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Abstract: Agriculture is considered a hotspot for wireless sensor network (WSN) facilities as they
could potentially contribute towards improving on-farm management and food crop yields. This
study proposes six designs of unmanned aerial system (UAS)-enabled data ferries with the intent
of communicating with stationary sensor node stations in maize. Based on selection criteria and
constraints, a proposed UAS data ferrying design was shortlisted from which a field experiment was
conducted for two growing seasons to investigate the adoptability of the selected design along with an
established WSN system. A data ferry platform comprised of a transceiver radio, a mini-laptop, and
a battery was constructed and mounted on the UAS. Real-time monitoring of soil and temperature
parameters was enabled through the node stations with data retrieved by the UAS data ferrying. The
design was validated by establishing communication at different heights (31 m, 61 m, and 122 m) and
lateral distances (0 m, 38 m, and 76 m) from the node stations. The communication success rate (CSR)
was higher at a height of 31 m and within a lateral distance of 38 m from the node station. Lower
communication was accredited to potential interference from the maize canopy and water losses
from the maize canopy.

Keywords: unmanned aerial systems; wireless communication; crop canopy interference; long-range
radios; multi-rotor unmanned aerial system; flight scheduling; data ferry; communication success rate

1. Introduction

Wireless communication technology has contributed towards the advancement of
precision agriculture by providing alternatives to gather and process information [1] which
can improve field crop production efficiency and profitability along with natural resources
conservation. The technology has contributed to the implementation of wireless sensor
networks (WSNs), a compilation of several nodes, with each node being a low-power and
low-cost device equipped with one or more sensors, a processor, memory, a power supply,
and a transceiver [2]. Each sensor node communicates wirelessly through a communication
link and transmits data to a base station or coordinator node via a gateway.

The feasibility of deploying WSNs at low cost has made these systems highly desirable
for military, agriculture, sports, medicine, and industry. The potential applications of
WSNs as cost-effective processes to improve agricultural resource management have been
reported: irrigation management systems [3], farming systems monitoring [4–6], pest
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and disease control [7], controlled use of fertilizers [8], cattle movement monitoring [9],
groundwater quality monitoring [10], greenhouse gases monitoring [11], asset tracking [12],
and remote control and diagnosis [13,14]. The most promising applications for WSN
in precision agriculture are irrigation management, farming monitoring, disease control,
and fertilizer accuracy [15]. However, some challenges in WSN applications have been
identified such as low battery power, limited computation capability, and sensor node
low memory storage [2,16] as well as energy consumption, cost, communication range,
optimum deployment schemes, measurement periods, routing protocols, scalability, and
fault tolerance [17]. Thus, innovations and creativity in WSN design are needed to be
effectively used in agricultural applications.

Unmanned aerial systems (UASs) have been widely used in wireless communication
applications because of their high maneuverability and low cost. For an existing WSN,
the UAS can be an ideal carrier to form a UAS-based WSN (UWSN). A UAS-based WSN
could provide a faster moving speed, longer deployment range, and a relatively longer
operating time [18] than WSNs employing other traditional mobile sensor nodes. Recently,
the potential scope of a UWSN was identified as a research topic to be investigated for
various precision farming applications. Malaver et al. [11] presented the development of a
solar-powered UWSN to monitor greenhouse gases (methane and carbon dioxide). Kirichek
and Kulik [19] developed analytical and simulation models of a flying ubiquitous sensor
network and concluded that such a device is suitable for transferring a small amount of data
(transmission rate of 240–280 bits/s) over long distances. Wu et al. [20] investigated the
dynamics of uplink and downlink communication using multiple UAS-mounted aerial base
stations to serve a ground-based group of users. A rotary-wind UAS-based WSN system for
wireless communication was proposed by Zeng et al. [21] and required minimum energy
to operate. A remotely piloted unmanned lighter-than-air platform was recently proposed
by Gili et al. [22] for the purpose of land use monitoring.

In this study, a UWSN system design is proposed which would comprise hybrid ter-
restrial surface and sub-surface sensor network stations that communicate with an airborne
data ferry deployed on a UAS. Each sensor node station of the network is equipped with
three soil water content sensors and one infrared thermometer. The UAS-based data ferry-
ing design is based on criteria and constraints based on the experimental site (research farm)
and the nature of the experiment to be conducted. The UAS-based data ferrying system
was designed to include wireless technology, a UAS, a radio power source, and memory
storage. The major constraints assessing the system were design cost and adoptability.

The design objective was to assemble and test a UAS-enabled data ferrying system
that communicates wirelessly with a soil water/crop canopy temperature measurement
WSN system with the purpose to monitor soil water content, plant canopy temperature,
and air temperature at strategically selected locations across a field in real-time. Six designs
based on design objective and constraints were considered and assessed; the best design
that met the desired requirements (based on how the system meets the design objective
for a field and constraints like that used in this study) was selected and validated in maize
over different heights and lateral distances.

2. Materials and Methods
2.1. Proposed UAS Data Ferrying Designs
2.1.1. Criteria

The wireless communication system was designed to develop a communication chan-
nel that sufficiently covers the 50-ha research area at the University of Nebraska’s Eastern
Nebraska Research and Extension Center (ENREC) near Mead, Nebraska. The maximum
permissible UAS flight height (as per Federal Aviation Administration) is 122 m above
ground, thus limiting the testing for successful wireless communication to a 122 m height.
Signals between the transceiver (primary) radio and the secondary radio must overlap
within their emitted signal footprints to establish communication. Thus, the line of sight
(clear communication path) between the transceiver radio and the secondary radio must
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be considered for a typical US mid-west maize farm (area > 50 ha, i.e., diameter > 800 m).
In addition, communication depending on the location of the node station radio could be
affected by the vegetative canopy itself, which could cause signal propagation absorption,
reflection, attenuation, and scattering [23]. Therefore, the desired range of distance between
the radios could be approximately 800 m (considering the size of the farm is 50 ha, and
UAS is maneuvering at a height of 122 m) to establish the communication.

The basic scheme is to retrofit the UAS with a wireless transceiver as a data ferry to
retrieve datasets from the wireless sensor network (WSN) as the UAS flies across a typical
US mid-west maize field. The design should consider a scalable network size scenario
where more radios are needed. The transmission time from each node station for the study
field should be approximately two minutes to accommodate the battery charge needed by
the UAS while it maneuvers over the sensor node stations and downloads data. Thus, the
transmission rate is expected to be a few hundred kilobits per second with the minimum
data transfer of approximately 2–3 megabits per flight since each sensor node station will
record measurements from five sensors frequently.

2.1.2. Constraints

A primary reason for the slow adoption of precision agriculture technology by pro-
ducers has been the low rate of return on investment. An opportunity to place low-cost
sensors and advanced information systems for improving agricultural operations efficiency,
while protecting natural resources (non-destructive installation) will add novelty to the
overall objective; a low learning curve and low cost will encourage adoption of the wireless
technology by producers/agronomists.

2.1.3. Design Parameters and Proposed UAS Data Ferrying Designs

Considering the described design objective, criteria, and constraints, various wire-
less communication system data ferrying designs were explored based on capabilities,
adaptability, and cost of the following factors: (1) wireless technology protocol, (2) UAS,
(3) system power source, and (4) data storages.

1. Three wireless technologies designed for industrial/commercial applications that are
mostly used for agricultural farm operations were explored for this study: long-range
radio (LoRa), ZigBee, and general packet radio service (GPRS). The LoRa protocol
was introduced by the LoRa Alliance for the low power and wide-area Internet of
Things (IoT) communication associated with the indoor transmission, Pitì et al. [24].
The LoRa gateway can collect data from LoRa nodes to construct the topology of a
star network and may communicate with a cloud server over a long communication
for high scalability. The LoRa protocol has a wide range of applicability in preci-
sion agriculture [6,25,26]. Sensor nodes based on the ZigBee wireless protocol in the
agricultural field can communicate with a router up to 100 m. Recent studies have em-
ployed ZigBee for precision agriculture [27–29] because of its low power consumption,
low cost, self-forming characteristics, and suitable communication range. General
packet radio service (GPRS)/3G/4G employs packet data (a bit of data that is pack-
aged for transmission) service for GSM-based cellular phones. The GPRS technology
communication rates depend on consumer volume where consumers share common
communication channels and resources and frequently experience variable delays
and throughputs. The sensors could be interfaced to the GPRS system sensor board
to obtain and transmit information to the remote server through the GPRS board,
which depends on a GSM/GPRS mobile network. Some studies have deployed a
GSM/GPRS mobile network for applications in precision agriculture [30–32].

2. Fixed-wing and multi-rotor UAS designs were considered as these are mostly used
for agricultural operations. Fixed-wing UAS has a longer flight endurance capacity
while multi-rotors can provide for stable and easy vertical take-off and landing [33].

3. The power supply to the wireless communication setup on the UAS could be tethered
from the UAS or be powered from an external battery source mounted on the UAS.
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4. Transmitted data could be stored on the memory storage of the UAS or transmitted to
the cloud.

It is essential for the system to be cost-effective and adoptable.
Based on these design parameters, six data ferrying communication systems designs

(i.e., a combination of wireless technology protocol, UAS, a power source for the system,
and data storages) were assessed:

Design A: ZigBee wireless protocol, fixed-wing UAS, power tethered from UAS, cloud
memory storage.

Design B: LoRa wireless protocol, multi-rotor UAS, external power source, memory
storage over the UAS.

Design C: GPRS wireless protocol, fixed-wing UAS, external power source, memory
storage over the UAS.

Design D: ZigBee wireless protocol, multi-rotor UAS, power tethered from UAS, cloud
memory storage.

Design E: LoRa wireless protocol, fixed-wing UAS, power tethered from UAS, cloud
memory storage.

Design F: GPRS wireless protocol, multi-rotor, external power source, memory storage
over the UAS.

The cost-effectiveness and design adoptability of each design was also evaluated.

2.1.4. Decision Matrix

Proposed designs were assessed based on the design objective for a typical US mid-
west maize field (area > 50 ha), the criteria, and the constraints. The proposed designs were
evaluated based on an evaluation matrix where points were allocated to the four criteria,
and two constraints. The evaluation results are provided in a matrix (Table 1) with scores
for each criterion and constraint explained below:

Table 1. The unmanned aerial systems (UAS) data ferry decision matrix table for six proposed designs
based on the four criteria and two constraints with the total points for each design.

Criteria 1
Wireless Technology

Criteria 2
UAS

Criteria 3
Power Supply

Criteria 4
Data Storage

Constraint 1
Cost

Constraint 2
Adoptability Total

Design A 2 1 1 1 3 3 11

Design B 3 2 2 2 4 5 18

Design C 1 1 2 2 4 3 13

Design D 2 2 1 1 5 5 16

Design E 3 1 1 1 3 3 12

Design F 1 2 2 2 5 4 16

Criteria 1 (wireless technology): The six wireless technology protocol designs were
analyzed and assigned points from 1 to 3 (1 being less desirable and 3 being highly desir-
able). Since the GPRS wireless protocol has a communication range between 1–10 km and a
high-power consumption (560 mW), the GPRS was assigned a point value of 1. The ZigBee
wireless protocol has a communication range of 100 m and has lower power consumption
(36.9 mW) but the line-of-sight between the sensor node and the coordinator node must
be available, so the potential for canopy interference could be an issue. Thus, the ZigBee
wireless protocol was awarded a point value of 2. Because the LoRa wireless protocol has a
long range (5 km) and low power consumption (100 mW), it was rated at 3 points.

Criteria 2 (UAS): The two UAS systems were evaluated and given points from 1 to 2
(with 2 being the more desirable rating). The fixed-wing UAS was rated 1 out of 2 points
because of its limitations of low maneuverability, higher cost, and tedious take-off and
landing. The multi-rotor UAS was rated 2 points because of its better maneuverability and
more controlled take-off and landing as compared to the fixed-wing UAS.



Sensors 2022, 22, 1863 5 of 18

Criteria 3 (power supply): The two types of power supplies studied were given points
from 1 to 2. Since the power supply to the wireless communication setup tethered from the UAS
could potentially add load on the UAS battery, it was rated 1 out of 2 points. An inexpensive and
light external power source mounted on the UAS was determined as a better alternative than
tethering the power from UAS since it could sufficiently accommodate the power requirements
of the whole system and not add power load to the UAS. Thus, it was assigned 2 points.

Criteria 4 (data storage): Two data storage modes were considered (on-board UAS
memory and cloud storage) and awarded points from 1 to 2. Data transmitted over a single
flight would be small (around 2 megabits), so cloud storage would not be very helpful in
this scenario as it would add unnecessary complexity. Cloud data storage was given 1 out
of 2 points, while an on-board UAS memory card was given 2 points.

Constraint 1 (cost): Cost-effectiveness of each system design was evaluated with points
ranging from 1–5. Low points were allocated to the design with higher costs. As much
as 2 points could be allocated for the cost of the wireless technology protocol, as much
as 2 points could be allocated for the UAS cost, and 0 to 1 point for the power source for
the wireless communication. The LoRa and ZigBee wireless protocols (allocated 2 points)
were low-cost setup systems in comparison to a GPRS wireless protocol (1 point). The
fixed-wing UAS is an expensive UAS (allocated 1 point) in comparison to the multi-rotor
UAS (2 points), in general. Tethering power from the UAS would be economical (allocated
1 point) in comparison to mounting an external battery source (0 points) on the UAS.

Constraint 2 (adoptability): Adoptability of the design system was determined based
on the application of the system by a producer/crop consultant for agronomic decision-
making. Points ranging from 1–5 were given to the system based on the adoptability of the
system with low points allocated to the design with low adoptability.

‘Design B’ (LoRa wireless protocol, multi-rotor UAS, external power source, memory
storage over the UAS) (Table 1) was selected based on the matrix total points and was
subsequently investigated as a suitable UAS data ferrying design for operations with a
WSN installed in a typical US mid-west maize field.

2.2. Field Experiment Description

A field experiment for testing the proposed UAS data ferrying design was conducted
over a nearly 53 ha maize field (typical US mid-west maize field) at the University of Ne-
braska’s Eastern Nebraska Research and Extension Center (ENREC) near Mead, Nebraska
during the 2020 and 2021 growing seasons (Figure 1). Maize was planted in one half of the
field and soybean was planted in the other half and was irrigated with a center pivot (Lind-
say Corporation Zimmatic 8500). In 2020, the field was planted with soybean in the north
half of the field and maize in the southern half. The crops were rotated during the 2021
growing season (soybean in the south, and maize in the north). The study was conducted
when the crop was 80% or more coverage and at late crop physiological reproductive stages
during 2020 and from mid to late growing season during 2021 (Table 2).

Table 2. The planting date, the observed vegetative and reproductive growth stage dates for maize
during the 2020 and 2021 growing seasons.

Maize Growing Season Planting Date Vegetative Period Reproductive Period

2020 11 May 28 May–16 July 17 July–29 September

2021 28 April 14 May–16 July 17 July–26 September

Stationary sensor node stations comprised of soil water content sensors and infrared
radiometer sensors were installed in the maize portion of the field. Four sensor node stations
were installed at the beginning of the 2020 growing season and five in 2021. The selected UAS
data ferrying design (Design B: LoRa wireless protocol, multi-rotor UAS, external power source,
memory storage over the UAS) was constructed and used for wireless communication with the
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stationary sensor node station; soil moisture and canopy temperature data were to be retrieved
from each node station during the UAS flight (Figure 2).
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During 2020, communication was attempted with the four replicate node stations at
UAS hovering heights of 31 m, 61 m, and 122 m above the node stations for three flight
days (Figure 3). The UAS hovered at a lateral distance of 0 m from the node station while
the communication attempt was conducted.
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Figure 3. Location of stationary sensor node stations and the trajectory of UAS for four replications
during the 2020 growing season. There were three replications of UAS flights that were conducted
over the node stations at a height of: (i) 31 m; (ii) 61 m; and (iii) 122 m.

During 2021, communication was attempted with the five replicate node stations at a
hovering height of 31 m above the stations and at lateral distances between the UAS and station
of 0 m, 38 m, and 76 m during nine flight days (Figure 4). Signal interference due to crop canopy
cover was expected to be maximum from the mid to late growing season of maize.

2.3. Sensors on the UAS Data Ferry and Node Stations
2.3.1. UAS Data Ferry Sensors
RF 450 Radio

RF 450 radio (Campbell Scientific, Logan, UT, USA) is a frequency-hopping, spread-
spectrum radio that operates within the 902 to 928 MHz license-free bands designed
specifically to work along with Campbell Scientific dataloggers. The radio has a maximum
link throughput of 115.2 kbps. The RF 450 radio offers the advantage of high data trans-
fer speeds along with a low current drain. Wireless network communication over long
distances (13–60 miles) could be achieved with this radio based on the antenna and the
line-of-sight when no objects interfere with the signal.

In a point-to-multipoint network (multi-point network), the transceiver designated
as a primary radio can simultaneously communicate with secondary radios. A multi-
point network functions with the primary radio (on the UAS in this study) broadcasting
its messages to all secondary radios (radios on the node stations); the secondary radios
respond to the primary radio when data from the datalogger are received at the data port.
A multi-point network was used to collect data from one-to-many dataloggers and report
back to one central site.
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Figure 4. Location of stationary sensor node stations and the trajectory of UAS for five replications
during the 2021 growing season: (a) before the collapse of the station at point ‘B’, and (b) after the
installation of the station at point ‘F’. There were three replications of UAS flights: (i) over the station;
(ii) 38 m from the station; and (iii) 76 m from the station.
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Dipole Omnidirectional Antenna

A 900 MHz, dipole, omnidirectional antenna (Product: 15970, Campbell Scientific,
Logan, UT: an indoor antenna with a gain value of 1 dBd [decibels relative to a dipole
antenna]) was attached to the secondary RF 450 radios at each node station and housed
within the datalogger enclosure located within the canopy.

Wave Omnidirectional Antenna

A 900 MHz 0 dBd 1/2 wave omnidirectional antenna (Product: 14204, Campbell
Scientific, Logan, UT, USA) was attached to the primary RF 450 radio mounted on the
UAS. The primary antenna has a center frequency of 916 MHz and is equipped with an
articulating base that allows the antenna to tilt 90 degrees and rotate 360 degrees, giving
flexibility to orient in different directions based on the platform where the antenna is
installed (in this study, that is the UAS).

2.3.2. Node Station Sensors
CR1000X Datalogger

The CR1000X (Campbell Scientific, Logan, UT, USA) datalogger provides measure-
ment and control for a wide variety of applications because of its reliability and ruggedness.
Applications include weather stations, mesonet systems, wind profiling, air quality moni-
toring, hydrological systems, water quality monitoring, and hydrometeorological stations.
The electronics of CR1000X are radiofrequency shielded by a unique sealed, stainless-steel
canister. The data logger is equipped with a battery-backed clock that assures accurate
timekeeping. The secondary RF 450 radio was attached to the CR1000 datalogger in each
node station. See Singh, [34] for details of the operation.

GS-1 Soil Water Sensor

The GS-1 sensor (METER Group Inc., Pullman, WA, USA) was used to measure the soil
water content (as described in Singh et al. [35]) every 15 min as an average with a sampling
frequency of 5s. It is a recently developed capacitance and frequency domain technology-
based sensor with a rugged, durable design configured with two parallel waveguide rods
(5.2 cm in length).

SI-111 Infrared Radiometer

SI-111 infrared radiometer (Apogee Instruments, Inc., Logan, UT, USA) measures
emitted infrared radiation (within an atmospheric window of 8–14 µm) from which target
surface temperature is remotely determined. The infrared radiometer (also known as an
infra-red thermometer or IRTs) monitors the maize field surface temperature continuously
every 15 min as an average with a sampling frequency of 5 s [36,37].

2.3.3. Unmanned Aerial System (UAS)
Matrice 600 Pro Hexacopter

The DJI Matrice 600 Pro Hexacopter (DJI, Shenzhen, China), a six-rotor flying plat-
form specifically designed for professional aerial photography, industrial, and research
applications, was selected as the multi-rotor UAS for this study (Figure 5a,b). The UAS
is equipped with dedicated advanced intelligent flight functions, always ensuring safe
and stable operation. The Matrice 600 Pro Hexacopter has a maximum takeoff weight of
15.5 kg and a patented battery management system to extend flight time and provide a safe
and reliable power supply, suitable for the proposed data ferrying application in fields of
approximately 50 ha.
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Figure 5. (a) The Matrice 600 Pro Hexacopter at the research farm; (b) a close-up view of the
hexacopter along with the primary radio and the mini laptop.

2.4. Experiment Design

The transceiver radio (Campbell Scientific’s RF 450 radio) was mounted on the UAS
(DJI’s Matrice 600 Pro Hexacopter) along with a mini laptop, a battery source (12 V), and
an antenna (Campbell Scientific’s 900 MHz 0 dBd 1/2 Wave Omnidirectional antenna)
(Figure 5a,b). The mini-laptop and the transceiver radio were powered by a 12 V battery
source. The mini laptop was connected to the primary radio via a USB cable. The antenna
was connected to the radio with the antenna oriented downward. The data retrieval from
the datalogger to the secondary radio was scheduled using the ‘Setup’ function of the
‘Loggernet 4.5’ software (see Singh, [34] for details).

Five node stations were installed in the field (A–E) during the 2021 growing season
(Figure 4a). One node station collapsed (the galvanized steel pipe on the tripod supporting
sensors and instrumentation was corroded and it snapped) in the middle of the growing
season (on 7 August 2021) due to the wind shear of a rainstorm; only two UAS flights were
conducted with this station. Another node station was installed as a replacement at point ‘F’
in the field (Figure 4b); the remaining seven flights were made after the station at location ‘F’
was installed. The sensor node station comprised of a secondary radio (Campbell Scientific’s
RF 450 radio), an antenna (Campbell Scientific’s 900 MHz 1 dBd Omnidirectional antenna),
a datalogger (Campbell Scientific’s CR1000X datalogger), a battery source (12 V), soil water
content sensors (MeterEnvironment’s GS-1), and an infrared thermometer (IRT) sensor
(Apogee Instruments SI-111, Logan, UT, USA). The secondary radio, the antenna, the
datalogger, the battery source, and the wires for soil water content sensors and infrared
radiometer were enclosed in an enclosure box (Figure 6a,b). The enclosure box was mounted
at a height of 1.5 m above ground for stations B, D, and E, and 0.6 m above the ground for
stations A and C during the first two experimental trials. During the third experimental
trial in 2020, all the enclosure boxes were mounted at a height of 1.5 m above the ground.
The location of the enclosure box places the antenna within the canopy when the maize
is at full height. The secondary radio was connected to the datalogger via a null modem
cable. The soil water content sensors were inserted at a depth of 0.15 m, 0.46 m, and
0.76 m, respectively. The IRT sensor was mounted at a constant height of 1 m above the
maize canopy consistently throughout the growing season. All node station sensors were
connected to the datalogger. The output from the sensors was recorded at a 5 s sampling
frequency and averaged every 15 min.
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(b) the layout of the datalogger along with the secondary radio and the power battery source.

Soil moisture, canopy temperature, and air temperature data were transmitted from
the datalogger through the secondary RF450 radio to the transceiver (primary) RF450 radio
mounted on the UAS. Communication success and data transmission and receipt were
assessed at different UAS heights (31 m, 61 m, and 122 m above the ground) in 2020, and
at different lateral distances of the UAS from the node stations (0 m, 38 m, and 76 m) at a
height of 31 m above the ground in 2021.

Communication success was quantified in terms of CSR (in %). The CSR for each
treatment and each trial day was calculated as:

CSR (in %) =
Nestablished
Nattempted

× 100 (1)

where CSR is communication success rate, Nestablished is the number of replications where
the communication was established, and Nattempted is the number of replications where
communication was attempted.

Wireless communication and data retrieval on the UAS data ferry was scheduled via
the UAS-mounted mini laptop. Data retrieval between the UAS mini laptop was scheduled
before the UAS flight using the unique PakBus address associated with the CR1000X
datalogger of each sensor node station. While the UAS was in the line of sight of a sensor
node station, the UAS data ferry transceiver radio (which was connected to the mini laptop)
would contact and establish wireless communication with the nearby sensor node station
secondary radio. The UAS was scheduled to take one minute to fly from the start point to
station ‘A’ where it would establish wireless communication with the sensor node station
secondary radio and download data within a minute before moving to the next station
(station ‘B’), where it would repeat the contact, wireless communication, and data retrieval
protocol for each node station until the UAS returned to the start point (Figure 4a). Given
the time required for the UAS to fly from one node station to another (approximately 1 min
each) and the time required to retrieve data from a sensor node station when the UAS
maneuvers over the station (approximately 1 min), the entire data collection by the UAS
data ferry from start to finish took 9 min in 2020 with four node stations and 11 min in 2021
with five node stations.
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3. Results

Soil moisture and crop canopy temperature data from stationary sensor node stations
were transmitted from the secondary radio (which was linked to the node station datalog-
ger) to the UAS data ferry transceiver radio (which was connected to the UAS data ferry
mini laptop). The seven-day data file retrieved from each sensor node station was around
0.3–0.4 megabytes (MB) in size and took approximately one minute to retrieve. Each dataset
retrieval was comprised of around 10,000 values (soil water content at three depths, crop
canopy, and air temperatures were reported once every 15 min). To accommodate data
retrieval and the approximate one minute for the UAS to maneuver from one sensor node
location to another, the data retrieval from each sensor node station was scheduled two
minutes after the previous sensor node station.

Three UAS data ferrying experimental trial events were held during the 2020 growing
season (September 2, September 16, and September 30). The UAS flights were conducted
at two to three UAS heights (31 m, 61 m, and 122 m), with the four sensor node stations
installed in the maize. Communication was attempted during the experimental trial
events. The maize crop was at the early denting growth stage on the first experimental
trial event/flight day (Table 3). However, for the second and third flight days, the maize
was 75% past denting reproductive stage (R5.75), and at physiological maturity. A 100%
CSR was observed at 31 m above the ground for all attempts (Table 4) but not for the other
UAS heights. Therefore, the 31 m height was used in investigating the effect of crop canopy
interference on radio communication along different lateral distances (0 m, 38 m, and 76 m)
from the stationary sensor node stations during the 2021 growing season.

Table 3. UAS flight dates and associated maize physiological growth stages during 2020 and 2021
growing seasons.

2020 Growing Season 2021 Growing Season

Flight Date Physiological
Growth Stage Flight Date Physiological

Growth Stage

September 2 R5.3 July 27 R1 (silking)
September 16 R5.75 July 30 R2 (early blister)
September 29 R6 August 21 R5.1 (early dent)

August 24 R5.2
August 25 R5.25

September 4 R5.4
September 6 R5.5
September 8 R5.55

September 10 R5.6

Table 4. The communication success rate (CSR) (in %) for three treatments (31 m, 61 m, and 122 m
above the ground) during the 2020 growing season in maize.

CSR (in %) during 2020 Growing Season in Maize

Flight Date 31 m above Ground 61 m above Ground 122 m above Ground

September 2 100% - 25%
September 16 100% 50% 50%
September 30 100% 75% 75%

Nine experimental trial events were conducted during the 2021 growing season; the
first two events were conducted before the collapse of the station at point ‘B’ on 7 August
2021 (Figure 4a) in the field, and the remaining seven events were conducted after the
installation of the station at point ‘F’ (Figure 4b) in the field. During the first two events, the
maize was in the initial physiological reproductive stages (silking and early-blister, i.e., R1
and R2; Table 3), while the maize was in various phases of dent stage R5 (Table 3) for the
remaining seven events. The CSR for the first two trials was 100% when the UAS (at a
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height of 31 m) was directly over the node stations (0 m lateral distance) and 38 m laterally
away from node stations; the CSR was within 40–60% when the UAS was 76 m laterally
away from node stations (at a height of 31 m) (Figure 7). The next four trials were conducted
during the late reproductive stages of maize (early to mid-denting, i.e., R5.1–R5.4; Table 3),
and the CSR was within 40–80% when the UAS was over the node stations, 60% when the
UAS was 38 m laterally away from the stations, and within 20–60% when the UAS was
76 m laterally away from the node stations. For the last three experimental trial events
(around the mid-denting reproductive stage and beyond, i.e., R5.5–R5.6; Table 3), the CSR
for all three lateral distances was 100% (Figure 7).
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Figure 7. The CSR (in %) for the five replications of secondary radios communicating with the
primary radio mounted on the UAS for three treatments during the 2021 growing season. The UAS
maneuvered at a height of 31 m above the ground at a lateral distance of: (i) 0 m from (over) the
sensor node station; (ii) 38 m from the sensor node station; and (iii) 76 m from the sensor node station.

4. Discussion

Wireless communication applications in sensor networks in an agriculture setting are
still at an early stage of development, and it is already contributing towards the improve-
ment of agricultural management practices. The agricultural sector will be highly benefited
by the Internet of Things (IoT) technologies as the management and analysis of IoT data
could potentially be used to automate processes, predict situations, and improve agricul-
tural management activities in real-time [38]. In addition, the scope of IoT has increased
recently in agricultural activities such as farming, planting, and animal rearing [17,39]. The
current study proposes a UAS-enabled data ferrying system that uses narrow band-internet
of things technology, i.e., the LoRa (long-range radio) technology, as a means of monitoring
water and plant status in an agricultural setting, building on previously published work on
the real-time monitoring and calibration of soil water content sensor [35]; and developing
inter-relationships between soil water depletion and crop canopy temperature differen-
tial [36], and; sensor-based irrigation management of maize and soybean [37]. The LoRa
and ZigBee technology offer various advantages such as lower power consumption and
data transmission over longer distances in comparison to other wireless technologies or
protocols used in agricultural applications, such as WiFi, Bluetooth, GPRS/3G/4G, and
SigFox [23]. The comparison indicated that ZigBee and LoRa wireless protocols are more
convenient for agricultural applications because of their low power consumption, a suitable
communication range for ZigBee, and a long-range communication range for LoRa. For the
UAS data ferrying system proposed in the study, LoRa wireless protocol was used consider-
ing potential interference from the maize canopy. Similarly, Mahmoud and Mohamad [40]
demonstrated that LoRa is a good candidate for low-power and point connectivity for
longer distances amongst other wireless communication techniques. Wixted et al. [41]
evaluated the performance of LoRa technologies for indoor and outdoor settings, and
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across physical layers (a mix of newer concrete, glass, and sandstone buildings) wireless
and multi-gateway wide area networks and found the technology can provide a reliable
link for low-cost remote sensing applications.

The real-time information on soil water and plant canopy temperature status using
wireless communication could be highly valuable for farmers who do not have access to
weather information due to electricity limitations or limited media access. The low power
and LoRa wireless sensor networks can be transmitted to cloud platforms for both private
and public networks to facilitate optimal resource utilization and real-time data accessibility
from everywhere.

The optimal data transmission rate for the network architecture in this study was
240–480 bits/s, and the LoRa technology’s sizable hardware implementation makes it very
suitable for the UAS data ferrying designed in this study. With the proposed data ferrying
design (using LoRa wireless protocol, multi-rotor UAS, external power source, memory
storage over the UAS), the size of data transmitted from the stationary node station was
approximately 4000–5000 bits in one minute. The study by Kirichek and Kulik [19] and
Reda et al. [42] confirms the suitability of the LoRa technology.

In this study, commercially available LoRa-based radios were used for wireless com-
munication in a UAS-enabled data ferry WSN (UWSN) in a maize field during the late
reproductive growth stages. The CSR for the radios was at 100% when the UAS maneu-
vered at a height of 31 m above the ground; the CSR was lower when the UAS was at
heights of 61 and 122 m. During the mid to late growing season when the maize plants
were in the early R5 stages, a lower CSR (20–60%; average 60%) occurred when the lateral
distance between the UAS and the stationary sensor node station was at 76 m. The lower
CSR was attributed to interference from the maize crop canopy; radio frequencies are atten-
uated by water [43] and it is assumed that the radio communication has higher interference
from moisture in the vegetation. The average maize plant moisture content changes from
60% to 30% at denting stage (R5), and physiological maturity stage (R6), respectively [44].
Eventually, when a substantial amount of water was lost with lower green biomass around
the mid-denting stage, the CSR increased (around 100% for all three lateral distance treat-
ments). Antenna placement within the enclosure which is embedded in the canopy could
potentially be an issue contributing to the lower CSR during the maize denting stage and
needs to be further researched to potentially strengthen communication possibilities.

The UAS data ferrying design recommended, based on the established criteria uses
LoRa wireless protocol, multi-rotor UAS, external power source, and memory storage; the
measurement protocol recommended within a UWSN using this data ferry is to have the
UAS maneuvering at 31 m above the ground and close to the stationary sensor node station
(lateral distance of 0 m to 38 m) to establish excellent communication and data retrieval.
Thus, a UWSN based on the design proposed here could be used by a producer or farmer
to monitor in near real-time soil water and plant status to help farmers make agronomic
decisions to increase their agricultural productivity. The proposed approach of UAS enabled
data ferrying based wireless communication also could be deployed for public, private, or
industrial IoT applications in irrigation management systems, farming systems monitoring,
pest and disease control, cattle movement monitoring, groundwater quality monitoring,
greenhouse gases monitoring, asset tracking, and remote control and diagnosis.

Since UAS and UAS-related technology have only recently developed and are cur-
rently evolving at a fast pace, the technology has not been widely applied for developing
UWSN systems. Unexpected problems in this study had to be addressed while developing,
troubleshooting, and fine-tuning the technology and procedures used to retrieve data from
the maize field. System components such as the connector cable (with thin insulation)
connecting the mini-laptop and the radio on the UAS would detach occasionally during
the flight, due to air resistance from the wind created while the UAS spinning blades
would push the air down during takeoff. The issue was resolved by replacing the initial
connector cable with a connector cable with thick insulation that did not detach from the
radio as it was heavier and was unaffected by air resistance. Weather elements can take a
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toll on equipment. Backup equipment and additional replications should be considered
in planning for potential setbacks. One of the stationary sensor node stations collapsed
(the galvanized steel pipe on the tripod supporting sensors and the instrumentation was
possibly corroded and snapped due to the wind shear of a rainstorm in the middle of the
growing season (7 August 2021). The station was removed from the study and replaced by
a new stationary sensor node station using the radio which was still operable. The new
location meant that the data retrieval scheduling on the primary radio had to be revised
and ready for the next flight (the flight route and time allocated for maneuvering from one
station to another, and data retrieval).

In general, the technology related to the application of UAS as a platform for data
ferrying (flying, integrating wireless communication devices, or retrieving datasets while
flying) is a rather novel approach with additional work needed to design and evaluate the
entire UWSN system (from node stations to UAS based data ferry). While the main purpose
of the UWSN system was meant to perform real-time monitoring of soil moisture and
crop canopy temperature for the purpose of irrigation management, significant time was
spent developing, troubleshooting, and fine-tuning the technology and procedures used
to retrieve the datasets. The methodology adopted in this study could be replicated/run
on a testing framework such as FlockAI to investigate the result reproducibility of this
experiment [45]. Future research should aim to investigate the scalability and adoptability
of the proposed data ferrying system to strengthen the applicability of the UAS data ferrying
system. The feasibility of mounting additional advanced instrumentation to the existing
design of a data ferrying system for simultaneously capturing thermal/multispectral
imagery could also be explored as it would aid in efficient irrigation and agronomic
decision-making.

5. Summary and Conclusions

Six designs of UAS-enabled data ferrying systems with IoT-enabled communication
using radios were proposed based on design criteria and constraints. A final design of a data
ferry was selected which comprised of a long-range radio wireless communication protocol,
an external power source, a multi-rotor UAS, and memory storage. The selected design of
the UAS data ferry was tested over a WSN in a maize field in eastern Nebraska during the
latter portions of the 2020 and 2021 growing seasons. Each stationary sensor node station
installed in maize contained three soil water content sensors, one infrared radiometer,
and one secondary radio. CSR at various UAS heights above the stationary nodes (in
2020) and lateral distance (in 2021) from the nodes was investigated. Three experimental
trials during the 2020 growing season demonstrated that a 100% CSR occurred when the
UAS maneuvered directly over the node station at a height of 31 m above the ground.
Henceforth, the UAS was flown at a height of 31 m above the ground during the 2021
growing season to investigate the effect of lateral distance of the UAS data ferrying from
the node station on the CSR. For the nine experimental trial events (flight days) during the
2021 growing season, the CSR was higher (80% average) when the UAS was directly over
the node station (0 m lateral distance) and at a lateral distance of 38 m from the node station.
The CSR was lower when the UAS was 76 m laterally away from the node station (60%
average). In general, the lower CSR at higher heights and further distances from the node
station was potentially due to the interference from the maize canopy and plant moisture
and the location of the antenna in the enclosure; during late reproductive physiological
stages when plant water is lower a higher CSR was achieved for all lateral distances as the
crop progressed to physiological maturity.

Substantial progress was made in understanding the UAS-based data ferrying system
and the potential of the UWSN system to improve agronomic decision making. Future
studies to investigate the scalability, adoptability, and optimum deployment scheme (along
with mounting an RGB-infrared imaging camera for aid in agronomic decision making, and
antenna location) for the proposed data ferrying design could strengthen the applicability
of the UWSN system.



Sensors 2022, 22, 1863 16 of 18

Author Contributions: Conceptualization, J.S., Y.G. and D.M.H.; Methodology, J.S. and M.S.M.;
Validation, J.S., Y.G., D.M.H., C.M.U.N., E.W.-S. and S.I.; Formal Analysis, J.S.; Investigation, J.S., Y.G.,
C.M.U.N. and D.M.H.; Resources, C.M.U.N., D.M.H. and Y.G.; Data Curation, J.S.; Writing—Original
Draft Presentation, J.S.; Writing—Review and Editing, E.W.-S., Y.G., M.S.M. and D.M.H.; Supervision,
Y.G. and D.M.H.; Project Administration, C.M.U.N., D.M.H. and Y.G.; Funding Acquisition, C.M.U.N.,
Y.G. and D.M.H. All authors have read and agreed to the published version of the manuscript.

Funding: The funding for this research was provided by a grant from the USDA NIFA Agricultural
and Food Research Initiative (Award Number 2017-67021-26249) and the Daugherty Water for Food
Global Institute at the University of Nebraska. Additional support was received from the Hatch Act
(USDA NIFA, Accession Number 1009760) and the Department of Biological Systems Engineering at
the University of Nebraska-Lincoln.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects in the study.

Data Availability Statement: Data is contained within the article. No additional data was created or
analyzed in the study.

Acknowledgments: The authors thank Wayne Woldt, Geng Bai, and Burdette Barker for input in the
experimental design; Suresh Pradhyun Kashyap for reviewing the manuscript; Alan L. Boldt, Eric
Wilkening, Suresh Pradhyun Kashyap, and Sandeep Bhatti for assistance with the data collection;
and Mark Schroeder and his team from the University of Nebraska’s Eastern Nebraska Research and
Extension Center for their cooperation and help with field operations. Weather data were provided
by the Nebraska Mesonet and the Nebraska State Climate Office through the High Plains Regional
Climate Center. The authors would like to thank the support from the Daugherty Water for Food
Global Institute, University of Nebraska.

Conflicts of Interest: The mention of trade names or commercial products is for the information of
the reader and does not constitute an endorsement or recommendation for use by the University of
Nebraska-Lincoln or the authors. The authors declare no conflict of interest.

References
1. Behzadan, A.; Anpalagan, A.; Woungang, I.; Ma, B.; Chao, H.-C. An Energy-Efficient Utility-Based Distributed Data Routing

Scheme for Heterogenous Sensor Networks. Wirel. Commun. Mob. Comput. 2015, 16, 421–430. [CrossRef]
2. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless Sensor Network Survey. Comput. Netw. 2008, 52, 2292–2330. [CrossRef]
3. Adamala, S.; Raghuwanshi, N.S.; Mishra, A. Development of Surface Irrigation Systems Design and Evaluation Software (SIDES).

Comput. Electron. Agric. 2014, 100, 100–109. [CrossRef]
4. Camilli, A.; Cugnasca, C.E.; Saraiva, A.M.; Hirakawa, A.R.; Corrêa, P.L.P. From Wireless Sensors to Field Mapping: Anatomy of

an Application for Precision Agriculture. Comput. Electron. Agric. 2007, 58, 25–36. [CrossRef]
5. Kim, Y.D.; Yang, Y.M.; Kang, W.S.; Kim, D.K. On the Design of Beacon Based Wireless Sensor Network for Agricultural Emergency

Monitoring Systems. Comput. Stand. Interfaces 2014, 36, 288–299. [CrossRef]
6. Siddique, A.; Prabhu, B.; Chaskar, A.; Pathak, R. A Review on Intelligent Agriculture Service Platform with Lora Based Wireless

Sensor Network. Int. Res. J. Eng. Technol. 2019, 100, 2539–2542.
7. Bhargava, K.; Kashyap, A.; Gonsalves, T.A. Wireless Sensor Network Based Advisory System for Apple Scab Prevention. In

Proceedings of the 2014 20th National Conference on Communications, NCC, Kanpur, India, 28 February–2 March 2014.
8. Gonçalves, L.B.L.; Costa, F.G.; Neves, L.A.; Ueyama, J.; Zafalon, G.F.D.; Montez, C.; Pinto, A.S.R. Influence of Mobility Models

in Precision Spray Aided by Wireless Sensor Networks. In Proceedings of the Journal of Physics, Yokohama, Japan, 26–30 May 2014;
Conference Series; IOP Science: Bristol, UK, 2014; Volume 574.

9. Kwong, K.H.; Wu, T.T.; Goh, H.G.; Sasloglou, K.; Stephen, B.; Glover, I.; Shen, C.; Du, W.; Michie, C.; Andonovic, I. Practical
Considerations for Wireless Sensor Networks in Cattle Monitoring Applications. Comput. Electron. Agric. 2012, 81, 33–44.
[CrossRef]

10. Zia, H.; Harris, N.R.; Merrett, G.V.; Rivers, M.; Coles, N. The Impact of Agricultural Activities on Water Quality: A Case for
Collaborative Catchment-Scale Management Using Integrated Wireless Sensor Networks. Comput. Electron. Agric. 2013, 96,
126–138. [CrossRef]

11. Malaver, A.; Motta, N.; Corke, P.; Gonzalez, F. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a
Wireless Sensor Network to Monitor Greenhouse Gases. Sensors 2015, 15, 4072–4096. [CrossRef]

12. Misra, S.; Singh, S. Localized Policy-Based Target Tracking Using Wireless Sensor Networks. ACM Trans. Sens. Netw. 2012, 8, 1–30.
[CrossRef]

http://doi.org/10.1002/wcm.2474
http://doi.org/10.1016/j.comnet.2008.04.002
http://doi.org/10.1016/j.compag.2013.11.004
http://doi.org/10.1016/j.compag.2007.01.019
http://doi.org/10.1016/j.csi.2011.05.004
http://doi.org/10.1016/j.compag.2011.10.013
http://doi.org/10.1016/j.compag.2013.05.001
http://doi.org/10.3390/s150204072
http://doi.org/10.1145/2240092.2240101


Sensors 2022, 22, 1863 17 of 18

13. Coates, R.W.; Delwiche, M.J.; Broad, A.; Holler, M. Wireless Sensor Network with Irrigation Valve Control. Comput. Electron.
Agric. 2013, 96, 13–22. [CrossRef]

14. Morais, R.; Fernandes, M.A.; Matos, S.G.; Serôdio, C.; Ferreira, P.J.S.G.; Reis, M.J.C.S. A ZigBee Multi-Powered Wireless
Acquisition Device for Remote Sensing Applications in Precision Viticulture. Comput. Electron. Agric. 2008, 62, 94–106. [CrossRef]

15. Garlando, U.; Bar-On, L.; Avni, A.; Shacham-Diamand, Y.; Demarchi, D. Plants and Environmental Sensors for Smart Agriculture,
an Overview. Proc. IEEE Sens. 2020, 2020, 2020–2023. [CrossRef]

16. Akyildiz, I.F.; Kasimoglu, I.H. Wireless Sensor and Actor Networks: Research Challenges. Ad Hoc Netw. 2004, 2, 351–367.
[CrossRef]

17. Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless Sensor Networks for Agriculture: The State-of-the-Art in Practice and Future
Challenges. Comput. Electron. Agric. 2015, 118, 66–84. [CrossRef]

18. Sun, P.; Boukerche, A. Performance Modeling and Analysis of a UAV Path Planning and Target Detection in a UAV-Based Wireless
Sensor Network. Comput. Netw. 2018, 146, 217–231. [CrossRef]

19. Kirichek, R.; Kulik, V. Long-Range Data Transmission on Flying Ubiquitous Sensor Networks (FUSN) by Using LPWAN Protocols.
In Proceedings of the International Conference on Distributed Computer and Communication Networks, Moscow, Russia, 21–25
November 2016; Springer: Cham, Switzerland, 2016; pp. 442–453.

20. Wu, Q.; Zeng, Y.; Zhang, R. Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Trans.
Wirel. Commun. 2018, 17, 2109–2121. [CrossRef]

21. Zeng, Y.; Xu, J.; Zhang, R. Energy Minimization for Wireless Communication with Rotary-Wing UAV. IEEE Trans. Wirel. Commun.
2019, 18, 2329–2345. [CrossRef]

22. Gili, P.; Civera, M.; Roy, R.; Surace, C. An Unmanned Lighter-than-Air Platform for Large Scale Land Monitoring. Remote Sens.
2021, 13, 2523. [CrossRef]

23. Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision
Agriculture: A Review. Sensors 2017, 17, 1781. [CrossRef]

24. Pitì, A.; Verticale, G.; Rottondi, C.; Capone, A.; Lo Schiavo, L. The Role of Smart Meters in Enabling Real-Time Energy Services for
Households: The Italian Case. Energies 2017, 10, 199. [CrossRef]
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