
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications, Department of Statistics Statistics, Department of 

2020 

Tumor ablation due to inhomogeneous anisotropic diffusion in Tumor ablation due to inhomogeneous anisotropic diffusion in 

generic three-dimensional topologies generic three-dimensional topologies 

Erdi Kara 

Aminur Rahman 

Eugenio Aulisa 

Souparno Ghosh 

Follow this and additional works at: https://digitalcommons.unl.edu/statisticsfacpub 

 Part of the Other Statistics and Probability Commons 

This Article is brought to you for free and open access by the Statistics, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, 
Department of Statistics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/statisticsfacpub
https://digitalcommons.unl.edu/statistics
https://digitalcommons.unl.edu/statisticsfacpub?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages


PHYSICAL REVIEW E 102, 062425 (2020)

Tumor ablation due to inhomogeneous anisotropic diffusion in generic three-dimensional topologies

Erdi Kara
Department of Mathematics and Statistics, Texas Tech University, Lubbock TX

Aminur Rahman *

Department of Applied Mathematics, University of Washington, Seattle WA

Eugenio Aulisa
Department of Mathematics and Statistics, Texas Tech University, Lubbock TX

Souparno Ghosh
Department of Statistics, University of Nebraska - Lincoln, Lincoln NB

(Received 6 January 2020; revised 28 May 2020; accepted 23 November 2020; published 30 December 2020)

In recent decades computer-aided technologies have become prevalent in medicine, however, cancer drugs are
often only tested on in vitro cell lines from biopsies. We derive a full three-dimensional model of inhomogeneous
-anisotropic diffusion in a tumor region coupled to a binary population model, which simulates in vivo scenarios
faster than traditional cell-line tests. The diffusion tensors are acquired using diffusion tensor magnetic resonance
imaging from a patient diagnosed with glioblastoma multiform. Then we numerically simulate the full model
with finite element methods and produce drug concentration heat maps, apoptosis hotspots, and dose-response
curves. Finally, predictions are made about optimal injection locations and volumes, which are presented in a
form that can be employed by doctors and oncologists.

DOI: 10.1103/PhysRevE.102.062425

I. INTRODUCTION

There is an ongoing struggle in cancer treatments to de-
velop therapies that kill a majority of tumor cells, while
having negligible effect on healthy cells. Treatments for brain
tumors are especially delicate as brain tumors are associated
with very high mortality. The five-year survival rate for people
with a malignant brain or central nervous system tumor is
approximately 34% for men and 36% for women in the United
States and brain tumors account for 85% to 90% of all primary
central nervous system tumors [1].

One of the major obstacles to improve current treatments
is the presence of some physical barriers such as the blood-
brain barrier (BBB) and the blood-brain tumor barrier (BBTB)
impeding drugs from reaching the tumor sites in the brain
[2–4]. The BBB, existing between the brain’s microvessels
and tissue, prevents many macromolecules from entering in-
terstitial space in the brain; thus separating the central nervous
system and systemic circulation of the body. It is reported in
Ref. [5] that BBB prevents entry of approximately 98% of the
small molecules and nearly 100% of large molecules, such as
recombinant proteins or gene-based medicines into brain tu-
mors from the vascular compartment. Similarly, the BBTB is
located between brain tumor tissues and the brain’s blood ves-
sels formed by highly specialized endothelial cells, limiting
the delivery of most anticancer drugs to tumor tissue. To over-
come the challenges associated with these barriers, several
methods have been developed such as intrarterial administra-
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tion, barrier disruption, drug packaging, and inhibiting drug
efflux from tumors [6]. Regardless, oral and intravascular
administration allows only a small fraction of therapeutic
agents to reach the tumor region in the brain because the drug
concentration decreases precipitously due to the sink effect of
the extracellular space along the route of drug transport to the
tumor region; thus, necessitating the administration of a high
dose to achieve sufficient drug concentrations to kill the tumor
cells. Unfortunately, physiological toxicity limits the amount
of therapeutic agent allowed in a particular therapy.

Significant effort has gone into developing therapies with
high efficacy to toxicity ratios through the use of lower drug
concentrations via direct administration in targeted regions.
One such method is discussed in de Boer et al. [5]. Drug
injection therapies allow for uncomplicated individualized
treatment for solid accessible tumors [5,7–10]. Further, these
types of therapies provide us with an opportunity to optimize
drug efficacy by changing the fluidic properties of the injec-
tion as shown by Morhard et al. [9]. While testing a variety
of therapeutic agents on animals is time intensive and costly,
numerical simulations may prove to be a cheap and effective
solution.

In order to conduct numerical experiments on the effects
of drugs on cancerous tumors, we need transport–population
coupled models. Transport models often focus on the dynam-
ics of therapeutic drug delivery processes to the tumor site
by blood flow through capillaries and tissues. To reach the
cancer cells, relevant agents must enter the tumor intersti-
tial fluid through the blood vessels walls of the tumor [11].
Drug-transport modeling is a relatively well-established field
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[12], and several models investigating various aspects of this
process can be found in the literature [13–16]. As noted in
Ref. [11], in order for the drug therapies to be successful, the
agent must be effective on the the corresponding cancer type
in the in vivo setting and an optimal amount of drugs must
be delivered to the tumor site. Mathematical modeling plays
a crucial role in understanding these therapies. For example,
in the case of nanoparticle therapies [17–19], drug transport
has been modeled extensively [20–23]. While there are many
sophisticated models for drugs penetrating into tumor from
the blood stream, there are few mathematical investigation of
drugs injected directly into the solid tumor [24–26].

