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ABSTRACT

This work uses modern computer simulation methods to investigate the thermo-
dynamics and kinetics of processes and reactions in solid-state materials. First,
the thermodynamics of the Ba2+ substitutional defect in MgO and the Ag substitu-

tional defect in Cu metal are studied using classical and density functional theory lattice
statics and lattice dynamics within the quasi-harmonic approximation. The computed
defect energies show that the temperature variation of the defect energies is significant
and not negligible as often assumed. We compare the defects in finite-size clusters with
those in the bulk. While defect energies of larger clusters are closer to those in the
bulk, the interfaces present in finite-size clusters give rise to differences in the degree of
structural relaxation. Secondly, we emphasise the geochemical importance of such defect
modelling for explaining the partitioning behaviour of trace elements between minerals
and melts and explore the factors which are crucial in controlling partitioning. Lattice
statics calculations were used to compute energies for the incorporation of various trace
elements in CaO and in diopside. The defect modelling was also used to uncover the seri-
ous limitations of simple lattice strain models, e.g., the poor description of lattice strains,
the use of the invariant cation radii, the oversimplified assumption of the incorporation
mechanisms and the disregard for the role of melt species when describing trace-element
partitioning.

Finally, we turn to examine the kinetics of some zeolite-catalysed reactions in the
context of macromolecular rate theory. Many zeolite-catalysed reactions exhibit non-
Arrhenius behaviour in which the rate of reaction is lower than expected at higher
temperatures. Based on similarities with enzyme catalysis, we suggest a negative change
in the heat capacity of activation is a possible explanation of the negative curvature of the
Arrhenius plots for these zeolitic reaction rates. The classical and ab initio calculations
based on quasi-harmonic lattice dynamics, molecular dynamics and metadynamics have
been employed to investigate the temperature dependence of the free-energy barriers
and rates of several diffusion processes in MgO and zeolitic frameworks. The rates of
the Mg2+ vacancy migration in MgO, the diffusion of an ethene molecule through an
LTA zeolite pore and the diffusion of ethene molecules in the LTA framework are pre-
dicted to show deviations from the classical Arrhenius law, in line with macromolecular
rate theory. Since macromolecular rate theory proves useful for understanding enzyme
thermoadaptation and designing new enzymes with desirable temperature-dependent
properties, we hope our findings will help in the design and synthesis of novel materials
for special purposes.
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1
INTRODUCTION

1.1 Overview

The increasing power of highly-parallel supercomputers and advances in software

engineering enable us to simulate highly complex chemical systems to gain

microscopic insights into chemical phenomena. In the research field of materials

modelling, advanced theoretical frameworks and massively parallel computer codes have

been used to study the properties and behaviours of various types of complex solid-state

materials computationally, e.g., for predicting unknown crystal structures,1 investigating

the chemical bonding and electronic properties in solids,2 modelling defects in crystals,3,4

studying surfaces and interfaces,5 examining sorption processes,6 studying transport

processes of atoms and molecules in solids,7 simulating nano-structures,8,9 and so forth.

Although a number of computational methods are available for simulating those

complex solid-state systems, one must consider the inevitable trade-off between computa-

tional cost and accuracy when contemplating the methods. It is always crucial to validate

the numerical results of simple systems obtained from the chosen method with the known

reference results, e.g., from experiments or higher-level calculations, before performing a

vast series of computationally expensive calculations of the more complicated systems.

Calculations based on classical force fields are much faster and computationally cheaper

than those based on quantum-mechanical, i.e., first-principles or ab initio, methods.

However, the accuracy and reliability of the classical results depend greatly on the

quality of the potential parameters used. Typically, the potential parameters are fitted
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CHAPTER 1. INTRODUCTION

or optimised to reproduce the properties of the perfect lattice, e.g., lattice energy, lattice

parameters, elastic constants or phonon dispersion curves; therefore, the fitted potential

parameters can solely provide information for interatomic (or interionic) distances close

to the equilibrium values and in highly symmetric materials, and cannot adequately

describe the interactions at distances far from those sampled in the model systems, for

example, in crystals at high pressures and/or high temperatures or in defective crystals

and at surfaces.10,11 Furthermore, the classical simulation cannot probe the properties

related to the electronic structure or other quantum mechanical effects. More impor-

tantly, classical simulations cannot be used to model chemical reactions; hence, the much

more expensive quantum-mechanical methods are the only choice for those cases.

In this thesis, we will present the applications of various advanced atomistic mod-

elling techniques to investigate (i) the defect thermodynamics in crystalline solids and

clusters, (ii) the trace-element partitioning in solid minerals and melts and (iii) the

temperature variation of the rates of activated processes in solid-state materials. Beyond

this point, we will introduce the necessary general ideas and emphasise the importance

of the computational studies of (i)-(iii) in several modern scientific research areas.

1.1.1 Defects in Crystals

Defects or imperfections play a vital role in characterising the physical and chemical

properties of crystalline solids. In terms of statistical thermodynamics, any synthesised

solid-state crystal always has a certain amount of defects in its structure at equilibrium

above absolute zero. Strictly speaking, there is no completely perfect crystal. A number

of studies show that the bulk, electronic, optical, and thermoelectric properties of solids

depend greatly on the existence of such defects even though they are present in small

amounts.12 In our modern world, a number of ground-breaking innovations such as solid-

state batteries, computer hardware, and fuel cells are all involved with the well-developed

theories and in-depth understanding of defects in inorganic solids.

Generally, a defect in a crystal can be identified as either intrinsic or extrinsic. As

the names imply, an intrinsic defect occurs with no change of solid composition, while

an extrinsic defect involves the insertion of foreign atoms (or dopants) into the crystal

lattice. Defects can also be categorised into different classes based on their dimensional

characteristics. In the present work, however, we focus solely on defects which occur only

right at (or around) a single lattice point and are so-called point defects. More general

discussion of defects in crystals can be found in the widely used textbooks by Stoneham13

and Tilly,12 for instance.
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The thermodynamic properties of defects are essential to understanding their be-

haviour. For instance, defect formation energy can be used to estimate the equilibrium

defect population, and migration energy can be used to predict the diffusivity and ionic

conductivity.12 These thermodynamic quantities, unfortunately, are not easily obtained

via experiments. However, such parameters can conveniently be calculated using modern

parallel computer codes running on state-of-the-art supercomputers.

For a few decades now, point-defect energies in ionic crystals – the majority of

inorganic solids, have been extensively and comprehensively studied, resulting in a

substantial insight into sophisticated defect phenomena in various chemical systems.3

Historically, the pioneering computational work in this field was performed using clas-

sical interatomic potentials as computers were not so powerful and there was a lack

of well-developed codes at that time. Recently, however, much more advanced super-

computers and software engineering have made first-principles calculations become

cheaper as a reliable and predictive tool for studying defects in solids. There are several

recent publications on the topic and code developments. These include textbooks14–16

and critical review articles17–23 focusing on theoretical aspects of the ab initio simulation

of point defects in various crystalline solids. Furthermore, practical tools for modelling

point defects, e.g., via first-principles methods and machine learning, have also been

developed.24–27

In addition, most calculations of point-defect thermodynamics in the past were per-

formed based on static-lattice approaches, and the computation was carried out at

constant volume in the static limit, i.e., zero temperature is assumed and in the ab-

sence of lattice vibrations, for simplicity. These numerical results are often not useful

as most of the experimental data have been obtained at constant pressure and ele-

vated temperatures.28 Therefore, simulation methods for evaluating temperature- and

pressure-dependent defect free energies are needed in order to explore the impact of

temperature and/or pressure on the calculated defect properties.

The calculation of point-defect free energies can be done in various ways. Direct

methods, including molecular dynamics (MD) and Monte Carlo (MC), can be used.

However, these approaches are very computationally expensive, especially for complex

disordered solids. On the other hand, quasi-harmonic lattice dynamics based on lattice

statics and the quasi-harmonic approximation can be used as an alternative, i.e., valid

up to two-thirds of the melting point, which are computationally cheaper for calculating

the point-defect free energies.
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1.1.2 Trace-Element Partitioning between Minerals and Melts

One of the challenging tasks for mineralogists and igneous geochemists is the under-

standing of how trace elements, whose concentrations are lower than 0.1% by weight,

partition or distribute between two co-existing phases such as minerals and melts.29

Trace-element distribution between minerals and melts is vital to several geochemical

and industrial processes and an insightful understanding of trace-element partition-

ing controlling factors has implications for several processes, e.g., the differentiation

of the Earth and the management of radioactive waste.30,31 According to fundamental

thermodynamics, a given trace element will have an equilibrium distribution between a

mineral (solid) and melt, attaining equal chemical potentials in the co-existing phases.

The partitioning behaviour of a particular trace element i in a given solid-state material

equilibrated with its liquid melt can be described by a Nernst partition coefficient, D i.

The partition coefficient D i quantifies the ratio of the amount of element i in the solid to

that in the melt. For instance, the partitioning of two arbitrary elements A and B are

considered in a given solid-melt mixture at equilibrium with the partition coefficients

DA and DB, respectively. With DA > DB, this indicates that A is present at a higher

concentration in the solid compared to B.

The variation of experimental partition coefficients with dopant size for an isova-

lent cation series at a given lattice site of a crystal of interest shows an approximately

parabolic curve with a maximum occurring at an ionic radius close to the host cation.

Such a partitioning curve is called an Onuma diagram.32 Previously, Blundy and Wood 33

proposed a lattice strain model by employing the expression of Brice 34 to explain the

variation of experimental partition coefficients with ionic radius, i.e., an Onuma curve.

Although the simple strain model of Blundy and Wood 33 appears to explain well the

Onuma curve for an isovalent series, describing strains using the expression of the

Brice 34 model is found to be inadequate and oversimplified in terms of, e.g., the incom-

plete description of lattice strains, the use of the fixed cation radii, the oversimplified

assumption of the substitution mechanisms and the neglect of the role of melt species

when explaining trace-element partitioning. However, computer simulation based on

lattice statics enables us to uncover these serious limitations of the simple lattice strain

model of Blundy and Wood.33
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1.1.3 Temperature Variation of Activated Processes in
Solid-State Materials

Catalysis is one of the overarching aspects of modern chemistry, which plays a vital role

in chemical and materials sciences. Catalysis involves directly the process of enhancing

the rate of a chemical reaction by adding only a small amount of another chemical

substance – a catalyst.35 In general, catalysts accelerate chemical reactions by providing

alternative pathways or reaction mechanisms with lower energy barriers than the

uncatalysed pathways. Additionally, a chemical catalyst is not consumed and remains

unchanged at the end of the reaction. Catalysis can be categorised into two types based

on their phase separation, i.e., homogeneous and heterogeneous catalysis in single-phase

and multiple-phases systems, respectively.36 For instance, enzyme catalysis belongs to

the former, while solid-state inorganic catalysis belongs to the latter. The rate of the

catalysed processes depends on several parameters, such as temperature.

According to the classical Arrhenius model, the rate of any catalysed reaction or

process increases as the temperature increases.37 However, this is not always the case

for various complex chemical reactions due to several possible causes, e.g., the change

in the magnitude and number of low-frequency vibrational modes as an enzymatically

catalysed reaction proceeds, the aggregation and denaturation or unfolding of enzymes,

and reaching the transport or diffusion limit in a highly nanoporous inorganic catalyst.

At high temperatures, most enzyme-catalysed reactions show decreases in their rates

which is universally believed to be due to enzyme unfolding, and they can no longer

accelerate the reactions. However, reaction rates catalysed by some cold-adapted enzymes

are found to decrease at higher temperatures in the absence of denaturation, and this

contrasts with a traditional explanation of this non-Arrhenius behaviour.38

Macromolecular rate theory (MMRT) has been proposed to account for the deviation

of the classical Arrhenius behaviour of those enzyme-catalysed reaction rates at high

temperatures in the absence of enzyme denaturation or unfolding.39 MMRT suggests

that a negative change in the heat capacity of activation is the cause of the decrease

in enzyme rate at elevated temperatures. In principle, a large negative change in heat

capacity of activation reflects a very tight binding mode of the transition-state complex

and a decrease in the number of conformational states (and/or fewer low-frequency

vibrational and rotational modes) compared to those in the ground-state structure.39

Several computational studies have been carried out to investigate the negative changes

in heat capacity of activation of some enzymatic reactions.40–42 Using the MMRT concept,
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modern scientists can understand the thermoadaptation of a de novo enzyme more fully

and be able to design better enzymes for their purposes.43,44

Catalytic activities of a zeolite occur at active catalytic centres within the cavity of its

micro-sized pores, similar to those occurring within the active site of an enzyme structure.

Within micron-sized voids in a zeolite framework, as a chemical reaction proceeds, the

transition-state complexes and reactive transient species are stabilised via van der Waals

and electrostatic interactions to decrease the activation energy.45 These stabilisation

effects affect the catalytic performance of the zeolitic framework directly. Hence, zeolites

could be viewed as rigid variants of enzymes used for industrial purposes involving

physical and chemical processes at high temperatures.46 Based on similarities with

enzyme catalysis, novel functional zeolitic materials have successfully been designed

and synthesised by mimicking enzyme structures.47,48 In this regard, there are strong

parallels in materials and inorganic chemistry, i.e., heterogeneous catalysis, which still

need to be explored based on the MMRT approach, as is explored in this thesis.

For instance, many zeolite-catalysed reaction rates show deviations from the Arrhe-

nius behaviour in which the reaction rates are lower than expected at high temperatures

and these phenomena have traditionally been explained by either the diffusional con-

trols,49–51 the structural deformation (or the deactivation of the catalytic centres)51–54

or kinetic effects in different temperature regions.55–57 However, several studies state

clearly that there is no direct evidence of the decrease in zeolite-catalysed reaction rate

at high temperatures;52,53,58,59 thus, the non-Arrhenius behaviour of those zeolitic rates

might be the direct consequence of negative changes in heat capacity of activation, as

MMRT suggests. Theoretically, state-of-the-art computational simulations should also

be employed to reveal these interesting phenomena.

