Binder 206, Life histories A-B [Trematoda Taxon Notebooks]

Harold W. Manter Laboratory of Parasitology

Follow this and additional works at: https://digitalcommons.unl.edu/trematoda
Part of the Biodiversity Commons, Parasitic Diseases Commons, and the Parasitology Commons

Harold W. Manter Laboratory of Parasitology, "Binder 206, Life histories A-B [Trematoda Taxon Notebooks]" (1990). Trematoda Taxon Notebooks. 202.
https://digitalcommons.unl.edu/trematoda/202

This Portfolio is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Trematoda Taxon Notebooks by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Cort (1941), A Symposium of Hydroblology, p.116, states that the life cycles of more than 200 digenetic trematodes belonging to more than 30 families are known.

Figues 1-8a.
Corcar1a dipterocerca Miller and Morthup, 1926 and Stephanostomum dentata (Linton, 1900) Manter, 1931.

1-2 Motacercaria from Men1d1a men1d1a exposed to C. alpterocerca
3 Metacerear1a from Fundulus heteroclitus, Woods Hole, Mass.
4-6 Stephanosto mum dentatum from Paralichthys dentatus
7 Cercar1a dipterocerca from Nassa obsolotg
8 Stephanostomum dentatum from P. dentatus.

Discussion

The tendency for members of Sitphanostoman to lose cuticular spines has led to confusion and taxonomic difficultics as noted by Pratt (1916). Manter (1934) and other authors. Attempts to correlate particular larral and adult stages have not been fruitful, although the taxonomic problems, identity and number of valid species, and systematic position of the genus will not be finally resolved until life-cycle data are available.

Differences in the accounts of Martin (1939) and Woligang (1954, 1955a) on the life-histories of S. tonuc and of S. baccatum, respectively, are perplexing. According to Martin, the cercaria of S. tenue has a simple tail with a sticky tip, a stenostomate excretory pattern and a flame-cell formula of $2(3+3+3+3+3$ $+3+3$). According to Woligang, the cercaria of S. baccatum lacks a stylet and peristomial spines, has a simple tail with a sticky tip, a mesostomate excretory pattern with the pore at the tip of the tail, but the flame-cell pattern was not worked out. Wolfgang noted that the cercaria of S, baccatum is distinctly different from that of S. tenue. But his observation that the excretory vesicle discharges through a duct which traverses the tail and opens at the tip is so unusual that it can be accepted only after confirmation. Moreover, his description of a mesostomate excretory pattern in the cercaria and a stenostomate arrangement in the metacercaria would necessitate a major alteration in the collecting tubules and suggests that the cercaria and metacercaria belong to different species.

Cercaria difterocerca differs from the cercaria described by Martin as the larva of S. tenur in several important features. It lacks a stylet, has lateral and dorsoventral ruticular fins on the tail, and the flame-cell formula is simpler, $2(3+3+3)$. These differences are far greater than ordinarily encountered between cercariae of species in a single genus and present as yet unresolved prohlems.

The genus Stephonostomum has been assigned to the family Acanthocolpidae but the relationships of that family are uncertain. Most authors have included the Acanthocolpidae in the Allocreadioidea. La Rue (1957) presented a classification of the digenetic trematoles based on life-history data and designed to show genetic relationships. The system was founded primarily on the formation of the excretory bladder, supplemented by other morphological and bionomic data. The Digenea were divided into the Anepitheliocystidia and the Epitheliocystidia. The first group comprised three orders ; Strigeatoidea. Echinostomida, and Renicolida, in which the excretory vesicle is thin, membranous, not epithelial at any stage, and in which the cercariae have forked or single tails and the excretory ducts extend into the tails of developing cercariae. In the second group, the excretory vesicle has a primary membranous wall which is replaced ly an epithelium derived from a mesodermal cell-mass. It comprises two orders: the Plagiorchiida and
the Opisthorchiida. These groups were distinguished by the location of the primary excretory pores, which in the Plagiorchiida are at the furrow between body and tail and in the Opisthorchiida on the lateral margins of the tail, near its base. The order Plagiorchiida contains two superfamilies: the Plagiorchioidea Dollius, 1930 and the Allocreadioidea Nicoll, 1934. As noted, Stephanostomum has been accepted as a member of the Acanthoculpidae in the Allocreadioidea. But in Stephanostomum the excretory ducts extend into the tail of the cercaria, which would exclude the genus from the Allocreadioidea and require its transfer to the Opisthorchioidea. Such a disposition would require that the genus be removed from the Acanthocolpidae or the transfer of the entire family. Indeed, such an allocation has been suggested; at the aunual Midwest Conference of Parasitologists. Feters reported on the development of the excretory system in an acanthocolpid cercaria and in the mimeographed abstract of the paper stated, "Thus, the Acanthocolpidae must be excluded from the Allocreadioidea and may be closer to the Echinostomatioidea, or possibly to the Opisthorchioidea." At the same meeting, Cable, Peters and Berger discussed the affinities of the Acanthocolpidae and noting substantial agreement with members of the family Campulidae, suggested possible genetic and taxonomic relationship, even inclusion in the same family. Pande (1960) erected a new gents Brijicola to contain a new species. B. caballoroi, with morphological similarities to a number of genera at present assigned to such different families as Acanthocolpidae Lühe, 1909; Acanthostomatidae Poche, 1926 emend. Nicoll. 1935; Echinostomatidae Looss, 1902 emend. Poche. 1926; Maveniidae Yamaguti, 1953; Heterophyidae Odhner, 1914; and Plagiorchiidae Lithe, 1001 emend, Ward, 1917. The genus was assigned to the Acanthocolpuilae with the comment that the present concept of the family remains greatly confused and unsatisfactory.

Abstract

Summazy The morphology, composition and distribution of the genus Stephanostomum are sonsidered. Taxonomic uncertainties and difficulties are discussed. It is postulated that the difficulties can be resolved only with knowledge of life-cycles, hrval forms, and developmental stages. Previous accounts of life-histories in the genus are reviewed. The cercariae described by Miller and Northup (1926) from Nerse ehyolefy at Woods Hole are listed and their life-cycles are traced. Cercaria dipterocrras Miller and Northup, 1026 penetrated and encysted in laboratoryreared specimens of Mesidis monidia. They continued their development and the mature mrtacerearize manifest such precise agreement in number and shape of peristomial spines and in general morphology with juvenile and mature specimens of Step kanostomum dentatum (Linton, 1900) Manter, 1931, that C, dipterocerca may te the larnal stage of S. dentotum. Cercaria dipterocerca is very different. however, from the cerearise deseribed by Martin (1939) and Wolfgang (1954. 195.5) as the larvae of Stephanostomum tenue and Stephanostomum baccatum. respectively. The larvae described by Martin and Wolfgang differ markedly from one another. These differences are far greater than ordinarily encountered between species of a single genus and present as yet unresolved problems. The systematic position of Stephonostomum and the family to which it belongs are equivical. If the genus is a member of the Acanthocolpidne, and if La Rue's gysten is valid, the family must be transferred from the Allooresdio1des to the Opisthorohio1dea.

Fig. cercaria, ventral view
five. Striker of cerecheis
Fin 3 Reva wry sem sale no terce
Fig 4. Young econ swound cloname Antes
Fie. 5 Mernesecheia
Fiat. ADorer

Summary

It was found that the life cycle of Stephanostomum tenne involves the development of rediae and cercarise in the marine snail, Nasa obsolela, the utilization of the small fish, Menidia menidia notals, as the second intermediate host, and the development of the adult worm in the intestine of the puffer, Spheroides maculatus. Although the puffer may serve as the experimental definitive host, the striped bass, Reccus lineatus, is probably a natural one.

About A per cent of the Nassa obsolete observed were infected with this parasite.

The excretory system of the cercaria is represented by the formula $2[3+3+3+3+3+3+3]$.

The arrangement of the reproductive organs, some similarity in the excretory systems, and the fact that fishes serve as hoots to the adult worms wisest an affinity of the Acanthocolpidae to the family Allocreadididae.

FROM: MARTIN, 1939
Bros: Buck,

ADult
RFOIA

Apust - sewet is restrine swo eicriom

Lrepess sm + Aacenc ach pour Coreracantropes mencularus: Waymourm Clinerodbessus Mrimesccessus. Hawiaut Hraceccanacus sce eans = 5morrwaence sculpen

Corrus $\frac{\operatorname{sCaseivs}}{\text { Hawter (trinareve) }}$
(E(R) : Mrozecsmalns ocrodicimsprnosus* Long-mopnko seviciel Masmordances amsticanns a DCRAN Nont fenfonmolana Devin STMnitur in Gecenlend North SeA

METACERQARIA
Lacerine couss, pocems ristub, Komeric musckets

Lananclett caros (Mirentive = hevicu raw

Agult

Agatr: coned cartstiat owo niserve

Lreasel ve: Akonc extrur

No a/rim pore ichecarine

REDIA

metacerraria

its (CanNon) : Hemitriprerus americanus - Sea Raven Lycooss sea Arenc ekceout
Crverocanthodes maculatus = Wreymouti
Hippoglossus Hipeogcossus: Halisut
MYOXOCRPNALUS SCORPIUS = SMORTH IRNED SCULPIN
$\binom{$ Areenc A }{ Europe } i Cortus scorpius = FATHER CASHER
Hacitur (swensouk)
(EKR) : MYOXOCEPNALUS OETOOECIMSPINOSOS = LONG-HORNCO SCULPIN MACROZOARCES AMERICANUS = DCEAN DOUT
istribution : Aceoss Morin Atcmntic CMaine, Boy of Funoy, Noua Scotia, Newrounolano, Devis Stmmight in Gegcnland North Sea

intestine ano rectum
Hemitric reiens americanus = Sea Raven
Lyeooss SR = ARenc eccpout
CaveTACANTHODES mACULATUS = WRYMOUTN
Hipeoglassus Mipeoglossus: Hacisut
NYOKOCEPHALUS SCORPIUS - SHORT:H ORNED SCULPIN
COTTUS SCORPIUS = FATHER CASHER
Hacriar (senentove)
Myozocephalus oetooecimspinosos = LONG-MORNEO SCULPIN Macrozonrces ambricanus = Dcean pout
Qcrass Noert Arcmatic CMaine, Bay as Fundy, Nova Scotin, iewounolano, Drivis Straigut in Gesenland, North Sea

No BIRTN PORE I CERCARI
Ligenteo sy Rupr

11. Stephanochasmus larva with 36 circumoral spines

$$
\text { PI. VI, fige } 19 .
$$

Encysted in wall of gill chamber of Hippocampus coronatus Temm. et Schleg. from Ise Bay. Cyst round, $0.25-0.3 \mathrm{~mm}$ in diameter, with very thin, membranous wall, enclosed in lamellar connective tissue capsule of host origin $0.6-0.65 \mathrm{~mm}$ in diameter. Between this capsule and the cyst proper is abundant, greyish white, granular detritus. Metacercaria floating in eyst proper. approximately lageniform, $0.56-0.7 \mathrm{~mm}$ long by $0.15-0.25 \mathrm{~mm}$ broad at middle of hinbody, beset with minute spines except at posterior extremity and immediately behind oral sucker. Oral sucker terminal, $70-85 \times 80-105 \mu$; circumoral spines 36 in number, arranged in two alternating rows, measuring in life as follows :

Ventral oral spines	$21-27 \times 4-6 \mu$
Ventral aboral spines	$15-20 \times 3-3.5 \mu$
Dorsal oral spines	$20-24 \times 4-6 \mu$
Dorsah aboral spines	$18-24 \times 3.5-5 \mu$

Prepharynx $0-13-0.22 \mathrm{~mm}$ long, with a large eyespot on each side. Pharynx pyriform, $40-72 \times 35-40 \mu$ at anterior half of middle third of body. Ceca slender, terminating at posterior extremity, one on each side of posterior end of excretory vesicle and not opening into the latter. Acetabulum $68-96 \mu$ in diameter, at th sixth of body or at its junction with 5 th sixth. Anlagen of testes small, rounded, one behind the other ventral to excretory vesicle. Anlage of cirrus pouch extending from a point about 30μ back of acetabulum to its anterior end. Ovarian anlage not well defined, immediately in front of excretory vesicle a little to right of median line. Vitellarian anlagen not distinctly recognizable. Excretory vesicle occupying posterior half or more of hinbody, with its maximum breadth coinciding with that of body, abruptly narrowed posteriorly and opening at slightly notched posterior extremity.

From the number and arrangement of the circumoral spines it seems very probable that this larva develops into Stephanochasmus cesticillus (Molin, 1858) Looss, 1901, parasitic in Lophins piscatorius.
From Yamagut1, 1942

MeCoy, 1928

Two New Marine Tromatode Life Hittories, O. R. MeCoy, Johns Hopkins Univenity,

Cercaria foridenris n. ap from the marine snall Cerilhium titteratum at Tertugas, Florida, has been identified as the larva of a nember of the genus Acanthochasmus Lonts. This larva is a lophocercous "monnstome" certaris characterized by the precence of ege spots, ieven pairs of penetration glands and a dorso-ventral fin-fold on the tail. The cercariae were found experimentally to encyst in the fins and underneath the scales of small firh. Most of the adolt characters then develop in the metacercaria; a veatral socker is lormed. the digestive tract develops and most striking a single row of 27 large spines appears in a complete circle around the mouth. Although the adalt has mot yet been determ ned, the cercaria can almost certainly be assignad to the grous Acambor clasmus. This observation throws light upon the type of life history to be expected of several deseribed species of cercariae wery similar to C. flaridswis which heretofore have beea grouped under the minostomes.

OBSERVATIONS ON THE LIFE HISTORY OF A MARINE LOPHOCERCOUS CERCARIA*

Oliveir R. McCoy

In the course of a study of marine trematode life histories at Tortugas, Florida, a binoculate lophocercous 'monostome" cercaria commonly occurring in Cerithium litteratum Born, was found experimentally to continue its life cycle by encysting in the fins and underneath the scales of small fish. After eneystment a uumber of the adult structures, which were not present in the cercaria, developed in the metacercaria. Most notable of these was a single row of 27 spines which appeared in a complete circle around the mouth. Although the adult has not yet been determined, on the hasis of the structure of the metacercaria the cercaria probably is the larva of a member of the genus Acanthochasmus Looss. A preliminary report of the observations in this paper has already been published (McCoy, 1928).

The cercaria used in these life history experiments was first found at Tortugas by Miller (1926) and was described by him as Cercaria P in his preliminary report on the behavior of Tortugas cercariae. This description, although brief, contains all the details essential to the identification of the species. In the present paper, however, the cercaria will be described more completely and given the name Cerraria floridensis sp. nov.

Cercaria floridensis (Fig. 1) is a lophocercous cercaria belonging to the Pleurolophocerca Group of Sewell (1922: 23). It shows all the distinguishing characteristics of the group, namely, an oral sucker modified into a protrusible organ for penetration, a pair of pigmented eye spots, conspicuous penetration glands, fin-folds on the tail, and the absence of a ventral sucker and digestive tract. The cercaria is an internfittent but very rapid swimmer and reacts to a number of light and mechanical stimuli. A detailed study of its behavior has been reported by Miller (1926; 1927).

