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RESEARCH ARTICLE Open Access

Phylogenetic position of the acariform mites:
sensitivity to homology assessment under total
evidence
Almir R Pepato1*, Carlos EF da Rocha1, Jason A Dunlop2

Abstract

Background: Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major
lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations
thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position
of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely
accepted view that mites are close relatives of Ricinulei.

Results: The phylogenetic position of the acariform mites is examined through employing SSU, partial LSU
sequences, and morphology from 91 chelicerate extant terminals (forty Acariformes). In a static homology
framework, molecular sequences were aligned using their secondary structure as guide, whereby regions of
ambiguous alignment were discarded, and pre-aligned sequences analyzed under parsimony and different mixed
models in a Bayesian inference. Parsimony and Bayesian analyses led to trees largely congruent concerning infra-
ordinal, well-supported branches, but with low support for inter-ordinal relationships. An exception is Solifugae +
Acariformes (P. P = 100%, J. = 0.91). In a dynamic homology framework, two analyses were run: a standard POY
analysis and an analysis constrained by secondary structure. Both analyses led to largely congruent trees;
supporting a (Palpigradi (Solifugae Acariformes)) clade and Ricinulei as sister group of Tetrapulmonata with the
topology (Ricinulei (Amblypygi (Uropygi Araneae))). Combined analysis with two different morphological data
matrices were run in order to evaluate the impact of constraining the analysis on the recovered topology when
employing secondary structure as a guide for homology establishment. The constrained combined analysis yielded
two topologies similar to the exclusively molecular analysis for both morphological matrices, except for the
recovery of Pedipalpi instead of the (Uropygi Araneae) clade. The standard (direct optimization) POY analysis,
however, led to the recovery of trees differing in the absence of the otherwise well-supported group Solifugae +
Acariformes.

Conclusions: Previous studies combining ribosomal sequences and morphology often recovered topologies similar
to purely morphological analyses of Chelicerata. The apparent stability of certain clades not recovered here, like
Haplocnemata and Acari, is regarded as a byproduct of the way the molecular homology was previously
established using the instrumentalist approach implemented in POY. Constraining the analysis by a priori
homology assessment is defended here as a way of maintaining the severity of the test when adding new data to
the analysis. Although the strength of the method advocated here is keeping phylogenetic information from
regions usually discarded in an exclusively static homology framework; it still has the inconvenience of being
uninformative on the effect of alignment ambiguity on resampling methods of clade support estimation. Finally,
putative morphological apomorphies of Solifugae + Acariformes are the reduction of the proximal cheliceral
podomere, medial abutting of the leg coxae, loss of sperm nuclear membrane, and presence of differentiated
germinative and secretory regions in the testis delivering their products into a common lumen.
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Background
Acari (mites and ticks) have been variously ranked as a
group composed of one to seven or more distinct orders
[1]. Together they comprise approximately half of the
described arachnid diversity [2]. Two main lineages are tra-
ditionally recognized: Acariformes (or Actinotrichida) and
Parasitiformes (or Anactinotrichida). Although Opiloacari-
formes has been regarded as a third, distinct order [3], both
internal and external morphology leaves little doubt that
they should be included within the Parasitiformes [4-6].
Of the two main lineages, Acariformes is the most

diverse and comprises around two thirds of the known
species of mites [2]. It is also an ancient group including
representatives from the two of the earliest terrestrial
invertebrate communities: the Rhynie Chert (Scotland)
and the Gilboa Formation (New York State, USA), from
the early and mid Devonian respectively. By contrast
Parasitiformes appears in the fossil record only in the
Mesozoic era [7] and is represented by far fewer fossil
species. Among modern Acariformes, a bewildering
array of lifestyles and habitats may be found and the
group includes important agricultural pests, plant dis-
ease vectors, and animal parasites.
Masta and colleagues [8] explored the use of the mito-

chondrial genome in inferring arachnid phylogeny, but
could employ data from only six of the twelve extant
orders. Most of previous studies which explored chelice-
rate relationships included data from all orders and
employed as molecular markers the nuclear ribosomal
Small and Large Subunits genes (SSU and LSU rRNA,
respectively) [9-11].
Initial work on the internal relationships of Acari-

fomes performed by one of us revealed that inclusion of
many new ribosomal sequences from different acariform
mites led to important changes in the topology recov-
ered. In fact, although we agree that more genes must
be included in future analysis, reducing sampling biases
due to a scarcity of characters (a goal which we are pur-
suing), we are of the opinion that Acariformes have
been largely underrepresented in previous analyses.
This, together with ongoing questions about the sister
group of mites, motivated the present study. Besides
sampling effort, we explored the behavior of the new
molecular data when analyzed alone and combined with
different morphological matrices and under different
analytical approaches. The aim of this was to explore
possible drawbacks in the homology establishment for
molecular data in previous studies.

Previous studies on arachnid phylogeny and the position
of acariform mites
Weygoldt and Paulus [12] first applied the Hennigean
method to arachnid phylogeny and resolved mites as the

sister group of Ricinulei. They did not, however, attempt
to test the monophyly of Acari since they employed the
approach of coding assumed ancestral states for mites
instead of scoring Acari in-group polymorphisms.
Lindquist [4] endorsed the notion of a monophyletic

Acari by proposing eleven putative shared apomorphies
for the clade; nevertheless most of these are mite-speci-
fic, ‘tendencies’ or related to size reduction [6]. Presence
of a gnathosoma - i.e. a pseudotagma that includes the
mouthparts - and hexapodal larvae were suggested as
the main synapomorphies uniting Acari and Ricinulei.
Hammen [13,14] regarded the presence of a gnatho-

soma in Acari and Ricinulei as non-homologous based
on details of gnathosoma morphology; particularly the
insertion positions of its musculature. Acariformes was
hypothesized to be sister group of Palpigradi (together
forming his Epimerata group) and Anactinothrichida the
sister group of Ricinulei (his Cryptognomae group).
Even though Hammen performed an extensive survey of
mite and arachnid morphology, his rejection of cladistics
and his controversial scenario of leg coxa evolution in
support of Epimerata have lessened the impact of his
conclusions.
The phylogenetic analysis performed by Shultz [15,16]

again recovered mites as sister group of Ricinulei. This
clade was formally named Acaromorpha, although Dubi-
nin [17] coined this name earlier, referring to mites
only. Shultz [15,16] performed his analyses after an
extensive survey of characters - particularly those relat-
ing to appendage musculature - but like Weygoldt and
Paulus [12] used supraspecific terminal taxa to code
characters. Therefore, he did not test mite monophyly.
Nevertheless, the notion of a monophyletic Acari and its
inclusion in Acaromorpha sensu Shultz has received
increasing acceptance among the acarological and ara-
chnological communities. However, it should be reiter-
ated that no new evidence for this clade in terms of
explicit synapomorphies has been brought to light since
the summary of Lindquist [4].
Wheeler and Hayashi [9] analyzed partial SSU and

LSU rRNA sequences from species belonging to all ara-
chnid orders except Palpigradi and recovered a diphy-
letic Acari in their molecular analysis. Whereas the
single Acariformes species included, Tetranychus urti-
cae, was recovered in an unlikely position at the base of
the cladogram outside the other Chelicerata, Parasiti-
formes emerged in this analysis as the sister group of
Pycnogonida (sea spiders). One should bear in mind,
that this analysis must be regarded as a first attempt,
including few terminals. No molecular data on the order
Palpigradi, for example, could be included. When
combining morphological and molecular data a clado-
gram quite similar to that obtained by Shultz’s [16]
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morphological analysis was recovered; the ‘total evi-
dence’ analysis differing primarily from Shultz’s results
in its placement of Amblypygi (whip spiders).
The Acaromorpha hypothesis has been challenged by

observations from paleontology and ultrastructure. Dun-
lop [18], supplemented by Dunlop et al. [19], presented
a set of putative apomorphies linking Ricinulei to the
fossil order Trigonotarbida, which would imply that the
presence of a “gnathosoma” in Ricinulei is homoplastic.
An analogous scenario had been already proposed by
Hammen [20].
Alberti and Peretti [21] confirmed previous observa-

tions on Solifugae sperm cells (absence of a carioteca in
mature spermatozoa) and on testis structure (presence
of differentiated germinative and secretory regions deli-
vering their products into a common lumen). They
argued that these observations should be considered as
putative apomorphies shared between Solifugae and
Acariformes to the exclusion of the Parasitiformes mites.
Giribet et al. [10] employed a broader taxon sampling

than Wheeler and Hayashi [9], including molecular data
from all arachnid orders. In addition, they employed a
species exemplar approach for coding the morphological
characters, reflecting in the analysis the morphological
diversity of the orders, which allows at the same time a
test of their monophyly. In the molecular analysis, mites
again appear as diphyletic, with Acariformes as a basal
group and Parasitiformes here as the sister group of
Pseudoscorpiones. The combined analysis of neontologi-
cal data recovered a monophyletic Acari, but resolved
them as a basal lineage far from Ricinulei. When adding
fossils and rooting the tree on Trilobita, Ricinulei
formed a clade with the fossil order Trigonotarbida;
together as sister group of Tetrapulmonata (Araneae,
Uropygi and Amblypygi). In this analysis, a monophy-
letic Acari came out as sister-group of Pycnogonida.
Note, however, that both the neontological and paleon-
tological trees are quite similar. If the paleontological
tree was rooted on Pycnogonida the resulting topology
would be similar to that obtained for the neontological
data alone; although with Trilobita as the sister group of
Xiphosura.
In an article focusing on Parasitiformes phylogeny,

