted) tree is in fact

necessary for a caterpillar to be tree-saturating in general.

Proposition 28. Suppose C is a caterpillar that is tree-saturating. Then at least one

end of a maximum path in C is adjacent to a vertex of degree 2.

Proof. Let C be a caterpillar that is tree-saturating, and let T be a tree that is C-

saturated. By Lemma 17, there exist leaves u and v in T with at most one vertex

w of degree at least 3 on the unique path connecting them. Add the edge uv to T .

Since T is C-saturated, this must create a copy of C using the edge uv.

Let P be a maximum path in C. This necessarily uses the edge uv since the edge

must be used in C and the degree of u and v is 2 in T +uv. One end of P must lie on

the path from v to w in T or the path from u to w in T . Without loss of generality,

it is the latter. Note that this vertex could be u itself. Call this vertex u′. Observe

that u′ is a leaf in C since it is an endpoint of P . Furthermore, the neighbor of u′ in

P has degree 2 in T + uv. Hence it must have degree 2 in C.

We note at this point that spiders and caterpillars are not the only trees which are

potentially tree-saturating. For example, the graph T in Figure 3.9 is tree-saturating.

In particular, a quasi-uniform rooted tree of depth 3. which is P6-saturated, is also

T -saturated.
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3.4 Tree-Saturating Non-Trees

We end this chapter by briefly addressing graphs that are not trees in our context as

well as some different directions that can be taken.

Lemma 18. Suppose F is not a tree. If F contains a cycle with at least 4 vertices,

then F is not tree-saturating.

Proof. Let F be a graph with a cycle on at least 4 vertices, and suppose there exists a

tree T that is F -saturated. If T has leaves x, y that are adjacent to a common vertex,

then adding the edge xy can not induce a cycle with more than 3 vertices. If no such

pair exists, then T has a degree 2 vertex u that is adjacent to a leaf v and some other

vertex w. Adding the edge vw can only create a cycle with 3 vertices, giving us our

desired contradiction.

The same argument shows that if F is not a tree but is tree-saturating, then F can

have at most one cycle of length 3 and no other cycles. This restrictive detail leads

us to the following classification of tree-saturating graphs which are not themselves

trees.

Proposition 29. The only connected graphs F that are not trees but are tree-saturating

are stars with a single added edge.

Proof. We begin by noting that a star with a single added edge is tree-saturating by

taking a star with at least as many vertices. The previous lemma and remark show

that if F is tree-saturating, it must have only one cycle, and it must be of length 3.

If F is not a star with an added edge, then a star is not F -saturated. Thus an

F -saturated tree must have a pair of leaves x, y that are separated by at least 3 edges.

Thus adding the edge xy can not induce a copy of K3 and hence no copy of F .
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We end this section with our lone result in which we consider tree-saturating

graphs which are not connected.

Proposition 30. Suppose F is tree-saturating and has multiple components. Then

F is a forest.

Proof. Let T be an F -saturated tree on n vertices where F has k ≥ 2 components.

As previously argued, F can have at most one cycle and such a cycle must be K3.

However, this requires that the addition of any missing edge in T must create a copy

of K3. That is, the diameter of T must be 2, and T must be the star K1,n−1. But the

only graphs H for which K1,n−1 is H-saturated are stars with an added edge. This

contradicts the assumption that F has k ≥ 2 components. Therefore F must have

no cycles and is a forest.

3.5 Other Questions

In the first section of this chapter, we defined tree-saturating graphs. In a similar vein,

for a collection H of graphs, we can say that a graph F is H -saturating if there exists

a graph H ∈ H on n vertices for n sufficiently large such that H is F -saturated.

The study of H -saturating graph may be of interest when H is the collection of

triangle-free graphs, as hinted at in the motivation for this perspective on saturation,

or r-partite graphs. In particular, our example in Figure 3.1 is not only not tree-

saturating, but is not triangle-free-saturating and therefore not bipartite-saturating.

On the flip side of this, every graph that we have shown to be tree-saturating is also

bipartite-saturating and therefore triangle-free-saturating.

We end our pursuits regarding this topic with the following initial result concerning

bipartite-saturating graphs.
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Proposition 31. Suppose H is not a bipartite graph. H is bipartite-saturating if and

only if there exists an edge e ∈ E(H) such that e belongs to every odd cycle in H.

Proof. We first note that for n sufficiently large, the graph K⌊n/2⌋,⌈n/2⌉ is H-saturated

provided there exists an edge e that is used in every odd cycle of H. This is because

the deletion of e in H destroys all odd cycles, resulting in a bipartite graph. Provided

n is large enough, this bipartite graph is a subgraph of K⌊n/2⌋,⌈n/2⌉.