1.2 Thesis Outline

In Chapter 2, we outline all the general theories, computational methods, and software

packages used in this thesis. Chapter 3 focuses particularly on the investigation of the

temperature and finite-size effects on the defect free energies in crystalline solids via

classical and ab initio computer simulation based on lattice statics and quasi-harmonic

lattice dynamics. In Chapter 4, we first discuss simple geological models for explain-

ing the experimental partitioning data. Then, we review fundamental thermodynamic

approaches before discussing the use of simple lattice strain models for studying the

incorporation of trace elements into minerals and melts. We then explore the limitations
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of the simple lattice strain model of Blundy and Wood 33 theoretically through classical

and ab initio simulations based on lattice statics. In Chapter 5, we explore the possible

factors that can give rise to the deviation of Arrhenius-like behaviours in solid-state

inorganic catalysis based on the concept of macromolecular rate theory. We will show

the calculations of temperature-dependent free energies of activation and diffusivity for

diffusion processes in MgO and zeolites using various computer simulation techniques

based on both classical and ab initio density functional theory approaches, including

quasi-harmonic lattice dynamics, molecular dynamics and metadynamics. Finally, Chap-

ter 6 summarises the results of all the thesis chapters individually and draws general

conclusions from those results before discussing future work.
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2
THEORY AND METHODS

Both the extraordinary high performance of modern computers and the recent

advances in software engineering enable us to study theoretically the prop-

erties of various chemical systems, ranging from small isolated molecules to

highly-complex systems, e.g., biological macromolecules and solids. This chapter focuses

particularly on the computational techniques for modelling solid-state materials. Here,

we list all the general theories, computational methods, and software packages used in

this thesis.

2.1 Computational Methods for Solid-State Modelling

Up to date, state-of-the-art modelling methods have successfully been applied to study

computationally the properties and behaviours of various types of solid-state materi-

als. For instance, computer simulation can be used for predicting crystal structures,1

investigating the nature of chemical bonding and electronic properties in solids,2 mod-

elling defects in crystals,3,4 modelling solid surfaces and interfaces,5 modelling sorption

processes,6 studying transport processes of atoms and molecules in solids,7 simulat-

ing nano-structures,8,9 and so on. In this thesis, as we are particularly interested in

the applications of computational methods for investigating the defect formation and

diffusion processes in several types of crystalline solids, some key papers are impor-

tant for designing the methodologies used in this study and are worth mentioning. For

instance, the classical and first-principles theoretical frameworks and computational
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techniques for studying the properties of point defects in crystalline solids have previ-

ously been reviewed by Catlow and Mackrodt,60 Harding,3 Taylor et al. 61 and Bredow

and co-workers.4 Additionally, several previous studies including Catlow et al.,62 Jobic

and Theodorou,63 O’Malley and co-workers,7,64 outline comprehensively the atomistic

modelling methods for simulating the diffusion processes of guest (adsorbed) molecules

in highly-porous zeolitic materials. These critical studies have been selected as the refer-

ence and starting point for designing the computational methods used in our present

work.

There are numerous computational methods available that cover several orders of

magnitude of time- and length-scale. Computational techniques for solid-state modelling

can be categorised into two categories: (i) classical or potential-based and (ii) quantum

mechanical approaches. Potential-based methods use analytical expressions for the

interaction potential energies between the particles, e.g., atoms or ions, in the solid

of interest. Empirical variables in those expressions, i.e., classical force fields, can be

parameterised by fitting to the results of either experimental observations or highly

accurate quantum mechanical calculations. These empirical potentials can be used in

simulation methods including classical energy minimisation (also known as molecular

mechanics, MM), lattice dynamics, molecular dynamics (MD) and Monte Carlo (MC)

techniques. In contrast, first-principles quantum mechanical (or ab initio) methods

are more accurate which solve directly the Schrödinger equation to attain the energy

of a particular molecular or periodic system without the use of empirical interatomic

potentials. All chemical problems in atomic-level modelling should ideally be solved

using quantum mechanical approaches to calculate the wavefunction and the energy

of the system of interest. However, ab initio methods are much more computationally

expensive than potential-based techniques and these methods are solely limited to

systems involving smaller numbers of atoms. Therefore, there is an unavoidable trade-off

between accuracy and speed when choosing the appropriate modelling methods.

There are several excellent general textbooks on the simulation techniques in compu-

tational chemistry available, e.g., by Leach,65 Cramer,66 Jensen,67 and Harvey.68 Details

on computational techniques for materials modelling can be found in Catlow,69 Deák et
al.,70 Allan,11 and Dronskowski and Hoffmann,71 for instance. In this section, we aim to

provide a brief overview of computational methods and their applications in materials

modelling. We first begin this section with potential-based methods, the computationally

cheapest approach and most appropriate for modelling chemical systems involving large

numbers of constituent atoms, and then discuss the first-principles quantum mechanical

10



2.1. COMPUTATIONAL METHODS FOR SOLID-STATE MODELLING

L

FIGURE 2.1. Schematic illustration of a cubic simulation box or a cubic unit cell
(marked by the red square) with a cell length of L for a three-dimensional
periodic system using periodic boundary conditions.

methods, the much more computationally expensive approach appropriate for systems

consisting of smaller numbers of atoms.

2.1.1 Periodic Boundary Conditions

For modelling a bulk liquid or solid (large infinite system), e.g., in molecular dynamics

(MD) or lattice statics simulations, a simulation box can be constructed by making

replicas of the smaller original simulation box containing the atoms or molecules of

interest, i.e., the unit cell, throughout three-dimensional space to avoid an unwanted

interface at each side. This approximation uses periodic boundary conditions, which is

schematically illustrated in Figure 2.1. When a particular particle exits the box through

one of the faces, its image enters to the opposite face. With these periodic boundary

conditions (PBC), the total number of constituent particles is conserved.
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2.1.2 Classical Interatomic Potentials

In potential-based methods (also known as force-field methods), the electronic motion is

not explicitly taken into account. The energy of a system is calculated as a function of

the nuclear (atomic) positions only, i.e., making the Born-Oppenheimer approximation.

In this approach, a given system, e.g., a molecule, liquid or solid, is comprised of a set

of interacting spheres whose motions obey the laws of classical rather than quantum

mechanics. The classical methods do not provide any information concerning chemical

bonding, reaction pathways, charge transfer or other properties related to electronic

properties. However, these details are not often required for calculating thermodynamic

properties. Highly accurate potentials describing the interatomic interactions can thus

provide much faster access to accurate results comparable with those of the higher-level

first-principles methods.

For a given periodic system comprised of N atoms, e.g., constructed by a unit cell

with periodic boundary conditions, as illustrated in Figure 2.1 and discussed in Section

2.1.1, the classical potential energy, Φ, can be written as a sum of various many-body

interaction potentials, φ’s, as follows:

Φ=
N∑

i< j
φi j +

N∑
i< j<k

φi jk +
N∑

i< j<k<l
φi jkl +·· · , (2.1)

where each of the subscript labels denotes a given atom. The three terms on the right-

hand side of equation (2.1) are two-body, three-body and four-body potentials, respectively.

The contribution from higher-order terms is expected to become progressively smaller for

most systems; hence, those higher-order terms are negligible and the degree of empirical

parameterisation is determined by only the first few terms remaining. For instance,

the three-body and four-body interactions are often neglected for modelling polar solids,

while omitting these terms leads to poor results for semiconductors and metals (see, e.g.,
Sutton 72 for further details).

One possible expression of the interaction potential for a given molecular solid

consisting of discrete molecules can be written as

Φ= ∑
bonds

kr

2
(r− r0)2 + ∑

angles

kθ
2

(θ−θ0)2 + ∑
torsion angles

kω
2

(1+cos(nω−ξ))

+
N∑

i< j

qi q j

4πε0r i j
+

N∑
i< j

4ϵi j

[(
σi j

r i j

)12
−

(
σi j

r i j

)6]
.

(2.2)

The first three interaction potential terms on the right-hand side of equation (2.2) define

the intramolecular interactions. The first two-body harmonic potential term involves
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the summation over all pairs of directly bonded atoms within the molecules. kr is the

force (spring) constant of each bond and r0 is the equilibrium bond length. Similarly,

the second term is the three-body harmonic potential for all triplets of bonded atoms

in the molecules with the spring constant kθ and the equilibrium bond angle θ0. The

third term, on the other hand, is the four-body potential describing the rotation about

the bonds in the molecules, i.e., torsion or dihedral angles. For a quartet of bonded atoms,

ω is the torsion angle, kω is the force constant, n is a constant defining the periodicity of

rotation, and ξ is a phase factor.

The last two terms on the right-hand side of equation (2.2) are the long-range

electrostatic (Coulombic) and van der Waals potentials, respectively. qi and q j are the

ionic charges and ε0 is the vacuum permittivity in the long-range Coulombic term, while

ϵi j and σi j are constants defining the van der Waals potential in the last term. In both

terms, r i j is the interatomic distance of atoms i and j. For periodic ionic solids, special

numerical techniques, e.g., the Ewald method, are required to compute the overall long-

range electrostatic potential (see Leach,65 Cramer,66 and Jensen 67 for more details). The

final term is the widely-used 12-6 Lennard-Jones function chosen for representing the

van der Waals interactions between pairs of non-bonded atoms. As directional bonding

is largely absent in many polar solids, only the two-body interactions are taken into

account, whereas the three-body and four-body terms are often omitted. Hence, the

two-body interactions Ui j in equation (2.1) between any ion pair i and j is the sum of

the Coulombic and van der Waals terms:

φi j =
qi q j

4πε0r i j
+φvdW(r i j). (2.3)

There are various functional forms for the van der Waals terms, e.g., the 12-6 Lennard-

Jones potential in equation (2.2). Another common alternative is the Buckingham poten-

tial form, where the r−12 term is replaced by an exponential:

φBuck = A exp
(
− r i j

ρ

)
− C

r6
i j

, (2.4)

where A, ρ and C are constants. Additional terms for the electronic polarisation effect of

each atomic type can also be included, e.g., using the shell model.73 When evaluating the

energy of very large systems, the pairwise energy for two atoms that are very far from

each other vanishes. For that reason, cutoffs in potentials are needed in order to lessen

the computation time.

The quality and accuracy of any set of interatomic potential or force field parameters

depend essentially on the assignment of both atomic or ionic charges for individual
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constituents and the values (i.e., constants) chosen for the parameters in the various

functional forms. There are two possible approaches to obtain these parameters: (i) by

fitting to experimental quantities, e.g., observed lattice constants, bond lengths, bond

angles, vibrational spectra, and heat of formation, and (ii) by fitting to potential energy

landscapes generated by high-level ab initio methods. A key requirement of any set

of potential parameters is its transferability when modelling more complex systems

outside the range of structural properties, e.g., interatomic distances, used in the fitting

procedure, especially in defect calculations, surfaces or interfaces calculations, lattice

dynamics and molecular dynamics simulation at a wide range of temperatures and/or

pressures. For instance, the empirical fitting is useful to construct transferable potentials

derived from binary oxides for ternary systems.74,75 However, solely the second approach,

i.e., fitting to first-principles data, can provide those potential parameters when there

are no relevant experimental data available.

2.1.3 Energy Minimisation

The main goal of energy minimisation is to find the minimum point on the potential

energy surface of a given structure. Energy minimisation allows the prediction of the

likely structure for a given molecule (or solid) that can have multiple stable structures (or

phases). In pharmaceutical molecular modelling, energy optimisation based on classical

force fields is often referred to as molecular mechanics (MM).

2.1.3.1 Lattice Statics

In lattice statics simulations, vibrational contributions are not taken into account; hence

the ‘internal’ lattice energy U is equal to Φ and these two quantities are interchangeable

in static-limit calculations. Such energy minimisations provide the crystal structure

and the corresponding lattice energy. In the static limit, i.e., at absolute zero and zero

pressure, the optimised crystal structure is determined by

∂U
∂Zi

= ∂Φ

∂Zi
= 0, (2.5)

where Zi are all the parameters that define the crystal structure, i.e., the lengths of the

three lattice constants, the three angles between the three lattice vectors, and the atomic

positions in the unit cell. Various fast and efficient energy-minimisation algorithms have

been developed and there is a vast literature on this topic (see, e.g., Leach,65 Schlegel,76

and Jensen 67 for more details).
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Energy minimisation (or structural/geometry optimisation) can either be carried out

at constant volume or constant pressure. At constant volume, energy minimisation is

undertaken with invariant cell dimensions, i.e., keeping all six lattice parameters fixed.

Hence, the set of structural parameters Z comprises only the atomic positions in the

simulation cell. On the other hand, both lattice parameters and atomic positions are

simultaneously varied during constant-pressure minimisation. In the literature, Φ or

U is, in principle, expressed as a function of external or macroscopic (ηλ) and internal

or microscopic (εk) strains due to the six lattice parameters and atomic coordinates,

respectively. The internal strains εk can simply be treated as thermodynamic parameters

on the same footing as the external strains ηλ comprising a set of strain variables EA.77,78

To perform constant-pressure energy minimisation in the static limit at a finite exter-

nal pressure Pext, the enthalpy H =U +PextV is minimised with respect to all structural

parameter Zi instead, where V is the volume. Note that H =U when Pext = 0. Energy

minimisations at finite temperatures, on the other hand, can be carried out in several

ways. The first approach is to perform direct calculations through Monte Carlo (MC)

or molecular dynamics (MD) simulations which will be discussed later. However, these

methods cannot evaluate free energies (the Helmholtz and Gibbs energies) accurately

as they do not sample high-energy regions of phase space adequately. Second, lattice

dynamics simulation can alternatively be used to incorporate the vibrational (or thermal)

contributions to lattice statics which gives absolute free energies and their derivatives

directly. The latter approach is much computationally cheaper than the former direct

simulation approaches. Such lattice dynamics simulation can be performed via the

quasi-harmonic approximation (QHA), for instance.

2.1.3.2 Quasi-Harmonic Lattice Dynamics (QHD)

Within the quasi-harmonic approximation (QHA), the key assumption is that the

Helmholtz energy A of a system at a given temperature T is expressed as the sum

of static and temperature-dependent vibrational energies:

A(Z,T)=Φstat(Z)+ Avib(Z,T), (2.6)

where Φstat is the static potential energy of the lattice, and Avib denotes the sum of

harmonic vibrational contributions from all the normal modes in a given state with a

set of all the structural parameters, Z. Traditionally, static lattice calculations involve

solely Φstat and the vibrational term Avib is completely neglected. For a periodic lattice
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structure, Avib at a given temperature T is given by

Avib =
∑
k,i

(
1
2

hνi(k)+kBT ln
{

1−exp
[
−hνi(k)

kBT

]})
, (2.7)

where h and kB are the Planck and Boltzmann constants, respectively. νi(k) denotes

the harmonic frequencies of modes i with a wave vector k which can be obtained by

diagonalising the dynamical matrix D(k).79 The first term on the right-hand side is

called the zero-point energy. The evaluation of the sum over all the wave vectors k
is achieved by taking successively finer uniform grids in reciprocal space, i.e., in the

Brillouin zone, until convergence.80

For a given periodic structure, the free energy obtained using equation (2.6) is a

function of the structural parameters, i.e., the six lattice parameters (three lattice vectors

and three angles) as the external degrees of freedom and the atomic positions within the

unit cell as the internal degrees of freedom. In other words, the Helmholtz energy (and

also the static lattice energy) is, of course, a function of both external or macroscopic (ηλ)

and internal (εk) strains. The equilibrium periodic structure under an external pressure

Pext can be obtained by minimising the availability (or the Gibbs energy G) Ã = A+PextV
with respect to all the strain parameters.81 Ã (or G) reduces to the ordinary Helmholtz

energy A when Pext = 0.

