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ABSTRACT
Distance sampling is a popular statistical method to estimate the density of wild animal populations. Con-
ventional distance sampling represents animals as fixed points in space that are detected with an unknown
probability that depends on the distance between the observer and the animal. Animal movement can
cause substantial bias in density estimation. Methods to correct for responsive animal movement exist,
but none account for nonresponsive movement independent of the observer. Here, an explicit animal
movement model is incorporated into distance sampling, combining distance sampling survey data with
animal telemetry data. Detection probability depends on the entire unobserved path the animal travels.
The intractable integration over all possible animal paths is approximated by a hidden Markov model. A
simulation study shows the method to be negligibly biased (<5%) in scenarios where conventional distance
sampling overestimates abundance by up to 100%. The method is applied to line transect surveys (1999–
2006) of spotted dolphins (Stenella attenuata) in the eastern tropical Pacific where abundance is shown to
be positively biased by 21% on average, which can have substantial impact on the population dynamics
estimated from these abundance estimates and on the choice of statistical methodology applied to future
surveys. Supplementary materials for this article, including a standardized description of the materials
available for reproducing the work, are available as an online supplement.
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1. Introduction

Distance sampling is a statistical method used to estimate the
population density of wild animals (Buckland et al. 2015). It is
applied to a wide variety of taxa, for example, birds (Newson
et al. 2008), cetaceans (Hammond et al. 2013), and mammals
(Aars et al. 2009). Many conservation and management studies
depend on the accuracy of distance sampling inference; yet, the
statistical method relies on a key assumption that is substantially
violated in some applications.

Distance sampling is a snapshot method (Buckland et al.
2005): the survey is assumed to occur instantaneously. Animals
are idealized as static points that are detected with unknown
probability by an observer, who stands at a point or traverses a
line within the study region. Surveyed transects, lines or points,
are placed according to a randomized design such that animals
are distributed independently of the observer. Furthermore, it is
assumed animals are distributed independently of each other.
For line transects, animals are distributed uniformly around
the line, in point transects they follow a triangular distribution.
Given this, the decline in the number of detections as distance
from the observer increases is solely due to a change in the
probability of detection; thus, the recorded locations are used
to estimate this probability and, ultimately, animal density. In
short, distance sampling is a thinned point process model with
unknown thinning probability (Hedley and Buckland 2004;
Yuan et al. 2017). The assumption that the survey is a temporal
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snapshot of the animal population is central to distance sam-
pling theory; the method, however, is applied to surveys of
mobile animal populations where transects are surveyed over
a time interval within which animals may have moved a signif-
icant distance.

Animal movement can be in response to an observer’s pres-
ence (Turnock and Quinn 1991), attraction or avoidance, or
can be of the animal’s own accord, independent of the observer.
Responsive movement is a well-known problem, and specific
survey techniques, searching further along line transects to
see animals before they respond or remaining at point tran-
sects long enough for animals to resume normal behavior,
are recommended to mitigate bias in density estimates (Buck-
land et al. 2005). Furthermore, double-observer methods exist
that can account for responsive movement (Borchers, Zuc-
chini, and Fewster 1998; Palka and Hammond 2001; Conn and
Alisauskas 2018). In comparison, movement independent of
the observer has received little attention. For point transects, a
snapshot method is recommended to reduce bias in estimates
(Buckland 2006); however, many surveys do not employ this
method, and it does not suit technological advances where
observation technology may survey a point for a considerable
time. Splitting continuous surveying periods at points into dis-
crete snapshots involves subjective judgments that can affect
the inferences obtained (Howe et al. 2017). Alternatively, cue-
counting, where animals’ cues such as bird calls are counted
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rather than individuals, is used as it is negligibly biased by
nonresponsive animal movement, but this relies on the ani-
mal population having a clearly defined cue (Buckland et al.
2005). For line transects, a rule-of-thumb, based on a limited
simulation study, deems surveys on animals that move at less
than half the observer’s speed to be free of substantial bias
(Hiby 1982); yet, observer speed is often constrained by the
transport chosen and the terrain covered. Thus, density can be
unavoidably overestimated due to animal movement. This over-
estimation is not caused by counting the same animal more than
once, but by more animals entering the transect from outside
and recorded locations leading to a biased estimated detection
function (Glennie, Buckland, and Thomas 2015). Surveys of
mobile animals record greater numbers of unique individuals,
compared to a hypothetically immobile population, and animals
are recorded closer to the observer; both effects led to positive
bias in density estimation (Glennie, Buckland, and Thomas
2015). This calls into question inference drawn from surveys
where animal movement is undeniable, and precludes the use
of distance sampling on populations of fast-moving animals and
on studies where transects are surveyed over a long time period.

