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Seed dispersal is critical to the ecological performance of sexually reproducing plant
species and the communities that they form. The Mammalian order Carnivora provide
valuable and effective seed dispersal services but tend to be overlooked in much of
the seed dispersal literature. Here we review the literature on the role of Carnivorans in
seed dispersal, with a literature search in the Scopus reference database. Overall, we
found that Carnivorans are prolific seed dispersers. Carnivorans’ diverse and plastic
diets allow them to consume large volumes of over a hundred families of fruit and
disperse large quantities of seeds across landscapes. Gut passage by these taxa
generally has a neutral effect on seed viability. While the overall effect of Carnivorans
on seed dispersal quality is complex, Carnivorans likely increase long-distance dispersal
services that may aid the ability of some plant species to persist in the face of
climate change.

Keywords: carnivore, seed dispersal, carnivoran, frugivory, endozoochory

INTRODUCTION

Seed dispersal is a crucial process that allows populations of sexually reproducing plants to
persist locally, improve fitness and gene flow, and shift or expand their geographic ranges
(Howe and Smallwood, 1982; Levin et al., 2003). Understanding the dispersal mechanisms in
sexually reproducing plants is, therefore, crucial for understanding current plant distributions and
community composition, as well as predicting future distributions and compositions (Harper, 1977;
Howe and Smallwood, 1982). Natural selection has favored the evolution of fleshy fruits or fleshy
accessory structures (hereon referred to as fruits), in turn these fruits encourage the consumption
of a plant’s seeds by animals who then disperse the seeds providing a fitness benefit (Tiffney,
1984; Tiffney, 2004; Eriksson, 2016), a process called endozoochory. The pattern of dispersal via
endozoochory is influenced by how seed traits interact with disperser traits. Furthermore, the
behaviors, life-history traits, and physiology of Carnivora make them distinct from other dispersers.
For example, Carnivora often maintain large home ranges (i.e., ursids, Graham and Stenhouse,
2014), gut passage times are long (Escribano-Avila et al., 2014; Draper et al., 2021) which will
affect the patterns of seedfall across landscapes and the consequences of those patterns in ways that
differ from other frugivores (Schupp and Fuentes, 1995; Jordano et al., 2007; Martínez et al., 2008).
Differences in seed disperser gut-passage time and post-consumption movement can influence
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dispersal distances, while their habitat use and defecation
patterns can influence micro-site characteristics and degree of
seed clumping that will influence plant recruitment. Therefore, it
is important to understand the full complement of seed dispersers
on the landscape. In this review, we discuss the unique role of an
often-overlooked group of endozoochoric seed dispersers, species
in the order Carnivora.

To date, most research on seed dispersal via endozoochory
has focused on taxa outside the order Carnivora, primarily
birds and other mammals such as primates and bats. For
example, a Scopus search on January 5, 2022 of seed disp∗

AND (bird OR mammal OR carniv∗) returned 3,486 studies,
of which only 164 focused on taxa in the order Carnivora.
This focus on other taxa is in part because of the colloquial
view that most Carnivorans are largely meat-eaters, leading
to the assumption that they likely play only an indirect and
incidental role in seed dispersal through their effects on their
frugivorous prey (e.g., Hämäläinen et al., 2017). However,
the order Carnivora is a hyperdiverse group of animals that
includes 13 families of land dwellers whose diet’s range from
nearly obligate meat-eaters (e.g., species in the family Felidae)
to omnivores (e.g., black bears, Ursus americanus) to strict
herbivores (e.g., pandas, Ailuropoda melanoleuca, Atwood et al.,
2020). Although seed dispersal studies have concentrated on
other taxa, there is growing evidence that several species of
Carnivorans are effective and important seed dispersers (Willson,
1993; Enders and Vander Wall, 2012; Spennemann, 2019).
Furthermore, the behaviors, life-history traits, and ecologies of
Carnivora make them distinct from other dispersers such as birds
and other mammals (e.g., Escribano-Avila et al., 2014; Selwyn
et al., 2020). Thus, to obtain a more complete understanding
of plant distributions and population and community dynamics
across space and time, we must understand Carnivorans role as
seed dispersers.

In this paper, we review the role Carnivorans play in seed
dispersal. First, we examine the prevalence of observed and
potential endozoochoric seed dispersal by species in the order
Carnivora. Second, we examine the importance of Carnivoran
seed dispersal under two frameworks: seed dispersal effectiveness
(SDE) and long-distance dispersal (LDD). The SDE framework
measures effective seed dispersal as an interaction of quality
(viable seeds, suitable deposition locations etc.) and quantity
(the number of seeds dispersed), while LDD is defined as
dispersal beyond the seed source stand or beyond the genetic
neighborhood that produced the seed (Schupp, 1993; Schupp
et al., 2010; Jordano, 2017).

We conducted a review of the literature using the Scopus
reference database (November 2020). Our search used 396 pairs
of search terms that paired frugivory/seed dispersal terms with
a Carnivoran terms including Latin names and common names
(Supplementary Table 1). This returned a total of 1,746 papers;
1,406 papers were removed due to an irrelevant double meaning
of a search term or a lack of peer review. An additional 62 papers
were removed that looked exclusively at seed predation such as
the consumption of acorns and other hard mast, or diplochory
of seeds in the stomach of prey. Ultimately, 278 papers met our
complete search criteria (Supplementary Table 2). In reviewing

this literature, we found that Carnivorans are effective and prolific
seed dispersers across the globe.

