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Abstract: The combination of Hydrological Models and high-resolution Satellite Precipitation Prod-
ucts (SPPs) or regional Climatological Models (RCMs), has provided the means to establish baselines
for the quantification, propagation, and reduction in hydrological uncertainty when generating
streamflow forecasts. This study aimed to improve operational real-time streamflow forecasts for the
Upper Zambezi River Basin (UZRB), in Africa, utilizing the novel Variational Ensemble Forecasting
(VEF) approach. In this regard, we describe and discuss the main steps required to implement,
calibrate, and validate an operational hydrologic forecasting system (HFS) using VEF and Hydrologic
Processing Strategies (HPS). The operational HFS was constructed to monitor daily streamflow and
forecast them up to eight days in the future. The forecasting process called short- to medium-range
(SR2MR) streamflow forecasting was implemented using real-time rainfall data from three Satellite
Precipitation Products or SPPs (The real-time TRMM Multisatellite Precipitation Analysis TMPA-RT,
the NOAA CPC Morphing Technique CMORPH, and the Precipitation Estimation from Remotely
Sensed data using Artificial Neural Networks, PERSIANN) and rainfall forecasts from the Global
Forecasting System (GFS). The hydrologic preprocessing (HPR) strategy considered using all raw
and bias corrected rainfall estimates to calibrate three distributed hydrological models (HYMOD_DS,
HBV_DS, and VIC 4.2.b). The hydrologic processing (HP) strategy considered using all optimal
parameter sets estimated during the calibration process to increase the number of ensembles avail-
able for operational forecasting. Finally, inference-based approaches were evaluated during the
application of a hydrological postprocessing (HPP) strategy. The final evaluation and reduction
in uncertainty from multiple sources, i.e., multiple precipitation products, hydrologic models, and
optimal parameter sets, was significantly achieved through a fully operational implementation of
VEF combined with several HPS. Finally, the main challenges and opportunities associated with
operational SR2MR streamflow forecasting using VEF are evaluated and discussed.

Keywords: variational ensemble forecasting; hydrologic processing strategies or hypotheses; SR2MR
streamflow forecasting; real-time hydrologic forecasting system; satellite precipitation products;
multi models; best streamflow prediction; inverse variance weighting; inverse probability weighting

1. Introduction
1.1. Decisions and Limitations of Hydrologic Forecasting

At any spatiotemporal scale, critical decisions about the design, functionality, and
operability of a Hydrologic Forecasting System (HFS) need to be made to reduce the total
hydrologic uncertainty (THU) propagated from different components of a hydrologic
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modelling paradigm (HMP). In fact, reducing the total hydrological uncertainty is key to
developing reliable Integrated Water Resources Management (IWRM) strategies across
spatial and temporal scales. For river basins across the world, the allocation of water
resources largely relies on accurate streamflow forecasts. In Africa, for instance, the waters
of the Upper Zambezi River Basin (UZRB) are shared by eight countries: Angola, Namibia,
Zambia, Botswana, Malawi, Tanzania, Zimbabwe, and Mozambique. However, the admin-
istrative complexities created by the transnational nature of the Zambezi Basin (Figure 1)
result in inconsistencies in the operation and maintenance of the rain gauges and stream
gauges (see Table 1), and consequently a lack of reliable hydrologic data for the implemen-
tation of an HFS. For example, rainfall or streamflow time series with missing records can
undermine the effectiveness of calibration and validation schemes, consequently increasing
the propagation of total hydrological (meteorological) uncertainty for the establishment of
hydrologic processing strategies. Therefore, an appropriate identification and quantifica-
tion of uncertainty (at any level) can help reducing the THU for the final development of
streamflow forecast products.

Figure 1. (a) Upper Zambezi River Basin (UZRB) delineated above the Katima Mulilo streamgauge. The green markers
represent 9 rain gauges available in the basin. The blue markers represent the streamgauges used in this study; (b) Location
of the Zambezi Basin in the African continent. The map also shows the location of major hydropower and water storage
projects; (c) Modelling domain selected to implement the real-time HFS (RT-HFS). The modelling domain was set up
using grid cells at 0.25◦ of spatial resolution; (d) Land cover map based on [1]. The basin is dominated by broadleaved
trees (~66%), herbaceous (16.1%), and shrubs (14.8%), whereas only a little (~0.6%) of the area is managed or represents
agricultural; and (e) Digital Elevation Model (DEM) based on Hydrosheds (90 m resolution). The spatial distribution of
the vegetation types is consistent with the elevational pattern of the basin, which ranges between approximately 731 and
1671 m above sea level [2].
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1.2. Knowledge Gaps and Justification of the Study

The first HFS for Zambezi was applied in 2011, where the use of the Kalman filter was
combined with a simple two-layer conceptual hydrological model to forecast streamflow
in three sub-basins [3]. Satellite-based soil moisture estimates were used to calibrate the
aggregated hydrologic model, which was able to generate daily streamflow forecasts up
to 40 days into the future. Meier [4] argued that the spatial resolution of the satellite
data needed to be improved together with the implementation of more sophisticated
hydrologic models. In 2014, the daily floodplain behavior of the Zambezi was simulated
by [5] applying a modified reservoir approach for the SWAT model [6]. Their results
showed that the modified version of SWAT improved the simulation of daily streamflow
and floodplain development in the Zambezi basin. Several other hydrological models
have been satisfactorily calibrated and validated in other sub-basins of the Zambezi with
available records (i.e., [7–12]). Despite all these modelling efforts in the Zambezi Basin,
an operational HFS for the undisturbed flows of the poorly gauged UZRB has yet to be
established. The primary objective of an operational HFS is to generate an accurate short-
to medium-range (SR2MR) streamflow forecast that can inform water distribution schemes
at the relevant spatial and temporal scales. The forecasts can be obtained from multiple
ensembles constructed from Variational Ensembles Forecasting (VEF) approaches.

1.3. Variational Ensemble Forecasting (VEF) to Improve Operational Streamflow Forecasts

An operational HFS can only be implemented if the realtime and short-term forecasts
of the input data (e.g., rainfall, temperature, etc.) are readily available. Therefore, the
use of multiple satellite precipitation products (or regional climate models), combined
with multiple conceptual and physic-based hydrologic models, can provide important
insights about the practical and scientific aspects of implementing operational HFS in
poorly gauged basins [13,14]). In this regard, many Variational Ensemble Forecasting (VEF)
algorithms have been proposed to improve the representation of the components included
in a Hydrologic Forecasting System (HFS). Previous studies have applied VEF based
on multiproduct, multimodel, or multi-initialization schemes (see for example [13–21]).
However, the evaluation of VEF including an additional dimension with multiple optimal
parameter sets has not been explored in simulation schemes or operational forecasting yet’
neither has the role of Hydrologic Processing Strategies to improve the assimilation of VEF
applications in an operational HFS context.