Previous work has considered only how movement affects
the number of animals seen, not where they are seen (Yapp
1956). Random encounter models (Lucas et al. 2015), where
animals are assumed to move in randomly orientated straight
lines at constant speed (Hutchinson and Waser 2007), can
provide estimates of density, corrected for movement, given
the count of animals seen and an independent estimate of
animal speed. A detection probability can also be included,
but must be ascertained independently. An advantage of dis-
tance sampling is that the detection probability can be esti-
mated from the data. Yet, this probability, when movement
is admitted, depends on the entire path the animal has trav-
elled whilst the transect is surveyed. This path, other than
the single location observed when the animal is detected,
is unobserved. Thus, any estimation of detection probability
that accounts for animal movement must include a continu-
ous space-time hidden process to describe the animal’s tra-
jectory. Furthermore, to calculate the proportion of animals
never seen, the method must average over all possible ani-
mal trajectories. This can be achieved by specifying an explicit
model for the encounter process (Gurarie and Ovaskainen
2012).

Hidden Markov models (HMMs) (Zucchini, MacDonald,
and Langrock 2016) are used for time series data that arise
from an unobserved (or partially observed) stochastic process.
In particular, HMMs are used to analyze animal telemetry data
(Pedersen et al. 2011), animal locations recorded over time,
where the paths taken by animals between recorded locations
are averaged over according to the movement model specified.
Distance sampling observations consist of a single such recorded
location where the animal’s movement prior to detection is
unobserved; thus, if independent information on animal move-
ment is collected, distance sampling can be viewed as a HMM,
where animal paths are a hidden process and detection is the
observed process. Tagging and tracking of animals is becoming
more common as the technology reduces in price and size.
HMMs can allow this auxiliary information to improve distance
sampling estimation. Pedersen et al. (2011) developed a spatial

HMM with an unobserved, diffusive movement process which
is described by a stochastic partial differential equation. The
intractable likelihood in continuous space and time is approx-
imated by discretizing space into a large number of spatial
cells (Eydeland 1994); the computations involved are costly,
constraining the level of discretization attainable.

Here, a spatial HMM that incorporates animal movement
into distance sampling using independently obtained animal
movement data is presented. The likelihood is formulated in
continuous space-time and a discrete approximation is then
described. A simulation study compares this method to con-
ventional distance sampling, and the method is applied to a
line transect survey of spotted dolphins (Stenella attenuata
attenuata) in the eastern tropical Pacific (ETP) (Gerrodette and
Forcada 2005; Gerrodette et al. 2008).

2. Methods

Suppose n animals are detected in total over the survey. The
goal is to estimate the total abundance in the survey region,
N. In distance sampling surveys, observers search transects and
record the location of any animal they encounter. In line transect
sampling, the perpendicular distance from the line to each
encounter is recorded; in point transects, the radial distance
is recorded. Use of two-dimensional location data, forward
distance on line transects and angle of detection on points, is
seldom used (Borchers and Cox 2017). Furthermore, the time
of a detection, though routinely recorded, is not used. Here, a
model is developed that uses both pieces of information: for the
ith detected animal, let �xi be the two-dimensional location of the
animal when detected and ti be the time between the observer
beginning to survey the transect that animal i was seen on and
the time animal i was detected.

Recording the single location an animal is encountered pro-
vides no information about how the animal moves: independent
data are required on animal movement. Suppose m animals
are tracked or tagged and their movement paths recorded over
time. It is assumed the movement of these tagged animals is
representative of the movement of any animal in the study area.
Note it is not required that the tagged animals be members of
the surveyed population.