Derivatives of the free energy with respect to the geometrical variables are essen-

tial for performing the structural optimisation through direct free-energy minimisa-

tion. Unlike static energy derivatives, which are not difficult to compute analytically,82

free-energy derivatives are less straightforward. However, the analytic expressions for

derivatives of the free energy can be obtained using first-order perturbation theory

applied to the dynamical matrix.61,79,83,84 For large cells, the free-energy derivatives

can be approximated using the computationally cheaper and less accurate approaches,

for example, (i) the zero static internal stress approximation (ZSISA)85 which yields

correct cell parameters to the first order, and (ii) the constant internal strain parameter

approximation (CISPA).86 Furthermore, the vibrational entropy Svib can also radily be

evaluated and its explicit expression can be written as

Svib =
∑
k,i

({
[hνi(k)/T]

exp[hνi(k)/kBT]−1

}
−kB ln

{
1−exp

[
−hνi(k)

kBT

]})
. (2.8)

As mentioned earlier, this computational method is much computationally cheaper

compared to classical molecular dynamics (MD) and Monte Carlo (MC) simulations for

free energies, and is often found to be valid up to approximately two-thirds of the melting

16



2.1. COMPUTATIONAL METHODS FOR SOLID-STATE MODELLING

point. It has successfully been used to study theoretically the free energies of different

types of crystals at high pressures and temperatures.87–89 For this reason, the quasi-

harmonic lattice dynamics is a powerful tool as an alternative technique to classical

molecular dynamics and Monte Carlo simulations for studying the free energies of solids.

The direct free-energy minimisation of periodic structures has well been implemented in

several computational codes, e.g., SHELL,90 and GULP.91 This enables the programs to

perform a full minimisation of the free energy with respect to all external strains and

internal coordinates using the quasi-harmonic approximation for large unit cells with a

large number of strains. Free-energy minimisation is, however, more computationally

expensive than static calculations.61

2.1.4 Molecular Dynamics

Molecular dynamics is a powerful computer simulation method used for computing the

equilibrium and transport properties of many-body systems. The method was invented by

Alder and Wainwright.92 For many decades now, the simulation technique has success-

fully been used in many scientific disciplines including, e.g., materials science, biology,

geochemistry, and chemical kinetics.

2.1.4.1 Brief Overview of Statistical Mechanics

Statistical mechanics (also often referred to as statistical thermodynamics) studies the

macroscopic properties of large many-body systems by investigating their microscopic

behaviour. Those large systems are comprised of a large number of degrees of freedom,

i.e., the (atomic) positions and momenta. Sometimes, spins (or magnetic moments) are

also taken into account. ‘Phase space’ is the space spanned by those degrees of freedom

and each of the points in phase space is represented by a particular configuration of the

system.

The average of a given property Q of a many-body system with a constant number of

particles N at constant temperature T and volume V , i.e., the canonical (NV T) ensemble,

is given by the ensemble average 〈Q〉:

〈Q〉NV T =
∫

Q(Z)P(Z) dZ,

P(Z)= exp(−U(Z)/kBT)∫
exp(−U(Z)/kBT) dZ

,
(2.9)
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where Z is all possible states of the system, Q(Z) is the system’s property of interest as

a function of Z, P(Z) represents the Boltzmann weighted probability, and U(Z) is the

internal energy.

2.1.4.2 Integrating the Equations of Motion

Molecular dynamics (MD) involves the study of the physical movements or dynamics

of atoms and molecules in a given many-body system by solving Newton’s equations of

motion numerically. A simple numerical procedure of a classical MD simulation is shown

as follows.

In the microcanonical ensemble (NV E), i.e., the periodic system represented by a

unit cell (see Section 2.1.1) with a constant number of particles (N), at constant volume

(V ) and conserved energy (E), the initial positions and velocities of all the particles in the

simulation box are assigned by xi and vi, respectively. Velocities vi are distributed via a

Maxwellian distribution for a given temperature. The force acting on each particle fi is

then computed using the interatomic potentials. A time step ∆t, during which the forces

fi are kept constant, needs to be specified for updating the positions xi and velocities vi

by solving Newton’s equations of motion. The choice of time step is vital for a molecular

dynamics simulation. The largest time step that can be used is determined by the process

that has the fastest rate in the system of interest. In other words, the time step must

be smaller than the time scale of the dynamical process(es) of interest. For example,

molecular motions, including vibrations and rotations, occur typically in the frequency

range 10−11 −10−14 s−1; therefore, time steps of the order of femtoseconds (10−15 s) or

less are required to capture those molecular motions with sufficient accuracy.65

In each of the integration steps, the Leapfrog Verlet algorithm can be used to integrate

the equations of motion as follows:

vi(t+ ∆t
2

)= vi(t− ∆t
2

)+ fi

mi
∆t,

xi(t+∆t)= xi(t)+vi(t+ ∆t
2

)∆t,
(2.10)

where mi is the atomic mass. Alternative algorithms for integrating the equations of

motion can also be employed, e.g., the Velocity Verlet method. The integration step is

repeated many times until the system properties, e.g., temperature (T) and pressure (P),

reach their equilibrium values and do not vary significantly with further time steps. For

instance, the instantaneous simulation temperature is obtained by the sum of the kinetic
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energies over all the particles in the system:

3
2

NkBT = 1
2

N∑
i=1

miv2
i . (2.11)

After the equilibration stage, the simulation is continued repeatedly in the production

stage. The coordinates and velocities (sometimes forces) of all the particles at successive

time steps are recorded in the MD trajectory.

Properties of interest, e.g., the mean-square displacement (MSD) of a particle from its

starting position, < r2 >, can be obtained from a trajectory analysis. The linearly time-

dependent MSD can be used to compute the self-diffusion coefficient (Ds): < r2 >= 6Dst.
Similar approaches to the above technique can be used in MD simulations in other

ensembles, e.g., the canonical (NV T) and isothermal-isobaric (NPT) ensembles. Further

details can be found in Frenkel and Smit 93 and Allen and Tildesley.94

2.1.5 Metadynamics

Metadynamics is a simulation technique used to enhance sampling in ordinary molec-

ular dynamics simulations and reconstruct the free-energy profile as a function of a

set of selected structural parameters, i.e., collective variables (CVs), which was first

proposed by Laio and Parrinello.95 In classical molecular dynamics simulations, the

results are meaningful only if the run is long enough for the system to visit (or sample)

all the energetically available configurations, i.e., the ergodic hypothesis is obeyed.96

However, the relevant configurations might be separated by high free-energy barriers

and the transitions between distinct metastable states can be difficult. In addition to the

scope of molecular dynamics simulations, where metadynamics enables the possibility

to accelerate conformational transitions between different metastable states, approxi-

mate the transition-state structures and estimate the relative free energies of complex

molecular systems.97 Further details of the applications and development progress of

the metadynamics technique can be found in Barducci et al.,96 Sutto et al.98 and Tiwary

and Parrinello.99

In each metadynamics run, sampling the space of CVs is enhanced (accelerated) by

a history-dependent bias force (or potential) that acts on a set of the CVs, S. Strictly

speaking, an external history-dependent bias potential as a function of the CVs is

repeatedly added to the total energy of the system. This bias potential can be given by

the sum of Gaussians deposited in the CVs space along the MD trajectory to reduce the

chance of sampling the configurations that have already been visited. An overview of the

basic theory of metadynamics is briefly discussed below.
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In order to perform a metadynamics calculation, a meaningful set of collective vari-

ables S for distinguishing different steady and transition states must first be defined. At

simulation time t, the bias potential can be written as

V (S, t)=
∫ t

0
dt′ ωexp

(
−

n∑
i=1

(Si(Z)−Si(Z(t′)))2

2σ2
i

)
, (2.12)

where ω is a constant and typically expressed as the ratio of a Gaussian height W to

a deposition stride τ: ω=W/τ. σi refers to the Gaussian width for the ith CV. The two

parameters W and σi define the shape of the Gaussians, i.e., the extra bias, added at time

intervals of the deposition stride τ. In practice, the parameters W , τ and σ are determined

a priori and kept constant during the metadynamics simulation. Using large Gaussians,

the free-energy surface will rapidly be explored at a fast pace, but the reconstructed

free-energy profile will poorly be characterised by large fluctuations.96,97,100 Therefore,

the speed-accuracy trade-off needs to be first considered by examining and testing the

suitable values of those user-defined parameters when performing the metadynamics

simulations for the system of interest.

After a long enough simulation time, i.e., when the motion of the S becomes diffusive

in the domain of interest, the bias potential V gives an estimated free energy as a

function of S:

V (S, t →∞)=−F(S)+C, (2.13)

where C is a constant and the free energy F(S) is given by

F(S)=−1
β

ln
(∫

dZ δ(S−S(Z))exp(−βΦ(Z))
)
, (2.14)

where β= (kBT)−1, Φ(Z) is the potential energy function and δ is the Kronecker delta.

2.1.6 Quantum Mechanical Methods

Quantum mechanical methods (aka first-principles or ab initio techniques) involve

the calculation of the ground-state energy of a many-body system of interest by solv-

ing the time-independent Schrödinger electronic wavefunction equation in which the

nuclear positions are fixed, i.e., within the Born-Oppenheimer approximation. The time-

independent Schrödinger equation is written as

ĤΨ= EΨ, (2.15)

where the non-relativistic Hamiltonian operator Ĥ in atomic units is given by

Ĥ =−1
2

∑
i
∇2

i −
∑

i

∑
α

qα
|ri −dα|

+∑
i

∑
j ̸=i

1
|ri −r j|

+∑
α

∑
β̸=α

qαqβ
|dα−dβ|

. (2.16)
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In equation (2.16), ri and r j denote the electron positions, dα and dβ represent the nu-

clear positions, and qα and qβ are the nuclear charges. The four terms on the right-hand

side of equation (2.16) represent the kinetic energy of the electrons, the nuclear-electron

attraction, the electron-electron repulsion and the nuclear-nuclear repulsion, respectively.

Finding the true wavefunction of a given many-body system is non-trivial. However, it

can be represented by a simpler function; hence, making sensible approximations to the

wavefunction is one of the main concerns of electronic structure theory.

The total energy of an approximate wavefunction Ψ is given by the expectation value

of Ĥ:

E =
∫
Ψ∗ĤΨ dτ∫
Ψ∗Ψ dτ

. (2.17)

The variational principle is one of the methods used to find the best approximate wave-

function Ψ that gives the lowest value of E in equation (2.17). As electrons are fermions,

the many-body electronic wavefunction Ψ must obey the Pauli exclusion principle, i.e.,
possess the right permutation symmetry. Hence, the electronic wavefunction changes

sign when any pair of electrons are exchanged:

Ψ(x1, x2, . . . , xi, . . . , x j, . . . )=−Ψ(x1, x2, . . . , x j, . . . , xi, . . . ), (2.18)

where xi = {ri,σi} represents the spatial and spin coordinates of an electron i. According

to the antisymmetry, no pair of electrons can possess the same set of quantum numbers.

2.1.6.1 Basis Sets

In order to approximate the solutions of the electronic Schrödinger equation (2.15), one

needs to make the orbital approximation, i.e., using a set of basis functions to represent

the electronic wavefunction. The many-electron wavefunction Ψ can be approximated by

the antisymmetrised product of single-electron wavefunctions (spin-orbitals) ψi ’s:

Ψ(x1, x2, . . . , xN)=A
N∏

i=1
ψi(xi), (2.19)

where A is the antisymmetrising operator. A more convenient way of writing equation

(2.19) is to use a Slater determinant:

Ψ(x1, x2, . . . , xN)= 1p
N!

∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ1(x2) · · · ψ1(xN)

ψ2(x1) ψ2(x2) · · · ψ2(xN)
... · · · . . . ...

ψN(x1) · · · · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣
. (2.20)
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The spin-orbitals are the products of spatial and spin functions, α and β:

ψi(xi)=ψi(ri)α(σi), or

ψi(xi)=ψi(ri)β(σi).
(2.21)

In general, the spatial orbitals ψi(ri) in equation (2.21) are approximately expanded in a

basis set, i.e., a linear combination either of atomic functions or plane waves, ϕ(r):

ψi(r)=
nbasis∑
j=1

ci jϕ j(r), (2.22)

where ci j ’s are the orbital coefficients. Atomic pseudopotentials, i.e., the simplified atomic

orbital, can also be used for the core electrons.101 Given the trial wavefunction, i.e., the

Slater determinant (2.20), the energy can then be minimised using the variational

principle with respect to the ci j ’s.

2.1.6.2 Plane-Wave Basis Sets

As mentioned earlier, the spatial orbitals ψi(r) can either be a linear combination of

atomic functions or plane-wave functions, ϕ(r), in equation (2.22). For modelling infinite

(extended) systems, e.g., a unit cell within the periodic boundary conditions shown in

Figure 2.1, the use of plane-wave basis functions, i.e., functions with an infinite range, is

more appropriate.67 According to Bloch’s theorem,102 the wavefunction ψi(r) in equation

(2.22) can be written as a product of a cell-periodic part and a wave-like part (ϕ):

ψi(r)= eik·rϕi(r), (2.23)

where, k is, again, the wave vector, and the kinetic energy of the electron, Ekin, depends

quadratically on k: Ekin = 1
2 |k|2. Due to the periodicity, ϕi(r) can be expanded into a basis

set of plane-wave functions:

ϕi(r)=∑
G

ci,GeiG·r, (2.24)

where G are reciprocal lattice vectors and ci,G are the plane-wave coefficients. Therefore,

the electronic wavefunctions ψi(r) is given by

ψi(r)=∑
G

ci,Gei(k+G)·r. (2.25)

In a unit cell with a volume V , the number of wavefunctions used, NPW, is thus deter-

mined by the highest energy wave vector k included, defining the maximum kinetic

energy, Emax
kin :

NPW = 1
2π2 V

√
(Emax

kin )3 . (2.26)
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The quality of the basis sets for reconstructing the wavefunctions can be increased by

increasing the Emax
kin parameter, i.e., the cut-off on the kinetic energy. Note that the size

of a plane-wave basis set depends solely on Emax
kin and the size of the unit cell, as shown

in equation (2.26), not on the actual system described within the unit cell. Alternatively

to the plane-wave functions, the basis set can be chosen as a set of nuclear-centred

(or Gaussian) basis functions. However, the size for nuclear-centred basis functions

increases linearly with actual system size; therefore, plane-wave basis sets become more

suitable and more favourable for large extended systems. There are various famous

codes for performing first-principles calculations based on plane-wave basis sets, e.g.,
Quantum ESPRESSO103,104 and VASP.105–107. On the other hand, CRYSTAL172,108,109

and CP2K110 can be employed to run ab initio simulations based on mixed nuclear-

centred (or Gaussian type) and plane-wave basis sets. Further details of the plane-wave

basis sets can be found in, for example, Leach 65 and Jensen.67

2.1.6.3 Density Functional Theory (DFT)

Density functional theory (DFT) is the most popular electronic-structure calculation

method for modelling large molecules and solids.111 DFT is based on the Hohenberg-

Kohn theorem, stating that the many-electron system’s ground-state properties can be

evaluated by minimising an energy functional E[ρ] of the electron density ρ(r).112 The

exact ground-state energy is the minimum value of E[ρ] obtained when ρ(r) is the exact

ground-state electron density. Kohn and Sham 113 later introduced the concept of of a

fictitious non-interacting system with the same electron density as the real system of

interacting particles. Consequently, the electron density ρ can be expressed in terms of

the single-electron wavefunctions ψi ’s of the ideally non-interacting system:

ρ(r)=
N∑

i=1
|ψi(r)|2. (2.27)

The energy functional E[ρ] is thus given by

E[ρ]= TS[ρ]+Vnuc[ρ]+ J[ρ]+Exc[ρ]

=−1
2

N∑
i=1

∫
ψ∗

i (r)∇2ψi(r) dr−∑
α

∫
ρ(r)

qα
|r−dα|

dr

+ 1
2

∫ ∫
ρ(r)ρ(r′)
|r−r′| dr dr′+Exc[ρ].