PREVALENCE OF FRUGIVORY IN
CARNIVORA

We found that frugivory and seed dispersal are common among
taxa in the order Carnivora, occurring in at least 10 families
(Table 1 and Supplementary Table 2). Research noting frugivory
and seed dispersal by members of the family Canidae (e.g.,
coyotes, foxes, and wolves) were the most common (33% of
studies), while another 28% of studies focused on members of the
family Mustelidae (e.g., martens, Martes). Studies on frugivory
in Viverridae (e.g., civets, Civettictis), Ursidae (e.g., bears, Ursus),
and Procyonidae (e.g., raccoons, Procyon) were also prevalent
in the literature, while Mephitidae (e.g., skunks, Mephitis),
Herpestidae (e.g., mongoose, Herpestes), Hyaenidae (e.g., hyenas,
Hyaena), Ailuridae (red panda, Ailurus), and Nandiniidae
(African palm civet, Nandinia) were represented by four or
fewer studies each. The limited number of frugivory studies on
these particular groups of Carnivora does not necessarily mean
that they play only a minor role in seed dispersal, but instead
could reflect research or publication biases. However, based on
their ecology, some Carnivorans are unlikely to consume fruits
intentionally. For example, no studies identified frugivory or seed
dispersal in members of Felidae (cats), Prionodontidae (lisang),
or Eupleridae (fossa), which are known to consume little to no
plant parts (Atwood et al., 2020). These three taxa also lack a
functional sweet taste, reducing the likelihood that they would be
attracted to consuming fruits (Jiang et al., 2012). Diet studies on
Carnivorans also often group all plant parts together or include
plant parts in the diet category “other,” likely underestimating
the extent of Carnivoran frugivory. Thus, consumption of fruits
and dispersal of seeds by Carnivorans is surely higher than
documented in the literature.

Many species of Carnivora are opportunistic foragers that
switch diets depending on prey availability and vulnerability
(Chavez-Ramirez and Slack, 1993; Santos et al., 2003; Takahashi
et al., 2008; Zhou et al., 2008). This diet plasticity allows many
Carnivora to increase their consumption of fruits when they
are readily available or during times when other prey are scarce
(Silva et al., 2005; Takahashi et al., 2008). Notably, the diets of
some species of Carnivora, such as coyotes and bears, can be
dominated by fruits at certain times of the year (Dumond et al.,
2001; Takahashi et al., 2008). Additionally, Carnivoran frugivory
is influenced by the diverse physical capabilities of taxa within
the order. Species capable of climbing commonly consume fruits
directly from trees (Viverridae, Ursidae, Mustelidae, Mudappa
et al., 2010; García-Rangel, 2012; Takatsuki et al., 2018), while
other species are dependent on fruits falling to the ground
(Canidae, Mustelidae, Herrera, 1989; Grünewald et al., 2010) or
consuming fruits from low bushes that are accessible from the
ground (Ursidae, Belant et al., 2010; Harrer and Levi, 2018).
This diversity of foraging strategies within and across Carnivoran
families is demonstrated in the diversity of plant species and fruit
types they consume. We found documentation of Carnivorans
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TABLE 1 | Breakdown of the distribution of studies we found in our literature
search described in the introduction by family and genus, and whether those
studies looked at seed dispersal or frugivory in each taxonomic group.

Family Genus Total Frugivory Seed dispersal

Canidae 150 55 95

Atelocynus 1 1

Canis 26 10 16

Cerdocyon 9 4 5

Chrysocyon 3 2 1

Cuon 1 1

Lycalopex 19 7 12

Nyctereutes 14 9 5

Otocyon 3 3

Urocyon 10 4 6

Vulpes 64 18 46

Mustelidae 126 48 78

Eira 4 2 2

Lutra 1 1

Martes 71 26 45

Meles 36 14 22

Melogale 3 3

Mustela 9 5 4

Neogale 1 1

Neovison 1 1

Viverridae 59 29 30

Not specified 1 1

Arctictis 10 7 3

Arctogalidia 2 2

Civettictis 3 1 2

Cynogale 1 1

Genetta 6 2 4

Hemigalus 1 1

Paguma 12 6 6

Paradoxurus 13 5 8

Prionodon 1 1

Viverra 4 2 2

Viverricula 5 1 4

Ursidae 60 25 35

Not specified 1 1

Helarctos 4 2 2

Melursus 1 1

Tremarctos 2 2

Ursus 52 21 31

Procyonidae 46 28 18

Bassaricyon 1 1

Bassariscus 5 3 2

Cerdocyon 1 1

Nasua 14 8 6

Potos 6 6

Procyon 19 10 9

Mephitidae 4 3 1

Conepatus 2 1 1

Mephitis 1 1

Spilogale 1 1

Herpestidae 2 0 2

Herpestes 2 2

Hyaenidae 2 2 2

Hyaena 2 2

Ailuridae 1 1 0

Ailurus 1 1

Nandiniidae 1 1 0

Nandinia 1 1

Publications that studied multiple genera or families are counted in this table as
separate studies for each genus.

consuming the pomes, drupes, berries, arils, or dry cones of at
least 118 families of plants, with Rosaceae (e.g., blackberries),
Moraceae (e.g., mulberry), and Ericaceae (e.g., heather) being
the most prevalent in the literature (Supplementary Table 3).
However, we did not identify any plant species that were
solely dependent on seed dispersal by a Carnivoran. We also
found that Carnivora exploit species of fruits with which they
share a long history of co-occurrence, as well as novel fruits
(Cypher and Cypher, 1999; Mudappa et al., 2010; Roehm and
Moran, 2013). The consumption and dispersal of seeds from
familiar and novel fruits suggest that Carnivora could increase
the spread of fruit-bearing invasive plant species (Spennemann,
2019), as well as alter the dispersal patterns of native fruit-
bearing plants encountered by novel Carnivoran species that
are experiencing range expansion (e.g., coyotes, Hody and Kays,
2018). This is particularly important given that defaunation will
limit plants’ abilities to track a suitable niche in the changing
climate (Fricke et al., 2022); therefore the natural introduction of
a novel generalist seed disperser may re-establish climate tracking
for some plants.