1.4. Purpose of This Paper

The main motivation of this study is to describe, analyze, and discuss the main steps
required to design and implement an HFS, aimed to improve SR2MR streamflow forecasts
in the UZRB and its sub-basins during the operational stage. The technical functionality and
operability of the HFS is assessed using Hydrologic Processing Strategies (HPS) within the
context of a Variational Ensemble Forecasting (VEF) hydrologic modelling paradigm [22],
i.e., optimal combination of multiple precipitation products, multiple hydrologic models,
and multiple parameters sets. The THU propagated by the HFS is evaluated and compared
according to different sources of uncertainty, i.e., satellite-based, or model-based rainfall
estimates, hydrological models, and optimal parameters. As detailed later in this paper,
a more comprehensive overview of the whole modeling paradigm used to implement
an operational HFS can help significantly to generate an improved streamflow forecast
products that are closer to the hydrological conditions of the basin under study.

2. Methods
2.1. The Upper Zambezi River Basin (UZRB) Domain

The operational HFS implementation for the UZRB and its sub-basins with records
(Table 1), considered the drainage area (~339,521 km2) delineated above the Katima Mulilo
streamgauge (Table 1 and Figure 1a). The mean annual streamflow at the UZRB (measured
at Victoria Falls) represents about 25% of the mean annual streamflow measured at the
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Zambezi Delta outlet (~4200 m3/s), the largest contribution of all tributaries within the
whole Zambezi Basin [23,24]. The historic mean daily flows (1942–2017) measured at
Katima Mulilo stream gauge were about 1174 m3/s (Table 1); however, during extreme
episodes the maximum daily streamflows can exceed more than six times the mean daily
streamflows. The basin is dominated by broadleaved trees (~66%), herbaceous (16.1%),
and shrubs (14.8%), whereas only a little (~0.6%) of the area is managed or represents
agriculture (Figure 1c). The spatial distribution of these vegetation types is consistent with
the elevational pattern of the basin, which ranges between approximately 731 and 1671 m
above sea level (Figure 1d). The UZRB domain for the operational HFS implementation
was set up using grid cells at 0.25◦ of spatial resolution, approximately 25 km at the Equator
(Figure 1e). This area above Katima Mulilo was selected, because it is the unique portion
of the Zambezi that does not have ongoing hydropower or water storage infrastructure
projects (see Figure 1b). This is an advantage for HFS implementation since the presence of
dams or any other anthropogenic water regulations can be an important limitation when
the primary objective is to simulate natural streams.

Table 1. Description of streamgauges use in this study. The HFS column shows those streamgauges (sub-basins) used for the calibration
of hydrologic models.

Country Streamgauge South
Latitude

East
Longitude

Area
(km2)

Altitude
(m.a.s.l.)

Average Flow
(m3/s) Period Missing

(%) HFS

Zambia Kalene Hill
Road Bridge −11.13 24.25 764 1261 12.3 1977–2004 34.81 No

Zambia Chivata Village −13.33 23.15 3354 1065 17.4 1962–2004 23.32 Yes

Zambia Luanginga-
Kalabo −14.96 22.68 34,621 1021 59.0 1958–2004 8.94 Yes

Zambia Kabompo
Pontoon −13.60 24.21 42,740 1029 252.2 1990–2005 51.04 Yes

Zambia Lukulu −14.38 23.233 206,531 1012 772.0 1950–2004 12.44 Yes
Zambia Senanga −16.11 23.25 284,538 992 972.6 1947–2004 8.40 Yes
Namibia Katima Mulilo −17.48 24.3 339,521 746 1174.5 1942–2017 13.54 Yes

2.2. Forecasting Timescales and Water Management Activities

An HFS can be implemented for either of the three (or a combination thereof) principal
forecasting timescales: (1) Realtime Monitoring or Short- to Medium-Range Forecasting
(SR2MR), (2) Subseasonal to Seasonal or Short- to Long-Range Forecasting (SR2LR), or
(3) Climate Change Predictions. The choice of forecasting timescales is partly determined
by the relevant water management goals, and the needs of end users of the forecasts. In
this study, the need for better water management schemes for flood warning and water
allocation in the lower Zambezi Basin prompted the implementation of an HFS for realtime
streamflow monitoring and short- to medium-range (SR2MR) forecasting in the UZRB and
its sub-basins. As mentioned in the previous section, the HFS was implemented to forecast
streamflow in the UZRB because it is the only part of the whole Zambezi River Basin
without water regulation infrastructure, i.e., natural streamflow patterns can be observed
in the UZRB. The SR2MR scheme allows streamflow forecasting from realtime up to eight
days into the future (Figure 2).

2.3. The Operational Context of a Hydrologic Modeling Paradigm

A functional HFS requires the design of a hydrologic modelling paradigm under an
operational scheme. The design can range from a simple propagation of meteorological
forecasts using a single hydrological model to more advanced techniques which can
include multiparameter, multimodel, or multi-initialization schemes (Figure 3). The use
of a simple propagation scheme does not allow for the quantification of the hydrological
uncertainty propagated from the model structure or from the model parameters. However,
by adding more parameter sets for a single hydrological model (i.e., [15]), by adding more
hydrological models [13,14,16–18], or simply by performing more initializations of the
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initial starting conditions of a single model [19,20], the hydrological uncertainty either from
the parameters, model assumptions, or initial conditions can be quantified.

Figure 2. Structure and major modules required to implement an operational Realtime Hydrologic Forecasting System
(RT-HFS) at (a) short-range timescales RT-HFSSR and at (b) medium-range timescales RT-HFSMR.

Figure 3. Simplified hydrologic modelling paradigm (HMP) used in the operational HFS implementation for the UZRB and
its sub basins. Each of the hydrologic processing strategies (HPS) can help quantifying the propagation of total hydrological
uncertainty (THU) from different sources, i.e., input data, model structures and parameters, modelling assumptions, and
initial conditions of the models, etc.
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In the UZRB, the operational HFS is designed as a VEF modelling paradigm [22] in
which the best SR2MR forecasts are derived from the combination of multiple precipitation
products, multiple hydrologic models, and multiple parameters sets (Figure 3). This
technique makes it possible to increase the range of possible streamflow forecast ensembles
that can be used to evaluate and select the best representations of the hydrological states
and fluxes for the UZRB and its sub-basins.

2.4. Selection of Hydro Climatological Forcings

The input data can have significant impacts on the propagation of meteorological
and total hydrological uncertainty, and consequently, on the final streamflow forecasts. In
this regard, it is well known that rainfall is the most important variable for streamflow
simulation. At this stage, either point-based instrumental records or gridded-based cli-
matology products can be used to establish baseline conditions and to correct SPPs or
RCMs. The UZRB is a poorly gauged basin that lacks a consistent hydrometric network
with continuous records (only nine rain gauges with discontinuous records were available
for the HFS implementation). Therefore, the hydrological preprocessing hypothesis (also
known as meteorological postprocessing hypothesis) [22] was approximated using rainfall
climatology provided by CHIRPS (Climate Hazards Group InfraRed Precipitation with
Station data) [25,26], and temperature climatology provided by the Global Meteorological
Forcing Dataset (GMFD) [27].