The tail of C. floridensis is more than twice as long as the body and is provided with a well-developed dorso-ventral fin-fold which extendalong the posterior three-fourths of the tail on the dorsal side, continuing around the tip and along the posterior third on the ventral side. At its widest point, the dorsal fin is about as broad as the tail, but
ventrally it is only ahout half that wide. There is also a pair of inconspicuons lateral fin-folds on the anterior third of the tail. The oral sucker, which occuples athout the anterior fifth of the body, is artively protrusible and although definitely distinct from the rest of the body. does not have the typical appearance of a sucker. A small mourh is located at the anterior tip slightly on the ventral site. No pharymx or digestive tract was distingtished. A number of very small spines are present on the anterior tip of the hody around the mouth, but the rest of the body and the tail are devoid of spines. Immediately posterior to the oral sucker is a pair of prominem, darkly-piemented eye-ypots. A small amount of pigment is sattered aver the dornal surface of the anterior third of the body but it is not conspienous

The central part of the body (Fig. 2) is oceupied by a group of fourteen large, granular glands whose nuclef may be counted with difficulty under ligh magrification. Ducts from these gianis pass anteriotly in four bundles and open on the dorsal lipp of the mouth. The two median bundles, which are located dorsally, each contain four ducts, while the two lateral bundes are made up of three doets earh. Immediately posterior to the glands is a small round mass of cells which represents the rudiment of the ventral sucker. A large thick-walled excretory vesicle occupies the posterior part of the looly. When expanded, it has a shortened Y -shape. The flame cell pattern was not determinel. Alopg the sides of the body posterior to the eye spots are numerous mmall glandular cells probably cystogenous in character.

The cercariae develop in small, colorless, sac-like rediae ranging up to 0.9 mm . in tength (Fig. 3). The rediae do not possess any collar or locomotor appendages, leut a well-developed pharynx 30 p in diameter is present. The short, rhabdocoele gut, however, is degenerate and could only be distinguished in a few specimens. Miller reported the excretory system of the redia to be composed of four flame cells on each side, two emptying into an anterior and two into a posterior collecting tubule. As many as 15 cercaria were seen developing in a single relia but apparently they do not remain inside the redia to complete their development, for when the digestive gland of an infested mail was ioseed arant, immene numbers of cercariae, not all completcly developel, were found free in the tissues.

The average measurements taken from ten cercariac killed by gentle heat were as follows: body, 192μ by 61μ : tail, 434μ by 26 p and oral sucker, 40μ in diameter.

Specific diagnosis of Cercaria foridensis: binoculate lophocercous cercaria from Cerithium litteratuan. Fin-fold along posterior threefourths of tail dorsally and along penterior thind ventrally; also narrow lateral fin-folds on anterior third of tail. Pigmented eye-spots present but no pharynx or digestive tract visible. Oral sucker in form of protrusible anterior organ; ventral sucker rudimentary. Small spines on anterior tip of body only. Fourteen large glands in center of body; ducts in iowr lumdles emptying on dorsal lip of mauth. Large excretory vesicle in posterior part of bolly. Development in simple rediac without collar or locomotor appendages.

Cercaria florideais continues its life cycle by eneysting in the fins and underneath the seales of small fish. Almost any species of fish may serve as the intermediate host, for experimentally the cercariae lave been found to encyst in the following twelve species of fish representing the most common genera present on the reef where the infested mails were collected: Eupomacentrus analis, Abudefduf saxatilis, Nromurnis apodus, Neomaenis symagris, Hacwnlon sciurus. Iridio bivittatus, Btenius cristatus. Malacotenus moorci, Scurns croicensis, Layodon rhomboides, Sparisoma flavescens, and Ocyurus sluryurus. No other species of fish were exposed. Heavy infestations of the fish with the cysts were obtained by exposing them for one-half hour to a large number of the cercariae in about 100 ce . of water. When soch a small amount of water was used, it was necessary to bubble oxygen through it in order to keep the fish alive. After exposure the fish were transferrel to an aquarium, and the development of the metarercaria was studied over a period of 38 days.

In the experimentally infested fish, encystment took place within 12 hours after the penetration of the fish by the cercaria. The cyst was thin-walled and transparent, and was considerahly larger than the mots: tained metacercaria (Fig. 4). The cyst did not grow apprecialily after it was formed; cysts 40 hours ofd averaged $156 \mathrm{\mu}$ by 128 p in sise, while cysts which had been in the fish for 22 days measured 106 m by 133_{p}. The cysts were found almost exclusively in the fin rays and underneats the seales of the fish. but occasionally eysts occurred in other parts of the body-in the museles and around the gills. The cysts which oecurred underneath the seales were more nearly spherical than those in the fins. the average meastrement for four specimens 9 days old being $157_{\mathrm{p}}^{\mathrm{m}}$ by 150μ. The cyst wall became thicker after the cyat had been in the fish for some time, but it always remained transparent and never became pigmented.

The development of the metacercaria was not very rapid. The only changes from the cercaria to be noted in the metacercaria five days after encystment were the appearance of 'a pharynx at the level of the ere spots and the disintegration of the 14 large glands located in the central part of the body. The small mast of cells in the posterior third of the body appeared more prominently and could be recognized as the rudiment of the ventral sucker. The whole bosly had an opaque appearance and was only sluggishly motile insitie the cyst.
Affer nine days, the body of the metacercaria had lecome slightity lengthened (Fig. 5). A digestive tract had appeared, with the coophagus forking near the middle of the body and the ceca extending to the posterior end. The ceca containel large refractive bodies cuboidal in shape. The eye spots had begun to disintegrate but masses of the pigment were still plainly visible. At this stage the ventral sucker definitely had the typical appearance of a sucker, but it was very small, measuring only 27μ in diameter. The oral sucker was much larger, 45μ by $50 p$ p The shape of the excretory vesicle was strikingly different from the form present in the cercaria; the stem was long and thick-walled and there were lateral arms which extended anterior to the ventral sucker. There was no notable accumulation of eoncretions in the excretory vesicte.

In a metacercaria dissected from the cyst 12 days after the penetration of the cercaria, a single row of spines was noticed developing in a circle around the mouth. The spines were considerably larger in a metacercaria 15 days old and measured about 8μ in length. At this stage the eye spots had completely disappeared but there were no other important changes in structure. By the end of 22 days, the oral spines were 15μ by 3μ in size and were more prominent. They were 27 in number and were arranged in a single uninterrupted circle around the mouth. When seen in lateral view, the spines were somewhat curved and appeared much broader at the lase (Fig, 6), A few rows of smatl spines were present in between and posterior to the larger spines. The rest of the body of the metacercaria, however, was devoid of spines.

Three weeks after the penetration of the fish, the metacercaria (Fig. 7) had aprarently attained its complete development, for only a slight increase in size and no changes in structure were noted in specimens two weeks older. A dim mass of very small excretory concretions had accumulated in the excretory vesicle the lateral arms of which extended to the anterior edge of the pharynx. The pharynx, which was located at about the anterior third of the hody, was nearly as large as the ventral sucker, which occupied a position in the middle of the lody. The oral sucker was very large in proportion to the ventral sucker and was distinctly funnel-shaped, with the open end directed anteriorly and encircled by the single row of 27 large oral spines. The metacercaria had grown considerably in length and was usmally doubled up inside the cyst. The worms were quite active and frequently changed position. The average measurements from six specimens 22 days after the penttration of the fish were: body, 324μ by 74μ; oral sucker, 65μ in diameter; ventral sucker, 34μ in diameter; and pharynx, 36μ by 20μ.

One natural occurrence of a cyst identical in appearance with the cysts in experimentally infested fish was found in the caulal fin of a
small snapper, Neomaenis synagris, caught on the reef where Cerraria floridensis occurred in the snails. The structures of the metacercaria in this cyst agreed in every respect with the mature metacercariae experimentally developed from C. floridensis. Attempts were made to procure the adult of C. floridensis by feeding fish heavily infested with the cysts to several larger fish, the gray snapper, Neomaenis griscus, common grunt, Hacmulon plumieri, and black grouper, Mycteroperca bonaci, but no adult worms were recovered.

Although the adult has not yet been determined, on the basis of the structure exhibited by the metacercaria C. floridensis apparently belongs in the genus Acanthochasmus as defined by Looss (1901). The characters on which this identification is based are principally the large, funnel-shaped oral sucker with the opening surrounded by a single, uninterrupted circle of spines, and the " Y "-shaped excretory vesicle with the lateral arms extending anteriorly to the region of the pharynx. The small size of the ventral sucker in proportion to that of the oral sucker and the long prepharynx and the large pharynx with the digestive ceca extending to the posterior end of the body are also characteristic of the genus Acanthochasmus. The metacercaria of C. floridensis also, in certain respects, resembles the genus Asocotyle of the family Heterophyidae, but the absence of the oral cecum found in Asocotyle and the presence of the long lateral arms of the excretory vesicle characteristic of Acanthochasmus make it much more probable that C, floridensis belongs to this latter genus rather than to the genus Asocotyle. Since the structure of the reproductive system could not be determined in the metacercaria, the identification cannot be made with absolute certainty. It is worthy of note that Cercaria floridensis does not show any characters which might indicate its systematic position. All of the distinguishing' structures, oral spines, ventral sucker, digestive tract, and even the distinctive " Y "-shape of the excretory vesicle first appear in the metacercaria.

Life History of Cercaria floridensis MoCoy, 1928 Fage 3

C. foridensis in general structure resembles a number of previously described cercariae but it probably is most closely related to C. quadripterygia described by Sinitsin (1911) from the Black Sea. According to the classification of Sewell (1922), both of these forms belong in the Pleurolophocerca Group of lophocercous "monostome" cercariae. There are about 12 species of cercariae which should fall into this group on the basis of the group characters defined by Sewell, but since the classification is probably an unnatural one, these forms may not necessarily be closely related. In fact, some of these cercariae apparently form a graded series with distome cercariae of the Parapleurolophocerca Group, certain of which are known to be larvae of members of the genus Monorchotrema, family Heterophyidae (Faust and Nishigori, 1926),
This study of the development of the metacercaria of C. floridensis throws light upon the type of life history to be expected for other similar cercaria of the Pleurolophocerca Group. A general similarity in the structure and life eycle of C. floridensis, the cercaria of Clonorchis sinensis, and cercariae of Monorchotrema may be pointed out. All show a general resemblance in botily structure, possess eye spots and fin-folds on the tail, and continue their life cycle by encysting in the fins and underneath the seales of small fish as second intermediate hosts. A more complete knowledge of life histories will prolably make possible the formation of larger natural groups among families of trematodes which at present are not known to be related.

Cercar1a owreae (Hutton, 1954) Dawes, 1959

 tsland

Systematic Posmox

It is unusual to attempt to refer a cercarin to its systematic position but in this instance two important characters enable as to mako the attempt. The extension of the cacca into the appendaget is taken by the writer as an indication that the corroponding adult will prove to be a trenatode with anal openings situated in the wall of the excretory vesicle. This character occurs in members of yarious families but it seems to be a charmeten of the seven genara of the Accacoelidac. In one genus of the famly each of the anterior extensions of the caeca has six diverticuln, an unnsual character which may be significant in the present instance. forlging by the occurrence of two unusual characters together it secmis possuble that Cercaria ourvae is the larva of a species of Accaciodocodium Odbner, 112es. To which of fonr species it belonge connot be deed-d, but the grotesquely pedunculate ventral sucker would seem to rule out A. Feasiporum Oibner, 192木 The remaining thres spocier are d. nigroflactum (Rudolpla 1819), A. ma, moavthe (1)tesing. is58) sewsu Monticeill, 1803, and d. atrulatum Robininn, 1934 D.llfus (1935) separated the three specis according to differences in the vitellaria, which are nut developed as such in the vriter's specimens. He also figured A migu faram (Fis 5.-6) as a torm with a finely furrowed cutticle and srikers silpated rithes neir togethes. The same is true however of f . Aliceluam in whath the cuticle iroent
 sort of "honeyconso" freme which the trematode bets its specitic

LIFE HISTORIES OF ALLOCREADIIDAE

Hopkins (1934) points out that at least three types of lIfe histories are known (1) Allooreadium, Crepidostomus, Megalogonia and possibly Bunodera have an ophthalmoxiphidiocerearia developing in rediae in Sphaeridae and encysting in various vertebrates.
(2) Hamacreadium, Helicometrina, Plag1oporus, and Podocotyle Sphserostoma use snails as molluscan hosts, cercarlae are cotylocercous with stylet but without eyes and develop in sporocysta; the metacercaria encysts in different intermediate Coifocacum boats.
(3) Lepocreadium and Pharyngora. The cercaria is triohocercous and develops in rediae in snails. The metacercarla may live in a variety of intermediate hosts but does not encyst.
(4) Hopkins (1934) (Jour, Paresit., 23:94-97) described cercarias of Anallocreadium armatum and 1 iorocreadius parvis. Hetacercarlae encysted in [osculum formisel (a mollusc). Anallooreadine type cercanat distome cercaria with straight slender tall, undivided sac-like excretory bladder, pigmented eyespots, cuticular spines, no stylet, numerous setae on sides of body, and three pairs on tall. Developing in rediae in freshwater snails.
similar cercaria

2 uopristis

St'umany

Enibryolngy of the exeretory avatem was atudied in four type of omarian ineluifed in the allocrearimid momples of digerartic trematodon. A manti-1 regarding that proms in alloreradiad larvar (ophthationsipheiliownarkes develigning in splarerid trivalsea) is moulvel by lowation of the priesery pores in the buly tail furrow; at no staun of developiment dions the excrelary syotro

 Alloervadiuiden. The marine ophthalmamptidiocrearis of the Acatillasel pidae hine primary porm on the sifles of the tail well poteri ir tis its janerime with the londy. For that raasu, the Aranthocolpidar is calloded frow the

 gasifripul, bas primary exeretory pores in the body lail farman and a wel tirally aet stylet as in the Alloervendidiae

From Perers (1961, Peon Hechmernoc. Soc, Wesm $28:$

$$
102-108 \text {) }
$$

 eggs will contain miracidia, and rarely, an
egg will hatch while under observation.
Usually, though, they must be incubated
for several weeks before they will hatch.
If fingernail clams, Sphaerium spp., are
available, they can be exposed to the hatch-
ing miracidia; later sporocysts, rediae, and
cercariae may be obtained from the clams,
which are the first intermediate hosts for
C. cornutum.
Thus, the crayfish, a common laboratory animal, and one of its parasites, Crepidostomum cornutum, can be utilized very effectively in a biology laboratory to demonstrate parasitism, as well as several stages of a digenetic fluke life cycle.
literature cited
Hopkins, Sewell H. 1934. The Papillose Allo-
creadidae. Ill. Biol. Monogr. 13(2):1-80. Stafford, E. W. 1931. Platyhelmia in aquatic insects and Crustacea. J. Parasit. 18:131. Canada to Texas and in a variety of hosts, from fishes to crayfishes (Hopkins, 1934). e se anfea sit ino squiod Kp!pesion qons

 иошwos v' Kq parooddns) sexal iseaqunos u! sopads

 gonads.
The whitish cysts are ruptured easily,

 mature fluke stages, for studying morphology, behavior, and metabolic systems.
 mature, i.e, progenetic, and contain viable eggs within the uterus. Occasionally, the

m, showing over 20 eggs within the uterus.

Cornutum Immature
 jes

dent's interest in a biology laboratory.
it requires little effort to obtain mens and a minimum of space, ma5 , and equipment to maintain them. ically every vertebrate has parasites, o do invertebrates; the crayfish is a example. In fact, several fluke genera, g., Crepidostomum cornutum, paracrayfishes (Stafford, 1931).

Fig. 1. Progenetic metacercaria of Crepidostomum cornutum, showing over 20 eggs within the uterus.

Crepidostomum Cornutum for Demonstrating Immature Fluke Stages

by Eston O. Morrison
Department of Biology
Tarleton State College
Stephenville, Texas 76401

Live parasites, rather than preserved or mounted ones, certainly arouse and hold
a student's interest in a biology laboratory. And it requires little effort to obtain specimens and a minimum of space, materials, and equipment to maintain them. Practically every vertebrate has parasites, and so do invertebrates; the crayfish is a good example. In fact, several fluke genera, one e.g., Crepidostomum cornutum, parasitize crayfishes (Stafford, 1931).