(2.28)

On the right-hand side of equation (2.28), the first term gives the Kohn-Sham kinetic

energy, the second represents the electron-nuclei interaction, the third is the Coulomb
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energy and the last denotes the so-called exchange-correlation energy. The ground-state

electron density and energy are obtained by minimising the total energy functional in

equation (2.28) via the iterative self-consistent calculations for the ψi ’s.

The exchange-correlation functional term Exc is unknown; hence, approximate expres-

sions must be used. The simplest form is the local-density approximation (LDA), where

the expressions for a uniform electron gas density are employed. Various functional

forms of the generalised-gradient approximation (GGA) consider the charge density

gradient as well as the density itself.114,115 Amongst many variants of the GGA function-

als, GGA-PBESol115 is specially designed for modelling bulk solids and their surfaces.

GGA-PBESol is expected to yield the more accurate bulk, electronic, structural and other

properties of several types of solids.116 Hybrid functionals, e.g., B3LYP,117,118 use the

combination of the Hartree-Fock exchange with DFT correlation and exchange. Greater

details of the simulation techniques for modelling solid-state materials based on DFT

can be found in, for instance, Hasnip et al. 119 and Martin.120

There are various DFT-based software packages for modelling solid-state materi-

als and condensed matter such as VASP,105–107 Quantum ESPRESSO,103,104 CRYS-

TAL17,2,108,109 and CP2K.110 As mentioned earlier, calculations based on plane-wave

basis sets can be performed using the VASP and Quantum ESPRESSO codes, while

the mixed plane-wave and Gaussian-type basis sets are used in the CRYSTAL17 and

CP2K. Those DFT software packages have their own merits and drawbacks in terms of

performance and reliability.65,67,120 For performing first-principles simulations involving

a wide range of atomic species, the availability of consistent sets of basis sets and atomic

pseudopotentials is also crucial. For instance, the standard solid-state pseudopoten-

tials (SSSP) library121 provides consistent sets of optimised atomic pseudopotentials for

modelling solid-state materials using the open-source Quantum ESPRESSO software

package.103,104 For those reasons, one should be aware of the suitability of the program(s)

for modelling the systems of interest.

2.1.6.4 Ab Initio Molecular Dynamics (AMD)

The theoretical foundation of ab initio molecular dynamics (AMD) is similar to that of

classical MD discussed earlier; however, instead of using classical force-field potentials,

the energy and forces acting on the constituent atoms are obtained by solving the

Schrödinger equation. The computer simulation based on AMD is computationally

expensive and limited to small simulation cells and time scales of a few picoseconds.

Within DFT, the Car-Parrinello MD (CPMD) method is a useful technique where the

24



2.2. COMPUTER MODELLING OF POINT DEFECTS

dynamics of electrons and nuclei are carried out simultaneously.122

2.1.7 Transition-State Optimisation

For a chemical reaction of interest, steady-state structures, e.g., reactants and products,

can be determined by locating minima on the potential energy surface (PES), e.g., us-

ing equation (2.5). On the other hand, transition-state geometries can be obtained by

searching for saddle points on the PES.65–67 Any position on the PES corresponding

to a maximum in one direction and a minimum in all other directions is defined as a

first-order saddle point. A second-order saddle point, on the contrary, corresponds to a

maximum in two directions and a minimum in all other directions, and so forth. Various

efficient numerical algorithms used for locating transition-state structures in periodic

systems have been developed over recent years, such as nudged elastic band (NEB) and

dimer methods,123 and have been implemented in several ab initio and classical codes,

e.g., VASP,105–107 Quantum ESPRESSO,103,104 CP2K,110 and GULP.124

2.2 Computer Modelling of Point Defects

There are two computational approaches for simulating solids containing point defects

that are (i) the two-region approach or embedded-cluster model and (ii) the supercell

method. The schematic illustration of these two models is shown in Figure 2.2. The

former approach was initially proposed by Mott and Littleton.60,125 The latter approach,

on the other hand, is commonly used to calculate the properties of crystalline solids in

general.126 These two approaches have their own merits and limitations.

In the two-region approach, the defective crystal is divided into two separate regions:

(i) an inner region (I) which surrounds immediately the point defect and (ii) an outer

region (IIb) which locates further away from the defect with an interface or in-between

region (IIa). The total energy of the defective crystal is minimised by a relaxation of

atomic positions around the point defect. In region I, atomic positions are allowed to

be fully relaxed as the elastic force equations for forces acting on each of the atoms are

explicitly solved. Thus, the lattice relaxation in this region is assumed to be greatest.

On the other hand, the lattice relaxation in region II is assumed to be smaller and the

elastic force equations are estimated using the Mott-Littleton approximation.125 The

total energy of the defective crystal Edc is given by

Edc(x,∆y)= E1(x)+E2(x,∆y)+E3(∆y), (2.29)
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(a)

I

IIa

IIb

(b)

FIGURE 2.2. Two models for defect calculations: (a) two-region and (b) supercell
approaches.
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where x and∆y represent the atomic coordinates in region I and the atomic displacements

in region II, respectively. The terms E1 and E3 arise from the interactions within each of

the corresponding two regions while E2 defines the interaction energy between them.

The explicit dependence of Edc on E3 can be eliminated as E3 can be expressed in

terms of the derivatives of E2 by assuming that E3 is a quadratic function with respect

to ∆y together with the condition of ∂E/∂y = 0 at equilibrium. The forces acting on

each atom in region I is required to vanish to determine Edc. Theoretically, the defect

energy approaches its converged value as the size of region I is increased. Practically,

there should approximately be 400-600 constituent atoms or ions in region I to ensure

the convergence of Edc with respect to the size of the inner region. The method is a

computationally inexpensive approach127 and is well implemented in, for example, the

General Utility Lattice Program (GULP)91 which is one of the most widely used software

packages for modelling solid-state materials based on classical force fields. However, one

important limitation of this method is that the point-defect calculations can solely be

done in the static limit as this approach is not able to perform simulations at elevated

temperatures.

In the supercell approach, a superlattice of defects is extended repeatedly throughout

the macroscopic crystal lattice after introducing a point defect into a perfect lattice. The

symmetry of the crystal is completely removed due to the lattice distortion caused by the

point defect. Strictly speaking, the equilibrium atomic positions within the crystal are not

determined by its corresponding symmetry of the perfect lattice. In this approach, choice

of the size of a unit cell or supercell used in a periodic defect calculation is important.

If the supercell size is small, there will be a strong defect-defect interaction since the

point defect is able to interact with other defects, i.e., itself, in the neighbouring supercell

images and the defect concentration in the crystal will be too high. Hence, one is expected

to use bigger supercells to avoid these problems. Convergence towards the properties

of an isolated point defect is expected as the supercell size or superlattice spacing is

increased.

The supercell approach can be used to calculate defect free energies at a wide range

of temperatures and pressures. For instance, the entropies and enthalpies of defect

formations at finite temperatures and pressures can be evaluated directly, for instance,

using the quasi-harmonic approximation. The optimised periodic structures can be

obtained by the minimisation of either static energy or free energy of the system with

respect to the structural variables. The latter approach is so-called the direct free-energy

geometry optimisation. Furthermore, thermodynamic quantities at constant volume and
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constant pressure can also be obtained independently in the supercell approach.

2.2.1 Defect Thermodynamics

In the supercell approach, the constant-pressure and constant-volume defect properties

at constant temperature T can be computed separately, for instance,

gp = [Gdc(P,T)−Gpc(P,T)]/Nd,

fv = [Fdc(V ,T)−Fpc(V ,T)]/Nd,

sp = [Sdc(P,T)−Spc(P,T)]/Nd,

sv = [Sdc(V ,T)−Spc(V ,T)]/Nd,

(2.30)

where the subscripts ‘dc’ and ‘pc’ denote the defective and perfect crystals, respectively.

The capital letters refer to absolute free energies (G and F) and entropies (S) of the

corresponding macroscopic crystals. The subscripts ‘v’ and ‘p’ are used for the defect

properties obtained at constant volume V or constant pressure P, respectively. Nd is

the total number of point defects within the supercell. Constant-pressure quantities

are obtained by allowing all the six lattice parameters to vary during the geometry

optimisation as well as the internal coordinates. Constant-volume properties, on the

contrary, are obtained by keeping all the lattice parameters fixed.

In addition to free energies and entropies in equation (2.30), changes in enthalpy and

internal energy of the defect formation at constant pressure and constant volume can,

respectively, be calculated by
hp = gp +Tsp, and

uv = fv +Tsv.
(2.31)

The relations between the constant-pressure and constant-volume defect properties in

the limit when (vp/V −→ 0), where vp refers to the defect volume change have previously

been discussed.128 The following relations are valid when the defect concentration is

extremely small, i.e., in the dilute limit. In this limit, one can obtain constant-pressure

defect properties from the corresponding constant-volume quantities:

gp = fv (2.32)

hp = uv +
(
αT
βT

)
vp, (2.33)

sp = sv +
(
α

βT

)
vp, (2.34)
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where α and βT are the volumetric thermal expansion coefficient and the isothermal

compressibility, respectively. The first-order correction to the equation (2.32)61 is

fv − gp = 1
2

( vp

βT

)( vp

Vsupercell

)
, (2.35)

and vp itself is given by

vp =βTV pv =−βTV
(
∂ fv

∂V

)
T

, (2.36)

where pv refers to the change in pressure of the defect formation. The partial derivative

(∂ fv/∂V )T on the right-hand side of the equation can be estimated by (∂uv/∂V )T .129,130

2.2.2 Kröger-Vink Notation for Point Defects

For consistency, the Kröger-Vink notation131 for substitutional point defects is used

throughout this work. Here, we summarise only briefly the convention. In NaCl struc-

ture, for instance, V′
Na and V•

Cl denote sodium-ion and chloride-ion vacancies with the

corresponding final net charges of -1 (indicated by ′) and +1 (indicated by •), respectively.

Ca•
Na refers to a substitutional Ca2+ cation onto a Na+ site leaving a net charge of +1

(•). A superscript x indicates either a neutral substitution, e.g., Aux
Ag for the substitution

of a Ag atom by a Au atom, or a defect formation with no effective charge, e.g., Bax
Mg

for the substitution of a Mg2+ ion by a Ba2+ ion. The symbol x is essentially useful for

substitutional defects involving neutral (or non-ionic) species in order to avoid ambiguity.

2.3 List of Software Packages

2.3.1 GULP

The General Utility Lattice Program (GULP) is a molecular mechanics and molecular

dynamics code designed for modelling a variety of materials based on classical force-field

methods.91 The program provides a vast choice of empirical potentials. Apart from the

ordinary static-energy geometry optimisation, the package can also perform the direct

free-energy minimisation for both periodic and non-periodic structures.124

2.3.2 DL_POLY4 and DL_Software

DL_POLY4 is a general purpose massively parallel classical molecular dynamics (MD)

simulation package for modelling a variety of materials ranging from small molecules to
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large systems.132 DL_FIELD is a support tool for converting force-field models and creat-

ing the input files (FIELD and CONFIG) for DL_POLY4.133 DL_ANALYSER is a general

tool for analysing the output files (e.g., HISTORY and STATIS) from DL_POLY4.134

2.3.3 CRYSTAL17

CRYSTAL17 is a general-purpose ab initio software package for studying the electronic

structures and properties of crystalline solids, surfaces and molecular systems using

Hartree-Fock, density functional theory and various hybrid methods.2,108,109 The QHA

module implemented in CRYSTAL17 is particularly useful for performing ab initio
free-energy minimisation.

2.3.4 Quantum ESPRESSO

Quantum ESPRESSO is an integrated suite of multi-purpose open-source software

packages for electronic-structure calculations and materials atomistic modelling based

on density functional theory (DFT), plane-wave basis sets and atomic pseudopoten-

tials.103,104

2.3.5 CP2K

CP2K is a quantum chemical software package for performing ab initio atomistic simu-

lation of various chemical systems, including solid-state materials, liquids, molecules

and isolate atoms.110 CP2K can perform various modelling methods, such as density

functional theory (DFT) using the mixed Gaussian and plane-wave approaches (GPW

and GAPW), semi-empirical methods, classical force-field based methods, and quantum

mechanics/molecular mechanics (QM/MM) methods. CP2K can also perform ab initio
molecular dynamics (AMD) simulation.