2.1. CDS Model

In conventional distance sampling (CDS), the probability den-
sity function (PDF) of the recorded animal locations is esti-
mated. A detection function, g(x), is defined as the conditional
probability an animal is detected given it resides at distance
x. For line transects, distance is defined as the perpendicular
distance the animal is from the line; for point transects, it is
defined as the radial distance from the point. The probability
density of the observed distances is then given by

f (x) = g(x)λ(x)∫
P g(x)λ(x) dx

,

where P is the set of all possible animal locations and λ is the
probability density function of the animal’s location. CDS makes
the design-based assumption that transects are placed according
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to a randomized scheme. This implies for line transects that λ

is the density of a uniform distribution over P and for point
transects a triangular distribution over P . In short, λ is known
and g is to be estimated.

A convenient functional form is chosen for the detection
function and its parameters estimated by maximum likelihood.
This form is chosen ad hoc to be half-normal or exponential
with some trigonometric or polynomial adjustments. Alterna-
tively, an explicit model for the detection process can be spec-
ified by a two-dimensional hazard-rate function h(�x, t) (Skaug
and Schweder 1999; Borchers and Cox 2017), which describes
the detection rate of an animal residing in location �x at time
t. This is equivalent to a survival process where death is inter-
preted as detection and the detection intensity varies over time
and space. In practice, CDS analyses do not use the time of
detections. Instead, a detection function is derived from a given
hazard by integrating over the time interval that an animal is
at risk of detection. Nonetheless, here, the term CDS is used
to refer to two-dimensional hazard models also. The hazard
commonly depends on the radial distance between the observer
and the animal, r(�x, t), such that the hazard is infinite at zero
radius and decreases with increasing radius.

2.2. MDS Model

In this article, the movement with distance sampling (MDS)
model is introduced and presented as an extension of the exist-
ing CDS approach, thereby incorporating animal movement
modeling with distance sampling.

Here, the recorded detection times and the two-dimensional
recorded location are used to estimate the search process. Detec-
tion times are required since animals recorded at later times
on the transect have had longer to move and so may have
originated at a further distance. Rather than condition on the
animal residing at a single fixed point, the detection probability
is derived conditional on the animal travelling a fixed path over
space. Given an animal travels a path �x and is seen at location �xτ

at time τ , the conditional PDF is g(�x, τ) = Sτ (�x)h(�xτ , τ) where
St(�x) = exp

{
− ∫ t

0 h(�xs, s) ds
}

is the probability of the animal
eluding detection until time t. Notice, detection probability now
depends on time and the entire trajectory of the animal.

Similar to CDS, if in place of assuming the distribution of
animals, we assume the movement process is known, and in
place of conditioning on the location of an animal, we condition
on the path an animal has taken, the PDF of the observed
encounter on a transect of duration T is given by

f (�x, τ) = g(�x, τ)λ(�x)∫
χ

∫ T
0 g(�y, t) dt d�(�y) , (1)

where �, with associated density λ, is the probability measure
over all (measurable) paths, χ , that an animal could have taken.
The denominator is the probability an animal is seen at some
time on the transect and is required as we do not observe those
animals that were never encountered.

Yet, the paths of animals are unobserved and conventional
distance sampling surveys provide no information on how
animals move. Thus, independent animal movement data is
required to determine �. Here, animal movement is described

by Brownian motion with rate parameter ν. This makes �

mathematically tractable: any set of observed locations on a
movement path have a multivariate Gaussian distribution. For
telemetry data, one can condition on the initial location of the
animal and compute the likelihood,Lλ, easily (Okubo and Levin
2013); for distance sampling surveys, the initial locations are
assumed to be independently distributed with respect to the
transect.

From the distance sampling survey, given animal i was
recorded in location �xi at time τi, the likelihood for the detection
parameters, θ , is obtained by averaging over all possible animal
paths

Lθ =
n∏

i=1

∫
χi

g(�x, τi) d�(�x)

pi
,

where χi is the space of all measurable paths that pass through
location �xi at time τi, and pi = 1 − ∫

χ
STi(�x) d�(�x) is the

probability the encounter with animal i occurs at some time
when the transect is surveyed for total time Ti.

Assuming the distance sampling survey and the animal
telemetry data are independent, the combined likelihood
Lθ ,λ = LθLλ can be maximized to obtain maximum like-
lihood estimates, (θ̂ , λ̂). Methods in Section 2.3 describe the
approximations used to compute the likelihood. Maximizing
the combined likelihood means that uncertainty in the move-
ment parameters is propagated to the density estimation. Abun-
dance can be estimated using either approach already available
in distance sampling: a model-based estimator or a Horvitz–
Thompson-like estimator (Buckland, Oedekoven, and Borchers
2016).

