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Key points: 19 

1. The fraction-constrained model led to better initialization and distribution of SOC stocks 20 

compared to the default model.  21 

2. The fraction-constrained model led to larger absolute and relative losses of SOC 22 

compared to the default model during 1895-2005.  23 

3. Under the RCP8.5 scenario, projected SOC losses with the fraction-constrained model 24 

were 33% and 29% larger for croplands and grasslands, respectively, compared to the 25 

default model.   26 

A
cc

ep
te

d
 A

rt
ic

le
 

 

 

 

 

 

 

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences between
this version and the Version of Record. Please cite this article as doi: 10.1029/2021MS002622.

This article is protected by copyright. All rights reserved.

https://doi.org/10.1029/2021MS002622
https://doi.org/10.1029/2021MS002622
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021MS002622&domain=pdf&date_stamp=2022-04-05


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems 

 2 

Abstract 27 

Terrestrial soil organic carbon (SOC) dynamics play an important but uncertain role in the global 28 

carbon (C) cycle. Current modeling efforts to quantify SOC dynamics in response to global 29 

environmental changes do not accurately represent the size, distribution and flux of C from the 30 

soil. Here, we modified the daily Century (DAYCENT) biogeochemical model by tuning 31 

decomposition rates of conceptual SOC pools to match measurable C fraction data, followed by 32 

historical and future simulations of SOC dynamics. Results showed that simulations using 33 

fraction-constrained DAYCENT (DCfrac) led to better initialization of SOC stocks and 34 

distribution compared to default/SOC-only-constrained DAYCENT (DCdef) at long-term 35 

research sites. Regional simulation using DCfrac demonstrated higher SOC stocks for both 36 

croplands (34.86 vs 26.17 MgC ha
-1

) and grasslands (54.05 vs 40.82 MgC ha
-1

) compared to 37 

DCdef for the contemporary period (2001-2005 average), which better matched observationally 38 

constrained data-driven maps of current SOC distributions. Projection of SOC dynamics in 39 

response to land cover change under a high warming climate showed average absolute SOC loss 40 

of 8.44 and 10.43 MgC ha
-1

 for grasslands and croplands, respectively, using DCfrac whereas, 41 

SOC losses were 6.55 and 7.85 MgC ha
-1

 for grasslands and croplands, respectively, using DCdef. 42 

The projected SOC loss using DCfrac was 33% and 29% higher for croplands and grasslands 43 

compared to DCdef. Our modeling study demonstrates that initializing SOC pools with 44 

measurable C fraction data led to more accurate representation of SOC stocks and distribution of 45 

SOC into individual carbon pools resulting in the prediction of greater sensitivity to agricultural 46 

intensification and warming.  47 

Plain Language Summary 48 

We aim to improve the representation of soil organic carbon (SOC) dynamics in the earth system 49 

model by matching the conceptual soil pools with carbon fraction data. We found large 50 
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divergence in SOC stocks with higher absolute and relative losses under historical and projected 51 

climate and land use using the fraction-constrained compared to the default/SOC-only-52 

constrained model. This implies that the conceptual soil pools parameterized to match with 53 

carbon fraction data can better simulate SOC dynamics now and into the future. 54 

 55 

1. Introduction 56 

Soil is the largest terrestrial reservoir of organic carbon (C), storing about 1500 Pg C in the top 57 

100 cm (Batjes, 2016; Nachtergaele et al., 2012). Any small changes in the magnitude, 58 

distribution and forms of terrestrial soil organic carbon (SOC) may lead to large release of C to 59 

the atmosphere (Sulman et al., 2018), with significant impact on food security and the global 60 

climate system (Lal, 2004). Given that changes in SOC represent one of the largest uncertainties 61 

in the global C budget (Ciais et al., 2014), accurate quantification of the distribution and forms of 62 

SOC can help to constrain the global C budget and provide key insights on the underlying 63 

processes related to SOC protection and cycling (Stockmann et al., 2013).   64 

Changes in SOC stocks at any given time depend on the balance between organic matter inputs 65 

via plant production, additions of manure and compost, and outputs via decomposition, erosion 66 

and hydrologic leaching of various C compounds (Davidson and Janssens, 2006; Jobbágy and 67 

Jackson, 2000). Although higher organic matter inputs to the soil generally correlate with high 68 

SOC (Sanderman et al., 2017a), the biological stability of SOC is ultimately determined by the 69 

interactions among the soil physicochemical environment (soil moisture, temperature, pH and 70 

aeration), soil mineralogy, and the accessibility of the organic matter to microbes and enzymes 71 

(Schmidt et al., 2011). Current understanding of the SOC dynamics indicates that the soil 72 

physicochemical environment plays an important role in determining the C efflux from soil and 73 
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that the efflux rates are modified by substrate availability and the affinities of enzymes for the 74 

substrates (Six et al., 2002). However, the extent to which different physicochemical 75 

characteristics of soil control the stabilization and cycling of SOC is still debated (Carvalhais et 76 

al., 2014; Doetterl et al., 2015; Rasmussen et al., 2018). Additionally, the complex molecular 77 

structure of C substrates and their sensitivity to climatic and environmental constraints add 78 

further complexity in understanding SOC dynamics at different spatial and temporal scales 79 

(Davidson and Janssens, 2006). 80 

Previous studies have shown that the factors affecting the stabilization/destabilization of SOC are 81 

numerous and that the changes in SOC over space and time are the result of complex interactions 82 

among climatic, biotic and edaphic factors (Rasmussen et al., 2018; Stockmann et al., 2013; Torn 83 

et al., 1997; Wiesmeier et al., 2019). For example, Carvalhais et al. (2014) have shown that 84 

climate, particularly temperature, strongly controls SOC turnover. Doetterl et al. (2015) found 85 

that geochemical characteristics such as base saturation, soil texture, silica content and pH also 86 

play a dominant role by altering the adsorption and aggregation of SOC. In addition, other 87 

studies indicate that soil nitrogen (N) availability affects SOC change due to constraints on 88 

microbial activity and plant productivity (Grandy et al., 2008; Janssens et al., 2010; Sinsabaugh 89 

et al., 2005). These findings have led to the view that the accumulation and decomposition of 90 

organic matter in soil is ultimately determined by the interactions among climate, vegetation 91 

type, topography and lithology.        92 

Biogeochemical models commonly rely on capturing SOC dynamics by implicitly representing 93 

microbial processes using soil pools that are conceptual (Hartman et al., 2011). An increasing 94 

number of models now explicitly represent the turnover of litter and soil pools using distinct 95 

microbial functional types (Wieder et al., 2014) or measurable carbon fractions (Abramoff et al., 96 
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2017). Although the representation of microbial processes using measurable soil pools or distinct 97 

microbial functional types have gained recognition in recent decades, their applicability is still 98 

limited at diverse spatial and temporal scales, particularly due to limited data on measurable 99 

fractions or rate modifiers to represent distinct microbial functional types. There has been recent 100 

attempts to model SOC dynamics using measurable soil pools, which has been broadly calibrated 101 

and tested at regional and global scales (Abramoff et al., 2018; Abramoff et al. 2021; Zhang et 102 

al. 2021). However, most of the earth system models still simulate SOC dynamics  using 103 

conceptual soil pools with different turnover rates, particularly when examining the response of 104 

SOC to global change factors (Tian et al., 2015; Todd-Brown et al., 2014).  105 

The potential turnover rates of conceptual soil pools are modified by climatic factors such as soil 106 

moisture and temperature, soil chemical factors such as pH and oxygen availability and the 107 

mechanism that facilitates C protection via organo-mineral interactions and aggregation, often 108 

loosely represented by clay content (Trumbore, 1997). However, the turnover rates of these 109 

conceptual soil pools cannot be directly determined because these pools cannot be isolated in the 110 

laboratory (Paul et al., 2001). As a result, there is increasing need and effort to link the 111 

conceptual pools with some measurable data to determine the turnover rates of SOC pools in the 112 

biogeochemical models. 113 

In current biogeochemical models with conceptual soil pools, SOC dynamics are most 114 

commonly represented using three dominant pools: an active pool dominated by root exudates 115 

and the rapidly decomposable components of fresh plant litter, with mean residence time (MRT) 116 

ranging from days to years (Hsieh, 1993); a slow pool dominated by decomposed organic 117 

material, often of microbial origin, with MRT ranging from years to centuries (Torn et al., 2013); 118 

and a passive pool dominated by stabilized organic matter with MRT of several hundred to 119 
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thousands of years (Czimczik and Masiello, 2007). Changes in the size and relative abundance of 120 

these pools are strongly influenced by climate, soil type and land use (Sanderman et al., 2021). 121 

Therefore, accounting for accurate distribution of SOC into different pools is paramount to 122 

quantify the current SOC stocks and examine the vulnerability of SOC to future environmental 123 

changes.  124 

Relating these conceptual pools with SOC partitioned into laboratory defined fractions, such as 125 

particulate-, mineral associated- and pyrogenic-forms of C (POC, MOAC and PyC, 126 

respectively), can help to constrain the turnover rate of different pools in biogeochemical 127 

models. For example, Skjemstad et al. (2004) related POC, MOAC and PyC approximated using 128 

a combination of physical size fractionation and solid-state 
13

C-NMR spectroscopy with resistant 129 

plant material (RPM), humic (HUM) and inert organic material (IOM) pools in the Rothamsted  130 

carbon (RothC) model to predict changes in SOC in response to changes in soil type, climate and 131 

management. However, RothC does not explicitly simulate plant growth and plant response to 132 

dynamic changes in climate and other environmental factors (Zimmermann et al., 2007). In 133 

addition, the plant material is loosely partitioned into decomposable and resistant forms with 134 

large uncertainties in their respective sizes (Cagnarini et al., 2019). Unlike RothC, ecosystem 135 

models such as Century, DeNitrification-DeComposition (DNDC) and Agricultural Production 136 