The geographic locations of studies exploring frugivory in
the order Carnivora suggest that they are prolific seed dispersers
across the globe (Figure 1). Frugivory or seed dispersal by at least
one Carnivoran species has been documented on every continent,
except Antarctica. Most studies on Carnivoran frugivory or seed
dispersal have taken place in North America, South America,
Europe, and East Asia (e.g., Japan and parts of Malaysia),
with fewer studies on Carnivoran frugivory or seed dispersal
in Africa, Oceania, and western Asia. The lack of studies in
Oceania likely stem from there being few native Carnivorans
in this region, although two studies from Australia suggest that
the introduction of Carnivorans to new regions could result in
new mutualistic relationships with native (or invasive) plants
(Brunner et al., 1976; O’Connor et al., 2020). The few studies
in Africa and Central/Western Asia are somewhat surprising
considering that IUCN’s Red List shows 119 and 53 species of
Carnivora, respectively across these regions (IUCN, 2021). As
a result, the geographic prevalence of Carnivora seed dispersal
could be much greater than the literature currently suggests,
especially in Africa and parts of Asia.

In addition to being globally widespread, Carnivoran
frugivory or seed dispersal has been documented in every
terrestrial ecoregion (Wiken, 1986; Bailey, 1995; Olson and
Dinerstein, 2002), except mangroves and rock/ice (Figure 1).
Most studies have been conducted in temperate, tropical,
and subtropical regions. In particular, there is a greater
number of studies focusing on Carnivoran frugivory or seed
dispersal in temperate/broadleaf mixed forests, Mediterranean
forests/woodlands/scrubs (mostly in Spain), and tropical and
subtropical moist broadleaf ecoregions. In general, the number
of studies investigating Carnivoran frugivory was lowest in
polar regions. Fewer studies in higher latitude systems could
reflect a reduction in the prevalence of omnivory with increasing
latitudes, or a reduction in the number of Carnivoran-fruiting
plant combinations that could be studied due to reduced species
diversity at the poles (Hillebrand, 2004). Regardless, the global
expanse of documented Carnivoran frugivory combined with the
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FIGURE 1 | We conducted a literature search as outlined in the introduction. The search yielded 280 peer-reviewed publications that observed or discussed
Carnivoran consumption of fruits and seeds. Each seed on this map represents a study that explored or discussed Carnivoran frugivory or seed dispersal. The map
is divided by ecoregion as compiled by The Nature Conservancy (Wiken, 1986; Bailey, 1995; Olson and Dinerstein, 2002), included in the legend is the total number
of studies identified in that ecoregion. We were unable to assign 39 studies to a specific ecoregion because the studies addressed frugivory and seed dispersal at a
wide spatial scale that crossed multiple ecoregions or used species of captive animals that crossed multiple ecoregions in their wild ranges.

taxonomic breadth of the plant species consumed suggests that if
the seeds consumed by members of Carnivorans are viable, then
Carnivora are likely prevalent and important seed dispersers
throughout the globe.

CONSEQUENCES OF CARNIVORAN
SEED DISPERSAL

Two distinct yet overlapping concepts can help guide our
thinking about the consequences of seed dispersal by
Carnivorans: SDE and LDD events. These frameworks can
be integrated with demographic models (Beckman et al., 2020)
to predict how seed dispersal by Carnivorans influences the
persistence and spread of plant populations.

Seed Dispersal Effectiveness
Seed dispersal effectiveness has been defined as the contribution
a seed disperser makes to the fitness of a plant it disperses.
While this is ideally measured in terms of the recruitment of
new reproductive adults to the population, empirical studies
generally quantify disperser contributions to the performance

of some earlier life-history stage, such as successful seedling
establishment, rather than new adults (Schupp, 1993; Schupp
et al., 2010; Schupp et al., 2017). SDE has a quantity component
and a quality component, where SDE = quantity × quality.
Quantity is the number of seeds dispersed and quality is the
probability that a dispersed seed successfully produces a new
adult. In terms of the quality of seed dispersal by Carnivorans,
we highlight: (1) the treatment in the mouth and gut, (2) the
local distance dispersed, and (3) the seedscape, that is, the
local environmental factors that influence recruitment after seed
deposition (Beckman and Rogers, 2013).

Quantity of Seed Dispersal
When thinking about the consequences of seed dispersal by
Carnivorans, the quantity of seed dispersal is straightforward –
it is simply the number of seeds dispersed and Carnivorans
generally consume large quantities of fruit per feeding (Harrer
and Levi, 2018; Shakeri et al., 2018). However, quantity is also
influenced by the total number of visits by a disperser, and
we know much less about this. Carnivoran visitation can be
facilitated when other herbivores and frugivores improve the
accessibility of fruits by removing thorny vegetative parts or
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knocking fruits off of trees, thus increasing dispersal quantity
(Selwyn et al., 2020). Quality, however, is more complex and
can be affected by a variety of outcomes of the Carnivoran-plant
interaction as discussed next.