Administered drugs can lead to partial or full ablation of
tumor cells as well as produce toxicity or side effects on the
healthy cells [27,28]. Moreover, tumor cells can also develop
resistance to the corresponding drug [29–31]. The internal
dynamics of the tumor, regardless of the drug exposure, also
play a crucial role in a successful cancer therapy. Thus, most
of the aforementioned models above and many other studies in
the literature investigate tumor growth and invasion [32–36],
formation of new blood vessels in the tumor (antiogenesis)
[37,38], and the ability of cancer cells to migrate to a different
location (metastasis) [39,40]. For a more comprehensive pre-
sentation of cancer population dynamics literature, we refer
the reader to the text of Kuang et al. [41].

In Ref. [42], Rahman et al. present a simple drug diffusion-
binary population model. It is assumed that a drug is being
injected directly into the center of a homogeneous-isotropic
spherical tumor, and hence the diffusion is radial with constant
diffusivity. Furthermore, it is assumed that a cell is either dead
if the concentration of the drug is greater than a threshold and
alive if the concentration is less than this threshold; i.e., the
drug acts as a trigger for cell death. From this model dose-
response curves (response as a function of dose) are produced
in order to relate it to relevant empirical data, such as Harvard
Medical School’s LINCS data base [43,44]. Since the data set
does not include replication studies, artificial replication dose-
response curves were produced, and the dose-response curves
from the mechanistic model were shown, in many cases, to lie
within 95% piecewise-linear confidence bands.

While the model of Rahman et al. [42] performed well
against artificial replication data, the simplicity is burdened
by the baggage of assumptions. Transport of drugs in the
brain is a complex process due to the highly inhomoge-
neous and anisotropic structure of brain tissue, local pressure
differences, and chemcial interactions of the drug with the
surrounding tissue. However, a model that does not ob-
viate negligible contributions falls prey to computational
constraints. Even with parallelization on a supercomputing
cluster, would it be useful to an oncologist that is working
directly with a patient?

In this investigation, we keep the simple binary population
model, and explore the complexities of drug transport from
a single injection into deformed globular tumors (topological
3 spheres). It is well known that diffusion dominates, but we
assume it can be inhomogeneous and anisotropic. This allows
for fast in vivo simulations of direct injection therapies, which
we use to produce dose-response curves, apoptosis hotspots,
and optimal injection locations. This investigation, using pa-
tient specific DTI data with a transport-population model,

endeavors to present results to aid practitioners in optimizing
treatment strategies.

The remainder of the paper is organized as follows:
We begin our discussions by deriving the inhomogeneous-
anisotropic diffusion and binary population models in Sec. II.
Then in Sec. III, we develop the computational foundation
of the investigation in two steps. First, Sec. III A sets up the
finite element scheme. We use Galerkin finite element method
for the spatial discretization and a Crank-Nicolson scheme for
the temporal integration. Then the diffusion tensors are con-
structed from patient magnetic resonance imaging (MRI) data
in Sec. III B. Section IV presents the numerical simulations
and oncological predictions of our study. We first examine
the drug diffusion in the tumor and observe the high inhomo-
geneity and anisotropy in the concentration heat maps. Then
the apoptosis is simulated by invoking the binary population
model. This allows us to create dose-response curves. Impor-
tantly, the model predicts optimal injection sites, evidenced by
the dose-response curves, different from what intuition might
suggest. Finally, the investigation is concluded in Sec. V with
a discussion on viable oncological applications and future
modeling directions.

II. DRUG DIFFUSION AND BINARY
POPULATION MODELS

In this section we derive the inhomogenous- anisotropic
diffusion model and the binary tumor population model. First
we write a general diffusion model. It has been shown through
MRI in the brain that tumors often grow in an inhomogeneous-
anisotropic diffusionlike manner [45–48]. Using diffusion
tensor imaging (DTI) techniques [49], the effective diffusivity
of water in tissue can be estimated. Since there is a large con-
trast between cancerous and healthy tissues, DTI can be used
to map the geometry of a tumor and estimate the diffusivity of
water in a tumor [50–52]. Finally, it is worth noting, due to the
infiltrative nature of gliomas, when we use the word “tumor”
we are referring to a tumor region in a similar fashion to the
seminal works of Scherer [53].

Consider a drug with molarity u diffusing from an injection
into a porous tumor, with an effective diffusivity tensor D.
Next for the sake of brevity, let x = (x1, x2, x3) be the position
vector. Finally, we model the leak at the boundary of the
region of interest as “Newton’s law of cooling” [54]. This
gives us the generic model in Cartesian coordinates

∂u(x; t )

∂t
= ∇ · (D(x)∇u(x; t )), x ∈ �; (1a)

D(x)∇u(x; t ) · n = −γ u(x; t ), x ∈ ∂�; (1b)

u(x; t = 0) = ū(x), (1c)

where ū(x) is some generic initial concentration profile of the
drug soon after injection and γ is the constant leak coeffi-
cient. We treat the boundary as a buffer zone containing only
noncancerous cells such that the rate of leakage is similar to
the rate of diffusion at the boundary. Moreover, we neglect
the chemical reactions, absorption, and adsorption of the drug
following a similar approach presented in Ref. [24].

We now impose a specific initial condition. In Ref. [42]
a bump function (compact Gaussian) decaying to zero just
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within the domain was used. This represents the short
timescale spread of the distribution profile from an initial
Dirac delta function. During inhomogeneous-anisotropic dif-
fusion, the drug does not diffuse evenly, and hence a bump
function that extends to the endpoints would not capture the
irregularities expected in such a problem. Nevertheless, there
are many numerical advantageous to using a bump function.
We may either introduce a sharper bump or try to capture the
diffusive irregularities in the initial condition. In general, for
an injection at point xc, we have

ū(r) = U0

Vb

{
exp

(
1 − R2

b

R2
b−r2

)
, r < Rb

0, r � Rb,
(2)

where, r = ‖x − xc‖, Rb is the radius of the bump, U0 is the
injected concentration, and Vb is the normalization constant
for the bump function; that is,

Vb =
∫ π

0

∫ 2π

0

∫ Rb

0
exp

(
1 − R2

b

R2
b − r2

)
r2 sin φdrdθdφ.