The Horvitz–Thompson-like estimator of abundance is

N̂ = n∑K
k=1 p̂k

,

where K is the total number of transects, n is the number of
animals seen, and p̂k is the estimated probability of detection
on transect k. A sandwich estimator for the variance of N̂ can be
derived analogously to the estimator used in CDS (Fewster et al.
2008).

Alternatively, an explicit model for abundance can be inte-
grated (Buckland, Oedekoven, and Borchers 2016), for example,
the Poisson process:LN = (Npenc)

n exp(−Npenc)/n! where penc
is the probability of detection during the survey. This gives a
model-based estimate of abundance by maximizing the likeli-
hood Lθ ,λ,N = LθLλLN .

2.3. Computation

The likelihood, formulated in continuous space and time, is
analytically intractable. In this section, existing approximations
to a similar type of model are adapted to this context to make
the computations practical. The integral over all possible ani-
mal paths can be approximated by quadrature. A buffer region
around each transect is discretized into K cells of length and
width �x and time is discretized into steps of duration �t.
Animal movement occurs at these time-steps, thus animals are
stationary within time-steps.
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Notice that all integrals to be approximated are of the form∫
χ

St(�x) d�(�x) for some time t. Approximating animal move-
ment by jumps at each time-step, the function S can be separated
into components:

St(�x) = s0(�x0)s�t(�x�t)s2�t(�x2�t) . . . st−�t(�xt−�t),

where sl(�x) = exp
(
− ∫ l+�t

l h(�x, u) du
)

is the probability of
eluding detection during a single time-step given the animal
is at location �x. Assuming animals are stationary within time-
steps, sl(�x) can be computed analytically within each time-step,
accounting for the continuous movement of the observer, thus
only animal movement is discretized. Let Pt be a K ×K diagonal
matrix with kth diagonal st(�yk) where �yk is the center location
of spatial cell k.

The integration over all paths is replaced with a sum over all
paths on the discrete grid. When discretized, Brownian motion
can be approximated by a continuous-time Markov chain (Ped-
ersen et al. 2011). Pedersen et al. (2011) derived the transition
rate matrix, G, using a finite difference approximation to the
Fokker–Planck equation (Okubo and Levin 2013; Mitchell and
Griffiths 1980). By taking the matrix exponential, the transition
probability matrix for a given time step �t can be computed,
� = exp(G�t) (Moler and Van Loan 2003).

The integral is approximated by a spatial HMM likelihood
(Zucchini, MacDonald, and Langrock 2016; Pedersen et al.
2011): ∫

χ

St(X) d� = p0P0�P�t� . . . Pt�1, (2)

where p0 is 1×K row vector representing the initial distribution
of animals on the grid with respect to the transect and 1 is a K×1
column vector of ones.

In distance sampling surveys, the range of detection distances
can be small compared to the distances an animal can travel
during a survey period. The former makes it necessary that �x
be adequately small while the latter requires the buffer around
the transect, and so the grid, to be large. Ultimately, K is large.
This makes the matrix calculations in equation (2) computa-
tionally demanding. The sparse structure of G can be exploited
to accelerate computations using the Krylov subspace approx-
imation (Hochbruck and Lubich 1997) and, when movement
is isotropic and G block-Toeplitz, the two-dimensional discrete
Fourier transform (Lee 1986). For spatial HMMs, there is no
analytical bound on the error of this approximation. Practical
advice is to reduce the discretization until the path integral’s
value no longer significantly changes, for example, in relative
percentage.

2.4. Simulation Study

A simulation study is conducted to demonstrate the perfor-
mance of MDS compared to CDS for two particular distance
sampling surveys. The magnitude of the bias in CDS depends on
the relationship between relative animal speed, transect width,
and the shape of the detection function (Glennie, Buckland,
and Thomas 2015). This simulation study considers the effect
of animal speed when all other factors are fixed. The simulation
was conducted using the moveds 0.1.0 package within the

R programming environment (R Core Team 2017). The code
to perform these simulations is included in the supplementary
materials.