Quality of Seed Dispersal: Treatment in the Mouth
and Gut
When frugivores feed on fruits there is a continuum of outcomes,
from all seeds being treated gently and dispersed physically
intact to all being destroyed by chewing or by gut passage
itself (Schupp, 1993). For seeds that do pass through the gut
intact, seed germinability may be reduced or increased and
germination timing may be altered (Traveset, 1998). Gut passage
may increase seed germination by scarifying seed coats either
chemically or mechanically, potentially reducing physiological
or physical seed dormancy (Traveset et al., 2007; Soltani
et al., 2018). Furthermore, fecal matter can protect seeds from
predators or pathogens and provide fertilizer (Traveset et al.,
2007). Consequently, what happens during gut passage can
have negative, positive, or neutral consequences for the quality
component of SDE.

Consumption of fruits by Carnivorans typically results in
intact seeds being passed through the digestive system and
deposited in scat (Herrera, 1989; Perea et al., 2013). Destruction
of seeds by chewing generally occurs when the seeds are ground
in the mouth. However, even highly frugivorous Carnivoran
species like bears (Harrer and Levi, 2018) have a dentition that
is optimized for a diverse omnivorous diet (Elbroch, 2006). As
a result, the molars in Carnivorans are specialized for crushing
(i.e., bones and hard mast) rather than grinding (Elbroch, 2006),
making the breaking of seeds, especially smaller seeds, less
likely in Carnivorans (Koike et al., 2008; Lalleroni et al., 2017).
Furthermore, fruits are often consumed whole and processed in
the stomach of Carnivorans, allowing for the passing of even
large seeds intact (e.g., Prunus; Rogers and Applegate, 1983).
Every study within our literature search that quantified the
proportion of seeds that were passed found that greater than
90% of seeds were passed intact (Supplementary Table 4). These
studies included members of the families Canidae, Mustelidae,
Ursidae, and Viverridae, with no clear variation in seed treatment
by different Carnivoran families. Studies that included dry fruited
or nut species accounted for the highest proportion of broken
seeds, while most seeds from fleshy fruited species were defecated
with greater than 98% of seeds intact (Supplementary Table 4).

Although most Carnivorans appear to pass seeds intact, the
effect of gut passage on seed viability, germination, and dormancy
is less straightforward. Carnivoran gut passage of intact seeds
generally shows a neutral effect on viability; 70.6% of studies
(defined as each seed-Carnivoran pair as some papers explored
multiple interactions) showed that viability was maintained at
the same proportion as undigested seeds, and more than 167
additional studies showed that seeds were viable after dispersal
however without a control comparison to evaluate proportional
changes in seed viability (Supplementary Table 4). In some
cases, gut-passage can help break seed dormancy or alter
germination timing, with examples showing both accelerated and
delayed germination as illustrated in the distribution of studies

in our review (49% accelerating, 13.7% delaying, and 37.3%
resulting in no change in germination timing Supplementary
Table 4). However, the effect of gut passage on seed viability and
germination can be species-pair-specific (Traveset and Willson,
1997; Rubalcava-Castillo et al., 2021), with the same seed species
being affected differently by different Carnivoran species, and
vice-a-versa. Altering germination timing and proportions has
the potential to create a mismatch between germination and
favorable conditions for recruitment while depleting viable seeds
from the seed bank and decreasing future recruitment (Traveset
et al., 2007; Roehm and Moran, 2013). Alternatively, these
alterations in germination timing can also lead to beneficial
alignment between germination and recruitment conditions
resulting in higher overall recruitment (Traveset et al., 2007).
Therefore, changes in germination timing are not necessarily
positive or negative, but context-dependent depending on plant
species, ecoregion, and past and future climate and weather.
Studies to date that look at viability and germination are heavily
biased toward Canidae and Ursidae. The variability in seed
responses and low representation of Carnivoran taxa studied
necessitates further research on Carnivoran seed dispersal to
elucidate broad and consistent trends.

Quality of Seed Dispersal: Local Dispersal
The local distance seeds are dispersed from the parent can have a
large effect on the quality of dispersal and overall SDE. Dispersal
away from the parent plant frequently increases survival and
successful recruitment through escape from distance- and
density-dependent seed and seedling enemies that concentrate
attack beneath and near adult conspecifics (e.g., Janzen, 1970;
Connell, 1971; Howe et al., 1985; Schupp, 1988; Comita et al.,
2014). Often, the advantage is not simply getting away from the
parent, but rather the advantage steadily increases with increasing
distance from the parent or other conspecific adults (Howe et al.,
1985) provided seeds are deposited in a suitable microsite for
germination and establishment. How far a frugivore disperses
seeds is dependent on gut-passage time and the distance and
directionality of travel by the disperser.

Despite the importance of gut-passage time for understanding
the capabilities of an effective seed disperser, few studies have
investigated gut-passage time in Carnivorans (Table 2). In our
limited dataset, average gut-passage times for Carnivorans that
have consumed fruit ranged between 2.5 and 18 h (Table 2),
with maximum gut-passage times exceeding 24 h for several
Carnivoran species. Of the species studied, Japanese marten
(Martes melampus) had the shortest average gut-passage times of
2.5 h, and Asiatic black bear (Ursus thibetanus) had the longest
average gut-passage time of 18 h (Koike et al., 2011; Table 2).
Gut-passage times roughly scale with body size (p-value = 0.01,
r-squared = 0.54, Figure 2). However, one factor that might affect
gut-passage times in individual Carnivorans is diet composition;
diets containing more fruit likely have shorter gut-passage times.
For example, one study found that an increase in fruit in brown
bear (Ursus arctos) diets reduced the average gut-passage time
from 14.5 to 6.5 h (Elfström et al., 2013). Conversely, there was
no effect of the proportion of fruit in the diet on gut-passage
times for coyotes (Draper et al., 2021). Though gut-passage time
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TABLE 2 | Animal body mass, average gut-passage time, and the range of gut-passage time of Carnivoran species identified as frugivores/seed dispersers.