THE JOURNAL OF FARAUITCLOGY

DMPARATIVE MORPHOLOGY OF FOUR SPECIES OF ALLOCREADIID RACIDIA (TREMATODA)*

Fis E. Peters and Richard P. Lablonte

fritern Michigan University. Marquette
priser. Miractifa of Vherrivalium lobatum Wallin, 1909, A. motenicum Peter, 1057, Bunodenm boparae (O, F Mweller. 1776), and Bunoderina veteculata (Van Cleave and Mueller, 1939) Yamsi. 1953 have ciltated cpulemal will in four tier (6, 6. 4, and 2 cells per tier in anterior to proterion asence), with some varations in number per tier in the last two species. Differences among specin fuble the number of apical gland openings and number and arrangement of exphalir aland pores pm four are compared with related species:

Allocreadium 1etaluri Pearse, 1924

Syn. A-hall1 Mueller \& VanCleave, 1932
Final hosts: Ictalurus punctatus, catf1sh

I. furcatus Ame1urus nebulosus

Eggs hatch after 10 days in water
Molluscan host: Pleurocera acuta, a tall pointed snail Ophthalmocercaruae develop in rediae
Second Intermediate host: various unionid bivalves
Reference: Seltner, 1951. Jour.Parasit., 37(3):223-244

(over)

Allooreadium 1ctaluri (oontinued)

1965 J.P 51: 579-582

Abstract

\section*{HE LIFE CYCLE OF BUNODERELLA METTERI (ALLOCREADIIDAE: UNODERINAE), A TREMATODE PARASITE OF ASCAPHUS TRUEI}

Prin A. Anderson,* Stewart C. Schell,t and Ivan Pratt \ddagger

Sruact: The life cycle of Bunodervilla metteri Schell. 1364, an intestinal parasite of the Lailed to. caphus truei Steineger in the Pacific Vorthwest, is described. Egks are unembrounated when ta Pracidia do not hatch in water. Ophthalmoxiphidiocercariae develop in rediae in the fingernail da vae of the family Chironumidae verve as hosts for the encysted metacercariase. Immature sprome B. metteri were rech B. metter were recovered from the intestine of experimentally infected, laboratory-trated Hanu oun Ird and Girard, and Ascaphus truei

FIG. I

FIG 3

FIG. 2

Ficunes 1-5. Bunoderella metteri. 1. EgR with developing miracedium. 12 days. 2. Egg miracidium, 37 day, 3. Redia and ewrearial stages, Cercaria Flame crells indicated on left side of

The only known bunoderid life cycke is that Bunodera luciopercar (Muller, 1778) Lahe. 09, an intestinal parasite of freshwater fishes. ported by Wimiewak (1958), In Earope -. cercariae develop in rediar in the fresbtere clams Sphaerium comrum timin. ands. ikola Lamarck, and encyst un wirral apecies Cladocera and Copepocta. Fibhes become fected by ingesting the inferted cruatacreass. is paper presents the life cosle of an addinal species
Bunoderella metteri Schrill. 1904, is an intecel parasite of thw tailed frog. Acrophus truei efineger, in the Pacifie Northwort. Studics its life cycle werr undertakn concurrently Idaho and Oregus

MATERIALS AND MITHODS

Adula of Amephue inuil arre conlereted at nither 5 cold momitain strum in monthem thatio. Stern Orveon, and ratrom Walingion. The 0 remained alver ming ured when kTr in Tier at to to so F . The water was changed acer Phay and uond as a wone of parailic cere th hod paund in the fern of the hat Eave iot
 peter dahen on moide fibtro puprt, LTal tuen the paraite arro tudiod thive Vital dyos (eve. 4 red and Nite blow ulphatr) were uned to obFon suand and fame corls of the crizarioc. Nat: Wiby infeted fint uterm ditate hats, Puetiem Homue Ropet urre colleted from the unm blition The clame aere lopt alive for may ada in dithe containing cold strexm water rod divet 0.5 inch droyme wertatmen wisuirmen are in microns unless otierrefor sumlicaterd.

Mirecidivm
 (Figs 1, 2

The eges of Bunoderella metteri, 45 to long by 30 to 37 wible, are utrombrowal. when prosed in the fexs of the defurtive b(Schell, 1964). In the laboratiory mitasmi developed only in thowe vgos that wete kry
on moist filter paper at room temperation Thirty-five to 37 days were required for ds velopment of the miracidium The egks + B. metteri are normally amber and contau opaque particles which are pushed to one sill as the miracidia develop (Fig. 1). By the tim: a fully developed miracidium appears the she is translucent, and the miracidium and opaq! particles are easily observed. The miracidin (Fig. 2), 31 to 32 long by 20 to 21 wid. contains one pair of flame cells, a sac-like is
and four or five faintly visible germ cells, cil cover the body. Embryonated eggs did in hatch in water. Unsucxessful attempts made to infect young specimens of Pisidine idahoense by allowing them to ingert embn. nated egss:

Relie
 (Fig. 3)

The redial stage was observed ondy in an: urally infected clams. Of 198 clams examine
in Oregon, rediae were found in 21 or 10.7 ; The percentage of clams infected in Idaho an. Washington areas was less than 1%. The gran est number of rediae found in ans one , ia was 18. Younger rediae, in which cerean embryos are forming, contain a weakls it veloped pharsis but sue gent. In mature palt 4 esophagus each about fwice the length the pharynx. Bifurcation of the gut occurs lway between the pharynx and the acetabm; the evea, about threw times the length the pharynx, terminating at the level of the tabular cavity:
our pairs of penetration glands are present: anterior pair draining through separate ets passing median to other gland ducts. arate eystogenous glands were not obyed. The stylet, 17 long, has well-developed fulders at the base of a dorsalh curving fae. Pigmented eyespots are 6 to 8 in diam-
7. Genital anlagen are dorsal to the wentral
ker. The excretory system consists of an agate excretory veside with thick, cellular Alls, a pair of main collecting ducts poining 3 anterior end of the vesicle, anterior and sterior collecting tubules, and 28 pairs of me cells; flame cells are lacking in the tail the laboratory cercariae emerge from clams inly about midday, and tend to attach bo ventral sucker to any wolid surface

Metacercaria

(Fig 5
The cercariae penetrate and encyst in the mocoel of several kinds of aquate insects. tural infections were found in 80° \% of the larvae and pupae of the caddisfly, Rhyaroila grandis Banks, collected at the site of efrog and clam colones in Oregon. The eatest number of eysts found was 35, the gerage number 9.3. In Idaho and Washinga, dipterous larvae of the famil Chironom-
se were also fonnd infected with metacerriae. Mayfly memphs Heptagena spp. I d the chironomid lanae were infected exrimentally in the laborator In the mavfly mphs the mefacercariae failed to undergo bsequent development.
Fifteen metacercarial cists remowed from sturally infeeted Rhyacophila grandis averged 518 (253 to 738) in dhameter. The evst embrane is thin and dear Ten exovated etacercariae (Fig 5) measured 1.270 mm 0.707 to 2.216 mm long by 0.25 : mm 0.239 to 0.490 mm) wide, and the dameter F the oral sucker was 134193 ta 1911 Twn hort oral papillae propect laterall from the Fral suckes. The prepharom is short, and ther
early spherical pharyix is liecated at the pernPrior margin of the coral sucker The evepherers extenck to a point miduay between the oral sncker and the acetabulum, and the cxca extend from this point to the posterior end of the body. An elongate excretony vesicle, extending to the mid-body region, is filled with refractile granules. Conadal anlagen are evrdent in mature metacercariae.

Fourteen metacercariae were ted to young
and six voung flukes were recovered from the small intestine after 3 days. Metacercariae were also fed to adult Ascophus truei that had been imfed and kept in a cold room for 2 months. When examined at the end of 13 days. voung flukes, lacking eggs, were recovered

Of 160 adult Ascaphus examined in Oregon. 669 9; were infected with B. metteri. I to 23 trematodes being found per frog. The infections ranged from 50.0 \% 122 frogs examined ii) Juwe to $8: 3 \%$ (32 frogs examined) in August In specimens of Ascaphus collected in Idahe and Washington, the infections varied from 20 to 35° in different collections.

DISCUSSION

The life cveles of Bunoderella metteri and Bunodera lueiopercae are similar in that sphasriid clams serve as the first intermediate host Although the- eertariae of both species arr ophthalmoxiphidial there is a marked differenee in the number of flame cells. Wisniewsh, (195h) illustrates a ertaria of Bunodern luciopmerace with 36 flame cells arranged ac sording tis a formula of $2(3+3+3)+$ $(3+3+3)$ The evearia of Bunoderrllic metteri contams 56 flame cells. This is ber lieved to be the full number, beit the flame exll formula cruid out be determined because collesting tubules wete not obsened The or caria of Bunuderella metteri contains une morm pair of smaller perectration glands than fluno dera luciopercae, which drain through separats ducts Wisniewski did not mention or illustrate the miracidum of Bunodera heciopercue In both species the metacercariac, and in miten tases the wor voung specimens in the defer itiov hest, retain at lrast a remmant of thpigmented nespors
the pharymx is completely degenerated Such rediac are colorless, transparent, thin-walled sacs, containing up to 38 well-formed cercariae plus some cercarial embryos and germinal cells. Cercariae escape through an opening in one end of the redia (Fig. 3). The largest rediae attain a length of over 2 mm .

Cercaria

(Fig. 4)
The cercaria is ophthalmoxiphodial (Fig 4). The uonspinous budy is 340 to $4+0$ lene to 120 to 170 wide at the level of the venf? sucker. The coutractile tail, usually drawn against the ventral bocly, wall, is nearly eq to the body length when extended. Oral ventral suckers are round, of equal size, from 52 to 56 in diameter. Prominernt adhe papillae are attached to the margun of acrtabulum and are drawn m and out of acetabular cavity with the movements of margin: papillae are lackng on the aral suck The pharonx is 21 lone bo 20 wide: prephars

Allocreadildae

Orepidostomum cornutum (Osborn,1903)
Final hosts: Ambloplites rupsetris, M1cropterus salmo1des.
Molluscan host: a bivalve, Sphaerium striatinum rediae on g111s daughter rediae in hepatopancreas cercaria a simple-tailed xiphidiocercaria

Cheng \& James (1960) noted the morphogenesis of the tall was like that in Opisthorchio1o1de and Heminroidea
 79(1):75-85.

GERM CEILL CYCLE OF CREPIDOSTOMCM

 cornutum (Osborn, 1903)This study is primarily concerned with the development of the cercariae. Although the genesis of the cercarial stage in the Digenea supposedly follows the pattern of miracidial differentiation (see Rees, 1940) and this has been adequately reviewed by Hyman (1041), the demonstration of the developmental stages, espeetally the morphogenetic stages, has been negligible in the literature.


```
From Cheng \& James, Plate Trans. Amer. Micros. Soc. 79(1)
```


Crepidostomum cooper1 Hopkins, 1931 from Hopkins, 1934 1. metacercaria. 2. adult, 3.adult contracted. 4, miracidium in egg. 5. young redia 6. mature redia with cercariae. 7 cercaria (a.stylet) 8. stylets of (a.) C, cooper1 (b) Megalogonia ictaluri.

Aporocotylidae of Flshes: Life Cycles

Aporocotylid cercaria
Cercaria looss1
Host: Locality Authors
Eupotamus dianthus WoodsHole
Linton, 1915 (an annelid)

Mart1n,1944, 1952
O. hartmanae

Lanicides vayssiere1 Ross Island, Martin, 1952 (an annelid)

0
C. amphictus

Amphictus gunneri floridus
Oglesby, 1961 (an annelid)

Florida
C.solemyae $\frac{\text { Solemya velum }}{(\mathrm{a} c \mathrm{lam})}$ Woods Hole Martin, 1944
unnamed
Aequipecten Irradians Linton,1915
C. asymmetrica

Donax var1ab111s Flor1da Holliman, 1961 (clam)

Chione cancellata Florida
Holl1man, 1961
C.oristulata (clam)

Eggs hatch in capillaries of gills in a blood fluke of trout (Wales, 1958)

From Holliman (1961:10)
The cercarlae of the family Aporocotylidae have the following diagnosis:

Apharyngeate, non-ocellate, brevifurcate cercarlae developing in marine lamellibranchs and annelids. The tail $1 s$ variously modified with symmetrical or asymmetrical furcae, no furcae, or reduced to a small pointed structure. Finfold present or absent on the dordal W赖单 body surface and on furcae. Cephalic organ reduced or lacking; penetration gland ducts discharge through pores on spinous anterior end of body. Acetabulum absent except in C.hartmanae Martin, 1952. Cercariae penetrate the def1nitive host and develop to adult worms in the blood vascular system or rarely in the coelom of fishes.

From Holliman, 1961

Life cycle of Cotylogaster occidentalis Nickerson, 1902. Adult flukes, with viable eggs in the uterus, are recovered from Goniobasis snails. It is to be concluded that the snails are normal hosts; that the trematode is not dependent on a vertebrate host.

Fish, formerly reported as the final host, were found occasionally with the fluke, but in each case evidence was present that the fish had fed upon Goniobasis snails.
This supports the contention that Aspidogastrèa is a valid subclass of Trematod.
E. Eugene Dickerman, 1948. J. Parasit. 34(2):

From Hendrix and Short, 1972 Anstiact: The sevually immature postlarva, or iuvenile stage, of Lophotaspis interiora Ward and Hopkins, 1931, is dessribed from the pericardial cavity and kidney of pelecypod mollusks in the family Unionidac, taken from Northwest Florida rivers. It is characterized by having 52 to 65 alveoli (mean of 58) in the ventral holdfast, 2 excretory bladders and pores in the smaller juveniles, and formed hut nonfunctional reproductive systems. This is the second species reported in the genus with an immature stage in mollusks and adults in turtles.

Description of juvenile

(Figs. 1-4)
Body elongate, shaped like adult (Fig. 4), length 3.105 mm (2.092 to 4.081). Ventral holdfast large, elongate, length 2.494 mm (1.690 to 3.196), width 8.3 (695 to 958); divided into 4 rows of alvenli, 2 peripheral, 2 medial; number of peripheral alveoli 32 (29 to 35); number of medial alveoli 26 (23 to 30); total number of alveoli in 9 worms 58 (52 to 65). Marginal organs in peripheral rim between all but the 2 most pusterior alveoli; extensible papillae (Fig. 1) present at the junction between each group of 3 alveoli, number of papillae 81 (72 to 93). Tegument aspinous. Eyespots absent.

Mouth subterminal. opening through oral cone 272 (153 to 123) in dianeter; prepharynx absent; phargur ovoid, length 289 (234 to 345), width 264 (180 to 348); esophagus short, length 165 (120) to 246), width 141 (69 to 219); intestine simple, saceate, length 1.63 .4 mm (0.960 to 2.031), width 285 (210 to -405).

Exeretory pores double in smaller juveniles, median, posterodorsal with excretory bladders separate, bladders joined in larger juveniles and discharging throngh a single pore, bladder length

Figure 1. The juvenile of Lophotaspis interiora. Portion of ventral holdfast of an unstained whole mount with papillae extended. 87 (66 to 135), width 61 (39 to 129) (5 pairs of bladders measured); excretory system stenostomate, ciliation lacking in the main ascending ducts.
Horizontal septum (Fig. 2) present, beginning at level of pharynx and extending posteriorly, ventral to intestine, to anterior margin of ovary where it joins ventral wall of intestine. Testis, ovary, Mehlis' gland, and vitelline reservoir posterior and ventral to septum. Vas deferens and uterus mostly dorsal to it.

Testis single, ovoid, median to sinistral in posterior third of body, length 172 (105 to 275), width 154 (75 to 225). Two vasa efferentia extunding anteriorly from testis, one dorsal, the other vohtral to right vitelline duct and uterus, uniting at level of ootype. Vas deferens narrow, entering cirrus sac within which it enlarges to form an internal seminal vesicle. Cirrus sac at level of anterior half of pharynx, containing ridimentary prostate cells. Cirrus absent. Uterus and ejacula-
tory duets uniting before discharging through a single genital pore which is midventral and anterior to pharynx.