Systems sIMulator (APSIM) integrate the effects of climate, land use change and land 137 

management practices by simulating plant physiology and soil biogeochemistry, and explicitly 138 

consider the effects of climate, land use and land management on three conceptual soil C pools 139 

with different turnover rates (Hartman et al., 2011; Ogle et al., 2010).  140 

In this study, we modified, calibrated and evaluated the version 4.5 of the Daily Century model 141 

(hereafter, DAYCENT) to improve the representation of SOC dynamics by linking conceptual 142 
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pools of active, slow and passive SOC against estimates of the measurable POC, MOAC and 143 

PyC fractions, respectively. We then simulated the response of SOC to climate and land use 144 

change during the historical and future period using the default/SOC-only-constrained (hereafter, 145 

DCdef) and fraction-constrained (hereafter, DCfrac) DAYCENT model in the US Great Plains 146 

ecoregion. The objectives of this study were to 1) constrain the DCdef model to link active, slow 147 

and passive pools of organic C to soil C fractions by tuning the decomposition parameters; 2) 148 

calibrate and evaluate DCfrac and DCdef performance by comparing the distribution of C in active, 149 

slow and passive pools against C fractions predicted at seven long-term research sites; 3) 150 

evaluate the differences between the DCfrac and DCdef in simulating contemporary SOC stocks 151 

and their distribution by comparing against other existing data products in the US Great Plains 152 

region; and 4) project the SOC change in response to climate and land cover change through 153 

2100. We hypothesize that (i) tuning the potential decomposition rates of the conceptual pools to 154 

C fraction data in the DAYCENT model leads to more accurate initialization of equilibrium pool 155 

structure (Skjemstad et al., 2004), thereby allowing a better comparison of measured and 156 

simulated SOC in response to climate, land use and management (Basso et al., 2011); (ii) 157 

conversion of native vegetation to any agricultural use significantly alters the distribution of 158 

SOC among the various soil pools (Guo and Gifford, 2002), but the rate and extent of SOC 159 

change depend on the intensity of agricultural use (Lal, 2018; Page et al., 2014), with larger 160 

losses from models that allocate more C to active and slow pools; and (iii) land use under a 161 

warming climate would result in larger absolute and relative losses of SOC from the model that 162 

derive more SOC from the active pool due to rapid decomposition of fresh organic matter 163 

induced by warming (Crowther et al., 2016). 164 
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2. Materials and methods 165 

2.1 The DAYCENT Model 166 

The DAYCENT Version 4.5 is a daily time step version of the Century biogeochemical model 167 

that simulates the dynamics of C and N of both managed and natural ecosystems (Del Grosso et 168 

al., 2002; Parton et al., 1998). The exchange of C and N among the atmosphere, vegetation and 169 

soil is a function of climate, land use, land management and other environmental factors. The 170 

vegetation pool simulates potential plant growth at a weekly time step limited by water, light and 171 

nutrients. The DAYCENT model consists of multiple pools of SOM and simulates turnover as a 172 

function of the amount and quality of residue returned to the soil, the size of different soil pools 173 

and a series of environmental limitations. The type and timing of management events including 174 

tillage, fertilization, irrigation, harvest and grazing activities can affect plant production and 175 

SOM retention.  176 

The DAYCENT model was originally developed from the monthly CENTURY model version 177 

4.0. The CENTURY 4.0 is a general FORTRAN model of the plant-soil ecosystem that 178 

simulates carbon and nutrient dynamics of different types of terrestrial ecosystems (grasslands, 179 

forest, crops and savannas). CENTURY 4.0 primarily focused on simulation of soil organic 180 

matter dynamics of agro-ecosystems (Metherell et al., 1994). Earlier development of the 181 

CENTURY focused on simulation of soil organic matter dynamics of grasslands, forest and 182 

savanna ecosystems (Parton et al., 1988; Sanford Jr et al., 1991).  183 

The first DAYCENT model was developed in FORTRAN 77 and C from CENTURY 4.0 to 184 

simulate the exchanges of C, water, nutrients, and gases (CO2, CH4, N2O, NOx, N2) among the 185 

atmosphere, soil and plants at a daily time step (Del Grosso et al., 2001; Kelly et al., 2000; 186 

Parton et al., 1988). The submodels used in DAYCENT are described in detail by Del Grosso et 187 
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al. (2001), which includes submodels for plant productivity, soil organic matter decomposition, 188 

soil water and temperature dynamics, and trace gas fluxes. Other model developments while 189 

transitioning from CENTURY 4.0 to DAYCENT included dynamic carbon allocation and 190 

changes in growing degree days routine that triggers the start and end of growing season based 191 

on phenology (soil surface temperature, air temperature, and thermal units).  192 

The first formal version DAYCENT 4.5 (Hartman et al., 2011) was developed from Del Grosso 193 

et al. (2002), with a focus on simulation of trace gas fluxes for major crop types in the US Great 194 

Plains region. Hartman et al. (2011) focused on calibrating and validating crop yield and trace 195 

gas fluxes for all the major crop types in 21 representative counties in the US Great Plains 196 

region. 197 

The SOM sub-model consists of active, slow and passive pools with different turnover times 198 

(Parton et al., 1987; Motavalli et al., 1994). The active pool has a short (1-5 yr) turnover time 199 

and possibly composed of live microbes and microbial products. The slow pool has an 200 

intermediate turn over time (20-50 yr) and possibly contains physically protected organic matter 201 

and stabilized microbial products. The passive pool has a long turnover time (400-2000 yr) that 202 

may be physically and chemically stabilized. In DAYCENT, the turnover of the active, slow and 203 

passive pools is simulated as a function of potential decomposition rates of respective pools 204 

modified by soil temperature, moisture, clay content, pH and cultivation effects. Changes in SOC 205 

are simulated for the top 20 cm of the soil. 206 

In this study, we used the DAYCENT to optimize and calibrate the size of the conceptual soil 207 

pools by comparing it with carbon fraction data at long term research sites. First, we developed 208 

measurable carbon fraction data using a combination of diffuse reflectance spectroscopy and a 209 

machine learning model (section 2.2). Second, we developed input datasets including climate, 210 
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land use, cropping systems and land management data as required by DAYCENT model for 211 

point and regional simulations (section 2.3). Third, we parameterized the fraction-constrained 212 

DAYCENT (DCfrac) by tuning the potential decomposition rates (k) such that the size of the 213 

active, slow and passive soil pools matches with the POC, MAOC and PyC, respectively at the 214 

long-term research sites (section 2.4). Fourth, we calibrated both the DCdef and DCfrac 215 

DAYCENT using input data developed in section 2.3 (climate, land use, and management) 216 

against observed total SOC for specific plant function types (PFTs) (section 2.5), followed by 217 

model validation (section 2.6) and historical and future simulations (section 2.7). 218 

2.2 Development of carbon fraction datasets to match with soil carbon pools 219 

 220 

To link the SOC pools in DAYCENT with measurable C fractions, we used seven long-term 221 

research sites located in the United States (Cavigelli et al., 2008; Gollany, 2016; Ingram et al., 222 

2008; Liebig et al., 2010; Schmer et al., 2014; Sindelar et al., 2015; Syswerda et al., 2011), 223 

which span a range of climatic, land use and land management gradients (Table 1). Six of seven 224 

research sites are part of Long-Term Agroecosystem Research (LTAR) network focused on 225 

sustainable intensification of agricultural production. The remaining site is part of Columbia 226 

Plateau Conservation Research Center (CPCRC) Long-Term Experiment (LTE). At each site, we 227 

predicted the POC, MAOC and PyC fractions using a diffuse reflectance mid-infrared (MIR) 228 

spectroscopy-based model as detailed in Sanderman et al. (2021). The predictive models for the 229 

C fractions were developed from a database of fully fractionated soil samples using a 230 

combination of physical size separation and solid-state 
13

C NMR spectroscopy (Baldock et al., 231 

2013b) of Australian (Baldock et al., 2013a) and US origin (Sanderman et al., 2021). All samples 232 

for model development were scanned using a Thermo Nicolet 6700 FTIR spectrometer with Pike 233 

AutoDiff reflectance accessory located at the Commonwealth Scientific and Industrial Research 234 
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Organization (CSIRO) in Australia. The soil samples from all the long-term research sites were 235 

scanned using a Bruker Vertex 70 FTIR equipped with a Pike AutoDiff reflectance accessory 236 

located at Woodwell Climate Research Center in the United States. For all samples, spectra were 237 

acquired on dried and finely milled soil samples. Since the SOC fraction model and the soil 238 

samples were scanned using different instruments, we developed a calibration transfer routine to 239 

account for the differences in spectral responses between the CSIRO (primary) and Woodwell 240 

(secondary) instruments by scanning a common set of 285 soil samples. The calibration transfer 241 

routine was developed using piecewise direct standardization (PDS) as described in Dangal & 242 