Species Mass (kg) Gut-passage time (h) Gut-passage time range (h) Source

Procyonidae Potos flavus 3.00 2.50 0.7–5.6 Smith et al., 2003; Lambert et al., 2014

Mustelidae Martes melampus 1.00 5.50 0.6–51.7 Smith et al., 2003; Tsuji et al., 2015

Mustelidae Martes americana 1.25 4.30 3.8–10.3 Hickey et al., 1999; Smith et al., 2003

Ursidae Ursus arctos 180.52 5.78 4.6–7.0* Smith et al., 2003; Elfström et al., 2013

Viverridae Arctictis binturong 9.88 6.50 3.3–9.3 Smith et al., 2003; Grassman et al., 2005

Canidae Lycalopex gymnocercus 4.54 6.80 5.5–8.1 Varela and Bucher, 2006; Jones et al., 2009

Canidae Cerdocyon thous 5.24 7.70 4.5–13.0 Smith et al., 2003; Varela and Bucher, 2006

Canidae Nyctereutes procyonoides 4.04 8.83 4–32.8 Smith et al., 2003; Mise et al., 2016

Canidae Canis latrans 13.41 14.82 2.0–36.0 Smith et al., 2003; Draper et al., 2021

Ursidae Ursus thibetanus 77.50 18.90 3.2–44.3 Smith et al., 2003; Koike et al., 2011

All values are for adults of both sexes. All reported gut-passage times are for mixed or pure fruit diets. Species with multiple records are reported as a mean of the data
included therein.
*1st and 3rd quantiles reported in paper rather than first and last defecation.

may be altered when consuming fruit for some species (both
decreasing and increasing gut-passage time, Cipollini and Levey,
1997), passage times remain on the order of hours suggesting
that regardless of how much fruit was consumed, Carnivorans
physiology can accommodate long dispersal distances.

Seed dispersal distances provided by Carnivorans have been
shown to correlate with the maximum movement possible within
the animal’s home range (González-Varo et al., 2013). Movements
by Carnivorans are often constrained to an individual’s home
range because many species are territorial (Gese and Ruff, 1997;
Graham and Stenhouse, 2014). Carnivorans travel extensively
within their home range to maximize access to resources, avoid
risks from intraspecific and intraguild aggression (Hertel et al.,
2019), and engage in territorial marking and patrolling (Gese
and Ruff, 1997; Graham and Stenhouse, 2014). While there can
be a wide variation in home range size within a species, daily
total movement tends to stay the same across a population, with
animals with smaller home ranges utilizing the entire space daily,
and those with larger home ranges traversing it over multiple days
with similar daily travel distances (Goszczyński, 2002). Similar to
gut-passage time, home range size also increases with Carnivoran
body size (p-value < 0.001, r-squared value = 0.35; Figure 2 and
Supplementary Table 5). Therefore, we expect Carnivoran seed
dispersal to also scale with body size. Considering that the body
size of documented fruit-eating Carnivorans spans three orders
of magnitude, from the least weasel (Mustela nivalis; 0.10 kg) to
the brown bear (Ursus arctos; 180.5 kg), we would expect that
Carnivorans express a multitude of different dispersal distances.
Thus, Carnivorans are likely diverse in their abilities to disperse
seeds away from the parent plant and other conspecifics that may
compete with seedings.

Quality of Seed Dispersal: The Seedscape
Beyond removal from the vicinity of maternal plants, an
additional aspect of local dispersal services is the ecological
conditions into which seeds are deposited. Carnivorans deposit
seeds in different habitats than many other seed dispersers,
providing seed dispersal that is complimentary to other dispersers
that results in a more diverse seedscape (Beckman and Rogers,
2013). Carnivoran behavior such as patrolling and territorial

marking can lead to the deposition of seed-laden scat along travel
corridors (Suárez-Esteban et al., 2013; Rubalcava-Castillo et al.,
2020) and in open habitats either as a marking or coincidentally
as they pass through (Gese and Ruff, 1997; Rost et al., 2012;
Fedriani et al., 2018). In contrast, other endozoochoric dispersers
(e.g., passerines) and abiotic dispersal generally result in seed
deposition within contiguous canopy cover with high fruit
occurrence (Jordano and Schupp, 2000; Herrera and García,
2010; Escribano-Avila et al., 2014). The deposition of seeds
in travel corridors and open habitats provides seed dispersal
to sites that are often either in completely novel habitat or
along habitat edges, complementing other dispersal vectors.
Furthermore, Carnivorans increase dispersal into open habitats
improving colonization and recolonization of disturbed habitats
better than their avian counterparts (Escribano-Avila et al., 2014).
The complimentary dispersal patterns provided by Carnivorans
can improve the fitness of the plants that they disperse (Celedón-
Neghme et al., 2013; Escribano-Ávila et al., 2013; Escribano-Avila
et al., 2014). However, this diversity of deposition also has the
potential to negatively affect the outcome for seeds that are
ultimately dispersed to unsuitable habitats.