Now, if H does not have an edge that is involved in every odd cycle, then for every

edge e ∈ E(H), there exists an odd cycle C such that e ̸∈ C. Suppose a bipartite

graph G is H-saturated. Add an edge e′ to G. Since G is bipartite and originally has

no odd cycles, e′ must belong to an odd cycle in the created copy of H. However, e′

can not not belong to every odd cycle in H. Either one of the odd cycles is missing,

or G already had one. Either way, we have a contradiction.
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Chapter 4

H-Covered Graphs

In this chapter, we return to counting substructures in various graphs, but we direct

our attention specifically to counting independent sets, collections of vertices with no

edges between any pairs of vertices. We also leave the domain of graph saturation and

turn our attention to H-covered graphs. Recall that we say a graph G is H-covered

if every vertex of G is contained in at least one copy of H. In order to maximize

independent sets, we want to build H-covered graphs efficiently in the sense that they

are fairly sparse. However, as noted in the introduction, maximizing independent sets

of size at least 3 may require a different structure than what maximizes independent

sets of size 2 among H-covered graphs for a given choice of H. Throughout we will

write it(G) to denote the number of independent sets of size t in G.

4.1 Independent Sets in Star-Covered Graphs

To begin our journey in this direction, we state a powerful result due to Gan, Loh,

and Sudakov that will in many cases answer our question [19].

Theorem 16 (Gan, Loh, and Sudakov, 2013). Let δ ≤ n/2. For every t ≥ 3, every

n-vertex graph G with minimum degree at least δ satisfies it(G) ≤ it(Kδ,n−δ), and

when t ≤ δ, Kδ,n−δ is the unique extremal graph.
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Since the case where δ = 1 will be of special importance to us, we note that this

case was proved earlier by Galvin in [18]. In particular, the following is an immediate

consequence of this special case.

Corollary 7. Fix n, d, and t with n ≥ 4, 1 ≤ d ≤ n − 1, and 3 ≤ t ≤ n − 1. If G

is an n-vertex K1,d-covered graph, then it(G) ≤ it(K1,n−1) with equality if and only if

G ∼= K1,n−1.

Proof. Let G be a K1,d-covered graph on n vertices. This means that every vertex

in G is contained in a copy of K1,d. Since the minimum degree of K1,d is 1, G has

minimum degree at least 1. Setting δ = 1 in the previous theorem implies that

it(G) < it(K1,n−1) whenever G ̸∼= K1,n−1. Since K1,n−1 is K1,d-covered for all n > d,

this upper bound is best possible amongst K1,d-covered graphs.

While we generally focus on independent sets of size t ≥ 3, we state the following

result to illustrated the the difference between minimizing independent sets of size 2

and of size at least 3. Recall that for graphs G1 and G2, we write G1 ∪G2 to denote

the disjoint union of G1 and G2. Given an integer k, we write kG1 to denote the

union of k disjoint copies of G1.

Proposition 32. Let G be a K1,d-covered graph on n = q(d + 1) + r vertices where

q ≥ 0 and d+ 1 ≤ r ≤ 2d+ 1. Then

i2(G) ≤ i2(qK1,d ∪K1,r−1) =

(
n

2

)
− n+ q + 1.

The maximum value is attained by G precisely when G is a forest with q + 1 com-

ponents, each of which is K1,d-covered. The extremal graph is unique only when

r ∈ {d+ 1, d+ 2}.
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Figure 4.1: All graphs on 3 vertices up to isomorphism

Proof. Suppose G is K1,d-covered and maximizes i2(G). Suppose further that G has

k components G1, . . . , Gk. Each component must contain a copy of K1,d and hence

at least d + 1 vertices. The number of edges in Gi is at least ni − 1 where Gi has

ni vertices for all 1 ≤ i ≤ k. Since G is edge-minimal, each Gi has exactly ni − 1

edges and must be a tree. Note that this is in fact possible by considering the case

where Gi
∼= K1,ni−1 since ni ≥ d + 1. Thus G is a forest and contains n − k edges.

This is minimized when the number of components k is as large as possible. Since G

is edge-minimal and each component has order at least d + 1, we have that k must

be q + 1 and i2(G) = i2(qK1,d ∪ K1,r−1). Uniqueness of G when r ∈ {d + 1, d + 2}

is immediate since every component must have d + 1 vertices, with one exception of

size d+ 2 when r = d+ 2. If r > d+ 2, we can distribute the surplus vertices to any

of the Gi as we see fit.