Sanderman (2020).  243 

  244 
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For estimating C fractions of the prediction set (i.e., soil spectra of seven long-term research 247 

sites), we used a local memory based learning (MBL) approach that fits a unique target function 248 

corresponding to each sample in the prediction set (Dangal et al., 2019; Ramirez-Lopez et al., 249 

2013). The MBL selects spectrally similar neighbors for each sample in the prediction sets to 250 

build a unique SOC fraction model for each target sample. The MBL was optimized by 251 

developing a soil C fraction model using a range of spectrally similar neighbors and selecting the 252 

neighbors that produce the minimum root mean square error based on local cross validation. 253 

Before developing the soil C fraction model, the spectra of both the calibration and prediction 254 

sets were baseline transformed. Following baseline transformation, spectral outliers were 255 

detected using F-ratios (Hicks et al., 2015). The F-ratio estimates the probability distribution 256 

function of the spectra and picks samples that fall outside the calibration space as outliers 257 

(Dangal et al., 2019). Observation data used for building the soil C fraction model were square 258 

root transformed before model development and later back-transformed when estimating the 259 

goodness-of-fit. The performance of predictive models is shown in Table S1. 260 

The predicted soil C fractions for the seven long-term research sites were then converted into C 261 

fraction stocks using the relationship between C fraction (%), bulk density (BD; g/cm
3
) and the 262 

depth (cm) of soil samples. Since the BD data were not available for all long-term research sites 263 

for different crop rotation and grazing intensities, we predicted BD using methods similar to 264 

those described above. The only difference was that the samples used to develop the BD model 265 

were based on a much larger database of soil spectra scanned at the Kellogg Soil Survey 266 

Laboratory (KSSL) in Lincoln, USA (Dangal et al., 2019). Before predicting BD, the calibration 267 

transfer, as documented in Dangal & Sanderman (2020), between the KSSL and Woodwell soil 268 

spectra were developed and the local modeling approach (i.e., MBL) was used to make final 269 
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prediction for samples with missing laboratory BD. Calibration transfer between the 270 

spectrometers at the Woodwell (secondary instrument) and KSSL (primary instrument) 271 

laboratory was necessary to improve prediction of BD (R
2
 = 0.46-0.64 and RMSE = 0.26-0.50) 272 

(Dangal and Sanderman, 2020). 273 

One of the technical challenges associated with the comparison of simulated pool sizes against 274 

diffuse reflectance spectroscopy-based predictions of POC, MOAC and PyC at long-term 275 

research sites was the absence of laboratory data on C fractions to validate the MIR based 276 

predictions. To address this shortcoming, we first compared the sum of the MIR based 277 

predictions of POC, MOAC and PyC against observation of total SOC available at these sites 278 

(Figure S1). When comparing the total SOC against MIR based predictions, we did not limit the 279 

comparison to 20 cm, but allowed it across the full soil depth profile based on the availability of 280 

SOC data at the seven long-term research sites. The MIR based predictions of the sum of POC, 281 

MAOC and PyC are in close agreement with laboratory based SOC content for both croplands 282 

(R
2
 = 0.79; RMSE = 0.28%) and grasslands (R

2
 = 0.88; RMSE = 0.52%) (Figure S1). 283 

Additionally, the laboratory data used for model comparison were available at multiple depths of 284 

up to 60 cm often without a direct measurement for the 0-20 cm depth necessitating an 285 

approximation of the 0-20 cm stock. For example, when soils were collected from 0-15 and 15-286 

30 cm, we estimated the 20 cm SOC stock by adding 1/3 of the 15-30 cm SOC stock to the entire 287 

0-15 cm SOC stock.  288 

2.3 Input datasets for driving the DAYCENT model 289 

The US Great Plains region was delineated using the Level I ecoregions map (Omernik and 290 

Griffith, 2014) available through the Environmental Protection Agency 291 

(https://www.epa.gov/eco-research/ecoregions-north-america). The datasets for driving the 292 

https://www.epa.gov/eco-research/ecoregions-north-america
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DAYCENT were divided into two parts: 1) dynamic datasets that include time series of daily 293 

climate (precipitation, maximum and minimum temperature), annual land cover land use change 294 

(LCLUC) and land management practices (irrigation, fertilization and cropping system, tillage 295 

intensity) and 2) static datasets that include information on soil properties (soil texture, pH and 296 

bulk density) (Sanderman et al., 2021), and topography maps (Jarvis et al., 2008). For the 297 

historical period (1895-2005), we used a combination of VEMAP and PRISM (1895-1979) and 298 

DAYMET (1980-2005) (Daly and Bryant, 2013; Kittel et al., 2004; Thornton et al., 2012). The 299 

VEMAP datasets are available at a daily time step and a coarser spatial resolution (0.5
o
 x 0.5

o
), 300 

while the PRISM datasets are available at a monthly time step and a finer spatial resolution (10 301 

km × 10 km). We interpolated the PRISM data at a daily time step by using the daily trend from 302 

the VEMAP datasets such that the monthly precipitation totals and monthly average temperature 303 

matches the monthly climate from the PRISM data. For the future (2006-2100), we used the 304 

Intergovernmental Panel on Climate Change (IPCC) 5
th

 assessment report (AR5) RCP4.5 and 305 

RCP8.5 climate scenarios available at a spatial resolution of 1/16
o 

x 1/16
o
. We chose the second-306 

generation Canadian earth system model (CanESM2) developed by the Canadian Centre for 307 

Climate Modeling and Analysis (Barker et al., 2008) to downscale the daily climate variables at 308 

a spatial resolution of 1/16
o 

x 1/16
o
 using the localized reconstructed analogs (LOCA) method 309 

(Pierce et al., 2014). While we also examined other downscaled product, outputs from the 310 

CanESM2 better match with historical change in climate variables during 1950-2005.  311 

Table 2. Default/SOC-only-constrained (DCdef) and fraction-constrained (DCfrac) decomposition 312 

(k) parameters used in the DAYCENT to simulate the size of different carbon pools. The 313 

absolute and relative column refers to magnitude and percent difference in k values between 314 

default and optimized parameters. 315 

Pools DCdef  DCfrac k (yr
-1

) 

 k (yr
-1

) Parameter range N Optimized Absolute 

change 

Relative 

change (%) 
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Active 7.30 (3,12) 301 3.50 -3.80 -52 

Slow 0.20 (0.10,0.30) 201 0.14 -0.06 -30 

Passive 0.0045 (0.001,0.0085) 351 0.0075 0.003 +67 

 316 

For annual LCLUC, we used spatially explicit datasets available at a resolution of 250m × 250m 317 

for the historical (1938-2005) and future (2006-2100) periods under the IPCC 4
th

 assessment 318 

report (AR4) A2 scenario (Sohl et al., 2012). We used only the A2 land cover scenario because 319 

there was not much difference in the trajectories of land cover change through 2100. For the 320 

period 1895-1937, we backcasted the proportional distribution of croplands and grasslands by 321 

integrating the Sohl et al. (2012) data with HYDE v3.2 data (Klein Goldewijk et al., 2017). We 322 

estimated the fractional distribution of croplands and grasslands by calculating the total number 323 

of pixels dominated by each land cover type at 250m resolution within each 1/16
 o

 grid cell 324 

(Figure S2a). Irrigation and fertilization data are based on census of agriculture statistics 325 

(Falcone and LaMotte, 2016). All datasets were interpolated/aggregated to a common resolution 326 

of 1/16
o
 x 1/16

o
 (approximately 7km x 7km at the equator).   327 

Cropping systems and crop rotation are based on county level data for the US Great Plains region 328 

available through Hartman et al. (2011), which were merged with tillage type and intensity data 329 

(Baker, 2011) to write 24 unique schedule files that describe grid-specific cropping system and 330 

crop management practices. The 24 unique schedule files include sequences of time blocks, with 331 

each block describing a unique set of crop types, crop rotation, tillage type, tillage intensity, 332 

fertilization, irrigation and residue removal (Hartman et al., 2011). Using these schedule files, we 333 

developed an unsupervised classification algorithm (K-means) to create 24 unique clusters as a 334 

function of long-term average climate (precipitation, minimum- and maximum-temperatures), 335 
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land forms, land cover type and elevation. We then assigned all the grid cells to one of the 24 336 

unique clusters to create a spatially explicit dataset on cropping system and crop rotation. While 337 

developing the unsupervised classification algorithm, the eastern part of the US Great Plains 338 

region dominated by corn (Zea mays L.) - soybean (Glycine max (L.) Merr.) rotation was 339 

underrepresented. To address this shortcoming, we used randomly selected grid points from the 340 

CropScape data (https://nassgeodata.gmu.edu/CropScape/) available through the USDA National 341 

Agricultural Statistics Service in the unsupervised classification algorithm. Additionally, 342 

cropping systems classified using the unsupervised algorithm was verified against current 343 

CropScape data allowing for realistic representation of cropping systems. During the 344 

verification, we retained 30% of the samples as independent sets. Application of the model 345 

against independent sets show that the unsupervised algorithm can predict crop rotation for all 346 

crop types with an accuracy of >70% (Figure S3). The distribution of schedule files representing 347 

different crop rotation and crop types used to build the unsupervised classification is shown in 348 

Figure S2b and the spatial distribution of crop rotations based on the unsupervised classification 349 

is shown in Figure S4.    350 

2.4 Model parameterization to link DAYCENT conceptual pools with C fractions     351 

The SOC dynamics in the DAYCENT consists of the first-order kinetic exchanges among 352 

conceptual pools (active, slow, and passive) defined by empirical turnover rates (Parton et al., 353 

