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Statistical Downscaling with Spatial
Misalignment: Application to Wildland Fire

PM2.5 Concentration Forecasting
Suman Majumder , Yawen Guan, Brian J. Reich, Susan O’Neill, and

Ana G. Rappold

Fine particulate matter, PM2.5, has been documented to have adverse health effects,
and wildland fires are a major contributor to PM2.5 air pollution in the USA. Forecasters
use numerical models to predict PM2.5 concentrations to warn the public of impend-
ing health risk. Statistical methods are needed to calibrate the numerical model forecast
using monitor data to reduce bias and quantify uncertainty. Typical model calibration
techniques do not allow for errors due to misalignment of geographic locations. We pro-
pose a spatiotemporal downscaling methodology that uses image registration techniques
to identify the spatial misalignment and accounts for and corrects the bias produced
by such warping. Our model is fitted in a Bayesian framework to provide uncertainty
quantification of the misalignment and other sources of error. We apply this method to
different simulated data sets and show enhanced performance of the method in presence
of spatial misalignment. Finally, we apply the method to a large fire in Washington state
and show that the proposed method provides more realistic uncertainty quantification
than standard methods.
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1. INTRODUCTION

Air pollution associated with wildland fire smoke is an increasingly pressing health
concern (Dennekamp and Abramson 2011; Rappold et al. 2011; Johnston et al. 2012; Den-
nekamp et al. 2015; Haikerwal et al. 2015, 2016; Wettstein et al. 2018). Reliable short-term
forecasts of fire-associated health risk using numerical models facilitate informed deci-
sion making for local populations. Numerical models produce forecasts on a coarse grid
and are prone to bias. Assimilating point-level monitor data with numerical-model output
can reduce bias and provide more realistic uncertainty quantification (e.g., Berrocal et al.
2010a,b; Kloog et al. 2011; Zhou et al. 2011, 2012; Berrocal et al. 2012; Reich et al. 2014;
Chang et al. 2014). However, most downscaling methods only correct additive and scaling
biases and fail to guard against spatial misalignment errors where a forecasted event occurs
in a different spatial location than forecasted. Spatial misalignment error in this context
implies errors corresponding to predicting the location of a feature, such as fire plume, are
wrong. Not accounting for it is problematic for wildland fire smoke forecasting because
a common source of error is in predicting the direction of the fire plume which cannot be
accounted for by additive and scaling correction to the forecast. This motivates us to develop
a statistical downscaling method that accounts for spatial misalignment errors.

Spatial misalignment correction can be achieved using standard image registration (or
warping) techniques, ranging from simple affine and polynomial transformations to more
sophisticated methods such as Fourier-based transforms (Kuglin 1975; De Castro and
Morandi 1987), nonparametric approaches like elastic deformation (Burr 1981; Tang and
Suen 1993; Barron et al. 1994) and thin-plate splines (Bookstein 1989; Mardia and Little
1994; Mardia et al. 1996). Such applications of warping in image processing, especially
medical imaging, has allowed us to use information from multiple sources simultaneously
to improve our understanding. Beside image processing and medical imaging, warping is
also popular in speech processing (Sakoe and Chiba 1978), handwriting analysis (Burr
1983), determination of alignment of boundaries of ice floes (McConnell et al. 1991) where
they are used to improve pattern recognition capabilities. More recently, warping allowed
improvement of weather forecast analysis and verification (Hoffman et al. 1995; Alexander
et al. 1999; Sampson and Guttorp 1999; Reilly et al. 2004; Gilleland et al. 2010).

Sampson andGuttorp (1992) usedwarping of spatial coordinates tomodel non-stationary
and non-isotropic spatial covariance structures. Anderes and Stein (2008) and Anderes and
Chatterjee (2009) developed methods for estimating deformation of isotropic Gaussian
random fields. The first attempt at using warping for forecast verification in statistics, to our
knowledge, was proposed by Aberg et al. (2005). Image warping in wind field modeling was
proposed by Ailliot et al. (2006), and Fuentes et al. (2008) used warping to assimilate two
different sources of rainfall data in a single model. Kleiber et al. (2014) used warping in the
context of model emulation and calibration framework. They assume the observations lie on
a grid, and the spatial features are completely observed so that standard image registration
techniques such as landmark registration can be used for estimating the warping function.
However, this approach does not apply to our downscaling problem because the monitoring
stations are spatially sparse and the shape anddirectionof thefire plumeare not observed.The
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estimation of the warping function is challenging and further complicated by the dynamic
environment, such as changes in the wind pattern.