To minimize the probability of errors propagated during the implementation of the
operational HFS, the quality of the climatological forecast products used in an HFS needs
to be evaluated and validated before they can be reliably used for hydrological appli-
cations. In the UZRB, three SPPs were evaluated, corrected, and then used to provide
short-range (realtime) rainfall estimates (1) TMPA-RT [28]; (2) CMORPH [29]; and (3)
PERSIANN [30,31]. To complete the SR2MR scheme, medium-range rainfall forecasts from
the Global Forecasting System (GFS) [32] were used. The original GFS product provides
rainfall forecasts in six-hour intervals (00, 06, 12, and 18 UTC) up to 16 days into the future.
However, since the quantity of missing records between 9 and 16 days in the archives is
larger (at least in this region), only rainfall forecasts provided at 00 UTC and up to eight
days into the future were selected for operational implementation. (Table 2).

Table 2. Climatology data used to correct (preprocess) rainfall forecasts from SPPs and RCMs.

Product Institution Spatial
Resolution

Temporal
Resolution Global Coverage Period

CHIRPS 1

[26]
UCSB 0.25◦ × 0.25◦ Daily 50◦ N–50◦ S

180◦ E–180◦ W 1981 to present

GMFD 2

[27]
Princeton 0.25◦ × 0.25◦ Daily 50◦ N–50◦ S

180◦ E–180◦ W 1981–2012

PERSIANN-CCS 3

[31]
UCI 0.25◦ × 0.25◦ 3-hourly 37.8◦ N–40.6◦ S

28.0◦ W–56.2◦ E 1998 to present

CMORPH 4

[29]
NOAA-CPC 0.25◦ × 0.25◦ 3-hourly 60◦ N–60◦ S

180◦ E–180◦ W 1998 to present

TMPA-RT 5

[28]
NASA GES DISC 0.25◦ × 0.25◦ 3-hourly 50◦ N–50◦ S

180◦ E–180◦ W 1998 to present

GFS 6

[32]
NOAA-NCEI 0.25◦ × 0.25◦ 3-hourly 90◦ N–90◦ S

180◦ E–180◦ W 2014 to present

Katima Mulilo GRDC Streamgauge Daily 17.48◦ S–24.3◦ W 1942 to present
1 Climate Hazards Infrared Precipitation with Station data (CHIRPS). 2 Global Meteorological Forcing Dataset (GMFD) 3 Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN) 4 Climate
Prediction Center morphing method (CMORPH) 5 Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis-Real
Time 6 Global Forecast System (GFS).
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2.5. Hydrologic Models for Operational HFS

The selection of a model structure to be included in the hydrologic modelling paradigm
(HMP) and ultimately in the operational HFS is as important as the selection of the model
parameters to be used in the calibration process [16]. For an operational HFS, many
HMP options can be implemented, including a single selection or an optimal combination
of multiple precipitation or climate products, multiple hydrological models, multiple
model state initializations, and/or multiple parameters sets. For example, the operational
VEF approach implemented in the UZRB, and its sub-basins utilized three distributed
hydrologic models (at 0.25◦ of spatial resolution): (1) HBV_DS, (2) HYMOD_DS, and
(3) VIC 4.2.b (Figure 4). The first two models are distributed versions of two traditional
well-known hydrological models: HBV [33,34] and HYMOD [35,36]. The VIC model used
in this study is a modified version of the well-known Variable Infiltration Capacity (VIC)
land surface model [37] that can resolve both the water and the energy balances. The
modification allows postprocessing of VIC model outputs with the Lohmann’s model for
routing [38]; a Gamma distribution to represent the catchment’s unit hydrograph; and
the linearized version of the Saint-Venant Equations for final river routing. Additional
details of the model states, fluxes, and parameters used in this study are provided in the
Appendix A.

Figure 4. Modelling structures used in the operational HFS implementation for the UZRB. (a) HBV_DS, (b) HYMOD_DS,
and (c) VIC 4.2.b. Details about model states, fluxes, and parameters are provided in the Appendix A.

2.6. Calibration of Models Included in the HFS

The models described in the previous section were calibrated and validated for the
whole UZRB and its sub-basins at 0.25 degrees of spatial resolution (approximately 25 km
at the Equator). Historical available daily streamflow records for the UZRB and its sub-
basins were used as reference data (Figures 5 and 6). The genetic algorithm [39] was used
to optimize the parameter sets of the three models. However, at this stage, any suitable
optimization scheme can be implemented (e.g., [39–43]; and many others) based on the
availability of time, resources, and expertise. In this study, a daily pooled calibration
considering all observed daily records in the UZRB, and its sub-catchments (Figure 5) was
applied at the Massachusetts Green High-Performance Computing Center (MGHPCC). The
algorithm was run in parallel processing mode using 100,000 iterations, with population
sizes ranging between 100 and 1000 generations. With this approach, the evaluation of the
most appropriate population of parameter sets within each generation could be conducted
in a more efficient manner. The Kling-Gupta efficiency [44] and the Nash-Sutcliffe effi-
ciency [45], among other measures, were used to evaluate the degree of agreement between
observed and simulated streamflow (Figure 6).
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Figure 5. Daily streamflow records for Katima Mulilo, Senanga, Lukulu, Kabompo, Kalabo, Chivata, and Kalene sub-
catchments. Daily average rainfall data from CHIRPS are also included. The numbers with “x” next to the names represent
an amplification along the y-axis for a better visualization of the hydrographs.

Figure 6. (Top) UZRB and sub-catchments utilized during the daily calibration process. (Bottom) Calibration performances
for Katima Mulilo Streamgauge (2002–2015).
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2.7. Operational Variational Ensemble Forecasting (VEF)

A group of i hydroclimatological inputs, j hydrologic models, and k calibrated model
parameters can be used to establish simple or variational ensemble forecasts. A VEF
approach can provide a larger number of forecasts than a simple assembling approach,
because it evaluates all possible modelling chain sequences that can be arranged to con-
struct an HFS (see Figure 7). At this stage, data assimilation techniques to support the
“perfect model assumption” can be also applied to generate deterministic streamflow fore-
casts. Ref. [46] reviewed and evaluated many available methods to perform deterministic
forecasts. However, in an operational context, the experience of streamflow forecasters
suggests that uncertainty bands can better support decision making for water management
schemes [47–52]. The intention of a VEF approach is to use all available weighted or
non-weighted components of a modelling chain (HFS) to generate streamflow forecasts.
The final hypothesis about the probability distribution of streamflow forecasts can be
approximated using several procedures applied to the Multiproduct, Multimodel, and
Multiparameter sets, through the implementation of a VEF approach that can be trained
during TW and used during TF as:

M(zi,j,k
yTF

|}i
uTF

,}j
pTW

,}k
θTW

) = H
(
}(zi,j,k

yTF
|}i

uTF
,}j

pTW
,}k

θTW
)
)
∀ TW ∈ {t0, . . . , t} and ∀ TF ∈

{
t, . . . , t f

}
(1)

}i
uTF

= }(ui
TF

|zi
uTW

, zi
uTF

) (2)

}j
pTW

= }(Sj
TW

|}k
θTW

) (3)

}k
θTW

= }(θk
TW

|zk
θTW

) (4)

}i,j,k
yTF

= }(zi,j,k
yTF

|}i
uTF

,}j
pTW

,}k
θTW

) (5)

• where,M is a Multiproduct, Multimodel, and Multiparameter Variational Ensemble
Streamflow Forecast for the forecast period TF.