1987). However, a major impetus for quantifying these pools comes from the fact that the size 354 

and distribution of SOC in the different pools cannot be directly linked with experimental data. 355 

Here, we developed a methodology to link the conceptual active, slow and passive pools to 356 

spectroscopy-based estimates of POC, MAOC and PyC fractions. The rate of decomposition 357 

across POC, MAOC and PyC are consistent with the potential turnover rates assigned to the 358 
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active, slow, and passive pools in some SOC models (Baldock et al., 2013b). For DAYCENT, 359 

there is conceptual agreement between the active and slow pools and the POC and MAOC 360 

fractions, respectively; however, we recognize (and discussion in section 3.5) that the passive 361 

pool and PyC fraction are not necessarily aligned conceptually due to different modes of 362 

formation.  363 

Here, we optimized the potential turnover rates in the DAYCENT model such that the absolute 364 

difference between the simulated SOC and predicted C fractions was minimized (see section 2.5 365 

below). When matching the soil pools with C fraction data, we compared the sum of 366 

belowground structural, metabolic and active pool SOC to POC, slow pool SOC to MAOC, and 367 

passive pool SOC to PyC. Details on matching the conceptual pools with C fraction data are 368 

provided in Figure S5. 369 

During the parameterization process, we tuned the potential decomposition rates (k) of only the 370 

DCfrac, while the default value available from Hartman et al. (2011) were used for the DCdef. The 371 

DAYCENT version used by Hartman et al. (2011) has been widely applied to study the impacts 372 

of climate and land use on SOC stocks and greenhouse gas fluxes for major crop types in 21 373 

representative counties in the US Great Plains agricultural region. When tuning the parameter of 374 

DCfrac, we determined the upper (+60%) and lower (-60%) bounds of k using default value 375 

(Table 1). We then tuned the k value of each pool by running the DAYCENT at seven long-term 376 

research sites (Figure 1; Table 2), and comparing the simulated SOC in active, slow, and passive 377 

pools with the POC, MAOC and PyC fractions, respectively. The DCfrac and DCdef models were 378 

then reran during model calibration (section 2.5), evaluation (section 2.6), as well as during the 379 

historical and future simulations (section 2.7).     380 
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 381 

Figure 1. Parameterization of kactive, kslow and kpassive using carbon fractions predicted across long 382 

term research sites. Each colored curve represents the change in SOC stocks as a function of 383 

potential decomposition rates at seven long term research sites. The dashed black line represents 384 

the potential decomposition rates (k) that is optimized when the absolute difference between the 385 

fraction-constrained (DCfrac) simulated SOC in different pools and the predicted C fractions is 386 

minimum. The dashed green line represents the size of different soil SOC pools using the default 387 

k value based on default/SOC-only-constrained (DCdef) model. The dashed grey line is the 388 

average POC (i.e. active), MAOC (i.e. slow) and PyC (i.e. passive) predicted using the 389 

combination of diffuse reflectance spectroscopy and machine learning at seven long term 390 

research sites. 391 
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 392 

In the current DAYCENT model, total SOC is defined as follows: 393 

𝑆𝑂𝐶𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑖𝑡𝑠𝑡𝑟𝑐 +  𝐿𝑖𝑡𝑚𝑒𝑡𝑎𝑏 + 𝑆𝑂𝐶𝑎𝑐𝑡𝑖𝑣𝑒 +  𝑆𝑂𝐶𝑠𝑙𝑜𝑤 +  𝑆𝑂𝐶𝑝𝑎𝑠𝑠𝑖𝑣𝑒   (1) 394 

Where, 395 

Litstrc = structural litter pool  396 

Litmetab = metabolic litter pool 397 

SOCactive = active SOC pool 398 

SOCslow = slow SOC pool 399 

SOCpassive = passive SOC pool 400 

Each of the above SOC pool has a specific potential decomposition rates that determines the time 401 

(ranging from years to centuries) until decomposition. Plant material is transferred to the active, 402 

slow and passive pools from aboveground and belowground litter pools and three dead pools. 403 

Total C flow (CFact) out of the active pool is a function of potential decomposition rates 404 

modified by the effect of moisture, temperature, pH, and soil texture. 405 

𝐶𝐹𝑎𝑐𝑡 =  𝑘𝑎𝑐𝑡 × 𝑆𝑂𝐶𝑎𝑐𝑡 × 𝑏𝑔𝑑𝑒𝑐 × 𝑐𝑙𝑡𝑎𝑐𝑡 × 𝑡𝑒𝑥𝑡𝑒𝑓 × 𝑎𝑛𝑒𝑟𝑏𝑑𝑒𝑐 × 𝑝𝐻𝑒𝑓𝑓 × 𝑑𝑡𝑚     (2) 406 

Where,  407 

CFact = the total amount of C flow out of the active pool (g C m
-2

) 408 

kact = intrinsic decomposition rate of the active pool (yr
-1

) 409 

SOCact = SOC in the active pool (g C m
-2

). 410 

bgdec = the effect of moisture and temperature on the decomposition rate (0-1) 411 

cltact = the effect of cultivation on the decomposition rate for crops (0-1) for the active pool 412 

textef = the effect of soil texture on the decomposition rate (0-1) 413 

anerbdec = the effect of anaerobic conditions on the decomposition rate (0-1) 414 
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pHeff  = the effect of pH on the decomposition rate (0-1) 415 

dtm = the time step (fraction of year) 416 

The respiratory loss when the active pool decomposes is calculated as: 417 

𝐶𝑂2(𝑎𝑐𝑡) =  𝐶𝐹𝑎𝑐𝑡  × 𝑝1𝐶𝑂2           (3) 418 

Where,  419 

CO2(act) = respiratory loss from the SOCact pool (g C m
-2

) 420 

p1CO2 = scalar that control respiratory CO2 loss computed as a function of intercept and slope 421 

parameters modified by soil texture 422 

The C flow from active to passive pool is then computed as: 423 

𝐶𝐹𝑎𝑐𝑡2𝑝𝑎𝑠 =  𝐶𝐹𝑎𝑐𝑡  × 𝑓𝑝𝑠1𝑠3 × (1 + 𝑎𝑛𝑖𝑚𝑝𝑡 × (1 − 𝑎𝑛𝑒𝑟𝑏))    (4) 424 

Where, 425 

CFact2pas = C flow from the active to the passive pool (g C m
-2

)  426 

fps1s3 = impact of soil texture on the C flow (0-1) 427 

animpt = the slope term that controls the effect of soil anaerobic condition on C flows from 428 

active to passive pool (0-1) 429 

anerb = effect of anaerobic condition on decomposition computed as a function of soil available 430 

water and potential evapotranspiration rates 431 

The C flow from active to the slow pool is then computed as the difference between total C flow 432 

out of the active pool, respiratory CO2 loss, C flow from active to passive pool and C lost due to 433 

leaching. Mathematically, 434 

𝐶𝐹𝑎𝑐𝑡2𝑠𝑙𝑜 =  𝐶𝐹𝑎𝑐𝑡 − 𝐶𝑂2(𝑎𝑐𝑡) − 𝐶𝐹𝑎𝑐𝑡2𝑝𝑎𝑠 −  𝐶𝑙𝑒𝑎𝑐ℎ     (5) 435 

Where, 436 

Cleach = C lost due to leaching calculated as a function of leaching intensity (0-1) and soil texture 437 
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Likewise, total C flow (CFslo) out of the slow pool is a function of potential decomposition rates 438 

modified by the effect of moisture, temperature, pH, and soil texture. 439 

𝐶𝐹𝑠𝑙𝑜 =  𝑘𝑠𝑙𝑜 × 𝑆𝑂𝐶𝑠𝑙𝑜 × 𝑏𝑔𝑑𝑒𝑐 × 𝑐𝑙𝑡𝑠𝑙𝑜 × 𝑎𝑛𝑒𝑟𝑏𝑑𝑒𝑐 × 𝑝𝐻𝑒𝑓𝑓 × 𝑑𝑡𝑚   (6) 440 

kslo = intrinsic decomposition rate of the slow pool (yr
-1

) 441 

SOCslo = SOC in the slow pool (g C m
-2

). 442 

cltslo = the effect of cultivation on the decomposition rate for crops (0-1) for the slow pool 443 

The respiratory loss when the slow pool decomposes is calculated as: 444 

𝐶𝑂2(𝑠𝑙𝑜) =  𝐶𝐹𝑠𝑙𝑜  × 𝑝2𝐶𝑂2           (7) 445 

Where,  446 

CO2(slo) = respiratory loss from the SOCslo pool (g C m
-2

) 447 

P2CO2 = parameter that controls decomposition rates of the slow pool (0-1) 448 

The C flow from slow to passive pool is then computed as: 449 

𝐶𝑠𝑙𝑜2𝑝𝑎𝑠 =  𝐶𝐹𝑠𝑙𝑜  × 𝑓𝑝𝑠2𝑠3 × (1 + 𝑎𝑛𝑖𝑚𝑝𝑡 × (1 − 𝑎𝑛𝑒𝑟𝑏))    (8) 450 

Where, 451 

fps2s3 = impact of soil texture on decomposition (0-1) 452 

The C flow from slow to active pool is then computed as a difference between total C flow out of 453 

the slow pool, respiratory CO2 loss and total C flow from slow to passive pool. Mathematically, 454 