2.3.6 PLUMED

PLUMED is an open-source software package for performing free-energy calculations,

enhanced-sampling molecular dynamics simulation, e.g., metadynamics and umbrella

sampling techniques.135 PLUMED can be used as a tool for analysing the output files,

e.g., trajectories, produced by molecular dynamics (MD) simulations. PLUMED can

be combined with various MD engines, including DL_POLY4, CP2K and Quantum

ESPRESSO.
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2.3.7 VASP

The Vienna Ab initio Simulation Package (VASP) is one of the most famous software

packages for performing electronic-structure calculations of solid-state materials based

on density functional theory (DFT) with various types of DFT functional forms, atomic

pseudopotentials and plane-wave basis sets.105–107

2.3.8 Structure Visualisers

The crystal and molecular structures in this work were edited and visualised using

VESTA136 and Avogadro.137 Molecular dynamics (MD) trajectories were visualised and

analysed by the Visual Molecular Dynamics (VMD) program.138
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3
DEFECT THERMODYNAMICS IN CRYSTALLINE SOLIDS

AND CLUSTERS

In this chapter, we use computer simulation based on classical force fields and

first-principles density functional theory (DFT) to investigate the temperature and

finite-size effects on the free-energy of formation of substitutional point defects

in crystalline solids. The free-energies and other related thermodynamic quantities

such as entropies and heat capacities have been computed using quasi-harmonic lattice

dynamics. Periodic structures of bulk solids are represented by supercells with various

shapes and sizes. Under the periodic boundary conditions, the calculation of defect

properties can be carried out at either constant volume or constant pressure. Amongst

these defect properties, constant-pressure heat capacities prove more difficult to compute

compared to constant-volume heat capacities. Here, we provide possible solutions for

estimating constant-pressure heat capacities via numerical calculations. Furthermore,

we have also demonstrated that the substitutional defect free-energies depend strongly

on temperature. The choice of the simulation model, for instance, employing periodic

supercells or finite-size clusters, size of the system, and so forth, has significant influences

on those defect quantities. We highlight that the defect properties calculated via ab initio
and classical simulations yield similar results for the same solid. Furthermore, we

present also the defect properties in a metal as a different type of solids described by

another different classical potential model. The effects of defect clustering on the defect

thermodynamics will be briefly illustrated. Comments on potential applications of the
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calculation of free-energies of substitutional defect formation in crystals in the field

of geochemistry, such as trace-element partitioning in minerals and melts, and solid

solutions, have also been made.

3.1 Introduction

Previously, the free-energy of formation of Ba2+ substitutional defects in MgO was

comprehensively studied by Taylor and co-workers.61 The work employed the super-

cell approach, quasi-harmonic lattice dynamics, and direct free-energy minimisation to

observe the variation of the substitutional defect free-energies with temperature and

supercell size, using a classical interionic potential model. The study shows that the

quantities obtained at constant volume and constant pressure, which can be obtained

separately, are significantly different. This simulation technique proves valid up to two-

thirds of the melting point and is certainly useful for computing defect free-energies

under a wide range of temperatures and pressures.89,139,140 However, interatomic forces

are in fact anharmonic; hence, the harmonic approximation would not appropriately be

used to describe the interatomic potentials at distances further away from the equilib-

rium values. Therefore, at higher temperatures, e.g., above the two-thirds of the melting

point,61,89,139,140 the quasi-harmonic approximation would fail in explaining various phe-

nomena such as thermal expansion, the temperature variations of elastic constants and

phonon frequencies, phase transitions and thermal conductivity, due to the anharmonic

and phonon interactions.141

The critical paper of Taylor et al. 61 has therefore been chosen as the key reference and

the inspiration of the present study. However, the paper does not provide any information

on changes in heat capacity of defect formation. In addition to this prior work, we also

examine the changes in heat capacity of substitutional defect formation at both constant

volume and constant pressure. According to fundamental statistical thermodynamics,

the constant-volume heat capacity of a given solid at a finite temperature can be readily

calculated from its vibrational partition function, but the calculation of the constant-

pressure heat capacity proves more difficult. In this work, we have highlighted the

merits and limitations of various numerical models for obtaining constant-pressure heat

capacities of defect formation.

Apart from the effects of temperature and system size used in the simulation, we aim

to investigate finite-size effects on the defect thermodynamics, comparing finite-sized (or

molecular) clusters with the periodic model. In addition, we further provide numerical
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TABLE 3.1. Buckingham pair-potential parameters of X -O2- for modelling a
Ba2+ substitutional defect in MgO.

X A (eV) ρ (Å) C (eV Å6)
O2- 22764.3 0.1490 20.37

Mg2+ 1346.6 0.2984 -
Ba2+ 757.8 0.4105 -

TABLE 3.2. Supercells of MgO used in this work and their corresponding mole
fractions of a single Ba in the defective supercells, XBa.

Number of ions XBa Shape Number of ions XBa Shape
32 0.06250 bcc 686 0.00292 fcc
54 0.03704 fcc 864 0.00231 bcc
64 0.03125 cub 1000 0.00200 cub

128 0.01563 fcc 1024 0.00195 fcc
216 0.00926 cub 1458 0.00137 fcc
250 0.00800 fcc 1728 0.00116 cub
256 0.00781 bcc 2000 0.00100 fcc
432 0.00463 fcc 2048 0.00098 bcc
512 0.00391 cub 2744 0.00073 cub

results obtained from ab initio DFT calculations rather than a pair-potential model. The

results for a different type of solid, a metal, described by a different classical potential

model, i.e., a Lennard-Jones solid which has no long-range electrostatic contribution,

are also presented in order to ensure the validity of the simulation technique when

using other types of classical potential models. We also illustrate the effects of defect

clustering on the defect properties. Finally, we highlight the potential applications of

the computation of defect free-energies in geochemistry, for instance, trace-element

partitioning between minerals and melts, and solid solutions.

3.2 Models and Computational Details

3.2.1 Classical Simulation

All the classical calculations in this work were carried out using the General Utility

Lattice Program (GULP).91 The Buckingham potential parameters for the study of the

substitution of a Mg2+ by a Ba2+ ion in MgO crystal, Bax
Mg, are listed in Table 3.1.142

We have used the rigid-ion model and a cut-off radius of 9.0 Å for all the pair potentials.
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TABLE 3.3. 12-6 Lennard-Jones pair-potential parameters for modelling the Ag
substitutional defect in Cu metal.

Species ϵ (eV) σ (Å)
Cu 0.4079 2.3374
Ag 0.3453 2.6376

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimisation algorithm143–146 with

a stopping criterion on the gradients (forces) of 1.0×10−4 Hartree Bohr−1 (∼ 5.1×10−4

eV Å−1) was used for the geometry optimisation. In the supercell calculations, cubic

symmetry is preserved if the superlattice of Ba2+ itself is cubic.127 For instance, after

replacing one of the Mg2+ ions in a simple cubic supercell of MgO with a Ba2+ ion, the

symmetry of the Ba2+ superlattice is also simple cubic. On the contrary, if a Mg2+ ion

is replaced with a Ba2+ ion in a face-centred cubic supercell of MgO, the symmetry of

the Ba2+ is face-centred cubic. In the present study, we consider three different shapes

of supercells, i.e., simple cubic (cub), face-centred cubic (fcc) and body-centred cubic

(bcc), with supercell sizes ranging from 32-2744 ions. The supercells used and their

corresponding mole fraction of Ba2+ in the defective crystals, XBa, are shown in Table 3.2.

The initial crystal structures were prepared using the VESTA visualiser program.136

The vast series of the defective structures were generated using a simple Python script

written in the Jupyter Notebook,147 as an implementation in the Anaconda Software

Distribution.148 Defect properties such as the constant pressure defect free-energy gp

can be calculated from the lattice free energies of a supercell containing x ions:

gp =GBaMg0.5x−1O0.5x(P,T)−GMg0.5xO0.5x(P,T), (3.1)

where there is only a single Ba2+ in the supercell, i.e., Nd in equation (2.30) equals 1.

For observing finite-size effects on the defect properties, we also simulated the

substitution of a copper (Cu) atom by a silver (Ag) atom in bulk copper metal, i.e., the

Agx
Cu defect. The Lennard-Jones pair-potential parameters with the 12-6 exponent for

Cu and Ag atoms were taken from Zhen and Davies,149 as listed in Table 3.3. The

pair-potential parameters between Ag-Ag, Cu-Cu and Ag-Cu were truncated at distances

above 9.0 Å and calculated using the Waldman-Hagler combining rules150 as follows

ϵAg−Cu = 2
√
ϵAgϵCu

(
σ3

Agσ
3
Cu

σ6
Ag +σ6

Cu

)
, and

σAg−Cu =
(
σ6

Ag +σ6
Cu

2

) 1
6

.

(3.2)

36



3.2. MODELS AND COMPUTATIONAL DETAILS

3.2.2 First-Principles Simulation

To compare with the classical results, we have also performed some analogous calcu-

lations ab initio. The ab initio calculations based on first-principles density functional

theory (DFT) were conducted using the CRYSTAL17 code.108,109 Note that, similar to

the GULP program, CRYSTAL17 is also able to model non-periodic finite-size clus-

ters without the use of the supercell approach. The revised version of the generalised-

gradient approximation of Perdew-Burke-Ernzerhof designed for solids and surfaces

(GGA-PBESol)115 was used for evaluating the exchange and correlation contributions to

the total energy. Atom-centred Gaussian-type-function (GTF) basis sets were employed

to represent the atomic wavefunctions. The Hay-Wadt small-core effective-core pseu-

dopotential (ECP) basis set with a 3-1(1d)G151 contraction was used for the Ba atom.

All-electron basis sets with 8-511G152 and 8-411G153 contractions, on the other hand,

were used to describe the Mg and O atoms, respectively. For the self-consistent field (SCF)

calculation of the (electronic) total energy, the convergence criterion on the energy differ-

ence between next steps was set to 1.0×10−6 Hartree (∼ 2.7×10−5 eV). The convergence

criteria of the structural optimisation using the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) minimisation method143–146 were set to 3.0×10−4 Hartree Bohr−1 (∼ 0.015 eV

Å−1) and 1.2×10−3 Bohr (∼ 6.4×10−4 Å) for the root-mean-square gradients (forces) and

displacements, respectively. Additionally, the convergence of the structural minimisation

is also checked on the energy difference between consecutive steps using a stopping

criterion of 1.0×10−7 Hartree (∼ 2.7×10−6 eV).

In contrast to the classical defect energies obtained using equation (3.1), one must

take the ion energies, Eion, of Mg2+ and Ba2+ into account when calculating the DFT

defect energies. Similar to equation (3.1), for instance, the change in static-limit internal

energy at constant volume, uv, due to the Bax
Mg defect formation in a supercell of MgO

containing x ions is given by

uv = (UBaMg0.5x−1O0.5x +EMg2+)− (UMg0.5xO0.5x +EBa2+), (3.3)

where UBaMg0.5x−1O0.5x and UMg0.5xO0.5x are the lattice energies of the defective and perfect

crystals, respectively. As mentioned above, apart from the energy of periodic lattice

systems, the energy of non-periodic isolated systems, e.g., atoms, ions or molecules, can

also be obtained using CRYSTAL17.108,109 Hence, the isolated-ion energies EMg2+ and

EBa2+ in equation (3.3) can readily be computed by removing two valence electrons from

each of the isolated neutral atoms.
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3.3 Results and Discussion

3.3.1 Variation of Defect Quantities with System Size

Figure 3.1(a) illustrates the variation of the defect volume vp calculated at constant

pressure in the static limit as a function of system size for Bax
Mg in bulk MgO. In the

range of system size considered, the figure demonstrates that the values of the defect

volume are positive and lie between 20.0-21.4 Å3. The substitution of a Mg2+ by the

larger Ba2+ in MgO accounts for the positive volume change. In other words, the MgO

crystal expands to accommodate the bigger Ba2+ cation. We can see clearly that the

defect volume depends on the size of the supercell. However, the defect volume becomes

independent of supercell size when a very large supercell is being used. For all the

supercell shapes, the defect volume converges to the value in the dilute limit as the

system size is increased, but each of the supercell shapes shows a different convergence

rate. Of these three shapes, the fcc and bcc supercells yield the fastest convergence, and

that of the simple cubic supercells is the slowest. This is likely due to the more isotropic

environment of an isolated defect in the fcc and bcc superlattices.61 Apart from the defect

volume, the dependence of other defect quantities on system size should also be less

significant when larger supercells are used, as shown in Figure 3.1(b).

Figure 3.1(b) shows the internal defect energies at constant pressure, hp(= gp), and

at constant volume, uv(= fv), in the static limit as a function of supercell size. The values

of the defect energy are all positive, lying between 15.5-16.6 eV, again reflecting the large

size of the Ba2+ ion. These positive defect energies mainly derive from the short-range

repulsive interactions between the Ba2+ substitutional defect and its immediate ions. An

interesting feature in the graph is that uv is always greater than hp for a supercell with

the same size due to the volume constraint. Compared to the constant-volume calculation,

the geometry optimisation at constant pressure, i.e., all of the cell parameters are allowed

to change, involves the relaxation of more degrees of freedom, leading to a lower defect

energy. In the dilute limit, we can see that the constant-volume and constant-pressure

defect energies converge as the supercell size increases and this is consistent with

equation (2.32). The differences uv −hp vanish in the limit when vp/Vsupercell → 0 as the

differences in defect energies, in the equation (2.35), are proportional to vp/Vsupercell.

Equations (2.35) and (2.36) together yield

uv −hp = 1
2

pvvp, (3.4)

and this gives rise to the slower convergence of uv with respect to supercell size compared
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FIGURE 3.1. (a) Defect volume vp and (b) defect energies at constant pressure
hp (dashed lines) and constant volume uv (dotted lines) as a function of
supercell size for a Ba2+ substitutional defect in MgO in the static limit.
Defect quantities for the three different shapes of the supercells are plotted
using different marker styles. For (b), the defect energy obtained via the
two-region approach is marked by a horizontal solid line. The computa-
tional details of the classical calculations based on Buckingham interionic
potentials are outlined in Subsection 3.2.1.
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to that of hp; the difference between uv and hp is reduced as the supercell size is

increased. This is because vp, as shown in Figure 3.1(a), is larger when a smaller

supercell is being used as well as pv. For substitutional defect formation with a non-zero

vp, pv vanishes nevertheless as the supercell size is increased. Furthermore, the dilute-

limit static defect energies obtained using the supercell approach are in good agreement

with the result obtained from the two-region approach.

3.3.2 Effects of Temperature on Defect Properties

The effects of temperature on defect properties are often assumed to be insignificant and

hence neglected in the literature.61 In addition, the computational cost for computing

temperature dependent quantities is much more expensive compared to the static-limit

calculations, so that the temperature effects have often been ignored. However, here

we will show that those defect properties vary with temperature more than almost

universally assumed. In this subsection, we aim to probe the temperature effects on the

calculated defect quantities for Bax
Mg, e.g., defect free-energies and entropies, using lattice

dynamics within the quasiharmonic approximation together with the direct free-energy

minimisation in the supercell approach. We use a simple cubic supercell containing

216 ions of MgO as our case study and the defect properties have been observed in the

temperature range 500-1500 K.