A. Binary population model

As done in Ref. [42], we use a binary population model:
the tumor cell is dead after some exposure time τ (which is
much larger than the diffusive time scale), if at any time during
the diffusion process the drug concentration is above some
given threshold value uT (τ ), otherwise it is alive. Suppose
that the rate of cell death is equivalent to the rate of cell
growth; thereby negating external factors such as nutrition
and programed cell death. This allows us to focus on cell
death due to the drug concentration, which we expect to be
the major contributing factor, unless the drug is ineffective.
We expect the threshold to decrease with time because it takes
more toxins to kill a cell quickly than it does to kill it slowly.
Further, since dose response to drugs is often assumed to be
sigmoidal [41], we expect uT to be a negative exponential with
time τ ,

uT (τ ) = a − be−cτ , (3)

where the parameters a, b, and c are back calculated from a
representative sample of the Harvard Medical School LINCS
drug data base [43,44]. From the representative sample
we calculate what uT (τ = 24 hrs), uT (τ = 48 hrs), uT (τ =
72 hrs) must be in order to produce the empirically observed
response. It should be noted that uT may not be monotonic
based on drug resistance and other biological effects.

We have three equations with three unknowns, which is
solved explicitly in Ref. [42]. In this paper, we use the fol-
lowing representative threshold values calculated from the
dose-response data of cell-line “C32” and drug “Selumetinib”
from the LINCS data set:

uT (24) = 0.230153 μM,

uT (48) = 0.0700055 μM,

uT (72) = 0.0499662 μM.

From these threshold values, we calculate the parameters of
(3),

a ≈ 0.0471, b = −1.4629, and c = 0.0866.

FIG. 1. A 1D example of the binary population model. Whenever
u(x, t ) > uT (τ ), the cells in position x contribute to the apoptosis
fraction.

A simple one-dimensional (1D) example of how the binary
population works in practice is illustrated in Fig. 1. From the
figure whenever u(x, t ) > uT (τ ) we calculate the fraction of
tumor cells killed due to the exposure at diffusion time, t . If
the concentration at point x is ever greater than the threshold,
that point contributes to the apoptosis fraction. Then we in-
tegrate all the apoptosis points over diffusion time t ∈ [0, T ]
and divide by the length of the entire interval [−1, 1].

III. NUMERICAL PROCEDURE

In this section, we first describe the numerical procedure
to approximate the solution of the system (1) in Sec. II.
Galerkin finite element method (GFEM) is used for the spatial
discretization and a Crank-Nicolson scheme for the temporal
integration. For a practical introduction finite element method,
the reader can refer to Ref. [55].

For the inhomogeneous-anisotropic diffusivity we incor-
porate diffusion tensors from DTI data. The magnetic field
gradients in different directions from the MRI is used to map
out directions of faster and slower diffusion that is normal-
ized to the diffusivity of water molecules. While in medical
imaging the diffusion tensor is predominantly used to identify
anomalies, and often averaged out in preferential directions
for that reason, we use the tensor itself in the diffusivity of
the transport model. Thus allowing us to produce accurate
qualitative simulations of in vivo scenarios.

There are a few studies in the literature integrating FEM
with DTI in a modeling framework. Kraft et al. incorporated
DTI with FEM to investigate the mechanics of neurotrauma
[56]. In Ref. [57], Ramasamy et al. proposed a subject-specific
finite element model for the residual limb to assess the effect
of a particular socket on deep tissue injury. They utilized
DTI to reveal the anatomy of muscle fiber and mapped the
information onto a finite element mesh. A nonlinear hypere-
lastic, transversely isotropic skeletal muscle constitutive law
containing a deep tissue injury model were then solved with
FEM. Clatz et al. [58] used FEM to simulate the invasion
of GBM in the brain parenchyma and its mass effect on the
invaded tissue. They described a coupling strategy between
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reaction-diffusion and linear elastic mechanical constitutive
equations where diffusion tensor information was provided
by DTI. In Ref. [24], a convection-enhanced drug delivery
(CED), where the anticancer agent is directly administered
into the brain tissue, was introduced. Governing equations
concerning the transport of the therapeutic agent and tissue
deformation was solved with the finite volume method, where
the information about the structures of the tissue is acquired
through DTI.

A. Finite element discretization

Consider the Sobolev space H1(�) = {v ∈ L2(�) : ∂xiv ∈
L2(�) i = 1, 2, 3}, where � is the domain of the PDE from
Sec. II. If u is sufficiently smooth, by multiplying Eq. (1a)
with a test function v ∈ H1(�) and integrating over � using
a Green’s formula, we obtain the variational formulation of
(1a); that is, find u such that for every t ∈ I = [0, T ],∫

�

∂u

∂t
vdx = −

∫
�

D∇u · ∇vdx −
∫

∂�

γ uvds,

∀v ∈ H1(�), t ∈ I. (4)

Let

�h = {K1, K2, .., Kn} (5)

be a geometrically conforming hexagonal triangulation of �.
As a test space, we use the space of scalar valued piece-

wise quadratic polynomials; i.e.,

Vh = {p ∈ C0(�̄) : p|K ∈ Q2(K ),∀K ∈ �h} ⊂ H1(�).

