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Figure 1: Acetoanaerobium sp. VLB-1 under scanning electron microscopy 

 

Abstract 

 Genomic and physiological characteristics of an anaerobic, environmental bacterial 

isolate, Acetoanaerobium sp. strain VLB-1, were determined from the assembled annotated 2.57  

megabase-pair draft genome. Strain VLB-1 was isolated from an anaerobic, alkaline, saline 

methanogenic enrichment initiated from soils collected from the Eastern Saline Wetlands in 

Lincoln, NE. With this isolate, an investigation into elemental and amino acid cycling via the 

Stickland reaction and the Wood-Ljungdahl pathway was conducted to determine possible 

metabolic products. The Stickland reaction is a relatively newly discovered pathway, observed in 

the genus Clostridium. A. sticklandii is the main model for this method of anaerobic amino acid 

fermentation and the new way to generate energy. The genome of our isolate was sequenced, 

using long read sequencing techniques from Novogene with a goal to close the genome for a 

complete reading. The genome had a close relation to Acetoanaerobium sticklandii strain DSM 

519 and Acetoanaerobium noterae strain NOT-3, each with a similarity of 98.48%. With the 

analysis of the genome performed, the organism appears to use the Stickland reaction to oxidize 



3 

amino acids and the Wood-Ljungdahl pathway to fix carbon, which is characteristic of many 

Acetoanaerobium and Clostridium species. 

 

Methods 

Acetoanaerobium sp. strain VLB-1 was isolated from an enrichment initiated with soil 

from the Eastern Saline Wetlands in Lincoln, NE. The enrichment was done on minimal, semi-

freshwater saline wetland culture medium (argon headspace with H2 added via syringe, pH 8.3) 

with calcium carbonate as a sole source of carbon. To further enrich for the Acetoanaerobium 

species, an aliquot of enrichment culture was transferred into anaerobic (100% argon) DSMZ 

Medium 38 (without sulfide, pH 7.5), which enables Stickland fermentation, a metabolism 

specific to the Acetoanaerobium spp. vs. other organisms found in the carbonate enrichment. 

After enrichment of the Acetoanaerobium sp. on DSMZ Medium 38, a serial dilution was 

performed and the organism was cultured via the agar deep method. Five colonies were isolated 

from the agar, of which VLB-1 was one. 

DNA was extracted from culture VLB-1 by harvesting cell mass mid log-phase and 

extracting nucleic acid using the Griffith's method (Griffiths et al. 2000). After fluorometric 

DNA quantification with a Qubit fluorometer, the DNA sample was sent for Illumina sequencing 

with Novogene. The raw sequence data was assembled with MEGAHIT, binned with 

CONCOCT, MetaBat, and MaxBin 2, and binning results were joined with DAS Tool. The 

resulting genome was estimated to be 98.46% complete with nine contigs and a size of 2,574,940 

base pairs with only 1.40% contamination.  

The Ribosomal Database Project (RDP)  Classifier was used to verify the taxonomy of 

Acetoanaerobium sp. VLB-1 based on the 16S rRNA sequence. With a confidence threshold of 
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80%, VLB-1 is classified in the phylum Firmicutes, class Clostridia, order Clostridiales, family 

Peptostreptococcaceae, and genus Acetoanaerobium by 100%. Through using the Type (Strain) 

Genome Server which calculates the average nucleotide identity of the genome against other 

Acetoanaerobium species, sp. VLB-1 was identified as Acetoanaerobium noterae with a 97.65% 

percent similarity, followed by A. sticklandii with a 96.14% similarity.  

Molecular Evolutionary Genetics Analysis (MEGAX) was used to construct a multiple 

sequence alignment of organisms with genetic similarity to strain VLB-1 (Kumar et al. 2018). 

The alignment was then used to generate into a phylogenetic tree to visualize taxonomic and 

ancestral relationships.  