Ovary more or less oloid, dongate, and bent upon itself anteriorly. destral, anterior to testis, lensth 99 (57 to 160), width 62 (42 to 90). Oviduct passing posteriorly from near anteriot end of wary, with internal ridges. Ootype and Mehlis' gland present but not well developed. Seminal receptacle alsent. Laurer's canal present. extaiding from oviduct postendarsally to open on left dobsolateral surface. Uterus procreding tramsionely from motype to near tistis, then anteriorls to genital pore; metraterm alsent. Eggs ahsent. Vitelline follichs poorly developed, in 2 lateral bands generally in middle third of bady. Vitelline reservoir small, anterouredial to testis. Common sitelline duct entering oviduct just proximal to ootype.
Hosts (see also Table 1): Elliptio craviden (Lam.), E. strigorus (Lea), Fusconala sucrizo (Lea), Lampsilis hediana (Lea), Licumia nuh ungetlata (L-a), and Pleurobema strodeanum (i) H. Wrivit),

Location in host: Pencardial cavity and kidoes
Localitiex: Escambia Rose it Molion and
 at State Highazay 20, Calhoun Coot and at M: : 70, Jackson Co . all in Flurida.
Deparited yereimens: t'sNM Helm, Coll. N $\$ 3086$.

CYSTOPHOROUS CERCARIAE

W1lley (1930) says "characterised by possession of a vesioular tail with various appendages appendseges upon it."

Horsfall (1934) says the term "eystocercous" was first used to indicate cercariae in which the tail enveloped the young distome. It ineluded three types of cercariae: "cystophorous", macrocercous, and "mirabilis" as each was named after the first species of its group to be correctly classified. Horsfall limited the term to the "mirabilis" group which evidently develop into adults of the family Azygildae. She recognizes nine species as valid. Cercaria m1rab1118 Braun, 1891 is the larva of Azyg1a luci1 Mulier, (see Szidat, 1932) Cercaria macrostoma Faust, 1918 is the larva of Proterometra macrostoma (Faust, 1918) Horsfall, 1933 (see Horsfall,1934).

Horsfall recognizes the following valid species of the mirabills group:

1. ㄷ.macrostoma Faust, 1918
sy nonyms: C. fusca Pratt, 1919
Cercaria of Cahn, 1927
C. melanophora Sm1th,1932
2. C.hodgesiana Smith, 1932
3. C. .stephanocauda Faust, 1921
4. C C. Wright11 Ward, 1916
5. C C. M1rabilis Braun, 1891
6. C C. splendens Szidat, 1932
7. टे. anchoro1des Ward, 1916
8. ट. brookover ${ }^{1}$ Faust, 1918
9. C. pekinensis Faust, 1921 Cercarla X of D1ckerman, 1931

These probably are all larvae of Azygildae. Horsfall points out that C.stephanocauda suggest Leuceruthrus mioropteri. She thinks, too that \underline{C}.anchoroldes and \underline{C}.brookover 1 are larvae of the genus Azygia.

Cystocercous cercarlae of Lïhe

The term cystocercous was used by Lühe to refer to any cercaria capable of drawing its body into the base of its very large tail. Cercaria macrocerca F1l1pp1, 1854 was the first to be known. Such cercariae have always been termed macrocercous cercariae. It is now known that theee types of trematodes are represented here. These have been termed:
A. Cystophorous cercarlae
B. Cystocercous cercariae
C. Gorgoderine cercariae

This grouping is accepted by Miller, 1936.
Cystophorous cercariae usually develop in rediae (exception: C. vaullegeardil); lack stylets, and cystogehous and cephalic glands. There is a central vesicle in the tail into which the body can be withdrawn. 15 species up to 1936 , ilsted by Miller (1936). Hemiuridae

> Tail with a pair of flat furcae.

Cystocercous cercariae : anchor-talled cercarlae, Y-shaped excretopy vesicle, with large, wide tail into which the body may be partially or completely withdrawn, developing in sporocysts. The first was named C. mirabilis Faust Braun, 1891. M1ler (2936) 11sts 11 species. Azyqiidae

Gorgoderine cercariae: tall not forked; stylet lwerting; develop in sporocysts in bivalves. To 1936, 7 species. See M1ller, 1936 Gurqaderidae

Azygildae

Proterometra macrostoma Horsfall, 1933

Final hosts: Pomoxis sparoides, orappie; Helioperca incisor,
blue gills; Eupomotis gibbosus, sunfish. In esophagus. Snail host: Goniobasis Invescens correcta

Cercarlae cystocercous of the Mirablils group.
These large yellow cercariae are eaten by the fish. Reference: Dickerman, 1934. Trans.Amer. Moros.Soc., 53:8-21.

Proterometra sagittaria Dickerman, 1946

Final hosts: freshwater fishes, family Centrachidae. experimentally in Eupomotis Eibbosus

Intermediate hosts: Gonlobasis and Pleurocerca Cystocercous cercarlae, Cercarla sagittaria, develop in rediae.

Reference: D1ckerman $\begin{aligned} & \text { Trans: Amer. } 1946 \\ & 65(1): 37-44 . \text { (vos. }\end{aligned}$

ptyson1mus megastoma (Rud.)

Final hosts: many selachians
First intermediate host: Scaphopod molluscs, Dentalium vulgare, D.alternans

Second $1 \frac{1}{\text { at }} \frac{\text { ermediate }}{}$ host: marine orabs, 28 species.
Unusual features: sporocysts leave molluscs and are eaten by orabs. Metacecanià are not enoysted.
rivista id Parasshologia - Vol, Vi.
Tav. I

A. Palnuri - Cimin mininit Pychogonimus megastoma ($R_{u} d$.)

LOOSE LEAF ORGANIZER

SCHEDULE

BIVESICULA CARIBBENSIS SP. N. (TREMATODA:DIGENEA) AND ITS LIFE HISTORY*

R. M. Cable and F. M. Nahbas

Department of Biological Sciences, Purdue University, Lafayette, Indiana, and Caraibisch Marien-Biologisch Instituut, Curacao, N. A.

ABSthact

Bivestcula caribbensis sp, n. occuns in the pyloric ceca of the squirrel-fish, Myripriatis facobus, in Curaçao and Jamaica. The adult is described and a key to the spectes of Bivesicula is given. Ecological data and limited experimental evidence indicate that the cercaria of B. caribbensis is a previously undescribed larva which develops in Cerithium literatum and matures directly when eaten by the definitive host.

1862

SEE DESCRIPTIDA OF ERECILS

Hw. Manter

Made in United States of America Heprinted from Thes Jounsal or Pabisiforaoy Vol. 48, No. 4, August, 1962 pp. 536-538

biVESICULA CARIbBENSIS SP, N. (TREMATODA:DIGENEA) AND ITS LIFE HISTORY*

R. M. Cable and F. M. Namus
Department of Biological Sciences, Purdue University, Lafayette, Indiana, and Caraibisch Marien-Biologisch Instituut, Cirnçan, N. A.

Abstract

absthact Bivesicula caribbensis sp. n. occurs in the pyloric ceca of the squirrel-fish, Myrigristis jacobus, in Curaçao and Jamaica. The adult is described and a key to the species of Bivesicula is given. Ecological data and limited experimental evidence indicate that the cercaria of B. caribbensis is a previously undescribed larva which develops in Cerithium literatum and matures directly when eaten by the definitive host.

In February, 1961, a new species of Bivestcula was found in the squirrel-fish, Myripristis jacobus, collected along the south coast of Curaçao. Although nearly all M. jacobus examined were infected, young specimens harbored more worms, including many immature ones of various sizes, than did large fish, which yielded mostly mature parasites. In June, the species was recovered also from two of three large M. jacobus collected in Jamaica. Siddiqi and Cable (1960) found no trematodes in one specimen of M. jacobus in Puerto Rico where, like Jamaica, that squirrel-fish is much less common than another species, Holocentrus ascensionis. The reverse was found in Curaçao where M. jacobus is the more abundant form.

Evidence bearing on the life history

There is convincing evidence as to the identity of the cercaria, although well-controlled experimental demonstration of the life history was not feasible. On two occasions, the smail, Cerithium literatum, was found aggregating in large numbers on sandy bottom in water 2 to 3 meters deep at St. Michiel's Baai, Curaçao. Small Myripristis jacobus were abundant among nearby coral heads and vegetation. Both snails and fish were collected and found to harbor respectively a single species of bivesiculid cercaria and adult. Moreover, no other bivesiculid, larval or mature, was found in a large number and variety of other mollusks and fishes in Curaçao, including the abundant silverside, Hepsetia stipes, which harbors Bivesicula hepsetiae in Florida and Puerto Rico.

The cercarial type in the family Bivesiculidae

[^0]was first reeogrized by Le Zotte (1954) and, although he did not demonstrate the life cyele experimentally, he presented evidence that it is completed direetly when the cercaria, often targe and with conspicuous pigmentation and swimming movements, attracts the afterition of a fish which ingests the larva. We ohtained additional evidence in one fecding experimest, utilizing a school of small Myriprisfis jacotus of uniform size. The fish were held in a tank for 1 week. Then seven were placel in a closed acquarium with a filter and aerator and the remaining ones were left in the first tank. as controls. The experimental fish quickly ate all of several hundred cerrariae placed in their aquarium and thereafter were fed brine shrimp but began to die on the second day whicn unfavorable conditions developed in the agrarium. All contained many small immature worms of uniform size in addition to larger ones from previous natural infections whercas the control fish yielded only larger wormu These results and the ecological evidet cu gmon above indicate that the cercaria in question is the larva of the adult bivesiculid naturally infecting M. jacobus,

The adult and cercaria are described bela.. All measurements are in millimeters. Adrits were measured as whole mounts of specimess killed under light cover glass preswure in cornsive sublimate-acetic acid and stained with Semichon's carmine. Measurements of cchariae are from larvae that emerged sponta. neously and were killed in hot sea water eith after the body retracted into the caudal vericle and it became fully inflated, or before thas occurred in order to measure the free cercumal body. Further studies have confirmed Le Zotte's (1954) observation that the structure usually described as the oral sucker in biveiculids is actually a pharynx and that what has

Figure 1. Adult Bieesicula caribhensis sp. n. Holotype, ventral view. CI, cirrus; CS, cirms sac; ES, esophagus; EV, external seminal vesicle; EX, excrotory vesides; GP, genital pore IN, intestinal cecum; IV, internal seminal vesicle; MG, Mehlis' gland OV, ovary; PH, pharym; PP, pars promatioa, PR, prostate cells; TE, testis; VE, vestibule; VI, vitellana; VR, vitelline reservoir.
Figune 2. Cercaria, entire, drawn from heat-killed specimen. BC, body capoules CB, cercarial body; CV, caudal vesicle.
been described as a rudimentary pharynx is part of the muscular esophagus.

Bivesicula caribbensi- sp.-n.

> ADULT
> (Fig. 1)

Diagnosis: With characters of the genus Bivesicula. Body pyriform to oval with bluntly pointed ends. Entire cuticle with extremely fine spines in rows giving edge of body a faintly annulated appearance. Ovigerous specimens 0.654 to 1.020 long, 0.560 to 0.820 wide. Suckers absent, a short vestibule leading directly into pharynx 0.066 to 0.073 long, 0.067 to 0.080 wide. Esophagus 0.060 to 0.137 long, widening posteriorly, without obvious localized thickening of musculature; intestinal bifurcation immediately anterior to cirrus sac, ceca terminate near midlevel of body. Cirrus sac ovoid, 0.20 to 0.285 long, 0.140 to 0.227 wide, median, directed posteriorly toward median, subequatorial genital pore. Testis single, entire, ovoid to somewhat irregular, 0.20 to 0.30 long, 0.160 to 0.293 wide, on left at beginning of posterior half of
body or slightly anterior to that level; with two vas efferentia which expand anteriorly, uniting to form crescentic extemal seminal vesicle donal to anterior part of cirrus sac From etternal veicley i short duct enters cirnus sao to joits intarnal seminal vesicle connecting with voluminours, pouched pars prostatica, followed ly a short cirrus; remainder of cirnus sac filled with numerours prostate cells. Ovary on right, at about lenes of genital pore, 0.093 to 0.127 by 0.08 to 0.107 , usually with one lateral indentation but ocesthatally with more. Vitelline follicles in lateral fields from esophagral level to or slightly beyond ends of ceera extending into intercecal space and confluent dormil to intestinal bifurcation and cirrus sac; vifellitie receptacle immediately pocterodorsa! to ctirus bec: True seminal receptacle absent; sperms stored in beginning of uterus which extends posteriorly to right of testis, filling post-testicular space between exeretory vesicles, then anteriorly to median sider of ovary, crosses to left and turns anterior to tectis to join genital atrium. Large specimens contain up to 50 eggs measuring 0.067 to 0.075 by 0.040 to 0.046 when not collapsed. Excretory vevicles 2 .

(b) Egg and miracidium

One of the most arriving features of thin spheres is the provence in the uterus, partieuhrty the distal half. of large ages containing fully developed miracidia, the Inge eyeppets of which arm in conspionous feature of the living worm.

Fee laid by adult norm in in sea water bath within a few minutes, and the miracidin which otitis whim about intively for some hours.

The examination of a mall number of living miracidis revealed the following features. The elevate body is covered, except at the anterior end, by uniformly ciliated epidermal plates in four tiers. The apical gland extends from the anterior end (animal papilla) to the broom, mat contains four inter posteriorly. Therm is a pair of conspicuous lateral papillae between tho plates of the first and second tins, and two pair of papillose, ane dorsal and one ventral, anteriorly between the plates of the first tie. There is a single pair of flame-cells. The two large eyespots save fused
Theme sketchy observations supplement tho en of Le Rote (1954) on the miraeidrum of Bivesicula hrpetione, the only other bivesoulid miracidium described, and thmport the view that the family Biverieulda turtongs in the order Stripuatoridea.
(c) Bedim

The mother mparooyst was not observed, bum as only advanced infections wore found (by isolating mails for the enueremoe of cercurnan), it may be that thetemtther sporocyst hat dianppeaned earlier.

I would suggest that the absenoe of the metaceroarial stagn in the life-cyele of tine above groups is primitive, as borne out by the advanoed develepment of the reproduative system in the comarine it Trunswermatrema, Aygia, Proterometra and Paucivilellasus, and that the lifo-eycele repmecnta an aarlier stago than is found in the typical (commoner) two-host life-cycle as seen in fasefolids and parimphistomes.

SHMPIAKX

Panciviellosugfragilis isredescribed from thebleuny, Balarias melengris, found on beach-rock intertidally at Heron Lland, (irnat Barrier Reef, The aduit was olso fourd in the mullet, Mrugt of phatura and Emrnimugit creniabis at Herou Island, and Lizd argenten at Brisbane.
Paucivitellonts differs from Binosicula, Bivasiculoides and Treptodemus in having: (i) the vitellaria reduced to a single folliclo on each sido, (ii) two primary loops in the uterus, (iii) fuliy embryonated emen in the iemenal coils of the uterns, and (iv) the cirrus pourh onientated doma-ventrally. The dappoosin of the family Bivesiontidae is emondorl.
The mollascan host at Herun Lsladd in Cevithium penthuarnus, if whinh cecoarise develop in 'fork-taitid' redia.
The eerconia is fureocyntecercons and differs from known bivenculid cercarine in having a protrusible glandular fald, within the mouth of the finvaginatod candnal chamber, by whioh the ceroaria attachras to objeole.

Evidenes is premented for the viow that the llieveyole in a tho ham ane, that there is no metacornarial atage and that the cervana is itgested ly browaing.

Egg and Miracidium (Fig. 25)

In B, hepsetiae the eggs are large ($0.075-0.080$ by $0.045-0.050$ in living material), operculate, and few in number; the shell is smooth and thin. When eggs were teased from the worm and placed in standing sea water at room temperature, development occurred normally in some of them. The eyespot of the miracidium appeared on the 6th to 7th day as a pair of well-separated pigment cups which with further development moved together to form a united structure. About two weeks are required for the miracidium to become fully developed. The larva has distinct epidermal plates bearing long cilia and resembles the miracidia of Clinostomum and strigeoids more than those of azygiids. The structure of the miracidium indicates that it normally hatches and penetrates the molluscan host. However, all attempts to induce hatching were unsuccessful. After reaching full development and exhibiting much motility, the miracidia died and disintegrated. Thus what is known of miracidial structure was observed through the egg shell. No flame cells could be
observed. observed.

