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 Genome annotation has a direct impact on the success of genomic studies. 

Transcriptome analyses and chromatin immunoprecipitation and sequencing (ChIP-seq) 

have been used to functionally annotate genomes. These methods can identify protein-

coding genes, non-coding transcripts, and cis-regulatory elements across the genome. The 

primary objective of the first study was to functionally annotate the equine genome 

through the assessment of nine tissues: adipose, brain, heart, lamina, liver, lung, skeletal, 

muscle, testis, and ovary. In the first project, 150 bp, paired-end RNA sequencing (RNA-

seq) libraries were generated in stallion tissues and compared to previously generated 

mare RNA-seq libraries to quantify variation in gene expression due to sex and tissue 

type. On average, each tissue expressed (> 10 transcripts per million) over 8,000 genes, 

and adipose, liver, and skeletal muscle each had over 900 genes differentially expressed 

due to sex (P adj <0.05). In the second study, the peaks of four histone marks, H3K27ac, 

H3K4me1, H3K4me3, and H3K27me3, were examined to identify activated regions, 

enhancers, promoters, and silencers, respectively. Fifty base pair, paired-end ChIP-seq 

libraries were created for each histone mark in stallion tissues and compared to data from 

50 bp single-end ChIP-seq libraries from mare tissues. On average, 77,000 activated 



  

regions, 120,000 enhancers, 34,000 promoters, and 32,000 silenced regions were detected 

in each stallion tissue. Due to high correlations among sequencing depth, total peaks 

called, and tissue-unique peaks, regulatory elements unique to tissue types and sexes 

could not be well characterized.  

 The third study examined genomic variation associated with a congenital defect, 

perosomus elumbis, (PE) in Angus cattle. The affected calf was still-born, displaying 

lumbar aplasia, and arthrogryposis. Whole-genome sequencing of 31 Angus cattle 

identified a frameshift mutation in PTK7 as a candidate variant for the development of PE 

in an Angus calf. Despite the implication of PTK7 in similar phenotypes, additional 

research is needed to verify the etiology of PE in Angus cattle.   
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CHAPTER 1: LITERATURE REVIEW 

 Equine genomics has vastly improved in the past two decades, yet the annotation 

of the equine genome lags behind that of mice and humans. The history of equine 

genomics following the development of the first reference genome is reviewed, including 

genome annotation, genomic tools, and major genomic studies. Some of the limitations of 

current genomic resources are discussed in horses and other livestock species. Many of 

these shortcomings in genome annotation have been addressed in the human genome by 

the ENCODE Project Consortium. The role of histone modifications in functionally 

annotating regulatory elements is discussed in addition to the major accomplishments of 

the ENCODE Project. Lastly, the Functional Annotation of Animal Genomes Project 

(FAANG), and the state of functional annotation in the equine genome are reviewed to 

provide context for the need of RNA-sequencing (RNA-seq) and chromatin 

immunoprecipitation and sequencing (ChIP-seq) studies in stallion horses. 

 

Part I. Tools for Equine Genomics 

Generation of the Equine Reference Genome 

 The Human Genome Project aimed to sequence the entirety of the human genome 

(Collins & Fink, 1995). This effort took over a decade to complete and resulted in the 

first reference genome for the study of human traits and diseases (International Human 

Genome Sequencing Consortium, 2001). The finalized reference genome covered about 

99% of euchromatic regions and consisted of only 341 gaps but came at a cost of $450 

million (International Human Genome Sequencing Consortium, 2004; Spencer, 2001). 

Despite the cost, the Human Genome Project had an immense impact on human health, 
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biotechnology, and the understanding of genomics as a whole (Hood & Rowen, 2013). In 

part due to the technological advances that were cultivated by the Human Genome 

Project, the cost of whole genome sequencing has dramatically declined, thus allowing 

for the development of reference genomes for other species of interest. One such species 

is the horse. The equine industry has had a large economic impact in the U.S. for decades, 

growing from a $39 billion industry in 2005 to a $50 billion industry in 2017 (American 

Horse Council, 2018). The study of disease and performance traits in these valuable 

animals was accelerated by the generation of the first equine reference genome, 

EquCab2.0 (Wade et al. 2009).  

EquCab2.0 was generated using DNA from a single Thoroughbred mare, 

Twilight, and sequenced to 6.8x coverage using bacterial artificial chromosome (BAC) 

libraries and Sanger sequencing (Wade et al., 2009). The genomic sequence outlined in 

EquCab2.0 consists of 2.5-2.7 gigabases (Gb) with 95% of sequence being assigned to 

one of the 32 chromosomes (Wade et al., 2009). The equine genome was predicted to 

have 20,322 protein-coding genes with over 81% demonstrating orthology to human 

genes (Wade et al., 2009). While EquCab2.0 provided a solid foundation for equine 

genomic studies, the limitations of this reference genome have become apparent.  

In 2015, the EquCab2.0 reference sequence was compared to the original 28 

million Sanger reads used in the assembly and new 40x coverage Illumina short read data 

from Twilight (Rebolledo-Mendez et al., 2015). Over 1.9 million variants were identified 

between Twilight’s Sanger reads and the reference genome with this number increasing 

to nearly 4 million when including the Illumina short read data (Rebolledo-Mendez et al., 

2015). Of these variants, 4% were homozygous in the Sanger reads and 18% were 
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homozygous in the Illumina reads (Rebolledo-Mendez et al., 2015). Variants found in the 

homozygous state represent loci where neither of Twilight’s alleles match the reference. 

This suggests that erroneous base calls could have contributed to the final reference 

sequence. Beyond these single nucleotide variants, 42,304 gaps that cover 2.2% of the 

genome were identified (Kalbfleisch et al., 2018). Between missing and miscalled bases, 

the limitations of EquCab2.0 warranted the generation of an improved reference genome.  

Utilizing the foundation of EquCab2.0 and new sequencing approaches, such as 

PacBio long read sequencing and Hi-C proximity ligation, the newest equine reference 

genome, EquCab3.0, was published in 2018 (Kalbfleisch et al., 2018). Substantial 

improvements were observed in contiguity, completeness, and mapability. In this 

assembly, all but one chromosome is covered by a single scaffold and gaps were reduced 

from 2.2% (EquCab2.0) to 0.34% in EquCab3.0 (Kalbfleisch et al., 2018). Mapabilty also 

improved by 2.15% and 0.44%, for RNA sequencing (RNA-seq) and whole genome 

sequencing (WGS) datasets, respectively (Burns et al., 2018; Kalbfleisch et al., 2018). 

Unlike EquCab2.0, EquCab3.0 also phased haplotypes to select the most common allele 

shared amongst four other Thoroughbreds for the reference sequence at loci where 

Twilight is heterozygous (Kalbfleisch et al., 2018). Due to the more recent release of 

EquCab3.0, many of the genomic tools currently utilized in the equine community were 

developed using the EquCab2.0 reference genome.  

 

Development of the Three Equine SNP Arrays 

Genetic variation within a species plays an important role in phenotypic variation 

amongst individuals. Mutations in the genome can be associated with favorable and/or 



 4 

 

deleterious traits. To explore variation in the equine genome, single nucleotide 

polymorphisms (SNPs) were identified in Twilight and representative horses from seven 

breeds. Twilight was heterozygous at ~750,000 loci and an additional ~400,000 SNPs 

were identified across the seven other breeds (Wade et al., 2009; McCue et al., 2012). On 

average, one SNP can be found every 2000 base pairs (bp) in the equine genome (Wade 

et al., 2009). These SNPs can be useful for tagging variation across the genome and 

identifying polymorphisms associated with traits of interest.  

SNP arrays consist of many SNP loci that serve as markers for regions of 

variation in the genome. These arrays are dependent on the idea of linkage 

disequilibrium, or the concept that loci that are close together on a chromosome are 

inherited together at higher frequencies than expected if they were inherited 

independently (not linked). With LD present across the genome, the SNPs chosen for a 

SNP array are assumed to tag nearby variants that may be associated with traits of 

interest. Therefore, genotypes derived from these arrays are often used in genome wide 

association studies (GWAS).  

An equine SNP array was developed in 2009 to allow for more affordable 

genotyping and genome-wide association studies. The EquineSNP50 BeadChip was 

developed using SNPs documented in the EquCab2.0 reference genome. This SNP chip 

contained ~53,500 SNPs that were validated by at least one heterozygous call amongst 

351 horses that were successfully genotyped on the array (McCue et al., 2012). The SNPs 

fall approximately every 43 kilobases (kb) across the 31 autosomes and every 49 kb 

across the X chromosome (McCue et al., 2012). Assessing 14 breeds, McCue (2012) 

determined 49,603 (91.1%) of the SNPs on the array to be informative, or having a minor 
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allele frequency (MAF) greater than 0.05; however, the number of informative SNPs 

dropped substantially when analyzing some breeds alone (McCue et al., 2012). For 

example, only 37,053 or 68% of SNPs were informative in the Norwegian Fjord (McCue 

et al., 2012).  

Shortly after the development of the EquineSNP50 BeadChip, the EquineSNP70 

BeadChip was released consisting of approximately 46,000 informative SNPs from the 

50K array and ~19,000 new SNPs (Chassier et al., 2018; Schaefer & McCue, 2020). The 

70K array has one SNP approximately every 35kb and provides markers in gaps 

previously identified in the 50K array (Schaefer & McCue, 2020). Despite the 

improvements made in the EquineSNP70 BeadChip, the SNP density was only moderate, 

and areas of uneven genomic coverage remained (Schaefer et al., 2017). Furthermore, LD 

was found to decay rapidly and reached r2 < 0.2 within 50kb when considering 14 horse 

breeds (McCue et al., 2012). Based on variation in haplotypes and LD across breeds, 

Wade et al. (2009) suggested that at least 100,000 SNPs would be required for effective 

GWAS.  

The third and newest commercially available SNP array was made available in 

2017 and contains 670,805 SNPs identified in the whole genome sequence of 153 horses 

across 24 breeds (Schaefer et al., 2017). These SNPs on the MNEc670K array were 

derived from a larger discovery array including over 2 million SNPs. The MNEc670K 

array was designed to include SNPs that tagged common haplotypes across the genome 

in 15 breeds (Schaefer et al., 2017). The number of SNPs required to recreate all-breed 

specific haplotypes varied by breed, with ponies, draft horses, and Quarter horses, 

requiring over 350,000 tagging SNPs and Thoroughbreds and Icelandic horses requiring 
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less than 150,000 tagging SNPs (Schaefer et al., 2017). The final MNEc670K array 

includes ~220,000 SNPs tagging haplotypes in four or more breeds, ~70,000 found on 

earlier SNP arrays, and ~7,000 SNPs in the highly studied major histocompatibility 

complex (MHC) region (Schaefer et al., 2017). The 670K array has at least 8 SNPs across 

every 50 kb region in the genome with approximately 3.7 kb between each SNP 

(Schaefer et al., 2017). Genome coverage was vastly improved by the 670K SNP array.  

 

Genome Wide Association Studies in the Horse 

All three equine SNP arrays have been applied to a wide variety of studies. Some 

applications include studies of fertility (Raudsepp et al., 2012; Gottschalk et al., 2016), 

racing performance (Binns et al., 2010), conformation (Singer-Hasler et al., 2012; 

Frischknecht et al., 2015), domestication (Schubert et al., 2014), and breed variation 

(McCue et al., 2012; Petersen et al., 2013). SNP arrays have also been employed to 

identify quantitative trait loci (QTL) associated with complex disease, such as 

osteochondrosis (OC) (Schaefer & McCue, 2020).  

 OC is characterized by the failure of ossification in the cartilage of growing bones 

and can impair the performance of young horses making it a disease of particular interest 

(McCoy et al., 2016). A variety of studies have associated genetic risk loci on multiple 

chromosomes with OC in Hanoverian warmbloods, Standardbreds, and Thoroughbreds 

(Dierks et al., 2007; Lampe et al., 2009; Lykkjen et al., 2010; Corbin et al., 2012; McCoy 

et al., 2016). Yet, little consensus among risk loci exists across studies. Although 

environment certainly contributes to OC, the high prevalence of the disease in certain 

breeds, like the Standardbred, suggests that genetic association efforts are not futile 
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(McCoy et al., 2016). Improvement of sequencing technologies and genome annotation 

may allow for the identification of functional candidate mutations among the QTLs 

identified by GWAS in the future. 

In addition to complex traits, the equine SNP arrays have been useful in 

identifying loci associated with congenital defects. A study by Drögemüller (2014) into 

congenital hepatic fibrosis (CHF) of Franches-Montagnes identified a single SNP tagging 

a 952kb haplotype in affected horses that contained the polycystic kidney and hepatic 

disease 1 gene (PKHD1). PKHD1 has been previously implicated in similar phenotypes 

in humans (Drögemüller et al., 2014). Despite the inability to identify a perfectly 

associated causative variant with subsequent whole genome sequencing, further research 

into the PKHD1 gene relative to hepatic fibrosis may be warranted (Drögemüller et al., 

2014). Another condition that appears shortly after birth in affected horses is equine 

guttural pouch tympany (GPT). This disease is characterized by abnormal distention of 

air-filled tubes in the head of horses that results in labored breathing, difficulty 

swallowing, and pneumonia (Metzger et al., 2012). In studies of Arabians and German 

Warmbloods risk loci were identified on two different chromosomes, but putative causal 

mutations were not found (Metzger et al., 2012). These studies exemplify common 

outcomes of GWAS where genomic regions can be successfully associated with a trait 

but the function of the genome in that region to result in the studied outcome is not clear. 

In some cases, additional sequencing of associated genes has led to putative causal 

mutations within protein coding genes. 

 SNP arrays have proven successful in identifying strong functional candidates in 

some congenital defects when combined with Sanger sequencing and WGS. Lavender 



 8 

 

Foal Syndrome (LFS) is a neurologic disorder accompanied by a coat color dilution 

present in Egyptian Arabian horses (Brooks et al., 2010). GWAS with SNP genotyping 

and subsequent Sanger sequencing, identified a single base pair deletion in the MYO5A 

associated with LFS (Brooks et al., 2010). MYO5A was linked to similar disorders in 

mice and humans, and the single base pair deletion in horses disrupted a highly conserved 

region of the gene (Brooks et al., 2010). The use of Sanger sequencing to examine 

GWAS hits provided a strong functional candidate for LFS (Brooks et al., 2010). Similar 

methods were used to identify a putative mutation for Naked Foal Syndrome (NFS) in 

Akhal-Teke horses (Bauer et al., 2017). Bauer (2017) used 670K SNP data to associate 

haplotypes with NFS. Subsequent whole genome sequencing of two cases and two 

controls identified a nonsense mutation in ST14 associated with NFS (Bauer et al., 2017). 

ST14 had previously been implicated in hair follicle development in mice making the 

nonsense mutation in ST14 a strong functional candidate for the hairless phenotype of 

NFS foals (List et al., 2003; Bauer et al., 2017). Although some traits of interest have 

been successfully associated with strong functional candidates, putative causative 

variants have not been identified for many other important traits.  

 

Limitations of Reference Genomes and SNP Arrays 

 Reference genomes and SNP arrays provide a strong foundation for genetic 

studies; however, there are limits to the usefulness of these resources. Differences 

between the population being studied and the reference sequence as well as shortcomings 

in the annotation of the reference can inhibit the productivity of genetic studies. 
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Structural variants in the genome often exist between breeds of the same species. One 

such example was demonstrated in cattle.  

 The most current Bos taurus reference genome, ARS-UCD1.2, is based on a 

Hereford cow that is highly inbred (Rosen et al., 2020). This high-quality reference 

genome contains a single scaffold for each of the 30 bovine chromosomes and only 459 

gaps across the 2.6 Gb sequence (Rosen et al., 2020). Despite the 200-fold increase in 

continuity and 10-fold increase in accuracy compared to the previous reference from the 

same Hereford cow, UMD3.1.1 (Zimin et al., 2009), the ARS-UCD1.2 reference still has 

difficulties capturing variants of interest in distantly related cattle breeds (Rosen et al., 

2020).  

Development of reference genomes for other breeds of interest has been 

underway and demonstrates the genomic differences between breeds. The development 

of two haplotype-resolved reference genomes for Angus and Brahman cattle through trio 

binning identified genetic differences between Angus, Brahman, and Hereford cattle. The 

number of structural variants identified among six Brahman and five Angus cattle was 

dependent on whether the cattle were mapped to their corresponding breed’s reference 

sequence (Low et al., 2020). As expected, a greater number of structural variants, such as 

deletions, duplications, and inversions, were observed when mapping cattle to the 

opposite breed’s reference sequence (Low et al., 2020). When comparing the Brahman 

(UOA_Brahman_1) and Angus (UOA_Angus_1) reference genomes to the Hereford 

ARS-UCD1.2 reference genome, 0.4% of UOA_Angus_1 and 0.8% of UOA_Brahman_1 

consisted of structural variants (indels, expansions, and contractions) compared to ARS-

UCD1.2 (Low et al., 2020). The work by Low et al. (2020) demonstrate that genetic 
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variation does exist between cattle breeds and that reference genome selection impacts 

the ability to accurately identify variation across breeds.  

Another study examining the impact of reference genome selection on WGS 

studies of Brown Swiss cattle identified differences in annotation between ARS-UCD1.2 

and UOA_Angus_1. Few differences in mapping accuracy and SNP calling were 

identified when mapping WGS from Brown Swiss cattle to ARS-UCD1.2 and 

UOA_Angus_1; however, the annotation of variants using Ensembl’s Variant Effect 

Predictor (VEP) showed significant differences between the two reference assemblies 

(Lloret-Villas et al., 2021). Nearly 10% more SNPs and indels were annotated as 

intergenic in ARS_UCD1.2 than UOA_Angus_1 (Lloret-Villas et al., 2021). SNPs and 

indels were found in intronic regions 10% more often in UOA_Angus_1 than 

ARS_UCD1.2 (Lloret-Villas et al., 2021). Minor differences were observed between the 

two reference genomes when considering variants in exons (Lloret-Villas et al., 2021). 

Signatures of selection occur when selection pressure results in the loss of variation at 

loci near causative variants and can be identified by alleles close to fixation or alleles 

recently fixed within a population (Lloret-Villas et al., 2021). When considering 

signatures of selection, 40 regions of selection were identified in ARS_UCD1.2 

compared to 33 regions in UOA_Angus_1, but little overlap between loci was observed 

between the two references (Lloret-Villas et al., 2021). This demonstrates that reference 

genome can significantly impact the outcome of some genetic studies. Furthermore, the 

study by Lloret-Villas et al. (2021) suggests that a portion of chromosome 13 is inverted 

in the UOA_Angus_1 reference. These differences in annotation can be especially 
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inhibitory to studies where candidate variants are filtered by their predicted impact on 

gene function.  

Genome wide association studies can also be limited by the annotation of 

reference genomes. Most reference genomes are annotated using a variety of methods, 

including comparing sequences from other species, utilizing transcriptome data, and ab 

initio gene prediction based on the sequence itself. Gene structures are frequently 

predicted by two main genome databases, National Center for Biotechnology Information 

(NCBI) and Ensembl. The predicted protein-coding gene lists for the EquCab2.0 equine 

reference genome consisted of 20,322 genes from Ensembl and 17,610 genes from NCBI 

(Coleman et al., 2010). To identify 5’ and 3’ ends as well as exons, introns, and splice 

junctions, Coleman et al. (2010) generated RNAseq data from 8 tissues to clarify the 

structure of protein-coding genes predicted by Ensembl and NCBI. After generating 

almost 300 million sequence tags, Coleman (2010) refined the structure of 11,356 genes.  

When considering loci that did not represent overlapping genes or pseudogenes, 89% of 

genes predicted by Ensembl and NCBI displayed expression in at least one of the eight 

studied tissues (Coleman et al., 2010). Ultimately, a consensus gene set consisting of 

20,302 protein coding genes was defined; however, these protein coding genes only 

comprise about 1.28% of the genome (Coleman et al., 2010). A later study examining 

RNAseq data from 43 tissues in the horse identified 68,594 transcripts in which 71% of 

the transcripts overlapped previously annotated genes (Hestand et al., 2015). Of the 

20,039 transcripts that did not align to previously annotated loci, over 90% contained a 

single exon, suggesting that some of these transcripts may correspond to non-coding 
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RNAs (ncRNAs), unannotated small open reading frames (smORFs), or gene fragments 

that were improperly constructed in the equine reference genome (Hestand et al., 2015). 

In the past, annotation of genomes primarily focused on protein coding genes; 

however, of the ~20,000 protein coding genes found in most mammalian species, the 

protein coding sequence comprise less than 2% of the genome (Coleman et al., 2010; The 

ENCODE Project Consortium, 2012). This is particularly inhibitory to GWAS as one 

study found 88% of human trait associated loci fell within intronic and intergenic regions 

(Hindorff et al., 2009). Many other functional elements exist within the genome outside 

of protein-coding genes, including ncRNAs, transcription factor binding sites, 

transcriptional regulatory elements, and DNA methylation sites (The ENCODE Project 

Consortium, 2012). The large-scale annotation of these functional elements was 

undertaken by the Encyclopedia of DNA Elements (ENCODE) Project, and the 

discoveries made in this project have drastically changed our understanding of genome 

function.  

 

Part II. Progress Toward Functional Annotation 

The ENCODE Project: Overview and Pilot Phase 

 The human ENCODE Project began in 2003 with the intent of annotating all 

functional elements in the human genome and was subdivided into three phases: pilot, 

technology development, and production (The ENCODE Project Consortium, 2004).  In 

the pilot phase, the consortium aimed to identify procedures that could accurately and 

economically characterize large portions of the human genome (The ENCODE Project 

Consortium, 2004). Concurrently, the technology development phase aimed to develop 
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laboratory and computational procedures to address the gaps in technology discovered in 

the pilot phase (The ENCODE Project Consortium, 2004). Between these two phases, the 

most efficient technologies and protocols for functional annotation would be determined 

to allow for a comprehensive and economical assessment of the entire human genome in 

the production phase (The ENCODE Project Consortium, 2004).  