We propose a new statistical downscaling method that optimizes the information from
available forecasts and real-time monitoring data. We achieve this through (1) introducing a
warping function to allow for flexiblemodel discrepancy beyond the additive andmultiplica-
tive biases and (2) multi-resolution modeling to allow the data to determine the appropriate
spatial resolution to inform prediction. We estimate the spatial misalignment between the
forecast and the observed data using a penalized B-spline approach. We also use spectral
smoothing (Reich et al. 2014) to capture important patterns more vividly and reduce noise
simultaneously. By coalescing these two methods in a single model, we propose a novel
downscaling model that accounts for spatial misalignment as well as the usual additive and
scaling biases while smoothing out the forecast to improve prediction.

The remainder of the paper proceeds as follows. Section 2 introduces the motivating
dataset and Sect. 3 describes the proposed method. The performance of the model and its
component models are studied extensively using a simulation study in Sect. 4. Themethod is
applied to forecasting air pollution during a major fire in Washington State in Sect. 5, where
we show that accounting for spatial misalignment provides better assessment of uncertainty.
We finish with some concluding remarks in Sect. 6.

2. PM2.5 DATA FORWASHINGTON STATE

We have two sources of PM2.5 data: numerical model forecasts on a grid and ground
monitoring station scattered around the state. Both data sets give hourly PM2.5 measurements
for the state of Washington from August 13, 2015 to September 16, 2015, a period with
severe wildland fires.

The numerical forecasts were generated by the BlueSky modeling system on a 4km
× 4km grid resulting in a 200 × 95 grid covering Washington. The model is run daily at
midnight and provides an hourly forecast for the next 84h of which we use only the forecasts
for the first 24h for our analysis. The model only forecasts PM2.5 levels created by wildland
fires and does not contain any information about PM2.5 generated from other sources such
as traffic or industry. The forecasts also do not assimilate observed PM2.5 data, instead they
are mostly driven by location and intensity of the fire.

The second source of data is from the ground monitoring stations which measure the
total PM2.5 level at the corresponding locations. We have 55 monitor stations throughout
the state of Washington. These monitors include both permanent monitors that are likely
to be preferentially located near high population areas and temporary monitors that are
placed near the areas impacted by the fire. Approximately 7% of the observations from
these monitors are missing.

Figure 1 shows the concentration of log(1 + PM2.5) (in log µg/m3, called log PM2.5

henceforth) on 22 August, 2015 at 04:00 GMT. The circles indicate the locations of the
stations, and their colors correspond to the observed log PM2.5 values; missing observations
are colored in gray. The background map shows the numerical model forecast. There is
obvious difference in the spatial resolution of the two sources of data as well as the type of
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Figure 1. log PM2.5 concentration in logµg/m3 in Washington at 04:00 GMT on August 22, 2015. The back-
ground map shows the forecast from the numerical model, while the circle shows the location of the monitoring
station. The color of the circle indicates the concentration level of the observed log PM2.5 with missing value
colored inlight gray.

the data. The numerical model forecast only gives information about wildland fire PM2.5

emissions, whereas the monitor station data includes both wildland fire PM2.5 emission and
PM2.5 emission from other sources. This adds an additional level of difficulty to model and
infer about the same phenomenon from the two sources of data. Naturally, excluding the
other sources of PM2.5 from the forecast model probably results in the system ignoring some
complex feedback between fire-related PM2.5 and PM2.5 from other sources. However, in a
period with large fire, this effect is likely to be minimal and therefore can be overlooked.

3. STATISTICAL MODEL

LetYt (s) denote themeasured log PM2.5 from themonitor at spatial location s = (s1, s2)T

on day t , and Xt (s) be corresponding numerical forecast in log scale. Instead of directly
relating these variables, we associate Yt (s) to a smoothed and warped forecast to account for
model discrepancies. Let w : R2 → R

2 be a warping function that maps s to a new location
w(s) = (w1(s), w2(s))T to account for spatial misalignment (as discussed in Sect. 1) and
X̃t (s) to be smoothed forecast. The model is then

Yt (s) = β0(s) + β X̃t (w(s)) + εt (s), (3.1)
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where εt (s)
i id∼ Normal(0, σ 2) is error. Since the smoothed and warped forecast is a prod-

uct of an atmospheric dispersion model that already takes into account the spatiotemporal
variability as well as the effects of meteorological components and other factors, we assume
that the errors εt (s) are independent over space and time. The slope parameter β is included
to calibrate the difference in scale of the forecast and monitor data, perhaps due to the areal
nature of the forecast and the point nature of the monitor.

3.1. MODEL FOR THE SPATIALLY VARYING INTERCEPT

A spatially varying intercept is employed to correct for possible additive bias. In our
motivating example, additive bias in the monitor station observations come from other
sources of PM2.5, such as traffic and industry that are not included in the numerical forecast.
We model the spatially varying intercept using finite basis function expansion

β0(s) = b0 +
J∑

j=1

K∑

k=1

A0
j (s1)B

0
k (s2)b jk . (3.2)

We use known basis functions for the two coordinates, A0
j (s1) and B0

k (s2), and estimate the
coefficients b jk and b0. Although other choices of basis functions are possible, we use an
outer product of B-spline basis functions, that is, A0

j (s1) and B0
k (s2) are univariate B-spline

basis functions with J and K knots, respectively. Cubic B-splines basis functions are a
sensible choice as they can approximate any smooth function in a bounded domain.