Replacing H1(�) with Vh, the finite element formulation of
Eq. (4) reads: find uh such that for every t ∈ I ,∫

�

∂uh

∂t
vhdx = −

∫
�

D∇uh · ∇vhdx

−
∫

∂�

γ uhvhds,

∀vh ∈ Vh, t ∈ I. (6)

Let {ψi}n
i=1 be a basis of the space Vh consisting of the

orthogonal nodal basis functions satisfying ψi(Nj ) = δi j for
every nodal point Nj . For every uh ∈ Vh, there exist time
dependent coefficients ξ j (t ) such that

uh(x, t ) =
n∑

j=1

ξ j (t )ψ j (x). (7)

From this construction, ξ j (t )’s are the nodal values of uh for
every time t . If we substitute Eq. (7) in Eq, (6), we obtain the
following system of ordinary differential equations:

M ˙ξ (t ) = −(A + R)ξ (t ), (8)

where ξ (t ) = [ξ1(t ), ξ2(t ), .., ξn(t )]T and

Mi j =
∫

�

ψ jψi,

Ai j =
∫

�

D∇ψ j · ∇ψi, (9)

Ri j =
∫

∂�

γψ jψi.

Note that the diffusion tensor D is defined element wise.
Let 0 = t0 < t1 < . . . < tN = T be a partition of the interval
[0, T ] with the constant time step �t = tn+1 − tn. Application
of the Crank-Nicolson scheme for Eq. (8) yields

M
ξk+1 − ξk

�t
= −(A + R)

ξk + ξk+1

2
, (10)

where ξ0 is chosen as the nodal values of ū(x) defined in
Eq. (1c) of Sec. II. For the remainder of the manuscript we
take the step size �t = 0.02 with N = 60 equal time intervals
and the leak coefficient is set to γ = 0.002. For the imple-
mentation of the problem (10), we use the open source finite
element C + + library FeMUS [59].

B. Incorporating the diffusion tensor

Diffusion patterns of water molecules in biological tissue
can be visualized by means of DTI. The diffusivity in the
medium is quantified at each image voxel (a volumetric pixel)
with a diffusion tensor that relates diffusive flux to a concen-
tration gradient in each Cartesian direction. The three diagonal
elements Dxx, Dyy, and Dzz represent diffusion coefficients
measured along each of the principal x, y, and z axes. The
six off-diagonal entries quantify the correlation of Brownian
motion between corresponding principal directions. A generic
diffusion tensor can be written as

D =
⎡
⎣Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦, (11)

where Di j has the unit of mm2/s.
The diffusivities from DTI are usually averaged out and

illustrated by condensing the tensor information into a scalar
quantity or plotted as a color encoded texture map. The former
consists of scalar measurements to quantify the magnitude
or the shape of the diffusion. In terms of magnitude, mean
diffusivity, which is the mean of the eigenvalues of the diffu-
sion tensor, is one of the most common scalar measurements.
On the other hand, fractional anisotropy, which is the nor-
malized variance of the eigenvalues, is the most commonly
used anisotropy measure. In addition to various scalar mea-
surements, one can also consider the direction of the major
eigenvector (the eigenvector associated with the largest eigen-
value) and create a color map for the corresponding directions.
The most commonly used color scheme in terms of anatomical
planes is as follows; blue is superior-inferior, red is left-
right, and green is anterior-posterior [49]. For an extensive
overview of the diffusion tensor imaging, the reader may refer
to Ref. [60].

To capture the anisotropies of the diffusion in our numer-
ical simulations we use a dataset that includes a diffusion
tensor magnetic resonance image of a 35-year old male di-
agnosed with glioblastoma multiform (GBM). The dataset
can be found in the tutorial [61]. From the diffusivity data,
in Fig. 2, we derive and display the major eigenvector di-
rection (indicated by the colors prescribed in the preceding
paragraph), fractional anisotropy, and mean diffusivity. In the
figure the GBM region can be observed around the right
frontal lobe.
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FIG. 2. Axial view of the brain DTI with illustrations from 3DSlicer of (a) the major eigenvalue direction, (b) fractional anisotropy, and
(c) mean diffusivity. In all images the tumor region can be seen around the right frontal lobe.

The coordinate dimensions of the sample volume is 256 ×
256 × 51 with voxel size 1 × 1 × 2.6 mm. In the preprocess-
ing of the DTI volume, we utilized the open source software
3DSlicer [62], which allows advanced medical image analysis
and processing. It provides a graphical user interface with
various modules as well as a Python console, which gives
access to data arrays of image models for further analysis.

The diffusion tensor is symmetric and positive definite but
in practice the positive definiteness can be corrupted due to
measurement noise. Thus we first resample the DTI volume
to correct the tensors that are not positive semidefinite. We are
particularly interested in diffusion in the tumor tissue. Hence,
we extract a region of 64 × 64 × 64 mm3 from the resampled
volume enclosing the entire tumor region and centered at the
origin to create the region,

� = {(x, y, z) : −32 mm � x, y, z � 32 mm}. (12)

We take � as the computational domain of the problem de-
scribed in Eq. (1). After the rescaling, the tumor region fits
completely inside the rectangular subdomain of �,

T = {(x, y, z) : −7.68 mm � x � 21.76 mm,

− 19.2 mm � y � 19.2 mm,

− 14.08 mm � z � 28.16 mm} ⊂ �. (13)

Now let

Di =
⎡
⎣Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦ (14)

be the diffusion tensor defined for the hexagonal element Ki

in Eq. (5). Note that we define D element wise so it is essen-
tially piece-wise discontinuous across the problem domain.