Carnivorans broadcast seeds widely at a macro scale (i.e.,
meters to kilometers, González-Varo et al., 2013) by traveling
long distances before defecating seeds, but concentrate them at
a micro scale (sub 1 m, Shakeri et al., 2018) by concentrating
them in a single scat. These patterns can alter their effects on
SDE quality (Schupp et al., 2002). The majority of studies in
our literature search observing Carnivoran seed consumption
and deposition record a large number of seeds per scat (e.g.,
Matías et al., 2010; Harrer and Levi, 2018; Shakeri et al., 2018).
The concentration of many seeds into a single deposition can
reduce the quality component of SDE. Seeds suspended within
an intact scat have lower rates of emergence (Draper et al.,
2021), so the extent to which secondary dispersers remove seeds
and distribute them elsewhere will affect the ultimate quality of
dispersal (Enders and Vander Wall, 2012). Concentrating seeds in
a single location can also attract seed predators (which are often
also secondary dispersers) and increase the spread of pathogens,
countering some of the many benefits that dispersal provides
(LoGiudice and Ostfeld, 2002; Shakeri et al., 2018). Furthermore,
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FIGURE 2 | Relationships between gut-passage time, home range, and body mass in Carnivorans. (A) Linear regression between the log body mass (kg) and log
gut-passage time (hours) of 10 Carnivoran species (p-value = 0.01, r-squared = 0.54). (B) Linear regression between the log mass (kg) and the log home range (km2)
of 51 Carnivoran species (p-value < 0.001, r-squared value = 0.35). Gut-passage time, body mass, and home range values were derived from the available literature
for species identified in our literature search as frugivorous Carnivorans (Supplementary Table 5).

the release of many seeds in a single scat can increase the potential
for future competition among seedlings and juvenile plants
(Loiselle, 1990; Schupp et al., 2002). Some Carnivoran species in
the families Canidae, Procyonidae, Nandiniidae, Mustelidae, and
Viverridae can further compound the above effects on quality by
depositing scats in spatially discrete latrines, potentially resulting
in extremely large concentrations of seeds (Clevenger, 1996;
Page et al., 1999; Page et al., 2001; Helbig-bonitz et al., 2013;
Osugi et al., 2020). Conversely, a clumped rather than even
distribution of seeds can result in higher rates of recruitment
due to a lower ability of pathogens or predators to track
vulnerable seeds (Beckman et al., 2012), and the fertilizing effect
of scat can improve germination and recruitment conditions
for seeds growing from scats and latrines, helping to overcome
the negative effects of high seed and seedling density (O’Farrill
et al., 2013; Sugiyama et al., 2018). The potential for both positive
and negative effects of Carnivoran dispersal on SDE suggests
that future studies should focus on monitoring the number
of successful recruits to later life history stages, as opposed
to the more common approaches that focus on seed viability
and germination.

Long-Distance Dispersal
Long-distance dispersal affects plant genetic exchange and
migration (Jordano, 2017). LDD occurs when a seed is moved
beyond the geographic limits of its source stand or outside

the genetic neighborhood of the source plant (Jordano, 2017).
Carnivorans provide dispersal distances that move seeds beyond
the threshold defining LDD for many plant species (Lalleroni
et al., 2017; Spennemann, 2018; Pereira et al., 2019). With these
LDD events Carnivorans aid in maintaining gene flow between
disparate stands, improving genetic diversity and resiliency
(Harper, 1977). Furthermore, by providing dispersal beyond
the confines of a current plant stand, Carnivorans can aid in
range shifts to track suitable climate conditions or recolonize
disturbed landscapes (Escribano-Avila et al., 2014; Naoe et al.,
2016). This will have the most profound effect in areas where
Carnivoran species are repatriating former ranges (Draper et al.,
2017) and re-establishing LDD services or where they are
colonizing new territory and introducing a new LDD service
(Hody and Kays, 2018).

DISCUSSION

The geographic, taxonomic, and ecological breadth of
Carnivoran frugivory and seed dispersal supports the hypothesis
that Carnivorans are common and likely important seed
dispersers worldwide. Given their sizes and gut capacities, many
Carnivorans can consume large quantities of fruits and seeds in
a feeding bout and thus have the potential to be quantitatively
important seed dispersers. However, at this point we lack a full
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understanding of the quantitative component of SDE provided
by Carnivorans due to a paucity of data on the number of
visits made to individual plants. Considering treatment in the
mouth and gut, Carnivorans commonly pass fruit seeds intact
and generally have a neutral effect on seed viability, while gut
passage generally has neutral or positive effects on germination,
indicating high quality treatment. When seeds are deposited,
the scat itself provides fertilizer and protection from some
seed predators and pathogens, clearly positive consequences of
Carnivoran seed dispersal (Traveset et al., 2007; O’Farrill et al.,
2013). In contrast, the concentration of seeds in Carnivoran scat
and the latrine behavior of many Carnivorans has the potential
to increase density-dependent seed predation (Shakeri et al.,
2018) and increase conspecific and heterospecific competition
among seedlings and juvenile plants. The long dispersal distances
Carnivorans can provide potentially improves seed and seedling
survival in the face of distance-dependent enemies. However,
the biotic and abiotic characteristics of the sites where seeds are
deposited often have a greater impact than distance on the quality
of dispersal and this has been poorly addressed. Overall, although
there is clear evidence that Carnivoran seed dispersal has the
potential to be quantitatively and qualitatively effective, there are
substantial gaps in our knowledge of both. Consequently, the
overall SDE provided by Carnivorans is uncertain at this time.