𝐶𝐹𝑠𝑙𝑜2𝑎𝑐𝑡 =  𝐶𝐹𝑎𝑐𝑡 − 𝐶𝑂2(𝑠𝑙𝑜) − 𝐶𝐹𝑠𝑙𝑜2𝑝𝑎𝑠        (9) 455 

Likewise, total C flow (CFpas) out of the passive pool is a function of potential decomposition 456 

rates modified by the effect of moisture, temperature and pH. 457 

𝐶𝐹𝑝𝑎𝑠 =  𝑘𝑝𝑎𝑠 × 𝑆𝑂𝐶𝑝𝑎𝑠 × 𝑏𝑔𝑑𝑒𝑐 × 𝑐𝑙𝑡𝑝𝑎𝑠 × 𝑝𝐻𝑒𝑓𝑓 × 𝑑𝑡𝑚      (10) 458 

Where, 459 

kpas = intrinsic decomposition rate of the passive pool (yr
-1

) 460 
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SOCpas = SOC in the slow pool (g C m
-2

). 461 

cltpas = the effect of cultivation on the decomposition rate for crops (0-1) for the passive pool 462 

The CFpas is either lost through respiratory processes or transferred to the active pool using the 463 

following equation: 464 

𝐶𝑂2(𝑝𝑎𝑠) =  𝐶𝐹𝑝𝑎𝑠  × 𝑝3𝑐𝑜2         (11) 465 

𝐶𝐹𝑝𝑎𝑠2𝑎𝑐𝑡 =  𝐶𝐹𝑝𝑎𝑠  × (1 − 𝑝3𝑐𝑜2))        (12) 466 

Where,  467 

CO2(pas) = respiratory loss from the passive SOC pool (g C m
-2

) 468 

p3co2 = parameter that control decomposition rates of passive pool (0-1) 469 

CFpas2act = C flow from passive to active pool (g C m
-2

) 470 

The rate modifiers used in equations 2, 6 and 10 are explained in text S1. Since DAYCENT is a 471 

donor-controlled model and changes in organic matter are primarily driven by a top down 472 

approach, we first parameterize the active soil pool by comparing the simulated SOC in the 473 

active pool against POC predicted using diffuse reflectance spectroscopy. During the 474 

parameterization process, we varied the potential decomposition rates (kactive) by running the 475 

model to equilibrium under native vegetation for 2000 years. We then used site history at seven 476 

long-term research sites to create schedule files and simulate the effects of historical cropping 477 

systems, land use change, land management and grazing practices on the active SOC.  478 

We repeated the above process for parameterizing the slow- and passive-carbon pools by 479 

comparing it with MOAC and PyC, respectively. Similar to the active pool, we tuned the existing 480 

parameters based on the default/SOC-only-constrained model that controls the potential 481 

decomposition rates (kslow and kpassive) of the slow- and passive-pools. The active, slow, and 482 

passive pools were optimized sequentially. When optimizing the decomposition rates of the slow 483 
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pool, we used the kactive value and reran the model to determine the optimized kslow value. 484 

Likewise, for the passive pool, we repeated the same process but with optimized kactive and kslow 485 

values. The parameters were optimized when the averaged absolute difference between the SOC 486 

stocks of the respective pools across all the sites were minimum. During the optimization 487 

process, we ran the model iteratively within 60% (upper and lower bounds) of the DCdef to 488 

determine the optimized parameters (Table 2). 489 

 490 

2.5 Model calibration and simulation procedure 491 

The DAYCENT model has been well calibrated across a range of climatic, environmental, and 492 

land use gradients for different crop and grassland types. Details of the recommended calibration 493 

procedure can be found in Hartman et al. (2011). The calibration procedure explained here 494 

applied to both the DCdef and DCfrac models. Briefly, adjustment of key model parameters that 495 

control plant growth and SOM changes were made by changing the schedule files at each point 496 

in time. For example, transitioning to higher yielding corn varieties occurred in 1936, while the 497 

short and semi-dwarf wheat varieties were introduced in the 1960s. During the calibration 498 

process, model parameters that control the maximum photosynthetic rate and grain to stalk ratio 499 

were adjusted within realistic limits to account for improvement in crop varieties. The upper and 500 

lower bounds of the calibration parameters were determined from literatures and the model 501 

parameter were adjusted within these bounds, such that the simulated C stocks and fluxes 502 

matches with the observation. Additionally, adjustments in the schedule files were made to 503 

account for residue removal in early years, while residues were retained in later years, thereby 504 

increasing nutrient input to the soils. These calibration strategies have allowed to better capture 505 

crop dynamics in the US Great Plains region (Hartman et al., 2011). 506 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems 

 25 

Model simulation begins with the equilibrium run starting from year zero to year 1894 by 507 

repeating daily climate data from 1895-2005 and native vegetation without disturbance or land 508 

use change. Following the equilibrium run, we performed a historical simulation to quantify the 509 

effects of land use history, land management practices, and climate change on the evolution of 510 

SOC during 1895-2005. Finally, we performed future simulations using two climate scenarios 511 

(RCP4.5 and RCP8.5) and A2 LCLUC, with land management practices (i.e. irrigation, 512 

fertilization, tillage practices, and crop rotation) held at 2005 levels during 2006-2100.  513 

2.6 Model validation at site and regional scales 514 

The performance of the calibrated model was assessed by comparing simulated SOC in the 515 

active, slow, and passive pools against predictions of POC, MAOC and PyC, respectively, at the 516 

seven long-term research sites. Model calibration was performed for specific PFTs (crops, C3 517 

and C4 grass), while validation was carried out at a given site, both under changing climate, land 518 

use and management. In the validation procedure, we ran the model at these sites using plant 519 

growth and soil parameters determined from model calibration, but with changing climate, 520 

environmental, and land use data based on the land use history of the respective sites. For all the 521 

sites, we compared the distribution of SOC in different pools and evaluated model performance 522 

using linear regression and the goodness-of-fit statistics (bias, R
2
, RMSE). 523 

We also compared the distribution of SOC simulated using DAYCENT against the machine 524 

learning model-based predictions of POC, MAOC, and PyC for the US Great Plains ecoregion 525 

(Sanderman et al., 2021). Additionally, we compared simulated total SOC against two other SOC 526 

maps for the contemporary period (Hengl et al., 2017; Ramcharan et al., 2018) .   527 
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2.7 Historical and future changes in SOC stocks 528 

To quantify the effect of the new parameterization scheme linking measurable soil C pools with 529 

conceptual active, slow, and passive pools from the DAYCENT, we designed two scenarios. In 530 

the first scenario, we ran the model using the DCdef and the DCfrac model that links conceptual 531 

pools with C fraction during the historical period (1895-2005) to quantify the differences in SOC 532 

across different pools associated with different parameterization. We used daily climate data 533 

developed by merging PRISM, VEMAP and DAYMET climate products. For historical LCLUC, 534 

we used Sohl et al. (2012) during 1938-2005 and HYDE v3.2 during 1895-1937 (see section 2.3 535 

above).  In the second scenario, we performed future simulations to understand if the different 536 

model structures (DCdef versus DCfrac) result in different effects of climate and LCLUC on SOC 537 

stocks. We used the IPCC AR5 RCP8.5 and RCP4.5 climate scenarios and the IPCC AR4 A2 538 

LCLUC scenarios to quantify the effects of future climate and LCLUC change on SOC stocks. 539 

The RCP8.5 corresponds to the pathway that tracks current global trajectories of cumulative CO2 540 

emissions (CO2 levels reaching 960 ppm by 2100) with the assumption of high population 541 

growth and modest rates of technological change and energy intensity improvements (Riahi et 542 

al., 2011; Schwalm et al., 2020). The RCP4.5 is a modest emission scenario with CO2 levels 543 

reaching 540 ppm by 2100 under the assumption of shift toward low emission technologies and 544 

the deployment of carbon capture and geologic storage technology (Thomson et al., 2011). The 545 

A2 land cover scenario emphasizes rapid population growth and economic development, and 546 

resembles closely to the RCP8.5 scenario. We used the AR4 for LCLUC because Sohl et al. 547 

(2012) data were available at high resolution and allowed for smoother transition between land 548 

cover types when moving from historical to future A2 LCLUC scenarios. The purpose of the 549 

second scenario is to better understand the response of SOC to future climate and LCLUC and 550 
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examine the effect of the constraining conceptual soil pools with C fractions on the projected 551 

change in total SOC through 2100. 552 

3. Results and Discussion     553 

By quantifying the size and distribution of conceptual SOC pools of ecosystem models using a 554 

combination of diffuse reflectance spectroscopy and machine learning, we were able to modify 555 

DAYCENT by relating the conceptual active, slow and passive pools with measurable POC, 556 

MAOC and PyC fractions (section 3.1). Model constrained by C fractions led to more accurate 557 

representation of the magnitude and distribution of SOC (section 3.2) and was necessary to 558 

accurately quantify the legacy effect of previous land use under a changing climate and 559 

reproduce current SOC stocks compared to the default model (section 3.3). Projection of future 560 

SOC change show that the DCdef underestimates the SOC loss in response to climate and land 561 

cover change by 31% and 29% for croplands and grasslands, respectively (section 3.4). Overall, 562 

our results demonstrate that relating the pools sizes from the ecosystem model with C fraction 563 

data is necessary to better initialize SOC pool and simulate SOC response to climate and land use 564 

into the future.   565 
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 566 
Figure 2. Comparison of the machine learning (ML) and DAYCENT simulated SOC using the 567 

fraction-constrained (DCfrac) and default/SOC-only-constrained (DCdef) models at long-term 568 

research sites with a known cropping history (n=387). The black dots in the boxplot represent the 569 