A study population of 100 animals in 100 km2 is simulated.
Animals move according to Brownian motion with average
rate changing for each simulation scenario. The independent
animal telemetry data required was simulated from Brownian
motion, recording the location of ten tagged animals every
minute for 1 hr.

Two distance sampling surveys were simulated on this pop-
ulation: a line transect study and a point transect study. The
line transect survey consists of 50 transects of length 1 km;
the observer traverses each line at speed 1 m/sec. For these
simulation scenarios, animals moved at speeds covering 50%–
300% the speed of the observer. For the point transect survey,
100 points were surveyed, each for 5 min, with animals speeds
from 0.5 m/sec to 4.0 m/sec.

In both surveys, the hazard of detecting an animal at a radial
distance r is given by

( r
s
)−(d+1) for scale parameter s > 0 and

shape parameter d > 0 (Hayes and Buckland 1983; Borchers
and Cox 2017). Detection parameters were chosen as s = 5, d =
2, such that for a hypothetically immobile animal population,
the effective area searched was approximately 0.015 km2. This
corresponds to a line transect with half-width 30 m and point
transect with radius 100 m.

One hundred simulations were performed. A distance sam-
pling model with no animal movement was fit to each simu-
lated dataset. For fair comparison, a two-dimensional hazard
was used in this model also, unlike CDS models where a one-
dimensional hazard is commonly used. An MDS model, as
presented in this article, was fit to each dataset with the auxiliary
movement data using a grid size of 2.5 m and a time-step of 1
sec. The relative bias, mean square error and confidence interval
coverage was estimated for each scenario, with and without
movement incorporated.

2.5. Application: Spotted Dolphins

The presented method is applied to shipboard line transect
surveys conducted in the eastern tropical Pacific on spotted
dolphins in 1999, 2000, 2003, and 2006. Here, the abundance
within the core area, as defined by Gerrodette and Forcada
(2005), is estimated.

Dolphin schools are treated as the individual unit of detec-
tion and group size estimated separately. This is a standard
approach in CDS; however, incorporating movement makes
the approach more questionable. In particular, we assume that
schools do not fuse or break-up during the time the observer
surveys each transect. Furthermore, we assume the movement
model, informed by tags on single individuals, describes the
movement of a school as a whole. Independent tag data was
collected on 19 spotted dolphins (Scott and Chivers 2009) pro-
viding fixed locations at approximately 15 min intervals over 1–2
days.

The radial distance and angle to each detected spotted dol-
phin school was recorded. Only sightings in Beaufort state 3 or
less were retained, as in the higher Beaufort states detectability
declines more rapidly with distance. The location of the ship was
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recorded every 10 min. It is assumed the ship travels in a straight
line at a constant speed between these records. The movement
model does not account for movement caused by ocean current;
it is assumed that the animals and ship are drifting in the same
direction and at the same rate, thus this movement has no effect
on their relative positions.

Three methods were applied to the data: one-dimensional
conventional distance sampling (CDS1D), two-dimensional
conventional distance sampling (CDS2D), and two-
dimensional distance sampling with movement (MDS2D).
CDS1D is the standard modeling framework used for distance
sampling analysis; it was applied to these data using the R
package Distance 0.9.7 (Miller et al. 2019). The two-
dimensional models were fit using the R package moveds
0.1.0with a grid size of 0.2 km and time-step of 10 min. Only
the hazard-rate model with no trigonometric or polynomial
adjustments was considered for the CDS1D model as then
the same hazard is assumed for all three methods:

( r
s
)−(d+1)

with parameters s, d > 0. A truncation distance of 5.5 km was
used, as used in Gerrodette and Forcada (2005), as this is the
maximum distance a sighting could occur for confirmed species
identification. Dolphin school abundance is estimated using the
Horvitz–Thompson-like estimator given above. Goodness of
fit is evaluated using a Cramér–von Mises test (Cramér 1928),
comparing the expected distribution of perpendicular distances
to the observed (Buckland et al. 2005).