A natural problem in finite-basis function expansion-based modeling is the choice of
number of knots and their position. We select J and K to be large enough to capture
the variability in the data with enough detail and use a penalized B-spline approach to
prevent overfitting. Penalization is achieved by employing a Gaussian prior distribution
on the coefficients b = (b11, b12, . . . bJK )T with mean 0 and covariance σ 2

0 Σ0. Σ0 has a
conditional autoregressive (CAR) covariance structure, i.e., Σ0 = (M0 − ρ0E0)

−1, where
E0 is the adjacency matrix for the coefficients in b and M0 is a diagonal matrix with
the number of neighbors for each knot on the diagonal. The coefficients b jk and b j ′k′ are
considered neighbors if | j − j ′| + |k − k′| = 1.

3.2. MODEL FOR THE WARPING FUNCTION

We approximate the warping function using the finite basis function expansion

wl(s) = sl +
J1∑

j=1

J2∑

k=1

A j (s1)Bk(s2)a jkl , l = 1, 2. (3.3)

Thewarping function is defined by basis functions for the two coordinates A j (s1) and Bk(s2)
and the corresponding coefficients a jkl . We use an outer product of B-spline basis functions
for our model here as well, that is, A j (s1) and Bk(s2) are univariate cubic B-spline basis
functions with J1 and J2 knots, respectively. However, B-spline would not be a good choice
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if the warped location is outside the bounded domain. This is tackled by forcing any point
outside the grid to be remapped to its closest point on the grid boundary.

Other applications of warping in spatial statistics have used some restrictions on the form
of the warping function. For example, Sampson and Guttorp (1992) restricted the class of
warping functions to one-to-one functions and Snelson et al. (2004) restricted the warping
functions to be monotone and have the entire real line as its range. Such restrictions are
not necessary here since warping the space for covariates does not present problems of
preserving measure-theoretic properties or positive definiteness of the covariance structure.
Therefore, we can apply warping functions that map multiple locations to one point in the
warped image. This may be unavoidable if the forecast is available only on a coarse spatial
grid and multiple monitors reside in the same grid cell.

While insisting that the warping function is one-to-one is unnecessary and overly restric-
tive, we do impose a prior penalty to avoid overfitting. Our prior encourages the warping
function to be smooth and centered around identity warp, w(s) = s. We consider identical
priors for the coefficients al = (

a11l , . . . , aJ1 J2l
)
for each l = 1, 2 and that a1 and a2 are

independent. To ensure a smooth warping function, we use a spatial prior for al defined as
a neighboring scheme based on the indices that involves the rook neighbors for each index
when viewed to be placed on a two-dimensional integer grid. That is, a jkl and a j ′k′l are
neighbors if | j − j ′| + |k − k′| = 1. A correlation structure for such a neighboring scheme
is created by assigning a CAR covariance structure Σw = (M1 − ρwE1)

−1 to the normally
distributed coefficients, with E1 being the adjacency matrix and M1 being the diagonal
matrix with i th diagonal entry equal to the number of neighbors of the i th point. This means
that al has a Gaussian distribution with mean 0 and covariance σ 2

a Σw. By setting E(a) = 0,
we shrink the warping function toward the identity function.

3.3. MODEL FOR THE SMOOTHING FUNCTION

Smoothing the forecast eliminates spurious small-scale variation and allows aligning
large-scale features of the forecast such as smoke plumes with the monitor data. Since the
forecast is on a regular grid, the smoothing can be achieved using the spectral downscalar
proposed by Reich et al. (2014). The spectral representation of the forecast is

Xt (s) =
∫

exp
(
−iωTs

)
Zt (ω)dω, (3.4)

where ω ∈ R
2 is a frequency and

Zt (ω) =
∫

exp(iωTs)Xt (s)ds (3.5)

is the inverse Fourier transform of the forecast. This decomposes the forecast’s signals at
different frequencies Zt (ω). Processes that comprises of lower frequencies contain the infor-
mation about the large-scale patterns, while processes corresponding to higher frequencies
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holds local information. We capture the forecast features at L different resolutions using

X̃lt (s) =
∫

Vl(ω) exp(−iωTs)Zt (ω)dω, (3.6)

where Vl(ω) are known basis functions that serve as weights based on frequencies satisfying∫
Vl(ω)dω = 1 , ∀l = 1, · · · , L where L is the number of basis functions. A useful choice

for the basis functions are Bernstein polynomials, as suggested by Reich et al. (2014) (see
the Appendix-A for details). We then reconstruct the smoothed process by

X̃t (s) =
L∑

l=1

αl X̃lt (s). (3.7)

Smoothing is achieved if αl ≈ 0 for terms with large ‖ω‖ as this essentially filters out high
resolution features. On the other hand, if αl = 1 for all l, the smoothed forecast reduces to
the original forecast, i.e., X̃t (s) = Xt (s).