SOC at the various sites plotted by adding a random value along the y-axis such that they do not 570 

overlap with each other. 571 

3.1 Model evaluation of total SOC and the distribution of SOC at long-term research sites 572 

The DCfrac model linking conceptual soil pools to measurable C fractions showed better 573 

representation of the distribution of C stocks across different pools compared to the DCdef model 574 

(Figures 2 & 3). When the mean SOC at these sites were compared to DCfrac and DCdef simulated 575 

SOC, DCfrac had better fit (R
2
 = 0.52) and lower RMSE (8.49 Mg C ha

-1
) compared to DCdef (R

2
 576 

= 0.40; RMSE = 8.93 Mg C ha
-1

) (Figure S6). The mean SOC based on observation for these 577 

sites was 38.96 Mg C ha
-1

, which is comparable to the sum of predicted C fractions (37.07 Mg C 578 

ha
-1

) and simulated SOC using DCfrac (42.30 Mg C ha
-1

) and DCdef (36.60 Mg C ha
-1

) models. 579 

The DCfrac simulated SOC was higher than observation and machine learning based SOC by 9 580 

and 12%, respectively, while DCdef showed under-predicted SOC by 6% compared to 581 
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observation. Although DCfrac showed a tendency toward over-prediction, assessment of the 582 

distribution of SOC demonstrated that DCfrac was able to better simulate the distribution of SOC 583 

in soil pools compared to DCdef. The DCfrac simulated the highest proportion of C in the slow 584 

(56%) pool followed by the passive (30%) and active (14%) pools, which is comparable to the 585 

machine learning model-based estimates of MAOC (57%), PyC (29%) and POC (14%), 586 

respectively. Unlike DCfrac, DCdef model simulated the highest proportion of C in passive (53%), 587 

followed by slow (39%) and active (8%) pools (Table S2).  588 

 589 

Figure 3. Comparison of the machine learning (ML) and DAYCENT simulated SOC using the 590 

fraction-constrained (DCfrac) and default/SOC-only-constrained (DCdef) models across different 591 

pools at two long-term research sites dominated by grasslands with a known grazing history 592 

(n=201). The black dots in the boxplot represent the SOC across different sites plotted by adding 593 

a random value along the y-axis such that they do not overlap with each other. 594 
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Evaluation of the model performance for grasslands and croplands showed that the DCfrac 595 

outperformed the DCdef with better model fit (R
2
 = 0.60), lower bias (-1.94 Mg C ha

-1
) and lower 596 

RMSE (6.7 Mg C ha
-1

) for grasslands (Figure S7). The DCfrac also produced better model fit for 597 

croplands (R
2
 = 0.48), but higher bias (-5.84 Mg C ha

-1
) and RMSE (8.86 Mg C ha

-1
) compared 598 

to the DCdef model (bias = -0.82 and RMSE = 7.45 Mg C ha
-1

). The DCfrac was able to better 599 

represent the distribution of C in the active, slow and passive pools for both grasslands and 600 

croplands, while DCdef showed large discrepancies when representing the distribution of SOC for 601 

croplands (Table S2).  602 

The results of this exercise demonstrate that tuning the model parameters to initialize the 603 

conceptual SOC pools by matching with C fraction data can reproduce the distribution of SOC 604 

(Figures 2 & 3), building confidence in the modeling of SOC stocks, and their pool distribution 605 

(Lee and Viscarra Rossel, 2020; Luo et al., 2016). A common approach to initializing soil C 606 

pools is based on the use of soil C steady-state conditions, which is primarily achieved by 607 

running the model over a long period of 100 to 10000 years under native vegetation. However, 608 

this approach has shown large uncertainty in the estimation of contemporary SOC partly due to 609 

differences in parameter values used to determine the initial SOC stocks, which vary many fold 610 

across models (Tian et al., 2015; Todd-Brown et al., 2014). Additionally, the size and 611 

distribution of the soil C pools are constrained by model structure and parameter values 612 

producing large differences in initial conditions, which ultimately propagates into uncertainties 613 

in historical and future projection of SOC change (Ogle et al., 2010; Shi et al., 2018). Relating 614 

these conceptual pools to measurable C fractions by tuning parameters that control 615 

decomposition rates can help to constrain initial pool size and reduce uncertainties related to 616 

initial SOC stocks across different models (Christensen, 1996; Luo et al., 2016; Zimmermann et 617 
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al., 2007). Results of this study show that tuning the potential decomposition rates within 618 

reasonable range (Figure 1) can effectively capture the distribution of SOC among different 619 

pools without significantly altering the magnitude of total SOC (Figures 2 & 3).  620 

While tuning the parameters that control potential decomposition rates, active, and slow pools 621 

were adjusted by -3.8 yr
-1

 (-52% compared to default rate) and -0.06 yr
-1

 (-30%) respectively, 622 

and passive pool was increased by 0.003 yr
-1

 (67%) to match with C fractions data at the long-623 

term research sites. These modifications were done such that the model was able to simulate total 624 

SOC and their distribution under current climatic, and land use conditions while also allowing to 625 

capture the legacy effect of previous land use, crop rotation, and tillage practices. It is important 626 

to note that other soil C models use C fraction data obtained under land use of varying intensities 627 

to run the model to steady state (Zimmermann et al., 2007), although soils under continuous use 628 

are in a transient state (Wieder et al., 2018). The rate and direction of SOC change can be 629 

modified by environmental factors, previous land use, and current management practices (e.g., 630 

intensity, cropping systems and fertilization/irrigation), which ultimately determine a new 631 

equilibrium or transient state (Chan et al., 2011; Van Groenigen et al., 2014). Here, we run the 632 

model to steady state conditions to tune the potential decomposition rates parameter using 633 

measured C fraction data for simulating the SOC stocks of active-, slow- and passive-pools 634 

pools, and evaluate model performance to current land use and management practices by 635 

matching with C fractions data at all the sites.   636 

3.2 Model evaluation of net primary productivity (NPP) and SOC stocks at the regional 637 

scale 638 

Evaluation of simulated NPP using the DCdef and DCfrac models against county-level USDA-639 

NASS NPP data products developed by West (2008) showed that both models simulate NPP that 640 

is representative of this region (Figure S8). The USDA-NASS data products were developed 641 
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using the relationship between harvest area and yield in agronomic units (Hicke & Lobell 2004). 642 

There was no significant difference in simulated NPP between the DCdef and DCfrac when 643 

compared to NPP product developed by West (2008). This is likely because model optimization 644 

we employed in the DCfrac are related to belowground decomposition, and the exchanges of C 645 

among the active, slow and passive pools. The inconsistencies between the simulated NPP and 646 

USDA-NASS data product can be attributed to differences in total cropland acreage by county. 647 

While spatially explicitly cropland acreage maps were used to scale cropland NPP in the 648 

DAYCENT, estimates of NPP using the USDA-NASS data product relies on using aggregated 649 

acreage by county. As a result, there is a mismatch between total cropland acreage reported by 650 

USDA-NASS and the spatial map of cropland acreage used in this study.    651 

Evaluation of the model performance at the regional level by comparing model simulations to 652 

three data-driven SOC maps showed that the DCdef under-predicts SOC stocks for the 653 

contemporary period (2001-2005 average). The DCfrac was better able to reproduce the spatial 654 

pattern as observed in the data driven estimates of SOC (Figure 4). The difference map among 655 

different data driven products and simulated SOC showed that DCfrac outperforms DCdef for 656 

croplands, but overestimate SOC for grasslands (Figure S9). The DCfrac simulated contemporary 657 

SOC stocks of 34.86 Mg C ha
-1

 were closer to the estimates based on three data-driven models 658 

(32.38 – 39.19 Mg C ha
-1

) (Figure S10). The DCdef simulated SOC stocks of 26.17 Mg C ha
-1

, 659 

which is lower than the machine learning based predictions by 19-33%. Interestingly, both DCdef 660 

and DCfrac were not able to reproduce the high C stocks in the northeastern Great Plains although 661 

data driven modeling shows large SOC stocks.  662 
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 663 

Figure 4. Spatial pattern of SOC change during the contemporary period: fraction-constrained 664 

(DCfrac) (a), default/SOC-only-constrained (DCdef) (b), Sanderman et al. (2021) (c), Ramcharan 665 

et al. (2018) (d), and Hengl et al. (2017) (e). Data-driven SOC maps were scaled by cropland and 666 

grassland distribution maps before comparing against DAYCENT-simulated SOC.  667 

Evaluation of the model performance using a scatterplot shows that calibration of active, slow, 668 

and passive pools was necessary to produce unbiased estimates of SOC despite having slightly 669 

higher RMSE values than the DCdef model when compared to the different SOC data sets (Figure 670 

5). Among the three data driven models, Sanderman et al. (2021) also provided prediction of 671 

POC, MAOC, and PyC in the US Great Plains region. Comparison of the distribution of SOC 672 

across different pools indicate that the DCfrac was able to reproduce SOC in the slow/MAOC, but 673 

under-predicted the size of the active/POC and passive/PyC pools by 48% and 37%, respectively 674 