Klompen et al. [11] also included seven Acariformes
species: three Prostigmata, three Oribatida and one
Endeostigmata. Klompen et al. [11] employed a metho-
dology completely different from previous molecular
studies. Instead of direct optimization as implemented
in the program POY, they used the secondary structure
as a guide for hypothesizing the nucleotide homology
(alignment) and applied parsimony and Bayesian ana-
lyses. The results obtained are well supported for Parasi-
tiformes relationships, but lack resolution for the
Arachnida orders. They recovered mites as a

monophylum, but resolved no clear hypothesis with
respect to the mites’ sister-group. The Acaromorpha
hypothesis required the addiction of 14 steps to the
MPTs recovered in their parsimony analysis.
In his latest arachnid study, Shultz [22] offered a thor-

ough revision of arachnid morphology and employed
the species exemplar approach for coding characters, i.e.
reflecting taxon polymorphism. Acaromorpha was
recovered again, but with low support and, when fossils
were included, Acari became diphyletic and Ricinulei
were recovered as sister group of Parasitiformes only.
Concerning mites’ relationships, the results of this ana-
lysis should be interpreted with caution. Although
Shultz cited the article by Alberti and Peretti [21], he
did not take into consideration the main reasons which
led them to question the association of Solifugae and
Pseudoscorpiones (the clade Haplocnemata): namely
their testis and spermatozoa structure. Shultz also mis-
interpreted Alberti and Peretti [21] when evaluating
alternative phylogenetic relationships. He stated that
these authors clustered both mite lineages with Solifugae
(see his figure three), whereas Alberti and Peretti actu-
ally proposed that only Acariformes should be related to
Solifugae. Finally, some differences among the two main
lineages of mites, such as the condition of the sternal
region were not correctly scored (for a summary of
these differences we refer the reader to [5,6]).
The position and monophyly of Acari has occasionally

been tested in larger studies of arthropod phylogeny in
general; although we would caution here that the num-
ber of mite taxa included as terminals was usually rather
small. Regier et al. [23] produced the most comprehen-
sive and up to date molecular phylogeny for arthropods
in general, with 62 genes tested for 80 taxa, whereby
acariform and parasitiform mites were both represented
here by single exemplars (Dinothrombium and
Amblyomma respectively). Within a monophyletic Ara-
chnida, Parasitiformes was recovered as the sister group
of Pseudoscorpiones (as per Giribet et al. [10]) with
Opiliones as their outgroup. Acariformes was recovered
as the sister group of Palpigradi (essentially Hammen’s
Epimerata hypothesis [13,14]); this clade being basal
with respect to all other arachnids.
Finally, in a recent publication Dabert et al. [24] inves-

tigated Acariformes phylogeny using 18 S rDNA and
mitochondrial cytochrome oxidase subunit I tested
across 142 acariform species, plus 34 outgroups. They
recovered Acariformes as monophyletic with the tradi-
tional split into Trombidiformes and Sarcoptiformes,
and for the sarcoptiform mites they provided molecular
support for an emerging hypothesis that Oribatida is
paraphyletic with respect to Astigmata - the astigmatans
being the sister group of a derived oribatid lineage. Age
estimates for splits into the major groups were also
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calculated; with acariform mites estimated as having
their origins in the Silurian (ca. 430 Ma), which is
broadly consistent with the fossil record (see above).
Acari was again recovered as diphyletic. Parasitiformes
resolved as the sister group of Pseudoscorpiones, a simi-
lar result to that of Giribet et al. [10] and Regier et al.
[23]. Significantly, Acariformes resolved in Dabert et
al.’s study as sister group to Solifugae, and with good
support. Here, we present further evidence for this
hypothesis based on combined morphological and mole-
cular data. We also suggest a formal name for this puta-
tive clade encompassing acariform mites and camel
spiders.

Methods
Taxa sampled
We follow Giribet and Ribera [25] in considering Pycno-
gonida as an appropriate out-group for rooting the
resulting tree. Despite Maxmen et al.’s [26] hypothesis
for the protocerebral nature of the pycnogonid cheli-
fores and the defence of the traditional view of tritocer-
ebral chelicerae by Bitsch and Bitsch [27], data from
gene expression and neuroanatomical studies convin-
cingly demonstrate that chelifores, chelicerae and man-
dibulate antennae are homologous, deutocerebral
elements [28-31]. Despite its long list of autapomor-
phies, Pycnogonida ‘chelifores’ are considered here to be
true chelicerae, thus providing morphological support
for sea spiders’ placement as sister-group of
Euchelicerata.
Representatives from all euchelicerate orders were

sampled here, comprising 91 terminal taxa, of which 40
are acariform mites. Among them, one palpigrade, one
whip spider, three spiders and 32 actinotrichid mites are
newly sequenced. Since a formal cladistic analysis
including Acariformes lineages is unavailable, we used
the dendrograms summarized in Norton et al., [32] as a
reference for the sampling design. We tried to include
representatives of all major lineages of Acariformes.
Table 1 and Fig. 1 summarize the sampling effort. Fol-
lowing the latest account of Acari classification [33],
Endeostigmata was retained, although it certainly is not
a monophylum [34]. Furthermore, the assignment of the
rank Superorder to Acariformes and Parasitiformes is
retained, although it certainly does not agree with the
current classification of Chelicerata; i.e. ‘Superorders’ are
rarely used for arachnids other than mites.

DNA extraction, vouchering, amplification and
sequencing
Individual body parts, such as a leg article, or entire spe-
cimens were used for genomic DNA extraction. When
the entire specimen was destroyed by the extraction
process, individuals from the same population were kept

as vouchers. Voucher material is deposited in the
Museu de Zoologia da Universidade de São Paulo
(MZSP) and its collection numbers are provided in the
additional file 1 along with details on sampling locality.
Small pieces of animal tissue (less than 0.5 mm) for

large arachnids or the entire animal for many mites
were crushed against the vial wall and mixed with a
small water volume. Chelex based solution Instagene®
(BIORAD) was added to the vial and incubated for 30
min at 54°C, followed by 8 min at 100°C. The solution
was spun and approximately 140 μl of supernatant, in
most cases, enough for 14 PCR reactions, was obtained.
The SSU rRNA genes were amplified and sequenced

using the three pairs of primers described in Giribet et al.
[35], or with the intermediary segment pair replaced by
the 18SV4F-18SV4R primer designed by Otto & Wilson
[36]. For the 28 S D3 region we used the primer pair
28SA-28SB described in Whiting et al. [37].
Amplification was carried out in a 25 μl volume with

0.6 units of Taq Polymerase (Fermentas), 100.00 μM of
DNTPs, 2.50 mM of MgCl2 and 0.40 μM of each pri-
mer. The thermocycler program included an initial
denaturing step of 4 min. at 94°C, and 35 amplification
cycles of 30 s. of denaturing at 94°C, 30 s of annealing
at 50°C, 45s-1 min of extension at 72°C and a final step
of extension of 5 min. at 72°C. The PCR products were
purified using the Ampure® (Agencourt) kit and
sequenced using an ABI Prism 3100 Genetic Analyzer
Sequencer. Cycle-sequencing with AmpliTaq DNA poly-
merase, FS (Perkin-Elmer) using dye-labeled terminators
(ABI Prism BigDye Terminator CycleSequencing Ready
Reaction Kit) was carried out in a 10 μl volume of reac-
tion: 4 μl of Terminator Ready Reaction Mix, 10-30 ng/
ml of PCR product, 5 pmol of primer, and dH2O to
10 μl. The cycle-sequencing program consisted of an
initial step at 94°C for 3 min, 25 sequencing cycles
(94°C for 10 s, 50°C for 5 s, 60°C for 4 min). The Big-
Dye-labeled PCR products were isopropanol-precipitated
following the manufacturer’s protocol.
Reverse and direct chromatograms were assembled

using the program ChromasPro 1.41 (Technelysium Pty
Ltd).

Analyses
Ribosomal RNA is the core of this organelle’s function.
It is the target of intense stabilizing selection in order to
maintain its catalytical activity. However, this activity is
more related to its secondary and tertiary structure,
constructed by the correct pairing of RNA nucleotides,
than to its nucleotide composition.
Inside stems, a mutation that disturbs the correct base

pairing is likely to reduce molecular fitness. A compen-
satory mutation that re-sets a normal pairing is favored
by the selection, replacing one Watson–Crick pairing
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for another or for slightly less stable guanine and uracile
pairs [38]. Pairing between adenine and cytosine is
much rarer but may have a similar effect if protonated,
since they are geometrically similar to the G:U, U:G
pairs [39].
This property of ribosomal gene evolution may there-

fore be a tool for assessing nucleotide homology. Detec-
tion of compensatory or semi-compensatory mutations
along a multiple alignment is the main tool employed
for inferring ribosomal RNA secondary and tertiary
structures [38,40], and has been largely confirmed by
crystallographic results [41].
The secondary structure alignment was made employ-

ing the method described by Kjer [42], except for
employing the program BioEdit 7.0.9 [43] for sequence
editing. Template SSU rRNA structures were down-
loaded from the “European Ribosomal DataBase” [44].