Constructing X̃lt (s) requires computing the stochastic integrals in (3.5) and (3.6). For
fast computing, these integrals are approximated using two dimensional discrete Fourier
transform and inverse discrete Fourier transform as

Z pt ≈ 1

P

P∑

q=1

exp(iωT
psq)Xt (sq) and X̃lt (s) ≈

P∑

p=1

Vl(ωp) exp(−iωT
ps)Z pt , (3.8)

where the forecast is on a grid of P1 × P2 and P = P1P2.
In (3.1), the scale of β and α1, α2, . . . , αL are not identified, so we reparametrize to

β = β(α1, α2, . . . , αL)T = (β1, β2, . . . , βL)T and place a prior onβ. To prevent overfitting,
we use the same penalized splines approach as before. We put another CAR covariance
structure on β with the neighboring scheme based on their indices, as before,

β ∼ N
(
0, σ 2τ 2Dx

)
,

where 0 is the zero vector of length L and Dx = (M2 −ρxE2)
−1 is the corresponding CAR

covariance structure,E2 being the adjacency matrix with terms l and k considered neighbors
if |l − k| = 1 andM2 being the corresponding diagonal matrix created similarly as before.

3.4. MODEL DETAILS

Since the forecast, and the spectral covariates, can only be computed on a grid and the
monitoring sites are non-gridded points in R

2, we use the nearest grid neighbor as a proxy
for forecast at the station. That is, we use the model

Yt (s) = β0(s) +
L∑

l=1

βl X̃lt (w̃(s)) + εt (s),
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where w̃(s) is the location of the closest forecast grid cell to w(s). Any point that goes
outside the grid as a result of the warping is set at the nearest grid point, as mentioned
earlier.

To complete the Bayesian model for jointly modeling the smoothing and warping, we
specify the priors for the hyperparameters: σ 2

0 ∼ IG(0.01, 0.01) and σ 2 ∼ IG(0.01, 0.01).
We assume σ 2

a ∼Half-Normal(0.15). This sets the 99th percentile for the prior to be 1. This
choice of prior strongly suggest the warping to be adequately smooth. We put a Beta(10,1)
prior on the hyperparameters ρ0, ρa and ρx , suggesting aminimal level of spatial correlation
being present. Instead of choosing a hyperprior for τ 2, we set τ 2 = 10. This helps avoid
numerical instability in the computational process and yet provides enough prior uncertainty
for the β parameter. We recommend choosing J, K , J1 and J2 to be large, e.g., so that the
number of basis functions is roughly the same as the number of monitor stations, as the
penalization should set the unnecessary coefficients to zero, thus reducing it to a simpler
model. We use (J, K ) = (J1, J2) = (6, 4), (10, 5) or (12, 8) for our simulation study
scenarios with the corresponding number of monitor stations being 25, 50 or 100. For the
data example, we use (J, K ) = (J1, J2) = (11, 5). We should chose L to be large as well
since we added a penalization for that too. However, in this case we do not need to choose L
to be as large as the number of monitor stations since we expect the smoothing operator to
be a smooth function. For instance, we use L = 15 throughout our studies and data example
as we believe decomposing the information in Xt (s) into 15 partitions would allow us to
filter out enough needless small-scale variations to achieve smoothing.

4. SIMULATION STUDY

In this section, we conduct a simulation study to explore the performance of the proposed
method in different scenarios. We consider four data generation processes and three sets
of monitor station locations for each of these processes and create 30 datasets for each
combination of these factors. We use the forecast from the dataset described in Sect. 2 for
August 18, 2015 to August 22, 2015 as Xt (s). The grid size for the simulation study was
therefore the same as the forecast grid of the data, 200 × 95.

We consider five data generation processes. In the first case, data are generated by a
simple linear regression (SLR) model with the forecast as the predictor, i.e.,

Yt (s) = β0 + β1Xt (s) + εt (s),

with εt (s)
i id∼ N (0, 1), β0 = 1.5 and β1 = 0.25. Second, we use the smoothed forecast

predictor

Yt (s) = β0 +
L∑

l=1

βl X̃lt (s) + εt (s),

where L = 10, εt (s)
i id∼ N (0, 1), β0 = 1.5 and βl were decreasingly ordered realizations

of a N (0.25, 0.0625) random variate for l = 1, 2, . . . , 10. The descending order of the
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coefficients ensures that the low-frequency terms have higher weights than high-frequency
terms. The next two cases have a warped and smoothed forecast as predictor

Yt (s) = β0 +
L∑

l=1

βl X̃lt (w̃(s)) + εt (s)

with w̃(·) being a warping function and the remaining components of the model being
the same as in the previous scenario. These two cases are distinguished by their warping
function. The first warping function is the translation warp

w(s) = s +
(
0.16
0.16

)
.