BlastKOALA (Kyoto Encyclopedia of Genes and Genomes) was then used to classify 

and analyze the individual genes present in metabolic pathways of interest, while also providing 

a list of functional genes (Kanehisa et al. 2016). The 1484 entries of the genome were annotated 

to 60.3%.  

 

Background 

The Nebraska Saline Wetlands are a result of the floodplains of Salt Creek, Little Salt 

Creek, and Rock Creek (Nebraska Outdoor Legacy Project 2015). The salinity is created by 

underground salts from prehistoric oceans brought to the surface through groundwater flow 

(Nebraska Outdoor Legacy Project 2015). Vegetation consists of salt tolerant plants and salt 

tolerant microbiota. All this flora and fauna is unique to the only saline wetlands in Nebraska, 

however, over 90% of the original landscape has been lost (Nebraska Outdoor Legacy Project 

2015). Unfortunately, these wetlands are host to some of the only known populations of 

organisms such as the Salt Creek Tiger Beetle and the only place in Nebraska that contains the 
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Saltwort (Athen et al. 2021). There are continued factors contributing to the diminishment of the 

wetlands such as livestock grazing practices, rural and urban development, the decline in 

groundwater levels, agricultural runoff, and invasive plant and insect species (Nebraska Outdoor 

Legacy Project 2015). With this change comes the possible loss of a unique microbiome that, 

from analysis and comparison to coastal salt marshes, have been prevalent for billions of years 

(Athen et al. 2021).  

Metagenomic sequencing of the wetland’s microbiome has shown that it is unexpectedly 

different from coastal salt marshes and contains bacteria that are found in cold, alkaline, saline 

environments, although only a little is known about the potential microbial diversity that this 

environment provides (Athen et al. 2021). One of the most prevalent species in this unique 

environment is a bacterium that had only previously been isolated from an Eastern Siberian lake 

(Athen et al. 2021). These organisms are responsible for biogeochemical cycling of sulfur, 

nitrogen, and carbon (Athen et al. 2021). Further analysis of the diverse metabolisms present can 

predict the possible effect that these organisms have on their environment and reveal possible 

outcomes for conservation efforts (Athen et al. 2021). The survival of the plant and animal 

species is reliant on a balanced microbial community to keep the ideal salinity, pH, and acetate 

and methane levels.  

Acetoanaerobium, formerly identified as a Clostridium genus, are gram positive, 

anaerobic bacteria. A unique physiology of this organism is acetogenesis. Acetogenesis is 

defined as the synthesis of acetate, paired with the reduction of carbon dioxide and organic acids 

(Ragsdale 2008). Acetogenic species belong to two groups: hydrogen-producing species and 

obligate proton-reduction species. Among both the non-obligate and obligate proton-reduction 

species are Acetoanaerobium (Borja & Rincón 2016). The former prefers slightly acidic 
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conditions and to be paired with hydrogen sinks; the latter can only be cultured in an electron 

devoid environment (Borja & Rincón 2016). Their metabolism is directed to the production of 

acetate, resulting in the degradation of pyruvate, lactate, alcohols, and more (Fonknechten et al. 

2010). In this sense, acetogens and methanogens make a perfect pair, a mutualistic culture. 

However, the homoacetogens also compete with methanogens for hydrogen, formate, and 

methanol (Fonknechten et al. 2010). The purpose of acetogenesis and the acetyl-CoA pathway is 

to use it as a way to reduce carbon dioxide to acetyl-CoA, use it as a terminal electron acceptor 

and therefore energy generation, or to use it for the cell’s main source of carbon (Fonknechten et 

al. 2010).  