3. Results

3.1. Simulation Study

3.1.1. Line Transect Simulation
The CDS estimator of abundance had bias >10% when animal
speed exceeded 1.25 m/sec and CDS overestimated abundance
by >100% for speed >3.0 m/sec. In contrast, MDS led to <5%
bias for all scenarios (Figure 1). Mean square error (MSE) for
CDS estimators was dominated by their bias; MDS showed
constant MSE across all animal speeds. Confidence interval
coverage across all parameters for CDS was less than 40% for
speeds over 1.0 m/sec and fell to 0% for speeds over 2.0 m/sec.
MDS coverage was nominal within 1% for all parameters and
across all simulation scenarios.

3.1.2. Point Transect Simulation
CDS point transect sampling behaved similarly with bias >10%
for animal speed >2 m/sec and bias reaching 90% for speed
around 4 m/sec (Figure 2). Incorporating movement reduced
bias to <5% across all scenarios and mean square error varied
negligibly. CDS 95% confidence interval coverage was poor
(<45%) for all parameters when animal speed exceeded 2 m/sec,
while coverage was nominal for all parameters when movement
was incorporated.

3.2. Application: Spotted Dolphins

Estimated abundance of spotted dolphin schools in the core
area, as defined by Gerrodette and Forcada (2005), differed
substantially between models with and without movement

Figure 1. Percentage relative bias in estimated density for conventional distance
sampling (solid line) and distance sampling with movement incorporated (dotted
line) against animal speed (as % of observer speed) estimated from 100 simulations
of a line transect survey of 50 transects with truncation width 30 m and observer
speed 1 m/sec. Animals move according to Brownian motion. Shaded region marks
±5% relative bias.

Figure 2. Percentage relative bias in estimated density for conventional distance
sampling (solid line) and distance sampling with movement incorporated (dotted
line) against animal speed estimated from 100 simulations of a point transect survey
of 100 transects with truncation width 100 m, surveyed for 5 min. Animals move
according to Brownian motion. Shaded region marks ±5% relative bias.

(Table 1). One- and two-dimensional CDS models led to similar
estimates of abundance. Incorporating movement reduced the
abundance estimate by approximately 21% on average across
the years. The coefficient of variation (CV) for the abundance
estimator was similar between the two-dimensional models.
The average speed of the ship was 17 km/hr; the estimated
average speed of each spotted dolphin was 7.4 km/hr. The large
reduction in the abundance estimate indicates that even though
the dolphins move relatively slowly compared to the ship, bias
can be substantial, because, while being surveyed, they can
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Table 1. Maximum likelihood estimates (Est.) of spotted dolphin school density (per 106km2) with associated percentage coefficient of variation (CV) and 95% confidence
interval (CI) for conventional distance sampling in one (CDS1D) and two dimensions (CDS2D), and distance sampling with movement in two dimensions (MDS2D).

CDS1D CDS2D MDS2D

Year Est. CV 95% CI Est. CV 95% CI Est. CV 95% CI

1999 1073 22% (700, 1644) 1166 18% (750, 1581) 918 18% (588, 1248)
2000 947 23% (601, 1493) 999 19% (627, 1372) 787 19% (492, 1082)
2003 1518 19% (1053, 2189) 1550 15% (1087, 2013) 1223 15% (854, 1592)
2006 1213 24% (755, 1947) 1342 20% (809, 1874) 1059 20% (636, 1481)

Figure 3. Observed number of spotted dolphin schools sighted in each 0.5 km
perpendicular distance from the transect line (shaded bars) with expected number
of sightings from conventional distance sampling model for one-dimensional (solid
lines) and two-dimensional (dashed lines) models and distance sampling with
movement model (dotted lines).

move a large distance compared to the width of the transect.
This highlights the danger of assessing whether movement is a
problem based solely on relative animal speed; MDS can account
for the interdependent effects of animal speed, transect width,
and detection function shape.

For comparison, the expected number of sightings within
each 0.5 km from the transect line was calculated (Figure 3).
CDS1D, CDS2D, and MDS2D models all had similar good-
ness of fit (Cramér–von Mises p-value >0.05); however, the
estimated detection function differs considerably when animal
movement is included (Figure 4). The CDS1D and CDS2D esti-
mated detection functions decline more rapidly with distance
than the MDS2D function indicating that animal movement has
caused negative bias in the estimation of detection probability.
This effect, together with the greater number of animals that
move into the transect and are seen, causes abundance to be
overestimated. Note, these deficiencies do not result in CDS
models failing a test of goodness of fit to the observed data, but
has an important effect on the final abundance estimate.