(Figure S11).  675 
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 676 

Figure 5. Scatter plots of the comparison of DAYCENT simulated SOC (fraction-constrained; 677 

DCfrac & default/SOC-only-constrained; DCdef) against Sanderman et al. (2021) – JS250m, 678 

Ramcharan et al. (2018) – AR100m, and Hengl et al. (2017) – SG250m.  679 

While the DCfrac model was able to better capture the magnitude and spatial pattern of SOC 680 

when compared against data based on machine learning models, the datasets themselves present 681 

a few challenges when comparing with the results from this study. First, these datasets were 682 

produced using the environmental covariates approach under current climatic and land use 683 

conditions, and thus represent SOC dynamics using aggregated climate, land use, and 684 

environmental conditions over a certain period. However, in the DAYCENT model, we used 685 

annual and daily time series data for climatic and land use conditions to simulate the processes 686 

that control SOM retention and stabilization, which could lead to inconsistencies when 687 

comparing results between this study and data driven products. Second, outputs based on 688 

machine learning models are sensitive to the number of samples used in the training sets. For 689 

example, machine learning-based SOC shows higher stocks in the northeastern Great Plains 690 
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region compared to the DCfrac or DCdef models (Figure 4). This may be because the region 691 

contains thousands of shallow seasonal wetlands with higher SOC stocks averaging between 78 692 

to 109 Mg C ha
-1

 to the depth of 20cm (Tangen and Bansal, 2020). Accounting for the large 693 

number of wetlands samples in the training set would likely produce higher SOC stocks in the 694 

region. We did not specifically model wetlands SOC and only considered grasslands and 695 

croplands, which cover >90% of the land area in the US Great Plains region and as such may 696 

have underrepresented these high SOC ecosystems.    697 

3.3 Historical changes in SOC stocks and their distribution 698 

When the baseline SOC (1895-1899 average) values were compared with the current (2001-2005 699 

average) SOC stocks, the DCfrac and DCdef models simulated a loss of 1063 Tg C (12%) and 634 700 

Tg C (10%), respectively. On a per unit area basis, DCfrac showed higher absolute (17.62 Mg C 701 

ha
-1

) and relative (33%) SOC losses compared to the loss of 10.60 Mg C ha
-1

 (27%) using DCdef 702 

for croplands. Grasslands showed similar patterns of higher absolute (2.51 Mg C ha
-1

) and 703 

relative (4%) SOC losses using DCfrac compared to the loss of 1.06 Mg C ha
-1

 (3%) using DCdef. 704 

Overall, croplands showed a large and significant loss of C when compared against the baseline 705 

SOC using both models, while grasslands showed both losses and gains of SOC during 1895-706 

2005 (Figure 6). The SOC loss from conversion of native vegetation to croplands were on 707 

average 14.70 Mg C ha
-1

 and 9.29 Mg C ha
-1

 using DCfrac and DCdef, respectively. This translates 708 

into a relative loss using DCfrac that is higher than the loss using DCdef by 58% during 1895-709 

2005. For grid cells under native grasslands, DCfrac simulated slightly higher average SOC loss 710 

(1.96 Mg C ha
-1

) compared to DCdef (1.39 Mg C ha
-1

). 711 
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 712 

Figure 6. Changes in contemporary (2001-2005 average) SOC after conversion of native 713 

vegetation to croplands (a) and under native vegetation (b) as a function of baseline (1895-1899 714 

average) SOC stocks. Negative values are losses while positive values are gains of SOC. 715 

The simulation of total SOC stocks following historical land use under a changing climate is 716 

constrained by model parameters that determine the time until decomposition, modified by the 717 

interaction of land use intensity with changing climate (Arora and Boer, 2010; Eglin et al., 718 

2010). Land use change can modify total SOC through its effect on individual soil pools, with 719 

the POC/active pool more vulnerable to loss compared to the MAOC/slow and PyC/passive 720 

pools (Poeplau and Don, 2013). The potential decomposition rates using the DCfrac model were 721 

adjusted to match C fraction data such that higher SOC was allocated to rapid and slow cycling 722 

pools, which are more vulnerable to loss following land use change and management intensity at 723 

decadal to century time scales (Hobley et al., 2017; Sulman et al., 2018). We further compared 724 

the historical SOC loss following land use change against other studies to determine the 725 

robustness of the new parameterization using DCfrac. The SOC loss rate using DCfrac are closer to 726 

the mean 30 cm loss rate of 17.7 Mg C ha
-1

 (Sanderman et al., 2017b), and relative loss of 42-727 

49% following conversion of forest/pasture to croplands (Guo and Gifford, 2002). However, it is 728 

important to note that these previous studies are not directly comparable with the results from 729 
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this study because of differences in sampling depth, the intensity of land use and the time since 730 

disturbance.  731 

 732 

Figure 7. The active, slow, and passive soil pools of SOC stocks (20 cm depth) based on the 733 

fraction-constrained (DCfrac) model under native vegetation (1895-1899 average; top maps) and 734 

following land cover land use change (2001-2005 average; bottom maps). 735 

Comparison of the total SOC and its distribution in different pools between the two models 736 

provided a more nuanced picture of the effect of new parameterization on SOC stocks and the 737 

response of SOC to historical land use. The spatial pattern of the SOC stocks showed that the 738 

baseline SOC in the active, slow and passive pools simulated by the DCfrac model (Figure 7) 739 

were higher than the DCdef model (Figure S12). As a result, there were higher SOC losses from 740 

the active and slow pools using DCfrac compared to DCdef (Figure 7, S12). When averaged over 741 

all pixels, the cropland SOC loss in the active, and slow, pools were 0.85, 10.09 and gains in the 742 

passive pool was 0.34 Mg C ha
-1

, respectively, using DCdef. The DCfrac simulated larger SOC 743 
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loss for all pools with active, slow, and passive pools losing SOC by 1.48, 16.04 and 0.09 Mg C 744 

ha
-1

, respectively. The magnitude of SOC loss from grasslands was lower compared to croplands 745 

for all three pools, with the largest SOC loss from the slow pool of 1.45 and 0.49 Mg C ha
-1

 746 

using DCfrac and DCdef models, respectively. The distribution of SOC to different pools indicated 747 

that DCdef had 44%, 43% and 13% SOC in the passive, slow, and active pools for croplands, 748 

while DCfrac had 57% of the total SOC allocated to the slow pool, followed by the passive (23%) 749 

and active (20%) pools. For grasslands, both models were consistent in allocating the largest 750 

proportion of SOC (59% in DCdef and 70% in DCfrac) to slow pools, followed by passive and 751 

active pools. 752 

The differences in the total SOC and their distribution between the models is constrained by the 753 

sensitivity of the SOC pools to environmental, climatic, and management factors (Davidson and 754 

Janssens, 2006; Dungait et al., 2012; Luo et al., 2016). The SOC stocks in the passive pool are 755 

not significantly different between the models at the regional level because the passive pool is 756 

less sensitive to environmental, climatic, and management factors, and it has a smaller 757 

contribution to total SOC (Collins et al., 2000), the SOC stocks in the passive pool were not 758 

significantly different between the models at the regional level. However, the active and slow 759 

pools respond strongly to environmental, climatic, and management constraints, which is largely 760 

driven by rapidly cycling fresh organic matter input in the active pool, and gradually 761 

decomposing detritus in the slow pool (Sherrod et al., 2005). In the DCfrac, the potential 762 

decomposition rates of the active and slow pools are adjusted, allowing the model to retain more 763 

SOC to match with C fraction data. These changes resulted in higher SOC stocks in these pools, 764 

which translated into higher total losses despite slower turnover rates relative to DCdef. Model 765 
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optimization was necessary not only to match total SOC values but also to simulate the 766 

distribution of SOC into the active, slow and passive pools. 767 

 768 

Figure 8. Temporal change in the absolute SOC stocks (20 cm depth) for croplands (a) and 769 

grasslands (c) and relative SOC loss compared to the 1895 SOC for croplands (b) and grasslands 770 

(d) in response to land use under a changing climate through 2100. The solid and dashed lines 771 

after 2006 represent RCP4.5 and RCP8.5 climate scenarios, respectively, both under the A2 land 772 

cover change scenario. 773 

3.4 Future changes in SOC stocks and their distribution 774 

Projection of the SOC dynamics in response to land cover change under a changing climate 775 

resulted in greater relative changes for both croplands and grasslands using the DCfrac compared 776 

to the DCdef model (Figure 8). Despite greater rates of loss, by the end of the 21
st
 century, DCfrac 777 

still simulated higher total SOC stocks compared to DCdef model (Table 3). By the end of 21
st
 778 

century, the DCfrac simulated total SOC stocks of 2818 and 2563 Tg C for croplands under the 779 

RCP4.5 and RCP8.5 scenarios, while the DCdef simulated total SOC stocks of 2266 and 2082 Tg 780 

C. Native grasslands had higher SOC stocks of 3310 and 3095 Tg C using the DCfrac compared 781 
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to the SOC stocks of 2505 and 2324 Tg C using the DCdef under the RCP4.5 and RCP8.5 782 

scenarios, respectively. On a per unit area basis, absolute loss (difference between the 2095s and 783 

2000s) were slightly higher for croplands, with a mean loss rate 10.43 Mg C ha
-1

 compared to 784 

8.44 Mg C ha
-1

 for grasslands using DCfrac under the RCP8.5 scenario (Table 3). The DCdef also 785 

simulated similar trend with slightly higher absolute losses for croplands (7.85 Mg C ha
-1