It is worth noting that this minimum number of edges agrees with the number

given by the integer program of Chakraborti and Loh in [7].

4.2 H-Covered Graphs for Small H

We now turn out attention to some small choices of H, from which we will attempt

to generalize some results. In particular, we shall consider graphs on 3 and 4 vertices.

Since our graphs may be disconnected, we distinguish them by the color of their

vertices in Figure 4.1.

We simply remark that an independent set on n vertices is 3K1-covered and triv-

ially maximizes independent sets of all sizes. Very similarly, the disjoint union of an
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edge and an independent set on n− 2 vertices maximizes independent sets of all sizes

among (K2∪K1)-covered graphs. The optimal graph for K1,2 is given by Corollary 7.

Unfortunately, K2,n−2 is not K3-covered, so we are unable to use the theorem of Gan,

Loh, and Sudakov to resolve this last graph on 3 vertices immediately. However, it

turns out that the addition of a single edge to that graph does the trick. Without

considering this isolate case first, we immediately state a recent result which gives

the maximum independent set counts for all t ≥ 3 among clique-covered graphs [34].

Theorem 17 (Wang, Hou, Liu, and Ma, 2020). For any positive integers, r, t, n with

t ≥ 3 and n ≥ r, every Kr-covered graph G on n vertices satisfies it(G) ≤
(
n−r+1

t

)
,

and when n ≥ r + t− 1, Kr−1 +Kn−r+1 is the unique extremal graph.

Moving to graphs on 4 vertices, we have 11 choices of H to consider. Corollary 7

and the theorem of Wang, Hou, Liu, and Ma handle four of these graphs, namely the

star K1,3, the cycle C4, the clique K4, and K4 \ e for any edge e. We note that the

extremal graph for K4\e is the same as that of K3 since K4\e is itself K3-covered and

the optimal K3-covered graph is also (K4 \e)-covered. The clique K4 is accounted for

with regards to independent sets of size at least 4.Four of the other graphs contain a

vertex of degree 0, and the following Lemma addresses these and any other choices

of H that include an isolated vertex.

Proposition 33. Suppose G is an H-covered graph on n vertices where H = L∪K1

for some graph L on n1 vertices. Then for all t ≥ 2,

it(G) ≤ it(L ∪ (n− n1)K1).

Proof. Let G be an H-covered graph on n vertices. Then it must contain H and

hence L as a subgraph. No independent set in G can use a pair of vertices that are
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Figure 4.2: Graphs on 4 vertices for which Proposition 33 and Corollary 7 do not
apply

adjacent in this copy of L. We now note that L ∪ (n− n1)K1 is in fact H-saturated.

Note that any set of t vertices in L∪ (n− n1)K1 that does not use a pair of adjacent

vertices in the designated copy of L is in fact an independent set. Therefore it(G) is

maximized by this graph for all t ≥ 2.

This leaves three graphs on 4 vertices for our consideration, and we display them

in Figure 4.2, again coloring vertices to distinguish one graph from another. We begin

with the rightmost graph in Figure 4.2, the one with blue vertices; that is, K1,3 + e

where e is an edge between any pair of vertices of degree 1 in K1,3.

Proposition 34. Suppose G is a (K1,3 + e)-covered graph on n vertices. Then for

all t ≥ 3,

it(G) ≤ it(K1,n−1 + e′)

where e′ is an edge between any pair of vertices of degree 1 in K1,n−1.

Proof. Let G be a (K1,3 + e)-covered graph on n vertices. Then every vertex of G

must be contained in a copy of K1,3 + e, but in particular G must contain a copy of

K1,3 + e as a subgraph. In this copy, label the vertices such that the vertex of degree

1 within this subgraph is v, the vertex of degree 3 is u, and the remaining vertices

are x and y. Consider an independent set I of size t ≥ 3 in G. I contains at most 2

vertices from the initial copy of K1,3 + e. In particular, the options for I ∩{u, v, x, y}

are the following:

∅, {v}, {u}, {x}, {y}, {v.x}, {v, y}.
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Now, consider another vertex w ∈ V (G) that is not adjacent to u. We will count

independent sets of size t in G that include w. Since d(w) ≥ 1, w must have a

neighbor in {v, u, x, y} or V (G) \ {v, u, x, y, w}. In the latter case, there are at most(
n−6
t−1

)
independent sets of size t using w and no vertex from {v, u, x, y}, 4

(
n−6
t−2

)
using

w and one of those vertices, and 2
(
n−6
t−3

)
using w and two of them.