Fermentation resulting from organic acids and alcohols are oxidized to acetate, and the 

electrons produced are transferred to hydrogen cations to produce H2 or bicarbonate used in the 

synthesis of formate (Borja & Rincón 2016). Electrons are given to hydrogen or carbon dioxide; 

however, this transfer is energetically unfavorable (Borja & Rincón 2016). In fact, the organisms 

are limited in their energy production, so interspecies hydrogen transfer must be employed. A 

hydrogen sink, like a methanogen fixing hydrogen to produce methane, must be used in order to 

keep the level of these products low. Both methanogens and acetogens are reliant on each other 

to degrade fatty acids for growth, regulate growth rate, grow in thermodynamic equilibrium, and 

benefit from the resulting chemical energy. 

 Acetogens and methanogens in combination degrade organic material to CH4, CO2 and 

H2S via their interactions in a similar environment (Dar et al. 2008). Due to fermentation, carbon 

dioxide is reduced to acetate (acetogens) or methane (methanogens), along with the resulting 

reduction of sulfur (Dar et al. 2008). Acetogenesis creates products that can be used as reactants 

for acetate-and propionate-oxidizing sulfate reducing bacteria or methanogens depending on the 
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presence of sulfur in the environment (Dar et al. 2008). Acetogens, methanogens, and sulfur 

reducing bacteria compete for H2 in their respective fermentation (Dar et al. 2008). However, in 

an environment with a limited supply of hydrogen, methanogens and sulfur reducing bacteria are 

typically favored due to the thermodynamic favorability of these metabolic processes (Dar et al. 

2008).  

 

Metabolic Network Reconstruction and Analysis 

The genome of strain VLB-1 is the most similar to Acetoanaerobium sticklandii strain 

DSM 519 and Acetoanaerobium noterae strain NOT-3, each with a similarity of 98.48% in their 

respective genomes. 

 

Figure 2: MEGAX constructed phylogenetic tree based on 16 rRNA gene sequences using 

MUSCLE alignment of DNA including strain VLB-1 and closely related taxa in the Family 

Clostridiales.   

 (Listeria monocytogenes was used as an outgroup. 
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Figure 3: Proportion of genome annotated by BlastKOALA for VLB-1. The chart shows the 

functional category and abundance of genes in the DNA. 

 

 

 

 

 

 

Stickland Reaction 

 

Figure 4: Stickland Reaction (de Vladar 2012). The reaction happens in a stepwise fashion, with 

the help of hydrogenases, reductases, and catabolism by kinases. 
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One common feature among Acetoanaerobium and the genus Clostridium is their special 

role in amino acid degradation with the Stickland reaction which preferentially oxidizes an 

amino acid, while reducing its pair (Fonknechten et al. 2010). However, not much is known 

about the Stickland reaction or its attributes to growth or providing energy to organisms. Amino 

acids are used as the main carbon and thus energy sources (Fonknechten et al. 2010). As one 

amino acid is oxidized, its pair is subsequently reduced. In this process, ATP is formed by 

substrate-level phosphorylation (Fonknechten et al. 2010). A. sticklandii, which is closely related 

to strain VLB-1, uses the amino acids threonine, arginine, lysine, and serine (Fonknechten et al. 

2010).  Along with these, aromatic and branched amino acids can also be degraded, however, the 

pathways and processes are still unknown (Fonknechten et al. 2010). Strain VLB-1 does contain 

the enzymes to metabolize all of these, including aromatic and branched amino acids. The 

benefit of this pathway is the availability of these amino acids and their pairs when synthesized 

via abiotic amino acid pathways and in protein-rich environments or when protein synthesis is 

inhibited (Fonknechten et al. 2010). In analysis of the genome of Acetoanaerobium sp. VLB-1, it 

has the capability to degrade arginine via the arginine succinyltransferase pathway and threonine, 

serine, and cysteine via their respective biosynthesis pathways. Cysteine biosynthesis is crucial 

for sulfur fixation for the synthesis of many vitamins and cellular components. 

   

 The Shikimate pathway is used to degrade aromatic amino acids, starting with 

phosphoenolpyruvate and erythrose-4P to be degraded into chorismate through a multistep 

reaction involving the dephosphorylation and dehydration of the compounds with a transferase. 