Figure 3.2(a) shows the plots of the crystal volumes Vpc and Vdc for the perfect and

defective crystals, respectively, and Figure 3.2(b) illustrates the volume change, vp, of

the Bax
Mg substitution in MgO as a function of temperature in the temperature range

considered. In Figure 3.2(a), the crystal volumes Vpc and Vdc increase by 3.2% and 3.4%,

respectively, over the range 500-1500 K. The increase in crystal volume at elevated

temperatures implies that the average interionic distance in both crystal structures

increases. However, the increase in Vpc is slightly smaller than Vdc since the Ba–O

distances grow slightly more rapidly than the Mg–O distances as the temperature is

increased. The horizontal solid and dashed lines represent Vpc and Vdc in the static limit,

respectively. On the other hand, Figure 3.2(b) shows the temperature variation of the

defect volume vp =Vdc−Vpc. From 500 K to 1500 K, vp increases by approximately 21%.

vp in the static limit is also plotted using a solid line for comparison.

Defect free-energies and entropies are shown in Figures 3.3(a) and 3.3(b), respectively.

Figure 3.3(a) shows that the defect free-energies gp and fv and the internal energy at

constant volume uv decrease as the temperature increases while the enthalpy hp is

increased. Over the temperature range 500-1500 K, gp, fv and uv decrease approximately
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FIGURE 3.2. (a) Crystal volumes of perfect crystals, Vpc, and defective crystals,
Vdc, (b) defect volume vp of Bax

Mg substitutional defect using a 216-ion su-
percell of MgO at elevated temperatures compared with the corresponding
values in the static limit marked by horizontal lines. The computational de-
tails of the classical calculations based on Buckingham interionic potentials
are outlined in Subsection 3.2.1.
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for Bax

Mg using a 216-ion supercell of MgO. The computational details of
the classical calculations based on Buckingham interionic potentials are
outlined in Subsection 3.2.1.
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by 6.4%, 6.1% and 5.8%, respectively, while hp is raised by ca. 1.9%. The values of fv and

uv at each temperature are only slightly different, compared to the larger differences

between gp and hp, since sv is very much smaller than sp, i.e., in equation (2.31).

According to equation (2.8), the entropy of a given structure at T depends solely on

the vibrational frequencies which rely on two factors: (i) the interatomic force constants

and (ii) the atomic masses, i.e., the stronger force constants with the lighter masses are

responsible for the higher vibrational frequencies which lead to the lower entropies, and

vice versa. In the case of Bax
Mg, there are two competing effects for the constant-volume

calculations. At constant volume, the substitution of a Mg2+ by a much heavier Ba2+

decreases the frequencies, while the volume constraint increases interionic forces leading

to higher frequencies. For sp, on the other hand, the volume constraint is less significant

as the equilibrium pressure is optimised to zero. Hence, for Bax
Mg, sv is generally small

and always much smaller than sp, as shown in Figure 3.3(b). Additionally, the change in

sp with respect to temperature is also greater than the change in sv and with an opposite

trend. Over the range 500-1500 K, sp increases by 34%, while sv decreases by 33%.

At a given temperature, the changes in entropy of defect formation, sp and sv, depend

solely on the change in magnitude of vibrational frequencies, as discussed above. In

order to observe the change in magnitude of vibrational frequencies of the Bax
Mg defect

formation explicitly, one can compare the phonon density of states (DOS) plot of the

bulk MgO to that of the defective structure, as shown in Figure 3.4. Overall, in Figure

3.4(a), most of the vibrational states in all the structures lie in the range 300-450 cm-1.

Additionally, the DOS plots for the three structures are very similar in the high-frequency

range, e.g., above 500 cm-1. This implies that the majority of the changes (or shifts) in

magnitude of vibrational frequencies due to the defect formation occurs in the frequency

range below 500 cm-1, as shown in the plots of the difference in DOS in the defective and

perfect structure shown in Figure 3.4(b).

In Figure 3.4(b), the DOS of the optimised defective structures at both constant

volume and constant pressure are all lower than that of the perfect crystal over 300-450

cm-1. It implies a significant reduction of the population of vibrational states in the

defective systems compared to the perfect crystal over that frequency range. From 450

to ∼700 cm-1, there are also small rises in the number of vibrational states due to the

defect formation. Noticeably, there is a significant increase in number of vibrational

states below ca. 200-285 cm-1 as a result of the defect formation. In general, the numbers

of vibrational states in the defective structures are greater than those of the perfect

crystal in the frequency range below 300 cm-1. Subsequently, the considerable reduction
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FIGURE 3.5. Temperature dependence of the change in constant-volume heat
capacity of the Bax

Mg defect formation using a 216-ion supercell of MgO. The
computational details of the classical calculations based on Buckingham
interionic potentials are outlined in Subsection 3.2.1.

in the number of higher-frequency vibrational modes, e.g., mainly from 300-450 cm-1 to

lower-frequency modes (a redshift), gives rise to higher entropies in the defect structures,

leading to positive sp and sv of the Bax
Mg defect formation in MgO, as shown in Figure

3.3(b).

The phonon DOS plots for the optimised defective structures at constant pressure

and constant volume, as shown in Figure 3.4, provide also further information on the

difference in magnitude of sp and sv for the Bax
Mg defect formation in MgO. In the

frequency range below 400 cm-1, the DOS of the optimised defective structure at constant

pressure is higher than that of the structure at constant volume, while the opposite

trend in the DOS for these two defective structures can be observed in the frequency

range above 400 cm-1. This is the implication of the effect of the volume constraint on the

vibrational frequencies at constant volume, leading to a larger number of high-frequency

vibrational modes and hence a lower entropy.

Apart from the other properties mentioned above, one can also observe the tempera-

ture dependence of the change in the constant-volume heat capacity of defect formation,

cv, as shown in Figure 3.5. It is worth noting that cv in this case is the difference between

the CV of the perfect MgO supercell with an equilibrium volume at a given temperature

T and that of the defective supercell with the same volume as the perfect structure, i.e.,
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the crystal volume at each T is different. Therefore, cv cannot directly be obtained from

(∂uv/∂T) as the crystal volume is not constant when calculating UV at each temperature.

Figure 3.5 demonstrates that the constant-volume heat capacity of the perfect crystal

is always higher than that of the defective one. Hence, cv for Bax
Mg is negative at

all temperatures between 500 and 1500 K. Like entropy, heat capacity depends on

the frequencies of the vibrational modes in a given material at a particular T, i.e.,
higher vibrational frequencies result in a lower heat capacity. For a given temperature

at constant volume in Figure 3.5, a negative cv for Bax
Mg in MgO implies that the

volume constraint, which makes the force constants stronger, dominates the vibrational

frequencies. Overall, the vibrational modes shift to the lower-frequency regime due to

the defect formation at constant volume, as clearly shown in Figure 3.4(b), leads to a

negative change in constant-volume heat capacity. Therefore, the present discussion

concerning cv agrees with the earlier discussion regarding sp and sv, as evidenced by

the phonon DOS plots in Figure 3.4.

Over the temperature range considered, cv increases by 84% as the temperature

is raised. The difference in constant-pressure heat capacity cp proves more difficult to

work out than cv. According to statistical thermodynamics, the heat capacity of a crystal

at constant volume CV can be obtained by the derivatives of the vibrational partition

function Zvib or by the first derivative of the internal energy with respect to temperature:

CV (T)=
(
∂U
∂T

)
V

(3.5)

= RT
[
2

(
∂ ln Zvib

∂T

)
+T

(
∂2 ln Zvib

∂T2

)]
. (3.6)

Using equation (3.6), CV for a given periodic structure at a finite temperature can

directly be computed after a phonon calculation in the GULP program, for example.

However, to acquire the heat capacity at constant pressure CP from that calculated

CV , the numerical values of the volumetric thermal expansion coefficient α and the

isothermal compressibility βT (the inverse of the bulk modulus KT ) need to be examined

first.154 The relationship between CP and CV can be expressed as

CP = CV +V T
(
α2

βT

)
, (3.7)

where α= 1
V

(
∂V
∂T

)
P , and βT = 1

KT
=− 1

V
(
∂V
∂P

)
T . Additionally, an approximate form of equa-

tion (3.7) is given by the Nernst-Lindemann relation:

CV ≈ CP −C2
P T

(
Vα2

βTC2
P

)
T=Tref

, (3.8)
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FIGURE 3.6. Temperature dependence of the change in constant-pressure heat
capacity of the Bax

Mg defect formation using a 216-ion supercell of MgO.
Different marker styles are used for different methods for calculating CP : ◦
(full equation), 2 (approximation), and △ (differentiation) refer to equations
(3.7), (3.8) and (3.9), respectively. Tref was set at 1000 K for CP ’s obtained
using equation (3.8). The computational details of the classical calculations
based on Buckingham interionic potentials are outlined in Subsection 3.2.1.

where Tref is any convenient temperature where the necessary data are available.155

One subtle drawback of using equations (3.7) and (3.8) is that they are not suitable for

evaluating the CP for finite-size (or molecular) clusters as the parameters α and βT

cannot be defined. More importantly, one needs to perform a large number of phonon

calculations in order to obtain reasonably adequate numerical results. For these reasons,

converting the calculated CV of both periodic system or finite-size system into CP through

equations (3.7) and (3.8) proves impractical. However, there is another simpler and more

fundamental approach to compute the CP of either a periodic structure or a finite-size

cluster via the first derivative of the enthalpy H with respect to temperature T:

CP =
(
∂H
∂T

)
P

, (3.9)

where H =G+TS. The calculation of CP for a given structure using equation (3.9) can

easily be done via a computer code with the implementation of the direct free-energy

minimisation approach such as the GULP program.91,156

Figure 3.6 shows the temperature variation of the change in constant-pressure heat

capacity cp of Bax
Mg substitutional defect formation in MgO calculated through the three
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different approaches mentioned earlier: (i) the full CV −CP conversion (equation (3.7))

(ii) the approximate expression of the CV −CP conversion (equation (3.8)) and (iii) the

first derivative of H with respect to T (equation (3.9)). In case (ii), Tref was set at 1000

K. Overall, all the three approaches show that the values of cp for the Bax
Mg defect are

positive at all temperatures between 500 K and 1500 K. This implies that CP of the

defective structure is always higher than that of the perfect crystal in the temperature

range considered. Remarkably, the numerical results from equation (3.9) are in good

agreement with the ones obtained using equation (3.7) at all temperatures, while the

calculated cp’s from the approximate equation (3.8) are significantly lower than those

obtained using the other two expressions at higher temperatures, i.e., above Tref. cp

changes only slightly around 1.9-2.5kB in the temperature range of 500-1000 K, while

it increases rapidly with temperature above 1000 K. At 1500 K, cp calculated from

equations (3.7) and (3.9) increases by approximately 3.5 times the value at 500 K, while

cp from equation (3.8) increases only approximately 1.5 times the value at 500 K.

As expected, the full CV −CP conversion equation (3.7) and the fundamental thermo-

dynamic equation (3.9) work equally well to estimate the cp of the Bax
Mg substitutional

defect formation in MgO at any given finite temperature. These two approaches give also

a better estimation of cp than the approximate approach via equation (3.8) at higher

temperatures. However, compared to equation (3.7), equation (3.9) needs very much less

effort and it is a convenient strategy to calculate CP or cp as this requires only H or hp,

respectively, as a function of T from only a few phonon calculations, e.g.,

cp =
(
∂hp

∂T

)
= T

(
∂sp

∂T

)
. (3.10)

Additionally, the conversion between CP and CV through the full conversion equation

(3.7) relies on the quality of the numerical methods for obtaining the terms α and βT .

Hence, insufficient datasets for the numerical fittings may lead to inadequate numerical

results. For example, the fluctuating temperature variation of cp obtained from equation

(3.7) at temperatures below 800 K has been observed, which might be due to the poor

numerical fittings.

3.3.3 Finite-Size Effects

So far, we have focused on the defect properties which are obtained from periodic struc-

tures using the supercell approach. Alternatively, one can also use the non-periodic model,

i.e., switching off the periodicity and instead using finite-size clusters of crystalline solids,

to study computationally the defect thermodynamics. The key advantages of using the
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non-periodic model are that (i) it is computationally cheaper and (ii) this can be modelled

by any other widely used ab initio software packages designed for molecular systems such

as Gaussian16,157 ORCA,158 and so on. Hypothetically, the defect properties obtained

by the two strategies should be comparable when a very large finite-size cluster is used.

In other words, the defect quantities of a finite-size cluster are expected to converge

with respect to system size, and those properties of an extremely large cluster should

be comparable with the bulk limit. However, in this subsection, we will show that there

will always be differences between the defect properties of solid clusters and those of the

periodic systems due to the existence of interfaces.

To observe initially the influence of finite-size effects on defect properties, it is worth

considering an analogous system of the Bax
Mg in MgO we have discussed earlier. We

choose the substitution of a Cu atom by a bigger Ag atom in Cu metal as a study case

for two main reasons: (i) the constituent and substituent atoms are neutral and held

together solely by short-range repulsive and attractive interactions in the classical

approach and (ii) the crystal structure of Cu belongs to the same space group as MgO

(Fm3m, conventional space group number 225). Consequently, we can then expect that,

apart from the existence of the interfaces, there should be no major difference between

the periodic bulk and non-periodic cluster. In contrast, in the Bax
Mg in MgO case, for

instance, an electrically neutral cubic cluster itself may have a non-zero electric dipole

moment.

The exploration of finite-size effects on the Ag substitutional defect formation energy

in Cu metal and finite-size Cu clusters as a function of system size ranging from 32 to

4000 atoms is illustrated in Figure 3.7. Here, we solely focus on the comparison of simple

cubic superlattices of the defective solid with the clusters terminated by (100) surfaces

with the same sizes. In a given Cu cluster, one Cu atom situated nearest to the centre of

the cluster is replaced by an Ag atom to form the defective structure. With this strategy,

the environment of the defect is as isotropic as possible. The data shown in Figure 3.7

can be divided into two sets: the substitutional defect energies for (i) relaxed and (ii)

unrelaxed structures which appear in the higher- and lower-energy regions, respectively.

More precisely, the defect energies labelled with the unrelaxed flag are the differences in

energy of the defective and perfect structures without any geometry optimisation, while

the other dataset is obtained in the same fashion but from the fully optimised structures

instead.

The Ag substitutional defect formation energies in the Cu solid lie between 1.6-3.1 eV

depending on the system size and whether the calculation includes structural relaxation.
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FIGURE 3.7. Finite-size effects on the Ag substitutional defect energy, Agx
Cu,

in Cu metal and finite-size Cu metallic clusters as a function of system
size ranging from 32-4000 atoms in the static limit. The solid and dashed
lines represent the defect energies obtained before and after performing full
geometry optimisation of the corresponding structures, respectively. Defect
energies of the periodic and non-periodic systems are highlighted by differ-
ent marker styles. The computational details of the classical calculations
based on Lennard-Jones interatomic potentials are outlined in Subsection
3.2.1.