• H is a family of hypothetical ensemble components for the warmup period TW and
used to forecast the period TF.

• }i,j,k
yTF

is a hypothesis of the hydrologic process from a family of input data i, hydrologic
model j, and parameter set k, about the HFS for the forecast period TF.

• zi,j,k
yTF

is the streamflow prediction i, j, k about the HFS response for the forecast
period TF.

• }i
uTF

is a hypothesis of the input data from a family of input data i about the HFS for
the forecast period TF.

• }j
pTW

is a hypothesis of the hydrologic process from a family of hydrologic models j
and for the warmup period TW.

• }k
θTW

is a hypothesis of the parameter sets from a family of parameter sets k for the

warmup period TW.
• ui

TF
is the control variable for the forecast period TF.

• zi
uTF

is a family of input data i about the HFS for the forecast period TF.

• zi
uTW

is a family of input data i about the HFS for the warmup period TW.

• Sj
TW

is the model structure j for the warmup period TW.

• θk
TW

is the parameter set k for the warmup period TW.

• zk
θTW

is a family of parameter sets k for the warmup period TW.

The VEF approach (Figure 7) makes it possible to explicitly represent how different
components of each model ensemble (modelling chain) vary according to all possible
combinations of biogeophysical representations of the climate system and the hydrologic
system (e.g., [53]). In addition, one of the novel aspects of this research is introduction
of the assumption that the forecast skill of hydrologic models to represent underlying
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hydrologic processes can be better captured by assessing the generalization capabilities of
multiple optimal parameters sets.

Figure 7. Multi-Input, Multimodel, and Multiparameter Variational Ensemble Forecasting (VEF). Each Hydrologic Process-
ing Strategy (HPS) is shown in the context of VEF.

2.8. Strategies to Reduce Uncertainty and Improve VEF in an Operational Environment

In the development of an operational streamflow forecasting paradigm, it must be
determined how total hydrological uncertainty will be reduced to improve streamflow
forecasts. This topic is still a matter of discussion among many hydrologists and researchers
around the world [47–52]. For instance, standardized processes to decompose, quantify, or
evaluate the meteorological or the total hydrological uncertainty propagated from a mod-
elling paradigm are required (see, i.e., Figure 8). The implementation of new techniques for
the decomposition of uncertainty can take advantages from VEF approaches to explore all
available sources of climate data and physical representations (i.e., model structures and
parameters) for hydrologic modelling. Taking this into account, a combination of VEF and
hydrological processing hypotheses can help us better understand how the propagation of
errors occurs. For example, from multiple climate products the amount of meteorological
uncertainty propagated through the modelling chain can be identified; then comparisons
can be made to estimate the amount of total hydrological uncertainty (THU) propagated
from the same system. This more systematic method to identify uncertainties can be useful
to inform additional pre- or postprocessing of THU.

Assuming that an operational HFS can be evaluated as a VEF approach, three main
strategies (Figure 8) to establish hydrological processing hypotheses can be applied to
evaluate and improve the forecast skill of any hydrological model: (1) Hydrological Pre-
processing (HPR) (or Meteorological Postprocessing), which can include the application
of bias correction techniques (i.e., physical or statistical improvements) to reduce the
propagation of errors or the application of Bayesian or non-Bayesian approaches to estimate
an optimal weighted combination of precipitation products; (2) Hydrological Processing
(HP), which can include improvements in the models’ structure, states, or parameters;
and (3) Hydrological Postprocessing (HPP), which can include bias correction techniques
applied over the streamflow forecasts or the use of Bayesian approaches to estimate an
optimal weighted combination of streamflow forecasts.
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Figure 8. Modelling paradigm implemented in an operational HFS context in the UZRB. The hydrological processing
hypotheses that can be implemented to improve streamflow forecasts are displayed as sources of uncertainty (h) propa-
gated from the input data (yi), and/or from the applied hydrological preprocessing and/or processing techniques. The
output data (ŷi) can also propagate uncertainty, which can be minimized through the implementation of hydrological
postprocessing techniques.

3. Results

The three main strategies for the evaluation of hydrological hypotheses (HPR, HP, and
HPR) were applied to evaluate and improve the forecast skill of operational streamflow
forecasts in the UZRB. The implementation of one or another strategy can have significant
impacts on the final forecasting products. For example, precipitation bias correction
methods (HPR strategies) can dramatically perturb the volume of water entering to the
system, in the HP strategies the most sensitive model parameters can significantly modify
water routing though the model structure, and HPP strategies can have a large impact
by directly perturbing the forecasts to adjust scaling and fitting issues derived from a
poor model representation. Details on how these three processing strategies can impact
operational streamflow forecasts are discussed in the following sections of this paper.

3.1. Strategy 1: Hydrological Pre-Processing (HPR)

Rainfall forecasts or any other climate forecasts derived from satellites or climatological
models are prone to errors that must be corrected. The propagation of these errors is more
significant when the forecasts are biased, especially those for rainfall, since this is the most
important variable for hydrological modeling. Corrections applied over rainfall records
allow for the identification of sensitivities or gaps associated to the improvement of satellite
data, for the calibration and validation of variational hydrological models, and for the
identification or selection of the best ensembles for any operational implementation of
an HFS.



Hydrology 2021, 8, 188 12 of 25

The corrections correspond to the application of any selected HPR hypothesis, and they
contribute to the reductions of the propagated meteorological uncertainties through the
VEF implementation. One of the most popular HPR strategies is Quantile Mapping [54–57],
a technique that has been previously evaluated in the UZRB and compared to Principal
Components Analysis (PCA) [13]. In the operational context, the Quantile Mapping (QM)
technique is applied at a daily time scale with the assumption that the probability density
functions (PDFs) of the rainfall observations and forecasts follow Gamma PDFs. The
key idea behind this technique is to swap the quantiles of the simulated data with the
quantiles of the observed data. The application of this technique has shown that daily
estimates from SPPs and RCMs can be satisfactorily corrected at the catchment scale or at
more regional scales (i.e., [54–60]). The previous studies agree with our findings for the
UZRB where precipitation estimates from three satellites were significantly improved after
the application of the Quantile Mapping (QM) method, used with a Gamma Probability
Distribution Function (PDF). The results showed that all raw SPPs (Figure 9a–c) could be
satisfactorily corrected at daily time scales (Figure 9d–f). Here, it is important to notice
that many missing and false detections of rainfall can be corrected (see all raw to corrected
scatters in Figure 9); however, the selection and fitting of a fixed PDF to the whole rainfall
dataset can also reduce the performance of rainfall forecasts in some areas if (1) the selected
PDF is not a good representation of the local climate conditions; if (2) the application of QM
is exclusively tied to regional parameters instead of cell-by-cell parameters or vice versa,
and if (3) only fixed temporal parameters are used instead of temporally varying parameters.
All these factors can have result on successful or inadequate rainfall corrections that can
have a significant impact on the next steps related to model calibration, final structural
design, and generation of final operational streamflow forecasts products.