Let Da
i = (Dxx + Dyy + Dzz )/3 be the element-wise apparent

diffusion coefficient (ADC).
A major prediction made in this investigation is the fraction

of the tumor volume killed against preassigned thresholds,
uT (24), uT (48), and uT (72), from Sec. II A. This task es-
sentially requires the elementwise identification of the tumor
cells in �. The only quantitative information about the sample
data are the diffusion tensors at each voxel provided by DTI.
No method is known to precisely differentiate the tumor and
healthy cells by means of diffusion tensor information. How-
ever, we employ the fact that water diffuses significantly faster
in GBM tissue than the surrounding healthy tissue [63].

We first assume that there is no tumor cell outside the re-
gion T . Then, we will mark any element Ki in T as cancerous
if Da

i > 0.002. This is the value where we observe a relatively
sharp transition between the normal and cancerous regions.
To calculate the apoptosis fraction, first consider the unit step
function

H (s) =
{

1, s > 0,

0, s � 0; (15)

and the subregion TC ⊂ T defined as

TC = {
x ∈ T : Da

i (x) > 0.002
}
. (16)

We compute the fraction of cells, �, that were once exposed
to a concentration higher than uT at the simulation time t = tn
as follows:

�(τ, tn) =
∫
TC

H
(

maxt∈[0,tn] [u(x, t ) − uT (τ )]
)
dV∫

TC
dV

, (17)
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FIG. 3. Computational domain with three representative slices
centered at xc = (6.4 mm, 0, 0). The heat map indicates the mag-
nitude of the ADC. The color scheme is scaled to a visibly
distinguishable range.

where τ = 24, 48, or 72 h. Then to get the apoptosis fraction,
ℵ, we prescribe tn = T in Eq. (17),

ℵ(τ ) = �(τ, T ). (18)

Note that the resulting fractions above are relative to the
subregion TC since we assume all tumor cells lie in TC .

Different cross sections of the computational domain �

indicating the element-wise ADCs can be seen in Fig. 3. We
construct � to be consistent with the anatomical coordinate
system described in Ref. [64]. Positive directions of the x,
y, and z axes are chosen to be anterior, left, and superior,
respectively. Consequently, xy, xz, and yz coordinate planes
correspond to transverse, sagital, and frontal planes, respec-
tively. In Fig. 3, for example, the horizontal plane with respect
to the monitor corresponds to the transverse plane.

DTI is a noninvasive technique based on the measurement
of the diffusion of water molecules. Therefore, the diffusion
tensor D may be quantitatively different across the tissue of
interest when another substance, such as a therapeutic agent,
is used. Seemingly, there is no experimental study proposing
a numerical relationship between the diffusion tensor of water
and other fluids in brain tissue. Therefore, we will assume
that although water and corresponding drug molecules have
different fluidic properties, they display qualitatively similar
behavior in the same medium. With this assumption, we will
treat the diffusion tensors that we extracted from the dataset,
described above, as the diffusion tensors of the agent used in
the simulated treatment. For information on treatments of this
type, the reader can refer to [24,58].

IV. RESULTS AND PREDICTIONS

In this section we present the in vivo direct injection treat-
ment simulations resulting from the numerical solutions of
our model (1). Based on the location of T , we set the initial
condition (15) (illustrated in Fig. 4) as follows:

u(x; t = 0) = U0

Vb

{
exp

(
1 − R2

b

R2
b−r2

)
for r � Rb,

0 for r � Rb;
(19)

where Vb = 1.1990 mm3, Rb = 12.8 mm, and r =√
(x − 6.4)2 + y2 + z2. We set a very high initial

concentration of U0 = 1.5 μM for illustrative purposes.

FIG. 4. Initial concentration profile u(x; t = 0 s) centered at the
location xc = (6.4 mm, 0, 0) with an initial injection molarity of
U0 = 1.5 μM.

In Sec II A, we assumed that if the concentration at the
element Ki is above a certain threshold, uT (τ ), at any sim-
ulation time, t, then Ki will die out after the corresponding
exposure times, τ . With this assumption, we can create a heat
map indicating the regions, which is predicted to die after the
related exposure times, τ = 24, 48, and 72 h. It should be
noted that although the precise tumor region is TC , we will
display the apoptotic region within T for illustration purposes.
Also note that the drugs eventually leak out beyond the region
TC and can reach unintended regions of the brain resulting
in unpredictable side effects. In several clinical brain tumor
trials, poor targeting of the tumor region is identified as one
of the most significant obstacles to efficient implementation
of CED [65,66]. Thus, the spread of the drug into the healthy
brain tissue can be considered as one of the potential sources
of toxicity which may arise in CED therapies. Other sources
of toxicity may be from the physical damage to the brain
tissue caused by the catheter, mechanical stress induced by
the infusion of the drug, or the type of drug used [67–71]. In
this work, we assume that any cell exposed to concentrations
above the threshold, uT (τ ), will have an adverse reaction to
the drug, and we leave a more detailed investigation of toxicity
to a future study.

FIG. 5. Apoptotic region induced by the initial bump function
centered at xc = (6.4 mm, 0, 0), with a very high drug concentration
of U0 = 1.5 μM for illustration purposes, within (a) the tumor region
T and (b) the computational domain �. The inner most blue region
shows the locations where the tumor cells will die out within 24 h.
The outermost orange cells are predicted to die out within 72 h
of exposure. Finally, the deep red cells towards the outside of the
regions do not die after up to 72 h of exposure.
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FIG. 6. Concentration profiles for an initial injection of U0 = 1.5 μM centered at xc = (6.4 mm, 0, 0) at t = 0.2, 0.5, 0.8, 1 in seconds,
(a)–(d), respectively. The heat map is scaled to the visible range for each figure; i.e., the intensities are with respect to the concentration
distribution in each figure independently of the other figures. Each figure is displayed with the intersection of three representative slices and
two separate views of the frontal, yz plane, and transverse xy plane. The inhomogeneous- anisotropic nature of the diffusion can be observed
in the planar slices accompanying the 3D figures.