If, on the other hand, w has a neighbor in {v, u, x, y}, then there are at most(
n−5
t−1

)
independent sets of size t using w and no vertex from {v, u, x, y}, 3

(
n−5
t−2

)
using

w and one of those vertices, and 2
(
n−5
t−3

)
using w and two of them. Since this bound is

greater and holds with equality when N(w) = {u}, it follows that it(G) is maximized

when G ∼= K1,n−1 + e.

We now proceed to the remaining choices of H on 4 vertices, a path on 4 vertices

and the disjoint union of two edges. Rather than proving results about these graphs

in isolation, we will address their generalizations: paths and a disjoint union of edges.

4.3 Independent Sets in Path-Covered Graphs

Recall that we write Pk to denote a path on k vertices. Bearing in mind that the star

maximizes independent set of all sizes t ≥ 3, it is reasonable to begin our investigation

of path-covered graphs by considering one with as large of a star as possible as a

subgraph. In Chapter 3 we considered a class of graphs that lends itself very nicely

for this purpose: the spider. In particular, consider the (1, . . . , 1, k − 2) spider. This

spider has n− k + 1 legs of length 1 and a single leg of length k − 2. By considering

the path from any leaf on a leg of length 1 to the leaf on the leg of length k − 2, we

can see that this spider is in fact Pk-covered. We will now show that this graph does

in fact maximize the number of independent sets of size t for all t ≥ 3. Although

we prove this for all k ≥ 4, we prove the smallest case first as the proof strategy
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motivates and provides an introduction to what will be used in the general case.

Proposition 35. Let G be a P4-covered graph on n vertices and let S be the (1, . . . , 1, 2)

spider with n− 3 legs of length 1. Then for all t ≥ 3,

it(G) ≤ it(S).

Proof. Since G is P4-covered, there exists a copy of P4 in G with ordered vertices

v1, v2, v3, v4. Let w be another vertex in G. As in the previous section, we will

consider the independent sets that contain w.

There are three cases to consider. Begin by supposing thatN(w)∩{v1, v2, v3, v4} =

∅. Then G contains at most
(
n−6
t−1

)
independent sets of size t using w and no vertex

from that set, at most 4
(
n−6
t−2

)
using w and one of those vertices, and at most 3

(
n−6
t−3

)
using w and any of the non-adjacent pairs in the set {v1, v2, v3, v4}. Using Pascal’s

identity, we find that the number of independent sets using G is at most

(
n− 6

t− 1

)
+ 4

(
n− 6

t− 2

)
+ 3

(
n− 6

t− 3

)
=

(
n− 4

t− 1

)
+ 2

(
n− 5

t− 2

)
.

For our second case, suppose w is adjacent to neither v2 nor v3 but at least one

of v1 or v4. Then G contains at most
(
n−5
t−1

)
independent sets of size t using w and

none of the vi, at most 3
(
n−5
t−2

)
using w and one of the vi, and at most

(
n−5
t−3

)
using a

pair of vertices from that set. Again, we can rewrite our sum using Pascal’s identity

to obtain an upper bound of

(
n− 5

t− 1

)
+ 3

(
n− 5

t− 2

)
+

(
n− 5

t− 3

)
=

(
n− 3

t− 1

)
+

(
n− 5

t− 2

)
.

Lastly, we consider the case where w is adjacent to at least one of v2 or v3.
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Without loss of generality, assume w is adjacent to v3. Then G contains at most(
n−3
t−1

)
independent sets of size t using w but not v2 and at most

(
n−4
t−2

)
using w and v2.

Thus G has at most (
n− 3

t− 1

)
+

(
n− 4

t− 2

)
independent sets of size t using w. Note that this bound is met with equality for

every vertex w ̸∈ {v1, v2, v3, v4} in S. Furthermore, this is the largest bound provided

by the three cases. Therefore it(G) is maximized for all t ≥ 3 when G ∼= S.

In order to extend this to arbitrary paths, we state the following well-known and

prove a lemma of our own.

Lemma 19. [Hopkins and Staton, 1984] Let k ≥ 1 and 0 ≤ t ≤ k + 1. Then

it(Pk) =

(
k + 1− t

t

)
.

Lemma 20. For all t ≥ 1 and for positive integers a and b,

it(Pa ∪ Pb) ≤ it(Pa+b−1 ∪K1).

Proof. Let t ≥ 3 be fixed. Label the vertices of Pa ∪ Pb as v1, . . . , va, va+1, . . . , va+b

where {v1, . . . , va} is the vertex set of Pa and {va+1, . . . , va+b} is the vertex set of Pb,

each with vertices labeled in the order of the vertices on the respective paths. Label

the vertices of Pa+b−1 ∪K1 as u1, . . . , ua+b where {u1, . . . , ua+b−1} is the vertex of set

of Pa+b−1 and ua+b is the vertex for our isolated vertex.