The wide range of potential dispersal distances among
different Carnivorans combined with other biotic and abiotic
dispersal vectors adds to the portfolio of strategies that
plants can employ to distribute their seeds across a landscape
(Escribano-Avila et al., 2014). Relatively long gut-passage times
combined with the potential to move long distances suggest that
Carnivorans can provide regular LDD services. While this may
sometimes carry seeds outside of quality germination conditions,
it can also provide them the potential for range expansion
and connect disparate populations of the same species to help
maintain genetic diversity (Levine and Murrell, 2003). As a result,
LDD by Carnivorans could play an important role in the ability
of certain plant species to persist in the face of climate change
(Kremer et al., 2012; Corlett and Westcott, 2013).

Perhaps the most intriguing and important aspect of
Carnivoran seed dispersal is its potential complementarity with
avian seed dispersal. Birds generally defecate or regurgitate

seeds while perched, depositing seeds beneath existing vegetation
(Jordano and Schupp, 2000; Herrera and García, 2010).
By contrast, many Carnivorans defecate and deposit seeds
along travel routes and in open habitats, resulting in very
different seed shadows than those produced by birds (Suárez-
Esteban et al., 2013; Rubalcava-Castillo et al., 2020). Although
deposition in open habitats is unlikely to be advantageous
for all species, such a pattern of seed dispersal can promote
more rapid range expansion and recolonization of disturbed
habitats for those species able to recruit in these conditions
(Escribano-Avila et al., 2014).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work, and approved it for publication.

FUNDING

This research was funded by a Department of Watershed Sciences
Ph.D. Scholarship, a Utah State University (USU) Ecology Center
Scholarship, and the USDA-National Wildlife Research Center.
TA was funded by an Early Career Research Fellowship from the
Gulf Research Program of the National Academies of Sciences,
Engineering, and Medicine. ES was supported by project number
1523 of the Utah Agricultural Experiment Station, USU.

ACKNOWLEDGMENTS

We would like to thank E. Hammill and K. Kettenring for
comments on an early version of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.2022.
864864/full#supplementary-material

REFERENCES
Atwood, T. B., Valentine, S. A., Hammill, E., McCauley, D. J., Madin, E. M. P.,

Beard, K. H., et al. (2020). Herbivores at the Highest Risk of Extinction
Among Mammals, Birds, and Reptiles. Sci. Adv. 6:eabb8458. doi: 10.1126/
sciadv.abb8458

Bailey, R. G. (1995). Description of the Ecoregions of the United States. United States:
United States Forest Service.

Beckman, N. G., Aslan, C. E., Rogers, H. S., Kogan, O., Bronstein, J. L.,
Bullock, J. M., et al. (2020). Advancing an Interdisciplinary Framework to
Study Seed Dispersal Ecology. AoB Plants 12, 1–18. doi: 10.1093/aobpla/
plz048

Beckman, N. G., Neuhauser, C., and Muller-Landau, H. C. (2012). The Interacting
Effects of Clumped Seed Dispersal and Distance and Density-Dependent
Mortality on Seedling Recruitment Patterns. J. Ecol. 100, 862–873. doi: 10.1111/
j.1365-2745.2012.01978.x

Beckman, N. G., and Rogers, H. S. (2013). Consequences of Seed Dispersal for Plant
Recruitment in Tropical Forests: interactions Within the Seedscape. Biotropica
45, 666–681. doi: 10.1111/btp.12071

Belant, J. L., Griffith, B., Zhang, Y., Follmann, E. H., and Adams, L. G. (2010).
Population-level resource selection by sympatric brown and American black
bears in Alaska. Polar Biol. 33, 31–40. doi: 10.1007/s00300-009-0682-6

Brunner, H., Harris, R. V., and Amor, R. L. (1976). A note on the Dispersal of Seeds
of Blackberry (Rubus procerus P.J. Muell.) by Foxes and Emus. Weed Res. 16,
171–173. doi: 10.1111/j.1365-3180.1976.tb00398.x

Celedón-Neghme, C., Traveset, A., and Calviño-Cancela, M. (2013). Contrasting
Patterns of Seed Dispersal Between Alien Mammals and Native Lizards in a
Declining Plant Species. Plant Ecol. 214, 657–667. doi: 10.1007/s11258-013-
0197-7

Chavez-Ramirez, F., and Slack, R. D. (1993). Carnivore Fruit-Use and Seed
Dispersal of Two Selected Plant Species of the Edwards Plateau. Texas.
Southwest. Nat. 38:141. doi: 10.2307/3672066

Frontiers in Ecology and Evolution | www.frontiersin.org 8 March 2022 | Volume 10 | Article 864864

https://www.frontiersin.org/articles/10.3389/fevo.2022.864864/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2022.864864/full#supplementary-material
https://doi.org/10.1126/sciadv.abb8458
https://doi.org/10.1126/sciadv.abb8458
https://doi.org/10.1093/aobpla/plz048
https://doi.org/10.1093/aobpla/plz048
https://doi.org/10.1111/j.1365-2745.2012.01978.x
https://doi.org/10.1111/j.1365-2745.2012.01978.x
https://doi.org/10.1111/btp.12071
https://doi.org/10.1007/s00300-009-0682-6
https://doi.org/10.1111/j.1365-3180.1976.tb00398.x
https://doi.org/10.1007/s11258-013-0197-7
https://doi.org/10.1007/s11258-013-0197-7
https://doi.org/10.2307/3672066
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-864864 March 22, 2022 Time: 15:1 # 9

Draper et al. Frugivory/Seed Dispersal by Carnivorans

Cipollini, M. L., and Levey, D. J. (1997). Secondary Metabolites of Fleshy
Vertebrate-Dispersed Fruits: adaptive Hypotheses and Implications for Seed
Dispersal. Am. Nat. 150, 346–372. doi: 10.1086/286069

Clevenger, A. P. (1996). Frugivory of Martes martes and Genetta genetta in an
Insular Mediterranean Habitat. Rev. Ecol. 51, 19–28.