 The pilot phase of ENCODE assessed suitable methods for large scale functional 

annotation by focusing on a 30 Mb region of the genome (~1%) split into forty-four 0.5-2 

Mb regions (The ENCODE Project Consortium, 2004). The ENCODE Project 

Consortium (2004) manually chose approximately half of these regions to represent 

stretches of genome containing well characterized genes or regulatory elements with 

large amounts of comparative sequence data to leverage preexisting knowledge. The 

remaining target regions were selected with an algorithm that ensured selection of 

representative regions in terms of gene content and non-exonic conservation between 

humans and mice (The ENCODE Project Consortium, 2004). The consortium examined a 

variety of technologies in the pilot phase including transcript microarray assays, 

chromatin immunoprecipitation microarray hybridization (ChIP-chip), computational 

gene calling methods, and expression reporter assays. These technologies were employed 

with the intent of identifying genes and their cis-regulatory elements (promoters, 

enhancers, repressors, and silencers), transcription start and end sites, transcription factor 

binding sites, DNA methylation sites, accessible chromatin, chromatin modifications, and 

conserved regions across species (The ENCODE Project Consortium, 2004).  

 A synthesis of the results from the pilot phase were published by the ENCODE 

Consortium in 2007, including transcriptome analyses, novel transcription start site 
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annotation, regulatory element identification, DNA replication regulation, and 

evolutionary constraint analysis across mammalian species (The ENCODE Project 

Consortium, 2007). Only 2% of transcripts identified were found in all sample types, 

whereas 40% of transcripts were found in only one sample type (The ENCODE Project 

Consortium, 2007). Rapid amplification of cDNA ends (RACE) was used to clarify the 5’ 

ends of transcripts. RACE products were hybridized with tiling arrays and added to 

complement the previous datasets. Over 70% of the bases in the ENCODE region were 

contained within unspliced, primary transcripts that were identified in multiple assays 

(The ENCODE Project Consortium, 2007). When assessing transcription start sites 

(TSSs), ~2,700 novel TSSs were identified and supported by a similar presence of 

transcription factors, histone modifications, and DNase I accessibility at known and novel 

TSSs (The ENCODE Project Consortium, 2007). These chromatin structural 

modifications were also found to be able to predict the location and activity of TSSs with 

up to 91% accuracy (The ENCODE Project Consortium, 2007). The presence of histone 

modifications was also correlated with the signal of DNA replication. Activating histone 

modifications such as histone 3 acetylation and histone 3 lyisne 4 mono- and tri-

methylation were negatively correlated with replication signals, while repressive 

modifications, such as histone 3 lysine 27 trimethylation, were positively correlated with 

replication signals (The ENCODE Project Consortium, 2007). The presence of activating 

histone marks fell within open chromatin between 81-93% of the time as noted by DNase 

I hypersensitive sites (DHSs); however, 29-57% of DHSs lacked activating histone 

modifications (The ENCODE Project Consortium, 2007). To assess if these regulatory 

elements were in conserved regions of the genome, regions of evolutionary constraint 
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were examined. Evolutionary constraint is defined as regions of the genome that reject 

mutations and that can be identified by assessing the frequency of intraspecies 

polymorphisms (The ENCODE Project Consortium, 2007). Approximately 50% of non-

coding functional elements are found in unconstrained regions across mammals, 

suggesting variation in these elements both within and between species (The ENCODE 

Project Consortium, 2007).  

 Overall, the pilot phase of ENCODE, studying just 1% of the human genome, 

provided a wealth of new knowledge regarding genome function. As much as 74% of the 

genome is transcribed and transcription is tissue-specific in many cases. The presence of 

transcription factors and histone modifications were symmetrical around TSSs, 

suggesting the functional relevance of regulatory elements both upstream and 

downstream of the TSS (The ENCODE Project Consortium, 2007). Further evidence was 

provided to suggest that histone modifications can be used to identify regulatory elements 

and transcriptional activity. Lastly, almost half of functional non-coding elements were 

located within non-conservative regions of the genome, warranting further study of these 

regulatory elements both across tissue types and in other species. The findings of the pilot 

phase foreshadowed the impact of the overall ENCODE project which has resulted in 

over 7,400 published studies to date.  

 

Transcriptome Analyses in the ENCODE Project 

 Transcription results in RNA products that collectively makeup the transcriptome. 

The transcriptome can be defined by just the messenger RNAs (mRNAs) produced from 

the transcription of protein coding genes or as all RNAs within the cell, including non-
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coding RNAs. As RNA is transcribed by RNA polymerase II, a modified guanine cap is 

added to the 5’ end of the RNA which functions to prevent its degradation. Messenger 

RNA is also polyadenylated at the 3’ end, and both the 5’ cap and 3’ poly-A tail are 

involved in translation (Gertsel et al., 1992). Long non-coding RNAs (lncRNAs) can also 

be modified to include 5’ caps and 3’ poly-A tails (Guttman et al., 2009). Not all 

lncRNAs, however, are polyadenylated (Cheng et al., 2005; Yang et al., 2011). Various 

technologies leverage these post-transcriptional modifications for transcriptome analyses. 

For example, cap analysis gene expression (CAGE) captures transcripts by targeting the 

5’ cap and poly-A tail selection is often used to focus sequencing effort on mRNA 

transcripts (Carninci et al.,1996; Zhao et al., 2018). 

The early phases of the ENCODE project used a variety of technologies to 

characterize the transcriptome, including CAGE, RNA paired end tagging (PET), and 

tiling arrays (The ENCODE Project Consortium, 2007). The methods used in the later 

phases of the ENCODE project employed newer technologies, such as massively parallel 

sequencing, capable of generating larger amounts of data. A newer approach to 

transcriptome analysis is RNA-seq which employs next-generation sequencing (NGS). 

RNA-seq allows for an in depth look at gene structure as transcripts are fragmented and 

fitted with adapters on one or both ends of the fragment. Between 30 and 400 base pairs 

are sequenced from each adapter creating reads that map across the length of the 

transcript (Wang et al., 2009). RNA-seq provides an advantage over earlier technologies 

as it can help identify intron/exon boundaries and different isoforms associated with a 

gene (Wang et al., 2009).  
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A large degree of the understanding of transcription across the genome is derived 

from the results of the ENCODE project. In the production phase where the entirety of 

the human genome was assessed, Djebali (2012) explored transcription in 15 cell lines 

using a variety of methods. Within the 15 cell lines, 62 and 74% of the genome was 

contained within processed and primary transcripts, respectively (Djebali et al., 2012). 

The processed transcripts from a single cell line covered 22% of the genome on average 

and no single cell line possessed more than 57% of the transcripts identified across all 15 

cell lines (Djebali et al., 2012). Djebali (2012) determined approximately 50% of protein-

coding transcripts to be ubiquitously expressed in all 15 cell lines, while only 7% were 

cell line specific. Djebali (2012) found the opposite to be true for lncRNAs of which 

nearly 30% of transcripts were cell line specific and only 10% were found in all studied 

cell lines. Many genes can produce multiple isoforms, yet a single isoform generally 

comprises the majority of transcripts in a given condition (Djebali et al., 2012). Some 

distal enhancer sequences were found to be transcribed, but both the degree of 

transcription and chromatin modifications associated with the enhancer regions were 

found to be cell line specific (Djebali et al., 2012). Djebali’s 2012 findings increased the 

GENCODE annotation of the human genome to include 45% more transcripts and 80% 

more genes, many of which were mono-exonic. Overall, this work emphasized the 

importance of assessing the transcriptome across a variety of cell types and demonstrated 

that the majority of the genome is contained within primary transcripts. The findings 

from the ENCODE project have been integrated into an annotation called GENCODE.  

The GENCODE annotation is a gene set comprised of genes manually annotated 

by the Human and Vertebrate Analysis and Annotation (HAVANA) group and genes 
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automatically annotated by Ensembl (Harrow et al., 2012). The GENCODE 7 release, 

published alongside the ENCODE paper, summarizing the results from the production 

phase, included 20,687 protein-coding genes, 9,640 lncRNAs, and approximately 10,000 

pseudogenes (Harrow et al., 2012). Over 140,000 alternative transcripts were proposed in 

the GENCODE gene set compared to the RefSeq and UCSC annotations, yet many of 

these alternative transcripts were missing either their 5’ or 3’ ends (Harrow et al., 2012). 

When assessing the predicted exon-exon junctions in transcripts and the presence of 

novel transcripts, RT-PCR and sequencing validated 82% of the identified exon-exon 

junctions and 73% of novel transcripts (Harrow et al., 2012). The GENCODE 7 release 

provided a solid foundation for genomic studies in humans, yet the GENCODE 

annotation has been consistently updated since its original release. As of 2021, the 

GENCODE gene set consists of 19,954 protein coding genes, 17,957 lncRNAs, 14,767 

pseudogenes, 7,569 small RNAs, 645 immunoglobin/T cell receptor genes, and over 

230,000 transcripts (Frankish et al., 2021). Overall, the ENCODE project significantly 

impacted genomics studies by emphasizing the variation in gene expression present 

across cells and tissues and the pervasive presence of non-coding genes in the genome. 

The findings from this project have inspired transcriptomic studies in other species, 

including the horse.  

 

Transcriptome Studies in the Horse 

 In the horse, most transcriptome studies have been limited in the tissues assayed 

either determining differential expression associated with traits of interest or improving 

the annotation of the reference genome. Studies aimed at determining the impact of 



 19 

 

exercise on gene expression have assessed the transcriptome of blood and skeletal muscle 

in Thoroughbred and Arabian horses (McGivney et al., 2010; Park et al., 2012; 

Capomaccio et al., 2013; Ropka-Molik et al., 2017). Some studies focused on differential 

gene expression between untrained and trained muscles (McGivney et al., 2010; Ropka-

Molik, 2017), while others assessed changes in gene expression immediately following 

exercise ranging from 30 min of trotting (Park et al., 2012) to endurance races of nearly 

100 miles (Capomaccio et al., 2013). Genes involved in the immune system, the cell 

cycle, signal transduction, and lipid metabolism were found to be differential expressed 

immediately following exercise (Park et al., 2012; Capomaccio et al., 2013). Genes 

displaying differential expression following long term training include those involved in 

metabolism, muscle growth and development, and mitochondrial function (McGivney et 

al., 2010; Ropka-Molik et al., 2017). Some of these studies also recognized transcripts in 

unannotated regions of the genome suggesting both the presence of noncoding genes and 

the limitations of the EquCab2.0 reference annotation at the time they were published 

(Park et al., 2012; Capomaccio et al., 2013). 

 Further studies have examined the transcriptome relative to reproduction. Sperm 

were previously believed to have minimal transcriptomes reflecting that of the testis; 

however, Das and others (2013) identified 202 transcripts in sperm that were not 

expressed in the testis. Further examination of the sperm transcriptome using RNA-seq, 

identified over 19,000 transcripts present in the sperm compared to ~6,600 identified 

using a microarray (Das et al., 2013). Many of the transcripts consisted of micro RNAs 

(miRNAs), genes on the Y chromosome, and those involved in sperm specific functions 

(Das et al., 2013). Although ~13,000 transcripts did not align to annotated elements in 
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EquCab2.0, Das (2013) demonstrated the complexity of the sperm transcriptome. Iqbal 

and colleagues (2014) characterized the transcriptomes of equine embryonic cells and 

assessed differential expression between the inner cell mass (ICM) and trophectoderm 

(TE). Over 10,000 genes were expressed in both ICMs and TE with 1201 transcripts 

exclusive to ICM and 705 transcripts unique to TE (Iqbal et al., 2014). Genes 

overexpressed in ICM were related to cell differentiation, cell migration, and 

regeneration while genes overexpressed in TE corresponded to placental development 

and cellular transport (Iqbal et al., 2014). Together, these studies demonstrate some of the 

benefits of RNA-seq technology, including greater detection of transcripts and the ability 

to generate high-quality RNA libraries from cells within a single embryo; however, the 

lack of progression in genome annotation prevented the characterization of over two-

thirds of the transcripts expressed in sperm (Das et al., 2013).  

Gene expression in the equine immune system has been assessed in various 

lymphoid tissues and leukocytes. One study assessed the transcriptome related to six 

immune related cells and tissues, including lymphocytes, spleen, lymph node, liver, 

jejunum, and kidney. The consensus transcriptome from these cells and tissues showed 

little overlap with Ensembl’s annotation of gene structure, and over 8,000 novel isoforms 

were identified (Moreton et al., 2014). Furthermore, 91 families of paralogs were 

expanded in the horse compared to the human, with 83 of 91 determined to be simple 

duplications (Moreton et al., 2014). Peripheral blood mononuclear cells (PBMCs) are 

another form of immune cell that modulate both the innate and adaptive immune system. 

Examining the transcriptome of 561 PBMC cultures from 85 Warmblood horses, 42,602 

predicted genes were expressed (Pacholewska et al., 2015). Over 7,500 unannotated 
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transcripts were identified with 57% demonstrating homology to expressed sequence tags 

found in other species (Pacholewska et al., 2015). This study identified 543 novel 

transcripts with high coding potential with 61 of these novel coding genes unique to the 

horse (Pacholewska et al., 2015). Both studies provided information regarding gene 

expression in immune cells and tissues and once again identified opportunities to improve 

the annotation of EquCab2.0.  

Many other equine transcriptome studies have taken place. One study assessed the 

differential gene expression between the Korean Jeju horse and Thoroughbred horses. 

Five tissues were selected for the comparison including skeletal muscles of the rump and 

thigh, liver, heart, and lung (Srikanth et al., 2019). Over 5,400 genes were differentially 

expressed between Jeju and Thoroughbred tissues with genes involved in process such as 

angiogenesis and cell adhesion, muscle cell differentiation, fat metabolism, and 

molecular signaling pathways (Srikanth et al., 2019). Of the differentially expressed 

genes, 71 were in regions identified as signatures of selection between the two breeds 

including genes related to body size, muscle fiber type, and mitochondrial function 

(Srikanth et al., 2019). Another unique study examined the difference in gene expression 

between fetal, adult, and embryonic stem cell derived tenocytes. This study identified 542 

differentially expressed genes between the fetal and adult tenocytes when cultured in 3D; 

however, only 10 genes were differentially expressed when the tenocytes were cultured 

in a 2D monolayer (Paterson et al., 2020). This is interesting as it suggests that different 

methods of cell culture can greatly impact gene expression and that the transcriptome of 

cultured cells may not reflect genes expressed in vivo. These studies exemplify the range 

of applications of transcriptome analysis.   
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 In 2017, equine transcriptome data available from a variety of sources was 

compared to a new transcriptome derived from 59 samples across 8 tissues (Mansour et 

al., 2017). The transcriptome built by Mansour et al. (2017) matched most closely with 

that derived from PBMCs by Pacholewska et al. (2015) followed by the annotation 

available from NCBI. About 50% of the 76,125 transcripts identified by Mansour et al. 

(2017) were shared across the transcriptomes generated by Pacholewska et al. (2015), 

Hestand et al. (2015), NCBI, and Ensembl (Mansour et al., 2017). The study by Mansour 

et al. (2017) also assessed differences in gene expression across tissues; however, there is 

likely technical bias present in this comparison as different methods were used to 

generate libraries across tissues, including single-end vs paired end reads, rRNA 

depletion vs polyA+ selection, and stranded vs unstranded libraries (Mansour et al., 

2017). Work utilizing the transcriptome from Mansour et al. (2017) assessed lncRNAs in 

the equine genome (Scott et al., 2017). Nearly 21,000 lncRNAs were identified across 8 

tissue types; however, more lncRNAs likely exist due to the fact that lncRNAs are 

frequently expressed in a tissue-specific manner (Djebali et al., 2012; Scott et al., 2017). 

Altogether, these studies provided expansion and validation of the annotation of the 

equine genome.  

 Together, these studies of the equine transcriptome have bolstered the annotation 

of the equine genome and provided a foundation for the study of differential gene 

expression across tissues, breeds, and phenotypes. Despite the advancements made via 

these studies, limitations in experimental design and methodology have prevented an 

unbiased comparison of gene expression across a wide variety of tissues. Many studies 

have examined only a single tissue or cell type, while others have combined numerous 
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tissue samples to create a single transcriptome. In studies where gene expression across 

tissues was compared, differences in library preparation and read depth have confounded 

biological differences between tissues (Mansour et al., 2017). Additional research that 

prioritizes the reduction of technical bias will be necessary to better understand tissue-

specific gene expression. Although transcriptomic studies can identify differences in gene 

expression, not all cis-regulatory elements modulating these changes can be identified 

through RNA-seq. Other methods, such as chromatin immunoprecipitation and 

sequencing (ChIP-seq), can be utilized to identify histone modifications associated with 

cis-regulatory elements such as enhancers, promoters, and polycomb repressors.  

 

Overview of Histone Modifications 

 DNA within the cell is condensed and stored as chromatin. The basic unit of 

chromatin is the nucleosome which consists of 147 bp of DNA coiled around histone 

proteins. Nucleosomes are connected by short stretches of DNA, termed linker DNA, 

which creates the primary chromatin structure resembling beads on a string (Figure 1.1). 

Each nucleosome organizes about 200bp of DNA when accounting for both the wrapped 

and linker DNA (McGinty & Tan, 2015). Folding and coiling of the primary chromatin 

creates secondary and tertiary chromatin structures that are highly compact. Most 

transcriptionally active regions of the genome are believed to fall in loosely packaged 

DNA, termed euchromatin, while transcriptionally repressed regions of the genome are 

believed to exist mostly in the condensed heterochromatin (Morrison & Thakur, 2021). 

Beyond chromatin unpacking, nucleosomes are often temporarily removed in regions of 

active gene expression (Lee et al., 2004). Although gene expression is more common in 
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areas of loosely packed DNA, some studies suggest that transcription can still occur in 

regions of tertiary chromatin 

(Zhou et al., 2007; Hu et al., 

2009). Both the location of 

nucleosomes and the compaction 

of chromatin are dynamic 

allowing for changes in 

transcriptional programs. The 

location and degree of chromatin 

compaction can be altered by the 

binding of various proteins 

including chromatin remodeling 

ATPases, transcription factors, 

and histone modifying enzymes 

(Mellor, 2005). Here, we will 

focus on the impact of various 

histone modifications on 

transcription.   

Each nucleosome contains 

a histone protein of eight subunits 

with two copies each of H2A, 

H2B, H3, and H4 (Arents et al., 1991). Each histone subunit has a N-terminal tail that 

protrudes from the nucleosome core consisting of 25-59 amino acids (Grant, 2001; Nurse 

Figure 1.1. DNA Packaging and Chromatin 

Structure  

The primary structure of chromatin is the most 

accessible (euchromatin) and resembles beads on a 

string. The secondary structure is defined as the 30-nm 

fiber. The tertiary structure refers to the looping and 

coiling of the chromatin fiber. The secondary and 

tertiary structures are referred to as heterochromatin. 

Figure created with BioRender.com 
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et al., 2013) (Figure 1.2). The N-terminal tails of the H4 and H2A subunits fall outside 

the nucleosome while the N-terminal 

tails of the H2B and H3 subunits fall 

between the DNA gyres on the 

nucleosome (McGinty & Tan, 2015). 

The N-terminal tails of histones play a 

key role in chromatin compaction. 

Histone tails can interact with DNA and 

other histone cores to pull nucleosomes together (Arya et al., 2009; Nurse et al., 2013). 

The positive charge on the histone tails helps overcome the repulsive forces generated 

between the negatively charged DNA allowing for tighter packing of nucleosomes (Arya 

et al., 2009). Studies have found that the removal of histone tails impairs oligomerization 

of nucleosomes and demonstrated that the N-terminal tails of all histone subunits are 

involved to some degree in the assembly of chromatin structures (Tse & Hansen, 1997; 

Gordon et al., 2005; Nurse et al., 2013). Therefore, it is not surprising that chemical 

modifications to the N-terminal tails impact both chromatin structure and transcription. 

Many post-translational modifications to lysine and arginine residues along the N-

terminal tails have been identified. The impact of acetylation and methylation along 

histone tails was first explored by Allfrey et al. (1964). Deposition of acetyl and methyl 

groups along histone tails can impact transcription through alteration of the electrostatic 

environment of the nucleosome and the recruitment of various transcription factors 

(Bannister & Kouzarides, 2011). The biological role of four commonly studied histone 

modifications and the techniques used to study their locations will be discussed.  

Figure 1.2. Nucleosome Structure 

A drawing depicting the octamer structure of a 

nucleosome. Each subunit has N-terminal tail 

extending from the nucleosome. Figure 

created with BioRender.com 

 



 26 

 

The common nomenclature for post translational histone modification includes 

naming modifications with the histone subunit (e.g.H3), the residue (e.g. lysine 27 or 

K27), and the chemical modifier (e.g. ac for acetylation or me3 for trimethylation). 

Although many modifications have been identified across all 4 types of histone subunits, 

the focus of this review will include 4 commonly studied H3 modifications (H3K27ac, 

H3K4me1, H3K4me3, and H3K27me3). The N-terminal tail of H3 is the longest of all 

the subunits, consisting of 59 amino acids, and is of particular interest as the histone tail 

interacts directly with nucleosomal DNA (Nurse et al., 2013).  

 

Histone Acetylation: H3K27ac 

Acetylation of various components of histone proteins and its impact on genomic 

function have been studied since the 1960s. Acetylation of histone proteins is regulated 

by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs place 

acetyl groups on histone proteins and can be separated into two categories, Type A HATs 

and Type B HATs. Type B HATs are involved in acetylating histone subunits in the 

cytosol, while Type A HATs are found in the nucleus and acetylate histones already in 

nucleosomes (Gujral et al., 2020). HATs use acetyl CoA as a cofactor to transfer acetyl 

groups to the lysine residues of the histone tails (Bannister & Kouzarides, 2011). 