Again, replacing a smaller Cu atom with a bigger Ag atom is responsible for a positive

value of the substitutional defect energy which is similar to the case of Bax
Mg in MgO. As

mentioned above, the main contributions to these positive defect energies are from the

short-range repulsion between the new atom and its immediate neighbours. As expected,

the defect energies obtained using the unrelaxed structures are all higher than those

computed via the fully relaxed ones.

The defect energies for the unrelaxed periodic structures are all approximately 2.6

eV and almost identical for all system sizes, while the computed defect energies using

the relatively small unrelaxed clusters are strongly size dependent. For the unrelaxed

structures, the defect energies of relatively smaller clusters are higher than those of the

larger clusters due to stronger repulsive interactions between the substituent atom and

the atoms at the surfaces, which are not allowed to move. However, the defect energy in

the unrelaxed clusters approaches the limit of the bulk when using a cluster bigger than

500 atoms. As the cluster size is increased, the defect energies decrease and approach
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the converged value as the surface atoms are located further away from the defect and

only weakly interact with (or are almost uninfluenced by) the defect itself. The very good

agreement between the defect energy of a very large unrelaxed cluster and that of an

unrelaxed bulk structure further implies that the effects of the substitution itself, e.g., in

terms of the strength of interactions between the defect and its neighbours, are the same

in both cases.

The lower-energy region in Figure 3.7, compared to the higher region, shows clearly

how geometry relaxation impacts on the substitutional defect energy. For the bulk, the

defect energy is largely constant with respect to the supercell size except for the smaller

ones. In the bulk structure with a relatively small supercell size, the defect energy tends

to be lower than that in the dilute limit due to the stronger defect-defect interactions

leading to a lower defect energy, and we shall discuss this effect later in the next section.

Note that, as shown in Table 3.3, Ag–Ag interactions are weaker than those of the

Ag–Cu and Cu–Cu, respectively (see the ε’s). In the Agx
Cu case, there are two competing

effects contributing to the defect energy in the opposite way: (i) size constraints increase

the defect energy and (ii) an increase in number of Ag–Cu or Ag–Ag interacting pairs

decreases the defect energy. A smaller cluster leads to a bigger impact of (ii) in the

non-periodic model as we can see the sharp fall in defect energy of the relaxed 32-atom

cluster. However, the effect (i) dominates in all other cases as the positive defect energies

signify.

The most interesting feature of the plots of the defect energies for the fully relaxed

structures in the lower-energy region is that there will always be a difference in defect

energy of the cluster model compared to the periodic approach even though a very large

finite-size cluster is being used. For instance, the results for the 4000-atom supercell

and cluster in the graph are slightly different. At this stage, compared to the unrelaxed

models, we can conclude that geometry relaxation after introducing a point defect into

a perfect structure results in the difference in defect energy of the bulk and finite-size

cluster. One possible explanation of this is that the atomic displacements around the

point defect in the periodic and non-periodic models are different which leads eventually

to the difference in computed defect energy from the two approaches due to the absence

or presence of the interfaces.

In addition, the larger surface area of a larger cluster (i.e., with more atoms at the

surfaces) results in a greater degree of structural relaxation at (and near) the interfaces

and, therefore, higher surface energy. As the cluster size is increased, the degree of

structural relaxation at (and near) the surfaces in a defective cluster should be very
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similar to that of its perfect structure. Strictly speaking, the atoms at (and near) the

surfaces are hardly influenced by the point defect located at the centre. This might lead to

very similar surface areas and surface energies. Since the influence of the point defect on

the atomic relaxation at (and near) the surfaces becomes much smaller in an extremely

large cluster, the population of atoms at (and near) the interfaces grows rapidly as the

size is increased. Hence, the accumulation of these small effects can eventually become

significant. For this reason, the calculated defect properties of the finite-size systems are

always different from those of the periodic systems due to the existence of interfaces in

the non-periodic model. Here, the effects resulting from the existence of interfaces are

so-called finite-size effects.

Now, let us go back to study the finite-size effects in our Bax
Mg in MgO case. Figure

3.8 illustrates the variation of defect energies (gp and fv) and changes in entropy of

defect formation (sp and sv) with respect to system size for Bax
Mg substitution in bulk

MgO and cubic-shaped MgO clusters, i.e., clusters terminated by (100) surfaces, with the

size ranging from 216-2744 ions at 1000 K. The constant-volume defect quantities for

the cubic clusters are obtained by keeping the coordinates of all the outermost atoms

fixed at their equilibrium positions in their corresponding perfect structures at each

temperature, while those of the remaining atoms are allowed to relax fully. In this way,

the surface area (or the volume) of a particular cluster at a given temperature does not

change during geometry relaxation.

Overall, we can clearly observe that the defect properties for the periodic structures

converge rapidly to their dilute-limit values as the superlattice spacing is increased,

while those of the clusters show slower convergence rates. Over the range of system sizes

considered, the defect properties of the finite-size clusters are different from those of

the bulk due to the finite-size effects, as discussed earlier. Figure 3.8(a) points out that

the defect energies in the clusters are all higher than those in the bulk and it shows

also that the differences in gp, hp, fv and uv of the bulk and the clusters depend on

system size. For instance, fv of the 216-ion cluster is ∼1.5 eV higher than that of the

bulk, while the difference in fv is approximately 1 eV for the systems with 2744 ions.

The differences in gp, hp, and uv show similar trends. On the contrary, the changes in

entropy for the defect formation (sp and sv) of the clusters are all smaller than those

of the bulk, as shown in Figure 3.8(b). For our biggest systems, i.e., the supercells and

clusters containing 2744 ions, the differences in sp and sv are approximately 2kB and

0.5kB, respectively.

Additionally, Figures 3.9 and 3.10 show the temperature dependence of the defect
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FIGURE 3.8. Variation of (a) defect energies and (b) entropy changes of defect
formation with system size for Bax

Mg in bulk MgO and cubic-shaped clusters
with the system size ranging from 216-2744 atoms at 1000 K. Solid and
dashed lines represent the defect properties of the bulk and clusters, respec-
tively. Different defect quantities are marked with different marker styles.
The computational details of the classical calculations based on Bucking-
ham interionic potentials are outlined in Subsection 3.2.1.
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and a cluster of MgO containing 216 ions. Solid and dashed lines are used
for the defect properties of the bulk and cluster, respectively. In (a), different
defect energies are highlighted by different symbols and horizontal straight
lines denote the defect energies at the static limit. The computational details
of the classical calculations based on Buckingham interionic potentials are
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properties of Bax
Mg in bulk MgO and a MgO cluster both with the system size of 216

ions at constant pressure and constant volume, respectively. In the range of 500-1500 K,

the increasing or decreasing trends in both the constant-pressure and constant-volume

defect quantities of the finite-size cluster are all consistent with those of the bulk. At

all temperatures, all the defect energies of the cluster are higher than those of the bulk,

while the defect entropies for the bulk are larger than those of the cluster.

In terms of defect energies, Figures 3.9(a) and 3.10(a) show that the differences in

gp, fv and uv of the bulk compared to those of the cluster are temperature independent.

Strictly speaking, the differences in those three defect parameters are almost identical

at all temperatures, i.e., gp, fv and uv of the cluster are respectively ca. 1.3 eV, 1.6 eV

and 1.6 eV higher than those of the bulk over 500-1500 K. However, this is not the case

for the difference in hp as shown in Figure 3.9(a). The difference in hp for the bulk and

the cluster becomes smaller as the temperature is increased, e.g., the differences in hp

for the cluster and the bulk are ca. 1.2 eV at 500 K and 1.0 eV at 1500 K.

The temperature variation of the constant-pressure and constant-volume entropy

changes (sp and sv) of the defect formation are shown in Figures 3.9(b) and 3.10(b),

respectively. In Figure 3.9(b), sp’s of the bulk and cluster both increase at elevated

temperatures over 500-1500 K. In contrast, sv’s of the bulk and the cluster both decrease

over 500-1500 K. At constant pressure, sp of the bulk increases more rapidly than that of

the cluster, e.g., sp of the bulk are 1.8kB and 3.2kB higher than that of the cluster at 500

K and 1500 K, respectively. Values of sv of the bulk and the cluster, on the other hand,

show the same decreasing rate, e.g., sv of the bulk is approximately 0.6kB higher than

that of the cluster at all temperatures from 500-1500 K. A more minor change in entropy

of the Bax
Mg substitutional defect formation (either sp or sv) for the finite-size cluster

compared to that of the bulk suggests that there are fewer low-frequency vibrational

modes (or more high-frequency vibrational modes) due to the substitution in the cluster

than the periodic bulk structure.

The phonon DOS plots and the differences in DOS of the MgO cluster containing

216 ions and its optimised defective analogues at both constant pressure and constant

volume at 1000 K are shown in Figure 3.11(a) and 3.11(b), respectively. Figure 3.11 can

be compared with the phonon DOS plots of the bulk in Figure 3.4. In comparison with

the vibrational phonon DOS of the bulk, the change of vibrational frequencies due to the

defect formation in the clusters is less obvious. Overall, there should be more red-shifted

vibrational modes than the blue-shifted ones in the defective clusters compared to the

perfect structures, as the positive signs of sv and sp implies. In comparison with sp and
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FIGURE 3.11. (a) Phonon density of states (DOS) plots of a perfect 216-ion MgO
cluster and the optimised Bax

Mg defective structures at constant pressure
and constant volume at 1000 K. (b) The difference in DOS in the defective
and perfect structures. The phonon DOS for each structure is labelled by a
different line style. The computational details of the classical calculations
based on Buckingham interionic potentials are outlined in Subsection 3.2.1.

57



CHAPTER 3. DEFECT THERMODYNAMICS IN SOLIDS AND CLUSTERS

sv of the bulk, on the other hand, the smaller (positive) magnitude of the defect entropies

for the clusters is mainly due to a smaller redshift and a greater blueshift, as shown in

Figures 3.9(b) and 3.10(b), respectively.

As we mentioned earlier, there are two competing factors influencing vibrational

frequencies: (i) the atomic masses and (ii) the strength of interatomic interactions. For

Bax
Mg in MgO, the heavier mass of the Ba2+ cation decreases the magnitude of the

frequencies leading to a higher entropy, while its bigger ionic radius increases the

strength of the interionic interactions, i.e., especially when modelled at constant volume,

resulting in a lower entropy. Modelling the defect formation at constant pressure, on the

other hand, implies that the volume constraint due to the Ba2+ substitution is small

and only the mass effect dominates the vibrational frequencies. Consequently, for the

Bax
Mg substitution in periodic bulk MgO, we have previously shown that sv is always

smaller than sp for all system sizes and at all temperatures, e.g., in Figures 3.3(b) and

3.8(b). Remarkably, it is also the case for all the finite-size clusters considered in the

temperature range 500-1500 K as shown in Figures 3.8(b), 3.9(b), and 3.10(b).

So far, we have emphasised that the substitution of a Mg2+ by a Ba2+ in bulk MgO,

compared to a finite-size cluster of MgO, leads to a smaller number of high-frequency

vibrational modes and, hence, a greater entropy change from their perfect structures,

i.e., for both sp and sv. However, the contribution of the mass effects to the change of

vibrational frequencies in both defective systems compared to their corresponding perfect

structures are expected to be approximately identical. In other words, the differences in

both sp and sv for the bulk compared to those of the cluster are almost solely due to the

change of the force constants or, in general, the so-called volume constraint, and this can

be clearly explained by reference to Figure 3.12.

Figures 3.12(a) and 3.12(b) illustrate the temperature dependence of sp and sv,

respectively, of Bax
Mg in bulk MgO and cluster. At this stage, we probe the mass effects

on the change in entropy of the defect formation using two types of the Ba2+ cation: (i)

an ordinary (more massive) barium ion with the atomic mass of 137 denoted by 137Ba

and (ii) an artificially modified lighter barium ion with the same atomic mass of 24 as a

Mg2+ denoted by 24Ba. Generally, we can observe clearly that substituting a Mg2+ ion by

a lighter Ba2+ ion reduces sp or sv compared to the substitution by the ordinary (heavier)

Ba2+ ion. A lighter mass increases vibrational frequencies and eventually results in a

lower entropy, as discussed earlier. Interestingly, the degree of the contribution of the

mass effects to sp and sv for the bulk and the cluster are approximately equal. In all cases,

substituting a Mg2+ by a 24Ba, compared to 137Ba, lowers sp and sv equally by ∼ 2.3kB.

58



3.3. RESULTS AND DISCUSSION

600 800 1000 1200 1400

6

8

10

12

s p
(k

B
)

(a)

600 800 1000 1200 1400
T (K)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

s v
(k

B
)

(b)
137Bax

Mg
24Bax

Mg

bulk
clusters

FIGURE 3.12. Temperature variation of (a) sp and (b) sv for Bax
Mg in bulk

MgO and MgO cluster containing 216 ions. Different marker styles are
used to represent the two types of the Ba2+ cation with the atomic masses
of 137 and 24 (137Ba and 24Ba) and solid and dashed lines are used to
highlight the defect entropies of the bulk and the cluster, respectively. The
computational details of the classical calculations based on Buckingham
interionic potentials are outlined in Subsection 3.2.1.
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FIGURE 3.13. (a) Phonon density of states (DOS) plots of 137Bax
Mg and 24Bax

Mg
substitutional defects in bulk MgO in a 216-ion supercell at constant pres-
sure at 1000 K. (b) The difference in DOS in the defective structure with
24Ba compared to the structure with 137Ba. In (a), the phonon DOS for each
structure is labelled by a different line style. The computational details of
the classical calculations based on Buckingham interionic potentials are
outlined in Subsection 3.2.1.
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The bottom of Figure 3.12(b) illustrates that the volume constraint itself accounts for the

the negative sv of the 24Bax
Mg for both the periodic and finite-size systems.

In addition, the influence of the mass effect on vibrational frequencies should be

evident in the vibrational DOS plot, shown in Figure 3.13. Figure 3.13(a), shows only

a slight difference in the number of vibrational modes in the two defect structures.

However, the difference in the density of states in these two defective structures in

Figure 3.13(b) shows more clearly the shifts of vibrational modes due to the lighter

dopant. For example, it indicates a substantial decrease in number of vibrational states

in the frequency region below 180 cm-1 and also a considerable increase in number

of vibrational states in the frequency range above ca. 900 cm-1. Even though these

changes are slight, e.g., the almost identical phonon DOS plots in Figure 3.13(a) and the

magnitude of the DOS difference in Figure 3.13(b), sp can still very well reflect this small

change. In other words, the magnitude of the entropy change is sensitive to the small

difference in the magnitude and number of vibrational frequencies in the frequency and

temperature ranges we consider here.

The current discussion regarding the effect of a change in the magnitude of vibrational

frequencies due to the substitutional defect on the change in entropy should also be a

good basis to understand further the change in heat capacity in a similar fashion, i.e.,
higher vibrational frequencies result in a lower vibrational heat capacity and vice versa.