4. Discussion

Distance sampling surveys on mobile animal populations
should not ignore animal movement. The simulation study

Figure 4. Estimated detection function for a hypothetically immobile spotted dol-
phin population for conventional distance sampling, in one (solid line) and two
(dashed line) dimensions, and distance sampling with movement (dotted line)

demonstrates the remarkable bias that non-responsive animal
movement can cause. Incorporating this movement into dis-
tance sampling can mitigate this bias and remove the subjective
judgment of when movement bias may have occurred and to
what extent.

The application to spotted dolphin surveys of the Eastern
Tropical Pacific (ETP) further shows that abundance estimates
can be biased by around 20% when movement independent of
the observer is not accounted for. Since 2006, there have been
no further National Marine Fisheries Service surveys, and so the
abundance estimates from the surveys considered here (1999–
2006) provide the most recent information on the population
dynamics of this dolphin population; these abundance esti-
mates are used to estimate mortality rate and by-catch from the
tuna fisheries industry (Gerrodette and Forcada 2005). Lennert-
Cody et al. (2019), in response to the growing need to gather
more up-to-date information on these populations, present a
review of current methodology and survey methods possible
for future ETP surveys where they identify ship-based surveys
as the most viable immediate option; significantly, the review
also highlights the presence of bias due to independent animal
movement and the need to apply methods that can account for it.

The cost of this improvement in estimation is the need for
additional information on animal movement. The expense and
practicality of collecting such data depends on the species to
be surveyed. For example, tag data on cetaceans, ungulates,
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and seabirds is becoming more common. When no such data
is available, a “plug-in” estimator of the movement parameters
could be used, similar to the multipliers used in CDS. Account-
ing for movement on expert, though imperfect, knowledge may
be better than ignoring it completely. The movement informa-
tion need not come from animals in the same population as
that surveyed by distance sampling, nor be collected in the same
time period. Nevertheless, it is assumed tagged animals behave
as representative members of the study population; thus, it is
recommended that movement information be collected around
the same time the distance sampling survey is conducted and on
animals that are members of the study population.

Estimating a detection process that depends on time nec-
essarily requires detection times be recorded. In practice, this
information is often recorded in the field, but not used in CDS
models. Here, this information is essential and any application of
the model would require this data to be collected. Records of the
observer’s location over time must also be kept. Furthermore,
the location of detected animals should be recorded relative to
the observer; this is contrary to practice in CDS where measure-
ments are made relative to the transect. Also, animal location
must be recorded in two-dimensional space.

The main obstacle to this method is the computational bur-
den. The case study shows that the approximations presented
allow for real survey data to be analyzed in a practical time; how-
ever, the computational demand may limit application when
surveyed transects are large compared to the scale of detection
or when survey times are long. An alternative to the quadrature-
based approach presented here is to simulate: animal paths are
simulated and the average likelihood taken as a Monte Carlo
estimate of the marginal likelihood, averaged over all paths. The
appendix to this article compares simulation to the quadrature-
style approach and highlights the problems to be tackled in
future work.

4.1. Assumptions

The assumptions made in the theory presented are synonymous
with those made in CDS (Buckland et al. 2015). Violations of
these assumptions will cause bias in the inference obtained.
Good survey design and protocol can be used to reduce the
extent to which assumptions are violated (see Buckland et al.
2015). As with the assumption of no animal movement in
CDS, there exist analytical methods that remove other necessary
assumptions of distance sampling, often with the requirement
that additional data be collected. MDS, as an extension of the
CDS framework, can accommodate these theoretical extensions
when the assumptions below are not adequately met.

1. The path an animal travels is independent of the observer:
animals do not respond to the observer and their movement
is independent of the transect placement, that is, surveying
does not preferentially take place in areas animals would
avoid or be attracted to.

2. Animals at zero radius are detected: this assumption can be
violated for animals that are not always available for detec-
tion, for example, a diving cetacean can be missed by an
observer in a ship directly above it (Langrock, Borchers, and
Skaug 2013; Borchers et al. 2013).

3. Location measurements are exact: this assumption applies
to observed locations of animals on the distance sampling
survey and the recorded locations of tracked animals. Obser-
vation error in animal telemetry data is common and can be
accounted for (Johnson et al. 2008). Models for measurement
error in distance sampling can also be incorporated (Marques
2004).