Common Type A HATs include p300, CBP, and GCN5 (Bordoli et al., 2001; Xue-

Franzén et al., 2013; Gujral et al., 2020). HDACs function to remove acetyl groups from 

both histone proteins and nonhistone proteins (Seto & Yoshida, 2014). The presence of 

HDACs were first identified in 1969 by Inoue & Fujimoto, but the first HDAC was not 

isolated and cloned until 1996 (Inoue & Fujimoto, 1969; Taunton et al., 1996). Since 
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their discovery, 18 HDACs have been identified in humans (Seto & Yoshida, 2014). 

HDACs use either zinc or NAD(+) to remove acetyl groups from proteins (Finnin et al., 

1999; Imai et al., 200; Seto & Yoshida, 2014). Together, HATs and HDACs regulate 

chromatin structure and transcription.  

Acetylation of both the histone core and histone tails can impact nucleosome 

structure and chromatin folding. Acetylation of the histone cores and tails reduces the 

number of turns of DNA (Bauer et al., 1994) and induces a reduction in the degree of 

chromatin folding independent of H1 linker binding protein, which functions to stabilize 

the nucleosome (Garcia-Ramirez et al., 1995; Wang et al., 2001). The reduction in 

chromatin folding resulting from acetylation of the histone tails is proposed to be due to a 

partial neutralization of the positive charge on the histone tail that impairs the interaction 

of the tail with the linker DNA between nucleosomes (Garcia-Ramirez et al., 1995; 

Bannister & Kouzarides, 2011). Although the chemical effect of acetylation of individual 

residues in histone tails has not been thoroughly explored, the impact of H3K27ac on 

transcription and gene function has been examined closely.  

Histone acetylation was implicated in increasing transcriptional activity as early 

as 1964 (Allfrey et la., 1964). Many studies broadly examined H3 acetylation in relation 

to gene expression and regulation. The initial phase of the ENCODE project identified 

enrichment of H3 acetylation at the TSS of genes and demonstrated greater enrichment at 

genes that were active and near CpG islands (The ENCODE Project Consortium, 2007). 

H3K27ac, among other H3ac, was also demonstrated to localize at TSSs (Wang et al., 

2008). Enhancers are another cis-regulatory element that play a key role in increasing 

gene expression. The presence of H3K27ac has been shown to differentiate active 
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enhancers from poised enhancers (Creyghton et al., 2010). Furthermore, H3K27ac is 

often identified at enhancer clusters, termed super-enhancers (Hnisz et al., 2013). A 

recent study demonstrated that p300/CBP mediated acetylation is directly responsible for 

activating enhancers and initiating transcription at enhancer-regulated genes (Narita et al., 

2021). The study determined that acetyltransferase activity was required for transcription 

factor and RNA polymerase II recruitment to enhancer-regulated genes (Narita et al., 

2021). CBP has been shown to be essential for H3K27ac, while knock down of GCN5 

showed little effect on H3K27ac (Tie et al., 2009). This suggests that H3K27ac, among 

other modifications, plays a key role in enhancer activation and gene expression. 

Furthermore, the presence of H3K27ac without modifications frequently found at 

enhancers (H3K4me1) demonstrated similar expression levels to regions containing both 

H3K27ac and H3K4me1 (Creyghton et al., 2010). Together, these studies provide strong 

evidence to support that H3K27ac is involved in activating gene expression across the 

genome.   

 

 

Histone Methylation: H3K4me1, H3K4me3, & H3K27me3 

 Similar to histone acetylation, histone methylation was first explored in the 

1960’s (Allfrey et al., 1964; Murray et al., 1964), and the enzymes responsible for the 

placement and removal of methyl groups have been well characterized. Lysine 

methyltransferases (KMTs) are the enzymes responsible for adding methyl groups to 

lysine residues in histone tails, such as H3K4 and H3K27. KMTs such as SETD1A/B, 

MLL1-4, SETD7, and PRDM9 are responsible for mono- and tri-methylation of 

H3K4me3, and EZH1 & EZH2, within the polycomb repressive complex 2 (PCR2), are 
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involved in trimethylation of H3K27me3 (Husmann & Gozani, 2019). Methyl groups are 

transferred from other molecules, such as S-adenosyl-L-methionine, to the lysine residues 

(Kwon et al., 2003). Removal of the methyl groups is performed by lysine demethylases, 

of which two types exist: LSD demethylases and JMJC demethylases (Kooistra & Helin, 

2012). LSD demethylases, including LSD1, can remove mono- and di-methylation at 

H3K4 and H3K9 (Shi et al., 2004; Kooistra & Helin, 2012), but are incapable of 

removing trimethylation. JMJC demethylases, including RBP2 and JMJD3, remove 

trimethylation at lysine residues, including H3K4 and H3K27 (Christensen et al., 2007; 

De Santa et al., 2007; Lan et al., 2007). The placement and number of methyl groups 

added to histone tails is tightly regulated and involved in both gene activation and 

repression.  

 H3K4me3 are associated with active promoters and has been identified at the TSS 

of genes across multiple species (Santos-Rosa et al., 2002; Schneider et al., 2004; The 

ENCODE Project Consortium, 2007; Barski et al., 2007; Schuettengruber et al., 2009). 

Santos-Rosa et al. (2002) suggested that H3K4me3 was present at the promoter of active 

genes and absent from inactive genes in yeast; however, this pattern does not hold true in 

humans. A study by Barksi et al. (2007) identified H3K4me3 marks associated with 

TSSs, some enhancers, and silent promoters. Over 90% of the genome found to be 

associated with RNA polymerase II also overlapped H3K4me3 (Barski et al., 2007). 

Additional research supports the presence of H3K4me3 at both active and inactive 

promoters (Schneider et al., 2004). Barksi et al. (2007) also identified colocalization of 

H3K4me3 with repressive H3K27me3, which resulted in lower expression at these loci. 

Although most studies have identified H3K4me3 to be enriched at active promoters, there 
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is mixed evidence as to whether H3K4me3 can predict the activity of the genes to which 

it localizes (Schneider et al., 2004; Barski et al., 2007).  

Most studies have not shown a direct role of H3K4me3 on transcription, but 

rather an indirect role through the recruitment of chromatin remodeling enzymes and 

transcription factors, such as CHD1 and NURF (Lee et al., 2004; Flanagan et al., 2005; 

Sims III et al., 2005; Li et al., 2006; Parvi et al., 2006; Wysocka et al., 2006; Sims III et 

al., 2007). An indirect role of H3K4me3 also supports previous observations of 

H3K4me3 at both active and inactive promoters (Schnieder et al., 2004; Barski et al., 

2009). Although H3K4me3 alone may not be indicative of active expression, H3K4me3 

is a useful mark for identifying promoters.  

 H3K4me1 has also been identified at promoter regions (Barski et al., 2007). 

H3K4me1 is often found in a bimodal pattern around the TSS of active genes (Barski et 

al., 2007; Heintzman, et al., 2007; The ENCODE Project Consortium, 2007; Bae et al., 

2020); however, Cheng et al. (2014) demonstrated that H3K4me1 may have repressive 

properties when occupying the TSS in the absence of H3K4me3, and Bae et al. (2020) 

determined H3K4me1 to predict poised promoters when present at the TSS in a unimodal 

pattern. Distal enhancer regions are commonly occupied by H3K4me1 with H3K4me3 

less abundant at these loci (Heintzman et al., 2007; Heintzman et al., 2009; Creyghton et 

al., 2010). The presence of H3K4me1 is highly cell type specific (Koch et al., 2007; 

Heintzman et al., 2009), which may contribute to variation in the number and location of 

H3K4me1 marks identified across studies. Active enhancer regions can also be inhabited 

by H3K27ac which is likely due to the interaction of the enzymes that deposit H3K4me1 

(MLL3/MLL4) and H3K27ac (CBP/p300) (Zhang et al., 2020; Lai et al., 2017); however, 
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the presence of H3K27ac is not required for H3K4me1 marked enhancers to be active 

(Creyghton et al., 2010; Zhang et al., 2020). Similar to the function of H3K4me3, 

H3K4me1 modulates transcription through the binding of chromatin remodeling enzyme, 

such as BAF (Local et al., 2018). In addition to BAF, H3K4me1 modulates the 

recruitment of the cohesion complex which is directly involved in enhancer promoter 

interactions (Kagey et al., 2010; Yan et al., 2018). H3K4me1 is a useful marker for 

identifying enhancers in the genome, especially since these active regions can lie 

thousands of base pairs away from the genes they regulate (Heintzman et al., 2007).  

 Unlike the previously discussed histone modifications, H3K27me3 is primarily 

associated with repressed, or transcriptionally silent regions of the genome (Boyer et al., 

2006; Barski et al., 2007; Hosogane et al., 2016). H3K27me3 can also be present with 

activating marks, such as H3K4me3, to create bivalent or poised promoters (Berstein et 

al., 2006); however, PCR2, the enzyme that deposits H3K27me3, is suppressed by 

activating histone marks, such as H3K4me3 and H3K27ac (Schmitges et al., 2011). As 

with the other histone methylation, H3K27me3 impacts transcription through the 

recruitment of chromatin remodeling enzymes. H3K27me3 attracts cPRC1 and BAH 

which induce chromatin compaction and create regions of facultative heterochromatin 

(Bierne et al., 2009; Grau et al., 2011; Isono et al., 2013). Facultative heterochromatin 

refers to condensed regions of the genome associated with H3K27me3 and silenced genes 

(Bierne et al., 2009). Unlike constitutive chromatin that exists at the centromere and 

telomeres, facultative heterochromatin is more dynamic. Regions silenced by H3K27me3 

cover broad ranges of the genome as binding of PCR2 to H3K27me3 increases deposition 

of H3K27me3 in the surrounding histones until active regions are reached (Oksuz et al., 
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2018; Schmitges et al., 2011). Proper regulation of polycomb repression is imperative to 

both embryonic development and the maintenance of adult stem cells (Boyer et al., 2006; 

Lee et al., 2006; Bogliotti et al., 2012; Koppens et al., 2016). Although other histone 

modifications are involved in gene repression, H3K27me3 is the most commonly assayed 

modification for identifying repressed regions of the genome.  

The presence of all four histone modifications, H3K27ac, H3K4me3, H3K4me1, 

and H3K27me3, can be examined independently to quantify enhancers, promoters, and 

silencers; however, the overlap of these histone modifications is often assessed to create a 

comprehensive atlas of chromatin states. This method can be particularly helpful in 

determining the activity levels of regulatory elements, as many studies have concluded 

that “active” marks such as H3K4me3 and H3K4me1 can be found in both active and 

inactive promoters and enhancers (Schnieder et al., 2004; Parvi et al., 2006; Barski et al., 

2009). The ENCODE project was one of the first studies to assess these four histone 

marks across a range of cell lines. This project has established a foundation for the 

methods of assessing such histone marks and has provided immense support for the value 

of exploring histone modifications. 

 

The Role of ChIP-seq in Functional Annotation 

 Two main methods were used to assess histone modifications in the ENCODE 

project: ChIP-chip and ChIP-seq (Figure 1.3). Chromatin immunoprecipitation (ChIP) 

allows for the identification of DNA-protein interactions by crosslinking the DNA and 

protein. The DNA is then sheared to create small fragments that can be bound by 

antibodies specific to histone modifications. These antibodies are used to pull down the 
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DNA sequences associated with the 

histone modification after which the 

crosslinking is reversed. The only 

difference between ChIP-chip and 

ChIP-seq is how the DNA associated 

with the histone modifications is 

assessed. In ChIP-chip, the DNA 

fragments are hybridized to 

microarrays with a fixed number of 

oligo binding sites. ChIP-seq employs 

next generations sequencing which can 

allow for more precise mapping of 

histone modifications due to the ability 

of the reads to map to any location in 

the genome. ChIP-chip and ChIP-seq 

libraries are often corrected for noise 

by using input samples that undergo 

crosslinking and fragmentation, but not 

immunoprecipitation. Both techniques 

have been successfully employed by 

the ENCODE project, and other groups 

have determined both methods produce 

quality libraries (The ENCODE 

Figure 1.3. Library Preparation for ChIP-seq 

Experiments 

Proteins are cross-linked to DNA and chromatin 

is isolated and sheared. Antibodies are used to 

precipitate regions of DNA associated with 

specific proteins. Cross-links are reversed and 

DNA is purified and amplified for sequencing 

using either next generation sequencing (NGS) 

(ChIP-seq) or microarrays (ChIP-chip). Figure 

created with BioRender.com 
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Project Consortium, 2007; Ho et al., 2011; The ENCODE Project Consortium, 2012). 

However, ChIP-seq is now the standard as next generation sequencing is well developed. 

ChIP-seq is also capable of identifying a greater number of peaks and narrower peaks 

than ChIP-chip (Ho et al., 2011). The results of ChIP-seq studies from the ENCODE 

project have made a profound impact on the understanding of regulatory elements and 

gene expression across the genome.   

Through the integration of ChIP data, models that use histone modifications to 

predict transcription and cis-regulatory elements have been developed (Wang et al., 2008; 

Karlić et al., 2010; Dong et al., 2012). Using a set of 38 histone modifications, Karlić 

(2010) created a model that could predict gene expression in CD4+ T-cells with a 

Pearson correlation coefficient of r = 0.77. Using the same dataset, Wang (2008) 

identified a ‘backbone’ of 17 histone modifications, including H3K4me1, H3K4me3, and 

H3K27ac, that was positively correlated with gene expression. Further, Wang (2008) 

identified a cluster of four modifications, including H3K9me2, H3K9me3, H3K27me2, 

and H3K27me3, that was associated with gene silencing. Another study by Dong et al. 

(2012) was able to predict gene expression with up to 83% accuracy in seven cell lines 

using 11 histone modifications. While large sets of histone modifications can predict 

gene expression with greater accuracy, Karlić (2010) demonstrated that a model based on 

H3K27ac, alone, predicted gene expression with 72% accuracy. These studies clearly 

demonstrate the value of histone modification data in prediction gene expression. The 

ENCODE project takes these concepts a step farther to identify how various histone 

modifications interplay to modulate the activity of cis-regulatory elements, such as 

enhancer, promoters, and silencers.  
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 In the production phase of the ENCODE project, 12 histone modifications, 

including H3K27ac, H3K4me1, H3K4me3, and H3K27me3, were assessed across 6 cell 

lines (The ENCODE Project Consortium, 2012). One group identified 36,589 putative 

enhancers marked by H3K4me1 in HeLa cells and 24,566 enhancers in K562 cells, yet 

only 22% of enhancers were found in both cell lines (Heintzman et al., 2009). The 

ENCODE Project Consortium (2012) assessed promoter-like, enhancer-like, and 

repressive regions partially characterized by the presence of H3K4me3, H3K4me1, and 

H3K27me3, respectively. ENCODE identified 339,124 enhancer regions, 70,292 

promoter regions, and hundreds of thousands of quiescent or repressed regions across 46 

cell lines (The ENCODE Project Consortium, 2012). Both Heintzman (2009) and the 

ENCODE Consortium (2012) identified a large degree of cell type specificity across 

chromatin states; however, repressive regions were most commonly found in all six cell 

types, supporting previous studies that suggest the importance of H3K27me3 in 

regulating genes involved in early development (The ENCODE Project Consortium, 

2012; Boyer et al., 2006). Together, these studies demonstrate the value of examining 

histone marks in relation to genome function. 

 Overall, the ENCODE project identified evidence of over 80% of the genome 

participating in biochemical reactions related to transcription and chromatin function 

(The ENCODE Project Consortium, 2012). The project depicted the pervasive nature of 

transcripts and regulatory elements in the genome. Further, the ENCODE project 

demonstrates the need for assessing regulatory elements on a tissue-by-tissue basis. The 

wealth of knowledge derived from the ENCODE project has vastly improved the study of 

human genomics; however, as depicted in the study, gene activity and regulatory 
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elements are not reliably conserved across tissues and species. Therefore, projects to 

functional annotation genomes of other species have followed in the footsteps of the 

ENCODE project.  

 

The Functional Annotation of Animal Genomes (FAANG) Project 

 The FAANG consortium was established in 2014 with the intent of functionally 

annotating the genomes of domestic species. The broad aim of the project is to enhance 

the understanding of how the genome contributes to phenotype (The FAANG 

Consortium, 2015).  Similar to the ENCODE project, the FAANG project was intended 

to be, and is, highly collaborative. Open access data portals have been generated to allow 

for easy access of datasets as they are produced (FAANG.org). The project began with 

groups of researchers dedicated to studying livestock species, such as cattle, sheep, pigs, 

and chickens (The FAANG Consortium, 2015). To allow for interspecies comparisons, 

key tissues and assays were selected to provide a standardized core of research on each 

species. Key tissues that were prioritized include skeletal muscle, adipose, liver, and 

tissues from the reproductive, immune, and nervous systems (The FAANG Consortium, 

2015). The core assays include RNA-seq, ChIP-seq of H3K4me1, H3K4me3, H3K27ac, 

and H3K27me3, and ATAC-seq (assay for transposase-accessible chromatin sequencing) 

(The FAANG Consortium, 2015). Since its establishment in 2014, the FAANG project 

has grown to include many other species. Research groups specific to cattle (Fang et al., 

2019), sheep (Davenport et al., 2021), pigs (Pan et al., 2021), chickens (Kern et la., 

2021), various farmed fish, and horses (Kingsley et al., 2020) have been successfully 
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bolstering the knowledge of genomic function in important domestic species, yet most of 

these projects are still underway. Such is the case with the equine FAANG project.  

 The genomic resources available for the horse provide a starting point for 

genomic research into equine health and performance. Yet, limitations in the annotation 

of the reference genome have repeatedly demonstrated the need for functional annotation 

of the equine genome. The work outlined below aims to fulfil these needs and represents 

a portion of the results from the equine FAANG project. The use of RNA-seq and ChIP-

seq in identifying gene expression and regulation in two Thoroughbred stallions will be 

discussed in detail. The results of this research will allow for functional characterization 

of the genome across eight different tissues and will provide an invaluable resource to the 

equine community.  
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CHAPTER 2: CHARACTERIZING THE TRANSCRIPTOME OF EIGHT TISSUES IN 

HEALTHY THOROUGHBRED HORSES 

Introduction  

Mammalian genomes contain approximately 20,000 protein coding genes with up 

to twice as many non-coding transcripts (Frankish et al., 2021). Many of these genes and 

transcripts are differentially expressed across cell types to allow for diverse biological 

functions throughout the body. Beyond normal tissue function, genes can be differentially 

expressed in response to environmental stimuli and to allow for sexual dimorphism. To 

determine changes in transcription under various conditions, an understanding of normal 

gene expression in healthy tissues is imperative. Thus, many studies in humans have 

aimed to characterize normal gene expression across a variety of cells and tissues.  

 Assessing more than 50 cell lines and tissues, together, many groups have 

characterized genes commonly expressed across tissues and those exclusive to one or a 

few tissue types in humans (Ramsköld et al., 2009; Djebali et al., 2012; Melé et al., 

2015). Ramsköld and others (2009) identified between 11,000 and 15,000 genes 

expressed in each of 16 assayed tissues. Over 8,000 genes were ubiquitously expressed in 

the 16 tissues, yet tissues such as the testis and brain expressed over 6,000 genes beyond 

those ubiquitously expressed, many of which were unique to either the brain or testis 

(Ramsköld et al., 2009). Similarly, Melé et al. (2015) found thousands of genes 

differentially expressed across 43 human cell types and tissues. Further, The ENCODE 

project suggests that as many as 7% of protein coding genes and 29% of long non-coding 

RNAs (lncRNAs) were specific to one of 15 studied human cell lines (Djebali et al., 

2012). Together, these studies demonstrate the vast number of genes expressed across 
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tissues. As the number of genes determined to be ubiquitously expressed or cell-type 

specific is highly dependent on the tissues being studied, the transcriptome of a species is 

best characterized through the examination of a variety of tissues.   

Although sex may play a lesser role in differential gene expression than tissue 

type, a significant number of genes are differentially expressed across sexes. One study 

identified 92 protein coding genes and 43 lncRNAs that demonstrated global sex-biased 

expression across 43 human cells and tissues with many of the differentially expressed 

genes residing on the sex chromosomes (Melé et al., 2015). Another 753 tissue-specific 

genes also demonstrated sex-biased gene expression (Melé et al., 2015). Over 6,500 

genes were differentially expressed by sex in at least one of 53 human tissues, yet only a 

small number of genes were differentially expressed due to sex in all tissues (Gershoni & 

Pietrokovski, 2017). Many organs, such as the brain and heart, exhibit a large degree of 

sex-biased gene expression, suggesting the importance of accounting for both tissue type 

and sex in study design (Mayne et al., 2016). In the cases where multiple tissues cannot 

be examined or sex cannot be balanced between treatment groups, understanding how 

tissue type and sex impact gene expression in healthy tissues can be valuable for 

removing bias from applied differential expression analyses.    

Although the transcriptome has been well characterized in a variety of tissues in 

humans, studies characterizing the transcriptome of a variety of healthy tissues is lacking 

in the horse. Most transcriptome studies in the horse have been used to aid the annotation 

of the equine genome, thus many projects examined a limited number of tissues or pooled 

many tissues to generate only a single transcriptome (Coleman et al., 2010; Hestand et 

al., 2015; Pacholewska et al., 2015). As part of the equine Functional Annotation of 
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Animal Genomes (FAANG) project, this work aims to provide a resource describing the 

transcriptome of seven common tissues, testis and ovary in healthy, adult Thoroughbred 

horses. To do so, we generated poly-A+ RNA-seq libraries for adipose, parietal cortex, 

left ventricle of the heart, lamina, liver, lung, skeletal muscle, and testis from two healthy 

Thoroughbred stallions. These data were combined with similar libraries from two 

healthy Thoroughbred mares to characterize the transcriptome in healthy tissues and 

identify differentially expressed genes across sexes. This project was designed to provide 

needed insight into normal gene function of commonly studied tissue types and to be 

publicly available for use in equine genetic studies.  