Le Tote (1954)

The Redia (Figs. 20, 21, 27, 29, 30)

All species of bivesiculid cercariae described below develop in rediae in the brachial region of the snail host. The redia has a cleft posterior extremity and transverse muscle bands which are prominent in the contracted state. Under the lower powers of a dissecting microscope, young redia (Fig. 20) are easily confused with cercarial embryos when the infected snail is cracked.

A golden-brown pigment is discernible throughout the entire body of the redia. The gut is usually filled with a darker brown pigment. The older redia of Cercaria caribbea XLV measures 0.441 to 0.688 in length and 0.125 to 0.213 in width. The pharynx is almost spherical, measuring 0.025 to 0.033 in diameter. The gut is short, 0.092 to 0.134 long. Longitudinal sections show what probably is a birth pore slightly posterior to the pharynx. A discrete mass of germinal cells is present; in all rediae observed it was attached to the median wall of one of the posterior lobes and close to their confluence so that the mass is to one side of the mid-line of the redia (Fig. 30).

The excretory pattern was determined for the redia of Cercaria caribbea XLV (Fig. 21). The pores are at the tips of the posterior lobes and from each pore an excretory canal extends anteriorly, receiving an anterior and a posterior collecting tubule. The anterior collecting tubule is joined by capillaries of two groups of flame cells of which four were observed in the anterior group and three in the secord. The posterior collecting tubule receives capillaries from three groups of flame cells, the two more anterior of which also are in three's, while the posterior group contains four flame cells. In groups containing four flame cells, the common tubule divides and both of the resulting tubules divide again to form four capillaries. In groups containing three flame cells, the common tubule divides but only one of the resulting tubules divides again to form capillaries, the other serving a single flame cell. The excretory formula for this redia accordingly is $2[(4+3)+(3+3+4)]=$ 34 flame cells, a pattern which is very similar to that of the cercaria, as described below.

miracidium ben egg
2 woe developponent

Young redia
showingelefr postwar antremity
cercevial embupes.

Cercariae

Bivesiculid cercariae evidently escape from the redia and complete their development in the tissues of the snail. All the six species here reported have many features in common. Thus, repetition may be avoided by first giving a:

General diagnosis: Furcocystocercous cercariae developing in rediae in the branchial region of marine prosobranch snails. Photopositive, swimming tail first and resting intermittently. Tail often characteristically pigmented, with vacuolated parenchyma, and divided into a vesicle into which the body is withdrawn, a stem sharply set off from the vesicle, and a pair of furcae; tail stem and furcae laterally compressed. The vesicle has powerful circular muscles and is concave posteriorly to receive the base of the tail stem. In fully developed cercariae, the body is enclosed in a spherical muscular capsule which has radial fibers and does not occupy all of the caudal vesicle. When containing the body, the capsule is distended and thin but is much smaller and thick-walled when empty (Figs. 3, 14). The body when free is rounded anteriorly and attenuated posteriorly. It is covered with minute spines and body pigment is limited to a pair of conspicuous eyespots. Oral and ventral suckers are lacking, there being a well-developed pharynx, heretofore interpreted as an oral sucker, and anterior to it a short but distinct vestibule. Esophagus muscular; intestine triclad with long ceca extending to near the posterior end of the body. Numerous cephalic glands are situated near the intestinal bifurcation and have ducts opening into the vestibule (Fig. 9). Cystogenous glands lacking.

The genital primordium is median, intercecal, in the posterior fourth of the body and sometimes shows indication of dissociation to form the gonads and their ducts.

The right and left halves of the excretory system remain separate throughout development. The pair of embryonic excretory tubules extend through the tail to diverge and open at the tips of the furcae. Consequently the body contains two separate thin-walled excretory vesicles each with its own sphincter (Figs. 8, 31). The excretory vesicles usually are filled with spherical concretions. From the anterior end of each vesicle, a ciliated recurrent tubule extends posteriorly, passing first medially and then dorsal to the vesicle to receive at about mid-body level an anterior and a posterior collecting tubule. The anterior tubule receives capillaries from two groups of flame cells while the posterior is joined by three flame cell groups, the last of which is in the tail. Each flame cell group has dichotomous branching of the capillaries so that the caudal vesicle receives one-half of the poste-rior-most flame cell group and the proximal region of the tail stem the other half. Empirically, the excretory formula is $2[(\mathrm{n}+\mathrm{n})+(\mathrm{n}+\mathrm{n}+\mathrm{n})]=10 \mathrm{n}$ flame cells.

The embryology of the excretory system (Figs. 15-19) was traced to the extent of observing the major changes during development. In the young embryo each primary tubule extends anteriorly and expands as a small ciliated chamber from which a tubule loops posteriorly and divides into capillaries with a pair of flame cells. Then as the embryo elongates the first suggestion of the anterior-posterior asymmetry of the system appears when a flame cell is added to the posterior tubule on each side. By the time primordia of the eyespots and the tail region of the embryo are evident, each of the ultimate five groups of flame cells is represented by a single flame cell and with further development these cells become paired so that there are 10 flame cells on each side, the posterior pair being in the developing tail. Finally, the number is doubled to give the complete pattern of the emerging cercaria.

Cercaria caribbea XLIII

(Fig. 1)
Specific diagnosis; Species of moderate size with the general characters of the group. Rests occasionally with the body downward and furcae spread. The anterior end of the caudal vesicle with a yellowish pigment which fades posteriorly. Just posterior to the body cavity. Tail stem and furcae an area which appears lighter, is devoid of pigment 0.014 wide. Pharynx 0.028 long and 0.034 wide. Capsule with body in it 0.115 to 0.145 in diameter. Caudal vesicle 0.275 to 0.287 long and 0.281 to 0.308 wide ; tail stem $0.411-0.425$ long measured on lateral surface from the base of furcae to attachment to vesicle and 0.056 in maximum width. Furcae 0.165 long and 0.030 wide in lateral aspect. Excretory vesicle without refractile concretions.

Host: Cerithium variabile.

$$
\begin{aligned}
& \text { Host: Crithium variabile. } \\
& \text { Localities: Mayaguiez (Punta Arenas) and Lajas (Parguera), Puerto Rico. } \\
& \text { ".. believed .. lavva of } \\
& \text { Be Zotte (1954) } \\
& \text { Bivesicula hep setiae, but } \\
& \text { … experimental proof is lacking" } \\
& \text { Le dotte (1954) }
\end{aligned}
$$

lateral view
 ($0.027-0.034$) in maximum width. Royal, Jamaica.

Cercaria caribbea XLIV

Cercaria caribbea XLIV Le Zotre, 1954 (Fig. 9)

Description: with the characteristics of the bivesiculid group. B within caudal capsule $0.113-0.116$ long, $0.109-0.113$ wide; not retrac into tail, $0.258-0.265$ long, 0.108 in maximum width. Caudal ves $0.221-0.242(0.193-0.207)$ long, $0.166-0.200(0.145-0.153)$ wide. 7 stem $0.450-0.462(0.410-0.435)$ long from attachment at vesicle posterior notch between bases of furcae, about 0.10 in maximum heig 0.06 in maximum width. Furcae extend $0.197-0.214$ ($0.214-0.2$ from their lateral confluence with tails tem, about $0.05 \mathrm{high}, 0.020-0$

Host and locality: Cerithium variabile C. B. Adass*; Lagoon, I
Cable (1963)
(Figs. 2, 3)
Specific diagnosis: Species of moderate size with the general characters of the group. Resting position with furcae spread. Caudal vesicle and tail stem with characteristic pigmentation: anterior portion of vesicle with dense longitudinal striae, probably muscles, followed by a region occupied by large cells with a pinkish-yellow to orange pigmentation. The posterior region of the caudal vesicle contains a reticulum of purplish-black pigment and approximately the middle third of the tail stem is characteristically marked by similar pigment. Eyespots 0.010 long and 0.014 wide; cuticula fairly thick. Oral vestibule 0.011 in depth; pharynx 0.022 to 0.025 long and 0.030 to 0.042 wide. Diameter of body retracted in caudal vesicle 0.110 ; detached body 0.275 long and 0.116 wide. Caudal vesicle 0.192 long and 0.144 wide; tail stem $0.48-0.49$ from the attachment to vesicle to base of furcae, $0.080-0.085$ in maximum width, and tapering toward each end. Furcae $0.192-0.233$ long and 0.018 wide in dorsal aspect, $0.034-0.042$ in lateral. Excretory vesicles filled with concretions of various sizes. Host: Cerithium algicola.
Locality: Boquerón Bay, Puerto Rico.
Le Zotte (1954)

Cercaria caribbea XLVI

(Figs. 4, 5)
Specific diagnosis: This is the largest species of the group. It rests with furcae extended (Fig. 5). The caudal vesicle except the anterior protuberance is evenly pigmented a dark red color which is almost black in reflected light. So dense is this pigmentation that it is difficult to see the body capsule. No pigment is discernible in the tail stem.

Tail vesicle 0.384 long and 0.322 wide; tail stem 0.603 to 0.650 in length and 0.130 in width. Furcae $0.377-0.410$ long and 0.103 wide. Detached body 0.355 long and 0.144 in maximum width at a level one-third from the anterior end. Body retracted in caudal capsule 0.178 in diameter. Pharynx 0.032 long and 0.036 wide ; eyespots $0.009-0.011$ long and $0.014-0.015$ wide. Excretory vesicles filled with small refractile concretions.

Host: Cerithium algicola.
Locality: Boquerón Bay, Puerto Rico.

Le Rote (1954)

Cercaria caribbea XLVII

(Figs. 12, 13)
Specific diagnosis: This species is by far the smallest of the group. The caudal vesicle has a bright pink-red pigment and the tail stem a lighter pink coloration. The shape is considerably alright pink-red pigment and the in the heat-killed specimens (cf. Figs. 12 and 13).

Diameter of the body capsule $0.071-0.072$; caudal vesicle 0.178 long and 0.117 wide; length of tail stem 0.210 , width in lateral aspect 0.062 , and 0.041 to 0.047 in dorsal. Furcae $0.085-0.088$ long, 0.028 wide in lateral aspect, and 0.020 in dorsal. Excretory vesicles filled with small refractile concretions.

Host: Cerithium foridanum,
Locality: Gabo Rojo (Sucia Bay), Puerto Rico.

Lo Zothe (1954)

Cercaria caribbea XLVIII

(Figs. 6, 7)
Specific diagnosis: Species of moderate size, tending to congregate at the surface; without noticeable pigment. The shape is not altered appreciably by heat-killing. The caudal vesicle is greatly enlarged, measuring 0.514 in length and 0.288 in maximum width; body capsule slightly longer than wide, measuring 0.142 long and 0.118 wide. Tail stem 0.493 long, 0.118 wide in lateral, and 0.082 wide in dorsal aspect. Furcae 0.220 in length, 0.048 wide in lateral, and 0.023 in dorsal view.

Body attached to tail but not retracted measures 0.350 in length. Pharynx 0.025 long and 0.028 wide; eyespots cup-shaped with a maximum width of 0.010 .

Host: Cerithium algicola.
Locality: Cato Rojo (Salinas Bay), Puerto Rico.

MATERIALS AND METHODS

The usual methods of studying cercariae were used. Care was necessary, however, that data of a descriptive nature be obtained from fully developed larvae because of a tendency to emerge before the body is retracted into the tail or even full size is attained. This was especially true after infected snails were kept in the laboratory for a period of time, because often redia as well as incompletely developed cercariae escaped from them. Prematurely emerging cercariae were weak and did not swim in the normal manner. These larvae may differ to such an extent from the fully developed ones as to make identification difficult. For these reasons freshly emerged, active larvae with bodies retracted into the tail were used for measurements after being killed in near-boiling sea water and transferred to a slide with an excess of water to avoid cover glass pressure. By this method specimens were remarkably uniform in size and sources of error were minimized.

Infected snails were cracked to obtain developmental stages. Both larvae and adults were fixed in corrosive sublimate-acetic acid and stained with either Harris' hematoxylin or Semichon's carmine.

Cercariae described in this paper are given the same designations under which they are to be included by Prof. R. M. Cable in a projected monograph of the marine larval trematodes of Puerto Rico.

LIFE CYCLE OF THE BIVESICULIDAE

The evidence at hand concerning the bivesiculid life cycle is not beyond question; technical difficulties prevented experimental studies of a conclusive nature. In the first place, species in this family are evidently highly specific in respect to their definitive hosts. Although hundreds of fishes representing dozens of species were examined and immature bivesiculids were found repeatedly, only Bivesicula hepsetiae was obtained sexually mature in natural infections. This species was found in the mature state only in Atherinomorus stipes (- Hepsetia stipes), the same host from which Manter (1947) reported B. hepsetiae at Tortugas, Florida.

Although several species of fish were exposed to cercariae, adult worms were not recovered from any of them. This was not surprising because the chances of finding a suitable definitive host by this method were remote indeed. Difficulty was experienced in obtaining A. stipes alive and maintaining it in the laboratory for experiments with the cercaria believed to be the larva of Bivesicula hepsetiae, which occurs naturally in that host.

There is good evidence that the life cycle in the Brvesiculidae, as in the Azygiidae, does not include a second intermediate host. Instead, it seems that the definitive host becomes infected by ingesting the cercaria. The larva is large and an active swimmer; because of these characteristics and its positive reaction to light, hosts of the described species attention of the small fishes which are predominantly there is no indication of cystogenous amily. Although cephalic glands are present, an encysted metacercarial stonous glands and their absence indicates the lack of peatedly in the intestine of fise at least. Finally, the immature worms found rethe cercarial body. These all rectly to maturity in the inl are facts suggesting that the cercariae develop diOn an ecological basis, caria caribbea XLIII is the it is believed that the species described below as Cerdesignated because experimental of Bivesicula hepsetiae, but this cercaria is not so Whether or not the lifental proof is lacking. diate host, there can be no cycle in the Bivesiculidae requires a second intermeof members of that family. The uniqut the cercariae described below are the larvae cretory systems and complete unique situation in respect to the digestive and exleave no room for doubt.

DISCUSSION

When La Rue (1926) proposed the order Strigentoidea, he included in it three major groups : the blood flukes, the strigeids, and the gasterostomes. At that time, fewer life histories were known than at the present and as additional ones were traced it became evident that still other groups belong in the Strigentomen. Thus, have been added the Clinostomatidae by Hunter and Hunter (1934), Azygidae by Szidat (1932), and Brachylaemidae by Allison (1943). More recently, Cable (1953) assigned the Fellodistomatidae to the Strigeatoidea. He traced the life history of a gymnophalline species and concluded that the Granophallinae, instead of belonging to the Heterophyidae or Microphallidae, should be placed in the Fellodistomatidae. His view is supported by observations on several larval fellodistomatids and particularly the life history of Fellodistomum fellis as reported by Chubrik (1952). Thus, as additional life histories have been determined, the scope of the order Staiceatomea has been enlarged far beyond that originally conceived by La Rue. The present study adds still two other groups to the order, namely, the Bivesiculidae and the Transversotrematidae fam. nov., which is characterized below.

Of particular interest to the present study is the family Azyompar because its laryae, like those of the Bivesiculidae, are cystocercous cercariae with a forked tail. It is suggested that the term furcocystocercous be used to distinguish such larvae from other cystocercous forms, such as the cercariae of the Gorcoderidar.

In describing the life history of Hysteromorpha triloba, a strigeid, Lutz (1931) noted the similarity of the cercaria to Cercaria mirabilis Braun and C. anchoroides Ward, both of which are furcocystocercous forms. He, accordingly, postulated an affinity of such cercariae to the strigeids and thus anticipated Szidat's (1932) conclusion that the cystocercous larvae of the Azygidae are basically furcocercous. Wesenberg-Lund (1934), Dickerman (1934), and Hussey (1943) presented further evidence supporting Szidat's view.