The second warping function we used was diffeomorphism warp (Guan et al. 2019) that
preserves the boundaries of the image. For 0 ≤ s1, s2 ≤ 1,

w1(s) = s1 − 2θ1s2 sin s1 cos s2(cosπs1 + 1)(cosπs2 + 1)

w2(s) = s2 − 2θ2s1 sin s1 sin s2 cos
πs1
2

cos
3πs2
2

,

where θ1 and θ2 are tuning parameters jointly deciding the location, direction and extent of
the warp set equal to θ1 = 0.1 and θ2 = 0.5. The fifth scenario we considered had a spatially
varying intercept β0(s) = 0.5 + 1.25s1 − 0.5s2 and we also set β = 1.2 for this scenario
(which increases the magnitude of the prediction errors for all methods). We use a spectral
smoothing and translation warp as before to generate the data. To investigate the effect of
number of monitor stations, we select 25, 50 or 100 monitor station observations randomly
on the grid for each of the data generation processes.

A visualization of the data generation process for the fourth scenario can be seen in
Fig. 2. The top left panel shows the original forecast which was smoothed using spectral
smoothing. The smoothed forecast is shown in the top right panel. A diffeomorphism warp,
shown in the bottom left panel, was then applied to this smoothed output. The resulting
output in the bottom right panel shows a shrunken plume around the top middle part as a
result.

For each of these scenarios, we fit a simple linear model to the data as well as three
versions of the model proposed in Sect. 3 with or without the warping and smoothing
components. For each method, a Markov Chain Monte Carlo (MCMC) chain was run for
20, 000 iterations, of which the first 10, 000 iterations were discarded as burn-in samples.

To compare models we use mean squared error (MSE) and mean absolute deviation
(MAD) computed using the posterior mean as point forecast and pointwise coverage of
95% intervals and continuous ranked probability score (CRPS). The posterior predictive
densities for the warped outputs can be skewed, heavy-tailed or even multi-modal and so
metrics based on point predictions (MSE orMAD)may not capture the uncertainty properly.
To evaluate the entire predictive distribution, CRPS (Gneiting and Raftery 2007) is therefore
a more meaningful choice since it is a measure of integrated squared difference between the
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Figure 2. Original forecast Xt (s) in log-scale on August 22, 2015 at 4 : 00 am (top left); the smoothed forecast
X̃t (s) in log-scale (top right); the diffeomorphism warp w(s) (bottom left); the warped and smoothed forecast
X̃t (w(s)) in log-scale, created by using the diffeomorphism warp w(s) on the X̃t (s), used to generate the data. The
log-concentrations are measured in logµg/m3.

cumulative distribution (CDF) function of the forecast and the corresponding CDF of the
observations.

We compute the 3-day ahead forecast and compute the MSE, MAD, coverage and CRPS
for the forecast of n monitor stations. For each of the 15 scenarios and for the corresponding
30 datasets in each scenario, MSE, MAD, coverage and CRPS for each of the four models
are computed and averaged over space and time for all datasets. The MSE (MAD is similar)
and CRPS for these cases are reported in Table 1. For all methods and cases, coverage is
always between 94% and 100% and so it is not reported. Figure 3 presents a comparison of
the true and estimated (posterior mean) of warping function w(s) for data sets with n = 25
and n = 100 from scenarios 3 and 4.

From Table 1, all methods perform similarly when data are generated from the SLR
model. Therefore the added complexities of the full model do not result in overfitting in this
case. The full model has smaller MSE and CRPS than the SLR model in the second case.
However, the model with only smoothing component is somewhat better as that matches the
true data generation model. In the later three cases, the full model provides the best results.
The performance of all methods improves with increasing values of n. This is reflected in
Fig. 3 which compares the true and estimated warp for both the warps used in this study.
In both cases, the estimates are closer to the true value for n = 100 than for n = 25. The
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Table 1. MSE estimates (in µg2/m6) and CRPS for the proposed model with both smoothing and warping
components, only smoothing component and only warping component along with a SLR model for
different scenarios

Warp Smoothing Spatially MSE CRPS

Varying n SLR Proposed model SLR Proposed model

Intercept Smooth Warp Both Smooth Warp Both

None None No 25 1.01 1.02 1.02 1.03 0.78 0.78 0.78 0.77
No 50 1.00 1.00 1.00 1.01 0.78 0.77 0.77 0.77
No 100 1.00 1.00 1.00 1.00 0.79 0.79 0.79 0.78