Template LSU structures were obtained from Schnare
et al. [45]. For both genes, the secondary structures
inferred by Rix et al. [46] were also valuable.
For regions where the nucleotide composition does

not readily allow the detection of correspondence to the
models, potential pairings was explored using Mfold
[47]. Alignments were produced first for each of the
orders using compensatory mutations and similarity as
criteria. After this step, common structural motifs were
used to align the entire data set. Consensus secondary
structures for these alignments were inferred using the
program RNAalifold [48]. Only nucleotides in regions
whose alignments were sustained by compensatory muta-
tions across the entire data set were considered as homo-
logous. Regions inferred to be ambiguously aligned were
classified following Gillespie [49] in regions of expansion
and contraction (REC), non-pairing regions of

Table 1 Chelicerate non-Actinotrichida included in the analysis

Species SSU rRNA LSU D3
rRNA

Species SSU
rRNA

LSU D3
rRNA

Species SSU rRNA LSU D3
rRNA

Class Pycnogonida Order Ricinulei Neobisium
polonicum

EU559357 EU559457

Achelia echinata AF005438 AF005459 Pseudocellus pearsei U91489 AF124956 Anagarypus
heatwolei

EU559376 EU559482

Callipallene sp. AF005439 AF005460 Ricinoididae sp AF124930 AF062988 Americhernes sp. AF124934 AF062982

Endeis laevis AF005441 AF005462 Order Opiliones Order Araneae

Colossendeis c AF005440 AF005461 Siro rubens U36998 U91494 Liphistius
bicoloripes

AF007104 AF124960

Class Chelicerata Stylocellus sp. AF173419 Af173422 Aphonopelma sp. X13457 ——

Order Xiphosura Odiellus troguloides X81441 U91500 Atypoides riversi DQ981699 DQ639855

Limulus polyphemus U91490 U91492 Pachyloides thorellii U37007 U91508 Nesticus celullanus AF005447 AF124961

Carcinoscorpius
rotundicauda

U91491 U91493 Caddo agilis U91487 U91502 Lyssomanes viridis DQ665742 ——

Order Schizomida Sabacon cavicolens AF124944 AF124972 Tetragnathidae HM070337 HM07300

Stenochrus portoricensis AF005444 ————— Leiobunum sp. AF124940 AF124968 Corinnidae HM070338 HM07301

Trithyreus pentapeltis AF124932 AF062990 Nemastoma
bimaculatum

AF124947 AF124974 Pholcidae HM070339 HM07302

Order Thelyphonida Zuma acuta AF124951 AF124978 Order Solifugae

Mastigoproctus giganteus AF005446 AF062989 Supeorder
Parasitiformes

Gluvia dorsalis AF007103 AF124957

Order Amblypygi Opilioacarus texanus AF124935 AF124963 Eusimonia
wunderlichi

U29492 AF124958

Paraphrynus sp. AF005445 AF124959 Amblyomma
americanum

AF291874 AF291874 Chanbria regalis AF124931 AF062983

Amblypygi sp. AF124933 AF062965 Otobios megnini L76356 ——— Eremobates sp. AY859573 AY859572

Musicodamon atlanteus AY829903 AY829924 Allothyrus cf
australasiae

AY620910 AY626628 Order
Scorpiones

Charinus montanus HM070335 HM07298 Sternothyrus braueri AY620912 AY626630 Pandinus
imperator

AY210831 AY156537

Order Palpigradi Order
Pseudoscorpiones

Belisarius xambeui AF005442 AF124954

Eukoenenia n. sp. AF207648 AF207653 Chthonius sp. EU559387 EU559438 Androctonus
australis

X77908 AF124955

Eukonenia sp. HM070336 HM07299 Pseudogarypus bicornis EU559368 EU559472

Species sampled and Genbank accession numbers of non-Acariformes taxa
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http://www.ncbi.nlm.nih.gov/pubmed/559357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/559457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/91489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/124956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/559376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/559482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/124930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/062988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/124934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/062982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/005461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/36998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/91494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/007104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/124960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/173419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/173422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/81441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/91500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/981699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/639855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/91490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/91492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/37007?dopt=Abstract
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ambiguous alignment (RAA) and regions of slipped-
strand compensation (RSC). The structural models for
exemplar species are presented in the results section
using the Wuyts et al. [44] notation for SSU rRNA and
Cannone et al. [50] for LSU. The figures displaying sec-
ondary structure features were drawn using the xRNA
program (developed by B. Weiser and H. Noller, Univer-
sity of Santa Cruz).
Fasta files containing the alignment labeled with the

SSU and LSU rRNA secondary structure are included in
the digital supplementary material associated with this
article (additional file 2).

Bayesian phylogenetic inference
Wheeler and Honeycutt [51] demonstrated that stem
and loop regions may point to different phylogenies.
This is to be expected since compensatory mutations
violate the assumption of character independence made
by parsimony and most maximum likelihood analyses.
For Bayesian estimation of phylogeny, we employed

the program PHASE 2.0 [52] due its inclusion of a
great variety of models which encompass base-pairing
in stems [53]. Testing each of these models is beyond
to the scope of the present study. The aim here is to
verify the impact of relaxing the character indepen-
dence assumption among stem nucleotides on
the topology recovered. Hence, the following models
were tested using Bayes factors as criteria [54]: (a)

A uniform “4by4” nucleotide model, GTR +I +G, a
choice made with the assistance of the jMODELTEST
program [55]; (b) Distinct GTR +I +G models were
employed for stems and loops; (c) GTR +I +G model
for loops and a 7A for stems. The 7A model is the
most general reversible 7-state model, i.e. one model
the base-pair states A:U, U:A, G:C, C:G, G:U, and UG
were assumed to be matches and all other base-pairs
were lumped in a single mismatch MM state. The
model includes 26 free parameters and allows base
pair reversal asymmetry, an apparently biologically
sound property of the model [56]; (d) GTR +I +G
model was assigned to loops and a 16A model to
stems. A general time reversible 16 state model would
include 134 free parameters, which reduces its utility
to real data. In the 16A model, it is simplified to
include only 19 free parameters. There are three aij

parameters for the six main states, modeling simple
substitutions, double substitutions and double trans-
versions; a single parameter for mutations to and from
mismatch states and a parameter for single mutations
between mismatch states.
Flat priors were used for all analyses. Four Markov

chains were used in three runs of the same analysis
starting from randomly built trees. At least eight million
generations were run to ensure that sampling adequately
explored the parameter space. The degree of conver-
gence in tree topologies, clade posterior probabilities

Figure 1 Acariformes taxa included. A- Dendrogram representing hypotheses of relationships summarized in the Norton et al. [32] study. (*)
indicates lineages represented in the present analysis. B- Actinotrichida taxa included in the study.
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and parameter posterior probabilities across all analyses
were analyzed in the program TRACER ver. 1.4.1 [57],
which provides graphical plots and numeric reports of
the estimated sample size (ESS). For this purpose Phase
outputs were edited using Perl scripts designed by J.J.
Gillespie, M.J., Yoder http://hymenoptera.tamu.edu/rna,
slightly modified by the authors. Plots for the LnL of
the stationary phase of each one of the models may be
found in the additional file 3.