In Fig. 5, we present the apoptotic region induced by the
initial bump function within the tumor region T [Fig. 5(a)]
and the entire computational domain � [Fig. 5(b)]; that is, the
region of cells expected to die within an exposure time τ sim-
ply due to the initial condition before any diffusive spreading
has occurred. In the figure, the outermost red region represents
the location of the cells where the drug concentration is below
any threshold value. The innermost dark blue region shows
the locations where the concentration is above the threshold
value uT (24), and the heat map illustrates regions where the
concentration of the bump function is above the respective
threshold values.

As the drug diffuses across the computational domain, �,
more cells are exposed to the drug over the course of the sim-
ulation. Figure 6 shows the planar projections of the concen-
tration profiles as a heat map at increasing simulation times.
Red represents a higher concentration of drugs and deep blue
represents a concentration of zero. To improve the visibility
of simulations, we scale the data to visible data range. The
inhomogeneous-anisotropic nature of the diffusion can be
clearly observed from the concentration profiles in Fig. 6.

Now, we can compute the concentration levels at particular
simulations times and compare them to the threshold values.
For a particular simulation time, tn, the volume fraction of
the tumor where the concentration is above the threshold,
uT (τ ), is calculated and summed with that of all previous
times ti where i < n, using Eq. (17). When this is done for
the final time, tn = T , which is chosen to be large enough that
all of the drug mixture leaks away after this time, then we
have our apoptosis fraction, ℵ(τ ) in Eq. (18). We report the
exact fractions, �(τ, tn), from Eq. (17) in Table I. Note that
the fourth column presents the final values that indicate the
percentage of the tumor cells killed, ℵ(τ ).

The effects of the inhomogeneous-anisotropic diffusion on
apoptosis can be observed in Fig. 7. For example, the drug ef-
ficacy is significantly higher on the transverse plane compared
to the sagital and frontal planes. This can be seen in Fig. 7(h)
where the apoptotic region covers almost the entire transverse
plane, while nontrivial portions of the frontal plane remains
unscathed. Moreover, even though relatively high apoptosis
fractions are achieved in the tumor region, T , it is observed
in Fig. 8 that significant amounts of the drug leak out of
T . So our results indicate that considerable portions of the
healthy cells are subject to toxicity. We can visually inspect
the leakage of the drug by superimposing the representative
slices of the computational domain � and the subregion T
(Fig. 8).

It is observed in Table I that the current configuration
of the problem leads to partial ablation in the tumor region
since 92% of the region dies after 72 h. In fact, as shown
in the dose-response curves in Fig. 9, the apoptosis fraction
seemingly asymptotes as we increase the amount of initial
injection because the interaction of the drug with several
obstacles, local inhomogeneities, and leakage, do not allow
sufficient concentrations to diffuse to every part of the tumor
region. Thus, we can conclude that our mechanistic model is

TABLE I. Convergence of apoptosis fraction approximation for
U0 = 1.5 μM.

tn = 0.2s tn = 0.5s tn = 0.8s tn = 1s tn = 1.2s

�(24, tn) 0.498408 0.528229 0.528229 0.528229 0.528229
�(48, tn) 0.698709 0.814072 0.864979 0.873871 0.877210
�(72, tn) 0.750721 0.878613 0.909647 0.915700 0.921299
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FIG. 7. Cells with a drug concentration higher than the given threshold, �(τ, tn), at simulation times tn = 0.2, 0.5, 0.8, 1, in seconds
[(a),(b) to (g),(h)], respectively, after an initial injection of U0 = 1.5 μM centered at xc = (6.4 mm, 0, 0). The column on the left, (a), (c),
(e), (g), shows the entire computational domain, �, and the column on the right, (b), (d), (f), (h), shows the tumor region, T . Each figure
is displayed with the intersection of three representative slices and two separate views of the frontal, yz plane, and transverse xy plane. It is
observed that the number of cells exposed to a sufficient amount of drugs is higher on transverse, compared to the sagital, xz plane, and the
frontal plane. The inner most blue region shows the locations where u(x, t ) > uT (τ = 24 hours) for any t = tn. The outermost orange cells
correspond to τ = 72 hours. Finally, the deep red cells towards the outside of the regions has concentrations u(x, t ) < uT (τ ) for all t and τ .

capable of reflecting the diffusion patterns mostly governed
by location-wise structural differences.

Considering the internal injection scenario, several ways
can be proposed to improve the efficacy of the drug without
changing its fluidic properties. An obvious way may be to
use a higher initial concentration, U0. In fact, we can create

dose-response curves for a broader view of the effects of
various initial concentrations U0 on the final apoptosis frac-
tions. Figure 9 demonstrates the final percentages of the tumor
that is killed for 31 different initial injections varying from
U0 = 0.01 μM to U0 = 5 μM. Dose-response curves reveal
that even though the initial injection is excessively elevated,
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FIG. 8. A visual demonstration of toxicity. The effect of the threshold is extended beyond the tumor region, T (the dark blue rectangular
mesh), and the heat map is calculated in the yz, xz, and xy planes from Eq. (17) at simulation times tn = 0, 0.2, 0.5, 1, in seconds [(a)–(d)]
respectively. It is observed that most of the drug mixture eventually diffuses outside of the tumor region. Thus, significant portions of healthy
cells may potentially be subjected to toxicity. The inner most blue region shows the locations where u(x, t ) > uT (τ = 24 hours) for any
t = tn. The outermost orange cells correspond to τ = 72 h. Finally, the deep red cells towards the outside of the regions has concentrations
u(x, t ) < uT (τ ) for all t and τ .

it is not possible to reach a complete tumor ablation. Indeed
it is observed that apoptosis fractions barely improve after
approximately U0 = 2 μM for τ = 48 and 72 h exposure
times. We reported in Fig. 8 that even U0 = 1.5 μM causes the
presence of significant concentrations of drugs outside of the
tumor region T . Thus we can conclude that the use of initial
drug concentrations outside of a certain range is prohibitive
and can severely contribute to toxicity.