In the embryology of the excretory system, bivesiculid cercariae have much in common with the larvae of the cyathocotylids on one hand and those of the azygiids on the other. In complexity, bivesiculid cercariae are intermediate to the larvae of those well-known groups. While the furcae of the bivesiculid cercariae lack flame cells, the excretory sys.em in the tail is much like that described by Hussey (1943) for the larva of Proterometra macrostoma and by Komiya (1941) for Cercaria shanghaiensis. The chief difference between these azygiid larvae and the cercariae of the Bivesiculidae concerns the excretory tubules in the tail; in the Azygidae, the tubules fuse in the tail stem, either along its entire extent or with places where the embryonic tubules remain apart and form loops whereas fusion occurs at no place in the tail stem or body of the Bivesiculidak An interesting aspect of the excretory pattern in the Bivesiculidae is the antero-posterior asymmetry with one more group of flame cells on the posterior collecting tubule than on the anterior, as compared to the symmetrical arrangement observed in most of the strigeid and cyathocotylid larvae.

Although the adults of the Bivesiculidae are similar to the Monorchiode, a careful examination shows that such resemblances are secondary and that the adult bivesiculids as well as their larvae have more in common with the strigeatoids. In several strigeatoid families, the genital pore is at the posterior end of the body and the cirrus sac is inverted, that is, directed posteriorly, as in the Bivestculidae. In that family, however, the absence of a ventral sucker gives no point of reference for the location of the genital pore, which can be described only as being on the ventral side of the body and posterior to the mid-level. The excretory system of both larval and adult bivesiculids is entirely compatible with features of that system in the Strigeatoidea. Furthermore, the few large eggs in the Bivesiculidae are similar to those found in many strigeatoids, and the development of the miracidium, so far as was determined, corresponds to that of the strigeids and schistosomes. The bivesiculids are, however, different from other members of the order in a number of respects, including the presence of an external seminal vesicle, the complete separation of the right and left halves of the excretory system, and the presence of a single testis, which, however, has two vasa efferentia.

Bivesiculid cercariae

For a general diagnosis of the group see Cable (1956). Previously overlooked in these larvae was the fact that in retracting into the caudal vesiole after emerging from the snail, the body turns so that it presents a lateral view when the tail is observed from its dorsal or ventral aspect.

One new bivesiculid cercaria found during this study has been described as the larva of Bivesicula caribbensis by Cable and Nahmas (1962). It was found only in Curaeno where the definitive host is much more common than in Jamaica and I'uerto Rico but the odult was recovered from that host in Jamaica. No other bivesiculid larvae were found in Curaçao where the molluscan hosts, exclusively species of Cerithium, were abundant. Moreover, a large number of hard-head silversides (Hepsetia stipes) examined there contained no Bivesicula hepsetiae a common parasite of that fish in Puerto Rico. The bivesiculids, then, strongly indicate the isolation of certain host populations in waters adjacent to islands of the Caribbean Sea.

In contrast to Curaçao, bivesiculid cercariae were abundant in Jamaica. However, their identity is uncertain because they resemblh species reported from Puerto Rico and yet show differences and variations that are difficult to evaluate. That situation is well illustrated by the first species below; it is much like one in Puerto Rico and is tentatively so identified. It evidently has a pigmented and non-pigmented form but the smail sheds one or the other and not both as in the zygocercous species, Cercaria clausii which, however, is not a bivesiculid larva. The pigmented form is larger in some dimensions than the non-pigmented one, suggesting that the species may be shed as more completely developed larvae by one snail than by another; it is not unusual for immature cercarine and even rediae of the bivesiculids to escape from snails isolated for several days. However, when two infected ones were observed closely for two weeks, one shed large numbers of the non-pigmented form daily before 8:00 A.M. whereas the other snail shed many pigmented cercariae each day at almost exactly 11:00 A.M. Although the hosts received no food during that time, the larvae that escaped from each one were uniform in size, and no cercarial embryos or rediae were observed in the dishes,

In the following deseription, dimensions in parentheses are of nonpigmented larvae when different from the pigmented form which agrees very closely with the original description of the species, even though the host in Jamaica is a much smaller snail than the one in Puerto Rico, The non-pigmented form shows a colorless retieulum in the caudal vesicle and tail corresponding to pigmentation in the other form. In measurements of the tail stem and furcae, "width" and "height" are transverse dimensions from dorsal (or ventral) and lateral views, respectively.

BIVESICULID CERCARIAE

Since the family Bivesiculidae is represented by a single known adult species in the Gulf-Caribbean area, it was most unexpected to find 6 species of cercariae that could hardly be other than larvae of that group. It was equally surprising to find that the life history affords convincing evidence that the Bivesiculidac, hitherto believed related to the Monorchiidae, instead are to be included in the Strigeatoidea. The writer's student, L. A. Le Zotte, Jr., has made this group the subject of his doctoral thesis, and his observations have been published elsewhere (Le Zotte, 1952, 1954). For completeness, however, brief descriptions of the cercariae he reported are included here. Their common characteristics are given in the following general diagnosis:
Furcocystocercous, i.e., with tail bifid distally and base enlarged to form a caudal vesicle into which the body typically is withdrawn in fully developed, spontaneously emerging larvae; caudal vesicle sharply set off from remainder of tail. Tail often strikingly pigmented, stem and furcae flattened laterally and efficient in swimming. Body small, spherical when in caudal vesicle, rather spindle-shaped with more rounded anterior end when free or outside vesicle but attached to it. Entire body spinose. Body pigment restricted to a pair of black eyespots. Mouth terminal, a short atrium leading into muscular hulb having more the appearance of a pharynx than an oral sucker, as it has been interpreted in adult bivesiculids. Esophagus rather long and muscular, joined by two narrow ceca that extend well toward posterior end of body. A number of cephalic glands near intestinal bifurcation with duets opening into wral alt rium. Primordia of reproductive system usually well developed. Most conspicuous feature of cercarial body is a pair of long tubular thin-walled excretory vesicles extending well anterior to mid-level, narrowing posteriorly, with separate sphincters, and usually filled with refractile concretions. Excretory vesicles continuous, with right and left caudal tubules that extend posteriorly without fusing and diverge to pass through furcae to pores at their tips. Caudal excretory tubules difficult to trace except in developmental stages, being obscured in emerging cercariae by the vacuolated parenchyma of tail. From anterior end of each excretory vesicle, a ciliated recurrent tubule extends posteriorly median to vesicle, crosses it at about mid-level, and receives an anterior and a posterior collecting tubule, both of which may be ciliated to the point that the first flame cell group is received. Anterior tubule with 2 groups of flame cells, posterior with 3 , of which one is in the tail with half its flame cells in the vesicle and half in the proximal regions of the tail stem. Develop in rediae with a bifurcated posterior end; excretory pores of rediae at the tips of the blunt processes. Redial excretory pattern basically the same as in the cercaria. Hosts: marine prosobranch gastropods.

CaMe (1956)

Cercaria caribbea XLV

(Figs. 10, 11)
Specific diagnosis: This is the second largest species of the group. It swims for short periods and rests on the bottom with the furcae extended (Fig. 11). Tail with distinctive pigmentation ; the caudal vesicle has 2 pairs of prominent black pigment masses confluent posteriorly with similar pigment around the capsule itself. A dorsal and ventral mass form a pair which is somewhat anterior to the less conspicuous lateral masses. A more diffuse golden-brown pig. ment occurs around the passage through which the body is withdrawn into the caudal vesicle. Similar brownish pigment is distributed along the edges of the tail stem while the furcae have a marginal reticulum of purplish-black pigment. This black pigment persists after the specimens are heat-killed or even fixed and prepared as whole mounts. Such treatment, however, causes contraction of circular muscles so that the shape of the tail is considerably altered from the living specimens in which the vesicle is more bell-shaped.

Caudal vesicle $0.308-0.320$ long with a maximum width of 0.178 ; tail stem 0.575 long from attachment to base of furcae and 0.130 in maximum width at about middle. Furcae 0.384 long and 0.130 wide in lateral view. Retracted body $0.137-0.150$ in diameter. Eyespots 0.011 long and 0.014 wide. Pharynx spherical, 0.031 in diameter.

Excretory vesicles filled with refractile spherical concretions of various sizes and opening into a slight depression at the posterior end of the detached body (Fig. 8). Flame cell formula of cercaria $2[(4+4)+(4+4+4)]$ and of redia $2[(4+3)+(3+3+4)]$.

Host: Cerilhium algicola.
Locality: Boquerón Bay, Puerto Rico.

Cercaria caribbea LVI n. sp. (Figs. 10 and 11)

Description: small cercaria with characteristics of the bivesiculid group. Retracted body $0.094-0.125$ long, $0,094-0.103$ wide, with pharynx $0.021-0.025$ long, $0.028-0.032$ wide; body not retracted, $0.221-0.265$ long, $0.084-0.097$ in maximum width, with pharynx $0.025-0.030$ in diameter. Cuticle finely spinose, eyespots $0.012-0.014$ by $0.009-0.010$. Excretory vesicles with relatively few scattered concretions. Entire tail pink in reflected, brownish-pink in transmitted light. Some specimens with purplish pink pigment in middle third of vesicle, others with pigment scattered through anterior third as well. Tail stem with anterior yellowish zone followed by gradually deepening pink coloration; furcae pinkish. Caudal vesicle 0.186-0.242 long, 0.169 to 0.210 wide; tail stem $0.275-0.310$ long from attachment at vesicle to base of furcae, $0.083-0.095$ high, $0.045-0.048$ wide; furcae $0.090-0.105$ long, $0.025-0.030$ in maximum height, $0.016-0.021$ in maximum width. Development in furcocercous rediae in branchial region of host; excretory pores at tips of furcae. Intestine of redia short, yellowish; body wall with annulated appearance when contracted, containing yellow to orange yellow pigment.

Host and locality: Cerithium variabile C. B. Adams; Lagoon, Port Royal, Jamaica.

This species resembles most Cercaria caribbea XLVII but has a larger body and caudal vesicle and a longer tail stem. Like other bivesiculid cercarias, it is strongly photopositive. The larva rests infrequently and then but momentarily whereas other species may rest long enough or remain sufficiently quiet under light coverglass pressure to be measured and drawn as living specimens. For that reason, Fig. 11 was drawn from a specimen killed in cold corrosive sublimate-acetic acid in which the size and shape closely approximated those of the living cercaria. The above measurements, however, are from heat-killed specimens.

Cade (1963)

Cercaria caribbea LVII n. sp. (Figs. 12 and 13)

Description: with the characters of the bivesiculid group. Body within caudal capsule $0.133-0.135$ long, $0.142-0.145$ wide, difficult to see because of surrounding pigment; body not retracted, $0.290-0.331$ long, 0.145 in maximum width, with pharynx $0.031-0.038$ long, $0.036-0.039$ wide. Eyespots 0.010 by 0.020 . Excretory concretions numerous, very refractile. Caudal vesicle bell-shaped, somewhat variable in heat-killed specimens, $0.311-0.317$ long; its maximum width 0.173 to 0.206 , sometimes at posterior flange, sometimes at midlevel of body capsule. Vesicle with yellow pigment and colorless droplets around base of anterior funnel; a dorsal and a ventral mass of purplish-black pigment, narrowing posteriorly and blending into layer of similar pigment surrounding body capsule; a smaller and more posterior pair of lateral, smudge-like pigment masses close to surface of vesicle, independent of other pigment. Mid-region of vesicle posterior to body capsule with numerous droplets. Tail stem $0.380-0.393$ long, $0.110-0.117$ high, $0.062-0.070$ in maximum width; dorsal and ventral edges of tail stem with brownish-orange pigment except near base. Furcae $0.235-0.270$ long, $0.055-0.059$ in maximum height, their greatest width $0.028-0.030$; edges of furcae with reticulum of reddish-black pigment. Development in furcocercous rediae as in preceding species.

Host and localities: Cerithium algicola C. B. Adams; Kingston Harbor and Lagoon, Port Royal, Jamaica.

This cercaria may be a variant of C. caribbea XLV because their caudal pigmentation is so similar and distinctive. Also most of their measurements agree but the tail stem and furcae of the present form are much shorter than those of C. caribbea $X L V$ with the stem being but little more than half as long as in that species.

In embryos of this cercaria, the conspicuous pigment masses of the caudal vesicle are yellow at first but change through orange, red and purple, which are soluble in hot sea water and histological reagents, to purplish black pigment which is not. This change and observations on the preceding species imply that caution must be exercised in using pigmentation to differentiate species of bivesiculid cercarias. This study brings to 9 the number of such larvae reported from the Caribbean region. Yet despite the examination of many fishes there, but 2 adult bivesieulid species have been recognized. Others probably will be found in small host species that have not yet been examined in sufficient numbers to disclose them. Immature bivesieulids were found in a variety of fishes but probably were the bodies of recently ingested cercariae and could not persist and become mature in those hosts. It thus seems that the bivesiculids are host specific to a high degree.

Cable (1903)

Cercaria caribbea XLIII (pigure 105)

Specific diagnosis: with the characters of the group. Body in caudal vesicle oval, 0.135 to 0.145 by 0.115 ; vesicle with narrow invaginated anterior protuberance and 0.278 to 0.287 in total length; increases to a maximum width of 0.281 to 0.308 posteriorly just before turning under to join tail stem, the attachment of which is hidden by posterior edge of vesicle. Yellowish pigment especially prominent near anterior end of vesicle, fading out posteriorly where there is a light area having the appearance of a cavity. Tail stem measured along lateral margin from attachment to base of furcae 0.410 to 0.425 in length; width from dorsal or ventral aspect 0.056 to 0.063 . Furcae about 0.150 to 0.165 long and 0.030 to 0.040 wide. Tail stem and furcae without noticeable pigment. Pharynx 0.028 long and 0.034 wide when body is in caudal vesicle.

Host: Cerithium variabile.

Localities: Punta Arenas, Isla de Ratones, and La Gata, off Parguera.
This species swims tail first by flexing the tail stem, resting occasionally body downward with furcae spread. It is strongly photopositive, and the larvae soon concentrate in the most strongly illuminated part of the dish.

Cercaria caribbea XLIV (pigures 106 to 107)

Specific diagnosis: with the characters of the group. Anterior part of caudal vesicle with dense longitudinal striae, probably muscles, followed by a pigmented zone shading from yellow to orange with a reticulum of purplish-black pigment conspicuous at posterior edge of vesicle. Tail stem with nonpigmented basal portion followed by a wide zone of purplish-black pigment. Caudal vesicle 0.192 long and 0.144 in maximum width at about middle. Body 0.110 in diameter when in caudal vesicle, 0.275 long and 0.116 in maximum width in heat-killed detached bodies. Tail stem 0.48 to 0.49 long and 0.080 to 0.085 in maximum width; furcae 0.192 to 0.233 long and 0.018 wide at base from dorsal aspect, 0.034 to 0.042 in lateral. Pharynx 0.022 to 0.025 long and 0.030 to 0.032 wide. Eyespots about 0,010 by 0.014 .

Host: Cerithium algicola.
Locality: Boquerón Bay.
This species has essentially the same behavior as the preceding one. It is decidedly less common.