  

Materials and Methods  

RNA Isolation  

Tissues were provided by the FAANG biobank and were collected from two 

Thoroughbred stallions between the ages of three and four years old (Donnelly et al., 

2021). The methods used to collect and store tissues are described in Donnelly et al. 

(2021); in brief, samples utilized for RNA-sequencing were flash frozen in liquid 

nitrogen and stored at -80C until RNA isolation. Of the 102 tissues in the biobank, 8 

tissues, including those prioritized by the FAANG Consortium (The FAANG 

Consortium, 2015) and those important to equine health, were chosen for study including 

abdominal adipose, parietal cortex, left ventricle of the heart, lamina, liver, left lung, 

Longissimus dorsi muscle, and left testis. All surfaces and tools were cleaned with 

RNAseZap (Invitrogen, Waltham, Massachusetts) to reduce RNAses in the workspace. 

Approximately 70mg of each tissue (100mg of adipose) was minced with a razor on dry 
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ice. Tissue samples were then homogenized in 1ml of Trizol (Invitrogen, Waltham, 

MA, USA) using a Kinematic Polytron (Luzern, Switzerland) on ice in 30 second 

bursts. After homogenization, the samples were incubated at room temperature for 5 

minutes before the addition of 200L of chloroform. Tough tissues, including adipose 

and testis, were incubated for 10 minutes or more at room temperature before undergoing 

a dirty spin. For the dirty spin, the adipose and testis samples were centrifuged at 12,000 

x g for 10 minutes, and the supernatant was transferred to a clean 2.0mL tube before the 

addition of chloroform. After the addition of chloroform, the samples were vortexed, 

incubated for 2-3 minutes at room temperature, and spun at 12,000 x g for 15 minutes. 

The clear supernatant of each sample was added to 600mL of ethanol and placed on a 

spin column. RNA was isolated using the Zymo Research Direct-zol RNA Miniprep kit 

(Irvine, CA, USA) according to manufacturer guidelines with minor revisions as 

described. DNA was removed from samples using a 15 minute on-column DNase I 

treatment. In addition to the 1-minute spin outlined in the Zymo protocol, the columns 

were spun for an additional two minutes before elution in DNase/RNase free water to 

remove any residual wash buffers. The speed and number of bursts used to homogenize 

samples, their elution volume, and the presence of additional steps are recorded in Table 

2.1. RNA was quantified using an Agilent Bioanalyzer 2100 Eukaryote Total RNA Nano 

chip (Santa Clara, CA, USA) and RNA integrity (RIN) values were used to determine 

RNA quality.   

 

RNA Libraries from two Thoroughbred Mares  
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Tissues from two healthy Thoroughbred mares between the ages of four and five 

years old were previously collected for the equine FAANG project (Burns et al., 2018). 

The sequencing data corresponding to RNA isolated from the same tissues in two mares, 

with ovary replacing testis, were retrieved from the European Nucleotide Archive (ENA) 

under project PRJEB26787. These data are also available in the FAANG data portal 

under BioSampleIDs SAMEA104728877 and SAMEA104728862. The protocol used to 

isolate RNA from the mare tissues is similar to what is described above. The mare data 

consisted of 125bp paired-end, stranded, poly(A+) selected libraries (Illumina TruSeq).   

 

Data Analysis 

RNA from the stallion tissues was sent to Admera Health (South Plainfield, NJ, 

USA), prepped using the TruSeq kit (Illumina, San Diego, CA, USA), and sequenced on 

a NovaSeq 6000 Sequencing System (Illumina, San Diego, CA, USA). Libraries include 

stranded, poly(A+) selected 150 bp paired-end reads. After data were received, adaptors 

were removed and reads were trimmed using Trim-Galore (Kruger, 2019) and Cutadapt 

(Martin, 2011). FastQC (Andrews, 2010) and mutliQC (Ewels et al., 2016) were used to 

assess read quality. Trimmed reads were mapped to the EquCab3.0 reference genome 

using STAR aligner (Dobin et al., 2013) under the default parameters. PCR duplicates 

were marked with sambabma (Tarasov et al., 2015), and mapping rates, qualities, and 

read lengths were assessed with samtools (Li at al., 2009) and deeptools (Ramírez et al., 

2016). The generated bam files were filtered to remove unmapped reads, alternative 

alignments, PCR or optical duplicates, and reads that failed Illumina quality checks using 
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samtools (Li et al., 2009). Further, reads were selected to include only those that were 

mapped and properly paired.  

 

Gene Expression Profiles and Pathway Analysis  

The transcripts corresponding to each gene were quantified using Subread’s 

featureCounts (Liao et al., 2014). The Refseq annotation of EquCab3.0 

(GCF_002863925.1) was used to quantify the expression of 30,647 genes. Transcripts 

were counted as pairs and required to be at least 49bp in length. Gene length was 

determined by featureCounts using the length of the gene’s exons and transformed to 

transcripts per kilobase million (TPM) to account for both gene length and sequencing 

depth. TPM was calculated by first determining the reads per kilobase (RPK) for each 

gene. RPK was calculated by dividing a gene’s read count by its length in kilobases. The 

RPK of each gene was summed and divided by 1 million to get a scaling factor for each 

sample. The RPK values were then divided by the sample’s scaling factor to get TPM.   

Genes were considered expressed in an individual if greater than 10 TPM were 

found at that locus. This threshold is considered “medium expression” by the European 

Bioinformatics Institute’s Expression Atlas (EMBL-EBI, Hinxton, Cambridgeshire, UK; 

https://www.ebi.ac.uk/gxa/FAQ.html#). In the case of the ovary and testis, genes were 

considered expressed if both biological replicates from the corresponding sex expressed 

the gene at greater than 10 TPM. Comparisons of gene expression across the remaining 

tissues was performed with genes expressed at greater than 10 TPM in all four biological 

replicates. Genes were considered expressed in only one sex if expression was greater 

than 10 TPM in both replicates of that sex and below 1 TPM in both replicates of the 
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opposite sex. Highly expressed genes were defined as genes with greater than 1000 TPM, 

again, following the guidelines outlined by EMBL-EBI’s Expression Atlas (Hinxton, 

Cambridgeshire, UK; https://www.ebi.ac.uk/gxa/FAQ.html#). Genes expressed in all 

biological replicates for a given tissue were analyzed for KEGG pathway enrichment 

using David Bioinformatics Database’s Functional Annotation Tool (Huang et al., 2009a; 

Huang et al., 2009b). The gene names were converted to Entez gene IDs by the David 

Bioinformatics Database, and the background list was the default for Equus caballus. 

Significantly enriched KEGG pathways were defined as having a false discovery rate 

(FDR) of less than 0.05.  

   

Differential Expression Analysis  

Differential expression analysis was performed using the raw read counts 

generated by featureCounts (Liao et al., 2014). The R package, DESeq2 (Love et al., 

2014), was used for the analysis. Comparisons were made across sexes within each tissue 

with female expression considered reference. Genes with fewer than 10 transcripts 

identified across all individuals were discarded to remove genes with little or no 

expression in a given tissue. Differentially expressed genes were filtered to maintain only 

those with an Benjamini-Hochberg adjusted p-value of less than 0.05. Differentially 

expressed genes were categorized as overexpressed in the stallions if the log2 fold change 

was positive and overexpressed in the mares if the log2 fold change was negative.  

  

Results  

RNA Quality, Read Annotation, and Data Availability  
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The two stallion replicates are denoted as AH3 and AH4. The RIN values for the 

stallion samples ranged from 7.6 to 9.7 with an average of 8.8 (Table 2.2). The 

sequencing depth, including the mare libraries, ranged from 28.3 million to 73.3 million 

paired reads. The average sequencing depth across both mares and stallions was 39.4 

million paired reads. The bam files generated for this project can be accessed at 

https://equinegenomics.uky.edu/faangHorses_RNASeq.html. On average, 92.9% of reads 

mapped to a single location in the genome. After filtering to remove PCR duplicates, 

unmapped reads, and low-quality reads, the average library across mares and stallions 

consisted of 25.2 million read pairs.  

  

Gene Expression Profiles  

An average of 72.6% of uniquely mapped read pairs were assigned to genes 

within the EquCab3.0 RefSeq annotation, while an average of 23.4% of read pairs 

mapped outside of annotated exons. The total number of gene-assigned reads ranged 

from 6.8 million reads in a mare heart sample to 31.1 million reads in a mare brain 

sample. On average, each sample had 18.1 million reads assigned to annotated genes.   

The number of genes expressed varied by tissue, but on average, 8,068 genes 

displayed at least medium expression (>10 TPM) across tissues (Figure 2.1). Skeletal 

muscle expressed the fewest genes at 6,330 or 21% of the genes in the RefSeq 

annotation. The greatest number of genes expressed in a tissue shared across all replicates 

were found in the brain. The brain expressed 9,884 genes comprising 32% of the genes in 

the RefSeq annotation. The testes and ovaries expressed 10,604 and 8,922 genes, 

respectively. Excluding reproductive tissues, the greatest number of sex-specific genes 
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were identified in the female brain followed by the female liver with 27 and 13 genes, 

respectively (Supplementary Table 2.1). Together, 11,115 genes were expressed across 

the nine studied tissues comprising 36.2% of annotated genes. There were 4,218 genes 

expressed in all nine tissues with 4,700 genes expressed at greater than 10 TPM in only 

one studied tissue. Adipose had the fewest tissue-specific genes at 58 while the testis had 

the greatest number of tissue-specific genes at 2,288 (Figure 2.1).  

Genes with high levels of expression (> 1000 TPM) were also examined. On 

average, each tissue had 88 genes that were highly expressed. The heart had the greatest 

number of highly expressed genes at 132 genes and the brain the fewest (35 genes). Each 

tissue had a small number of highly expressed genes unique to that tissue. The greatest 

number of tissue-specific, highly expressed genes were found in the liver, with the fewest 

found in the lamina. There were 93 highly expressed genes unique to the liver and only 6 

highly expressed genes unique to the lamina (Table 2.3). The unique, highly expressed 

genes frequently had functions specific to that tissue type, such as complement genes 

(C1S and C1R) in the liver, keratin 14 (KRT14) in the lamina, and synaptosome 

associated protein 25 (SNAP25) in the brain (Supplementary Table 2.2). Only two genes 

were highly expressed across all nine tissue types: miRNA-703 (MIR703) and tumor 

protein, translationally-controlled 1 (TPT1).   

 

KEGG Pathway Enrichment of Expressed Genes  

Pathways were considered enriched if the FDR was less than 0.05. Each tissue 

had between 130 and 182 enriched pathways (Table 2.4). Ninety-eight of these pathways 

were enriched in all studied tissues. The number of pathways unique to a tissue ranged 
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between zero and 23 (Table 2.4). The liver and brain had the most unique pathways with 

23 unique to the liver and 18 unique to the brain. No pathways were unique to lamina or 

muscle. Pathways unique to a tissue are often specific to that tissue’s function. Genes 

involved in the regulation of lipolysis in adipocytes were enriched in the adipose, and 

genes involved in three cardiomyopathy pathways were enriched in the heart. The 

pathways shared between all 9 tissues and those unique to only a single tissue can be 

found in Supplementary Table 2.3.  

 

Sex-Based Differential Expression Analysis  

To understand the impact of sex on gene expression, genes differentially 

expressed between mares and stallions were assessed in each of the seven shared tissues 

(Figure 2.2). The tissue with the most differentially expressed genes was adipose in 

which 1,765 genes were overexpressed in the stallions and 1,617 genes were 

overexpressed in the mares. The lung had the fewest differentially expressed genes with 

27 overexpressed in the stallions and 10 overexpressed in the mares (Figure 2.2). Only 

four genes were differentially expressed across all 7 shared tissues including HLA class I 

histocompatibility antigen, alpha chain G (HLA-G), centriole and centriolar satellite 

protein (OFD1), an uncharacterized pseudogene (LOC111771383), and an 

uncharacterized ncRNA (LOC102150010). HLA-G, OFD1, and LOC102150010 were 

also differentially expressed between the testis and ovaries. HLA-G, OFD1, and 

LOC111771383 were all overexpressed in the stallions while LOC102150010 was 

overexpressed in the mares. All genes differentially expressed between sexes were 
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identified in at least two tissue types. The genes with the greatest log2 fold change in 

expression between mares and stallions are displayed in Supplementary Tables 2.4.  

A principal component analysis was performed in DESeq2 to assess clustering 

among samples. Regardless of which tissue was used as the reference for gene 

expression, the principal component plot remained static. All samples clustered closely 

based on their tissue type, but sex appeared to have a minimal impact on clustering 

(Figure 2.3). The first principal component accounted for 42% of the variability between 

samples and parsed liver, heart, and muscle from the remaining tissue types. The heart 

and muscle samples clustered relatively closely, but the liver samples were isolated. The 

second principal component accounts for 24% of the variability among samples and 

further separated the heart, muscle, and liver samples. Tissues that remained closely 

clustered include adipose, brain, ovary, testis, lamina, and lung.   

  

Discussion  

Characterizing the transcriptome is valuable for directing genomic studies; 

however, the number of genes identified as expressed can be highly dependent on the 

tissues examined and the definition of expression. In a study examining 24 tissues in 

mice and humans, 60-70% of annotated genes were expressed at greater than 0.3 reads 

per kilobase million (RPKM) (Ramsköld et al., 2009). In this study, only 36% of 

annotated genes in the equine genome were considered expressed across nine tissue 

types. Due to the low power resulting from the small number of biological replicates in 

this study, the threshold for gene expression was set at a conservative 10 TPM to increase 

the likelihood that the genes transcribed in the studied tissues would be representative of 
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genes expressed in that tissue in all adult horses. The drastic difference between the 

percentage of genes expressed across tissues between this study and Ramsköld's study 

can be partially explained by the differences in the number of tissues examined, the 

threshold for expression, and an increase in gene annotation in the last decade. Further, 

the different methods used to normalize read counts can impact the ability to compare 

relative gene expression across tissues.   

Both RPKM and TPM correct for sequencing depth and gene length (Zhao et al., 

2021). Correcting for these factors is important because a larger total read count will 

increase the number of transcripts that map, and longer transcripts often create more 

fragments during library preparation which will increase the number of reads aligning to 

those genes. However, RPKM and TPM are not the same. Unlike RPKM, the total count 

of TPM adjusted transcripts is the same across samples which improves the ability to 

compare gene expression across samples within a study; however, direct comparisons of 

gene expression across studies can be limited by differences in library preparation (Zhao 

et al., 2020). Although there are limitations to all normalization methods (Zhao et al., 

2020; Zhao et al., 2021), TPM was chosen to allow for comparison across tissues in this 

study.   

On average, 8,068 genes were identified to be expressed across the assayed 

tissues. The fewest genes were expressed in the Longissimus dorsi with the greatest 

number of genes expressed in the testis and then the brain. Each tissue in this study 

expressed 20-35% of the genes in EquCab3.0 RefSeq annotation. Ubiquitously expressed 

genes made up a large proportion of the genes expressed in each tissue. The majority of 

the genes expressed in the muscle (67%), heart (60%), and liver (57%) where genes that 
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were ubiquitously expressed. The testis and brain had the smallest percentage of genes 

that were ubiquitously expressed, 40% and 43%, respectively, and the largest proportion 

of genes that were tissue-specific. These findings mirror those found by Ramsköld and 

others (2009) in which skeletal muscle had the fewest expressed genes and the testis had 

the greatest number of expressed genes. Ramsköld also found the transcriptomes of 

skeletal muscle and liver to consist largely of ubiquitously expressed genes while the 

testis and brain had a greater variety of expressed genes (Ramsköld et al., 2009).   

A small proportion of genes were highly expressed across the studied tissues. 

Two genes, however, were highly expressed in all nine tissues: miRNA-703 and TPT1. 

miRNA-703 has been identified to protect cells from inflammasome-induced pyroptosis 

following hypoxia in myocardial infarction (Wei et al., 2020). It is possible that MIR703 

expression was upregulated in tissues due to hypoxia after euthanasia. TPT1 encodes the 

fortilin protein that demonstrates strong anti-apoptotic effects (Li et al., 2001; Pinkaew et 

al., 2017). It was previously found to be ubiquitously expressed in healthy tissues (Li et 

al., 2001). Some highly expressed genes that were found in one of the studied tissues 

have previously been identified to be tissue-specific in other species. For example, 

adiponectin (ADIPOQ), fatty acid binding protein 4 (FABP4), and adipogenesis 

regulatory factor (ADIRF) are all exclusively expressed or biasedly expressed in the 

adipose tissue (Fagerberg et al., 2014).    

In addition to uniquely expressed genes, enriched KEGG pathways were also 

examined. The liver had the most uniquely enriched KEGG pathways. Fourteen of the 23 

uniquely enriched pathways participate in the metabolism of various molecules which is a 

known function of the liver. Of the seven uniquely enriched pathways in the lung, five 
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were involved in immune function. The epithelial cells in the lungs are known to have a 

large role in modulating the immune system (reviewed by Hewitt & Lloyd, 2021). Since 

no other immune tissues were examined in this study, it is unsurprising that pathways 

such as NF-𝜅𝐵, IL-17, RIG-I-like receptor, and toll-like receptor signaling are only 

enriched in the lung tissue. Ninety-eight pathways were identified to be enriched in all 

studied tissues. Many of these enriched pathways are involved in basic cellular function 

and homeostasis, such as the cell cycle, apoptosis, endocytosis, RNA polymerase, 

ribosomes, spliceosomes, and protein export. A large number of unexpected pathways 

were enriched in all tissues, such as Alzheimer disease, Amyotrophic Lateral Sclerosis, 

and Parkinson disease. It is hypothesized that many of these pathways are considered 

enriched due to the presence of genes involved in the oxidative phosphorylation pathway 

including ATP synthases, ATPases, NADH:ubiquinone oxioreductases, and cytochrome 

c and b subunits. This depicts one of the limitations of KEGG pathway enrichment 

analyses. Many pathways are named by the diseases they influence and include genes that 

are broadly involved in basic cellular function. Nonetheless, the pathways that were 

unique across tissues were informative of that tissue’s function and helped verify the 

identity of the sampled tissue.   

Genes expressed across tissues varied not only due to tissue type, but also due to 

sex. Previous studies in humans have identified many genes exhibiting sex-biased 

expression across a variety of tissues. Mayne and others (2016) identified over 2,000 

genes differentially expressed due to sex across 15 tissue types. Another study identified 

as much as 37% of genes displaying sex-biased gene expression among 44 tissues 

(Meritxell et al., 2020). Some of the sex-biased gene expression can be contributed to 
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regulatory elements with hormone response elements; however, approximately two-thirds 

of genes displaying sex-biased expression do not contain hormone response elements 

(Mayne et al., 2016). Even if the chemical processes leading to differential expression 

across sexes are not fully understood, there is value in identifying these genes. These 

differentially expressed genes may explain the differences in disease risk or efficacy of 

drugs across sexes. Furthermore, understanding genes that are differentially expressed 

due to sex can be used to identify potential bias in differential expression studies where 

sex is not accounted for across treatment groups.   

In our study, 923 genes were differentially expressed due to sex in at least one of 

the nine studied tissues. Only four genes were differentially expressed across all nine 

tissues: HLA-G, OFD1, LOC111771383, and LOC102150010. HLA-G is a gene encoding 

part of the major histocompatibility complex. Previous studies have identified sex-biased 

expression in HLA genes (Stein et al., 2021); however, Stein and others (2021) note that 

accurate quantification of transcripts in HLA genes can be difficult due to the highly 

polymorphic nature of these genes. These polymorphisms can impair the mappability of 

transcripts to HLA genes. Therefore, the differential expression of HLA-G may reflect the 

relatedness of biological replicates to the horse used for the reference genome rather than 

differential expression due to sex. Both OFD1 and LOC102150010 are located on the X 

chromosome. Although one X chromosome is generally inactivated in females, prior 

research indicates that as many as 15% of genes on inactivated X chromosome are 

expressed (Prothero et al., 2009). Therefore, it is possible that the overexpression of 

LOC102150010 in females could be due to escape of X chromosome inactivation in the 

females. Since LOC102150010 is an uncharacterized ncRNA in the horse, greater 
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annotation of noncoding genes will be required to understand the impact of sex on this 

ncRNA. OFD1 has been described to map to both the X and Y chromosomes in other 

species (Chang et al., 2011). In cattle, OFD1Y was found to be expressed in a variety of 

tissues (Chang et al., 2011). The overexpression of OFD1 in the stallions may reflect an 

unannotated copy of OFD1 on the Y chromosome which is not currently apart of the 

EquCab3.0 reference genome. LOC111771383 represents an uncharacterized pseudogene 

on equine chromosome 23, and therefore, the potential reasons for differential expression 

cannot be currently examined.   

The degree of differential expression due to sex varied widely across tissues. 

Adipose had 3,382 genes that were differentially expressed while the lung had only 37. 

The three tissues with the greatest differential gene expression were adipose, muscle and 

liver. Both adipose and skeletal muscle were also found to be highly differentially 

expressed across sexes in a study of human tissues (Gershoni & Pietrokovski, 2017). 

Understanding sex-biased gene expression is important when analyzing data from studies 

including just one sex. Although some tissues such as lung and lamina have less sex-bias 

in gene expression, commonly studied tissues related to athletic performance and 

metabolic diseases have 900 or more genes that are differentially expressed across the 

sexes (McGivney et al., 2010; Park et al., 2012; Ertelt et al., 2014; Ropka-Molik et al., 

2017). Therefore, it can be difficult to reliably extrapolate results generate in one sex to 

the other and this result warrants examination of both sexes when considering the impact 

of various stimuli on gene expression.   