With many steps later, the result is chorismate and orthophosphate to be used in acetogenesis or 

as a carbon source. Threonine biosynthesis is made by aspartate first by using aspartate kinase 
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and aspartate-semialdehyde dehydrogenase for the conversion to homoserine. From there, 

homoserine is converted to threonine using the enzymes homoserine dehydrogenase, homoserine 

kinase, and threonine synthase. VLB-1 is able to synthesize leucine through leucine biosynthesis. 

In the steps preceding biosynthesis, 2-oxoisovalerate is converted to 2- oxoisocaproate through 

2-isopropylmalate synthase, 3-isopropylmalate/(R)-2-methylmalate dehydratase large subunit 

and the small subunit in conjunction, and 3-isopropylmalate dehydrogenase.   

 Arginine is a source of carbon, energy, nitrogen, and a precedent to polyamine synthesis. 

It produces ammonia without moving nitrogen. Arginine is synthesized in two main steps: 

ornithine biosynthesis and arginine biosynthesis. In ornithine biosynthesis, glutamate is 

converted using a series of glutamate acetyltransferases and kinases to become L-ornithine. In 

the second step, ornithine is converted to arginine through the enzyme ornithine 

carbamoyltransferase catalyzing the reaction between carbamoyl phosphate and L-ornithine. The 

product, L-citrulline then reacts with L-aspartate with an input of energy and the enzyme 

argininosuccinate synthase, to result in the product of N-(L-arginino) succinate, which is then 

converted to arginine using argininosuccinate lyase. 

 There does appear to be multiple glycine reductase complex component B subunits, 

hinting at a possible way to reduce glycine, however, the pathway is unknown. In comparison, A. 

sticklandii has both the glycine synthase and reductase pathways and the Wood-Ljungdahl 

pathways, which is fairly uncommon. 

 

The Wood-Ljungdahl Pathway 
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Figure 5: The Wood-Ljungdahl Pathway (Ragsdale & Pierce 2003). The Eastern and Western 

branches are shown. The Western branch is used by acetogens to create acetate and carbon.  

 

The Wood-Ljungdahl pathway is also invaluable to many Acetoanaerobium spp. to 

produce acetic acid via acetogenesis. In this pathway, energy is conserved by converting carbon 

dioxide and carbon monoxide into acetyl-CoA which is then used for mass energy production in 

the citric acid cycle (Ragsdale 2008). All in all, they create around 1013 kg of acetic acid per 

year, far greater than the world’s commercial production (Ragsdale 2008). Acetogens, with 

methanogens and sulfate reducers commonly use the Western branch of the pathway (Ragsdale 

2008).  

VLB-1 contains all genes for the metabolic conversion of pyruvate to CoA. Among the 

enzymes used, pyruvate ferredoxin reductase catalyzes the oxidative decarboxylation of pyruvate 

(Ragsdale 2008). The carbon dioxide electrons are then converted to carbon monoxide by carbon 

monoxide dehydrogenase (Ragsdale 2008). Carbon monoxide dehydrogenase commonly pairs 

with acetyl CoA synthase, in which the electrons released from carbon monoxide transfer to a 

mediator, which then pair to reduce nicotinamide adenine dinucleotide phosphate (NADPH) 

(Ragsdale 2008). . 
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Acetyl CoA then steps in to catalyze the condensation of carbon monoxide, CoA, and a methyl 

group of a methylate corrinoid iron-sulfur protein to create acetyl-CoA, which is then used a 

source of energy for the bacterium (Ragsdale 2008).  However, one gene in this pathway is 

missing: K22015 or formate dehydrogenase, which is paired with iron hydrogenase HydA2 and 

the FeS- containing electron transfer protein. The supposed absence of this gene could be 

attributed to the less accurate nature of the draft genome. VLB-1 does contain the genes for the 

carbon monoxide dehydrogenase and acetyl CoA synthetase machinery: acsA/acsB, which are 

invaluable tools in this pathway. The unique trait of this pathway is the changed perception of 

the roles of metal ions in bacterial use (Ragsdale 2008). This study, chemical framework, and 

biophysical traits will likely also be applied to undiscovered metal enzyme systems. Strain VLB-