We prove our inequality by exhibiting an injection f from the collection of in-

dependent sets of size t in Pa ∪ Pb to the collection of independent sets of size t in

Pa+b−1∪K1. To this end, let I be an independent set in Pa∪Pb. If |I∩{va, va+1}| ≤ 1,
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let

f(I) = {uj : vj ∈ I}.

Otherwise, {va, va+1} ⊆ I. Then we define

f(I) = {uj : j ≤ a− 1 and vj ∈ I} ∪ {ua+b−j : j ≥ 0 and va+j ∈ I}.

Each case is injective on its own and the definition of f is such that the two cases are

disjoint. Therefore the number of independent sets of size t in Pa ∪ Pb is at most the

number of independent sets of size t in Pa+b−1 ∪K1.

We are now ready to prove Theorem 6.

Theorem 6. Let G be a Pk-covered graph on n vertices and let S be the (1, . . . , 1, k−2)

spider with n− k − 1 legs of length 1. Then for all t ≥ 3,

it(G) ≤ it(S).

Proof. Since G is Pk-covered, there exists a copy P of Pk in G with ordered vertices

v1, v2, . . . , vk. Let w be another vertex in G. We will consider the independent sets

that contain w, and we have two general cases to consider.

Begin by supposing that N(w) ∩ P = ∅. Since d(w) ≥ 1, there are at most

n− k− 2 non-neighbors of w that are outside of P . Let I be an independent set in G

containing w. If |I∩P | = t−j−1, then we can build I in at most
(
n−k−2

j

)(
k+1−(t−1−j)

t−1−j

)
ways by choosing an independent set of size t − 1 − j from P and the remaining j

vertices from outside of P . Here the number of independent sets of size t − 1 − j is

given by Lemma 19. Summing over j, we see that the number of independent sets
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using w in this case is at most

t−1∑
j=0

(
n− k − 2

j

)(
k + 1− (t− 1− j)

t− 1− j

)
.

Otherwise w is adjacent to some vc in P . Without loss of generality, we shall

assume c ≥ k/2, and we will show that the number of independent sets of size t using

w is maximized when c = k − 1. To this end, we first note that if c = k, then the

vertices taken from P must be an independent set in a copy of Pk−1. On the other

hand, if c = k − 1, then the vertices from P are taking from a copy of Pk−2 ∪ K1

where the disjoint copy of K1 is the vertex vk. Since Pk−2 ∪K1 is a proper subgraph

of Pk−1 on the same number of vertices, the former clearly contains at least as many

independent sets of any fixed size as the latter.

We now compare the case where c = k − 1 to the case where c ≤ k − 2. As

previously stated, vertices in P that are used in an independent set with w are taken

from Pk−2 ∪K1 when c = k − 1. If c ≤ k − 2, then the vertices in P that are used in

an independent set with w are taken from a copy of Pc−1 ∪ Pk−c where Pc−1 is given

by the vertices v1, . . . , vc−1 and Pk−c is given by the vertices vc+1 . . . , vk. Applying

Lemma 20, with a = c− 1 and b = k − c,

ij(Pc−1 ∪ Pk−c) ≤ ij(Pk−2 ∪K1)

for all 0 ≤ j ≤ t− 1.

Since S meets the upper bound on the number of independent sets of size t using w

where N(w)∩P = {vk−1}, the proof will be complete after establishing the following
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inequality where the summation on the right is the bound where N(w)∩P = {vk−1}.

t−1∑
j=0

(
n− k − 2

j

)(
k + 1− (t− 1− j)

t− 1− j

)
≤

t−1∑
j=0

(
n− k

j

)(
k − 1− (t− 1− j)

t− 1− j

)
.

Rather than showing this algebraically, we note that the bound on the left is the

number of independent sets of size t in Pk ∪ Kn−k−2. The bound on the right is

the number of independent sets of size t in Pk−2 ∪ Kn−k. Since Pk−2 ∪ Kn−k is

a proper, spanning subgraph of Pk ∪ Kn−k−2, every independent set in the larger

graph is necessarily an independent set in its subgraph. Therefore our inequality is

established, and the proof is complete.

4.4 Independent Sets in Matching-Covered Graphs

For our final choice of H, we now address the number of independent sets of size t ≥ 3

in mK2-covered graphs. To do this, we begin by proving Theorem 7, establishing a

strong restriction on the possible structure of an optimal graph.