The data presented in this study provide a valuable resource to the equine 

community. The gene expression profiles of nine healthy tissues are characterized which 
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may be useful in informing researchers which tissues and sexes would be the most 

beneficial to study regarding their research intents. For example, when examining 

candidate mutations related to a disease that mainly impacts a single tissue, resources can 

be focused towards mutations in genes that are expressed in the impacted tissue. While 

the findings of this study are informative, the small sample size is a limitation of the 

study. Although a conservative threshold for gene expression was employed to account 

for this, the genes found to be expressed, and especially those differentially expressed 

across sexes, may not be representative of the transcriptome present in all healthy adult 

horses. Furthermore, only nine tissues were compared meaning that many of the genes 

and pathways identified to be unique in this dataset may also be enriched in other tissues 

that were not examined in this study. Nonetheless, this study provides a strong foundation 

for the study of the equine transcriptome and will be valuable for informing the design of 

applied research in the equine community.   

 

Table 2.1. Tissue Homogenization and RNA Elution Specifications 

Tissue 

Homogenization 
RT Incubation/ 

Dirty Spin 

Elution 

Volume 
Speed 

(kRPM) 

Duration 

Abdominal Adipose (Adipose) 26-28 30 sec (x3) 10 min: Yes 50uL 

Parietal Cortex (Brain) 10-12 20 sec (x2) 5 min: No 50uL 

Heart Left Ventricle (Heart) 22-24 30 sec (x3) 5 min: No 50uL 

Lamina  22-24 30 sec (x3) 5 min: No 100uL 

Liver 22-24 30 sec (x3) 5 min: No 80uL 

Left Lung (Lung) 22-24 30 sec (x3) 5 min: No 50uL 

Longissimus dorsi (Muscle) 18-20 30 sec (x3) 5 min: No 100uL 

Left Testis (Testis) 22-24 30 sec (x4) 20 min: Yes 100uL 
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Table 2.2. RIN Values of RNA Isolated From Stallion Tissues 

Tissue AH3 RIN AH4 RIN 

Adipose 8.4 8.5 

Brain 9.5 9.1 

Heart 8.3 7.6 

Lamina 8.8 8.7 

Liver 9.4 9.4 

Lung 8.0 8.4 

Muscle 8.8 9.2 

Testis 9.7 9.7 

 

 

Figure 2.1. Genes Expressed by Tissue  

The total number of genes expressed in a tissue across all four replicates (two replicates 

for ovary and testis) is represented by the total height of the bar. Genes must be expressed 

in all biological replicates for a gene to be considered expressed in a tissue. In the ovary 

and testis, genes are considered expressed if both biological replicates of that sex express 

a given gene. The genes in lightest blue are expressed in that tissue as well as in at least 

one other tissue in the dataset. Genes in the medium blue are ubiquitously expressed 

across all nine tissue types. Genes in the darkest blue were expressed at greater than 10 

TPM in only that tissue. 
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Table 2.3. Genes Highly Expressed (>1000 TPM) in All Biological Replicates Across 

Tissues  

Tissue Highly Expressed Genes Tissue-Specific High Expression 

Adipose 92 11 

Brain 35 16 

Heart 132 45 

Lamina 83 6 

Liver 113 93 

Lung 80 10 

Muscle 122 38 

Ovary 90 13 

Testis 46 33 

 

Table 2.4. Number of Enriched KEGG Pathways 

Tissue All Pathways Unique Pathways 

Adipose 182 1 

Brain 172 18 

Heart 154 3 

Lamina 162 0 

Liver 172 23 

Lung 182 7 

Muscle 133 0 

Ovary 175 3 

Testis 130 1 
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Figure 2.2. Differential Gene Expression Due to Sex  

Differentially expressed genes (Padj < 0.05) across tissues due sex. Genes found to be 

upregulated in males are in blue while the genes upregulated in females are in pink. The 

number of differentially expressed genes is recorded at the top of each bar.   
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Figure 2.3. Principal Component Analysis  

A principal component analysis performed in DESeq2 following differential expression 

analysis considering both sex and tissue types as factors. Samples cluster strongly by 

tissue, but not by sex. Together, the first 2 principal components account for 66% of the 

variability among samples.   
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Supplementary Table 2.1. Genes Expressed in Only One Sex 

  Female Only Male Only 

Adipose 
EDIL3, LOC102150010, 

LOC111770938, PROKR1 

EPM2AIP1, LOC100064259, 

LOC106783151, LOC111771275, 

LRAT, MIR9184, PRM1, 

RSPH4A, SLC4A4 

Brain 

LOC100053403, LOC100053499, 

LOC100053847, LOC102148406, 

LOC102150010, LOC106782239, 

LOC111769679, LOC111770252, 

LOC111770264, LOC111770486, 

LOC111770496, LOC111770499, 

LOC111770515, LOC111770525, 

LOC111770527, LOC111770531, 

LOC111770545, LOC111770546, 

LOC111770553, LOC111772707, 

LOC111773021, LOC111773023, 

LOC111774090, LOC111774512, 

LOC111775847, MIR1543 

None 

Heart None MIR219-1, MIR8944, PRM1 

Lamina None 
LOC100051724, LOC111767996, 

LOC111770981 

Liver 

FZD10, LOC100055856, 

LOC102148406, LOC102150010, 

LOC111769679, LOC111769781, 

LOC111770262, LOC111770497, 

LOC111770545, LOC111770553, 

LOC111774220, MIR8985, 

MIR9041 

LOC111772972 

Lung None MIR1244 

Muscle LOC102148741 HBA, LOC111774862, PRM1 
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Supplementary Table 2.2. Genes Highly Expressed in a Single Tissue 

 

Adipose ADIPOQ, ADIRF, CAVIN1, DCN, G0S2, LGALS1, LOC100049811, 

LOC100057425, PLIN1, RPS28, S100A1 

Brain APP, PLP1, ALDOC, CALM3, CPE, GLUL, MBP, NRGN, PEA15, 

S100B, SNAP25, SPARCL1, THY1, UCHL1, YWHAE, YWHAH 

Heart ACTC1, CHCHD10, ATP2A2, ATP5MG, CYC1, CYCS, ACTN2, 

ATP5MD, ATP5PB, ATP5PF, ACO2, ANKRD1, ATP5F1C, ATP5IF1, 

ATP5MF, ATP5PD, BSG, FHL2, GNG5, HSPB7, LOC100055813, 

LOC100630549, LOC100630564, LOC106781327, LOC106781507, 

LOC111767815, MYBPC3, MYH7, MYL2, MYL3, MYOZ2, NDUFA4, 

NDUFB2, NDUFB8, NDUFS2, NDUFS6, PDLIM1, PLN, PRDX2, 

PSAP, SDHD, SMPX, TNNC1, TNNT2, VDAC3, 

Lamina ANXA1, PERP, KRT14, S100A6, SFN, LOC100630872 

Liver AFM, AMBP, LOC100073265, LOC106782649, APOA2, CAT, 

ALDH1L1, CYP2E1, CYP3A97, AGT, APOC2, APOH, ASS1, A1BG, 

ALDH1A1, APOA1, APOC3, ASGR1, C1S, FGA, FMO3, GC, HRG, 

ITIH2, ITIH4, LOC100034242, LOC100050685, LOC100053249, 

LOC100060505, LOC100061234, LOC100061367, LOC100061692, 

LOC100066603, LOC100067869, LOC100070616, LOC106782650, 

LOC106782651, METTL7B, ACSL1, ALDOB, C1R, CDO1, CFB, CFI, 

CYP2A13, AOX1, CPS1, LOC100071061, AHSG, APOB, CCL16, CRP, 

CYB5A, DHRS7, DPYS, ECHS1, EPHX1, F10, F2, FGB, FGG, FN1, 

GLUD1, GSTA1, HAAO, HAMP, HPD, HPX, HSD17B13, ITIH1, 

KNG1, LECT2, LOC100051562, LOC100053468, LOC100056506, 

LOC100059239, LOC100070400, MAT1A, PAH, PGRMC1, PLG, 

RARRES2, RGN, RNASE4, SERPINC1, SERPIND1, SERPINF2, 

SERPING1, SLCO1B3, TAT, TMBIM6, TTR, VTN 

Lung HSPA6, LOC100630171, LOC106781303, MARCO, NPC2, RGS2, 

SCGB1A1, SEC14L3, SFTPA1, SFTPC 

Muscle ACTN3, ADSSL1, AK1, ATP2A1, BIN1, CA3, CASQ1, CNBP, CSDE1, 

EEF2, EIF4A2, GPD1, GPI, KLHL41, LDB3, LDHA, LOC100051065, 

LOC100058290, MYBPC2, MYH1, MYL1, MYLK2, MYLPF, MYOT, 

MYOZ1, PDLIM3, PFKM, PGK1, PGM1, PKM, PPP1R1A, PPP1R27, 

SH3BGR, SLN, TMOD4, TNNC2, TNNI2, TNNT3 

Ovary ENO1, GSTO1, HMGCR, HMGCS1, IGFBP7, LOC100065786, 

LOC111775780, MIR675, MIR9182, MSMO1, PLA2GIB, PRDX1, 

RPS15, STAR 

Testis AKAP4, CABYR, CMTM2, CRISP2, DKKL1, DNAAF1, DYNLL1, 

GSG1, GSTM3, HAGH, HMGB4, INSL3, LOC100072403, 

LOC100073295, LOC102147484, LOC102148276, OAZ3, ODF1, 

ODF2, PABPC1, PRM1, PRM2, PSMD2, RAN, RPL38, SPA17, 

STMN1, TNP1, TPPP2, TSACC, TUBB4B, WASHC3, YBX2 
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Supplementary Table 2.3. Ubiquitously-Enriched and Tissue-Unique KEGG 

Pathways 

Tissue Enriched KEGG Pathways 

All 

Tissues 

Adherens junction, Adipocytokine signaling pathway, AGE-RAGE 

signaling pathway in diabetic complications, Alzheimer disease, 

AMPK signaling pathway, Amyotrophic lateral sclerosis, Apoptosis, 

Autophagy - animal, Autophagy - other, Bacterial invasion of epithelial 

cells, Basal transcription factors, Biosynthesis of cofactors, Carbon 

metabolism, Cell cycle, Cellular senescence, Central carbon 

metabolism in cancer, Chemical carcinogenesis - reactive oxygen 

species, Choline metabolism in cancer, Chronic myeloid leukemia, 

Citrate cycle (TCA cycle), Colorectal cancer, Coronavirus disease - 

COVID-19, Diabetic cardiomyopathy, EGFR tyrosine kinase inhibitor 

resistance, Endocrine resistance, Endocytosis, Endometrial cancer, 

Epstein-Barr virus infection, ErbB signaling pathway, Fatty acid 

degradation, Fatty acid metabolism, Fluid shear stress and 

atherosclerosis, Focal adhesion, FoxO signaling pathway, Glioma, 

Glucagon signaling pathway, Glyoxylate and dicarboxylate 

metabolism, Hepatitis B, Hepatocellular carcinoma, HIF-1 signaling 

pathway, Human cytomegalovirus infection, Human immunodeficiency 

virus 1 infection, Human papillomavirus infection, Human T-cell 

leukemia virus 1 infection, Huntington disease, Insulin resistance, 

Insulin signaling pathway, Longevity regulating pathway, Longevity 

regulating pathway - multiple species, Lysine degradation, Lysosome, 

Metabolic pathways,  

Mitophagy - animal, mRNA surveillance pathway, mTOR signaling 

pathway, N-Glycan biosynthesis, Neurotrophin signaling pathway, 

Non-alcoholic fatty liver disease, Non-small cell lung cancer, 

Nucleocytoplasmic transport, Nucleotide excision repair, Oocyte 

meiosis, Oxidative phosphorylation, Pancreatic cancer, Parkinson 

disease, Pathways of neurodegeneration - multiple diseases, PD-L1 

expression and PD-1 checkpoint pathway in cancer, Peroxisome, Prion 

disease, Propanoate metabolism, Prostate cancer, Proteasome, Protein 

export, Protein processing in endoplasmic reticulum, Pyruvate 

metabolism, Regulation of actin cytoskeleton, Renal cell carcinoma, 

Ribosome, Ribosome biogenesis in eukaryotes, RNA degradation, 

RNA polymerase, Salmonella infection, Small cell lung cancer, 

Sphingolipid signaling pathway, Spinocerebellar ataxia, Spliceosome, 

T cell receptor signaling pathway, Terpenoid backbone biosynthesis, 

Thermogenesis, Thyroid hormone signaling pathway, Tight junction, 

Toxoplasmosis, Ubiquitin mediated proteolysis, Valine, leucine and 

isoleucine degradation, Vasopressin-regulated water reabsorption, 

VEGF signaling pathway, Viral carcinogenesis, Yersinia infection  
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Supplementary Table 3 (cont.) 

Adipose Regulation of lipolysis in adipocytes 

Brain 

Glutamatergic synapse, Synaptic vesicle cycle, GABAergic synapse, 

Morphine addiction, Cholinergic synapse, Circadian entrainment, 

Aldosterone synthesis and secretion, Long-term depression, 

Amphetamine addiction, Glycosaminoglycan biosynthesis - heparan 

sulfate / heparin, Gastric acid secretion, GnRH secretion, cAMP 

signaling pathway, Insulin secretion, Aldosterone-regulated sodium 

reabsorption, Nicotine addiction, Alanine, aspartate and glutamate 

metabolism, Fatty acid biosynthesis,  

Heart Hypertrophic cardiomyopathy, Dilated cardiomyopathy, 

Arrhythmogenic right ventricular cardiomyopathy 

Lamina None 

Liver 

Glycine, serine and threonine metabolism; Complement and 

coagulation cascades, Tryptophan metabolism, Cholesterol metabolism, 

Drug metabolism - other enzymes, Pentose and glucuronate 

interconversions, Porphyrin metabolism, Drug metabolism - 

cytochrome P450, Ascorbate and aldarate metabolism, beta-Alanine 

metabolism, Histidine metabolism, Metabolism of xenobiotics by 

cytochrome P450, Pantothenate and CoA biosynthesis, Riboflavin 

metabolism, Chemical carcinogenesis - receptor activation, 

Glycerolipid metabolism, Phenylalanine metabolism, Chemical 

carcinogenesis - DNA adducts, Nicotinate and nicotinamide 

metabolism, Tyrosine metabolism, Folate biosynthesis, Biosynthesis of 

unsaturated fatty acids, Fatty acid elongation 

Lung 

NF-kappa B signaling pathway, Toll-like receptor signaling pathway, 

Cell adhesion molecules, Rheumatoid arthritis, Transcriptional 

misregulation in cancer, IL-17 signaling pathway, RIG-I-like receptor 

signaling pathway 

Muscle None 

Ovary 

Glutathione metabolism, Selenocompound metabolism, 

Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan 

sulfate 

Testis Pyrimidine metabolism 
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Supplementary Table 2.4. The Top 20 Differentially Expressed Genes by Sex 

Adipose Brain 

Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj 

LOC 

100064259 
36.80 8.74 5.1E-06 

LOC 

111775630 
29.03 8.72 1.64E-05 

LOC 

100056127 
40.67 7.41 2.8E-03 

LOC 

111774627 
29.98 7.33 2.66E-02 

IYD 13.36 7.27 6.4E-03 MYH2 24.62 7.03 1.71E-03 

LOC 

100072708 
12.77 7.20 2.7E-03 

LOC 

111770337 
23.46 6.94 2.75E-02 

LOC 

111769125 
12.68 7.19 1.1E-02 

LOC 

100062546 
50.97 5.47 7.40E-07 

LOC 

111774060 
12.53 7.18 2.4E-03 CPLX4 16.58 5.44 3.69E-03 

LRAT 383.97 7.11 8.8E-31 
LOC 

100061551 
26.77 3.61 2.51E-03 

LOC 

111772591 
11.68 7.08 3.4E-03 

LOC 

100630497 
27.75 3.51 4.55E-04 

LOC 

111771275 
11.01 6.99 6.1E-03 

LOC 

100056099 
269.58 3.33 4.47E-04 

LOC 

106783067 
83.03 6.89 2.09E-05 

LOC 

111771597 
50.60 3.10 4.81E-05 

SIM1 16.38 -7.39 3.2E-03 
LOC 

111773712 
305.23 -7.24 1.11E-24 

DIRAS1 49.05 -7.47 3.5E-03 
LOC 

111770452 
19.56 -7.31 1.87E-03 

TRHDE 17.84 -7.51 4.8E-03 
LOC 

100065590 
19.66 -7.32 2.34E-03 

LOC 

106780963 
150.85 -8.18 8.4E-11 

LOC 

102149722 
19.65 -7.32 1.83E-03 

HTR2A 87.18 -8.25 3.6E-02 
LOC 

111770904 
58.86 -7.45 1.36E-04 

NELL1 42.50 -8.77 1.1E-05 
LOC 

100053403 
286.76 -7.74 4.81E-20 

LOC 

102147462 
52.74 -9.08 5.7E-07 

LOC 

100054521 
307.45 -7.84 1.52E-20 

KRT3 86.39 -9.79 4.4E-02 MIR1543 29.55 -7.91 1.15E-04 

EGFL6 148.08 -10.57 3.1E-09 
LOC 

102150010 
4243.46 -8.76 

1.82E-

119 

LOC 

106781302 
246.91 -24.65 1.1E-05 

LOC 

111774090 
350.70 -11.48 3.83E-12 

*Positive fold changes represent genes with greater expression in the stallions. Negative 

fold changes represent genes with greater expression in the mares. 
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Supplementary Table 2.4. (cont.) 

Heart Lamina 

Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj 

HSPA6 531.21 4.25 7.95E-20 SPTSSB 1510.57 10.37 4.87E-02 

PRUNE2 131.14 3.65 7.49E-09 PRR9 9581.37 9.62 4.49E-02 

BCAT1 301.69 3.46 2.18E-09 
LOC 

111774465 
47.43 9.34 8.97E-05 

LOC 

111775969 
226.31 3.40 8.31E-10 

LOC 

111775630 
32.99 8.82 9.16E-04 

LOC 

100056099 
824.62 3.39 8.31E-10 

LOC 

111770981 
42.06 7.74 1.80E-03 

CPXM2 144.65 3.18 7.49E-09 ADAM7 15.02 7.68 2.40E-02 

SPON1 137.75 3.01 1.99E-08 
LOC 

111775638 
195.48 7.14 2.56E-04 

NR4A3 170.72 2.82 6.42E-04 
LOC 

111769006 
75.05 7.13 4.95E-02 

CHRDL1 102.93 2.76 2.45E-06 SPOCK3 70.61 7.03 3.20E-02 

SPHKAP 83.17 2.76 3.04E-04 LTF 22.72 6.81 2.09E-02 

LOC 

100062359 
197.13 -2.01 1.34E-04 ACHE 261.30 -3.10 4.43E-02 

CISH 357.81 -2.03 1.41E-07 ACP7 44.52 -3.21 1.59E-02 

FRZB 1023.51 -2.21 2.18E-09 
LOC 

100051371 
302.81 -3.57 9.16E-04 

OST4 100.86 -2.47 8.12E-05 
LOC 

100069585 
31.59 -3.75 4.80E-02 

CITED1 152.91 -2.50 5.87E-04 PRKG2 42.14 -5.05 3.17E-02 

TSPO 228.75 -2.54 9.19E-06 CYP2E1 121.98 -5.08 4.63E-02 

LOC 

100146514 
105.53 -2.62 1.21E-04 STK32B 36.57 -5.27 2.55E-03 

LOC 

100050506 
271.18 -2.63 5.28E-07 

LOC 

102150010 
4481.73 -6.22 4.82E-38 

THRSP 120.03 -3.23 3.02E-06 
LOC 

102150085 
429.63 -7.28 1.67E-06 

LOC 

102150010 
1255.41 -5.22 1.69E-05 P19 66.82 -9.19 8.00E-04 

*Positive fold changes represent genes with greater expression in the stallions. Negative 

fold changes represent genes with greater expression in the mares. 
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Supplementary Table 2.4. (cont.) 

Liver Lung 

Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj 

LOC 

111772972 
367.45 11.06 5.25E-11 

LOC 

111767996 
21.40 8.18 6.12E-03 

LOC 

111770995 
68.48 10.08 1.38E-08 

LOC 

111774465 
26.77 6.06 8.20E-03 

LOC 

100064796 
342.63 9.37 1.26E-02 

LOC 

106781675 
23.17 5.85 1.47E-02 

LOC 

100629895 
11.80 7.54 1.69E-03 

LOC 

111775630 
35.52 5.13 4.67E-04 

ADAM7 11.37 7.49 1.75E-03 
LOC 

100056585 
35.86 4.62 1.77E-03 

LOC 

102150542 
10.09 7.31 3.34E-03 

LOC 

111770981 
64.03 4.34 2.93E-04 

LOC 

111775631 
9.24 7.18 1.13E-02 

LOC 

100051724 
64.46 4.26 1.30E-03 

FGF21 24.07 7.11 2.06E-02 
LOC 

111768886 
43.52 4.10 1.21E-02 

PRM1 7.85 6.95 1.44E-02 
LOC 

111775343 
54.54 4.01 2.61E-03 

GPX5 6.95 6.77 2.06E-02 
LOC 

111769025 
46.84 4.01 5.16E-04 

LOC 

111772597 
15.17 -6.84 1.54E-02 

LOC 

111774782 
2279.68 -2.14 1.58E-02 

LOC 

111773712 
414.84 -6.86 3.98E-33 

LOC 

100067178 
926.48 -2.21 4.47E-02 

LOC 

102148948 
15.51 -6.87 2.98E-03 CRMP1 277.87 -2.56 1.03E-04 

LOC 

111770083 
405.06 -6.95 1.63E-32 GABRA3 234.70 -2.73 2.05E-04 

KCTD4 17.75 -7.06 1.51E-03 
LOC 

111770338 
140.00 -3.12 2.14E-02 

LOC 

111770262 
18.95 -7.16 9.93E-04 CYP1A1 238.25 -3.18 2.05E-04 

LOC 

111773958 
21.37 -7.33 5.32E-04 

LOC 

100147051 
603.15 -3.55 8.86E-08 

LOC 

111769679 
25.84 -7.61 2.00E-04 

LOC 

100147109 
54.24 -3.83 6.23E-03 

LOC 

102150010 
4108.12 -8.05 

1.63E-

136 

LOC 

100066745 
124.43 -4.31 2.05E-04 

LOC 

111774090 
411.22 -8.58 2.68E-19 

LOC 

102150010 
3441.89 -5.35 9.32E-18 

*Positive fold changes represent genes with greater expression in the stallions. Negative 

fold changes represent genes with greater expression in the mares. 
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Supplementary Table 2.4. (cont.) 