Cercaria caribbea XLV (figures 108 and 109)

Specific diagnosis: with characters of the group. Distinctively pigmented: Caudal vesicle with golden-brown pigment near inner end of passage for body and with very conspicuous paired lateral and dorsoventral black pigment masses having the appearance of eyespots anterior to body capsule, with lines extending posteriorly from them and blending into a thin layer of black pigment enclosing the retracted body. Dorsal and ventral edges of tail stem with golden-brown pigment, furcae with a marginal reticulum of purplish-black pigment. Caudal vesicle bell-shaped and expanded posteriorly in living specimens, more contracted and with a distinct posterior flange in heat-killed ones. Vesicle 0.308 to 0.320 long and 0.178 in maximum width. Tail stem 0.575 long and about 0.130 in maximum width from lateral aspect, furcae 0.38 to 0.39 long and about 0.130 in maximum width from lateral aspect. Body within caudal vesicle 0.137 to 0.150 in diameter, pharynx 0.030 to 0.032 in diameter, eye spots about 0.011 to 0.014 . Excretory formula $2[(4+4)+(4+4+4)]$ with the last group on each side in the tail, 2 flame cells in the vesicle, and 2 in the tail stem. Excretory formula of redia $2[(4+3)+(3+3+4)]$.

Host: Cerithium algicola.
Locality: Boquerón Bay.
This species is large and immediately recognized by the black pigment masses in the caudal vesicle. It swims tail-first toward the light with furcae spread and tail stem vibrating. It rests on the bottom with the tail extended and furcae together (figure 109). A number of cercariae resting in this manner, all parallel and with tails toward the light, is a striking sight.

[^1]

Cercaria caribbea XLVI (figure 110)

Specific diagnosis: the largest species of its type and with a deep red caudal vesicle almost black by reflected light. Tail stem and furcae usually colorless, but sometimes with very light pink pigmentation. Caudal vesicle 0.38 to 0.39 long and 0.322 in maximum width at about mid-level; posterior end with a prominent flange in both living and heat-killed specimens. Body retracted 0.178 in diameter; free, 0.355 long, and 0.144 in maximum width. Tail stem 0.60 to 0.65 long and 0.13 in maximum width from lateral aspect; furcae 0.377 to 0.410 long and 0.103 wide. Pharynx 0.032 long and 0.036 wide, eye spots 0.009 to 0.011 by 0.014 to 0.015 . Flame-cell formula $2[(+4)+(4+4+4)]$ with the last group on each side in the tail, 2 flame cells in the vesicle, and 2 in the tail stem.
Host: Cerithium algicola.
Locality: Boquerón Bay.
The large size and deep red pigmentation of the caudal vesicle distinguish this species from others of its type. In swimming activity and behavior, it is much like Cercaria caribbea XLV but swims rather more energetically. When killed in hot water, the shape and size of the caudal vesicle is much less altered than in that species, but the red color escapes into the water, whereas the black pigment of the preceding cercaria is unaffected and is distinct in specimens prepared as stained whole mounts.

Cercaria caribbea XLVII (figures 111 and 112)

Specific diagnosis: the smallest species of its type. Caudal vesicle bright pink-red in color, tail stem with pigment less concentrated and light pink in appearance. Shape considerably altered when heat-killed. Body within caudal vesicle 0.071 to 0.073 in diameter. Caudal vesicle 0.17 to 0.18 long and 0.115 to 0.120 wide. Tail stem about 0.20 long and with a maximum width of 0.062 in lateral aspect, 0.041 to 0.047 in the horizontal plane. Furcae 0.085 to 0.088 long and 0.028 wide at base in vertical plane, 0.020 in horizontal. Host: Cerithium muscarum. (corrected identifiction).
Locality: Sucia Bay near tip of Cabo Rojo.

Cercaria caribbea XLVIII (figure 113)

Specific diagnosis: species of moderate size and with greatly inflated caudal vesicle which may remain so when heat-killed. Length of body within caudal vesicle, 0.140 to 0.145 ; width 0.118 to 0.120 ; outside but at tached to tail, body is about 0.350 long. Tail without noticeable pigmentation, vesicle 0.510 to 0.514 long and 0.286 to 0.290 in maximum width; stem 0.490 to 0.496 long and with a maximum width of 0.082 in horizontal plane, 0.118 from lateral aspect. Furcae about 0.22 long and with a maximum width of 0.023 in horizontal plane, 0.048 from lateral aspect. Pharynx 0.025 long and 0.028 wide. Eyespots with a maximum dimension of about 0.01 .
Host: Cerithium muscarum. (corrected identification).
Locality: Salinas Bay near Punta Jagüey, Cabo Rojo.
This species is distinguished by the greatly inflated caudal vesicle and absence of pigment. The larvae swim tail first toward the light and congregate near the surface.

Amblosoma suwaense Shimazu, 1974

Explanation of Figures
Figs. 1 is The sporocyst and vercaria of Amhlosema shtwernse Shimazu, 1971, found in Simatald quidiala (Benson).
Fig, 1 An unbranched (A) and a branched (B) sporocyst.
Fig, "丷 A fully-formed cercaria, ventral view:
Fig. If Another fully-formed cercaria, lateral view.
Fig. 1 Mucoid slamds in a mature cerearia in a sporocyst.
Fig, 5 A transverse section of the oral sucker (a) of a mature cercaria, showing aciduphilic: tunicellulat shand vells (i) lueated between the landles of the penetration-gland ducts if in the dorsal wall. 1): dorsal. V ; ventral.
Fig. 6 A sigittal section of a mature cercarit through the oral sucker (a), showing acidophilics unicellular cells (t) packet ilensely in the dorsal wall of the noal sucker, a hasophtilic.
 penctration stamls and their Butets (e),

Spurocyst
Sporocysts were found in the interlobular connective tissue of the digestive gland of S. yutadratio, They were white in colour, and unbranched or branched in shape. Unbranched ones were sausage-shaped Fig. 1A. It was impossible to determine what extent the sporocysts had branched out to, because they were easily torn to pieces when dissected out. In branched ones taken out intact Fig. 1B, some of the terminal tips of outgrowths appeared to open to serve as birth-pores. The sporocysts of both shapes contained only the cercarial generation at various stages of development from germ balls to fully-formed cercariae.

Cercaria
The morphology: and measurements of mature cercariae were as follows Figs. 1-6 :
Body proper elongate-oval, slightly wider anteriorly than posteriorly, spinous, $0.203-$ 0.257 mm long by $0.063-0.102 \mathrm{~mm}$ wide. Tail forked, well developed, functional, aspinose : stem $0.050-0.084 \mathrm{~mm}$ long by $0.021-0.027 \mathrm{~mm}$ wide; fureae laterally flattened, $0.063-0.143 \mathrm{~mm}$ long. Sensory hairs numbering at least 30 , five pairs on lateral margins of anterior part of body, three pairs on ventral and dorsal mid-lines of tail stem, and four pairs on vental and dorsal margins of each tail furea. Many minute papillate without sensory hairs scattered around ventral orifice of oral sucker. Eyespots, stylet, and finfolds absent.

Oral sucker ellipsoidal, subterminal, 0.04?0.046 mm long by $0.038-0.049 \mathrm{~mm}$ wide. Ventral sucker rounded, slightly posterior to middle of body, $0.037-0.046 \mathrm{~mm}$ long by $0.034-0.04 / \mathrm{mm}$ wide. Prepharynx very short. Pharynx barrel-shaped, 0.020-0.027 mm long by $0.017-0.020 \mathrm{~mm}$ wide. Oesophagus short. Intestinal caeca short, extending only to mid-level of ventral sucker.

Penetration glands divided into two distinct groups: anterior one consisting of six or seven pairs of smaller gland cells, more finely granular, acidophilic, distributed between pharynx and ventral sucker: posterior one composed of about five pairs of larger cells, finely granular, basophitic, situated dorsal and posterior to ventral sucker. Fine ducts of penetration glands on each side of body running forward in a bundle, passing through oral sucker, in which the ducts of the anterior group and those of the posterior group lie in an outer or lateral and an inner layer of bundle respectively Fig. 5 , d, opening separately into a small pit on anterior end of body, Many unicellular glands number unknown packed densely between two bundles of penetration-gland duets in dorsal wall of oral sucker, ovoid, large, with acidophilic cytoplasm Figs. 5 and $6, b$. One or more large unicellular glands with basophilic cytoplasm seen in
bottom of ventral wall of oral sucker Fig. 6, c). Mucoid glands consisting of five pairs of cells, three in imner longitudinal rows andtwo in outer, located between oral sucker and intestinal bifurcation (Fig. 4)
Primordium of reproductive organs forming a mass of cells situated immediately anterior to excretory bladder. Exeretory system stenostomate. Excretory bladder not epithelial, thick-walled, globular, small, in posteriormost part of body, with spined internal surface, discharging with a median caudal tube, which runs down through the tail stem, bifureates at the furcae, and opens through a cup on each furcal tip. Lateral main collecting tube on each side of body reaching to nesophageal level, there turning backward to near ventral sucker ; ascending limb short, bearing three cilia; descending limb non-ciliated, forming a small dilation just before entering bladder. Fiame-cell formula $2[(1+1)+(1+1)]=8$; no flame-cells in tail. Cort's island present.

Results of experimental infection

Of the 40 experimental snails used, 19 survived and were examined for metacercarial infections. Each of them harboured 3 to 24 (mean 12.6) unencysted metacercariae in the bottom of the space between the digestive gland and shell. All the metacercariae recovered were identified as A. struaense.
One month after exposure 34 metacercariae were recovered. They were closely similar in morphology to the previously-described cercaria except for the following minor differences: The tailless body was slightly larger in size, measuring about 0.25 mm long by 0.13 mm wide ; the intestinal caeca were a little longer and more largely distended: and the penetration glands had disappeared. The genital primordium still remained a cellular mass. The excretory system was the same as that of the cercarial body proper. Afterwards, the growth and development of the metacercariae were slowly progressive. Five months after exposure 45 worms were recovered. They were still immature, and fourteen of them were measured as follows: body $0.816-1.550 \mathrm{~mm}$ long by $0.265-0.448 \mathrm{~mm}$ wide : oral sucker $0.0 \mathrm{k} 5-$ 0.140 mm long hy $0.097-0.157 \mathrm{~mm}$ wide : ventral sucker $0.097-0.170 \mathrm{~mm}$ long by 0.11ti$0,208 \mathrm{~mm}$ wide: and pharynx $0.055-0.0 .05 \mathrm{~mm}$ long by $0.055-0.072 \mathrm{~mm}$ wide. The major genitalia had already been feebly differentiated except the vitelline glands which were not yet recognizable.

From Shimazu, 1978

Leuchloridiomorpha constantiae (Mueller, 1935) Allison, 1943

Reverse prints.
From Allison, 1943 (see reprint)
Trans. Am. Micr. Soc. 62: 127-168

Figs. $45 \mathrm{a}, 46 \mathrm{a}, 47 \mathrm{a}, 48 \mathrm{a}$ and 49-52, Stages in the decelopment of the excretory systern of Postharmostomum helicis from the early embryo to the nearly mature cercaria, all in dorsal view except Figure 47 a which 15 m latend view Vitelline membrane and nuclei shown only in Pigure 47in. Penetrotwin glands and ducts omitted
Fig. 53. pharyme showing ducts of penetration glands.
pharynu, showing ducts of penetration giands. P. helicis, dorsal view. Camera lucida oultine
Fi6. 539. Mature emerged cercaris of pith details added from living specincer. of formalin-ixed specimen whe on one side. Note presence of sitelline Excretory system showlei of membrine are not visible membrane, although nuclei of mement of pre-acetabular groups of flame Fig. 33b. Variations in number an. Free-hand drawings cells in enserged cercaria. Free-hand drawing: post-acetabular groups in Fig. 53 c . Variations in Free-hand drawings. Fig. 54. Mature emerged cercaria of P. heifis ducts of penetration glands.
All drawings were made with the aid of the camera lucida, unless otherwise specified.
From Ulmer, 1951

Fig. 80. Portion of $\mathbf{2 9}$-week (daughter) sporocyst of Postharmostomum helicis conFigs. 81, 82. Variations in cercariae and embryos.
mostomum helicis, Unflattened of intestinal crura in 4 -day adults of Postharhost (Peromyscus maviculatus) stained specimens from the same mammalian Figs 83-85. Anominyscus maniculatus).
Figs. 83-85. Anomalies in genital glands of adult P. helicis.
Fig. 86. Miracidia of P. helicis, various positions,
Figs. 87, 88. Variations in shape of testes of P. helicis adults.
same feeding experiment, adults of similaris aduits. Both specimens from
Fig. 89. Cercaria of P. helicis withints of similar age (80 days).
means of oral sucker.
Fig. 90. Cercaris of sucker.
Fig. 91 wall by means of oral sucker and acetabulum
Fig. 92. Birth pore of daughter sporocyst, 13-week infection.
Fig. 93. Cross-section of brer sporocyst, 13-week infection.
Fig. 94. Longitudinal section through 13 -w sporocyst, 13 -week infection developed cercaria within lumen. 13 -week (daughter) sporocyst. Note well-

From ULmee, 1951
4. Previous work on brachylamia me mstums .s -.
together with a resumé of the life history of B. oesophagei.

From Lewis 1969 J.Helminth. Brachyiaimidae

Brachyla1mus esophage1 Shaldyb1a, 1953

worms were obtained from cat, chicken, dog, opossum and rat. Krull (1935) also showed that two types of infected snails, Polygyra thyroides exist in the life history of B. virginiana, those snails with and those without sporocysts. Infected specimens of P. thyroides, harbouring sporocysts from which cercariae were emerging, could be detected by examining the surface of the body of P. thyroides, which are usually covered with active cercariae wandering in the slime produced by the snail. The cercariae may be transferred by contact from one snail to another, where they develop into metacercariae in the kidney. Alicata (1940) also established that cercariae of Postharmostomum gallinum (Witenberg, 1923) developed into metacercariae in terrestrial snails, other than those in which the cercariae were found. Sinitsin (1931) on the other hand suggested that cercariae of the Brachylaimidae emerge from the digestive gland of the snail and leave by the anus to re-enter the host through the adjacent kidney opening. He indicated that, since the cercariae of this family are of the microcercous type, the tails were not needed to transfer the cercariae from one snail to another.

A review of the above literature, therefore, indicated that a terrestrial gastropod, occurring in the vicinity of the burrows of Sorex araneus, was likely to act as the intermediate host of B. oesophagei. Lewis (1968b) showed that the kidney of the terrestrial snail Z. excavatus harboured cercariae and metacercariae of B. oesophagei and when the latter stages were experimentally fed to Sorex araneus, they mature in the oesophagus after about nine days. Presumably a similar pattern exists in nature when S, araneus, S. minutus and Neomys fodiens, during their foraging, feed upon infected snails. Eggs containing developing miracidia are released from adult worms of B, oesophagei and are passed out with the faeces of the shrew, and if the life history of B. oesophagei is assumed to be similar to that of known brachylaimid life histories, e.g. B. virginiana, the eggs are ingested by a suitable gastropod first intermediate host, hatching taking place in the intestine. The released miracidia, with the aid of stylets and penetration gland cells, penetrate the intestinal wall and migrate to the digestive gland of the gastropod, where the sporocyst generation develops. The sporocysts give rise directly to microcercous cercariae which eventually emerge from the digestive gland and migrate to the exterior. Successful cercariae may then enter the renal aperture of the second intermediate host, Z. excavatus and travel the length of the ureter to enter the kidney chamber. The cercariae having shed their small blunt tails, develop into metacercariae which attach themselves and begin to feed on the

SUmmary

1. Brachylaimus oesophagei Shaldybin, 1953 from the common shrew, Sorex araneus castanews Jenyns is described and compared with that of Shaldybin (1953) and a closely related species B. fulvus Dujardin, 1843.
2. Despite unsuccessful attempts in hatching the egg of B. oesophagei, some morphological features of the miracidium are described and compared with previous studies on brachylaimid miracidia. Neither flame cells nor epidermal plates have been observed in miracidia of this family and present observations confirm this.
3. A description is given of the cercaria and metacercaria of B. oesophagei from the kidney of the hollowed snail Zonitoides excavatus (Bean) at Aberystwyth, but no sporocysts or cercariae were found in the digestive gland.
4. Previous work on brachylaimid life histories is discussed, together with a resumé of the life history of B, oesophagei.

level between the sucker and the intestine, and the third at the level the intestine. Fach tertiary branch has two flame cells with 1 eir respective capillaries. The posti rior secondary excretory tube runs laterally downwards and gives of the fourth tertiary branch at a level of the upper testis, the fifth at a level of the lower testis and the sixth near the posterior end of the body. The fourth tertiary branch has constantly three flame cells with their respective capillaries, whereas the other five branches have two cells usually, but may eventually have three with their corresponding capillaries. Thus the flame cell pattern of this metacercaria is shown by the following formula: basic form, $2 \times[2+2+2)+(3+2+2)]$, eventually $2 \times[(2+2+2)$ $+(3+2+3)]$ or $2 \times[(2+2+2)+(3+3+2)]$. It is further to be noted that in one case the flame cell pattern of one side was $[(2+2+2)+(3+3+2)]$, while that of the other side was $[(2+2+2)+(3+2+3)]$.