Figure 9. Scatter plots for daily average rainfall in the UZRB. The observed daily rainfall records
from CHIRPS (with drizzle effect removed for rainfall ≤ 0.1 mm) are compared to raw (a–c) and
corrected (d–f) satellite-based rainfall estimates from CMORPH, TMPA-RT, and PERSIANN for the
period 2001–2017. Three error measures are included for comparison: the Root Mean Squared Error
(RMSE), the Nash-Sutcliffe Efficiency (NSE), and the Correlation Coefficient (R).

3.2. Strategy 2: Hydrological Processing (HP)

The VEF hydrologic modeling paradigm requires bridging science and engineering
for the design of functional and operational HFS. Therefore, all available precipitation
datasets utilized during HPR, must be used to evaluate the propagation of meteorological
uncertainty into final SR2MR streamflow forecasts (see Figure 10a1–a7). Generally, the
objective of HP is to constrain the range of valid model outcomes for the application of HPP
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strategies and for the generation of forecast products. Multimodel Ensemble approaches
are a popular alternative to propagate uncertainty into future forecasts; however, they can
yield boundless errors in inference, which can produce unbounded uncertainty bands [61].
Although this is an acceptable argument, the science and engineering of streamflow fore-
casting can play an important role in defining the best alternatives for the management of
total hydrologic uncertainty (THU). In doing this, Variational Ensemble Forecasting (VEF)
approaches have the advantage that they can be implemented using all available sources
of input data, hydrologic models, and optimal parameter sets, to improve the assimilation
of forecasts. VEF can also be coupled with regularization techniques to constrain the
forecasting range based on the classification and evaluation of historic events to define the
best ensembles for HPP.

Figure 10. (a1–a7) All 72 possible SR2MR streamflow forecasts simulated for the UZRB and its sub-basins using an
operational VEF approach. (b1–b7) Ranking of Total Skill (R2) propagated from SR2MR streamflow forecasts. (c1–c7) Best
10 VEF simulations ranked by R2. (d1–d7) Ranking of Root Mean Squared Error (RMSE) propagated from SR2MR forecasts.
(e1–e7) Best 10 VEF simulations ranked by RMSE. Best 10 VEF simulations. The basins and sub-basins are organized from
larger to smaller catchment area (left to right).

Constraining and selecting the best ensembles for operational forecasting should be
understood as a procedure that can vary at any model run. The variation of ensembles
depends on the historic forecast skill performance estimated for all available hydrological
events and their classified characteristic responses. In the UZRB and its sub-basins, the
implementation of an operational VEF approach was used to generate SR2MR streamflow
forecasts derived from all possible combinations of SPPs, hydrologic models, and optimal
parameter sets (Figure 10a1–a7). The propagation of meteorological uncertainty can be
quite large in the resulting streamflow traces when the whole input-model-parameter
space is mapped and used for operational forecasts. To avoid unbounded uncertainty
bands, the VEF approach allows improving the accuracy of streamflow forecasts through a
ranking evaluation and posterior identification of the best hydrologic ensembles for the
UZRB (Figure 10b1–b7 for forecasts ranked using skill analysis of R2 and Figure 10d1–d7 for
forecasts ranked using total uncertainty defined as RMSE). Then the best ten raw streamflow
forecasts are ranked using skill and/or uncertainty measures (Figure 10c1–c7,e7–e7). The
application of specific or combined verification techniques on streamflow forecasts usually
leads to an improvement of the HPP hypotheses. This multiple evaluation is helpful to
identify how skill and uncertainty perform over space and time but also to evaluate how
the spatial resolution of precipitation products can have a large effect on the operational
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forecasts. For instance, the smallest sub-basins inside the UZRB (see Kabombo, Kalabo,
Chivata, and Kalene in Figure 10) resulted in higher total uncertainty compared to large
basins (see Katima, Senanga, and Lukulu in Figure 10). This reduction in performance
in the smallest sub-basins is probably associated with the smallest number of available
precipitation grid cells, which produces larger averaged forecasting errors if missing or
false detections are present in the forecasts.

3.3. Evaluating Pre-Operational SR2MR Streamflow Forecasts

All 72 possible SR2MR forecasts that were generated in the UZRB by the combination
of multiple rainfall products, hydrological models, and optimal parameter sets, enabled
the identification of differences between the satellite precipitation products (SPPs) and
their HPR strategies (or bias corrections) but also between the hydrological models and
their optimal parameter sets (or HP strategy). From the VEF approach, the best raw model
ensembles (Figure 10) were retained (20 out of 72 ensembles were selected for this study)
and used for the generation of final streamflow forecasts products and reports for end users.

In general, an expected outcome is to have climatology products with better forecast
skill (see for example Figure 11a,b) because of the instrumental corrections applied during
the Hydrological Preprocessing (HPR) stage. However, one disadvantage of the climatology
products is that they are not available in the SR2MR domain. For this reason, SPPs and
RCMs are still needed for SR2MR streamflow forecasts in the UZRB or any other basins
around the World. Therefore, the selection of final streamflow forecasts is also operationally
based on SR2MR records. Furthermore, the quantification and propagation of retrospective
meteorological uncertainties might be required for the release of final forecasts depending
on the needs of end users. In the UZRB, multiples ensembles for deterministic streamflow
forecasts and the spread of uncertainty by means of a probability density function were
established for each daily SR2MR forecast. These forecasts were provided for Namibian
Hydrological Services, one of the relevant African institutions that manages water resources
in the Upper Zambezi River.