Another important parameter effecting the apotosis frac-
tion is the location of injection. Our initial choice as the

FIG. 9. Dose-response curves (24, 48, and 72 h from bottom
to top) produced from 31 different initial injection concentrations
varying from over the interval [0.01, 5]. It can be seen that the
apoptosis fraction starts to asymptote beyond U0 = 2 μM for 48 and
72 h exposure options.

center of the bump function is (6.4 mm, 0, 0), which we pick
by visual inspection to be near the center of the tumor. We
found that changing the injection location greatly effects the
diffusion pattern, and hence the final apoptosis fraction. In this
sense, an important prediction in this investigation is that a
seemingly poor location in T in terms of the distance from the
center of the tumor bulk can yield higher apoptosis fractions
than some locations that are close to the tumor center. To il-
lustrate this phenomenon, in Fig. 10, we choose four different
injections points P1(6.4,−3.84,−6.4), P2(−3.84, 0,−7.68),
P3(−3.84,−3.84,−7.68), and P4(0, 12.8, 0) (all in mm), and
create dose response curves for each location. Our results
demonstrate that finding the optimal injection location to max-
imize apoptosis fractions is quite an unpredictable process
and cannot be achieved with a basic visual inspection. For
example, we pick P4 to be the “poor” location considering its
position relative to the center of the tumor, and expected to get
lower apoptosis fractions compared to the other locations, but
Fig. 10 shows a different outcome. Although P1, P2, and P3

yield relatively similar patterns, P4 produces a better results
for 48 and 72 exposure times after U0 = 0.8 μM. However,
efficacy is remarkably low for P1 comparing to others if one
opts to measure the apoptosis after 24 h. We should also note
that similar to the initial findings, none of these configurations
lead to full ablation in the tumor region.

We can further investigate this idea in a slightly different
context. Let us manually choose 20 different injection points
around the tumor region and calculate the apoptosis fractions
by fixing the initial injection to U0 = 1.5 μM. We then label
corresponding locations with these fractions and display them
inside the tumor region T in Fig. 11. In the figure, blue points
represent lower efficacy (69%) and red points represent higher
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FIG. 10. Dose-response curves with four different injection points: P1(6.4,−3.84, −6.4), P2(−3.84, 0, −7.68), P3(−3.84, −3.84, −7.68),
and P4(0, 12.8, 0) (all in mm). (a) 24 h dose-response curves. (b) 48 h dose-response curves. (c) 72 h dose-response curves. Although P4 is
picked as an intuitively “poor” location in terms of distance to the center of the tumor bulk, it yields better efficacy for 48 and 72 h exposure
times after U0 = 1 μM and U0 = 0.7 μM, respectively.

efficacy (90%) for an exposure of 72 h. It is observed that the
injection location has a significant influence on the efficacy
of the drug. For example, in Fig. 11, P4(0, 1, 0) (the right
most red point) from Fig. 10 is represented and had a much

FIG. 11. Location based apoptosis fractions with U0 = 1.5 μM
based on 20 injection points. The numbers attached to the points are
the predicted apoptosis fractions at these locations. (b) is a magnified
version of (a).

higher efficacy than several points taken around the center.
In a realistic treatment case, one can increase the number of
points used in the simulations to obtain broader information
about the optimal injection sites. However, if the same figure
is created with a sufficient number of injection points around
(and even outside) the tumor region, we can create a more
fine-grained apoptosis heat map. In this way, we can obtain
a volumetric partition of the tissue of interest with respect to
mean apoptosis fractions. Such a work-flow can allow prac-
titioners to determine the optimal infusion locations. Once
the corresponding partition is identified, we can utilize the
simulation to find an ideal injection amount which can strike
a balance between toxicity and efficacy.

In 3D simulations, computation time is undoubtedly of
great importance and essentially determines if the proposed
model is feasible in practical applications. In finite element
models, the type and number of elements in the computa-
tional domain is the primary factor effecting the computation
time. In this paper, we constructed the domain with 98403
bi-quadratic hexagonal elements. We should note that the
number of elements must be determined by the number of
diffusion tensors existing in the segmented volume of the
original data.

Our computing environment is 9th Generation Intel(R)
Core(TM) i7-9750H (12MB Cache, up to 4.5 GHz, 6 cores)
with 32GB DDR4-2666MHz RAM. We run the simulations
with an MPI-based parallel environment on four cores and
observed that computation time is approximately 15 min for
one simulation with an initial injection of U0 = 1.5 μM and
an output of apoptosis fractions for a given threshold, uT (τ ),
the results of which are reported in Table I and 5.2 h to create
the dose-response curve using 31 initial injection values in
Fig. 9. We should carefully note that the number of elements
in this framework should be completely determined by the
dimension of the diffusion tensor volume extracted from the
original data. Thus, to be able to describe the corresponding
quantities in finer detail, diffusion tensor images with higher
resolutions are needed, but in this case we need a more
powerful environment to obtain the results in a reasonable
computing time.

In future studies, a more realistic computational domain
may be created. For simplicity, we worked with a cubic do-
main in this study. However, it may possible to locate and cut
out the tumor region more accurately and create a volumetric
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FIG. 12. Approximate tumor region segmented from the original
DTI volume. The primary tumor region can be seen in red along with
a discretized representation of the brain.

mesh based on this segmented region. A rough description
of the tumor region extracted from the original data can be
seen in red in Fig. 12. We display the tumor along with a
discretized representation of the brain. We can then feed this
mesh structure into the existing model. This approach has the
potential to generate a more realistic model, but it can be quite
challenging. For example, we would need to properly address
how to interpolate the diffusion tensors across the boundary
of this new domain if boundary conditions are to be imposed
only on the surface of the tumor volume.