Analysis using parsimony as optimizing criterion
Three different approaches were employed for analyzing
data under the parsimony criterion. All employed the
program POY 4.0 [58] since it also analyzes static
alignments and morphological data using standard tree-
searching algorithms, yielding results equivalent to
programs like NONA and TNT. For analysis including
only static alignment and morphology the results were
checked using TNT [59]. Analyses were run at the 32-
processor computer cluster held at Departamento de
Zoologia da Universidade de São Paulo.
In the first, hereafter named ‘traditional’, analysis only

the aligned nucleotides were included and gaps were
scored as a fifth state. Heuristic searches were carried
out using TNT employing ‘New Technology search’
(10000 random seeds, search including Ratchet and
Tree-fusing, ran until the same strict consensus was hit
ten times) and POY analysis (20 rounds of a POY script
including the commands: build (320); perturb (itera-
tions:10); swap (trees:1, annealing:(20, 2))).
In the second, a ‘standard POY analysis’ was per-

formed employing direct optimization. Wheeler & Haya-
shi [9] and Giribet et al. [10] employed this approach
for inferring chelicerate phylogeny. Direct optimization
(DO) allows skipping of the intervening step of multiple
sequence alignment by searching simultaneously for the
best tree under an optimization criterion (in this case
parsimony) and the nucleotide homology [60].
Similar to other automated programs for multiple

alignments the POY final score is a function of a cost
regime chosen a priori. In a standard direct optimization
inference, as many cost regimes as possible are employed
in independent runs and the one which minimizes incon-
gruence among data partitions (different genes, genes ×
morphology, different gene regions etc.) is chosen [61].
These runs are also used to explore the behavior of data
across the parametric space and, according to Giribet
[62], is a way of evaluating node stability (contra [63]).
The SSU rRNA unaligned sequences were spliced into

12 blocks using conserved regions as a reference and,
along with the LSU fragment, analyzed under direct
optimization (DO) as implemented in the POY 4.0 pro-
gram. For the sensitivity analysis the following cost

regimes were tried (gap extention: tranvertion: transition
ratios): 111, 121, 112, 211, 221, 411, 412, 421.
Search rounds using a POY script included alternate SPR

and TBR after building 320 initial Wagner trees (build
(320); swap (trees:1, annealing:(20,2))) and was repeated at
least 20 times. Results from each one of these costs regimes
were evaluated using congruence as a criterion. This was
achieved using an ILD metrics (Incongruence Length Dif-
ference, [64]). For ILD calculations data partitions consid-
ered were the SSU and LSU rRNA sequences:

ILD combined length

 length from individual data sets

=
−

(

) / (Σ ccombined length).

Jordal et al. [65] employed an interesting approach.
They combined the secondary structure-based alignment
to each of the RAA’s in a POY analysis, analyzing each
fragment in different data sets. This avoids violating
positional homology where it may be inferred by sec-
ondary structure and explores the phylogenetic signal
from regions where it is otherwise impossible.
A similar approach is employed in this study and

compared with a standard DO analysis.
We have labeled this a ‘constrained POY analysis’. For

the RAAs, DO was employed with the same cost
regimes employed in the standard analysis described
above. For the pre-aligned regions, all transformations
were equally weighted under static homology. We pro-
ceeded in this way because there is no objective justifi-
cation for differential weighting in this case.
For the later analysis, the single strand RAA in the stems’

tips were lumped with the REC. We proceeded in this way
because the individual nucleotide homology cannot be
accessed with confidence, due to possible exchange of
nucleotides between REC and terminal loop RAA. The POY
inputs for these analyses are presented in the additional file 4.

Morphological and combined analysis
Morphological character statements were largely derived
from the primary literature, authoritative reviews or
direct observations. They are summarized in additional
file 5 and any discrepancies between our own interpreta-
tions and previous hypothesis are discussed there. The
full data matrix includes 178 characters and is hereafter
named matrix A and presented in the additional file 6.
We were interested not only in knowing how combining

the morphological matrix we gathered impacts the topol-
ogy recovered by the combined analysis, but also in detect-
ing any eventual limitations of direct optimization in
maintaining the molecular characters’ independence. For
this purpose our results were compared with analysis com-
bining the molecular data with a matrix produced applying
Shultz’s [22] character statements to the sampled taxa.
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This matrix - the most complete overview of arachnid
morphological characters published thus far - is hereafter
named matrix B - also presented in the additional file 6.
The combined analysis using the matrices A and B

repeated the three analyses described above for the
molecular data. The cost regimes tested were the same
as the molecular analysis described above and the criter-
ion of cost regime selection was also congruence as
measured by ILD metrics. For a given cost regime other
than 111, morphology was weighted according to the
ratio of the molecular tree length obtained in this cost
regime and that obtained in 111. It was made for trying
to keep the morphological contribution to the final
result approximately constant.
Results for the constrained analysis combined with

matrix A is the preferred hypothesis. For this, after com-
pleting the sensitivity analysis, we used all resulting trees
from all parameters for tree fusing [66]; a technique
designed for avoiding heuristic problems [67].
It is important to bear in mind that re-sampling measures

of support in the DO context is not directly comparable to
that in a static homology context, since the first sampled
entities are sequence fragments and not individual nucleo-
tides. Thus, for evaluating branch support, Bremer supports
were considered more informative and were calculated for
the constrained analysis combined with matrix A.

Results
Data characteristics and rRNA secondary structures
The SSU rRNA sequences in the 91 species in this
study ranged from 1713-2154 nucleotides from helices
5 to 49; the longest sequences being observed in Tetra-
nychoidea (Tenuipalpus hevae). The length variable
regions are plotted against the secondary structure
inferred for Rostrozetes ovulum (Acariformes, Oriba-
tida, Fig. 2A) which is consistent with the general
model for eukaryotes [40]. Nucleotides included in the
aligned matrix are shaded in gray. Combined, they
comprise 1581 positions, 747 being conserved, and
among the remaining 813 variable positions 568 are
parsimony informative.
When combined, all regions of ambiguous alignment

(RAAs, RECs and RSCs) ranged from 171-610 nts. If
Tetranychoidea are excluded we observe a range from
171-263. Despite their length, Tetranychoidea SSU
rRNA molecules do not present major changes in the
secondary structure as the length variations are related
to the hyperextension of RECs. An exception is a puta-
tive new helix in the V4 region (Fig. 2B, depicted in
red). This helix, which comprises 49-66 nts, should be
considered exclusive to Tetranychoidea and hence is
excluded from the analysis which considered the
secondary structure information.

The LSU rRNA fragment ranged from 284-350 nts.
The largest inside-order variation was obtained among
spiders: 284 nts for the Pholcidae species and 349 for
Atypoides riversi. The secondary structure inferred is
consistent with that proposed for eukaryotes by Schnare
et al. [45]. A notable secondary structure variation is the
absence of the D3_1 helix in Pholcidae, Tetragnathidae,
and all Acariformes. Although some Acariformes species
possess potential base pairing in the corresponding
region (see e.g. R. ovulum in Fig. 3A), they do not exhibit
covariation for postulating a helix in this region for the
order. This region includes 3-34 nts in Acariformes; five
in the Pholcidae species; four in the Tetragnathidae spe-
cies; and 17-50 nts in species which present a D3_1 helix.
The replacement of one secondary structure for

another may be regarded as alternative states of a quali-
tative character. Thus a morphology-like character was
added to the analysis, scored as 1 for taxa in which the
D3_1 helix is absent and 0 for those in which it is pre-
sent. Furthermore, individual nucleotides comprised in
these different structures are not directly comparable
and were set into different files when integrated into the
POY constrained analysis.
Finally, when the D3_1 helix is taken in isolation, the

covariation along the basal portion of the helix allows
inference of the nucleotide homology for the blue-
shaded nts in Fig. 3B. Hence, the region was divided in
three smaller sequences; one treated as pre-aligned and
two under direct optimization.
The aligned data set derived from the LSU sequence

contained 256 positions, of which 95 were conserved
and 125 parsimony informative.
The combined 18 S rRNA plus 28 S rRNA pre-aligned

data set has a mean base composition across the entire
matrix as follows: U = 23.1; C = 22.3; A = 26.4; and G =
28.2. When only loops are taken into account the com-
position is U = 22.7; C = 17.1; A = 38.3; and G = 21.9,
while for stems it is U = 23.5; C = 26.6; A = 16.7; and G
= 33.2. This compositional bias toward adenosines in
loops was already observed in several datasets, and is
explained by the high percentage of unpaired adenosine
nucleotides in several structural motifs [68].

Molecular analysis based on static molecular homology
Bayesian analyses, considering the stems and loops as
separate partitions, improved the lnL over the uniform
GTR +I +G model (lnL harmonic means of -25881.12
and -26073.89, respectively, B10 = 192.76). But the Bayes
factors clearly favor the mixed models that apply base
pairing models for stems: GTR +I +G\16A and GTR +I
+G\7A, with an almost identical harmonic mean for lnL
(-21674.70 and -21675.42). All Bayesisan analyses,
however, presented similar topologies concerning
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Figure 2 SSU secondary structure of exemplar species. Regions alignable across the dataset are shaded gray. A- Rostrozetes ovulum SSU
secondary structure. Regions of ambiguous alignment have their length variation indicated in parenthesis. The Helix V2/V4, a tertiary interaction
is shaded blue. B- Detail from the V4 region of Tenuipalpus heveae, including the Helix E23_12. The red shaded area is excluded from the
constrained POY analysis since it lacks detectable homology with other Chelicerata.
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well-supported taxa. The phylogram presented here was
recovered by the GTR +I +G\7A model (Fig. 4A).
The traditional parsimony based analysis, both

employing POY and TNT reported 28 trees with 4982
steps (CI = 0,338; RI= 0,600) when considering gaps as
a fifth state. Jackknife supports were calculated as pre-
sented in Fig. 4B.
The Bayesian and parsimony analysis recovered almost

all interordinal relationships with weak support (Jack-
knife > 50%, Posterior Probabilities > 75%) except for
Uropygi (Thelyphonida + Schizomida) (J. = 95%, P. P =
100%) and Solifugae + Acariformes (J. = 91%, P. P. =
100%). All traditional orders except Acari, which resolve
split into Acariformes and Parasitiformes, were recov-
ered with high support; as well as Euchelicerata, but
interestingly not Arachnida. Neither Labellata (Ambly-
pygi + Araneae) nor Pedipalpi (Amblypygi + Uropygi) is

recovered but (Uropygi + Araneae) is recovered with
moderate support in the parsimony analysis (J. = 53%)
and high support in Bayesian analysis (P. P = 99%).
Concerning Acariformes intraordinal relationships, it

is noteworthy that Bayesian analysis recovers some tra-
ditionally held taxa with high support which are not
recovered, or recovered with low support, in the parsi-
mony analysis. This is the case for the families Bdellidae
(J. = 44%, P. P = 83%), Halacaridae (P. P = 99%), Astig-
mata + Oribatida Brachypylina (P. P = 100%), and Pros-
tigmata (P. P = 100%).
On other hand, parsimony analysis recovers with high

support a Tetragnathidae + Pholcidae clade among spi-
ders (J. = 88%) while Bayesian analysis places Pholcidae
basal among Araneomorpha with Tetragnathidae as sis-
ter to Nesticus; thus supporting Orbiculariae (P. P =
100%) and Entelegynae (P. P = 100%). The Bayesian