4. Animal movement is diffusive: the simple model that animal
movement is a spatially invariant, isotropic diffusion process
is violated by many animal populations; more realistic move-
ment models can be considered. No matter what movement
model is incorporated, one assumes that all animals in the
survey move according to the specified model. Departures
from the movement model could cause detection probability
to be biased. In particular, underestimating or overestimating
animal speed will lead to overestimating or underestimating
density, respectively. Glennie, Buckland, and Thomas (2015)
also showed that if animal movement is less tortuous than
assumed under Brownian motion, then assuming a Brow-
nian motion movement model will lead to overestimation
in abundance; however, this overestimation will be reduced
compared to CDS.

5. Sampling is representative and independent: for the distance
sampling survey, this assumption requires transects be placed
according to a randomized design, that transects be inde-
pendent, and that animals be independent. For animals that
travel in groups, treating groups as the independent unit to
be sampled may be a better choice. For the movement model,
it is assumed that tagged animals move independently and
that the sample of tagged animals be representative of the
surveyed population. One can use telemetry from tagged
animals who are not members of the surveyed population,
but only with the assumption these animals exhibit move-
ment patterns similar to those animals surveyed by distance
sampling. Despite this, due to the heterogeneity of animal
behavior, it is best to collect auxiliary movement data on the
same population being surveyed and at the same time the
survey takes place.

4.2. Model Extensions

The model formulation is flexible and can include existing
extensions of conventional distance sampling. Here, only a haz-
ard that depends on radial distance was considered. A hazard
that depends on angle and radius could be used. For point
transects, any detection function can be used to define a hazard
(Borchers et al. 2015). Yet, for line transects, the method relies
on an analytical form for St : observer movement makes integra-
tion of the hazard more complicated. This could be avoided by
discretizing observer movement similarly to animal movement,
that is, the observer only moves at time-steps and not within
time-steps; however, this can introduce significant bias when
discretization is rough and often requires much lower levels of
discretization than otherwise necessary.

Another popular extension is multiple-covariate distance
sampling (Marques and Buckland 2003). Including covariates in
the detection process could be handled similarly with this model
where parameters in the hazard can depend on environmental
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conditions over space and time. Given this, it is important to
highlight that any covariates included would need to be known
for each time and each location in space. This may require one
to assume that covariates are constant in the time between their
recording. Additional information on the movement of detected
individuals can also be incorporated. Observed locations or
observed directions of travel can be used to improve estimation
of the unknown path each animal took. Furthermore, responsive
movement could be accounted for if the response, how an
animal’s location changes over time with respect to the observer,
is recorded for one or more focal individuals.

Including covariate information in the movement model is
more computationally demanding. The HMM computational
algorithm used depends on the block-Toeplitz structure of the
transition rate matrix, G. A block-Toeplitz structure is equiva-
lent to assuming that the transition rates are spatially invariant.
Relaxing this assumption increases computation time and limits
the level of discretization that can be practically obtained.

Additionally, this assumption limits the range of possible
movement models that can be considered. Bias in density esti-
mation from animal movement is at its worst when animal
movement is persistent in a single direction. A movement pro-
cess with persistent movement would require the discretiza-
tion of a four-dimensional space: location and velocity. Given
current computational resources, it is likely any practical dis-
cretization of this space would be too coarse to provide good
estimators of detection parameters. Nevertheless, for many taxa,
animal movement is more complex than can be described by a
diffusion process, and so extending MDS to include advection-
diffusion or Ornstein–Uhlenbeck animal movement models
could improve the inference obtained.

Finally, the methods presented can be extended to double-
observer distance sampling, where two observers survey the
transect simultaneously. If multiple sightings of an individual by
different observers can be matched together, then only animal
paths that pass through these multiple observed locations need
be considered, providing information on animal movement
directly from the distance sampling data and improving the
estimation of each animal’s detection probability.

5. Conclusion

Animal movement can be incorporated with distance sampling.
The presented theoretical framework provides a basis for further
development and the computational approach discussed makes
the method applicable. Accounting for animal movement can
mitigate the bias it causes in the surveys where distance sam-
pling is applied, and it can widen the application of distance
sampling to animals whose movement has so far prohibited
its use.
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