1 could use the Wood-Ljungdahl pathway, for carbon fixation, concluding that this organism 

produces acetic acid as its main metabolic output, as do most acetogens 

VLB-1 likely fixes most of its biosynthetic carbon via the phosphate acetyltransferase-

acetate kinase pathway. The phosphate acetyltransferase-acetate kinase pathway is used to fix 

acetyl-CoA to acetate, the first step being acetyl-CoA and orthophosphate reacting due to the 

enzyme acetyl-CoA: phosphate acetyltransferase to create CoA and acetyl phosphate. The 

second step of this reaction involves the enzyme acetate kinase and input of energy to create 

acetate.  

  

Cysteine Biosynthesis 

 VLB-1 also metabolizes sulfur via one pathway: cysteine biosynthesis. Sulfur 

incorporation is critical for the synthesis of methionine, vitamins, and iron-sulfur clusters (Wirtz 

& Hell 2003). Glycine, serine, and threonine, and methane are degraded to L-serine, which is 
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then either degraded into sulfide or L-cysteine (Wirtz & Hell 2003). This is also representative of 

its ability to metabolize certain amino acids via the Stickland reaction. Cysteine desulfurase is 

the crucial enzyme that causes the conversion of L-cysteine to L-alanine and sulfane sulfur via a 

protein-bound intermediate on a cysteine residue (Wirtz & Hell 2003). Cysteine is the source of 

sulfur for many catalytic activities. The production of cysteine is one of the only ways for sulfur 

to be introduced into cell metabolism. Along with many other pathways discussed here, the 

incorporation of sulfur is not well known (Wirtz & Hell 2003). Cysteine biosynthesis starts with 

the formation of O-acetylserine, catalyzed by serine acetyltransferase, which is regulated by a 

negative feedback loop with cysteine, resulting in the controlled regulation of cysteine in 

biological production. A free sulfide is added by catalysis of O-acetylserine lyase to O-

acetylserine to produce L-Cysteine and acetate. Production of cysteine is regulated by intrinsic 

means, such as the cys-regulon, in addition to the possible cytotoxicity induced by large amounts 

(Wirtz & Hell 2003).  

  

Conclusion 

 Acetoanaerobium sp. strain VLB-1 metabolically resembles A. sticklandii and A. notarae 

closely with the metabolic potential for autotrophy or acetogenesis and amino acid fermentation 

via the Wood-Ljungdahl pathway and the Stickland reaction respectively. The Wood-Ljungdahl 

pathway is environmentally crucial in the balance between acetogenesis and methanogenesis, 

with methanogens acting as hydrogen sinks. Due to the unique environment this organism was 

found in, understanding elemental cycling and metabolism is crucial to understanding its role in 

the preservation in the Nebraska Saline Wetlands.  The organism is known for its distinct 

pathways in amino acid degradation and acetogenesis. In the presence of methanogens, 
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acetogens create acetic acid while still keeping the alkaline environment of these wetlands intact. 

With an excess of acetogen metabolism comes the opportunity for microbial-induced corrosion 

of the environment. In the presence of methanogens, acetogenesis can be regulated and the 

alkaline environment is preserved (Palacios et al. 2021). Understanding the balance and the 

unique traits that these organisms have can help in understanding how to protect the valuable but 

sensitive ecosystem in the wetlands and prevent its further destruction by agricultural and 

livestock practices, as well as the further urban development around the Salt Creek area in 

Lincoln. In keeping with environmental practices, the biotechnological poterntial of these 

organisms could be used to generate acetic acid and possibly diminish methane production 

affecting climate change and microbial-induced corrosion. 
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