V. CONCLUSION AND FUTURE WORK

Brain tissue poses a unique transport challenge due to
the highly inhomogeneous-anisotropic nature of the medium.
Since drug exposure directly impacts cell death, the geometry
and topography of the tumor will have a significant effect on
efficacy. Further, the tumor will also grow in an inhomoge-
neous -anisotropic manner [45–48], and hence its structure
can be quite unpredictable. DTI provides structure level in-
formation on an individual basis [49]. While there have been
articles on employing DTI to study drug transport in the brain
[5], thus far none have simulated the efficacy of a drug as a
consequence of drug transport. With a drug transport- tumor
population coupled model, there is potential for producing
computer aided treatment strategies.

The response of cancer cells to a therapeutic agent is
undoubtedly a highly complex phenomenon. However, some
aspects of it can be addressed with the help of a mathematical
model. In this sense, our aim in this study was to build a partial
differential equation framework based on patient-specific data
that can be used to predict the efficacy of drug diffusion
in the brain tissue occupied by tumor cells. Moreover, this
framework may be used to create diffusion models which
take into account more complex considerations. For example,
a problem encountered in some cancer therapies is drug re-
sistance, which can be defined as the ability of cancer cells
to survive and grow despite various anticancer treatments
[72]. Further, oxygen concentration also has an effect on drug

efficacy [73–76]. In this paper, we assumed that the tumor
cells exposed to a drug concentration above certain threshold
values will be ablated after the corresponding exposure times.
Finally, our model does not accommodate gliomatosis cerebri
where the infiltration is so extensive that no central focal
area of the tumor can be located [77]. However, if reliable
empirical knowledge is present about drug resistance, oxygen
concentration, and a fine grained map of the infiltration, a time
dependent or location-based threshold model may be inte-
grated into this framework. In this regard, using finite element
method in the model provides flexibility since it allows us to
attach scalar quantities in the desired locations.

In future studies we propose to integrate this mechanistic
model with a statistical model capable of predicting dose-
response curves for new individuals for whom we have access
to genetic information as well as DTI/MRI images of tumors.
Our mechanistic pharmacokinetic models (PKM), in their
original form, may not predict the drug response in new pa-
tients. Omics models, on the other hand, connects the genetic
information of patients with their drug responses to predict
the expected response for the same drug in a new patient.
However, most Omics models do not explicitly take into ac-
count the properties of the tumor. Therefore, the Omics based
model will produce similar expected response to the same
drug among patients with similar genetic makeup even though
their tumors may have very different diffusivities. Naturally,
we would like to incorporate both pharmacokinetic and Omics
based models to increase our understanding of the impact of
tumor and genetic heterogeneity on drug responses. However,
combining these two approaches are difficult because PKM
cannot handle the high dimensional nature of genetic infor-
mation (typically in the order of tens-of-thousands), while the
Omics based models use a regression framework to connect
drug response with genetic information and the physical prop-
erties of the tumor can be viewed as a predictor at best, thereby
losing the spatial information of local diffusivities and tumor
geometry.

The model we propose can offer a way combine PKM with
Omics methodology in the following fashion. Observe that,
the binary population model (Sec. II A) is the key construct
that connects the concentration profile with the observed dose-
response curves via three free time-invariant parameters a,
b, and c. Now, if two patients with similar tumor properties
produce different responses to the same drug, the foregoing
free parameters will be able to capture the differences. There-
fore, we view these parameters as individual-specific and any
individual differences will be captured via these parameters.
Consequently, a regression model connecting these param-
eters with Omics data can be posited. Once the regression
model is trained, we can predict â, b̂, and ĉ for a new patient
and use these estimates with the PKM output to predict the
dose response for new patient with different genetic informa-
tion and tumor diffusivities.

It should be noted that this work assumes histological
constancy (genetic homogeneity), however within a patient
tumor this may not be the case [78–81]. Moreover, there
may be temporal heterogeneity, which may lead to therapeu-
tic resistance [78,82]. However, targeted therapy protocols
often do not consider these heterogeneities and focus on
the presence or absence of mutations despite the fact the
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intratumor heterogeneity may induce different responses to
the same therapeutic agent in different regions of the tumor
thereby severely impacting expected outcome [82,83]. Several
therapeutic strategies have been proposed to accommodate
such heterogeneity [84,85]. Despite the histological constancy
assumption, mathematically, multifoci drug delivery is more
beneficial than single focus modes. Although this finding
is yet to be experimentally tested in the context of GBM,
we note that theranostic experiments conducted on hetero-
geneous ovarian cancer demonstrated multifoci delivery of
nanoparticle drugs elicited a strong therapeutic response [86].
In fact, our approach offers mathematical support to thera-
peutic strategies that rely on noninvasive imaging to identify
molecular subtypes in tumors to guide the course of treatment
[87].

In addition, while the binary population model has com-
putational advantages due to its simplicity, a more accurate
model would be a stochastic dynamical system that is depen-
dent on the concentration threshold. One concern may be the
complexity of coupling, but fortunately transport happens on
a much faster timescale than apoptosis. We would solve the

partial differential equations for the transport, and then tackle
the population dynamics to produce the apoptosis fractions.
However, as with any model, adding more complexity is coun-
terproductive unless it is accompanied by reliable data.

These challenges give the scientific community a singular
opportunity to develop both biological and physical experi-
ments to accurately estimate parameters and test the models.
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