Skeletal Muscle Ovary/Testis 

Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj Gene ID 

Mean 

Female 

Expression 

log2 

Fold 

Change 

P adj 

NEFM 120.23 7.82 4.72E-02 
LOC 

100072403 
10138.70 16.69 3.06E-27 

NEFL 104.41 7.66 4.67E-05 GSG1 8381.28 16.42 2.20E-26 

HSPA6 476.03 7.57 3.89E-02 CRISP2 8300.23 16.41 2.07E-26 

LOC 

111771118 
43.31 7.40 3.43E-02 PRM1 7439.17 16.25 6.72E-26 

NEFH 79.37 7.26 2.00E-04 CMTM2 7080.09 16.18 1.15E-25 

LOC 

111775630 
31.93 6.94 1.22E-03 TNP1 6210.52 15.99 3.84E-25 

NR4A3 543.36 6.24 2.71E-02 HMGB4 5506.54 15.81 1.38E-24 

HBA 21.23 5.32 2.68E-03 PRM2 5217.67 15.74 2.39E-24 

DSP 30.96 5.29 3.36E-03 PIWIL1 4721.97 15.59 6.16E-24 

LOC 

111769187 
52.47 4.80 4.75E-04 ODF1 4449.61 15.51 1.15E-23 

KHDRBS3 50.20 -3.19 4.25E-03 SLC5A7 55.55 -9.28 8.54E-07 

CCKBR 71.36 -3.34 1.18E-03 GALNT5 55.77 -9.29 9.97E-07 

LOC 

111775091 
27.44 -3.46 1.55E-02 PHLDA2 2157.34 -9.42 1.56E-21 

KCTD16 147.45 -3.54 1.83E-10 NTS 426.31 -9.81 1.05E-02 

SIX2 45.05 -3.85 1.27E-02 
LOC 

111768621 
478.98 -9.96 2.54E-12 

LOC 

102148741 
34.00 -4.77 3.30E-05 COL11A1 7328.34 -10.07 6.30E-20 

LOC 

102150010 
298.71 -5.05 2.16E-36 

LOC 

100050034 
1150.05 -12.22 1.95E-03 

HOXA11 48.15 -6.62 3.72E-03 SERPINB2 613.55 -12.75 1.60E-02 

LOC 

102147462 
30.41 -8.41 8.88E-05 CGA 3905.46 -12.95 4.48E-04 

LOC 

111771163 
31.04 -8.44 1.11E-04 SPINK9 2201.24 -13.12 1.28E-03 

*Positive fold changes represent genes with greater expression in the stallions. Negative 

fold changes represent genes with greater expression in the mares. 
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CHAPTER 3: FUNCTIONAL ANNOTATION OF PUTATIVE CIS-REGULATORY 

ELEMENTS IN THE GENOMES OF TWO THORUGHBRED STALLIONS 

 

Introduction  

With an annual economic impact of $50 billion in the US alone, the equine 

industry has long focused on improving the health and performance of horses (American 

Horse Council, 2018). The role of genomics on traits such as racing ability, fertility, and 

conformation have been widely studied since the release of the first equine reference 

genome in 2007 (Wade et al., 2009; Hill et al., 2010; Raudsepp et al., 2012; Singer-

Hasler et al., 2012). Varying degrees of success have met these studies as limitations in 

the annotation of the equine genome have impaired identification of functional candidates 

for many traits of interest. Similar difficulties have been observed in humans with as 

much as 88% of trait-associated variants falling outside protein coding sequences 

(Hindorff et al., 2009). Yet, the annotation of most genomes, including that of the horse, 

is largely based on transcriptome data which primarily capture protein coding sequence 

(Coleman et al., 2010; Hestand et al., 2015; Mansour et al., 2017). Therefore, using 

additional methods to annotate the genome beyond protein-coding sequence may improve 

the success of genomic studies into equine health and performance.   

The human ENCODE project aimed to address similar shortcomings in the human 

genome annotation. With the ambitious goal of identifying all functional elements in the 

human genome, the ENCODE project attributed function to as much as 80% of the 

human genome. Protein coding sequence comprised less than 3% of the human genome 

indicating a large presence of other functional elements (The ENCODE Project 
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Consortium, 2012). Despite the small footprint of protein coding genes in the genome, a 

large portion of the genome is dedicated to regulating their expression. Cis-regulatory 

elements aid in maintaining transcriptional programming and include promoters, 

enhancers, and silencers. The ENCODE project identified nearly 400,000 enhancer 

regions and 70,000 promoter regions in the human genome (The ENCODE Project 

Consortium, 2012). The functional annotation performed by the ENCODE project and 

subsequent research efforts have elucidated the impact of non-coding variants on disease 

traits in humans. For example, an enhancer region variant was associated with coronary 

artery disease and promoter region variants have been associated with schizophrenia and 

various forms of cancer (Gupta et al., 2017; Warburton et al., 2016; Vinagre et al., 2013). 

Together, these studies demonstrate the value of annotating regulatory elements 

throughout the genome.   

The Functional Annotation of Animal Genomes (FAANG) project aims to 

functionally annotate the genomes of domesticated species to improve the understanding 

of the genotype-to-phenotype link (The FAANG Consortium, 2015). Part of this effort 

includes annotating regulatory elements through the use of chromatin 

immunoprecipitation and sequencing (ChIP-seq). ChIP-seq of four histone modifications 

associated with enhancers (H3K4me1), promotors (H3K4me3), active genomic regions 

(H3K27ac), and repressed genomic regions (H3K27me3) has been prioritized as core 

assays of the FAANG initiative. The equine FAANG project has previously characterized 

these four histone modifications in a variety of tissues from two Thoroughbred mares 

(Kingsley et al., 2020; Kingsley et al., 2021); however, regulatory elements have yet to 

be characterized in the tissues of stallions. Our group identified thousands of genes 
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differentially expressed between the tissues of mares and stallions indicating differences 

in gene regulation across sexes. Indeed, differences in histone modifications have been 

observed between sexes in other species demonstrating the need for annotating regulatory 

elements in both sexes (Shen et al., 2015; Kfoury et al., 2021). This project aims to 

characterize histone modifications in the tissues of two Thoroughbred stallions to allow 

for a comparison of regulatory elements present in the tissues of mares and stallions.   

  

Materials and Methods  

Chromatin Extraction and Immunoprecipitation  

Tissue samples from abdominal adipose, parietal cortex (brain), left ventricle 

(heart), lamina, liver, lung, Longissimus dorsi (muscle), and testis of two Thoroughbred 

stallions were prioritized for chromatin immunoprecipitation and sequencing (ChIP-seq) 

analysis and retrieved from the equine FAANG Biobank (Donnelly et al., 2021). 

Collected tissues had been flash frozen in liquid nitrogen and stored -80 ◦C (Donnelly et 

al., 2021). ChIP preparation and sequencing was performed by Diagenode using their 

ChIP-seq Profiling Service (Diagenode, Cat# G02010000, Liège, Belgium). Chromatin 

was extracted and prepared using the iDeal ChIP-seq kit for Histones (Diagenode Cat# 

C01010059). Tissue samples were homogenized for two minutes using the Tissue Lyser 

II (Qiagen, Germany) and then fixed in 1% formaldehyde for 9 minutes (10 minutes for 

adipose) to crosslink histone proteins with DNA. Chromatin was sheared using a 

Bioruptor Pico (Diagenode, Cat# B01060001, Liège, Belgium) to achieve a targeted 

fragment size of 200 bp. The Bioruptor water cooler was used to maintain a temperature 

of 4 ◦C (10 ◦C for adipose) during shearing. Shearing occurred in cycles of 30 seconds 
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where samples were rested for 30 seconds between bursts. Optimization of chromatin 

extraction, ChIP, and library preparation was previously completed at Diagenode in 

equine adipose, brain (parietal cortex), left ventricle (heart), lamina, liver, lung, skeletal 

muscle, and ovary for part of the equine FAANG project published by Kingsley et al. 

(2020). Experiments to optimize fixation and shearing times of testis were performed by 

Diagenode prior to the analysis of the prioritized tissue samples. Information regarding 

the homogenization, fixation, and shearing of each sample is reported in Table 1. After 

crosslink reversal and DNA purification, shearing was assessed using the High 

Sensitivity NGS Fragment Analysis Kit (DNF-474) on an Agilent Fragment Analyzer 

(Santa Clara, CA, USA).   

Immunoprecipitation (IP) of H3K27ac, H3K27me3, H3K4me1, and H3K4me3 

histone marks was performed using the IP-Star Compact Automated System (Diagenode, 

Cat# B03000002, Liège, Belgium) in all samples except muscle which was done 

manually due to low chromatin retrieval. IP of IgG served as a negative control across 

samples. Additionally, 1% of chromatin from each sample was set aside for an input 

sample that serves to correct for background noise in downstream analysis. The amount 

of antibody used to precipitate each histone mark and IgG differed across tissues and was 

previously optimized by Diagenode (Kingsley et al., 2020) (Supplementary Table 3.1). 

 

Library Preparation and Sequencing  

Libraries for the input and four ChIP samples were prepared on the IP-Star 

Compact Automated System (Diagenode, Cat# B03000002, Liège, Belgium) using the 

MicroPlex Library Preparation Kit v3 (Diagenode Cat# C05010001). Seven to thirteen 
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PCR cycles were used to amplify libraries and achieve appropriate concentrations for 

sequencing. Libraries were double size-selected for fragments with insert sizes of ~200bp 

using Agencourt® AMPure® XP (Beckman Coulter, Brea, CA, USA) and quantified 

with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Q32854, Waltham, 

MA, USA). Libraries were sequenced as 50bp, paired-end reads on an Illumina HiSeq 

4000 platform (San Diego, CA, USA) to a target depth of 100 million raw reads for 

H3K27me3 (broad mark) and 50 million raw reads for H3K327ac, H3K4me1, and 

H3K4me3 (narrow marks) and input samples.   

 

Library Mapping and Read Filtering  

Adapters were removed and reads trimmed using Trim-Galore (Krueger, 2019). 

Reads were mapped to EquCab3.0 with BWA-mem (Li, 2013) using the mapping script 

from the slurm-genotyping pipeline (https://github.com/esrice/slurm-genotyping). PCR 

duplicates were marked and removed with samtools (Li et al., 2009). Additionally, read 

pairs that were unmapped, non-primary alignments, or had a mapping alignment quality 

score (MAPQ) of less than 30 were removed with samtools (Li et al., 2009) to ensure that 

only high-quality reads remained for peak calling. The target usable fragment count was 

45 million for H3K27me3 and 20 million for the remaining marks and input samples as 

outlined in the ENCODE project (https://www.encodeproject.org/chip-seq/histone/). An 

H3K27ac adipose sample had less than half of the targeted usable fragments, so an 

additional library was prepared and sequenced. The filtered reads from both rounds of 

sequencing were merged for downstream analysis.    
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Stallion Peak Calling and Tissue-Unique Peak Identification  

Peaks, representing regions of read pileup, were identified using the pipeline 

established by Kingsley et al. (https://faang.org/ebi/ftp.ebi.ac.uk/faang/ftp/protocols/ 

analyses/UCD_SOP_processing_and_analyzing_equine_PE_ChIP_data_20201230.pdf). 

MACS2 (Zhang et al., 2008) was used to call peaks across all four histone marks, and 

SICERpy (https://github.com/dariober/SICERpy, a wrapper for SICER from Zang et al., 

2009) was used to call peaks for H3K27me3. Paired-end (PE) reads were used for 

MACS2 peak calling, while only the first reads (R1) of the stallion libraries were used for 

peak calling in SICERpy (Zang et al., 2009) as this software has yet to be optimized for 

PE libraries. The effective genome size, or genome fraction for SICERpy (Zang et al., 

2009), was determined by merging all input samples and determining the percentage of 

the genome covered by the merged bam file. The genome size for MACS2 (Zhang et al., 

2008) was equivalent to the sum of EquCab3.0 chromosome lengths (chr1-chrX and the 

mitochondrial chromosome (1660bp)). The bioinformatic parameters used in peak calling 

for each mark are defined in Table 2. Overlapping peaks significant in one biological 

replicate and at least called (enriched) in the other for a given mark and tissue were 

determined using the output from MACS2 (Zhang et al., 2008) and bedtools intersect 

(Quinlan & Hall, 2010) with default settings. Only peaks significant/enriched in both 

biological replicates were considered in the study. Peaks unique to a single tissue for a 

given mark were identified with bedtools (Quinlan & Hall, 2010). Microsoft Excel 

(Microsoft Corporation, 2018) was used to calculate the correlations between average 

usable reads and total peak number in addition to correlations between total peak number 

and tissue-unique peaks.   
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Data Availability  

The signal tracks (bigwig) generated for each sample can be download from 

https://equinegenomics.uky.edu/faangHorses_ChIP-Seq.html. Additionally, the combined 

peaks and those identified for each biological replicate will be available as BED tracks 

which can be found at FAANG.org under BioSampleIDs SAMEA9462146 and 

SAMEA9462145.   

 

Comparison of Peaks in Mares and Stallions  

Eight of the 80 tissues in the equine FAANG biobank from two Thoroughbred 

mares previously underwent ChIP-seq analysis for H3K27ac, H3K27me3, H3K4me1, 

and H3K4me3 (Burns et al., 2018; Kingsley et al., 2020). The prioritized tissues included 

adipose, brain parietal cortex (brain), left ventricle (heart), lamina, liver, lung, skeletal 

muscle, and ovary (Kingsley et al., 2020). The ChIP-seq libraries consisted of 50bp 

single-end (SE) reads generated by Diagneode’s ChIP-seq Profiling Service (Diagenode, 

Cat# G02010000, Liège, Belgium; Kingsley et al., 2020). Both the raw and analyzed 

datasets corresponding to the mare ChIP-seq project can be found within the FAANG 

data portal under BioSample IDs SAMEA104728877 and SAMEA104728862, as well as 

in the European Nucleotide Archive (ENA) under project accession PRJEB35307.   

The raw fastq files from the mare ChIP-seq project were retrieved, and reads were 

trimmed, mapped, and filtered as previously described. To match the SE libraries of the 

mares, the first reads (R1) from the stallion libraries were processed as SE libraries and 

trimmed, mapped, and filtered in the same manner as the mare libraries. The resulting 

bam files for the mare and stallion ChIP and input samples were converted to bigwig files 
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using deeptools bamCoverage (Ramírez et al., 2016) with default settings. The 

S3V2_IDEAS_ESMP pipeline (https://github.com/guanjue/S3V2_IDEAS_ESMP) was 

employed to normalize libraries for sequencing depth and background noise (Xiang et al., 

2021). The S3V2_IDEAS_ESMP pipeline uses the S3norm (Xiang et al., 2020) 

normalization method to create the signal tracks used for peak calling. The signal tracks 

are generated in a manner similar to MACS2 (Zhang et al., 2008), but the Poisson model 

that adjusts for local background in MACS2 is replaced with a negative binomial model 

to allow for flexibility in the estimates of the mean and variation within the model (Xiang 

et al., 2020). 

The signal tracks generated by the S3V2_IDEAS_ESMP pipeline contain 200 bp 

bins with P-value scores representing the significance of the signal in each bin (Xiang et 

al., 2020). The signal tracks were converted from bigwig format to bedgraph format using 

UCSC’s bigWigToBedGraph package (Kent et al., 2010). Peaks were called from the 

bedgraph files using MACS2 bdgpeakcall (Zhang et al., 2008) for H3K27ac, H3K4me1, 

and H3K4me3 and MACS2 bdgbroadcall (Zhang et al., 2008) for H3K27me3 with a p-

value cutoff of 0.05. Peaks identified as significantly enriched in both biological 

replicates of a given sex for a given mark and tissue were identified using bedtools 

(Quinlan & Hall, 2010). Only the peaks identified in both of the biological replicates 

within each sex were considered in the study.  

Peaks unique to a tissue for a given mark and sex were identified using bedtools 

(Quinlan & Hall, 2010). The overlap of peaks called for the mares and stallions were also 

assessed within a given mark and tissue. Furthermore, the correlations between usable 
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reads, peak number, and unique peak number were evaluated for both the mares and 

stallions using Microsoft Excel (Microsoft Corporation, 2018).   

 

Results  

Sequencing Depth and Read Filtration of Paired-End Stallion Libraries  

On average, each stallion sample had 52 million (M) raw reads for H3K27ac and 

H3K4me1, 55 M for H3K4me3, and 134 M raw reads for H3K27me3. Filtering removed 

PCR duplicates, unmapped, and low-quality reads to create a set of reads used for peak 

calling, termed usable read pairs. The average number of usable reads pairs was 28 M for 

H3K27ac, 32 M for H3K4me1, 30 M for H3K4me3, and 68 M for H3K27me3. Each 

stallion sample had an input sample with an average of 34 M reads used to remove 

background noise during peak calling. Despite generating over 215 M raw read pairs 

between the two H3K27ac_Adipose_AH3 libraries, less than 12 M usable read pairs were 

available for peak calling. Additionally, the number of usable read pairs fell below the 

target of 20 M usable read pairs in the other H3K27ac_Adipose replicate, in one 

H3K4me3_Lamina replicate, and in the Muscle_AH3 replicates for H3K27ac, H3K4me3, 

and the input sample. Six of the H3K27me3 samples fell below the 45 M usable read pair 

target for this mark, yet all samples had at least 43 M usable read pairs (Supplementary 

Table 3.2). 

 

Quantifying Peaks for Paired-End Stallion Libraries  

On average, each tissue had 76,668 H3K27ac peaks, 120,309 H3K4me1 peaks, 

and 33,969 H3K4me3 peaks (Figure 1). Similar peak widths were observed across the 

narrow marks, with average peak widths of 1,360 bp , 1,219 bp, and 1,535 bp for 
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H3K27ac, H3K4me1, and H3K4me3, respectively (Table 3). The number of peaks called 

for H3K27me3 varied considerably based on the software used for peak calling. MACS2 

identified an average of 158,480 H3K27me3 peaks while SICERpy called an average of 

32,315 H3K27me3 peaks across tissues (Figure 1). The average peak width of MACS2 

H3K27me3 peaks was 1,650 bp while the average peak width of SICERpy H3K27me3 

peaks was 18,466 bp (Table 3).   

H3K4me3 had the lowest genome coverage across tissues with an average of 

2.2% coverage. H3K27ac peaks covered an average of 4.1% of the genome across 

tissues, and H3K4me1 covered approximately 6.2% of the genome in each tissue. 

H3K27me3 peaks called by MACS2 covered, on average, 10.4% of the genome, while 

H3K27me3 peaks called by SICERpy covered ~24.3% of the genome in each tissue 

(Supplementary Table 3.3).   

 

Tissue-Unique Peaks in Paired-End Stallion Libraries  

The brain had the largest proportion of unique peaks for H34me1 and H3K27ac. 

Twenty-seven percent of H3K4me1 peaks and 33% of H3K27ac peaks identified in the 

brain were unique to the tissue. Nearly 50% of H3K4me3 peaks in the testis were unique. 

The liver displayed the greatest proportion of unique peaks for H3K27me3 in peaks 

called with both MACS2 and SICERpy. Muscle consistently demonstrated low 

uniqueness across all four marks (Figure 1). The majority of peaks called for each 

histone mark were shared across tissues.   
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Quantifying Peaks for Single-End Stallion Reads  

The first read (R1) of read pairs was used to create mock single-end sequencing in 

the stallion data. The average number of usable reads for the stallion SE analysis for 

H3K27ac, H3K4me1, H3K4me3, and H3K27me3 was 26 M, 30 M, 24 M, and 63 M, 

respectively. Samples that fell below the 20 M usable read target included both H3K27ac 

adipose samples, one H3K27ac muscle sample, one H3K4me3 muscle sample, and one 

H3K4me3 lamina sample. Each of these samples had a usable read counts ranging from 

11.7 M reads to 18.4 M reads. For H3K27me3, four samples fell below the 45 M usable 

read target. This includes an H3K27me3 heart sample with 42 M reads, an H3K27me3 

muscle sample with 41 M reads, and both H3K27me3 testis samples with 41 M reads 

each (Supplementary Table 3.4) 

 

Quantifying Peaks for Single-End Mare Reads  

The number of raw reads generated from the mare samples was generally less 

than that generated for the stallions. The mare samples had approximately 42 M, 49 M, 

41 M, and 88 M raw reads for H3K27ac, H3K4me1, H3K4me3, and H3K27me3, 

respectively. This resulted in average usable read counts of 23 M for H3K27ac, 26 M for 

H3K4me1, 17 M for H3K4me3, and 26 M for H3K27me3. Four H3K27ac, two 

H3K4me1, and eight H3K4me3 samples fell below their 20 M usable read target. All 

mare H3K27me3 samples fell below their 45 M usable read target (Supplementary Table 

3.5).  
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Peaks Called from Normalized, Single-End Stallion Reads  

An average of 66,586 H3K27ac, 48,605 H3K4me1, 26,273 H3K4me3, and 

14,283 H3K27me3 peaks were identified across tissues in the normalized SE stallion 

analysis (Figure 2). The average peak widths of the SE stallion peaks were 711 bp, 455 

bp, 1,048 bp, and 2,337 bp for H3K27ac, H3K4me1, H3K4me3, and H3K27me3, 

respectively (Table 3). No more than 2.6% of the genome was covered by a single 

histone mark in a given tissue. The greatest genome coverage was observed for H3K27ac 

with an average coverage of 1.97%. H3K4me1 peaks covered the smallest proportion of 

the genome with an average coverage of 0.99% (Supplementary Table 3.6). The greatest 

proportion of tissue-specific peaks were identified in the lung (21%) for H3K27me3, the 

brain (43%) for H3K27ac, the liver (44%) for H3K4me1, and the testis (46%) for 

H3K4me3 (Figure 2).   