) 786 

compared to grasslands (6.55 Mg C ha
-1

) under the RCP8.5 scenario. Relative losses estimated as 787 

a percentage of contemporary SOC stocks were higher in croplands (29% for DCfrac vs 28% for 788 

DCdef model) compared to grasslands (16% for both DCfrac and DCdef models) under the RCP8.5 789 

scenario. Using the DCfrac, the SOC loss rate were 33% and 29% higher for croplands and 790 

grasslands, respectively, compared to the DCdef by the end of the 21
st
 century under the RCP8.5 791 

scenario. While both models simulated total SOC loss over the 21
st
 century, the difference in 792 

SOC between models sums to an additional loss of 1252 Tg SOC under the RCP8.5 scenario. 793 

The turnover rates of SOM are primarily driven by temperature and environmental controls with 794 

significant impact on the dynamics of total SOC changes at decadal to century time scales (Knorr 795 

et al., 2005). The two model versions used the same climate and environmental data and only 796 

differ in the turnover rates of the active, slow, and passive pools. Because the sizes of active, and 797 

slow pools in the DCfrac model were larger than the DCdef model, simulated absolute and relative 798 

losses were higher using the DCfrac compared to the DCdef for croplands. Larger losses using the 799 

DCfrac are primarily associated with the legacy effects of management intensity and rising 800 

temperatures with larger rates of SOC loss from the active, and slow pools (Crow and Sierra, 801 

2018) of DCfrac compared to DCdef. Additionally, the size of the passive pool in DCdef is larger 802 

compared to DCfrac, and this pool is less vulnerable to land use intensity and warming climate 803 

compared to active and slow pools. Thus, there was a disproportionately larger SOC loss driven 804 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems 

 41 

by the size of the slow pool and the interaction of climate and management intensity using the 805 

DCfrac compared to the DCdef, which translated into larger absolute and relative losses of SOC. 806 

For grasslands, we did not include any management driven changes. Both absolute and relative 807 

losses of SOC stocks in the grasslands are primarily driven by the warming climate (Jones and 808 

Donnelly, 2004), with active and slow pools losing more SOC stocks using DCfrac compared to 809 

DCdef. Future work should consider the interactive effects of grazing management with climate. 810 

  811 
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Future land use, management intensity, nitrogen content, and climate interact in different ways to 814 

control C flow from soil pools with different mean residence times, which ultimately determine 815 

total SOC stocks (Deng et al., 2016; Luo et al., 2017; Sulman et al., 2018). Under a warming 816 

climate, SOC formed from fresh organic matter inputs controls the size of the active/POC pool, 817 

which is further constrained by the intensity of land use and is more vulnerable to loss (Crow and 818 

Sierra, 2018; Lavallee et al., 2020). The active/POC pool also acts as a donor to the slow/MAOC 819 

pool with C transfer and rates of SOC accumulation increasingly controlled by temperature 820 

(Crow and Sierra, 2018). In the DAYCENT, regardless of model version, the size of the active 821 

pool is relatively small as fresh organic matter is either decomposed rapidly or quickly enters the 822 

slow pool following decomposition. The slow pool has longer residence times ranging from 823 

years to decades, and can accrue C when transfer rates from the active pool are higher than C 824 

losses through decomposition from the slow pool (Collins et al., 2000; Fontaine et al., 2007). In 825 

this study, the rates of decomposition due to rising temperatures had a stronger control on the 826 

size of the slow pool compared to the transfer of SOC from the active pool. As a result, the slow 827 

pool continued to lose SOC under projected climate changes in the future. Although rising 828 

temperature had a strong control on SOC dynamics of the slow pool, it is important to recognize 829 

that the actual sensitivity of active, slow, and passive pools to elevated temperatures is relatively 830 

unknown (Soong et al. 2021; Lugato et al. 2021).  831 

 832 

3.5 Limitations of the study 833 

Although previous studies have shown that conceptual pools can be linked to measurable 834 

fractions of SOC separated on the basis of soil physiochemical properties (Christensen 1996; 835 

Luo et al. 2016; Zimmermann et al., 2007), there are limitations of matching the conceptual 836 
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pools with the measurable C fractions. One of the main limitations is that the conceptual soil 837 

pool in the DAYCENT is simulated as a function of potential decomposition rates modified by 838 

clay content, temperature and moisture limitations. But, the C fraction data obtained using a 839 

specified methodology (e.g., Baldock et al., 2013a) are assumed to have different 840 

physiochemical properties compared to the formation of SOC in the conceptual soil pools.  841 

The POC fraction is composed of plant detritus material with residence times of < 5 years 842 

(Baldock et al., 2013a), which is comparable to the SOC in active pool given that changes in 843 

POC and active SOC are driven by soil texture, temperature and moisture limitations, and 844 

management history (Zimmerman et al., 2007). In the DAYCENT, the active pool resembles 845 

closely with the POC because of short residence time and are assumed to be dominated by fresh 846 

plant residues. Likewise, the MAOC fraction is composed of highly decomposed plant material 847 

and microbial necromass, and is more stabilized compared to POC due to its association with 848 

reactive minerals (Schmidt et al. 2011). The slow pool in the DAYCENT resembles closely with 849 

MAOC because of longer residence times and are assumed to be dominated by stabilized organic 850 

matter. On the other hand, the PyC fraction is associated with incomplete combustion of organic 851 

matter and thus have a different mechanism of formation compared to the passive pool in the 852 

DAYCENT, which is essentially the leftovers after extensive action by microbes over decades 853 

and its persistence is driven by environmental limitations. However, a recent study has shown 854 

that the PyC fraction is strongly correlated with clay content (Reisser et al., 2016), indicating that 855 

the passive pool driven by clay content with long residence time can be representative of the PyC 856 

persistence in soils. Conceptually, there is a pretty good match between the active and slow 857 

DAYCENT pools and their corresponding measurable fractions, but the passive pool is not as 858 

well represented by the measured PyC fraction, and as a result, there is potential that the DCfrac 859 
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simulations may not truly represent the SOC dynamics in response to climate, land use and 860 

management practices. However, the passive pool cycles on a multi-centennial time scale and as 861 

such does not contribute meaningfully to carbon dynamics for the time scales considered in this 862 

study. A few research groups have now developed model structures from scratch that best match 863 

the characteristics of the measurable fractions (Abramoff et al. 2018; Abramoff et al. 2021; 864 

Zhang et al. 2021), while other models now explicitly represent microbial activity by accounting 865 

for the relationship between litter quality, microbial physiology, and the physical protection of 866 

microbial products (Wieder et al. 2014; Woolf and Lehmann 2019).    867 

 868 

4 Conclusions 869 

In this study, we developed an approach to link conceptual soil pools in biogeochemical models 870 

against measurable C fractions. We then quantified the long-term evolution of SOC change and 871 

projected the SOC response to future climate and land cover scenarios using the fraction-872 

constrained (DCfrac) model that has been calibrated to C fraction data. Our results demonstrate 873 

that matching the active, slow and passive pools against POC, MOAC and PyC data lead to 874 

better representation of total SOC stocks and the distribution of SOC into different pools. With 875 

the updated model, the long-term legacy effect of past agricultural management results in larger 876 

absolute and relative losses of SOC compared to the default/SOC-only-constrained (DCdef) 877 

model. Projecting the SOC response to climate and land cover change into the future (2005-878 

2100) indicates that the DCfrac increases SOC losses by 2100 by 32% and 28% for croplands and 879 

grasslands, respectively, under the RCP8.5 scenario compared to using the DCdef model. 880 

There are several study limitations that need to be addressed in our future work. First, new 881 

modeling efforts should also consider quantifying how changes in aboveground biomass inputs 882 

quantity and quality affect SOC dynamics given mixed results in agricultural systems in response 883 
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to litter inputs (Halvorson et al., 2002; Sanderman et al., 2017a). Second, current models rely on 884 

using clay content to modify rates of SOM stabilization and turnover, but recent research has 885 

shown that other soil physicochemical properties such as exchangeable calcium and extractable 886 

iron and aluminum are stronger predictors of SOM content (Rasmussen et al., 2018). Third, new 887 

modeling efforts should constrain model parameters affecting SOC dynamics by integrating 888 

them with data-driven modeling and long-term experimental data (Jandl et al., 2014). Finally, 889 

given the paucity of data related to C fractions, there is increasing need for measurement and 890 

modeling of C fractions across a wide range of environmental and management gradients (Luo et 891 

al., 2017). Despite these limitations, we have shown that models calibrated to pool sizes by 892 

matching with C fractions can improve long-term SOC predictions by more accurately 893 

representing soil C transformations in response to climate, land cover and land use change.  894 

Code and Data Availability:  895 

The DAYCENT model source code is available in Harvard dataverse repository 896 

(https://doi.org/10.7910/DVN/6PC8LP). The new parameterization scheme and scripts for 897 

regional model simulation are available in zenodo (https://doi.org/10.5281/zenodo.6011111). 898 

Input data for driving the models are freely available online from different sources and have been 899 

cited appropriately in the manuscript. Long term ecological data are part of United States 900 

Department of Agriculture – Agricultural Research Service and can be requested from the 901 

references listed in Table 1. 902 

Author Contributions: S.D., C.S, and J.S designed the study and model development. S.D. 903 

performed model improvement, calibration, validation and regional historical and future 904 

simulation. All authors contributed to the manuscript. 905 
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