Theorem 7. Let G be an mK2-covered graph on n vertices with m ≥ 2. Then for

all t ≥ 3 there exists a graph Hℓ = K1,n−2ℓ−1 ∪ ℓK2 for some ℓ ≥ m − 1 such that

it(G) ≤ it(Hℓ).

Proof. We will first consider the case where m = 2. Let G be 2K2-covered and edge-

minimal; that is, the removal of any edge in G results in a graph that is no longer

2K2-covered. Here G must contain a vertex-disjoint pair of edges v1v2 and v3v4. Pick

these edges such that d(v1) + d(v2) + d(v3) + d(v4) is maximum among such edges.

Since G is edge-minimal, e({v1, v2}, {v3, v4}) = 0. That is, there are no edges between

the pairs. For 1 ≤ i ≤ 4, let Ni denote the neighborhood of vi in G, excluding the

other vj, and let ni = |Ni|. Since each vertex in N =
⋃4

i=1Ni is adjacent to some vi,



99

each vertex is 2K2-covered using one such edge and either v1v2 or v3v4. Since G is

edge-minimal, we can assume then that there is exactly one such edge for each v ∈ N

and that N is an independent set.

We build a new graph G′ on the same vertex set as follows. Take the graph G

with v1v2 and v3v4 as chosen above. For every vertex v ∈ N , add the edge vv1 and

delete vvi for all i ≥ 2. Since every vertex v ∈ N is still contained in a copy of 2K2

by considering the edges vv1 and v3v4, and since no other edges are changed, we have

that G′ is also 2K2-covered.

We now show that it(G) ≤ it(G
′) for all t ≥ 3. For all J ⊆ N and for all i ≥ 0, let

ei(J) denote the number of independent sets I in G with I ∩N = J and |I| = |J |+ i.

We define e′i(J) similarly for G′. We now prove the following claim.

Claim 1. For all J and i, e′i(J) ≥ ei(J).

Proof. Let J ⊆ N and i be fixed. For a given J , an independent set I in G can

include at most one of v1, v2 and at most one of v3, v4. If J ̸= ∅, then there is some

j such that any independent set I containing J in G cannot contain vj. Thus there

are at most 3 ways for I to include 1 element from {v1, v2, v3, v4} and at most 2 ways

to include two such elements. On the other hand, any independent set in G′ can

include v2 and either v3 or v4. Thus we always have 3 ways to include 1 element

from {v2, v3, v4} and 2 ways to include two such elements. The ways we can choose

elements from the remaining vertices of the graph are unchanged between G and G′.

Therefore ei(J) ≤ e′i(J).

By the above claim, we have that it(G) ≤ it(G
′) for all t. It follows that we can

continue this process until there is no pair of disjoint edges with at least two vertices

of degree greater than 1. At this point we are left with Hℓ for some ℓ.
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When m > 2, we take m disjoint copies of K2. By the argument above, we can

take any two disjoint copies of K2 from the m that we are guaranteed and force the

union of their neighborhoods to all be adjacent to the same vertex. In this manner,

we obtain Hℓ for some ℓ with ℓ ≥ m− 1.

This lemma tells us the general structure of the mK2-covered graph that will

maximize it(G) among such graphs for a given t. In particular, the optimal graph

is the disjoint union of a star and at least as many disjoint edges as needed to be

mK2-covered. Given this structure, the next question is with regards to which choice

of ℓ ≥ m− 1 results in Hℓ having the most independent sets of size t. Is it better to

have a large star with as few disjoint edges as possible, or is it better to have as many

disjoint edges as possible? This requires some care, and we begin with the case where

t = 3, with graphs on an even and odd number of vertices considered separately.

Lemma 21. Let G ∼= K1,2α+1 ∪ (n
2
− α − 1)K2 and H ∼= K1,2α−1 ∪ (n

2
− α)K2 for

some 1 ≤ α < n
2
. Then i3(H)− i3(G) = n− 4α + 1. In particular, i3(H) > i3(G) if

and only if n ≥ 4α.

Proof. Consider independent sets of size 3 that are in exactly one of G and H. Let

uv be the extra copy of K2 in H. Then G has an additional n−3 independent sets of

size 3 that use both u and v. On the other hand, H has an additional 2(n− 2α− 2)

independent sets of size 3 using the center of the star and u or v. Thus

i3(H)− i3(G) = 2(n− 2α− 2)− (n− 3) = n− 4α + 1.

We end by noting that i3(H) > i3(G) precisely when n − 4α + 1 > 0; that is, when

n ≥ 4α.
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Proposition 36. Let G be an mK2-covered graph on n vertices with m ≥ 2 and n

even. Then

i3(G) ≤ i3

(n
2
K2

)
.