 

Peaks Called from Normalized, Single-End Mare Reads  

In the mares, an average of 65,643 H3K27ac, 47,490 H3K4me1, 21,055 

H3K4me3, and 6,719 H3K27me3 peaks were called across tissues (Figure 2). The 

average peak width was 682 bp for H3K27ac, 442 bp for H3K4me1, 1015 for H3K4me3, 

and 1,708 bp for H3K27me3 in the mares (Table 3). The H3K27ac peaks had the greatest 

genome coverage for all mare samples with an average coverage of 1.86%. H3K27me3 

peaks covered the smallest portion of the genome with an average of 0.48% 

(Supplementary Table 3.6). In the mares, the liver had the greatest proportion of unique 

peaks in H3K27ac (34%), H3K4me1 (54%), and H3K4me3 (13%). The adipose had the 

greatest number of unique peaks for H3K27me3 (Figure 2).   
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Direct Comparison of Mare and Stallion Regulatory Elements  

Large discrepancies were observed between the number of peaks unique due to 

sex for a given tissue and mark. For the broad mark, H3K27me3, the number of peaks 

identified as unique in the mares never exceeded 24% for a given tissue while in the 

stallion over 57% of peaks were identified as unique in all tissues. The difference in the 

percent of unique peaks identified between the mares and stallions resembled the percent 

difference of total peaks called between the sexes for most tissues. A similar trend was 

observed across the other marks (Supplementary Table 3.7).  

 

Correlation of Usable Reads, Peak Number, and Unique Peak Number  

Positive correlations existed between the number of reads used for peak calling 

and the number of peaks called across all datasets. Correlation coefficients (r) between 

usable reads and total peaks called ranged from 0.17 to 0.83 across marks and datasets. 

The normalization for sequencing depth in the stallion SE dataset resulted in a smaller 

correlation between usable reads and peaks called for H3K27ac, HK27me3, and 

H3K4me1, but not for H3K4me3. Correlations ranging between 0.20 and 0.60 remained 

in the stallion SE dataset even after normalization. Furthermore, out of all three datasets 

(stallion PE, stallion SE, and mare SE), the mare SE dataset that had also been 

normalized for sequencing depth had the greatest correlations between usable reads and 

peaks called for each mark. The number of unique peaks in a tissue was also highly 

correlated with the total peaks called for that tissue. Correlations between total peaks and 

unique peaks ranged from 0.52 to 0.96 across datasets and histone marks (Table 4).   

 



 80 

 

Discussion  

Putative Regulatory Elements in the Stallion Called from Paired-End ChIP-seq  

On average, each tissue in the stallions had over 250,000 peaks corresponding to 

regulatory elements. The most common regulatory elements identified were repressors or 

silencers represented by H3K27me3. This broad peak covered the greatest percentage of 

the genome in the PE dataset with some tissues having repressive marks covering as 

much as 32% of the genome. The enzymes that are involved in trimethylation of H3K27 

often follow a positive feedback loop in which the presence of H3K27me3 increases 

trimethylation of nearby histones (Oksuz et al., 2018; Schmitges et al., 2011). Although 

H3K27me3 is known to create broad peaks, both the number and width of the 

H3K27me3 peaks identified in the study varied considerably based on the peak calling 

software. MACS2 identified nearly five times as many H3K27me3 peaks as SICER, yet 

the average width of the peaks called by SICER was over ten times larger than those 

called by MACS2.   

Similar observations were made by Steinhauser et al. (2016) in which SICER 

called considerably wider peaks than software based on MACS2 peak calling. As a gold 

standard method for peak calling has yet to be established, simulated ChIP-seq datasets 

are required to examine the sensitivity and specificity of peak calling software. On 

simulated datasets, SICER outperformed 10 different peak-calling tools for both 

identifying true peaks and limiting false positives when examining a broad-peaked 

histone modification (Steinhauser et al., 2016). Since SICER was designed to better 

capture broad and diffuse peaks, such as those of H3K27me3, peaks called by SICER 

may better represent the proportion of the genome repressed due to H3K27me3 (Xu et al., 
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2014). MACS2 is most often used to identify narrow peaks suggesting that H3K27me3 

peaks called by MACS2 may represent regions of the genome with the strongest 

H3K27me3 signals. Therefore, which H3K27me3 peak set is superior will likely be 

defined by the application of the dataset. For example, the greater genome coverage of 

peaks called by SICERpy may be more valuable in determining which genes are inactive 

or poised while the sharper H3K27me3 peaks called by MACS2 may be more helpful in 

identifying primary binding sites for the polycomb complexes, PCR1 and PCR2, 

involved in establishing facultative heterochromatin (Oksuz et al., 2018; Schmitges et al., 

2011). Since PCR2 deposits addition trimethylation radiating outward from an initial site 

of H3K27me3, the sharper peaks may represent positions in the genome that are more 

often trimethylated or potential initiator loci for facultative heterochromatin (Oksuz et al., 

2018; Schmitges et al., 2011).   

The number of peaks called for each mark varied by tissue, yet muscle samples 

consistently had fewer peaks across all histone marks in the stallion data. This could be 

due to using a smaller amount of chromatin for library preparation; however, the same 

amount of chromatin was used in the mare analysis published by Kingsely et al. (2020) 

and no reduction in peak number was observed across muscle samples. The muscle 

samples from one of the stallions, AH3, failed to produce the targeted number of usable 

reads for H3K27ac, H3K27me3, H3K4me3, and the input sample, yet in all cases, the 

number of usable reads was within 20% of the target. Even so, moderate positive 

correlations between the number of reads used for peak calling and the number of peaks 

called suggest that additional ChIP and/or sequencing may improve the identification of 

regulatory elements in the muscle.   
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Despite the general increase in peaks called from libraries of greater sequencing 

depth, it is unlikely that the additional peaks called in the more deeply sequenced 

libraries were false positives. The use of input samples to normalize for background noise 

and the requirement of peaks to be enriched in both biological replicates reduces the 

likelihood of insignificant peaks in the final dataset. Rather, the positive correlation 

between the number of usable reads and peaks called suggests that the ideal sequencing 

depth has not been reached in many of the samples. Although most of the stallion 

samples produced enough usable reads to achieve the thresholds established by ENCODE 

(https://www.encodeproject.org/chip-seq/histone/), 20 M for narrow marks and 45 M for 

broad marks, our data suggest that this threshold may not be sufficient in all tissue types. 

Additional research will need to be done to determine at which point additional reads no 

longer provide additional peak calls, which may differ across tissue types. Even if all 

regulatory elements in the assayed tissues were not captured, those that were provide 

valuable information into the genome function of those tissues.   

In addition to a moderate correlation between usable reads and peaks called, a 

strong positive correlation was identified between the number of peaks called in a tissue 

and those identified as unique to that tissue. This correlation makes it difficult to 

determine if these uniquely identified peaks represent biological differences in the 

regulatory elements of tissues. Yet, in the case of the H3K27ac and H3K4me1 brain 

samples, the highest percentage of uniqueness is observed in a tissue with fewer peaks 

than the other samples. Many studies, including our own (see Chapter 2), have identified 

a large number of transcripts that are preferentially expressed in the brain (Ramsköld et 

al., 2009; Uhlén et al., 2015). Therefore, the unique H3K27ac and H3K4me1 peaks 
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identified in the brain may represent some of the regulatory elements involved in 

activating these differentially expressed genes. In H3K4me3, the testis had a strikingly 

large proportion of promoter peaks identified as unique. Although many of these unique 

peaks could be due to the larger number of total peaks called, the testis also has a great 

deal of tissue specific gene expression as demonstrated by us (see Chapter 2) and others 

(Ramsköld et al., 2009). Examining how the tissue-unique peaks correlate with 

transcriptome data could help clarify which regulatory elements are likely to be tissue-

specific and which are likely shared among tissues.   

 

Comparing Peaks Called in Mares and Stallions from Normalized, Single-End Libraries  

Previous work has identified differences in the ability to identify peaks from 

single-end and paired-end sequencing (Zhang et al., 2015). Similar differences can be 

observed between the total number of peaks identified in the PE stallion peaks presented 

in this study and the finding published by Kingsley et al. (2020) corresponding to peaks 

called from single-end sequencing. Therefore, to compare the regulatory elements 

identified in mares and stallions, the stallion data was treated as single-end libraries by 

only examining the first read of each read pair. As correlations were identified between 

the number of reads used for peak calling and the number of peaks called, the 

S3V2_IDEAS_ESMP pipeline (Xiang et al., 2021) was employed to normalize for 

sequencing depth across samples in the mares and stallions. This software employs a 

normalization method that generates scaling factors for each sample that are based on the 

signal intensity in both enriched (peak) regions and background regions shared across 

samples (Xiang et al., 2020). By adjusting the signal enrichment in both background 
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regions and shared peak regions, the impact of variation in the signal-to-noise ratio, as 

defined by the input sample, and the sequencing depth across samples is supposed to be 

minimized. Signal tracks that represent the significance of reads enrichment across 200bp 

windows is generated using a method similar to MACS2; however, the Poisson model 

employed by MACS2 is replaced with a negative binomial model that allows for greater 

flexibility in estimation of the mean and variances used in the model (Xiang et al., 2020). 

Since the S3V2 pipeline identifies signal enrichment in a similar manner to MACS2, 

MACS2 was used to call peaks for both the narrow and broad histone marks after 

normalization.   

Normalization of the SE libraries resulted in a smaller number of peaks being 

called in the mares and stallions compared to the PE stallion data and the original data 

published by Kingsley et al. (2020). Conversely, the number of unique peaks was greater 

in nearly all tissues and marks in the SE normalized data than in the PE stallion data and 

the original mare data. The increase in unique peaks could be attributed to the smaller 

number of peaks identified across tissues and the resulting reduction in genome coverage. 

Additionally, the normalization method forces peaks to fall into 200 bp windows 

requiring peaks to overlap by a minimum of 200 bp to be considered shared. The original 

pipeline used to assess peaks in the mares (Kingsley et al., 2020) and the stallions (PE 

dataset) identifies peaks continuously across the genome and considers peaks shared if 

they display any degree of overlap. Therefore, it is not surprising that the reduced 

genome coverage and strict classification for overlapping peaks in the SE normalized 

data sets resulted in more peaks being identified as unique across tissues.   
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Although the S3V2_IDEAS_ESMP pipeline was chosen to normalize for 

sequencing depth, a clear reduction in the correlation between usable reads and peaks 

called was not observed. In half of the marks, the SE normalized stallion data had a 

smaller correlation between reads and peaks than in the PE stallion data. Interestingly, the 

highest correlations between usable reads and peaks called was observed in the mare data 

normalized for sequencing depth. These finding suggests that additional library 

preparation may be need in the mares’ samples, but more so, that the methods used to 

correct for sequencing depth were not adequate. Due to variation in sequencing depth and 

total peaks called between the mares and stallions, direct comparisons between peaks 

called across sexes did not provide meaningful insight into the role of sex on the presence 

of regulatory elements.   

The annotation of regulatory elements has proven beneficial in characterizing the 

function of the genome and associating genomic variation with disease in humans (The 

ENCODE Project Consortium, 2012; Gupta et al., 2017; Warburton et al., 2016; Vinagre 

et al., 2013). In this study, hundreds of thousands of putative regulatory element were 

identified across tissues in the horse providing valuable information into the function of 

the equine genome. The data from the previously published ChIP-seq analyses in the 

mares has already aided in the identification of variants associated with distichiasis and 

the characterization of centromere sliding in horses (Kingsley et al., 2020; Hisey et al., 

2020; Cappelletti et al., 2022). The ChIP-seq analyses in the stallion provide additional 

support for the annotation of regulatory elements present in the tissues of adult horses. 

Although peaks unique due to sex or tissue type could not be clearly defined, these 

analyses demonstrate some of the shortcomings in the current methodology used for 
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identifying regulatory elements. As previously suggested, sequencing depth, sequencing 

method, and peak calling software have large impacts on the outcome of ChIP-seq studies 

(Steinhauser et al., 2016; Zhang et al., 2015; Xiang et al., 2020). These artifacts of data 

processing impair the ability to identify biological differences across datasets. While 

much progress has been made in our understanding of genome function, technological 

advancements will be necessary for comparative studies into genome regulation.    
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Table 3.1. Parameters for ChIP Extraction and Shearing  

  Adipose  Brain  Heart  Lamina  Liver  Lung  Muscle  Testis  

Starting Tissue 

(mg)  

208  109  103  95  55  53  106  105  

Homogenization 

Time (min)  

8  5  5  5  5  5  5  5  

Fixation Time 

(min)  

10  9  9  9  9  9  9  12  

Shearing Volume 

(uL)  

400  1500  1800  1800  1500  1500  1500  1300  

Shearing Cycles  5 x 8 

cycles1  

10  10  10  8  10  10  8  

Chromatin per IP 

(ng)  

400  700  800  900  1500  1500  280  1500  

1Chromatin from adipose was sheared for five times for 8 cycles  

 
 

 

 

Table 3.2. Software Parameters for ChIP-seq Peak Calling in MACS2 and 

SICERpy  

Software  Parameter  H3K4me1  H3K4me3  H3K27ac  H3K27me3  

MACS2  

Size  
Narrow/  

Intermediate  
Narrow  Narrow  Broad  

Size Flag  none  none  none  ---broad  

FDR1  0.05  0.01  0.01  0.1  

Genome 

size  
2,409,159,894  2,409,159,894  2,409,159,894  2,409,159,894  

SICERpy2  

Gap Size  n/a  n/a  n/a  4  

Window 

Size  
n/a  n/a  n/a  200  

Genome 

Fraction  
n/a  n/a  n/a  0.973  

1The FDR cutoff dictates both peak number and peak width in MACS2, so histone marks 

with broader peaks have looser FDR cutoffs (https://github.com/hbctraining/Intro-to-

ChIPseq). H3K4me1 was at one point considered to have broad peaks but has since been 

determined to have an intermediate peak width (Kingsley et al., 2020).   
2SICERpy was only used to call peaks for the broad mark, H3K27me3  
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Figure 3.1. Tissue-specific peaks by histone mark. Each graph represents the peaks 

detected in tissues for the corresponding marks: H3K4me1, H3K4me3, H3K27ac, and 

H3K27me3. The gray area represents peaks detected in two or more tissues, while the 

colored area represents peaks unique to the respective tissue. The percentages correspond 

to the percent of peaks shared and unique, respectively. *Tissue did not meet targeted 

usable read count  
 

Table 3.3. Average Peak Width of Peaks Called from Paired-End and Single-End 

Libraries  

Average Peak Width (bp)   

Analysis  H3K27ac  H3K4me1  H3K4me3  H3K27me3-M  H3K27me3-S*  

Stallion PE  1360  1219  1535  1650  18466  

Stallion SE  711  455  1048  2337  -  

Mare SE  682  443  1015  1708  -  

* H3K27me3-M represents peaks called by MACS2 while H3K27me3-S represent peaks 

called by SICERpy. SICERpy was only used to call peaks for the PE analysis. 

97% 91%
98% 96%

79% 98%

99%
95%

3%

9%

2%
4%

21%
2%

1%

5%

0

10

20

30

40

50

Adipose Brain Heart Lamina Liver Lung Muscle Testis

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K27me3: SICERpy
Shared

Unique

89%
87% 91%

81% 63%

89%

98% 88%

11%

13%
9%

19%

37%
11%

2%

12%

0
25
50
75

100
125
150
175
200
225
250
275

Adipose Brain Heart Lamina Liver Lung Muscle Testis

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K27me3: MACS2
Shared
Unique



 90 

 

 

82%

69%

82%
80% 56%

76%

86%

86%

18%

31%

18%

20%

44%
24%

14%

14%

0

10

20

30

40

50

60

70

80

Adipose Brain Heart Lamina Liver Lung Muscle Testis

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K4me1 SE Stallion Peaks Shared

Unique

84%

89%

74%
73% 46%

78%

86%
81%

16%

11%

26%

27%

54%
22%

14%

19%

0

10

20

30

40

50

60

70

80

Adipose Brain Heart Lamina Liver Lung Muscle Ovary

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K4me1 SE Mare Peaks Shared

Unique

87% 57%

70%
66% 66% 78%

75% 78%

13%
43%

30%
34% 34% 22%

25%
22%

0

10

20

30

40

50

60

70

80

90

Adipose Brain Heart Lamina Liver Lung Muscle Testis

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K27ac SE Stallion Peaks Shared

Unique

75%
65% 75% 69% 66% 75% 71% 78%

25%
35% 25%

31%
34%

25% 29% 22%

0

10

20

30

40

50

60

70

80

90

Adipose Brain Heart Lamina Liver Lung Muscle Ovary

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K27ac SE Mare Peaks Shared

Unique



 91 

 

 

87%

94%
92% 82% 89%

79%
89% 86%

13%

6%

8% 18%
11%

21%
11%

14%

0

5

10

15

20

25

Adipose Brain Heart Lamina Liver Lung Muscle Testis

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K27me3 SE Stallion Peaks Shared

Unique

91% 90% 96% 90% 87% 89% 92% 90%

9% 10% 4%
10%

13% 11% 8% 10%

0

10

20

30

40

Adipose Brain Heart Lamina Liver Lung Muscle Ovary

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K4me3 SE Mare Peaks Shared

Unique

84%
88% 90% 95% 80% 90% 93% 54%

16% 12% 10%
5% 20%

10%
7%

46%

0

10

20

30

40

Adipose Brain Heart Lamina Liver Lung Muscle Testis

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K4me3 SE Stallion Peaks Shared Unique

79%
82% 92% 87% 85% 87% 81% 83%

21%
18% 8%

13% 15% 13%
19%

17%

0

5

10

15

20

25

Adipose Brain Heart Lamina Liver Lung Muscle Ovary

N
u
m

b
er

 o
f 

P
ea

k
s 

(T
h
o
u
sa

n
d
s)

H3K27me3 SE Mare Peaks Shared

Unique



 92 

 

Figure 3.2. Single-End, Normalized Peaks in Tissues from Stallions and Mares  

The histone mark and sex are in the title of each graph. Bar heights denote the total peaks 

called for each tissue. The gray portion of the bar represent peaks shared amongst at least 

two tissues for given mark and sex. The colored portion of the bar represents peaks 

unique to a tissue for a given mark and sex. The percentages present within the gray 

portion and within or above the colored portion of the bars denote the percentage of 

peaks shared and unique, respectively.   

 

Table 3.4 Correlations of Peak Number with Usable Reads and Unique Peak 

Number  

Correlation of Usable Reads1 and Total Peak Number  

Analysis  H3K27ac  H3K27me3  H3K4me1  H3K4me3  

Stallion PE  0.62  0.71  0.17  0.40  

Stallion SE  0.49  0.54  0.20  0.60  

Mare SE  0.63  0.70  0.83  0.80  

Correlation of Total Peak Number and Unique Peak Number  

Analysis  H3K27ac  H3K27me3  H3K4me1  H3K4me3  

Stallion PE  0.78  0.80  0.52  0.92  

Stallion SE  0.74  0.93  0.81  0.96  

Mare SE  0.71  0.90  0.86  0.67  
1Usable reads were calculated as the average number reads used for peak calling across 

biological replicates for a given dataset.   