None Spectral No 25 1.27 1.02 1.35 1.03 0.87 0.78 0.85 0.78
No 50 1.30 1.00 1.33 1.01 0.89 0.77 0.85 0.77
No 100 1.31 1.00 1.35 1.00 0.90 0.79 0.86 0.79

Translation Spectral No 25 1.69 1.34 1.60 1.19 1.00 0.85 0.88 0.78
No 50 1.62 1.25 1.45 1.07 0.99 0.82 0.84 0.77
No 100 1.64 1.25 1.49 1.09 1.00 0.83 0.90 0.78

Diffeomorphism Spectral No 25 1.53 1.32 1.46 1.17 0.96 0.84 0.85 0.76
No 50 1.50 1.23 1.39 1.10 0.95 0.82 0.83 0.75
No 100 1.56 1.26 1.49 1.12 0.97 0.83 0.90 0.77

Translation Spectral Yes 25 32.56 8.76 14.50 5.37 4.56 1.85 2.59 1.35
Yes 50 27.38 7.08 12.25 2.80 4.23 1.73 2.38 1.00
Yes 100 28.69 7.04 25.53 1.84 4.37 1.74 3.76 0.84

Each horizontal block represents a true data generation scheme dictated by the first three columns and the last two
sets of 4 columns each represent the performance of the 4 competing models in terms of MSE and CRPS. The
lowest MSE and CRPS values in each case are in bold

estimation is more accurate for the translation warp, compared to the more complicated
diffeomorphism warp.

5. APPLICATION TO PM2.5 FORECASTING IN WASHINGTON
STATE

In our simulation study, we fix the warping function to be constant over time. However,
for the wildland fire application, the warp likely varies over time, following changes in the
location of the fires and wind field. Therefore, we analyze the data separately by day with
the first 18h of data as training and forecast on the next 6h for each of the 35 days. This
strikes a balance between flexibility to capture dynamics of the warping function while
still providing sufficient training data to estimate the warping function. The priors, models,
computational details and metric of comparison are the same as the simulation study.

For each day, we compute predictive MSE, MAD, coverage and CRPS averaged over
space and time. These metrics, averaged over days, are presented in Table 2. Day-by-day
comparisons for MSE, MAD, coverage and CRPS are available in Appendix-A.

The models with smoothing, warping or both perform significantly better than SLR.
Smoothing leads to the largest reduction in MSE and MAD while the full model leads
to the largest reduction in CRPS. Therefore, smoothing appears to be sufficient if only a
point estimate is required, but including the warping function provides a better fit to the full
predictive distribution.
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Figure 3. True (red) and estimated (green) warps for the translation warp (top row) and diffeomorphism warp
(bottom row) for simulated data with n = 25 (left) and n = 100 (right).

Table 2. Values of MSE (in (logµg/m3)2), MAD (in logµg/m3), coverage and CRPS for the data analysis for
the different methods, averaged over days

SLR Smoothing Warp Full

MSE 0.4624 0.3357 0.3517 0.3675
MAD 0.4983 0.4081 0.4198 0.4219
Coverage 0.9237 0.9294 0.9126 0.9019
CRPS 0.4842 0.3688 0.3570 0.3500

To further illustrate how the warping models provide richer uncertainty quantification,
we compute the posterior mean, standard deviation, skewness and kurtosis for each test set
observation and present the distribution of these summary statistics as boxplots in Fig. 4. The
mean values are similar for all models, but the warp-based models exhibit higher skewness
and kurtosis.

Skewness and kurtosis often result fromuncertainty in thewarping function. For example,
we compare the posterior predictive densities (PPD) of the four methods for a particular
station located at the edge of the wildfire on August 22, 2015 at 7:00pm in the left panel
of Fig. 5. One would expect high uncertainty in estimation for such a location. The PPD
from SLR method misses the true value (magenta) by quite some margin, while the three
methods capture the true value within their respective PPDs. The PPD for the full model
estimator has a heavier right tail and smaller peak, indicating high variance and kurtosis
capturing the uncertainty of estimation in such a location. On the other hand, comparing the
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Figure 4. Boxplots of mean (in logµg/m3), standard deviation (in logµg/m3), skewness and kurtosis of the pos-
terior predictive distributions for each model. The color schemes for each model is black (SLR), blue (Smoothing),
green (Warp) and Red (Full) for each of the subfigures (Color figure online).

densities for a location that is in the middle of the wildfire for the same day and time shows
that the PPDs behave similar to each other and have low skewness and thin tails, as can be
seen in the right panel of Fig. 5. Figure 5 also shows the estimated warping function for the
day. The red arrows imply a significant warp at the location at its base, while the green ones
are non-significant (where warp at location s is significant if the 95% credible set of either
component of w(s) − s excludes zero). The trace plots for the estimate of displacement due
to the warping function (w(s) − s) for the two locations marked in Fig. 5 are presented in
Appendix-A showing adequate convergence for the MCMC procedure.
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Figure 5. The numerical forecast of log-concentration of PM2.5(µg/m
3) on August 22, 2015 at 7:00 pm (top

left) with two stations highlighted, one near the edge of fire (triangle) and one in the middle of fire (rectangle). The
estimated warp for the day (top right) showing significant (red) and non-significant (green) warps. Comparisons
of PPDs are made for the four competing models for the location marked as triangle (bottom left) and the location
marked as rectangle (bottom right) (Color figure online).

