University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

UNL Student Research Days Posters, Graduate Research and Economic Development, Office of

Spring 4-11-2022

Knowledge-informed Data-driven Modeling of Microbial Inactivation in Food

Steve Zhang University of Nebraska-Lincoln, szhang35@unl.edu

Firnaaz Ahamed University of Nebraska-Lincoln, firnaaz.ahamed@unl.edu

Hyun-Seob Song University of Nebraska-Lincoln, hsong5@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/respostergrad

Part of the Food Biotechnology Commons, Food Microbiology Commons, and the Food Processing Commons

Zhang, Steve; Ahamed, Firnaaz; and Song, Hyun-Seob, "Knowledge-informed Data-driven Modeling of Microbial Inactivation in Food" (2022). *UNL Student Research Days Posters, Graduate*. 3. https://digitalcommons.unl.edu/respostergrad/3

This Presentation is brought to you for free and open access by the Research and Economic Development, Office of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UNL Student Research Days Posters, Graduate by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Knowledge-informed Data-driven Modeling of Microbial Inactivation in Food Steve Zhang, Firnaaz Ahamed, Hyun-Seob Song

MOTIVATION

- Accurate modeling of microbial inactivation in food is a difficult task due its complex dependence on numerous internal and external food processing conditions.
- Past models rely on empirical methods, which lack generalization and quickly become unmanageable with increasing number of input variables.

Generalizable Pipeline for Data-driven Modeling of Complex Nonlinear Systems

- Sparse Identification of Nonlinear Dynamics (SINDy)¹ automatically identifies the best and simplest equation predicting **D-value** (the time taken to reduce microbial population to 10% of the initial level) from a function library calibrated with domain knowledge.
- their interactions

Fig. 1 Flowchart depicting our knowledge-informed data-driven model development pipeline.

Stepwise Tuning Balances Accuracy and Sparsity

Statistical metrics mean-squared error (MSE) and Akaike information criterion (AIC) penalize overfitting.

followed by (B) sparsity using AIC.

followed by (B) sparsity using MSE and (C) model equation's number of terms.

Our Model Shows Enhanced Accuracy and Minimizes Overfitting Compared to Literature Models

Fig. 4 Plots with predicted and observed log D values forming the data points' x and y values.

Ours		Theirs	
MSE	AIC	MSE	AIC
0.006	-448.85	0.014	-392.24
0.004	-193.46	0.071	-65.96
0.06	-36.96	0.559	27.26

Table 1 Comparison of MSE and AIC
 values between our model and literature models

Sensitivity Analysis Suggest Variables' **Effects Are Highly** Environmentally Dependent

Β Juneja et al. (1995) 🛛 🛨 pH C_N C_P

Fig. 5 Distribution of global sensitivities of model-derived process variables.

CONCLUSIONS

- GSA results are model-derived and contextual and shouldn't influence model selection.
- Combined use of data-driven modeling and GSA is also useful for rational model-based optimization of operating conditions and any non-linear systems for a wide range of applications.

REFERENCE

• [1] Brunton, S. L. et al. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. S. A. 113, 3932–3937.