 

Supplementary Table 3.1. Chromatin and Antibody Amounts Used for ChIP of 

Stallion Tissues 

Tissue 
Chromatin 

IP (ng) 

Antibody Amount (µg) 

H3K27ac H3K4me1 H3K4me3 H3K27me3 

Adipose 200 1 0.5 0.5 1 

Brain 700 0.5 0.5 0.5 1 

Heart 800 0.5 0.5 0.5 1 

Lamina 900 1 0.5 0.5 1 

Liver 1500 2 1 1 2 

Lung 1500 2 1 1 1 

Muscle 280 1 0.5 0.5 0.5 

Testis 1500 2 1 1 2 
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Supplementary Table 3.3. Percentage of the Genome Covered by Stallion Peaks 

Called from Paired-End (PE) Sequencing Reads 

Genome Coverage (%) of Stallion PE Peaks 

 Tissue H3K27ac H3K4me1 H3K4me3 H3K27me3- M H3K27me3-S 

Adipose 3.5 8.4 2.8 13.9 27.0 

Brain 4.2 5.3 1.9 4.5 20.4 

Heart 4.9 7.6 2.0 12.0 26.2 

Lamina 4.1 5.7 1.6 11.3 24.0 

Liver 4.9 8.8 2.1 17.4 31.9 

Lung 4.4 7.9 2.0 11.2 24.4 

Muscle 3.5 3.8 1.7 5.2 21.9 

Testis 3.4 2.3 3.3 7.9 18.8 

Average 4.1 6.2 2.2 10.4 24.3 

*H3K27me3-M refers to peaks called by MACS2 and H3K27me3-S corresponds to 

peaks called by SICER 

 

 

 

H3K27ac H3K4me1 H3K4me3 H3K27me3 Input

Adipose_AH3 11,726,267  42,727,844   26,161,927  57,544,729   31,599,110  

Adipose_AH4 18,440,913  22,068,341   26,765,709  71,542,011   29,887,369  

Brain_AH3 26,978,372  37,408,812   25,181,921  47,348,607   28,706,086  

Brain_AH4 34,781,010  32,090,313   26,573,113  65,584,580   27,875,383  

Heart_AH3 29,990,876  29,788,367   26,198,176  42,563,147   29,521,680  

Heart_AH4 26,751,589  34,778,776   25,018,901  60,914,733   39,119,625  

Lamina_AH3 22,446,342  22,657,405   21,539,456  54,036,862   30,634,716  

Lamina_AH4 22,885,088  28,326,171   14,646,913  98,780,005   35,767,290  

Liver_AH3 32,957,464  29,199,086   29,167,280  62,980,452   41,238,530  

Liver_AH4 23,030,281  27,017,793   22,634,290  94,798,294   34,684,694  

Lung_AH3 33,349,291  36,151,847   25,697,164  61,807,452   33,935,456  

Lung_AH4 24,427,976  31,255,694   25,972,450  79,021,225   29,726,014  

Muscle_AH3 15,369,015  28,618,869   16,387,282  40,970,497   17,174,306  

Muscle_AH4 31,519,488  32,612,832   25,991,828  92,652,752   28,486,147  

Testis_AH3 39,807,561  28,008,508   24,624,383  41,072,942   33,884,571  

Testis_AH4 29,894,317  26,283,274   29,574,827  41,757,310   34,345,132  

Tissue_Replicate
Usable Reads

Supplementary Table 3.4. The Number of Raw Reads (SE) Generated and Usable 

Read Remaining After Filtering for Stallion SE Libraries

* The bolded cells represent samples that did not reach the usable read pair target of 45 M for 

H3K27me3 and 20 M for the remaining marks and input samples.
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Supplementary Table 3.6. Percentage of the Genome Covered by Single-End, 

Normalized Peaks in Stallions and Mares 

 

Genome Coverage (%) of Stallion SE Peaks 

Tissues H3K27ac H3K4me1 H3K4me3 H3K27me3-M 

Adipose 1.24 1.22 1.24 1.55 

Brain 2.31 0.58 1.03 0.78 

Heart 2.55 1.17 1.13 1.29 

Lamina 2.12 0.81 0.97 1.62 

Liver 2.22 1.83 1.19 1.35 

Lung 2.01 1.57 1.15 1.90 

Muscle 1.63 0.56 0.97 1.40 

Testis 1.70 0.17 1.43 1.21 

Average 1.97 0.99 1.14 1.39 

 

Genome Coverage (%) of Mare SE Peaks 

Tissues H3K27ac H3K4me1 H3K4me3 H3K27me3-M 

Adipose 2.01 0.85 0.99 0.68 

Brain 1.84 0.16 0.87 0.46 

Heart 1.71 1.42 0.76 0.26 

Lamina 1.60 0.92 0.92 0.34 

Liver 2.13 1.70 0.84 0.46 

Lung 1.94 1.17 0.98 0.50 

Muscle 1.84 0.44 0.75 0.57 

Ovary 1.79 0.80 0.99 0.57 

Average 1.86 0.93 0.89 0.48 

* All peaks were called with MACS2  
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Supplementary Table 3.7. Peaks Unique to Mares and Stallions within Tissues and 

Differences in the Percentage of Unique Peaks and Total Peaks Between Sexes 

 

H3K27me3 

Tissue Sex 
Combined 

Peaks 
% Unique 

Difference in 

Percent Unique 

Difference in 

Total Peak (%) 

Adipose 
Mare 8,019 11.5 

53.1 47.1 
Stallion 15,172 64.6 

Brain 
Mare 5,195 23.5 

34.3 36.1 
Stallion 8,127 57.8 

Heart 
Mare 4,892 6.5 

69.3 62.3 
Stallion 12,997 75.8 

Lamina 
Mare 5,962 6.1 

72.2 64.0 
Stallion 16,539 78.2 

Liver 
Mare 7,254 8.1 

58.4 50.4 
Stallion 14,638 66.5 

Lung 
Mare 6,758 4.4 

71.8 65.9 
Stallion 19,818 76.1 

Muscle 
Mare 8,429 13.2 

48.0 40.0 
Stallion 14,041 61.2 

Ovary Mare 7,245 21.8 
41.6 44.0 

Testis Stallion 12,932 63.4 

H3K27ac 

Tissue Sex 
Combined 

Peaks 
% Unique 

Difference in 

Percent Unique 

Difference in 

Total Peak (%) 

Adipose 
Mare 69,314 58.4 

31.7 32.2 
Stallion 46,994 26.8 

Brain 
Mare 63,270 40.0 

10.3 2.6 
Stallion 61,631 50.3 

Heart 
Mare 58,909 19.6 

32.5 27.3 
Stallion 81,127 52.2 

Lamina 
Mare 65,521 28.6 

17.8 12.3 
Stallion 74,724 46.4 

Liver 
Mare 76,104 36.3 

1.6 2.8 
Stallion 73,938 38.0 

Lung 
Mare 66,259 38.4 

4.0 6.2 
Stallion 70,646 42.4 

Muscle 
Mare 63,693 42.6 

9.4 7.4 
Stallion 59,008 33.3 

Ovary Mare 62,078 52.8 
2.6 3.9 

Testis Stallion 64,616 50.2 
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H3K4me1 

Tissue Sex 
Combined 

Peaks 
% Unique 

Difference in 

Percent Unique 

Difference in 

Total Peak (%) 

Adipose 
Mare 45,184 38.1 

19.2 21.1 
Stallion 57,244 57.3 

Brain 
Mare 14,417 50.7 

32.2 57.4 
Stallion 33,856 82.9 

Heart 
Mare 61,475 47.2 

11.4 8.2 
Stallion 56,432 35.8 

Lamina 
Mare 46,763 49.1 

4.5 1.0 
Stallion 47,219 44.6 

Liver 
Mare 77,898 36.2 

1.5 3.7 
Stallion 75,012 37.7 

Lung 
Mare 58,595 32.8 

17.1 17.0 
Stallion 70,620 49.8 

Muscle 
Mare 29,602 50.5 

9.3 12.6 
Stallion 33,876 59.8 

Ovary Mare 45,988 87.6 
32.5 68.3 

Testis Stallion 14,583 55.1 

H3K4me3 

Tissue Sex 
Combined 

Peaks 
% Unique 

Difference in 

Percent Unique 

Difference in 

Total Peak (%) 

Adipose 
Mare 20,925 9.5 

27.3 29.3 
Stallion 29,614 36.8 

Brain 
Mare 20,545 12.4 

13.1 12.2 
Stallion 23,399 25.5 

Heart 
Mare 19,114 2.7 

31.2 24.1 
Stallion 25,174 33.9 

Lamina 
Mare 22,677 14.5 

1.4 0.0 
Stallion 21,902 15.9 

Liver 
Mare 20,255 4.3 

30.6 21.4 
Stallion 25,771 34.9 

Lung 
Mare 21,958 9.9 

15.8 12.7 
Stallion 25,149 25.7 

Muscle 
Mare 20,427 7.8 

18.7 7.0 
Stallion 21,964 26.5 

Ovary Mare 22,540 21.0 
33.7 41.2 

Testis Stallion 38,810 54.7 

* Difference in Total Peak (%) was calculated as the difference in combined peaks 

divided by the larger of the two combined peak numbers. 
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CHAPTER 4: WHOLE-GENOME SEQUENCING TO INVESTIGATE A POSSIBLE 

GENETIC BASIS OF PEROSOMUS ELUMBIS IN A CALF RESULTING FROM A 

CONSANGUINEOUS MATING 

 

Barber, A., Helms, A., Thompson, R., Whitlock, B., Steffen, D., & Petersen, J. (2021) Whole-

genome sequencing to investigate a possible genetic basis of perosomus elumbis in a calf 

resulting from a consanguineous mating. Translational Animal Science, 5(Supplement_S1), S1–

S5. 

 

Introduction 

 Perosomus elumbis (PE) is a lethal, congenital defect marked by aplasia of the 

lumbar and sacral spine and spinal cord. Contracture of the hind limbs is also commonly 

observed in affected individuals. PE has been reported in many domestic species, with 

numerous case reports in Holstein cattle in the past two decades (Jones, 1999; Karakaya 

et al., 2013; Agerholm et al., 2014) The etiology of PE remains unknown. In one instance 

a stillborn Holstein calf with PE was found to be infected with Bovine Viral Diarrhea 

Virus (BVDV) (Karakaya et al., 2013), and thus it is possible PE may be due to genetic 

and/or environmental factors. Recently, a stillborn Angus calf was diagnosed with PE 

following an accidental mother-son mating (Helms et al., 2020). BVDV was not detected 

in the affected Angus calf, dam, nor sire. Due to the relationship between the sire and 

dam it was hypothesized that a novel, recessive genetic variant may be responsible for the 

development of PE in this Angus calf. The objective of this study was to use whole-

genome sequencing to address this hypothesis and identify candidate variants for PE in 

this calf.  
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Materials and Methods 

IACUC Statement 

All procedures and protocols were performed following the University of 

Nebraska-Lincoln’s Institutional Animal Care and Use Committee guidelines. 

 

Sample Collection and DNA Isolation 

 Case presentation and diagnosis are reported in Helms et al. (2020). Tissue 

samples were collected from the affected calf following necropsy at the University of 

Tennessee Veterinary Medical Center. Blood samples were also taken from the dam, sire, 

and ten paternal half-siblings; tissue and blood were sent to the University of Nebraska-

Lincoln. DNA was isolated from tissue and blood utilizing Qiagen Gentra Puregene Kits 

(Gentra Systems, Minneapolis, MN). Paternity was verified for all calves using the 

commercially available SeekSire parentage assay at Neogen GeneSeek (Lincoln, NE). 

 

Whole Genome Sequencing and Variant Filtering 

 DNA collected from the affected calf, the dam, the sire, and three paternal half-

siblings was sent to Admera Health (South Plainfield, NJ) for KAPA library prep and 

150bp paired-end sequencing on an Illumina NovaSeq to a targeted sequencing depth of 

12X. After trimming adapter sequences and poor quality bases (TrimGalore; Wu et al., 

2011) sequence reads from the calf, dam, sire, and half siblings along with 27 other 

Angus and Angus-cross animals were mapped to the UOA_Angus_1 reference genome 

with BWA-MEM (Li, 2013).  
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Variants were called using Freebayes (Garrison and Marth, 2012) and annotated 

using SnpEff (Cingolani et al., 2012). SnpSift was also used to filter variants in which the 

affected calf was homozygous and both the dam and sire were heterozygous. With the 

assumption that PE is rare in Angus cattle, variants were further pruned using VCFtools 

(Danecek et al., 2011) to select only variants in which the alternative allele count was 

between four and seven to account for a homozygous calf, two heterozygous parents, and 

allow for the half-siblings to be heterozygous. Variants were further reduced to include 

only those predicted to have a moderate to high impact. Variants fitting the criteria were 

further investigated. Variants were remapped to the ARS-UCD1.2 reference genome 

using NCBI’s Remap tool to determine if the variants had been previously reported.  

 

PCR and Sanger Sequencing 

 Primers for regions of interest were developed using sequence from the 

UOA_Angus_1 reference genome. Oligonucleotides were designed using IDT’s 

PrimerQuest Tool. PCR products were amplified using an annealing temperature ranging 

between 54-58 C and visualized on 1.2% agarose gels. PCR products were sent to ACGT 

Inc. (Wheeling, IL) for Sanger sequencing. Sequence results were visualized using Gene 

Code Corporation’s Sequencher.  

 

Sequence Read Archive Search  

A search of NCBI’s Sequence Read Archive (SRA) was conducted using a variant 

Search pipeline (https://github.com/SichongP/SRA_variant_search); NCBI’s Remap 

function was used to identify coordinates across genome assemblies. The frameshift 
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variant was not assessed in the SRA search due to difficulty interpreting indels using this 

method.  

 

Results 

Candidate Variant Filtering 

 Variant calling across the 31 Angus and Angus cross individuals, including the 

affected calf, the dam, the sire, and three half siblings, identified 21,223,927 variants 

across the genome. Using SnpSift to filter for variants in which the calf was homozygous 

for the variant and the dam and sire were heterozygous yielded 506,813 variants. 

Removing variants at high frequency in the data set reduced candidate variants to 14,011.  

 Filtering by predicted impact as annotated in SnpEff resulted in 77 variants with a 

predicted moderate impact and 5 with predicted high impact. Predicted high impact 

variants were excluded from further analysis if they were previously annotated and a 

carrier was found in the original 39 screened animals or if the variant was found in the 

homozygous state in any individual(s) other than the affected calf. After removing 

variants fitting those criteria, the final candidate variant list consisted of 18 missense 

variants and one frameshift resulting from a one base pair deletion. Three of the 19 

candidate variants were not previously annotated on Ensembl (Table 4.1). The frameshift 

variant was in exon 4 of protein tyrosine kinase 7 (PTK7) and is predicted to result in a 

premature stop codon prior to the end exon. Due to its putative deleterious impact on 

gene function, this variant was further studied as a candidate causal variant.  
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Sanger Sequencing Verification of Frameshift Mutation in PTK7 and SRA results 

 Sanger sequencing confirmed the presence of a homozygous, one base pair 

deletion in the affected calf. Additionally, six of 10 half-siblings were heterozygous for 

the deletion (Figure 4.1).  

 The search of the Sequence Read Archive (SRA) resulted in genotypes of 883 

additional cattle including 96 Angus and Angus cross. Through this analysis, individuals 

homozygous for variants were identified at 15 of the 18 missense loci; the indel in PTK7 

was not able to be queried.  

 The three remaining missense variants in KDM1A, C2H2orf66, and ZSCAN26, 

and one frameshift variant in PTK7 remained as candidate causal variants (Table 4.1). 

From the SRA data, 1 Holstein was heterozygous for the KDM1A variant; 2 Tyrolean 

Grey cattle, 1 Chianina, and 1 Romagnola were heterozygous for the C2H2orf66 variant; 

and 2 Angus, 1 Chi-Angus cross, and 1 Holstein were heterozygous for the ZSCAN26 

variant.  

 

Discussion  

 In this study, missense mutations in KDM1A, C2H2orf66, and ZSCAN26, as well 

as a frameshift mutation in PTK7 could not be ruled out as causative of PE in this Angus 

calf. PE is a lethal congenital defect that results in aplasia of the lumbar spine and 

frequent contracture of the hind limbs. Although relatively rare in Angus cattle, numerous 

cases of PE have been reported in Holstein cattle. The cause of PE has yet to be 

determined with both environment and genetics suspected to play a role. In this case, the 
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affected Angus calf was the result of a consanguineous mating suggesting that a recessive 

mutation may be the cause.  

 Of the four variants remaining after filtering out those that did not fit the 

hypothesized mode of inheritance, and those at high frequency in other cattle, the 

missense mutation in KDM1A and the frameshift mutation in PTK7 are strong functional 

candidates due to their roles in early development. KDM1A is involved in epigenetic 

regulation of embryonic gene expression (Ancelin et al., 2016), while PTK7 functions in 

the planar cell polarity (PCP) pathway that regulates cell movement and migration 

(Berger et al., 2017).  

KDM1A is an histone 3 lysine 4 (H3K4) lysine demethylase that functions to remove 

enhancer marks from histones. These epigenetic marks influence early development in 

part by regulating the spaciotemporal activation of genes which orchestrates proper 

embryonic development (Ancelin et al., 2016). Dysregulation of KDM1A can result in 

developmental arrest and altered patterns of gene expression in the developing embryos 

(Ancelin et al., 2016).  

PTK7, a member of the tyrosine kinase family, plays a role in the planar cell polarity 

(PCP) pathway. This pathway establishes polarity in cells and regulates cell movement 

and migration in embryonic development (Berger et al., 2017). This gene is of particular 

interest as it has been implicated in congenital scoliosis in zebrafish (Hayes et al., 2014) 

demonstrating a clear role in the development of the fetal spine. Additionally, another 

gene with a paralog in this pathway, VANLG1, has been implicated in an analogous 

human disorder called caudal regression syndrome (CRS) (Kibar et al., 2007; Porsch et 

al., 2016). Furthermore, VANGL2, which directly interacts with PTK7 in the PCP 
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pathway has also been implicated in neural tube defects (Kibar et al, 2011). These studies 

demonstrate a clear role of PTK7 and the PCP pathway in spinal development making a 

frameshift mutation in PTK7 a strong functional candidate for PE in cattle.  

Although PTK7 provides a strong functional candidate for PE, this study is limited 

due to the availability of a single affected calf. This study should be supplemented with 

additional affected calves as cases are reported. Furthermore, as new sequence reads 

become available in the SRA database, additional animals can be screened for the 

associated variants found in this study. Due to the rarity of this condition, this study could 

be extended to consider affected calves from other breeds.  

 

Implications  

The accumulation of lethal recessive variation within breeds negatively impacts 

production and breed health. With the growing use of artificial insemination (AI), prolific 

carrier bulls can rapidly increase the allele frequency of recessive disorders within the 

breed. Using whole-genome sequencing, disease-associated and disease-causing variation 

can be identified. Although a causative variant was not validated in this study, in the case 

that would occur, genetic testing could allow for informed matings to eliminate the 

production of affected individuals.  
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Table 4.1. Candidate variants for perosomus elumbis. Italicized rows indicate that no 

individuals were homozygous for the variant in the Sequence Reads Archive (SRA) 

search. Bolded rows indicate variants with a predicted high impact on gene function from 

SnpEff (Cingolani et al., 2012). Positions labelled UOAcorrespon d to the 

UOA_Angus_1 reference genome, and positions labelled ARS correspond to the 

ARS_UCD1.2 reference genome. Previously annotated variants are noted under Variant 

ID. Type represents the predicted position/outcome observed in the UOA_Angus_1 

reference genome (top) and the ARS_UCD1.2 reference genome (bottom). 

Chr Position Gene Reference Variant Type Variant 

ID 

2 

UOA: 

 6567555 
KDM1A C T 

Missense Novel 

ARS: 
129835952 

Missense Novel 

2 

UOA: 

50768895 
C2H2orf66 T C 

Missense - 

ARS: 

85400473 
Intergenic 

rs71994

4515 

4 

UOA:  

6313462 
ASIC3 C T 

Missense -  

ARS: 

113625394 
Missense 

rs46645

5595 

15 

UOA: 
63709344 

QSER1 A G 

Missense -  

ARS: 

63626227 
Intronic 

rs38072

3979 

15 

UOA: 

63709425 
QSER1 CA GG 

Missense -  

ARS: 

63626308 
Intronic 

rs79940

5617 

17 

UOA: 

51162578 
NCOR2 C T 

Missense -  

ARS: 
51449160 

Missense 
rs47293

1263 

17 

UOA: 

51555593 
DNAH10 T C 

Missense - 

ARS: 

51850428 
Missense 

rs13608

8999 

https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=2:85400473-85400473;source=dbSNP;v=rs719944515;vdb=variation;vf=35103616
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=2:85400473-85400473;source=dbSNP;v=rs719944515;vdb=variation;vf=35103616
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=4:113625394-113625394;source=dbSNP;v=rs466455595;vdb=variation;vf=32805902
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=4:113625394-113625394;source=dbSNP;v=rs466455595;vdb=variation;vf=32805902
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=15:63626227-63626227;source=dbSNP;v=rs380723979;vdb=variation;vf=70156409
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=15:63626227-63626227;source=dbSNP;v=rs380723979;vdb=variation;vf=70156409
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=15:63626308-63626308;source=dbSNP;v=rs799405617;vdb=variation;vf=70156410
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=15:63626308-63626308;source=dbSNP;v=rs799405617;vdb=variation;vf=70156410
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=17:51449160-51449160;source=dbSNP;v=rs472931263;vdb=variation;vf=29526377
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=17:51449160-51449160;source=dbSNP;v=rs472931263;vdb=variation;vf=29526377
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=17:51850428-51850428;source=dbSNP;v=rs136088999;vdb=variation;vf=29541961
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=17:51850428-51850428;source=dbSNP;v=rs136088999;vdb=variation;vf=29541961
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22 

UOA: 

59081586 
EFCC1 G T 

Missense Novel 

ARS: 

58980413 
Missense Novel 

23 

UOA: 

22015758 
ZNF165 G A 

Missense -  

ARS: 

30587728 
Missense 

rs52664

9482 

23 

UOA: 

22140420 
ZSCAN9 C T 

Missense - 

ARS: 

30463098 
Downstream 

rs46383

5998 

23 

UOA: 

22181166 
ZSCAN26 C A 

Missense -  

ARS: 

30422277 
Missense 

rs52198

6257 

23 

UOA: 

22192722 
PGBD1 G A 

Missense -  

ARS: 

30410722 
Missense 

rs43213

9616 

23 

UOA: 

22192789 
PGBD1 C T 

Missense -  

ARS: 
30410655 

Missense 
rs44983

2006 

23 

UOA: 

23246829 
OR1O9 C T 

Missense -  

ARS: 

29295898 
CNV 

nsv835

503  

23 

UOA: 

23452894 
OR2H1D A C 

Missense -  

ARS: 

29099147 
Downstream/CNV 

rs80018

1923  

23 

UOA: 

35361113 
PTK7 CG  G  

Frameshift Novel 

ARS: 

16744942 
Frameshift Novel 

28 

UOA: 

25626059 
TSPAN15 A G 
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https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=23:30410722-30410722;source=dbSNP;v=rs432139616;vdb=variation;vf=65181732
https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=23:30410722-30410722;source=dbSNP;v=rs432139616;vdb=variation;vf=65181732
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https://uswest.ensembl.org/Bos_taurus/Variation/Explore?db=core;r=23:30410655-30410655;source=dbSNP;v=rs449832006;vdb=variation;vf=65181722
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Figure 4.1. Sanger sequencing confirms the presence of a one base pair deletion in 

PTK7. A) Sequence data of exon 4 of PTK7 from the affected calf, the dam, and two half 

siblings depicts the presence of a deletion for which the affected calf was homozygous, 

the dam and half-sibling heterozygous, and second half-sibling wildtype. B) Genotypes 

of the affected calf, the dam, the sire, and ten half-siblings at the candidate locus in 

PTK7. A dash (-) indicates the 1bp deletion. 

 

 

 

 

 

 

Individual Genotype  

Affected Calf -/- 

Dam C/- 

Sire C/- 

Half Sibling 1  C/- 

Half Sibling 2  C/C 

Half Sibling 3 C/- 

Half Sibling 4 C/- 

Half Sibling 5  C/- 

Half Sibling 6  C/- 

Half Sibling 7 C/C 

Half Sibling 8  C/C 

Half Sibling 9 C/C 

Half Sibling 10  C/- 

B) A) 
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