6. CONCLUDING REMARKS

Motivated by an wildland fire application, we develop a new downscaling method that
incorporates spectral smoothing and image warping techniques into a single downscaling
method which is shown to improve forecast distributions for simulated and real data.

The proposed method could be extended in several ways. A simple extension would be to
use forecasts that include background PM2.5 information as well. This will likely diminish
the problem of having different quantities being measured by the two sources. Changing the
slope in Eq. (3.1) to a spatially varying one could also be contemplated. Another extension
could see the error distribution to have spatiotemporal dependence, especially in applica-
tions where the numerical model is unable to capture the important spatiotemporal trends
observed in the data. While this would be straightforward to implement, it would add to the
computational burden making it more challenging to apply in real time. Another possible
extension is to allow for warping in both space and time. Another extension would be to use
spatially varying the slope parameter β in Eq. 3.1.Warping the forecast in time would adjust
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for timing errors, such as model misspecification of the rate of wildland fire expansion or
the speed of a storm traveling through the spatial domain. We have not done this because we
refit the model in fairly small spatiotemporal windows, but in other applications warping in
time could be just as important as warping in space.
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A. TECHNICAL DETAILS FOR THE MODEL

A.1. CONSTRUCTION OF BASIS FUNCTIONS FOR SPECTRAL SMOOTHING

As mentioned in Sect. 3, we smooth our forecast using a spectral smoothing approach
proposed by Reich et al. (2014). This process, using fast Fourier transform and inverse fast
Fourier transform, breaks the original forecasts Xt (s) into several layers Xlt (s) byweighting
them with basis functions Vl(ω). Each of the Xlt (s)s contains information about phenomena
of different scales. We mentioned some restrictions on the basis functions to be used in
Sect. 3.

A common choice for choosing this basis function is the Bernstein polynomial basis
function, as suggested by Reich et al. (2014). This approach assumes that the dependence of
frequency ω in constructing the basis functions is solely on the magnitude of the frequency
||ω||. With this assumption, the basis functions can be written as

Vl(ω) = Vl(||ω||) =
(
L − 1
l − 1

) ( ||ω||
2π

)l−1 (
1 − ||ω||

2π

)L−l

, (A.1)

for l = 1, 2, . . . , L . This set up ensures that
∫
Vl(ω) dω = 1, ∀l.

However, such representation of X̃lt (s) may be subject to identifiability issues because
of how the basis functions are defined in Eq. (A.1). To avoid such issues, we follow Reich
et al. (2014) and define

δ =
{

ω if ||ω|| ≤ ||ω̄||
ω̄ if ||ω|| > ||ω̄|| ∈ [0, 2π), (A.2)

where ω̄ = [I(ω1 > 0)(2π − ω1), I(ω2 > 0)(2π − ω2)]T. After this, we define our basis
functions as Vl(ω) = Vl(||δ||). This ensures we avoid aliasing issues while retaining the
other properties.
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A.2. COMPUTING

The warping function is not completely identifiable, that is to say that for two different
warping functions w1(s) 
= w2(s), we may have the same warped output Xt (w1(s)) =
Xt (w2(s)) for some s and at some timepoint t . If the two warping functions differ only
on how they map points with zero values to other points with zero values, then it is not
possible to distinguish them. Assuming that the forecast would be non-constant over any
region is unrealistic as it is bound to have regions with zero values, in general. This is not
necessary for us to have the warping function identifiable, but it does create problems with
convergence as parameters can fluctuate between two sets of values both of which give the
same warped output.

Another concern for convergence is the large number of parameters in the model. The
smoothing coefficients needed to be marginalized to achieve convergence in the full model.
Convergence of component models (smoothing-only or warping-only) is much quickly
achieved compared to the full model scenario and usually require no tricks such as marginal-
ization, although we used marginalization for them as well. We used the simple Metropolis
within Gibbs algorithm to run ourMCMC chains throughout.Metropolis-adjusted Langevin
algorithm (MALA) or HamiltonianMonte Carlo (HMC)methods may provide quicker con-
vergence but would add much complexity to each iteration.

Codes for generic-purpose use for these methods are available in the author’s GitHub
repository.