Proof. Let G bemK2-covered on n vertices with i3(G) maximum amongmK2-covered

graphs. Suppose G is not a collection of disjoint edges. By Theorem 7, G ∼= K1,2α+1∪

(n
2
− α− 1)K2 for some 1 ≤ α ≤ n

2
−m. By repeated application of Lemma 21,

i3

(n
2
K2

)
− i3(G) =

α∑
j=1

(n− 4j + 1) = α(n− 2α− 1).

This difference is greater than 0 whenever α < n
2
− 1

2
. Since α ≤ n

2
− m ≤ n

2
− 2,

the difference is always positive. Therefore i3(G) < i3
(
n
2
K2

)
, a contradiction to

G having the maximum number of independent sets of size 3 among mK2-covered

graphs. Hence G ∼= n
2
K2.

With regards to the case where n is odd, we simply remark that our graph must

contain K1,2 as a subgraph.

Given this result and the fact that a disjoint union of edges will also maximize

independent sets of size 2, it is reasonable to suspect that the pattern will continue.

If n
2
K2 maximizes the number of independent sets of size 2 and 3 among mK2-covered

graphs for any choice of m, why not independent sets of larger size? Some compu-

tations in Sage using the ‘IndependentSets’ package reveal that this is not the case.

Tables 4.1 and 4.2 present that the value of ℓ that optimizes it(Hℓ) among mK2-

covered graphs for various choices of m, t, and n. We note that these choices were

obtained by computing and comparing the number of independent sets of each size

in these graphs using Sage.

Notice that in these examples, the optimal choice is always m or n/2. That is,
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m t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
2 10 2 2 2 2 2 2 2
3 10 3 3 3 3 3 3 3
4 10 4 4 4 4 4 4 4
5 10 5 5 5 5 5 5 5
6 10 10 6 6 6 6 6 6
7 10 10 10 7 7 7 7 7
8 10 10 10 10 8 8 8 8
9 10 10 10 10 10 9/10 9 9
10 10 10 10 10 10 10 10 10

Table 4.1: Choices of ℓ that maximize it(Hℓ) among mK2-covered graphs on 20
vertices where ℓ ≥ m− 1

m t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15
2 15 2 2 2 2 2 2 2 2 2 2 2 2
3 15 3 3 3 3 3 3 3 3 3 3 3 3
4 15 4 4 4 4 4 4 4 4 4 4 4 4
5 15 5 5 5 5 5 5 5 5 5 5 5 5
6 15 6 6 6 6 6 6 6 6 6 6 6 6
7 15 15 7 7 7 7 7 7 7 7 7 7 7
8 15 15 8 8 8 8 8 8 8 8 8 8 8
9 15 15 9 9 9 9 9 9 9 9 9 9 9
10 15 15 15 10 10 10 10 10 10 10 10 10 10
11 15 15 15 11 11 11 11 11 11 11 11 11 11
12 15 15 15 15 12 12 12 12 12 12 12 12 12
13 15 15 15 15 15 15 13 13 13 13 13 13 13
14 15 15 15 15 15 15 15 15 15 14 14 14 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15

Table 4.2: Choices of ℓ that maximize it(Hℓ) among mK2-covered graphs on 30
vertices where ℓ ≥ m− 1
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the optimal choice is either a large star with as few disjoint edges as required, or it is

a disjoint union of edges.

We would like to determine if this is the case and, ideally, determine the threshold

at which the optimal graph changes. We prove a generalization of Lemma 21 to point

us in this direction and end the chapter with a conjecture. Recall that for a given n,

we write Hℓ to denote the graph K1,n−2ℓ−1 ∪ ℓK2.

Lemma 22. For all t ≥ 3,

it(Hℓ+1)− it(Hℓ) =

(
ℓ

t− 2

)
2t−1 −

t−2∑
j=0

(
ℓ

j

)(
n− 2ℓ− 3

t− j − 2

)
2j.

Proof. Note that we can obtain Hℓ+1 from Hℓ by deleting edges vx and vy from Hℓ

where v is the unique vertex of degree greater than 1 and x and y are two of its

neighbors, and by adding the edge xy. We now consider which independent sets are

gained under this transformation as well as those which are lost. In particular, the

only independent sets that we gain are those which use v and one of x or y. By using

v, we are forced to pick the remaining vertices from the other ℓ disjoint copies of K2.

Thus we select t − 2 of these pairs as well as either of the two vertices from each of

these pairs. Thus we gain

2

(
ℓ

t− 2

)
2t−2

independent sets of size t.