Comita, L. S., Queenborough, S. A., Murphy, S. J., Eck, J. L., Xu, K., Krishnadas,
M., et al. (2014). Testing Predictions of the Janzen-Connell Hypothesis: a Meta-
analysis of Experimental Evidence for Distance- and Density-dependent Seed
and Seedling Survival. J. Ecol. 102, 845–856. doi: 10.1111/1365-2745.12232

Connell, J. (1971). On the Role of Natural Enemies in Preventing Competitive
Exclusion in Some Marine Animals and in Rain Forest Trees. Dyn. Popul. 298,
298–312.

Corlett, R. T., and Westcott, D. A. (2013). Will Plant Movements Keep Up with
Climate Change? Trends Ecol. Evol. 28, 482–488. doi: 10.1016/j.tree.2013.04.003

Cypher, B. L., and Cypher, E. A. (1999). Germination Rates of Tree Seeds Ingested
by Coyotes and Raccoons. Am. Midl. Nat. 142, 71–76. doi: 10.1674/0003-
0031(1999)142[0071:grotsi]2.0.co;2

Draper, J. P., Atwood, T. B., Beckman, N. G., Kettenring, K. M., and Young, J. K.
(2021). Mesopredator Frugivory Has No Effect on Seed Viability and Emergence
Under Experimental Conditions. Ecosphere 12:e03702. doi: 10.1002/ecs2.3702

Draper, J. P., Waits, L. P., Adams, J. R., Seals, C. L., and Steury, T. D. (2017). Genetic
health and population monitoring of two small black bear (Ursus americanus)
populations in Alabama, with a regional perspective of genetic diversity and
exchange. PLoS One 12:e0186701. doi: 10.1371/journal.pone.0186701

Dumond, M., Villard, M. A., and Tremblay, É (2001). Does Coyote Diet
Vary Seasonally Between a Protected and an Unprotected Forest Landscape?
Ecoscience 8, 301–310. doi: 10.1080/11956860.2001.11682657

Elbroch, M. (2006). Animal Skulls: a Guide to North American Species.
Mechanicsburg: Stackpole Books.

Elfström, M., Støen, O. G., Zedrosser, A., Warrington, I., and Swenson, J. E. (2013).
Gut Retention Time in Captive Brown Bears Ursus arctos. Wildlife Biol. 19,
317–324. doi: 10.2981/12-121

Enders, M. S., and Vander Wall, S. B. (2012). Black Bears Ursus americanus Are
Effective Seed Dispersers, With a Little Help From Their Friends. Oikos 121,
589–596. doi: 10.1111/j.1600-0706.2011.19710.x

Eriksson, O. (2016). Evolution of angiosperm seed disperser mutualisms: the
timing of origins and their consequences for coevolutionary interactions
between angiosperms and frugivores. Biol. Rev. 91, 168–186. doi: 10.1111/brv.
12164

Escribano-Avila, G., Calviño-Cancela, M., Pías, B., Virgós, E., Valladares, F., and
Escudero, A. (2014). Diverse Guilds Provide Complementary Dispersal Services
in a Woodland Expansion Process After Land Abandonment. J. Appl. Ecol. 51,
1701–1711. doi: 10.1111/1365-2664.12340

Escribano-Ávila, G., Pías, B., Sanz-Pérez, V., Virgós, E., Escudero, A., and
Valladares, F. (2013). Spanish Juniper Gain Expansion Opportunities by
Counting on a Functionally Diverse Dispersal Assemblage Community. Ecol.
Evol. 3, 3751–3763. doi: 10.1002/ece3.753

Fedriani, J. M., Wiegand, T., Ayllón, D., Palomares, F., Suárez-Esteban, A.,
and Grimm, V. (2018). Assisting Seed Dispersers to Restore Oldfields: an
Individual-Based Model of the Interactions Among Badgers, Foxes and Iberian
Pear Trees. J. Appl. Ecol. 55, 600–611. doi: 10.1111/1365-2664.13000

Fricke, E. C., Ordonez, A., Rogers, H. S., and Svenning, J. (2022). The Effects
of Defaunation on Plants’ Capacity to Track Climate Change. Science 375,
210–214. doi: 10.1126/science.abk3510

García-Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and
conservation. Mamm. Rev. 42, 85–119. doi: 10.1111/j.1365-2907.2011.00207.x

Gese, E. M., and Ruff, R. L. (1997). Scent-Marking by Coyotes, Canis latrans:
the Influence of Social and Ecological Factors. Anim. Behav. 54, 1155–1166.
doi: 10.1006/anbe.1997.0561

González-Varo, J. P., López-Bao, J. V., and Guitián, J. (2013). Functional Diversity
Among Seed Dispersal Kernels Generated by Carnivorous Mammals. J. Anim.
Ecol. 82, 562–571. doi: 10.1111/1365-2656.12024
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