B. SUPPLEMENTAL TABLES AND FIGURES

B.1. ADDITIONAL TABLES FOR MAD AND COVERAGE ESTIMATES FROM THE

SIMULATION STUDY

We present here additional tables obtained from the simulation study detailed in Sect. 4.
These tables show the performance of the four models, the OLS model, the full model (see
Sect. 3) and the two sub-models, smoothing only and warping only model (see Sect. 4), in
four different data generation scenarios with three different values of n for each of the four
cases. The results obtained here are similar to those in Sect. 4 (Tables 3, 4).

B.2. ADDITIONAL FIGURES FROM DATA ANALYSIS

We present additional images from data analysis here. Figures 6 and 7 show the perfor-
mance of the four models, as in Sect. 5, for every run (each run being based on each day)
based on the metrics MAD and coverage. The inference is similar to that in Sect. 5. On
most days with large fires, and thereby large plumes, the full model works better than the
smoothing only model. All other models work better than the SLR model on almost any
day.

Figure 8 shows the trace plots for the estimated displacement due to warp for the two
locations in Fig. 5. The location in the middle of the fire (right panel) has values around
zero, meaning a non-significant warp at the location. The estimate for the location at the
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Table 3. MAD (standard error) estimates (in µg/m3) for the proposed model with both smoothing and warping
components, only smoothing component and only warping component along with a SLR model for
different scenarios

Warp Smoothing Spatially n SLR Proposed model

Varying Smooth Warp Both

Intercept

None None No 25 0.80 (0.02) 0.81 (0.02) 0.81 (0.02) 0.81 (0.02)
No 50 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)
No 100 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)

None Spectral No 25 0.90 (0.02) 0.81 (0.02) 0.93 (0.02) 0.81 (0.02)
No 50 0.91 (0.01) 0.80 (0.01) 0.92 (0.01) 0.80 (0.01)
No 100 0.91 (0.01) 0.80 (0.01) 0.93 (0.01) 0.80 (0.01)

Translation Spectral No 25 1.03 (0.02) 0.92 (0.02) 1.00 (0.03) 0.87 (0.04)
No 50 1.01 (0.01) 0.89 (0.01) 0.95 (0.02) 0.82 (0.03)
No 100 1.02 (0.01) 0.89 (0.01) 0.97 (0.01) 0.83 (0.04)

Diffeomorphism Spectral No 25 0.98 (0.03) 0.91 (0.02) 0.96 (0.03) 0.86 (0.03)
No 50 0.97 (0.01) 0.88 (0.01) 0.93 (0.01) 0.83 (0.02)
No 100 0.99 (0.01) 0.89 (0.01) 0.96 (0.01) 0.84 (0.01)

Translation Spectral Yes 25 4.69 (0.04) 2.11 (0.04) 2.98 (0.13) 1.67 (0.04)
Yes 50 4.31 (0.03) 1.90 (0.02) 2.70 (0.07) 1.17 (0.32)
Yes 100 4.43 (0.02) 1.91 (0.01) 4.06 (0.06) 0.98 (0.23)

The lowest MAD value in each case is in bold

Table 4. Coverage (standard error) estimates for the proposed model with only smoothing component, only
warping component and the full model along with an SLR model for different scenarios

Warp Smoothing Spatially n SLR Proposed model

Varying Smooth Warp Both
Intercept

None None No 25 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
No 50 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00)
No 100 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00)

None Spectral No 25 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
No 50 0.95 (0.01) 0.95 (0.00) 0.94 (0.01) 0.95 (0.00)
No 100 0.95 (0.00) 0.95 (0.00) 0.94 (0.00) 0.95 (0.00)

Translation Spectral No 25 0.95 (0.01) 0.95 (0.01) 0.94 (0.01) 0.95 (0.01)
No 50 0.95 (0.00) 0.95 (0.00) 0.95 (0.01) 0.95 (0.01)
No 100 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00)

Diffeomorphism Spectral No 25 0.95 (0.01) 0.94 (0.01) 0.94 (0.01) 0.95 (0.01)
No 50 0.95 (0.00) 0.94 (0.00) 0.95 (0.00) 0.95 (0.00)
No 100 0.95 (0.00) 0.94 (0.00) 0.95 (0.01) 0.95 (0.00)

Translation Spectral Yes 25 0.96 (0.00) 0.97 (0.00) 0.96 (0.01) 0.97 (0.00)
Yes 50 0.95 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Yes 100 0.96 (0.00) 0.93 (0.00) 0.96 (0.00) 0.98 (0.01)
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Figure 8. Trace plots for x (top) and y (bottom) coordinates of the estimated displacement due to warp (w(s)− s)
for the two locations flagging in Fig. 5. Left panel is for the location at the edge of fire and right panel for the
location in the middle of it.

edge the fire is has a jagged trace with values away from zero, indicating a significant warp.
In both cases, the MCMC algorithm mixes well.
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