On the other hand, we lose all independent sets of size t from Hℓ that used both

x and y. Suppose such an independent set uses j vertices from the ℓ disjoint edges.

As before, we choose j of these ℓ pairs and then select a vertex from each. We then
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select the remaining t− j − 2 vertices from the neighbors of v. That is, we lose

(
ℓ

j

)(
n− 2ℓ− 3

t− j − 2

)
2j

independent sets of size t. We can do this for all j from 0 to t− 2. Summing over j

yields the desired difference.

Conjecture 1. Let G be an mK2-covered graph on n vertices with n even. There

exists a constant tm,n such that the following hold.

1. it(G) ≤ it(K1,n−2m+1 ∪ (m− 1)K2) for all t ≥ tm,n

2. it(G) ≤ it(
n
2
K2) for all 2 ≤ t < tm,n.

We are interested in determining, if this conjecture is true, what the value of this

threshold tm,n is for all m and n, but proving this unimodality result on its own is

still of interest.
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Chapter 5

Future Work

We conclude with some remarks for future directions related to the problems discussed

in the preceding chapters. There are many ways to proceed, but we will highlight a

few specific problems that are especially intriguing.

In Chapter 2 we considered the generalized saturation problem of determining the

value of satH(n, F ) for various choices of H and F . This problem is still very young,

and there are many other classes of graphs open for consideration. With regards to

the classes considered in these pages, the following questions stand out.

Question 3. For arbitrary r and t fixed, what value of c minimizes the lower bound

on n in Theorem 5 for the existence of an n-vertex, r-partite, St-saturated graph?

It would also be interesting to address the case where n < 2t− 1 and the optimal

configuration of an St-saturated graph is less clear. The relationship between cherry-

counting and Moore graphs is also a problem worth additional attention.

Question 4. For n ≥ 2t − 1 with t ≥ 2 and r < t, what value(s) of m minimize

sr(KRt,n(m))? What structure minimizes sr(G) when G is St-saturated and has fewer

than 2t− 1 vertices?
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Question 5. For what values of n is satS2(n,K3) <
(
n−1
2

)
? That is, when does there

exist a triangle-saturated graph with fewer cherries than a larger star?

There is also a related notion not considered in our work which is that of weak

saturation. Given graphs F and H, we say that a graph G that is a subgraph of

H is weakly (F,H)-saturated if G is F -free and there exists an ordering e1, . . . , ek

of the edges in E(H) \ E(G) such that for all i ∈ [k], there exists a copy of F in

G ∪ {e1, . . . , ei} using the edge ei. This concept was introduced by Bollobás in [5].

We write wsat(F,H) to denote the minimum number of edges in a weakly (F,H)-

saturated graph. Given this new setting and the problems addressed in Chapter 2,

the following question is a natural one to ask.

Question 6. For r < t ≤ n what is the value of wsatKr(Kt, Kn)?

This question is especially intriguing because satKr(n,Kt) is attained by the split

graph for all r < t as discussed previously. In addition, wsat(Kt, Kn) is attained

by the split graph [24]. Determining whether or not the split graph also maximizes

copies of Kr for r ≥ 3 among weakly (Kt, Kn)-saturated graphs is an exciting task.

Doing this even in the case where r = 3 and t = 4 is open and of interest.

With regards to tree-saturating graphs, we would like to fully characterize which

trees are tree-saturating. We completed this task for those trees which are spiders;

that is, trees with a single vertex of degree greater than 2. We also provided some

results concerning caterpillars that are tree-saturating, but we lack a complete char-

acterization of them.

The natural next step would be to consider triangle-free-saturating graphs and

then bipartite-saturating graphs beyond that. While these are a couple of important

classes of graphs, there are many other options as well.



107

Finally, we turn to the topic of Chapter 4, H-covered graphs. We were interested

in maximizing independent sets of fixed size t ≥ 3 among star-covered graphs, path-

covered graphs, and mK2-covered graphs. We identified the extremal graphs for stars

and paths, and we gave a list of candidates from which the optimal mK2-covered

graph resides. Unlike the other main classes of graphs we considered, we showed that

the mK2-covered graph on n vertices that maximizes independent sets of size t is

dependent on n, m, and t. The most natural next step for us is to prove or disprove

Conjecture 1 and, if it is true, to determine the value of the threshold tm,n at which

the extremal mK2-covered graph on n vertices changes. In addition to this direct

continuation of our work, we can also count independent sets in H-covered graphs

for other choices of H as well as other substructures in the way that we did in our

generalized saturation problems considered in Chapter 2.
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