Concening the excretory system of Bucephalidae the report of Tennet (1906) on the cercaria of Bucephalus (Bucephalopsis) haimeanus (fig. 43) and that of Woodhead (1930) of the cercaria of Bucephalus elegans (fig. 44) are available. In these two species the arrangement of flame cells appears to be so irregular that it can hardly be expressed by a mathematical formula, while that of the metacercaria of Prosorhynchus echinatus is definite and is given by $2 \times(2+2)+(3+3+2)]$ and that of the metacercaria of Rhypidocotyle linyratis shows fundamentally a certain regularity: the flame cell pattern in the anterior secondary excretory tube remains always to be $(2+2+2)$, and that of the posterior one is represented in its basic form by $(3+2+2)$, though it eventually shows some fluctuations It is to be noted that the pattern of both our metacercariae shows a remarkable similarity to each other and those of the above-cited two species of Bucephalus and Bucephalopsis also resemble each other very closely. However, these two groups of Bucephalidae, one comprising Bucephalus and Bucephalosis, and the other, Prosorhyn. chus and Rhypidocotple, show a considerable difference in the fundamental plan of arrangement of their flame cells. We think that this comparison is safe although the above-stated flame cell pattern of the former group is for cercariae and that of the latter for metacercariae. Thus, if the mode of arrangement of flame cells has an important significance in a natural system of classification,
the dy. The oval testes, having eventually a slight indentation on their lateral margins, are found under the ovarium one behind the other. The cirrus sac is club-shaped, measures about one third of the length of the body, and is found at its posterior end.
opening is ventral and subterminal. The elongated oval ovarum is tound near the left lower margin of the intestine and in contact with it. The vitelline glands are small masses, numbering about ten on each side, are placed slightly anterior to the uterus and laterally to the intestine. The excretory bladder is elongated and sac-formed: it accupies most of the body cavity and is situated obliquely from the lateral margin of the sucker to the posterior end of the body and opens at its posterior end. The basic flame cell pattern is $2 \times[(2+2+2)+(3+2+2)]$.

DISCLSSIO:

It is eencrally acknowledged that the flame cell pattern of the mature cevisitit can always be shown by a definite mathematical formula and is always constant in one species. In the metacercaria, however, thr pattern cannot always be expressed by a definite anthmetical formula. In some species it is constant and unchanged as compared with that in the cercaria stage, whereas in others this pattern undergoes remarkable changes and the number of the flame cells increases considerably as compared with the number found in ce via. In the previous paper the senior author (1938) described ex.,ples of such cases, i. e. certain metacercaria of Strigeatu and showed that in these the development of their exeretory system was performed with a mathematical regularity. Here we notice another type of trematode excretory system in the metacercaria stage. In the metacercariae of Metorchis oricntalis. Metorchis taicanensis and Metacercaria hasegawai a only one to three flame cells are added to each flame cell group as they develop.

Thus, based on the excretory pattern, metacercaria can be divided into the following three differnt groups at least.
a) First group. metacercariae whose excretory pattern is the same as that of its cercaria and remains unchanged in the whole metacercaria stage.
The metacercariae of Fasciola hepatica (Kawana, 1939). Echinochosmus japonicus, E. perfoliatus, Opistioglyphe ranar (Komiya,

19So), Exorchis oviformis, Prosorynchus echinatus, Prosorynchus chasmoechinatus belong to this group. The metacercaria of Echinochasmus perfoliatus and Rhipidocotyle lingualis should be added to this gronp though their excretory pattern shows at times a slight variation. Among these Fasciola hepatica needs no second intermediate host. in the strict sense and its encystment occurs freely on the surface of water vegetation or other materials. Such metacercaria suffers relatively slight change, if any, in their developmental stages. Correspondingly their metabolic requirements are not so large, and the burden which its flame cells have to perform does not materially increase as compared with that in the cercaria stage. Therefore the number of flame cells need not increase and remains the same as in cercaria. In a similar metacercaria, e. g. that of Fasciolopsis or of Diplodiscus the number and arrangement of flame cells is supposed to remain the same as that of its cercaria stage. The metacercariae of Echinochasmus perfoliatus and japonicus encyst in gills of fishes. Their cysts are very small and vary very little in size. These facts indicate their metabolic requirements are not extensive. The metacercaria of Opistioglyphe ranae encysts in snails, and shows also no marked development either in size or in form. The metacercaria of Exorchis oviformis is found encysted mainly in the muscles of fishes. This metacercaria develops appa${ }^{r} e^{+1} y$ and grows about twice as large as its initial size during its w.e stage. The number and arrangement of flame cells, however, remains just the same as that of its cercaria. This indicates that the growth of the worm in size is not always accompanied by an increase in the number of its flame cells ${ }^{6}$. The metacercariae of Prosorhynchus and Rhipidocotyle lingualis are found encysted in muscles of fishes and seem to grow to a certain amount. However. their flame cells appear to be able to meet the requirments of their ittereased metabolism. In the case of Prosorhynetius cchinitus a progenesis is sometimes found. Even in such a case the excretory pattern remains unchanged, whereas its body structures are almost IMTfectly developed. Judging from this fact, the adult worm of Prosorhymelus echinatus is supposed to have the same excretory batforn as that of its metacercaria.
 -quitement of increved metabolisen

Generally speaking, the excretory pattern of those adult worms of small size whose metamorphose during the metacercaria stage is not so prominent, is supposed to remain the same as that of its cercaria or metacercaria. Exorehis oviformis, Prosorhynchus chasmoechinatus and Rhipidocotyle lingualis probably belong to this eategory.
The excretory pattern of Clonorchis sinensis remains the same throughout the whole stage of metacercaria as that of mature cercaria.
b) Second Group. Metacercariae whose excretory pattern changes only by the addition of a few flame cells to the primary flame cell groups of the young metacercaria or of its cercaria.
Metacercaria hasegawai a, the metacercariae of Metorchis orientalis, M. taiwanensis, and Opistorchis felineus (Vogel, 1934) belong to this group. Among the trematodes belonging to this group Opistorchis felineus is the only one in which the excretory pattern of the cercaria is knowin. There exist five groups of fiame cells in it, each group having in turn five flame cells. In its metacercaria the number and arrangement of flame cells is only slightly different from that of the cercaria. "Wie bei dieser sind fünf Gruppen von Wimperzellen vorhanden. …..Die vom vorderen Aste entspringende Gruppe besteht wie bei der Cercarie gewöhnlich aus 5 , seltener aus 6 Wimperzellen. Die übrigen 4 Gruppen des hinteren Astes setzen sich in der Regel aus je 6, hin und wieder auch nur aus 5 Einheiten zu nmen." (Vogel, 1934, p. 58). The arrangement of flame cells is quite similar in Metacercaria hasegawai a and in the metacercariae of Metorchis arientalis and M. taiwanensis. The only difference is that in Metorchis one to thres flame cells are adeded, in the course of development, to each flame cell group except the fore most one, instead of one or two. If it is acknowledged that closely related species have a similar mode of development of their excretory system, the excretory pattern of the cercaria of Metacercaria hase. gancai a and the above-mentioned two Metorchis can easily be deduced from that of its metacercaria.
Visel Anws the excretory pattero of Opinturchis cercaris and metacercaria as 2
$\times[5$ $x\left[(5)+\left(5+5^{\circ}+5+5\right)\right]$ and $2 \times[(5)+(6+6+6+6)]$ respectively. But we think it is masi ponhulde that thisn excretory pattern is $2 \times[(5+5)+(5+5+5)]$ and $2 \times[(5+6)$

 $+\mathrm{b})+(\mathrm{d}+\mathrm{d}) 1$, wherr the nemients of the first tracket indicate the flame cell group
if the If the interve mindars tuln and those if the latter that of the pontern secriditan tute. t inter ithervation is is hiret will theode thas protiem.

Bucephalus 1ongicornutus (Manter, 1954) Howe11, 1966

Bucephalus elegans Woodhead, 1930

Final host: Ambloplites rupestris, red-eye or rock-bass (experimentaliy in Lepomis pailidus) Miracidum with 4 cephalic plates; i pr.skeletal appenadges each with 2 side branches. En/ters bivalve, Eurynia iris Cercarlae encyst on small fishes. Reference: Woodhead,A.E. 1930. Trans.AMer. Micros. Soc., 49:1-17

Bucephalus papillosus Woodhead,1929
Syn. : B. pusilius of Cooper, 1915

Adult: cecal pouches of Micropterus dolomieu; Aplites salmoides Miracidium penetrates Elliptio dilatatus ; cercariae develop in sporocysts; cercarialencyst at base of fin rays of Ambloplites rupestris, roek bass Reference: Woodhead, Arthur E. 1929. Trans.Amer.Mioros.Soc., 58:256-275.

Parmi les métacercaires qu'héberge Atherina mochon C. V., vivant dans les gites de la Camargue, nous en signalons deux qui correspondent à des Trématodes de poissons carnassiers.
La première appartient à la famille des Gastérostomidés. Le ver adulte,
obtenu expérimentalement, a les caractères suivants : corps globuleux, ovoide ou piriforme, mesurant 400^{μ} à $7^{80^{\mu}}$ sur 320^{μ} à 650^{μ}; épines de la cuticule bien développées, notamment dans la région antérieure, mais existant sur tout le corps; organe adhésif de 80^{μ} à 155^{μ} suivant son degré d’étalement, avec des mamelons non filiformes; pharynx latéral, arrondi de 60^{μ} de diamètre; intestin sacciforme, remplissant la partie centrale et postérieure du corps; testicules symétriques, dans le tiers postérieur du corps, ayant 80^{μ} à 150^{μ}; poche du cirre droite et allongée, d'avant en arrière, mesurant 110^{μ} à 190^{μ} sur 40^{μ} à 60^{μ}, s'ouvrant au pore génital subterminal, de 20^{μ} de diamétre; ovaire de 50^{μ} de diamétre environ, situé entre les testicules; vitellogènes latéraux; circonvolutions utérines dans la région postérieure, s'avançant jusqu'au milieu du corps et le dépassant légèrement; coufs : 25^{μ} sur 16^{μ}.

Ce Gastérostomidé reutre dans le genre Dolichonterum Osaki, 1924. II diffère de l'unique espèce décrite : 1). longissimum $\mathrm{Oz}_{\text {., }} 1924$ (Japon), par son aspect globuleux, la position symétrique des testicules, la forme de l'intestin, moins allongé. Néanmoins, la situation de l'ovaire entre les testicules, l'aspect de l'organe adhésif, me permettent de le maintenir dans les Dolicheenterum, et d'éviter la création d'un nouveau genre. Manter (1934) a aussi récolté un Dolichernterum immature, dont la diagnose spécifique n'a pu être établie : il diffëre de notre espéce, notamment par la position des testicules, placés l'un derrière l'antre. Nous proposons le nom de Dolichenterum lamirandi sp. nov.

La métacercaire est abondante dans le foic d'Atherina mochon C. V., de Camargue. L'infestation est généralement trés intense : plusieurs centaines
de kystes chez le mème poisson. L'espèce voisine, Atherina hepsetus L... pèchée dans le golfe de Marseille, héberge également ces parasites, mais plus rarement et en moins grande quantité (une quinzaine au maximum). Le cycle évolutif semble donc s'accomplir plus facilement dans les collections d'eau restreintes. Cette métacercaire se présente sous forme de kystes arrondis, mesurant 150^{μ} à 280^{μ} de diamètre; leur paroi est très mince et permet de distinguer par transparence les organes de la larve. Dans les cas de parasitisme très intense, il peut exister jusqu'à cinq métacercaires dans le mème kyste. On trouve déjá les caractéres très accusés de la forme adulte : corps globuleux, de 360^{+4} à 500^{+2} sur 210^{4} it 350^{+}; organe adhésif de 80^{μ} à 120^{μ}; pharynx latéral de 32^{μ} à 40^{μ}; ébauches très nettes des testicules $\left(85^{\mu}\right)$, de la poche du cirre (110^{+}sur 40^{μ}) de l'ovaire et du tube utérin. La progenèse n'a jamais été observée, le parasite dégénère au bout d'un certain temps.

Cette métacercaire a pu évoluer expérimentalement chez Labrax lupus C. V., par ingestion de foie d'Atherina. Au bout de cinq à six jours on trouve des Trématodes à ounfs déjà formés et d'autres à divers stades de développement. Un début d'infestation a été aussi réalisé chez la grenouille Hyla arborea (L.).

Atherina mochon et A. hepsetus hébergent aussi dans leur musculature une autre métacereaire чue je rattache aux Acanthomahidat Khoket kych Kyste ovalaire, mesurant 250^{μ} à $380^{\prime \prime}$ sur $160^{\prime \prime}$ à $2 q 0^{\prime \prime}$. Métacercaire allongee $\left(700^{H}\right.$ à 1100^{μ} sur $200^{\prime \prime}$ à 260^{*}). Ventouse orale : $1 / 10^{H}$ en moyenne, portant une couronne de 18 épines céphaliques de 30^{μ} à 40°. Deux taches oculaires très apparentes (méme dans le hyste), situées à droite et à gauclie du pharyux, mais rarement symétriques. Ventouse ventrale : 80^{μ} à $90^{\%}$. Je n'ai pu obtenir jusqu'à présent qu'un début de développement chez Hyla arborea, les circonstances ne m'ayant pas encore permis d'utiliser des poissons carnassiers neufs pour cette sćrie d'expériences.

Extrait des Comples rendus des seances de l'Academie des setrives.
L. 20%. p. 1086 , seance du 5 avril 193%.)

Dollfustrema foochowensis Tang and Tang， 1963

唐珎愒，唐仲玶：福建腹口吸虫种类及生活吏的研究
图 版 IV

1．成虫。
2．提早发育的成虫。
3．㓕虫的䬣吸器。

6．子狍构。
9．尼﨡朓体示头器和咽。
2．成熟尼彻。

7．子跑数。
10．居納怔体示头器，喵和尼球。
13． 46 天帨僖的后期尼絇。

14． 52 天的居明尼烺。

Parabucephalopsis prosthorchis Tang and Tang， 1963

唐米惯，唐伸識：福建晔口吸虫种类及生活史的研究
图版 III

困板 III 前客还似牛菅段虫的发育明

1．毛緆
4．子跑緆。
7． 9 天的偾緆。
10．人工感染的 10 天鲎虫。

2．尼絡。

8． 42 天的聚䋛 。

3．干留轶。
6． 39 小时的后朝冨絆。
9． 47 天的巷楼。

Buce phalidae

Rh1pldocotyle septpap111ata Krull,1934

Final host: Eupomotis gibbosus (experimental)
Intermediate hosts: 1. (?) \quad 2. Fundulus diaphanus diaphanus; Eupomotis gibbosus.
metacercariae encysted in muscles and caudal fin.
Reference: Krull, Wendell H. 1934. Trans, Amer.Micos.Soc., 53:408-415

Final host: M1cropterus dolomieu

First intermediate host: Lamps11ig siliquo1dea
Cercaria basi Woodhead, 1936 develops in branching sporocysts.
Second intermediate hosts: small fishes

[^0]: Received for publication 2 February 1962.

 * Supported by Grant G-14691, National Science Foundation.

[^1]:

