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Comprehensive analysis of SSRs and database
construction using all complete gene-coding
sequences in major horticultural and
representative plants
Xiaoming Song1,2,3, Qihang Yang1, Yun Bai1, Ke Gong1, Tong Wu1, Tong Yu1, Qiaoying Pei1, Weike Duan4,
Zhinan Huang4, Zhiyuan Wang1, Zhuo Liu1, Xi Kang1, Wei Zhao1 and Xiao Ma1

Abstract
Simple sequence repeats (SSRs) are one of the most important genetic markers and widely exist in most species. Here,
we identified 249,822 SSRs from 3,951,919 genes in 112 plants. Then, we conducted a comprehensive analysis of these
SSRs and constructed a plant SSR database (PSSRD). Interestingly, more SSRs were found in lower plants than in higher
plants, showing that lower plants needed to adapt to early extreme environments. Four specific enriched functional
terms in the lower plant Chlamydomonas reinhardtii were detected when it was compared with seven other higher
plants. In addition, Guanylate_cyc existed in more genes of lower plants than of higher plants. In our PSSRD, we
constructed an interactive plotting function in the chart interface, and users can easily view the detailed information of
SSRs. All SSR information, including sequences, primers, and annotations, can be downloaded from our database.
Moreover, we developed Web SSR Finder and Batch SSR Finder tools, which can be easily used for identifying SSRs.
Our database was developed using PHP, HTML, JavaScript, and MySQL, which are freely available at http://www.pssrd.info/.
We conducted an analysis of the Myb gene families and flowering genes as two applications of the PSSRD. Further
analysis indicated that whole-genome duplication and whole-genome triplication played a major role in the
expansion of the Myb gene families. These SSR markers in our database will greatly facilitate comparative genomics
and functional genomics studies in the future.

Introduction
Since molecular marker technology was developed in

the 1980s, an increasing number of molecular marker
types have been identified, which has rapidly accelerated
genetic improvements in species1. The development and
comparative analysis of molecular markers could help us

reveal genetic variation underlying various biological
functional genes2–4. To date, researchers have found
several molecular markers, such as restriction fragment
length polymorphisms, random amplified polymorphism
DNA, sequence tag sites, amplified fragment length
polymorphism, diversity array technology markers, single-
nucleotide polymorphisms, specific locus amplified frag-
ments, and simple sequence repeats (SSRs)1,5,6.
These molecular markers play important roles in

genetic map construction, quantitative trait locus detec-
tion, marker-assisted selection (MAS), and fine localiza-
tion of important functional genes to fulfill various
demands of breeders7,8. There have been many studies of
molecular markers in model plants1,9. For example,
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several kinds of molecular markers were used to identify
genes related to leaf senescence, leaf shape, chlorophyll,
and embryogenesis in Arabidopsis10–12. Similarly, most
genes determining disease resistance and major agro-
nomic traits, such as grain quality, grain weight, and grain
size, were also detected using molecular markers in
rice13–16. In horticultural plants, molecular markers are
also widely used for plant breeding in most species,
including Brassica rapa, Brassica oleracea, Solanum
lycopersicum, Cucumis melo, Vitis vinifera, Fragaria
ananassa, and pear17–22. Furthermore, progress in mole-
cular genetics, genomic selection, and genome editing has
provided deep insights into the understanding of mole-
cular markers and greatly complemented breeding
strategies1.
SSR markers are present in almost all species, particu-

larly in eukaryotes. These markers have many applica-
tions, such as constructing linkage maps, fine mapping of
genes, and selective breeding through genomic selec-
tion2,23–25. SSRs have become extremely popular for
phylogenetic analysis and have expanded our knowledge
related to plant breeding26–28. The development of
bioinformatics technology has enabled the development
of SSR markers for many species29–31. Recently, there
have been many reports on SSR development and appli-
cation32–38. These studies have confirmed that SSRs are

the classic, popular molecular markers used in plant
science.
With an increasing number of plant genomes being

released, it has become possible to construct a plant SSR
database (PSSRD) using the SSRs identified from all genes
in these plants. Compared with those in existing data-
bases, all the species in the database in this study have
undergone complete genome sequencing. In addition, the
PSSRD provides primer information and Pfam function
annotation, which allows researchers to use these SSRs in
a more convenient manner than those in other databases.
More importantly, we not only provide more compre-
hensive and representative SSR information with the
construction of this database but also conduct large-scale
systematic and comparative analyses of SSRs in 112
plants.

Results
Overview of the main interface of the PSSRD
We identified 249,822 SSRs from 3,951,919 gene

sequences of 112 plant species. Specifically, 132,114,
64,980, 9478, and 43,250 SSRs were detected in 70 eudi-
cots, 27 monocots, 7 other higher plants (1 basal
angiosperm, 2 gymnosperms, 1 Lycopodiophyta, 2 Bryo-
phyta, and 1 Marchantiophyta), and 8 lower plants,
respectively (Fig. 1a and Table S1). Among these species,

Fig. 1 The architecture of the plant SSR database (PSSRD) and related species. a The phylogenetic relationship of 112 species used for
constructing the PSSRD according to NCBI taxonomy66. b The PSSRD architecture mainly includes the home, browse, download, tool, chart, and
resource interfaces
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many are horticultural plants, such as vegetables (B. rapa,
Brassica oleracea, Capsicum annuum, Daucus carota, and
S. lycopersicum), fruits (Citrus clementina, C. melo, Fra-
garia vesca, Prunus persica, and V. vinifera), and flowers
(Prunus mume, Aquilegia coerulea, and Catharanthus
roseus). On average, primers were successfully designed
for 98.82% of the SSRs for further study. Using these
available datasets and related bioinformatics tools, we
built a PSSRD, which helps users easily query, compare,
and download SSR markers, primers, and functional
annotations of several or all species simultaneously. All
species used in this study were taxonomically classified to
facilitate selection and use. The SSR information was
stored in backend tables using MySQL (MySQL AB,
Sweden) that can be accessed using the frontend web
application of PSSRD (Fig. 1b). Here, we provide a
detailed description of the interactive interfaces in this
database, including the browse, chart, download, tool,
resource, contact, and help interfaces (Fig. 2 and Fig. S1).

Browse
To make the database easy to use by researchers, we

divided all species into different groups according to their
taxa (Fig. 2). For each taxon, the species were further
sorted by the first letter of their Latin names. We provided
detailed information for each species, such as SSR infor-
mation (type, sequences, size, start, and end), primer
information (forward and reverse sequences, melting

temperature (Tm) value, and size), amplified production
size, and related gene information (gene ID and links of
Pfam annotation). Furthermore, we also integrated the
search function at the browse interface, which allows the
users to find related information according to gene ID,
SSR type, and SSR sequences. Moreover, we provided a
variety of export formats, including Excel, pdf, csv,
duplicate, and print functions.

Chart interface
The chart interface provides several interactive plots to

view the SSR data of all species (Fig. 2). First, the SSR
number of each species is shown in the main interface,
and the multiselect dropdown allows users to select the
taxon for their needs. Furthermore, bar plots and line
charts are used to show the SSR number of each species,
which makes it easier and faster for users to compare
SSRs between different species. Finally, all the information
of these displayed SSRs can be downloaded at the lower-
right corner of these pages as Excel files. These docu-
ments will allow researchers to conduct local batch SSR
comparative analysis and perform relevant marker-
assisted selective breeding experiments.
In addition, we provide further graphical representa-

tions of the SSR information for each species. Each species
has six plots with pie charts, bar plots, and line charts,
which show detailed information on SSRs, including SSR
type, SSR length, product size, most frequent SSR, base

Fig. 2 Overviews of the main interfaces and internal features of the plant SSR database (PSSRD). The overviews of the PSSRD mainly contain
the home, browse, download, tool, chart, resource, contact, and help interfaces
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number, and frequency of SSR distribution for each type.
These diagrams could help users intuitively understand
the SSR information of each species.

Download interface
The SSR information and statistics for each species can

be downloaded from this interface (Fig. 2). Four files,
including best primers, all primers, Pfam annotation, and
position information of SSRs for each species, can be
obtained from the download page of the PSSRD. The
downloaded file is a tab-separated format, which can be
browsed using Excel or other related text editors, such as
EditPlus or Sublime text.

Tool interface
In addition to providing SSR information retrieval,

graphical display, and download services for existing
species, we developed two tools, the Web SSR Finder
(WSF) and Batch SSR Finder (BSF) programs (Fig. 2).
These two tools can assist researchers in conducting SSR
identification and analysis for a new species.
For the WSF, users can upload nucleic acid sequences in

the FASTA format and then set the minimum number of
repetitions for various types of SSRs. Finally, the start
button can be clicked, and after a moment, the relevant
SSR identification results are obtained.
The BSF program can batch-detect SSRs in multiple

species on the local server. Although the previous MISA
program could identify SSRs, it only detected the SSR of
one species at a time. Therefore, we have modified and
updated the MISA program and named the new pro-
gram BSF. In addition to some basic SSR identification
files, we also provide comparative analysis files of SSRs
between different species. With the completion of
additional genome sequencing, a batch-comparison
study needs to be conducted on the SSR information
of a large number of species. Therefore, the updated BSF
program is more convenient for users to carry out batch
SSR identification and multispecies comparative studies.
Anyone engaged in scientific research can download and
freely use or further edit this program according to their
own analysis needs.

Resource, help, and contact interfaces
For the resource interface, we collected most of the SSR

research-related databases and provide relevant links for
users to easily query and compare studies (Fig. 2). For the
help interface, we provide the researcher with a detailed
PSSRD user manual. In addition, we provide contact
information to help users contact us conveniently and
quickly.

Comprehensive comparative analysis of the SSRs in
112 species
Trinucleotide SSRs were dominant according to the fre-
quency distribution analysis
In our study, all the SSRs were divided into nine types

from mono- to nonanucleotides (Fig. 3a and Table S1). We
found that trinucleotides were the most common SSR type
in all four groups, and the average percentages of the SSR
numbers were 64.14%, 79.81%, 74.27%, and 84.87% for
eudicots, monocots, other higher plants, and lower plants,
respectively (Fig. 3c). Nevertheless, we found that the
number of trinucleotide SSRs varied considerably among
different species, ranging from 114 (eudicot plant: Cheno-
podium quinoa) to 12,663 (lower plant: C. reinhardtii). The
average number of trinucleotide SSRs was 1610 in 112
plants, followed by dinucleotide SSRs (229) and hex-
anucleotide SSRs (219) (Fig. 3 and Table S1). This result
might have occurred because the trinucleotides in the gene-
coding regions did not lead to the transcoding of genes.
This theory could be further verified by considering hex-
anucleotides, the percentage of which was also greater than
that of the other SSR types in the four groups (Fig. 3b).

Correlation analysis of the factors related to different SSR
characteristics
To explore the relationship between the factors related

to different SSR characteristics, we conducted a correla-
tion analysis for these factors. Here, we investigated sev-
eral factors related to SSR characteristics, including SSR
number, SSR density (SSR number per Mb), number of
genes containing SSRs, and percentage of genes contain-
ing SSRs. In addition, the factors total gene number and
total length of gene sequences were also used for the
comparative analysis in all examined plants.
A significant correlation was detected between the

percentage of genes containing SSRs and the SSR number
or SSR density in plants (correlation coefficients > 0.80
and P value < 0.01) (Fig. 4). However, there was no sig-
nificant correlation between SSR number and total gene
number or the total length of gene sequences.

Comparative analysis indicated that more SSRs were present
in lower plants than in higher plants
Our analyses showed that among the plants, the dif-

ferent lower plants had the largest SSR variations,
including variations in SSR number, SSR density, number
of genes containing SSRs, and percentage of genes con-
taining SSRs (Fig. 5a, b and Fig. S2). The average SSR
density in lower plants was the largest (256.90), followed
by that in monocots (55.92), other higher plants (46.34),
and eudicots (40.54) (Table S1).
To obtain detailed information about the SSRs in each

species, we carried out a further analysis. Overall, more
SSRs were detected in lower plants than in higher plants
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Fig. 3 The number of each SSR type and SSR number were log2 transformed. a The number of each SSR type in 112 plants. I, plant Latin name
and taxa; II, subtaxa; III–XI, the histogram of the numbers for the SSR types from mono- to nonanucleotides, respectively. b Boxplot of the number of
each SSR type in 112 plants. c The percentage of the trinucleotide SSR type in eudicots, monocots, other higher plants, and lower plants
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Fig. 4 Correlation analysis of different SSR characteristics, including total gene number, total gene sequences, SSR number, SSR density,
number of genes containing SSRs, and percentage of genes containing SSRs. The lower-left corner represents the correlation analysis scatter
diagram for different SSR characteristics. The plots in the middle are a bar chart for each SSR feature. The upper-right corner represents the correlation
values between different SSR features. The 1, 2, and 3 red asterisks represent P < 0.05, P < 0.01, and P < 0.0001, respectively. The yellow background
represents the SSR characteristics with significant differences (correlation coefficients > 0.80 and P value < 0.0001)
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(Fig. 5). Among the top 15 species with a high percentage
of genes containing SSRs, six (40.00%) species belonged to
lower plants (Fig. 5c). Two species with the highest per-
centage of SSR genes were lower plants, Micromonas
pusilla CCMP1545 and C. reinhardtii (Fig. 5c and Table
S1). InM. pusilla CCMP1545, 3768 genes contained SSRs,
accounting for 35.35% of the total number of genes. This
result might have been due to the special role played by
SSRs in lower plants and provides a new perspective for
the study of SSR function.

However, there were some exceptions in higher plants,
which also had high SSR ratios. For example, in eudicots,
the highest percentage of genes containing SSRs (23.02%)
was found in spider flowers (Tarenaya hassleriana), with
12,799 SSRs, followed by P. mume (17.58%) and C. melo
(15.96%) (Fig. 5c and Table S1). In monocots, the highest
percentage of SSR genes (16.42%) was found in pineapple
(Ananas comosus) with 5991 SSRs, followed by Oryza
glaberrima (11.80%) and Oryza sativa (9.05%) (Fig. 5c and
Table S1).
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Fig. 5 Comparative analysis of different SSR characteristics. a Statistical analysis results of the different SSR characteristics in 112 species. I, plant
classification; II, heatmap of total gene number; III, heatmap of total gene sequences; IV, a bar chart of SSR number; V, number of genes containing
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Functional enrichment analysis of genes containing SSRs in
112 species
To further explore the function of SSRs, we conducted

functional annotation using the Pfam database. A total of
69.75% of the annotated genes contained SSRs in mono-
cots, followed by those in eudicots (69.25%), other higher
plants (65.29), and lower plants (60.27%) (Table S2). We
further performed functional enrichment analysis of these
SSR-related genes in 112 plants, and 155 terms were
enriched with a q value < 0.05 and fold change ≥2 (Table
S3). Our enrichment analysis required that the annotation
ratio of the term for SSR genes was twice as high as that of
the whole-genome genes. The most enriched term was
AP2, followed by Myb_DNA-bind 4, Myb_DNA binding,
and TCP family genes. Interestingly, we found that the
most significantly expanded terms belonged to the tran-
scription factors associated with the regulation of abiotic
stress, such as Myb, TCP, AP2, WRKY, and various zinc-
finger (zf-CxHx) proteins (Table S3). This result indicated
that SSRs might play a very important role in the reg-
ulation of plant stress.
Furthermore, we selected the 20 most significantly

enriched terms for graphic presentation, and all had q
values < 3.32e− 78 (Fig. 6a). Among the 20 top enriched
terms, the largest fold change was over 11.73 for Gua-
nylate_cyc, followed by that for PTEN_C2 (7.91) and
LIM_bind (7.68). This result indicates that these enriched
proteins might play critical roles through SSRs in plants.
Further analysis showed that Guanylate_cyc (PF00211)

was found in 27,984 sequences from 4096 species
according to the Pfam database. Among these sequences,

12,485 sequences from 918 species belonged to Eukaryota,
while most of the other sequences belonged to bacteria
(Fig. 6b and Fig. S3). In Eukaryota, most sequences (9235)
were from 310 species of Metazoa, while only
391 sequences belonged to 21 species of green plants
(Viridiplantae). In Viridiplantae, 12 sequences were from
five Streptophyta species, and 379 sequences were from
16 Chlorophyta species (Fig. 6b). Therefore, more genes
containing the Guanylate_cyc domain were found in
lower plants than in higher plants.
Among the five species from Streptophyta, two species

belonged to Charophyta (Klebsormidium nitens and
Chara braunii), which contained six and two genes with
the Guanylate_cyc domain, respectively (Fig. 6b). The
other three species were from land plants, including one
Bryophyta (Physcomitrella patens), one Lycophyte (Sela-
ginella moellendorffii), and one angiosperm (Ricinus
communis). All identified SSRs located in these genes with
the Guanylate_cyc domain could be used as markers for
functional studies in the future.

Functional enrichment analysis of genes containing SSRs in
eight representative species
We further explored the function of genes containing

SSRs in eight representative lower plants (Chlorophyta: C.
reinhardtii) and higher plants, including the horticultural
plant B. rapa, eudicot model plant Arabidopsis thaliana,
monocot model plant O. sativa, basal angiosperm
Amborella trichopoda, gymnosperm Picea abies, Lyco-
podiophyta S. moellendorffii, and Bryophyta P. patens
(Fig. 7a).

Fig. 6 Functional enrichment analysis of SSR-related genes in 112 species. a The top 20 enriched terms based on Pfam annotation. The size of
the dot indicates the number of enriched genes in the related pathway, and the color of the dot corresponds to different q value ranges. b The gene
number with the Guanylate_cyc (PF00211) domain in different kinds of species according to the Pfam database. The numbers within parentheses
denote the number of species for each taxon. Rco Ricinus communis, Smo Selaginella moellendorffii, Ppa Physcomitrella patens, Cbr Chara braunii, Kni
Klebsormidium nitens
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Based on the Pfam functional annotation, we performed
an enrichment analysis of genes containing SSRs and
compared them with whole-genome genes in eight
representative plants (q value < 0.05, fold change ≥ 2). The
most significantly enriched functional terms were detec-
ted in O. sativa (33), followed by in B. rapa (10), P. abies
(8), C. reinhardtii (4), A. thaliana (2), A. trichopoda (1),
and S. moellendorffii (1) (Fig. 7a and Table S4). However,
no enriched functional terms were found in P. patens.
Further Venn diagram analysis showed 23, 5, 4, and 2

enriched functional terms specific to O. sativa, B. rapa, P.
abies, and C. reinhardtii, respectively (Fig. 7b). Two spe-
cific functional terms for the lower plant C. reinhardtii
were zf-MYND and Guanylate_cyc (Fig. 7b). This result
was also consistent with the above analysis of the Gua-
nylate_cyc domain; that is, this domain mainly existed in
lower plants. Interestingly, we found that Myb_DNA-
bind_4 was detected in most plants as an enriched func-
tional term, including B. rapa, O. sativa, P. abies, and
S. moellendorffii. In addition, Myb_DNA binding was
enriched in O. sativa and C. reinhardtii. This phenom-
enon indicated that Myb-related genes might play
important roles mediated by SSRs in plants.

PSSRD application 1: Myb-related gene families
Phylogenetic and comparative analysis of Myb-related gene
families
Since the above analysis showed that Myb family genes

were significantly enriched in SSR-related genes, we

further conducted phylogenetic and comparative analysis
of several Myb gene families.
Based on the Pfam annotation of whole-genome genes

from 112 species, we identified 38,982 Myb-related genes
from five gene families, including 28,741 Myb_DNA
binding, 3979 Myb_DNA-bind_3, 4,034 Myb_DNA-
bind_4, 2,056 Myb_DNA-bind_6, and 172 Myb_DNA-
bind_7 family genes (Fig. 8 and Tables S5–9). Our analysis
showed that Myb_DNA binding and Myb_DNA-bind_6
family genes were present in 112 plants, while Myb_DNA-
bind_3, Myb_DNA-bind_4, and Myb_DNA-bind_7 family
genes were only detected in 100, 104, and 103 plants,
respectively. In particular, there were no Myb_DNA-
bind_3 or Myb_DNA-bind_4 family genes in the eight
examined lower plants (Fig. 8 and Tables S5–9). Com-
pared with the other four families, the Myb_DNA-bind_4
gene family had the highest proportion of SSRs in most
plants, with an average ratio of over 20.73%.
To explore the evolution and function of Myb gene

families, we constructed a phylogenetic tree using Myb-
related genes from five families in eight representative
species, including B. rapa, A. thaliana, O. sativa, A. tri-
chopoda, P. abies, S. moellendorffii, P. patens, and C.
reinhardtii (Fig. 9 and Fig. S4–7). According to the
topology of the phylogenetic tree, the genes of each Myb-
related gene family were classified into different groups.
We marked the main functions of most groups according
to the Myb family gene functions in Arabidopsis. This
result provided a good reference for studying other genes

H
ig

he
r 
pl

an
t

Lo
w

er
 p

la
nt

1
7

3
4

P. abies
C

. reinhardtii

1
7

3
4

A
. thaliana

B
. rapa

0

1
7

3
4

O
. sativa

A
. trichopoda

S
. m

oellendorffii
P. patens

Fuctional enrichment terms

N
u

m
b

e
r 

o
f 
fu

c
ti
o

n
a

l 
e

n
ri
c
h

m
e

n
t 
te

rm
s

10

2

33

1

1

0

4

8

E
m

b
ry

o
p
hy

ta

                                    Lycopodiophyta                                                                BryophytaV
ir
id

ip
la

n
ta

e

S
p
e
rm

a
to

ph
yta

         Monocot

         Bras
s

ic
a
ceae

A
n
g
io

sp

er
mae

  E
u
di

co
t

                                                                          Chlorophyta

T
ra

c
h
e
o
p
hy

ta

            Basal angiosperm

                       Gymnospermae

a b

B. rapa

A. thaliana

O. sativa

A. trichopoda

P. abies

S. moellendorffii

C. reinhardtii

23

5

4

2 2 2 2

1 1 1 1 1

0

3

6

9

12

15

18

21

24
Species Number Functional enrichment terms

Atr, Osa 1 AP2

Bra, Osa, Pab 1 DUF573

Bra, Osa, Pab,

Smo
1 Myb_DNA-bind_4

Bra, Pab 1 RRM_1

Osa, Pab 1 bZIP_1

Ath, Osa 2 B3; POX

Bra, Osa 2 TCP; WRC

Cre 2 zf-MYND; Guanylate_cyc

Cre, Osa 2 Myb_DNA-binding; SBP

Pab 4 BSD; QLQ; DUF640; DUF4408

Bra 5 DUF1421; DUF630; DUF296; zinc_ribbon_9; DNA_pol3_delta2

Osa 23

HLH; DUF1639; zf-RING_2; AUX_IAA; Homeobox; U-box; zf-Dof; TAXi_N;

DUF1645; LOB; WRKY; PMR5N; HSF_DNA-bind; DUF761; zf-C3HC4_3; zf-

C2H2_6; NAM; Ovate; VQ; GRAS; ZF-HD_dimer; tify; DUF4228

Fig. 7 Functional enrichment analysis of genes containing SSRs compared with whole-genome genes in eight representative species.
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the common and specific enriched functional terms based on the Pfam database in eight representative species. The abbreviations are as follows: Cre
C. reinhardtii, Bra B. rapa, Ath A. thaliana, Osa O. sativa, Atr A. trichopoda, Pab P. abies, Smo S. moellendorffii, Ppa P. patens
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Fig. 8 Plot of gene number for five Myb-related gene families (Myb_DNA-binding, Myb_DNA-bind_3, Myb_DNA-bind_4, Myb_DNA-
bind_6, and Myb_DNA-bind_7) in 112 species. The bar chart with purple bars indicates the Myb-related genes and the green indicates the Myb-
related genes that contained SSRs
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with unknown functions in the same group. Interestingly,
we found that most Myb_DNA-binding family genes of
the lower plant C. reinhardtii were clustered on the same
branch in the evolutionary tree, while the genes of the
other seven species were scattered on different branches
(Fig. 9a). This result indicated that the genes of this gene
family have experienced changes in the base sequences or
gene structure. Thus, Myb_DNA-binding family genes
might have evolved to have a greater variety of functions
in higher plants than in lower plants, which might have
allowed higher plants to become better adapted to ter-
restrial environments. In addition, we performed a com-
prehensive analysis of four other Myb-related gene
families (Figs. S4–7).

Gene duplication and loss inference of Myb-related gene
families
We analyzed the duplication and loss of Myb-related

gene families in these eight plants using the Notung
software through reconciliation between species and gene
phylogenetic trees.
Among the eight species, the most genes were identified

in B. rapa for all five Myb gene families (Fig. 9, Figs. S4–7,
Table S10). In B. rapa, the number of Myb_DNA-binding
family gene duplications was higher than the number of
gene losses (193 vs. 15), whereas in Arabidopsis, the
number of gene duplications was lower than the number
of gene losses (Fig. 9c). Brassica rapa underwent an
additional whole-genome triplication (WGT) event since
its divergence from Arabidopsis according to a previous
report39. Therefore, we inferred that WGT events might
play important roles in the expansion of the Myb_DNA-
binding gene family in B. rapa.
Similarly, there were more gene duplications than gene

losses in O. sativa and P. patens, and these duplications
occurred in one or several whole-genome duplication
(WGD) events. For the other four Myb gene families, we
found that they had similar trends in gene duplications
and losses as those of the Myb_DNA-binding gene family
(Figs. S4–7). Therefore, we believe that WGD or WGT
plays a major role in the expansion of Myb gene families.
This finding provides new insights and guidance into SSRs
and other gene family analyses using datasets from
our PSSRD.

PSSRD application 2: flowering-time gene analysis
SSRs are often located in some important functional

genes related to plant development and various abiotic
stress responses2,40,41. Here, we took flowering-time genes
as an example to show the application of SSRs stored in
our PSSRD. In plants, flowering is critically important for
successful sexual reproduction and fruit and seed devel-
opment42,43. A diverse range of environmental and
endogenous signals regulate flowering44,45. Previous
reports have indicated that many genes are involved in
regulating plant flowering, and they could be assigned to
several regulatory pathways, including photoperiod, ver-
nalization, gibberellin, ambient temperature, autonomous,
and aging pathways43,46.
Most flowering-time genes have been reported and

functionally characterized in Arabidopsis and Brassica
species42,43,46–48. In Arabidopsis, 306 flowering-time
genes have been identified, including 295 coding and 11
noncoding genes according to previous reports47,48. Based
on these coding genes, we identified 514 homologous
flowering-time genes in the horticultural plant B. rapa
when compared with those in Arabidopsis by the Blastp
program (Fig. 10 and Table S11). Further analysis showed
that 30 genes contained SSRs, accounting for 5.84% of all
514 flowering-time genes in B. rapa (Fig. 10). For exam-
ple, the flowering locus KH domain (FLK, BraA03
g031700), phytochrome-dependent late flowering (PHL,
BraA07 g036800), and cryptochrome 2 (CRY2, BraA10
g002940) genes contained SSRs in B. rapa. These SSRs
will be useful for MAS breeding for flowering in Brassica
in the future. Similarly, users could also search for SSRs in
other functional genes of 112 species from the PSSRD.
Therefore, our database can provide researchers with
plentiful SSR resources.
The distribution of flowering-time genes on ten chro-

mosomes in B. rapa. The green indicates that the
flowering-time genes contained SSR markers.

Discussion
In this study, we comprehensively identified SSRs from

all the gene-coding sequences (CDSs) of 112 plants and
further performed functional enrichment analysis for
SSR-related genes. Among the top 20 significant func-
tional enrichment terms, the Guanylate_cyc term had the
largest fold change for SSR-related genes relative to the

(see figure on previous page)
Fig. 9 Phylogenetic and gene duplication or loss analysis of the Myb_DNA-binding gene family in eight representative species.
a Maximum-likelihood (ML) trees were generated based on the amino acid sequences of the Myb_DNA-binding gene family. The phylogenetic tree
was constructed using FastTree software with 1000 bootstrap repeats in eight species. Bootstrap values >40% are shown with circles on each branch.
b The gene number of the Myb_DNA-binding gene family in each species. c Gene duplication and loss analyses of the Myb_DNA-binding gene
family using the Notung software in eight species. Differential gene duplications and losses are indicated by numbers with a + and − on each
branch. Whole-genome duplication (WGD) and whole-genome triplication (WGT) events are indicated with a quadrilateral and hexagon, respectively
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whole-genome level. Interestingly, further investigation
showed that the Guanylate_cyc domain existed in lower
plants and other nonplant species, while it was rarely

found in higher plants. Based on previous reports, gua-
nylate cyclases catalyze guanosine triphosphate to cyclic
guanosine monophosphate (cGMP). As an intracellular
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Fig. 10 The distribution of flowering-time genes on ten chromosomes in B. rapa. The green indicates that the flowering-time genes contained
SSR markers
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messenger, cGMP activates kinases and regulates ion
channels49,50. Guanylate cyclases are part of the G-protein
signaling cascade, which is inhibited by high intracellular
calcium levels but activated by low calcium levels51,52.
Therefore, the genes with the Guanylate_cyc domain
might play critical roles in lower plants, animals, and
bacteria. This finding provides a new perspective for the
functional study of SSR-related genes.
Our findings showed that the most significantly expan-

ded functional terms were transcription factor families
related to the regulation of abiotic stresses, such as Myb,
AP2, and WRKY. Most of these gene families played
important roles in stress resistance in plants according to
previous reports53–57. This result indicated that SSRs
might play critical roles in regulating plant stresses. Fur-
ther comparative analysis of eight representative plants
showed that several specific and common enriched func-
tional terms were detected. Among all functional enriched
genes, Myb-related gene families existed in most plants.
The Myb gene family has a wide range of effects on plant
growth, development, and stress resistance, such as anther
development, axillary meristem formation, cell-wall
thickening, and sperm cell formation58–60. The Myb
gene family is also involved in several biosynthesis path-
ways, such as anthocyanin and flavonol synthesis, and
hormone responses59,61,62. Our further analysis indicated
that WGD and WGT played a major role in the expansion
of the Myb gene families. This finding provided new
insights and guidance into SSRs and other gene families.
Currently, an increasing number of genomes have been

sequenced, and it is possible to develop a large number of
SSR markers at the whole-genome level in different species
from each main kingdom. To date, several databases have
been constructed to collect SSRs from one or more species,
such as the Plant Microsatellite Database, FishMicroSat,
and Microsatellite Database63–65. However, most existing
SSR databases were constructed several years ago and have
not been updated with novel sequence information, or they
cannot be accessed. Therefore, we constructed a PSSRD in
this study, and it will be updated with new SSR datasets and
information promptly in the future. With the increasing
number of genome sequences released, we will con-
tinuously collect novel genomic datasets and identify SSRs
and store them in our PSSRD for users. We also encourage
users to submit their new SSR datasets to us to further
enrich and refine the database. Moreover, we welcome all
users to send us feedback for further improvement of our
database. We believe that the PSSRD will be a useful and
user-friendly database for researchers.

Conclusion
In conclusion, we constructed a PSSRD for widely col-

lected SSR sequences from 112 plants. Interestingly, we
found that more SSRs were detected in the lower plants

than in the higher plants. Moreover, a comprehensive
comparative analysis of SSRs was conducted to reveal their
basic characteristics and functional enrichment in different
plants. This PSSRD can be used for comparative genomic
analysis and molecular MAS studies of plants in the future.

Materials and methods
Sequence collection
The CDSs and protein sequences of each plant in Fasta

format were downloaded from the ensemble database
(http://useast.ensembl.org/index.html). The alternative
splice sequences within the species were removed by
custom Perl script to ensure no redundancy of the data-
sets. We have provided detailed information on the 112
plants used in this study, such as the classification, gen-
ome information, and related references in Table S12.
Based on the relationship of these species in the NCBI
taxonomy, the phylogenetic trees were further edited and
shown using the iTOL program66,67.

Identification and characterization of SSRs
The SSRs of the gene sequences in the selected species

were identified using a batch SSR search program, which
was written according to the Microsatellite identification
tool (MISA)68. The parameters were set as follows:
monomers (×16), 2-mers (×8), 3-mers (×6), 4-mers (×5),
5-mers (×4), 6-mers (×4), 7-mers (×3), 8-mers (×3), and 9-
mers (×3)69. This program allowed the identification and
localization of perfect and compound microsatellites.
When the sequence length between two SSRs was
<100 bp, we defined them as a compound SSR according
to previous reports and the default parameters of the
MISA software70,71.

Primer design for SSR markers
The primers were designed for the identified SSRs using

the Primer3 program72. The main parameters were set as
follows according to a previous report2: (i) the optimum
primer length was 20 nucleotides, and the range was from
18 to 27 bases. (ii) The optimum temperature of the Tm

was 60 °C, and the range was from 55 to 65 °C. (c) The
optimum size of the target PCR products was 150 bp, and
the range was from 100 to 280 bp. All other parameters
were set to the default values according to the Primer3
program.

SSR statistics and correlation analysis of different factors
Violin plots with boxplots of SSR number, SSR density,

and the percentage of genes containing SSRs were drawn
using the ggviolin function in the ggpubr package of the R
program (https://cran.r-project.org/web/packages/ggpubr/
index.html). Correlation coefficients and significance tests
were performed using the Hmisc and Performance Analy-
tics packages of the R program (https://www.r-project.org/).
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The definition of significant correlation was an absolute
value of correlation coefficients > 0.80 and a P value < 0.01.

Functional annotation and enrichment analysis
The functional annotation of the genes containing SSRs

and all other genes was conducted using the localized
Pfam database (http://pfam.sanger.ac.uk)73. The Venn
diagram was drawn by TBtools74. The functional enrich-
ment analysis of the SSR-related genes compared with the
whole-genome genes was conducted using the SciPy
package of Python75. Then, R was used to perform Ben-
jamini and Hochberg correction on the P value of sig-
nificance test, and the parameters for significant
functional enrichment terms were defined as q value <
0.05 and fold change ≥ 276,77.

Identification and analysis of important functional gene
families
Pfam was used to perform a domain search on the

amino acid sequences of each species. The genes con-
taining the domains of “Myb_DNA binding” (PF00249),
“Myb_DNA-bind_3” (PF12776), “Myb_DNA-bind_4”
(PF13837), “Myb_DNA-bind_5” (PF13873), “Myb_DNA-
bind_6” (PF13921), and “Myb_DNA-bind_7” (PF15963)
were extracted by self-programmed Perl with an e value
<1e− 4. In addition, the Simple Modular Architecture
Research Tool and Conserved Domains Database were
used to conduct domain validation on these genes to
ensure accuracy78,79. Arabidopsis flowering genes were
collected from FLOR-ID and previous reports47,48. The
homologous flowering genes in B. rapa were identified by
a comparison with those in Arabidopsis by the Blastp
program (e value <1e− 5, identity >70%).

Phylogenetic tree construction and gene duplication or
loss inference
The amino acid sequences of each Myb gene family

were aligned using Mafft v7.471 with the maxiterate set as
100080. FastTree (v2.1.11) software was used to perform
phylogenetic analysis using the maximum-likelihood
method81. The Jones-Taylor-Thorton model was adop-
ted, and the bootstrap replications were set as 1000. The
phylogenetic trees of each Myb gene family were illu-
strated using the iTOL program to add SSR-related
information or gene function67. Gene duplication and
gene loss analysis were performed using the
Notung2.9 software82.

Database construction
The PSSRD was constructed by applying various soft-

ware packages, including MySQL database management,
PHP, JavaScript, HTML, and CSS. The collected datasets
were processed using Python or Perl, and several bioin-
formatics programs were used for interpreting biological

data analysis and mining. The PSSRD contains several
databases that store processed SSR-related data in
MySQL. The interactive Web interface was constructed to
enable users to conveniently access the PSSRD and obtain
information for basic research using any popular browser
on their devices. PHP, HTML, and JavaScript were used to
transmit query requirements and extract data rapidly
from the MySQL database to create report pages. The
interactive plotting system was developed using d3.js and
nvd3 helper libraries83. More importantly, two tools, WSF
and BSF, are provided, which were rewritten according to
the MISA68. These two tools will greatly facilitate the
online or local batch identification of SSRs for users.

Acknowledgements
This work was supported by the National Natural Science Foundation of China
(31801856, 31701931, and 31902021), China Postdoctoral Science Foundation
(2020M673188), Hebei Province Higher Education Youth Talents Program
(BJ2018016), and the Jiangsu Province Natural Science Foundation
(BK20170462).

Author details
1School of Life Sciences/Library, North China University of Science and
Technology, Tangshan, Hebei 063210, China. 2School of Life Science and
Technology and Center for Informational Biology, University of Electronic
Science and Technology of China, 610054 Chengdu, China. 3Food Science and
Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588,
USA. 4College of Life Sciences and Food Engineering, Huaiyin Institute of
Technology, 223003 Huai’an, China

Author contributions
X.S. conceived of the project and was responsible for the project’s initiation. X.
S., Q.Y., and X.M. supervised and managed the project and research. Data
generation and collection were performed by X.S., Q.Y., X.M., Y.B., and T.W.
Bioinformatics analyses and database construction were led by X.S., Q.Y., K.G., T.
Y., Q.P., W.D., X.K., W.Z., and Z.L. The manuscript was organized, written, and
revised by X.S., X.M., Q.Y., Y.B., W.D., and Z.H. All authors read and revised the
manuscript.

Data availability
All related datasets in this study are available in our SSR database (PSSRD:
http://www.pssrd.info/).

Materials availability
All materials used in this study are available in our SSR database (PSSRD: http://
www.pssrd.info/).

Conflict of interest
The authors declare no competing interests.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41438-021-00562-7.

Received: 18 September 2020 Revised: 10 February 2021 Accepted: 14
March 2021

References
1. Nadeem, M. A. et al. DNA molecular markers in plant breeding: current status

and recent advancements in genomic selection and genome editing. Bio-
technol. Biotechnol. Equip. 32, 261–285 (2018).

2. Song, X. et al. Genome-wide identification of SSR and SNP markers from the
non-heading Chinese cabbage for comparative genomic analyses. BMC
Genomics 16, 328 (2015).

Song et al. Horticulture Research           (2021) 8:122 Page 15 of 17

http://pfam.sanger.ac.uk
http://www.pssrd.info/
http://www.pssrd.info/
http://www.pssrd.info/
https://doi.org/10.1038/s41438-021-00562-7


3. Marconi, T. G. et al. Functional markers for gene mapping and genetic
diversity studies in sugarcane. BMC Res. Notes 4, 264 (2011).

4. Durigan, M. et al. Molecular genotyping, diversity studies and high-resolution
molecular markers unveiled by microsatellites in Giardia duodenalis. PLoS Negl.
Trop. Dis. 12, e0006928 (2018).

5. Wang, W. et al. A high density SLAF-seq SNP genetic map and QTL for seed
size, oil and protein content in upland cotton. BMC Genomics 20, 599 (2019).

6. Vignal, A. et al. A review on SNP and other types of molecular markers and
their use in animal genetics. Genet. Sel. Evol. 34, 275 (2002).

7. Das, G., Patra, J. K. & Baek, K.-H. Insight into MAS: a molecular tool for devel-
opment of stress resistant and quality of rice through gene stacking. Front.
Plant Sci. 8, 985 (2017).

8. Garrido-Cardenas, J. A., Mesa-Valle, C. & Manzano-Agugliaro, F. Trends in plant
research using molecular markers. Planta 247, 543–557 (2018).

9. Hayward, A. C. et al. Molecular marker applications in plants. Methods Mol. Biol.
1245, 13–27 (2015).

10. Yoshida, S. et al. Isolation and RNA gel blot analysis of genes that could serve
as potential molecular markers for leaf senescence in Arabidopsis thaliana.
Plant Cell Physiol. 42, 170–178 (2001).

11. Topping, J. F. et al. Identification of molecular markers of embryogenesis in
Arabidopsis thaliana by promoter trapping. Plant J. 5, 895–903 (1994).

12. Repková, J. et al. Molecular mapping of some Arabidopsis thaliana genes
determining leaf shape and chlorophyll defects. Biol. Sect. Bot. 60, 443–449 (2005).

13. Shabir, G. et al. Rice molecular markers and genetic mapping: current status
and prospects. J. Integr. Agric. 16, 1879–1891 (2017).

14. Yadav, M. K. et al. Use of molecular markers in identification and character-
ization of resistance to rice blast in India. PLoS ONE 12, e0176236 (2017).

15. Edwards, J. D., Baldo, A. M. & Mueller, L. A. Ricebase: a breeding and genetics
platform for rice, integrating individual molecular markers, pedigrees and
whole-genome-based data. Database 2016, baw107 (2016).

16. Misra, G. et al. Genome-wide association coupled gene to gene interaction
studies unveil novel epistatic targets among major effect loci impacting rice
grain chalkiness. Plant Biotechnol. J. https://doi.org/10.1111/pbi.13516 (2020).

17. Liu, X. et al. A putative bHLH transcription factor is a candidate gene for male
sterile 32, a locus affecting pollen and tapetum development in tomato.
Hortic. Res. 6, 88 (2019).

18. Iniguez-Luy, F. L. et al. Development of public immortal mapping populations,
molecular markers and linkage maps for rapid cycling Brassica rapa and B.
oleracea. Theor. Appl. Genet. 120, 31–43 (2009).

19. Li, X. et al. Development of an integrated 200K SNP genotyping array and
application for genetic mapping, genome assembly improvement and genome
wide association studies in pear (Pyrus). Plant Biotechnol. J. 17, 1582–1594 (2019).

20. Liu, S. et al. Resequencing of 297 melon accessions reveals the genomic
history of improvement and loci related to fruit traits in melon. Plant Bio-
technol. J. 18, 2545–2558 (2020).

21. Dong, Z. et al. Genetic relationships of 34 grapevine varieties and construction
of molecular fingerprints by SSR markers. Biotechnol. Biotechnol. Equip. 32,
942–950 (2018).

22. Chambers, A. H. et al. Identification of a strawberry flavor gene candidate
using an integrated genetic-genomic-analytical chemistry approach. BMC
Genomics 15, 217 (2014).

23. Li, N. et al. Fine mapping and discovery of candidate genes for seed size in
watermelon by genome survey sequencing. Sci. Rep. 8, 17843 (2018).

24. Wu, P. et al. Fine mapping of the wheat powdery mildew resistance gene
Pm52 using comparative genomics analysis and the Chinese Spring reference
genomic sequence. Theor. Appl. Genet. 132, 1451–1461 (2019).

25. Li, W. et al. Fine mapping of the sex locus in Salix triandra confirms a con-
sistent sex determination mechanism in genus Salix. Hortic. Res. 7, 64 (2020).

26. Adhikari, S. et al. Application of molecular markers in plant genome analysis: a
review. Nucleus 60, 283–297 (2017).

27. Guajardo, V. et al. Genome-wide SNP identification in Prunus rootstocks
germplasm collections using genotyping-by-sequencing: phylogenetic ana-
lysis, distribution of SNPs and prediction of their effect on gene function. Sci.
Rep. 10, 1467 (2020).

28. Yan, M. et al. Genotyping-by-sequencing application on diploid rose and a
resulting high-density SNP-based consensus map. Hortic. Res. 5, 17 (2018).

29. Wang, X. et al. Comparative genome-wide characterization leading to simple
sequence repeat marker development for Nicotiana. BMC Genomics 19, 500 (2018).

30. Ma, J. et al. Genome-wide development of polymorphic microsatellite markers
and their application in peanut breeding program. Electron. J. Biotechnol. 44,
25–32 (2020).

31. Pan, G. et al. Genome-wide development of simple sequence repeats data-
base for flax (Linum usitatissimum L.) and its use for genetic diversity assess-
ment. Genet. Resour. Crop Evol. 67, 865–874 (2020).

32. Adjebeng-Danquah, J. et al. Genetic diversity and population structure analysis
of Ghanaian and exotic cassava accessions using simple sequence repeat
(SSR) markers. Heliyon 6, e03154 (2020).

33. Carvalho, M. S. et al. Genetic diversity and structure of landrace accessions,
elite lineages and cultivars of common bean estimated with SSR and SNP
markers. Mol. Biol. Rep. 47, 6705–6715 (2020).

34. Patil, P. G. et al. Assessment of genetic diversity and population structure in
pomegranate (Punica granatum L.) using hypervariable SSR markers. Physiol.
Mol. Biol. Plants 26, 1249–1261 (2020).

35. Gao, Y. et al. Development and application of SSR markers related to genes
involved in leaf adaxial-abaxial polarity establishment in chinese cabbage
(Brassica rapa L. ssp. pekinensis). Front. Genet. 11, 773 (2020).

36. Lade, S. et al. Estimation of genetic diversity and population structure in
Tinospora cordifolia using SSR markers. 3 Biotech 10, 310 (2020).

37. Wang, Y. et al. Construction of an anchoring SSR marker genetic linkage map
and detection of a sex-linked region in two dioecious populations of red
bayberry. Hortic. Res. 7, 53 (2020).

38. Riaz, S. et al. Genetic mapping and survey of powdery mildew resistance in
the wild Central Asian ancestor of cultivated grapevines in Central Asia. Hortic.
Res. 7, 104 (2020).

39. Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa.
Nat. Genet. 43, 1035–1039 (2011).

40. Rabeh, K. et al. In silico development of new SSRs primer for aquaporin linked
to drought tolerance in plants. Plant Signal. Behav. 13, e1536630 (2018).

41. Alisoltani, A. et al. Parallel consideration of SSRs and differentially expressed
genes under abiotic stress for targeted development of functional markers in
almond and related Prunus species. Sci. Hortic. 198, 462–472 (2016).

42. Srikanth, A. & Schmid, M. Regulation of flowering time: all roads lead to Rome.
Cell Mol. Life Sci. 68, 2013–2037 (2011).

43. Putterill, J., Laurie, R. & Macknight, R. It’s time to flower: the genetic control of
flowering time. Bioessays 26, 363–373 (2004).

44. Song, X. et al. Comprehensive analysis of the flowering genes in Chinese
cabbage and examination of evolutionary pattern of CO-like genes in plant
kingdom. Sci. Rep. 5, 14631 (2015).

45. Andres, F. & Coupland, G. The genetic basis of flowering responses to seasonal
cues. Nat. Rev. Genet. 13, 627–639 (2012).

46. Fornara, F., de Montaigu, A. & Coupland, G. SnapShot: control of flowering in
Arabidopsis. Cell 141, 550.e1–550e2 (2010).

47. Li, H. et al. Genome-wide identification of flowering-time genes in Brassica
species and reveals a correlation between selective pressure and expression
patterns of vernalization-pathway genes in Brassica napus. Int. J. Mol. Sci. 19,
3632 (2018).

48. Bouche, F. et al. FLOR-ID: an interactive database of flowering-time gene
networks in Arabidopsis thaliana. Nucleic Acids Res. 44, D1167–D1171 (2016).