3.4. Strategy 3: Hydrologic Post-Processing (HPP) for Raw Streamflow Forecasts

Our inability to generate exact physical representations of natural hydrologic systems
creates the need for streamflow forecasts that can quantify and reduce the total hydrologic
uncertainty (THU) propagated from a hydrologic modelling paradigm (HMP). Hydro-
logical Postprocessing (HPP) hypotheses focus on establishing standardized methods to
quantify and propagate total hydrological uncertainty (which is the sum of all uncertainties
i.e., input, parameter, or structural uncertainties propagated into the final streamflow
forecasts). Similar to HPR and HP, different methods can be applied for HPP hypotheses,
i.e., stochastic, Bayesian, or machine learning methods can be used as post-processors
for the final ensemble of SR2MR streamflow forecasts. The objective at this stage is to
minimize the error of the deterministic forecast but also the spread of total hydrological
uncertainty around the raw streamflow forecasts. The deterministic forecast can be ob-
tained as an optimal weighted SR2MR streamflow forecast, which is used to propagate
the total hydrological uncertainty (Figure 12). In the UZRB, a Multivariate Combinatorial
Linear Regression (MCLR) approach was applied as a regularization technique to inform
the best selection of hydrologic ensembles that minimized the spread of total hydrologic
uncertainty. The MCLR was also used as a first level hydrologic postprocessor to resolve
scaling issues of the raw streamflow forecasts (Figure 12). The final ensemble of raw and
corrected SR2MR streamflow forecasts was then evaluated using two inference-based hy-
drologic postprocessors: (1) Inverse-Variance Weighting (IVW), and (2) Inverse-Probability
Weighting (Figure 12). Both approaches were compared to the best streamflow predic-
tion (BSP) and the Average Streamflow Prediction (AVSP) using the retrospective total
hydrologic uncertainty quantified using the root mean square error in millimeters per day
(Figure 12). The application of hydrologic postprocessors (MCLR, IVW, and IWP) revealed
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an improved efficiency of both the forecasts and the propagation of THU in the UZRB and
its sub-basins (Figure 12).

Figure 11. (a) Peak streamflow hydrograph (January to June of 2017) for the UZRB at Katima Mulilo,
and (b) Ranked Predictive Skill (R2) for the best 20 simulations obtained from the operational VEF
approach. The acronyms represent the Hydrological Models (HYM for Hymod; HBV for HBV; and
VIC for VIC); the Satellite Precipitation Products or Climatology (CH for CHIRPS and CH2 for drizzle
removed effect; CM for CMORPH and CM2 for its bias corrected version; TM for TMPA and TM2
its bias corrected version; PE for PERSIANN and PE2 its bias corrected version); and the utilized
parameter set (CH is CHIRPS parameter set; CM is CMORPH parameter set; TM is TMPA parameter
set; and PE is PERSIANN parameter set).

Figure 12. (top) Catchment-average satellite-based precipitation for the UZRB and its sub-basins. SR2MR streamflow
forecasts for Katima Mulilo, and its sub-basins Senanga, Lukulu, Kabompo, Kalabo, Chivata, and Kalene (organized
from left to right according to their size). The y-axis represents the daily streamflow forecasts, and the x-axis represents
the validation and testing periods (2002–2004). The initial streamflow forecasts with their respective uncertainty bands
(RMSE in mm) are shown in red. The hydrologically postprocessed (HPP) forecast is shown in light green. BSP is the best
streamflow forecast; AVSP is the average streamflow forecast; IVW-SP is the Inverse-Variance Weighting streamflow forecast;
IVP-SP is the Inverse-Probability Weighting streamflow forecast. The letter “c” at the end of each acronym represents the
regularization applied by combining Multivariate Combinatorial Linear Regression (MCLR) and Inference-Based methods
for SR2MR daily streamflow forecasting.
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The combination of HPP with short and long-term memory windows (for periods
ranging between 5 and 180 days before the event) also proved to be more efficient in
improving the performance of SR2MR streamflow forecasts (see Appendix A Figure A3
for details). The effect of HP for operational streamflow forecasting was mainly observed
in two aspects: (1) a better performance of the deterministic streamflow forecasts, i.e.,
correction of scaling issues, and (2) narrower total hydrologic uncertainty bands around
the deterministic forecast, i.e., more practical and realistic uncertainty bands for decision
makers (see details in Figure 12).

4. Discussion

To establish operational hydrological forecasting systems (HFS) it is important to first
define who will be the main and potential end users of the streamflow forecasts prod-
ucts within the basin under consideration. In the UZRB (Figure 1), the need for better
water management schemes for flood warning and water allocation schemes has required
the generation of daily SR2MR streamflow forecasts (Figure 2). Several water users and
water authorities of the countries sharing waters from the UZRB can take advantage of
the benefits of this operational HFS implementation, which can largely help developing
sustainable water management and allocation activities for this transnational basin. For
example, the water users of streamflow forecasts in the UZRB can be informed about the
main water management decisions that need to be taken care of for water supply, reservoir
management, hydraulic design, etc. These decisions are generally complex; therefore, un-
der such a scenario, the best way to inform the local authorities and end users in the UZRB
can be obtained if we had ‘perfect’ weather forecasts, or climatic predictions, that could
be combined with ‘perfect’ hydrologic models to generate “almost” perfect streamflow
forecasts. If this hypothesis were still true only one weather or climatic prediction (model),
and one hydrologic model would be needed for streamflow forecasting. For example,
the ‘perfect’ climate estimates of the climate model could be combined with one ‘perfect’
hydrological model, and the streamflow prediction should be close enough to inform both
managers and users, so they can apply the right decisions for water management. The
problem of this hypothesis is the fact that so far, hydrologists and meteorologists has not
been able to create or establish perfect model representations of climate and hydrology,
i.e., models are simplified representations of the hydroclimatological processes occurring
across spatiotemporal scales. Therefore, we know and assume that during the operational
implementation of the HFS in the UZRB there were countless sources of uncertainty, and
different tools and schemes were established in this study to quantify how meteorological
and hydrological uncertainty propagate through an operational VEF approach. One of the
first adopted techniques that emerged was the utilization of single model realizations as
those provided in many previous studies (see for example [3–12]). Then, multi-ensembles
of climate predictions were used to quantify and propagate the meteorological uncertainty
through the streamflow forecasts. The main issue of this technique is that it did not al-
low quantifying the uncertainty propagated from the hydrological model either from the
model structure or from its parameters. To resolve this problem [15], proposed a way
to quantify the hydrological uncertainty from a single model with multiple parameters
that can be obtained from the calibration of multiple climate products. The final set of
outputs is obtained from a multiproduct and multiparameter scheme. This technique
allows quantifying the hydrological uncertainty propagated from multiple parameters sets
of a single hydrological model; however, it does not allow quantifying how the uncertainty
propagates and varies as a function of the structure of the selected hydrological model. This
latter conceptualization of hydrological uncertainty is tied to the modelling assumptions
required to establish the physical representation of the hydrologic system. Obviously, these
assumptions also vary as a function of the selected hydrological model and its structure. In
this context, hydrologists have opted to promote more comprehensive modelling schemes
that combine multiproducts and multiple hydrological models [14,16–18]. With this tech-
nique, it has been possible to quantify the meteorological uncertainty propagated from
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the climate products and the hydrological uncertainty propagated from the hydrologic
models and their corresponding structures. On the other hand, recent studies [62–64] have
argued that the performance of a single hydrological model can be improved together
with the streamflow forecasts if multiple climate products are combined with a model
that is perturbed by generating multiple initializations with different initial conditions,
i.e., changes in surface storage, groundwater storage, or snow storage, among others. The
main objective behind this approach is to capture the current hydrologic condition of a
catchment to assimilate streamflow. For example, in this regard it has been traditionally
assumed that the warmup period is required for hydrologic modelling; however, this
approach can be bypassed given that the initial states are adjusted beforehand, taking in
consideration the streamflow assimilation. This scheme has also stablished a new source
for the quantification of hydrologic uncertainty just by changing the initial conditions of
the hydrological model. With this technique, a new research niche has been recognized
by hydrologists and now is also applied to quantify total hydrological uncertainty (THU).
Having said that, it is also important to add that all the schemes mentioned above have
allowed quantifying the hydrological uncertainty in separated procedures, either from
multiple climate products, from multiple hydrological models, from multiple parameters
sets, or from multiple initializations. In fact, all these hydrologic modeling paradigms
(HMP) are still applied in a systematic manner to identify and quantify different sources of
hydrological uncertainty.

Despite the existence of all these HMP previously mentioned, none of them have
proposed a combined technique to quantify both meteorological and hydrological uncer-
tainties propagated from different sources of a VEF implementation (see Figures 7 and 8),
i.e., sources as climate forecasts, modelling assumptions, and optimal parameter sets, that
can be evaluated for any operational hydrological forecasting system (HFS) implementa-
tion with VEF. To accomplish this issue, we have implemented a VEF approach [22] based
on multiple satellite precipitation products (and GFS precipitation forecasts), multiple
hydrologic models, and multiple optimal parameters sets for SR2MR daily streamflow fore-
casting. The VEF approach implemented in the UZRB (Figure 10) has allowed increasing
the number of possible hydrologic ensembles available for streamflow forecasting, together
with an improvement of the streamflow assimilation (observed versus predicted). It also
provides a more comprehensive and systematic framework to identify and propagate the
spread of total hydrologic uncertainty in an operational hydrologic forecasting system.
Now, the natural question is how much room is left to define new modelling paradigms or
techniques that can be used to quantify or minimize the propagation of total hydrological
uncertainty? To answer this question, we need to differentiate between what we can do to
define the best integrated implementation of an HFS, and what adjustments are required at
each separated component (i.e., inputs, models, or outputs) of the HFS. The operational
HFS implementation in the UZRB, identified and considered three general hydrologic
processing strategies (HPS) that can be applied to any VEF approach. If we consider that
any hydrologic modelling paradigm (HMP) can either include multiple inputs; hydrologic
models, parameters, initializations; and outputs, then, we can hypothesize that at each
component of the HMP it is possible to apply additional techniques or methods to improve
streamflow forecasting. These strategies were conceptualized as: (1) Hydrological Pre-
processing (HPR), (2) Hydrological Processing (HP), and (3) Hydrological Postprocessing
(HPP). Taking advantage of the strategies proposed for the establishment of hydrologic
processing strategies or hypotheses, standardized methods for HPR (Figure 9) and HPP
(Figure 12) were applied in the UZRB, showing that the performance of raw VEF stream-
flow forecasts can be significantly improved, and the spread of uncertainty can be better
constrained by applying regularization processes that combine the strength of Multivariate
Combinatorial Linear Regression (MCLR) and Inference-Based approaches (Figure 12).

The science and engineering of future operational streamflow forecasting in the UZRB
will continue concentrating efforts in improving the forecasts; however, new needs from
end users might also require improving the physical representation at the catchment scale.
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For this, it will be necessary to establish the role of mathematical, statistical, and/or machine
learning methods that can be used to correct and propagate the hydrologic uncertainty from
different components of a VEF approach, i.e., Bayesian, stochastic, pattern, or inference-
based learning methods, etc. The performance of different rainfall products and methods
also needs to be evaluated across different catchment sizes and forecast timescales to
determine the space–time variability that propagates total hydrologic uncertainty. This
evaluation must also be extended to determine the dependence of the accuracy of the
streamflow forecasts and the propagation of hydrological uncertainty from physically
based models. All the above will indicate the applicability limits of the VEF approach
based on multiple precipitation or climate products, multiple hydrologic models, and
multiple optimal parameters sets. All of the above will allow the establishment of new
robust theoretical and hypothetical paradigms to quantify, evaluate, reduce, and manage
the propagation of total hydrologic uncertainty using VEF approaches.

5. Conclusions

This paper described the main stages and processes required to implement and
improve an operational hydrologic forecasting system (HFS) in the UZRB and its sub-basins.
The process of implementation is very complex, and important decisions needed to be
made about the input data (precipitation from satellites or climate products), the hydrologic
models to be included along with their optimal parameter sets, and the timescales required
for the generation of streamflow forecasts.

Once the HFS was completely operational in the UZRB, additional improvements to
the forecasts were required to improve its performance and reduce the spread of total hydro-
logic uncertainty into the final streamflow forecast products. In this regard, three general
strategies to improve the performance of VEF approach were proposed: from Hydrological
Preprocessing to Postprocessing techniques that can improve the input data, the hydrologic
models (or their structures), the optimal parameter sets, and the raw streamflow forecasts.
The whole range of available techniques for operational HFS will require more detailed and
standardized conceptualizations. In this regard, bias corrections or preprocessing (HPR)
techniques applied over the input data will still play an important role in operational
hydrological forecasts for the UZRB. The operational implementation of the VEF combined
with regularization and inference-based methods improved the performance of streamflow
forecasts as the primary need from end users in the UZRB; however, new alternatives
to improve the physical understanding of the basin are still a pending task. Finally, it is
important to add that the science of Hydrological Postprocessing is still under an early
stage of development, and it still lacks the standardized methods that can be used for these
purposes. Emerging methods will need to be evaluated to establish the real boundary
between physical and statistical needs in operational streamflow forecasting. This disci-
pline will also require a natural merging of science and engineering (practical applications)
in a real-world context to establish baseline conditions for streamflow forecasting and
hydrological uncertainty quantification and propagation.
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Appendix A. Hydrologic Models Used for SR2MR Streamflow Forecasting in the UZRB

The HBV_DS model is a modified distributed version of the Hydrologiska Byrans
Vattenbalansavdelning (HBV) model (see details in Bergström, 1976; Seibert and Vis, 2012;
Yang and Wi, 2018), and it simulates catchment discharge on a daily time step, based on time
series of precipitation and air temperature. The implementation of HBV_DS (Figure A1)
requires the calibration of 20 parameters (see Table A1). The Potential Evapotranspiration
(PET) is computed as a function of daily mean temperature and hours of daylight using the
Hamon Method (Hamon, 1961). In the snow routine, the snow accumulation and snowmelt
are computed by a degree-day method (see Moore, 1993; Rango and Martinec, 1995). The
actual evaporation and the groundwater recharge are simulated as a function of the actual
soil water storage. The surface runoff, the interflow, and the percolation are simulated using
a single linear reservoir with three outlets, and the groundwater routing is represented by
a single linear reservoir. The sum of these outflows is then routed using the diffusive wave
approximation of the linearized Saint-Venant equation (Lohmann et al., 1998).

Figure A1. Hydrologiska Byrans Vattenbalansavdelning (HBV) Model Structure (states, fluxes,
and parameters).

The HYMOD_DS model (Wi et al., 2015) is a modified version of the original HyMod Hy-
drological Model (see details in Moore, 1985; Boyle et al., 2000; Gonzalez-Leiva et al., 2016;
Valdés-Pineda et al., 2016). The modified distributed version (Figure A2) simulates stream-
flows on a daily time step and requires daily precipitation and mean temperature as input
variables. The implementation of HYMOD_DS requires the calibration of 15 parameters
(see Table A1). The model is based on the probability-distributed storage capacity concept
(proposed by Moore, 1985) to represent the soil moisture accounting component. Estimates
of potential evaporation rates are calculated using the Hamon Method (Hamon, 1961). The
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rate of change in snow and glacier volume is expressed by the degree day factor (DDF)
mass balance model (see Moore, 1993; Stahl et al., 2008). The direct runoff is character-
ized by an instantaneous unit hydrograph (IUH) (Nash, 1957), in which the catchment is
represented as a series of “n” linear reservoirs. The groundwater routing is simplified as
a single linear reservoir. Finally, similar to the HBV_DS model, the transport of water in
the channel system is described using the diffusive wave approximation of the linearized
Saint-Venant equation (Lohmann et al., 1998).

Figure A2. HyMod Hydrologic Model Structure (states, fluxes, and parameters).

The VIC (Variable Infiltration Capacity) Model (Liang et al., 1994, 1996; Cherkauer
et al., 2003; Bowling et al., 2004; Bowling and Lettenmaier, 2009) is a large-scale semi-
distributed hydrologic model (Figure A3). VIC simulates streamflows on a sub-daily or
daily time step and requires daily precipitation, mean daily temperature, and/or mean
wind speed as input variables. The VIC model has about 50 parameters; however, its
implementation requires the calibration of 5 parameters (Table A1). The model balances
both the water and surface energy budgets within the grid cell; and its sub-grid variations
are captured statistically. The total evapotranspiration over a grid cell is computed as the
sum of three types of evaporation: evaporation from the canopy layer of each vegetation tile,
transpiration from each of the vegetation tiles, and evaporation from the bare soil (Liang
et al. 1994). The snow model in VIC represents the snowpack as a two-layer medium and
solves for energy and mass balance for the ground surface snowpack in a manner similar
to other cold land processes models (Anderson, 1976; Wigmosta et al., 1994; Tarboton et al.,
1995). The VIC model uses the variable infiltration curve (Zhao et al., 1980) to account
for the spatial heterogeneity of runoff generation. It assumes that surface runoff from the
upper two soil layers is generated by those areas for which precipitation, when added to
soil moisture storage at the end of the previous time step, exceeds the storage capacity of
the soil. The formulation of subsurface runoff follows the Arno model conceptualization
(Franchini and Pacciani, 1991; Todini, 1996). To finally simulate streamflow, VIC results are
postprocessed with a separate routing model (Lohmann, et al., 1996; 1998a; b), based on a
linear transfer function to simulate the streamflow.
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Figure A3. Variable Infiltration Capacity (VIC) Model Structure (states, fluxes, and parameters).

Table A1. Parameters included in the calibration of the HBV_DS, HYMOD_DS, and VIC models.

Module Parameters Description Range Units Model

Soil Moisture

Cpet
Proportionality Coefficient of Hamon

Potential Evapotranspiration 0.1–2 non-dim HVB–HYMOD

S1
max Maximum storage capacity of soil

moisture accounting tank 5–1500 (mm) HVB–HYMOD

β
Shape parameter of the storage capacity

distribution function 0.01–1.99 non-dim HVB–HYMOD

α
Split parameter for quick and slow

components 0.01–0.99 non-dim HYMOD

θwlt
Soil Permanent Wilting Point (limiting soil

moisture for PET occurrence) 0.1–1 non-dim HBV

uzL
Upper reservoir water level for quick

runoff occurrence 0–1000 mm HBV

Ks
Recession constant for quickflow in the

upper reservoir 0.01–0.99 day−1 HVB–HYMOD

Kb
Recession constant for slowflow in the

lower reservoir 0.0001–0.99 day−1 HVB–HYMOD

Kif
Recession constant for interflow in the

upper reservoir 0.001–0.15 day−1 HBV

Kp
Flow rate for percolation between the

upper and lower reservoir 0–3 mm day−1 HBV

bi
Shape parameter of the Variable

Infiltration Capacity curve 0–0.4 non-dim VIC

D2 Second Soil Layer Thickness 0.1–1.5 m VIC
D3 Third Soil Layer Thickness 0.1–1.5 m VIC

DSmax Maximum Baseflow Velocity 0–30 mm day−1 VIC
DS Fraction of Maximum Baseflow Velocity 0–1 non-dim VIC

WS
Fraction of Maximum Soil Moisture

content of the third soil layer 0–1 non-dim VIC
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Table A1. Cont.

Module Parameters Description Range Units Model

Snow

Ddf Degree-Day Factor 0.001–10.0 mm ◦C day−1 HVB–HYMOD
Scf Snowfall Correction Factor 0.4–1 non-dim HBV
TS Temperature threshold for snow falling 0–5 ◦C HVB–HYMOD
TM Temperature threshold for snowmelt 0–5 ◦C HVB–HYMOD

TTI
Temperature interval for mixture of snow

and rain 0–5 ◦C HBV

WHC
Liquid water holding capacity of the

snowpack 0–0.2 non-dim HBV

CRF
Refreezing coefficient of the liquid water

in snow 0–1 non-dim HBV

Glacier
r Glacier melt factor 1–2 non-dim HYMOD

Kg Glacier reservoir release coefficient 0.01–0.99 non-dim HYMOD
Tg Glacier melt temperature threshold 0–10 ◦C HYMOD

Routing

n Grid Unit Hydrograph parameter
(number of linear reservoirs) 1–99 non-dim HVB–HYMOD

Kq
Grid Unit Hydrograph parameter

(reservoir storage constant) 0.01–0.99 day−1 HVB–HYMOD

Vw Wave velocity in the linearized
Saint-Venant equation 0.5–5.0 m s−1 HYMOD

D Diffusivity in the linearized
Saint-Venant equation 200–4000 m2 s−1 HYMOD

Figure A4. Effect of short and long-term memory (moving window) on the performance of daily streamflow forecasts for
the UZRB and its sub-basins. From left to right each plot represents a memory window ranging between 5 and 180 days.
The following windows were used: 5, 8, 15, 30, 45, 60, 90, 120, 150, and 180 days. Reddish colors represent aggregated
streamflow forecasts and blueish colors represent weighted streamflow forecasts.
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