Figure 3 LSU D3 region secondary structure of exemplar species. A- Model for the secondary structure of the Oribatida mite Rostrozetes
ovulum. Gray-shaded areas refer to alignable regions. B- Region D3 of the Scorpion Androctonus australis, note presence of helix D3_1. Blue-
shaded region refers to the D3_1 helix present in most Chelicerata, number of nts associated with RAA2a and RAA2b refers to them alone. C-
Region D3 of the Prostigmata Halacarus sp., note that similarly to R. ovulum in that it lacks a D3_1 helix.
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analysis estimated long branches leading to both Pholci-
dae and Tetragnathidae and their association in the par-
simony analysis is regarded here as a long branch
attraction artifact. Concerning spiders, however, Baye-
sian analyses oddly do not support Mygalomorpha
monophyly.

Morphological analyses
As stated in the methods section, two different morpho-
logical data matrices were assembled for testing the
impact of morphological data sets on the combined ana-
lysis. The trees recovered from the analysis of both
matrix A and B are similar in supporting Amblypygi as
sister group of Uropygi (Pedipalpi), Tetrapulmonata, and
Arachnida (Figs. 5A and 6A, respectively).
Analysis of matrix A (characters recognised here)

recovered neither Acaromorpha sensu Shultz nor Hap-
locnemata. Palpigradi was recovered in a basal position
relative to a polytomy composed of (Tetrapulmonata +
Ricinulei), Parasitiformes, Solifugae, and Acariformes

(Fig. 5A). Pseudoscorpiones resolve here as the sister
group of Scorpiones instead of Solifugae, both associated
with Opiliones.
Analysis of matrix B (Shultz’s data) led to results

similar to the original Shultz [22] analysis. It recovered
Scorpiones as sister group of Opiliones, and a polytomy
composed of Palpigradi, Tetrapulmonata, Acaromorpha
sensu Shultz (Ricinulei, Acariformes and Parasitiformes),
and Haplocnemata (Pseudoscorpiones + Solifugae)
(Fig. 6A).

Combined morphological and molecular analysis under
static homology
In the combined analysis under static homology (Figs.
5B, 6B), Solifugae was recovered as the sister group of
Acariformes mites irrespective of the morphological
matrix employed. Tetrapulmonata was also recovered in
both analyses. Neither matrix A nor B led to a well sup-
ported position for Ricinulei plus Parasitiformes
mites, but the combined analysis employing matrix

Figure 4 Molecular analyses including only pre-aligned regions. A- Bayesian phylogram. Pairing and non-pairing regions were modeled
separately. A seven-state model (7A) was implemented for the paring regions and a GTR + I + G was used for the non-pairing regions. Numbers
indicate posterior probabilities. B- Strict consensus of the 28 most parsimonious trees of molecular data under static homology as established
using secondary structure as a guide (MPT, Length = 4982; CI = 0.338; RI = 0.600).

Pepato et al. BMC Evolutionary Biology 2010, 10:235
http://www.biomedcentral.com/1471-2148/10/235

Page 11 of 23



A recovered a taxon composed of (Opiliones (Pseudos-
corpines Scorpiones) (J. = 59%). These three orders
appear in the topology recovered using matrix B in a
polytomy. Palpigradi is recovered as sister group of
(Solifugae Acariformes) in both analyses, with Jackknife
supports of 54% and 37% respectively.

Molecular analysis integrating Regions of Ambiguous
Alignment
The first noteworthy difference between the standard
and secondary structure constrained POY analysis was
the computational time required for similar searching
strategies, with the former taking approximately 8.7
times longer than the later using the same number of

processors. The standard POY analysis recovered a sin-
gle more parsimonious tree with a length of 9998 steps,
CI= 0.434, RI = 0.676 (Fig. 7A). The cost regime to
minimize incongruence was that with all changes
equally weighted (ILD metrics summarized in Additional
file 7). The constrained analysis yielded a single MPT,
10095 steps long, with CI= 0.412, RI = 0.638, incongru-
ence leading to the choice of the same 111 cost regime
(Fig. 7B).
The optimal topologies are similar with respect to

most interordinal relationships. They both present the
clades (Palpigradi (Solifugae Acariformes)), (Scorpions
Pseudoscorpions), and (Ricinulei (Amblypygi (Araneae
(Thelyphonida Schizomida)))).

Figure 5 Combined analyses of aligned molecular data and matrix A. A- Strict consensus of the 233 MPT recovered from the analysis
based on the morphological matrix A, assembled during the present study (Length= 385; CI= 0.564; RI = 0.922) B- Strict consensus of the 8 MPT
recovered by the analysis based on the matrix A and the aligned molecular data (length = 5411; CI = 0.352; RI = 0.663).
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All traditional orders, except Acari, are recovered in
both analyses at the optimal cost regime. However, only
the cost regimes 111, 112, 121, and 221 recovered Ara-
neae in the standard analysis. The order is not sup-
ported under the cost regime 412 in the constrained
analysis only. Parasitiformes is oddly recovered as a
basal offshoot in both analyses.

Unconstrained combined analyses
The unconstrained combined analyses are remarkable
for presenting ILD values almost identical for the costs
regimes 111 and 121. The former cost regime was cho-
sen arbitrarily for presenting the topologies in Figs. 8A
and 9A. Results differ between the cost regimes no less

because the later presents Arachnida as a monophyletic
group. The ILD metrics for all analyses are summarized
in Additional file 7.
Combined unconstrained analyses of the molecular

data and matrix A yielded a single MPT with 10451
steps, CI= 0.432, RI= 0.694 (Fig. 8A). When combined
with matrix B, the unconstrained analysis recovered a
single MPT, with 10491 steps, CI = 0.434; and RI =
0.685 (Fig. 9A).
The former yielded Solifugae as sister group of Acari-

formes. The latter did not recover the (Palpigradi (Soli-
fugae Acariformes)) clade found in the purely molecular
analyses and remaining combined analyses. Instead,
Acari was recovered as monophyletic and associated

Figure 6 Combined analyses of aligned molecular data and matrix A. A- Strict consensus of the 1482 MPT recovered from the analysis
based on the morphological matrix obtained from Shultz’s (2007) study (Length= 420; CI= 0.548; RI = 0.913) B- Strict consensus of the 4 MPT
recovered by the analysis based on the morphological matrix B and the aligned molecular data (length = 5447; CI = 0.352; RI = 0.661).
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with Solifugae. Furthermore, Palpigradi was recovered as
basal, i.e. as sister group of all other Euchelicerata
orders.

Constrained combined analyses
The ILD metrics unambiguously point to the cost
regime 111 as optimal for both matrices A and B. While
the unconstrained analyses yielded considerable change
in optimal topology with respect to the morphological
matrix with which it was combined, the secondary
structure constrained analyses resulted in the same
interordinal scheme of relationships; albeit with different
frequencies along the sensitivity analyses. The analysis
combined with Shultz’s matrix B resulted in a single
MPT with 10587 steps in length (CI = 0.411; RI =
0.659, Fig. 8B), the analysis combined with matrix A
yielded to a single tree with 10548 steps in length (CI =
0.412; RI = 0.666; Fig. 9B). The resulting topology is dis-
cussed in further detail below and the respective Bremer
support values are displayed for its branches in Fig. 9B.

Discussion
Methodological remarks
One of the most exciting aspects of phylogenetic studies
is that methodological concerns should, more often than
not, be addressed simultaneously with the phylogenetic
inference. Except for bizarre exceptions, such as short
term viral evolution, true phylogenies are unknown. The
alternative employment of simulated data or well-sup-
ported phylogenies must not preclude the researcher
thinking about their own practice.
Shultz [22] brought our attention to the fact that

“There is a tendency to portray arachnid ordinal phylo-
geny as more poorly resolved and contentious than is
actually the case”. If only the morphological and com-
bined analyses are taken in consideration, this is cer-
tainly the case, although the results obtained by purely
molecular analyses depart considerably from this
convergence.
A possible explanation for this apparent contradiction

is the way that molecular homology was established in

Figure 7 Molecular analyses including RAA. A- Single MPT, with 9998 steps of length (CI= 0.434; RI = 0.676) recovered from the standard POY
analysis based on molecular data only and respective plotting of the sensitivity analyses. B- Single MPT, 10095 (CI= 0.412; RI = 0.638) steps long
recovered from the constrained POY analysis of molecular data and respective plotting of the sensitivity analyses.
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those combined analyses that preceded us. Direct opti-
mization was already criticized on the grounds of its
possible inaccuracy in recovering nucleotide homology
when compared with more traditional algorithms such
as Clustal W [69] (contra [70]) and secondary structure
alignment [71]. Our combined analyses results, however,
may be better explained by another drawback, the lack
of independence among data partition, which we here
discuss further.
As in other comparative sciences, systematics is based

on the concept of homology. The formulation of a
hypothesis of character homology is a two step process:
(a) from observations and knowledge external to the
analysis researchers propose characters and their states,
after which (b) several independently formulated charac-
ters are assembled into a matrix and subjected to cladis-
tic analysis. Only after the phylogenetic analysis is it

possible to distinguish between similarity due to conver-
gence and shared ancestry, by using character conflict
or conformation to the optimal topology [72]. This dou-
ble nature of homology is further discussed by Assis &
Brigandt [73].
In molecular systematics, primary homology assess-

ment is accomplished by multiple sequence alignment,
which is crucial for ribosomal genes that may vary in
length by hundreds of nucleotides. Multiple alignments
have been considered a computational rather than a bio-
logical issue and much more effort has been employed in
improving algorithms for matching individual nucleotides
under a similarity criteria than to address what evidence
must be pursued for aligning nucleotides that share evo-
lutionary descent (see Morrison [74] for a revision).
Length variation yields considerable phylogenetic sig-

nal [75], but also produces uncertainty in nucleotide

Figure 8 Combined analyses including RAA and morphological matrix B. A- Strict consensus of the two MPT with 10491 steps of length (CI
= 0.434; RI = 0.685) recovered from the standard POY analysis of molecular data combined with the Shultz-based matrix and respective plotting
of the sensitivity analyses. B- Single MPT, 10587 steps long (CI = 0.411; RI = 0.659) recovered from the constrained POY analysis of molecular
data combined with the same Shultz-based matrix and respective plotting of the sensitivity analyses.
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homology. Usually, regions of ambiguous alignment
(RAA) are detected by alignment inspection and then
discarded. Along with these discarded regions, any phy-
logenetic signal they might have contained is obviously
lost. To avoid such ‘wastage’ several methods were pro-
posed for incorporating RAA into the phylogenetic ana-
lysis [76].
Direct optimization circumvents it by inferring phylo-

geny and homology simultaneously, in a ‘one step’
approach. Wheeler & Giribet [77] made clear their judg-
ment on multiple alignments and considered it a non-
scientific procedure. In their opinion molecular data
must be analyzed as they are obtained from sequencing.
In fact, proponents of POY consider multiple alignments
to be more than useless; even deleterious to the analysis:

“In the same way that each cladogram has a (poten-
tially) unique set of optimal character origins, each
cladogram may have a unique set of optimal corre-
spondences among observed features. Unless these
correspondences are unrestricted and allowed to be
optimized together with transformations, biased and
conditional results may be obtained. Such bias may
come from assumptions of the investigator and his
or her notions of appropriateness of comparison,
and conditioned on the hypotheses most in agree-
ment with preconceived correspondences of ‘pri-
mary’ homology” (Wheeler et al.[[78], p. 11]).

Wheeler and colleagues advocate instead an approach
to systematics classified as ‘instrumentalist’ by Rieppel

Figure 9 Combined analyses including RAA and morphological matrix A. A- Strict consensus of the two MPT with 10451 steps of length
(CI= 0.432; RI= 0.694) recovered from the standard POY analysis of molecular data combined with the morphological matrix assembled in the
present study and respective plotting of the sensitivity analyses. B- Single MPT, 10548 steps long (CI = 0.412; RI = 0.666) recovered from the
constrained POY analysis molecular data combined with the same morphological matrix assembled in the present study and respective plotting
of the sensitivity analyses. Values associated with the branches represent Bremer support.
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[79], which embraces a specific stand point on the nat-
ure of evidence in phylogenetic inference. For these
authors, evidence must enter directly into the analysis
without being filtered by the (ever misleading?)
researcher subjectivity, or constrained by considerations
external to the phylogenetic analysis itself.
The reasoning elaborated by Simmons [80] led us to

reject this perspective and is especially relevant for dis-
cussions concerning Shultz’s [22] perception of conver-
gence of results and the analyses presented here.
Simmons [80] argued that the primary homology assess-
ment step is an insurmountable requisite for phyloge-
netic analyses because it is a guarantee for maintaining
character independence.
POY uses parsimony for optimizing nucleotide homol-

ogy and congruence for parametric regime choice. Both
parsimony and congruence require that characters are
independent within and among data sets. If a character
state lies on the state of another character, a single evo-
lutionary event will be over-weighted. If character states
in a data set lie on the character states in another data-
set it is likely that the combined analysis will be biased
toward a higher congruence among these datasets.
Character dependence may be the product of a

shared causal mechanism, like sharing the same selec-
tive pressures. However, Simmons [80] argued that
when combining unaligned sequence with static
homology data (i.e. pre-aligned sequences or morphol-
ogy) using POY, the final result will be biased toward
the signal provided by the data under static homology.
The cause of dependence in this case is not related to
the underlying biological nature of the character, but
rather by the way direct optimization works when
establishing character homology in its ‘one step ’
approach to phylogenies. The core of his criticisms on
direct optimization is that such influence is sufficient
to blur the phylogenetic signal of the unaligned mole-
cular data. He argued that while optimizing tree
length, potential conflict among molecules being

analyzed under DO and characters analyzed under sta-
tic homology may be erased by the algorithm moving
unaligned nucleotides around. Rieppel [79] presented
similar arguments and referred it as “the fluidity of
character statements”.
Usually, morphological data has a limited effect when

combined with molecular data (see e.g. [81], for its
impact on resolution and support). Morphological influ-
ence is arguably limited by the relatively small number
of characters. However, during a standard POY analysis
morphological data also contributes to the final topology
by: (a) its effect on establishing the molecular homology
under a given cost regime and (b) on the choice of the
cost regimes, since this decision is taken on grounds of
minimizing incongruence.
This suggests that lack of independence could explain

the disparity between the position and monophyly of
mites when combined analysis results are compared
with exclusively molecular analysis, as per Wheeler &
Hayashi [9] and, mainly due to their improved sampling
effort, in Giribet et al [10] and in our own analysis
employing unconstrained direct optimization. It is
exemplified in Fig. 10, where implied POY alignments
correspondent to the trees recovered in the analyses
combined with matrix A and B are compared, showing
that molecular homology statements are diverse between
the two analyses.
Although phylogenetic inference cannot be ascribed to

a falsification context [82] (for an alternative standpoint
see [83]), researchers are interested in at least verifying
how plausible current hypotheses of relationships are.
The ‘epistemological interdependence’ created by direct
optimization makes this ‘test’ less rigorous and may pre-
clude the discovery of potential homoplasy. For exam-
ple, convergence of the gnathosoma between
Acariformes and Parasitiformes is recovered in the con-
strained analyses of the present study, but not in the
unconstrained one applying the Shultz [22] based mor-
phological matrix.

Figure 10 Sensitivity of homology assessment to the morphological matrices. Sequences from the D3 region ranging from helix H628 to
D3_2 of two Acariformes mites (Arrenurus and Schusteria), Anactinotrichda (Amblyoma) and Solifugae (Eremobates). A- Partially aligned sequences,
with regions aligned according to the secondary structure shaded blue. Parenthesis indicates pairing sites, dots unpaired sites and (*) indicates
regions considered unaligned. Note that D3_1 is absent in Acariformes. B- Implied alignment bound to the best trees of the unconstrained
analysis of molecular data combined with matrix A, under cost regime 1:1:1. C- Implied alignment, under the same cost regime, analysis
combined with the matrix B.
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POY may share drawbacks with other automated mul-
tiple alignment programs. Hickson et al. [84] showed
that any multiple alignment method which works at the
individual nucleotide level is incapable of recovering
homology relationships inferred from secondary struc-
tures in rRNA sequences, and this is clear in Fig. 10.
The results of the present study have reinforced the
potential of secondary structures to help formulate
more accurate hypothesis of homology. This is indicated
by the similar values of incongruence in the constrained
analysis, a surprising result since POY seeks to minimize
incongruence. Two clear examples of how secondary
structure may be employed for data partition may
explain this. Other interesting examples of how use sec-
ondary structure information in an analysis may be
found in Swain & Taylor [85].
In the first example, an extra helix, absent in all other

Chelicerata could be determined in the Tetranychoidea
species (Fig. 2B). The emergence of these structures has
been documented ever since initial studies on secondary
structures of ribosomal genes were carried out, e.g. [86].
The nucleotides contained in this new structure are
arguably non-homologous to any others found among
the remaining species, yet they are tentatively aligned
automatically with nucleotides in other sequences using
any of the cost based alignment algorithms, including
POY.
In the second example, with more fundamental conse-

quences for the present analyses, there are length con-
vergences among some taxa. In Tetragnathidae and
Pholcidae (both spiders), and Acariformes mites, which
have convergently lost the D3_1 helix in the LSU frag-
ment studied. We must also consider Atypoides riversi
and Ricinulei which have large insertions in different,
but contiguous, helixes (the LSU D3_2 and D3_3).
These length convergences are easily amenable to
homology establishment using secondary structure as a
guide. In the spider-acariform case, the presence/
absence of the D3_1 helix is considered to be alternative
states of a same character. In the second case, Atypoides
and Ricinulei had their insertions set in different files.
Otherwise, this situation led to spiders being recovered
in just four cost regimes (111, 112, 121, 221), and oddly
(Pholcidae, Tetragnathidae, Acariformes) in 411, 412,
and 421 and (Atypoides Ricinulei) in 211 and 212.
Integrating the regions of ambiguous alignment -

ambiguous relative to the criteria adopted here for
homology establishment - brings to the present analyses
phylogenetic information which both supported Tetra-
pulmonata and placed Ricinulei as it sister group; two
clades which have been suggested based on other lines
of evidence (see below). It leads us to support the inclu-
sion of these regions into phylogenetic analysis as

argued by Giribet & Wheeler [75], but with a note of
caution when interpreting the results.
Any alignment is an inference, since gaps are not

observed from sequencing results. Therefore, alignment
includes a variable degree of uncertainty. In a standard
analysis, where only regions regarded as unambiguously
aligned are considered, this uncertainty is comfortably
ignored by those who perform the analyses.
It is harder to do so considering the regions of ambig-

uous alignment. POY provides point estimation on the
optimal alignment for these regions given a cost regime,
but is uninformative on the impact of homology infer-
ence uncertainty on node support.
Furthermore, parameter choice is made among a lim-

ited set of cost regimes applied uniformly to the
sequence and not estimated by the sequences properties.
Redelings & Suchard [87] proposed an algorithm for
simultaneously estimating alignment and phylogeny, tak-
ing into account alignment uncertainty that circumvents
this problem in a Bayesian frame. It is expected that
such developments will allow further integration of
RAA’s phylogenetic information while at the same time
considering the uncertainty in support estimation. Cur-
rently, however, the implementation of this method is
practical only for smaller data sets.
Given the considerations above, the hypothesis that

combines (a) a better knowledge of rRNA properties
when establishing homology, (b) keeps the among-parti-
tion independence and (c) encompasses the information
from the RAAs, is that recovered under the constrained
analysis combined with matrix A (Fig. 9B). This hypoth-
esis will be the basis for the following discussion.

Phylogenetic position of Acariformes
Acaromorpha sensu Shultz is supported neither by the
morphological nor the molecular data presented here. In
fact, both converge in placing Ricinulei as the sister
group of Tetrapulmonata (i.e. spiders and their closest
relatives), although with low Bremer support in the final
analysis (Fig. 9B). Among the putative synapormorphies
for (Ricinulei + Tetrapulmonata) we have the presence
of a tritosternum, a feature also shared by several Parasi-
tiformes mites (Ch. 12), a cheliceral apotele articulated
dorsally (Ch. 28), loss of the proximal segment of the
chelicerae, convergent with Acariformes mites, Solifugae
and Pseudoscorpiones (Ch. 27), coiled sperm cells,
shared with Pseudoscorpiones (Ch.162) and the pre-
sence of a machete of microtubules associated with the
spermatid nucleus (Ch. 167). The association of Ricinu-
lei with Tetrapulmonata is further supported by fossil
data. Ricinuleids share several putative apomorphies
with Trigonotarbida; a whereby (Trigonotarbida + Tet-
rapulmonata) together form the Pantetrapulmonata
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sensu Shultz [22]. As in the ground plan of Tetrapulmo-
nata, trigonotarbids also have two pairs of book lungs in
opsithosomal segments 2 and 3 respectively [88], as well
as the typical tetrapulmonate ‘clasp-knife’ chelicerae.
Explicit morphological characters supporting (Ricinulei
+ Trigonotarbida) include palpal chelae where the apo-
tele opposes the tarsus (Ch. 41), presence of a locking
mechanism between the prosoma and opisthosoma (Ch.
68), longitudinally divided opisthosomal sclerites (Ch.
69), and the presence of a diplosegment formed by the
fusion of opisthosomal tergites 2 and 3 (Ch. 70) [18,19].
As discussed above, a monophyletic Acari could not

be recovered in those cost regimes that minimized
incongruence, except when combining the uncon-
strained data with matrix B. The position of Parasiti-
formes could not be further addressed here. In fact, we
should regard this as a ‘wild card’ group. The basal posi-
tion recovered from the present data is arguably an arti-
fact and has no morphological support. An alternative
hypothesis would be a sister group relationship between
Acariformes and Ricinulei. This is the so-called Cryptog-
nomae hypothesis, introduced by Hammen [13], with
their putative sister group in his scheme being Trigono-
tarbida. Another possibility would be to treat anactino-
trichid mites as a basal offshoot from the lineage leading
to the Tetrapulmonata + Ricinulei group. The latter
model would receive support from the presence of a tri-
tosternum (Ch. 12) and the way coxal glands fluids
reach the pre-oral chamber (Ch. 115). Finally, numerous
molecular analysis have recovered Parasitiformes as the
sister group of Pseudoscorpiones [10,11,23,24]. Charac-
ters such as the fusion of the labrum to the epistome,
and a ventrally placed cheliceral apotele support this
hypothesis (Ch. 13, 28), although neither of these traits
are exclusive to them. It is noteworthy that all these
mentioned analyses have not included basal Pseudoscor-
piones, restricting themselves to members of the more
derived Iocheirata.

Solifuges and acariform mites
The most significant result from the present combined
study is a strong signal for a sister group relationship
between Solifugae and Acariformes. Interestingly, the
same result was obtained in the recent molecular tree of
Dabert et al. [24] with similarly high support values;
albeit using a slightly different set of genes (specifically
we used D3 LSU rather than COI).
Dabert et al. [24] further discussed morphological sup-

port for this clade, mentioning similarities in the posi-
tion of the tracheal openings of solifuges and at least
the prostigmatid mites, or the potentially homologous
lateral organs of Solifugae and the Claparède organ of
Acariformes. From our character set we recognize the
following putative apomorphies: a narrowing of the

sternal region, the fusion of the labrum to the epistome,
and a ventrally placed cheliceral apotele (Ch. 7, 13, 28).
Some of these character states are recovered as conver-
gent with, respectively, Pseudoscorpiones (Ch 7), and/or
Pseudoscorpiones and Parasitiformes mites (Ch. 13, 28).
Exclusive to Solifugae and Acariformes are the putative
synapomorphies of loss of the nuclear envelope during
spermiogeneis (Ch.158, although a somewhat similar
condition may occur in some Xiphosura), and the pre-
sence of a specific structure of the testis (Ch. 168).
This apomorphic histology of the testis is the most

striking feature uniting solifuges and acariform mites
[20,89]. This feature was overlooked by the Shultz [22]
study, in which he accused (p. 236) Alberti & Peretti,
and other workers, of trying to “support specific (target)
clades”. Despite such criticisms it is interesting to note
that the explicit character of testis morphology which
Alberti & Peretti formally proposed in support of soli-
fuges and acariform mites was conspicuously absent
from Shultz’s own morphological matrix. One can also
target clades by excluding data a priori.
Considering the testis character in detail, in Parasiti-

formes mites, for example, spermatogenesis progresses
in a roughly anterior-posterior direction along the testis,
and spermatogonia are observed in adults. Secretory
cells are lacking in the testis. In Acariformes, by con-
trast, no spermatogonia are observed in adults and
meiosis putatively occurs only in juveniles. Furthermore,
the testes have a dorso-ventral orientation with a dorsal
germinative region delivering sperm cells to the lumen,
apparently by germinative epithelia fragmentation, while
the ventral secretory specialized epithelia deliver a
sperm-accompanying secretion through a more or less
developed brush border. This dorso-ventral orientation
is also clear in spermatid development with mature
sperm cells restricted to the ventral portion of the ger-
minative region. Exactly the same condition is observed
in Solifugae, except that here only mature sperm cells
are documented in adults.
As noted by Dabert et al. [24], a possible relationship

between solifuges and acariform mites also has historical
precedence [90]. Cambridge [91] described a rhagidiid
mite as a new arachnid order which he named Poecilo-
physidea; considering it a mite-like animal, but with
solifuge-like characters. Banks [[92], pp. 21-22] later
claimed with reference to Rhagidia: “Its structure is in
many ways very similar to that of certain solpugida and
suggested to Thorell its generic name, which is a
diminutive of Rhax, a genus of Solpugida. It is probable
that, it is the most primitive of all existing mites, and
points to a close relationship of the Acarina to the Sol-
pugida.” Rhagidiids do look, at least superficially, rather
like tiny solifuges. While most cladistic work on mites -
including the present study - has not recovered
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Rhagidiidae in a particularly basal position among the
Acariformes, Dabert et al. [24] mentioned that this
family was recovered either basal within the Eupodides
clade or even basal among Trombidiformes; at least
under some parameters of analysis. Given the new phy-
logenetic hypothesis linking solifuges and mites, further
tests of the position of rhagidiids would be welcome.
Alternatively, Grandjean [93,94] drew comparisons

between solifuges and another group of acarifom mites;
the probably basal oribatid lineage Palaeacariformes.
Grandjean highlighted similarities such as a dorsal scler-
ite (or propeltidium) associated with the first four pairs
of appendages (our Ch. 1), the projecting mouthparts
(Ch 13) and the Claparède/lateral organ (but see our Ch
175). As noted by Dunlop & Alberti [6], high-quality
morphological studies incorporating both mite and non-
mite arachnids are largely lacking and we hope that the
results of the present analysis will encourage further
comparative research of this nature. In this study, we
choose to name the putative clade encompassing Solifu-
gae and Acariformes as Poecilophysidea, in recognition
of Cambridge’s the early acknowledgement of the simi-
larity between the two orders.

The palpigrade problem
Palpigradi is one of the least known of the extant ara-
chnid orders. Certain characters, such as the morphol-
ogy of the endosternite, have led some authors to
consider them as basal Arachnida [95]. Alternatively,
palpigrades have previously been considered closely
related to Acariformes mites [23,96] or Tetrapulmonata
[16]; while Shultz [22] recovered them unresolved with
respect to his other major arachnid lineages. The posi-
tion of Palpigradi which is most stable, although with
weak support, in the present analysis is as sister group
of the Solifugae + Acariformes clade: a hypothesis we
will name hereafter as “Cephalosomata”.
The name Cephalosomata highlights the absence of a

unitary carapace covering the first six appendage-bear-
ing segments. Instead, as in Pycnogonida and Schizo-
mida the group Palpigradi, Solifugae and Acariformes
(due its sejugal furrow) present the four anterior appen-
dage-bearing segments covered by a shield variously
named the cephalosoma (which technically refers to the
body region) or the propetildium (the dorsal shield
itself) [97].
Significantly, Cephalosomata is only recovered when

molecular data is brought into the analyses, but shares,
besides the cephalosoma/propetidium (Ch. 1), the
absence of a sperm cell flagellum (Ch. 161, convergently
lost in Parasitiformes and Phalangida harvestmen and
scored based on Prokoenenia, since the genera Eukoene-
nia has not been studied with respect to this feature);
presence of a secretory region on the coxal glands

(Ch. 115) and the putative number of body segments
(Ch. 66); both character states modified or lost in Acari-
formes. These characters are admittedly highly homo-
plastic and possibly under-studied, yielding only weak
morphological support for this clade. The constrained
analysis combined with matrix A also recovered Cepha-
losomata, although with a low Bremer support (Fig. 9B).
Despite this, we suggest that some aspects of Cephalo-

somata morphology may yield novel data for the group.
Solifugae is unique among Arachnida for displaying the
most complete set of embryological opisthosomal
appendage buds, comprising transitory appendages from
the first to the tenth opisthosomal segments [98]. Most
of them degenerate quickly, but tracheal stigmata
develop behind the 3rd to 5th segments. These same seg-
ments develop the putative respiratory lung sacs (or
‘ventral sacs’) in some Palpigradi, but since embryology
is largely unknown for this group it remains equivocal
as to whether these sacs in palpigrades are appendage
derivatives too. ‘Ventral sacs’ are often treated as homo-
logous to similar structures seen in Amblypygi [99], but
they were regarded by Hammen [96] as homologous to
the genital acetabula in Acariformes due their similar
post-embryonic development.
The appendicular nature of the genital acetabula is not

demonstrable from traditional embryological observa-
tions of Acariformes, since appendage buds in the
appropriate position have never been recorded for this
group. Yet the acetabula share the same fine structure
and function as the epimeral pores or Claparède organs
[100,101], which are demonstrably exopod derivatives
among the mites. In summary, Palpigradi ‘lung sacs’,
Solifugae spiracles and Acariformes genital acetabula
may be vestigial expressions of the same appendages on
the same body segments. Moreover, we could speculate
that the trilobated genital opening in both Palpigradi
and Acariformes are homologous structures; as did
Hammen [96].

Arachnida and future prospects
Finally, molecular data do not support a monophyletic
Arachnida. In the optimal hypothesis, Xiphosura are
recovered in a group including Scorpiones, Pseudoscor-
piones and Opiliones. We should note that the last
three orders are recovered together mainly thanks to
muscular appendicular characters [15] in our morpholo-
gical analysis (Fig. 5A). This clade recalls Dromopoda,
sensu Shultz [16], but here excluding Solifugae and
including Xiphosura, or Hammen’s ‘Myliosomata’ (here
including Pseudoscorpiones); see Hammen [14] for a
discussion of this group defined on ‘coxisternal’ feeding.
Challenges to arachnid monophyly have usually faced

much criticism (see especially Shultz [16,22,102]) and a
problem already experienced in similar analyses
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including extant material is the fact that many putative
chelicerate plesiomorphies are unrecognizable among
Pycnogonida. This has led to analyses optimizing these
characters as autapomorphic for Xiphosura. We may list
in this context the presence of a carapace pleural margin
(Ch. 3), a cephalic doublure (Ch. 9), a posteroventraly
directed mouth (Ch. 11), a well developed post-anal tel-
son (Ch. 23), presence of gnathobases (Ch. 47) and pre-
sence of endosternal suspensors of opisthosomal somites
I and II (Ch. 125). All these characters are not clearly
applicable to, or else wholly absent from, Pycnogonida.
However they are (in part) evident in potential chelice-
rate outgroups (’trilobitomorphs’, ‘great appendage’
arthropods) among the early Paleozoic arthropods [103].
Integration of paleontological data will be crucial for
solving the problem of character polarity within Cheli-
cerata - and hopefully arachnid monophyly too - but
this goes beyond the scope of the present study. We
refer the reader to Dunlop [104] for a review of possible
chelicerate origins and to our character statements
(Additional file 5), in which paleontological information
is discussed where relevant.

Conclusions
Previous studies combining ribosomal sequences and
morphology recovered topologies similar to those mor-
phological analyses which yielded taxa such as Haploc-
nemata and Acari. Comparing the results of the
methods for molecular homology assessment employed
here, we conclude that the apparent stability of the
clades noted above in total evidence analyses is better
explained as the byproduct of the way the molecular
homology was established using the instrumentalist
approach implemented in POY. Constraining the analy-
sis by a priori homology assessment is defended as a
way of maintaining the severity of the test when adding
new data to the analysis. Although the strength of this
methodology is that it retains phylogenetic information
from regions usually discarded in an exclusively static
homology framework, it still has the inconvenience of
being uninformative on the effect of alignment ambigu-
ity on resampling methods of clade support estimation.
Finally, the most notable result of our analysis is further
evidence for a strong molecular signal supporting Solifu-
gae + Acariformes. Morphological apomorphies for this
clade - for which we here adopt the name Poecilophysi-
dea - include reduction of the proximal cheliceral podo-
mere, medial abutting of the leg coxae, loss of sperm
nuclear membrane, and presence of differentiated ger-
minative and secretory regions in the testis delivering
their products into a common lumen. This last charac-
ter in particular has been widely overlooked in recent
morphological studies concerning chelicerate phylogeny.
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Additional file 1: Sampling data and taxonomy. The table indicate
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Additional file 2: Secondary structure alignments. Two FASTA files
containing the secondary structure alignments of 18 S and 28 S are
provided, along with two notations marks, a pairing mask with signals
such “( )”, “{ }”, and “< >“ for paired sites, indicating the pair members; “.”,
for unpaired sites and “*”, for regions of ambiguous alignment. The other
mask indicates secondary structures as labeled in the Fig. 2, 3.

Additional file 3: Monitoring the convergence of MCMC in Bayesian
analyses. Plotings of the LnL of the stationary phase of each one of the
models along with a comparison of parameters values obtained from the
two independent runs using Gelman’s statistic [105] are provided.

Additional file 4: POY imputs. Fasta files including all the regions of
ambiguous alignment are provided.

Additional file 5: Morphological characters statements. The file
provided include statements of the 178 morphological characters used in
the combined phylogenetic analyses and gathered along the present
study.

Additional file 6: Morphological datasets. Two data matrices are
provided, that produced by scoring character statements gathered along
the present study (Matrix A) and those enunciated by Shultz [22] (Matrix
B).

Additional file 7: Tables with ILD metrics values for analysis
employing direct optimization. The file contains ILD metrics values for
the standard and constrained analysis of molecular data alone, and
combined analysis of molecular data and morphological data matrices A
and B.
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