49. Martin, E. et al. Soluble guanylyl cyclase: the nitric oxide receptor. Methods
Enzymol. 396, 478–492 (2005).

50. Bellamy, T. C. & Garthwaite, J. The receptor-like properties of nitric oxide-
activated soluble guanylyl cyclase in intact cells. Mol. Cell. Biochem. 230,
165–176 (2002).

51. Sakurai, K., Chen, J. & Kefalov, V. J. Role of guanylyl cyclase modulation in
mouse cone phototransduction. J. Neurosci. 31, 7991–8000 (2011).

52. Sharma, R. K. & Duda, T. Membrane guanylate cyclase, a multimodal trans-
duction machine: history, present and future directions. Front. Mol. Neurosci. 7,
56 (2014).

53. Song, X., Li, Y. & Hou, X. Genome-wide analysis of the AP2/ERF transcription
factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC
Genomics 14, 573 (2013).

54. Song, X. et al. Origination, expansion, evolutionary trajectory, and expression
bias of AP2/ERF superfamily in Brassica napus. Front. Plant Sci. 7, 1186 (2016).

55. Yuan, Y. et al. R2R3 MYB-dependent auxin signalling regulates trichome for-
mation, and increased trichome density confers spider mite tolerance on
tomato. Plant Biotechnol. J. 19, 138–152 (2021).

56. Feng, Y. et al. Transcription factor BnaA9.WRKY47 contributes to the adapta-
tion of Brassica napus to low boron stress by up-regulating the boric acid
channel gene BnaA3.NIP5;1. Plant Biotechnol. J. 18, 1241–1254 (2020).

57. Hao, X. et al. The transcription factor OpWRKY2 positively regulates the bio-
synthesis of the anticancer drug camptothecin in Ophiorrhiza pumila. Hortic.
Res. 8, 7 (2021).

Song et al. Horticulture Research           (2021) 8:122 Page 16 of 17

https://doi.org/10.1111/pbi.13516


58. Katiyar, A. et al. Genome-wide classification and expression analysis of MYB
transcription factor families in rice and Arabidopsis. BMC Genomics 13, 544
(2012).

59. Xu, Q. et al. Genomic survey and expression profiling of the MYB gene family
in watermelon. Hortic. Plant J. 4, 1–15 (2018).

60. Ambawat, S. et al. MYB transcription factor genes as regulators for plant
responses: an overview. Physiol. Mol. Biol. Plants 19, 307–321 (2013).

61. Zhang, T. et al. Comprehensive analysis of MYB gene family and their
expressions under abiotic stresses and hormone treatments in Tamarix his-
pida. Front. Plant Sci. 9, 1303 (2018).

62. Feng, G. et al. Evolution of the 3R-MYB gene family in plants. Genome Biol. Evol.
9, 1013–1029 (2017).

63. Nagpure, N. S. et al. FishMicrosat: a microsatellite database of commercially
important fishes and shellfishes of the Indian subcontinent. BMC Genomics 14,
630 (2013).

64. Yu, J. et al. PMDBase: a database for studying microsatellite DNA and marker
development in plants. Nucleic Acids Res. 45, D1046–D1053 (2017).

65. Avvaru, A. K. et al. MSDB: a comprehensive database of simple sequence
repeats. Genome Biol. Evol. 9, 1797–1802 (2017).

66. Schoch, C. L. et al. NCBI taxonomy: a comprehensive update on curation,
resources and tools. Database 2020, baaa062 (2020).

67. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new
developments. Nucleic Acids Res. 47, W256–W259 (2019).

68. Beier, S. et al. MISA-web: a web server for microsatellite prediction. Bioinfor-
matics 33, 2583–2585 (2017).

69. Song, X. et al. Genome-wide identification of SSR and SNP markers from the
non-heading Chinese cabbage for comparative genomic analyses. BMC
Genomics 16, 328 (2015).

70. von Stackelberg, M., Rensing, S. A. & Reski, R. Identification of genic moss SSR
markers and a comparative analysis of twenty-four algal and plant gene

indices reveal species-specific rather than group-specific characteristics of
microsatellites. BMC Plant Biol. 6, 9 (2006).

71. Gao, Z. et al. Rapid microsatellite development for tree peony and its impli-
cations. BMC Genomics 14, 886 (2013).

72. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for
biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

73. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res.
47, D427–D432 (2019).

74. Chen, C. et al. TBtools: an integrative toolkit developed for interactive analyses
of big biological data. Mol. Plant 13, 1194–1202 (2020).

75. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods 17, 261–272 (2020).

76. Dalmasso, C., Broet, P. & Moreau, T. A simple procedure for estimating the false
discovery rate. Bioinformatics 21, 660–668 (2005).

77. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300
(1995).

78. Ivica, L., Tobias, D. & Peer, B. SMART 7: recent updates to the protein domain
annotation resource. Nucleic Acids Res. 40, 302–305 (2012).

79. Marchlerbauer, A. et al. CDD: specific functional annotation with the Con-
served Domain Database. Nucleic Acids Res. 37, D205 (2009).

80. Nakamura, T. et al. Parallelization of MAFFT for large-scale multiple sequence
alignments. Bioinformatics 34, 2490–2492 (2018).

81. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum
evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26,
1641–1650 (2009).

82. Stolzer, M. et al. Inferring duplications, losses, transfers and incomplete lineage
sorting with nonbinary species trees. Bioinformatics 28, i409–i415 (2012).

83. Bostock, M., Ogievetsky, V. & Heer, J. D(3): data-driven documents. IEEE Trans.
Vis. Comput. Graph 17, 2301–2309 (2011).

Song et al. Horticulture Research           (2021) 8:122 Page 17 of 17


	Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants
	Authors

	Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants
	Introduction
	Results
	Overview of the main interface of the PSSRD
	Browse
	Chart interface
	Download interface
	Tool interface
	Resource, help, and contact interfaces

	Comprehensive comparative analysis of the SSRs in 112�species
	Trinucleotide SSRs were dominant according to the frequency distribution analysis
	Correlation analysis of the factors related to different SSR characteristics
	Comparative analysis indicated that more SSRs were present in lower plants than in higher plants
	Functional enrichment analysis of genes containing SSRs in 112�species
	Functional enrichment analysis of genes containing SSRs in eight representative species

	PSSRD application 1: Myb-related gene families
	Phylogenetic and comparative analysis of Myb-related gene families
	Gene duplication and loss inference of Myb-related gene families

	PSSRD application 2: flowering-time gene analysis

	Discussion
	Conclusion
	Materials and methods
	Sequence collection
	Identification and characterization of SSRs
	Primer design for SSR markers
	SSR statistics and correlation analysis of different factors
	Functional annotation and enrichment analysis
	Identification and analysis of important functional gene families
	Phylogenetic tree construction and gene duplication or loss inference
	Database construction

	Acknowledgements