The changes in heat capacity at constant volume, cv, for Bax
Mg in bulk MgO and MgO

clusters as a function of system size are shown in Figure 3.14(a). At 1000 K, cv is negative

for all the system sizes considered ranging from 216-2744 ions. This suggests that all the

defective structures have lower heat capacities than those of their corresponding perfect

analogues, implying that the volume constraint dominates the vibrational frequencies,

as discussed earlier. Surprisingly, in contrast to the trends in sv shown in Figure 3.8(b),

where sv for the bulk is higher than that of the cluster, cv for the clusters is higher than

that of the bulk. One possible reason for these opposite trends for the sv and cv for the

bulk and the clusters might be that the sensitivities of the magnitudes of cv and sv to the

change in the magnitude of high-frequency vibrational modes (or the volume constraint,

in general) are different.

The effect of the change in the magnitude of a vibrational frequency on the mag-

nitude of these two vibrational properties, i.e., Svib and Cvib, can be illustrated by the

thermodynamic expressions of S and C for a harmonic oscillator with identical frequency,
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FIGURE 3.14. Variation of heat capacity changes of Bax
Mg in MgO with (a) system

size and (b) temperature. For (a), cv of each system size was calculated at
1000 K. For (b), a supercell and a cluster of MgO containing 216 ions were
used for all temperatures in order to obtain cp and cv which are highlighted
using different marker styles. Solid and dashed lines with different marker
symbols represent the heat capacity changes for the bulk and clusters,
respectively. The computational details of the classical calculations based
on Buckingham interionic potentials are outlined in Subsection 3.2.1.
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ν:

Svib(x)= R
{

xexp(−x)
[1−exp(−x)]

− ln[1−exp(−x)]
}

, and (3.11)

Cvib(x)= R
{

x2

[exp(x)+exp(−x)−2]

}
; where x = hν

kBT
. (3.12)

Here, R is the gas constant, h is Planck’s constant, kB is the Boltzmann constant, and T
is temperature. Using equations (3.11) and (3.12) at 300 K, Svib and Cvib decrease approx-

imately by 47% and 12%, respectively, when the vibrational frequency ν is increases from

500 to 1000 cm-1. Note that the decreasing rate of Svib or Cvib with respect to frequency

depends on the change in the magnitude of the vibrational frequency and temperature,

as shown in Figure 3.15. Moreover, one can evaluate analytically the change in Svib and

Cvib due to the change in vibrational frequency through the first derivatives of Svib and

Cvib in equations (3.11) and (3.12), respectively, with respect to ν:(
∂S
∂ν

)
T
=− h

kBT
R

{
xexp(x)

[exp(x)−1]2

}
, and(

∂C
∂ν

)
T
=− h

kBT
R

{
xexp(x) [x+exp(x)(x−2)+2]

[exp(x)−1]3

}
.

(3.13)

Figure 3.14(b) shows the temperature dependence of cv and cp for Bax
Mg in bulk MgO

and a MgO cluster with a system size of 216 ions in the temperature range of 500-1500

K. Note that cp is calculated using equation (3.10). As expected, over the temperature

range considered, cp for all cases is positive, whereas cv is negative. As in the discussion

concerning sv and sp, the difference in magnitude (and sign) of cv and cp is due to the

volume constraint predominantly controlling the vibrational frequencies in the cv case,

while the mass effect, on the other hand, dominates the frequencies in the case of cp.

Over 500-1500 K, cv increases as the temperature is elevated. cv for the bulk and the

cluster both increase more rapidly over 500-1000 K than 1000-1500 K. The difference

between cv of the bulk and the cluster varies with temperature and becomes smaller

when the temperature is increased, e.g., cv for the cluster is approximately 0.50kB and

0.25kB greater than that of the bulk at 500 and 1500 K, respectively. From 500-1500

K, cv for the bulk and the cluster both increase by ca. 83%. On the other hand, cp of

the bulk and the cluster decrease only slightly over ∼500-800 K and then increase over

800-1500 K. At higher temperatures, cp for the bulk increases faster than that of the

cluster. The difference in cp of the bulk and the cluster, unlike cv, becomes larger as the

temperature increases, i.e., cp of the bulk is approximately 0.1kB and 4.2kB higher than

that of the cluster at 500 and 1500 K, respectively. Over 500-1500 K, cp for the bulk and

the cluster increase by ∼243% and 58%, respectively.
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In conclusion, this subsection has focused mainly on the difference between defect

properties obtained from the periodic and non-periodic models. All the defect properties

of finite-size clusters are closer to the bulk values when the system size is increased.

Even though a very large solid cluster may be used, the evaluated defect properties

of that finite-size cluster will always be different from those of the bulk limit due to

the existence of the interfaces. These are so-called finite-size effects. There are two

main possible explanations for the difference between the defect thermodynamics of the

bulk and clusters. Firstly, the influence of the substitutional defect on the structural

relaxation of atoms at (and near) the surfaces becomes much more similar to, but not

exactly the same as, the surface relaxation of the perfect structure as the cluster size

is increased. Note that, however, the number of atoms at (and near) the surfaces grows

rapidly as the system size is increased. Secondly, due to the interfaces, the degree of the

structural relaxation around the defect in the cluster might be different from that in the

bulk. These accumulating effects, therefore, may give rise to the difference in the defect

properties of the periodic and non-periodic systems. For these reasons, one should always

be aware of these effects when choosing between the periodic and non-periodic models

for modelling defect formation in crystalline solids, as the two strategies have their own

limitations and merits in terms of computational cost and software availability.

3.3.4 Ab Initio Calculations for Ba-Substitutional Defect in MgO

In the previous subsection, we presented the defect thermodynamics of the Bax
Mg defect

formation in MgO calculated using classical potential parameters. In this subsection,

we now show those defect properties obtained from analogous ab initio calculations

based on density functional theory (DFT) instead. One of the major advantages of ab
initio or first-principles calculations is that they do not rely on any empirical parameters

from fittings. Furthermore, compared to the classical simulation where electrons are

not explicitly considered as individual particles, ab initio simulation gives insights into

the electronic structure and many other related properties of the system of interest.

Therefore, the first-principles approach is believed to be more accurate and reliable for

complex systems depending on the level of theory that has been employed. However,

these ab initio calculations are much more computationally expensive, and hence are

limited to small systems.
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TABLE 3.4. Experimental and calculated lattice parameters of MgO and BaO.
The computational details of the classical calculations based on Buckingham
interionic potentials and DFT (GGA-PBESol) calculations are outlined in
Subsections 3.2.1 and 3.2.2, respectively.

Compound
Lattice parameter a (Å)

Buckingham Potentials DFT-PBESol Experimental
MgO 4.225 4.222 4.216(a)

BaO 5.543 5.439 5.536(b)

(a)Hirata et al.,159 (b)Elo et al. 160

TABLE 3.5. Observed interionic distances in bulk MgO and BaO from classical
and DFT calculations in the static limit. Note that the reported interionic
spacing of each ion-pair is measured in the first five nearest-neighbouring
shells only. The number of the neighbouring ions (NN) in each shell appears
in a parenthesis. The computational details of the classical calculations
based on Buckingham potentials and DFT (GGA-PBESol) calculations are
outlined in Subsections 3.2.1 and 3.2.2, respectively.

Structure Ion pair Shell (NN)
Interionic distance (Å)
Classical DFT

MgO

Mg–O

1st (6) 2.113 2.111
2nd (8) 3.659 3.656
3rd (24) 4.724 4.720
4th (30) 6.338 6.333
5th (24) 7.006 7.001

Mg–Mg

1st (12) 2.988 2.985
2nd (6) 4.225 4.222
3rd (24) 5.175 5.171
4th (12) 5.975 5.971
5th (24) 6.680 6.676

BaO

Ba–O

1st (6) 2.772 2.720
2nd (8) 4.800 4.710
3rd (24) 6.197 6.081
4th (30) 8.315 8.159
5th (24) 9.192 9.020

Ba–Ba

1st (12) 3.920 3.846
2nd (6) 5.543 5.439
3rd (24) 6.789 6.661
4th (12) 7.839 7.692
5th (24) 8.764 8.600
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TABLE 3.6. Observed distances between the Ba2+ and its neighbouring ions
in the first few nearest-neighbouring shells, i.e., within half the supercell
dimension, in the optimised defective structures of bulk MgO with sizes of
64 (cub), 128 (fcc) and 216 (cub) ions from classical and DFT calculations
at constant pressure in the static limit. The number of the neighbouring
ions (NN) in each shell appears in a parenthesis. Calculated relative dis-
placements indicate the differences between the ionic distances before and
after the geometry relaxation, as shown in Figure 3.16. Note that all the
neighbouring ions considered move away from the Ba. The computational
details of the classical calculations based on Buckingham interionic poten-
tials and DFT (GGA-PBESol) calculations are outlined in Subsections 3.2.1
and 3.2.2, respectively.

Size Ion pair Shell (NN)
Interionic distance (Å) Displacement (%)
Classical DFT Classical DFT

64
Ba–O

1st (6) 2.355 2.381-2.385 11.46 12.79-12.98
2nd (8) 3.699 3.700-3.702 1.09 1.18-1.26

Ba–Mg
1st (12) 3.106 3.115-3.117 3.96 4.33-4.39
2nd (6) 4.274 4.287-4.290 1.17 1.53-1.60

128

Ba–O
1st (6) 2.350 2.387-2.388 11.23 12.98-13.11
2nd (8) 3.673 3.673 0.39 0.37
3rd (24) 4.782 4.789-4.790 1.24 1.38-1.47

Ba–Mg
1st (12) 3.085 3.091 3.25 3.46
2nd (6) 4.293 4.322 1.60 2.30
3rd (24) 5.214 5.218 0.75 0.83

216

Ba–O

1st (6) 2.355 2.387-2.390 11.46 13.09-13.20
2nd (8) 3.670 3.664-3.665 0.29 0.22-0.25
3rd (24) 4.787 4.789-4.790 1.34 1.45-1.47
4th (30) 6.359-6.367 6.360-6.367 0.33-0.47 0.43-0.54
5th (24) 7.035 7.036 0.40 0.49

Ba–Mg

1st (12) 3.088 3.091-3.092 3.36 3.52-3.56
2nd (6) 4.295 4.320-4.321 1.65 2.32-2.35
3rd (24) 5.208 5.208 0.65 0.72
4th (12) 6.025 6.026-6.027 0.83 0.92-0.93
5th (24) 6.710 6.712-6.713 0.44 0.54-0.56
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3.3.4.1 Variation of Static-Limit Defect Properties with System Size

The simulated and experimental lattice parameters for bulk MgO and BaO are listed in

Table 3.4. For both crystals, the calculated lattice parameters from the classical calcula-

tions are in good agreement with the experimental values. The DFT lattice constant of

MgO is also in line with that from the experimental observation, while the calculated lat-

tice parameter of BaO is approximately 0.1 Å shorter than that of the experimental value.

The discrepancy between the experimental and calculated structural parameters is ex-

pected to be mainly affected by the choice of density-functional approximations, i.e., DFT

functionals, for estimating the electronic exchange and correlation terms.116,161,162 The

static-limit classical and DFT interionic distances in the first five nearest-neighbouring

shells in the optimised perfect and defective structures at constant pressure appear in

Table 3.5. The number of the nearest neighbours (NN) in each spherical shell is also

indicated in parenthesis. As the calculated lattice constants of MgO from the classical

and DFT calculations are almost identical, the interionic separations are therefore very

similar. On the contrary, the Ba–O and Ba–Ba distances in bulk BaO from the classical

simulation are longer than those obtained from the DFT calculation, as the calculated

lattice constants suggest.

The simulated static-limit interionic distances between the Ba2+ substitutional de-

fect and its neighbouring ions in the first few nearest-neighbouring shells within the

optimised defective 64-, 128- and 216-ion supercells of MgO from the classical and DFT

simulations at constant pressure are listed in Table 3.6. Here, we only consider the

nearest-neighbouring shells within half the length of the supercell. All the neighbouring

ions move further away from the Ba2+ substitutional defect as the lattice expands to

accommodate the bigger Ba2+ cation. The Ba–O and Ba–Mg interionic distances in each

neighbouring shell in a given defective structure are always shorter than the Ba–O and

Ba–Ba distances, respectively, in the same shell in bulk BaO, as shown in Table 3.5. Note

that most interionic distances between the Ba2+ defect and its neighbouring ions in the

DFT simulation are slightly longer than the classical distances, as listed in Table 3.6.

The percentages in the displacement of the neighbouring ions in the nearest shells

from the Ba2+ defect, i.e., the difference in interionic distance of the Ba2+ defect and

its neighbouring ions before and after the geometry optimisation, are also listed in

Table 3.6. A schematic illustration in Figure 3.16 shows the measurement of the ionic

displacements in the two closest-neighbouring shells in the defective structure after

the geometry relaxation with reference to the initially unrelaxed defective structure.

From Table 3.6, one can observe that the displacements of the neighbouring ions around
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FIGURE 3.16. Schematic illustration of the optimised distances between the
Ba2+ and its neighbouring ions in the first nearest-neighbouring shells in a
defective supercell of bulk MgO, and the relative shell displacements after
geometry relaxation.

the Bax
Mg defect tend to be more isotropic in the classical simulation than in the DFT

simulation. For instance, the classical and DFT Ba–O distances of the six O2- ions in the

first neighbouring shell in the 216-ion defective supercells are 2.355 and 2.387-2.390 Å,

respectively. These computed values indicate that the O2- ions are displaced further away

from the Ba2+ ion by 11.46% and 13.09-13.20% after the structural relaxation at constant

pressure in the classical and DFT approaches, respectively. Moreover, the DFT Ba–O

distances for the eight O2- ions in the second closest shell lie between 3.664-3.665 Å,

which have relative displacements of ca. 0.22-0.25%, while an identical Ba–O interionic

distance of 3.670 Å with an isotropic atomic displacement of 0.29% is observed in the

analogous classical simulation.

The scatter plot of absolute ionic displacements from the Ba2+ cation (in Å) on the

logarithm scale as a function of the initial interionic distance between the Ba2+ defect

and its neighbours in the nearest-neighbouring shells within 6 Å from the Ba2+ defect in

a 216-ion supercell of MgO from both DFT and classical calculations is shown in Figure

3.17. Note that the relaxations in the classical simulations are more symmetrical with

less spread and thus more overlap of points in Figure 3.17, e.g., all the six neighbouring

O2- ions originally located at around 2.1 Å from the Ba2+ have an identical displacement
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FIGURE 3.17. Atomic displacements of Mg2+ and O2- in the first few nearest-
neighbouring shells on the logarithm scale as a function of initial ionic
distance from the Ba2+ defect in a 216-ion supercell of MgO from constant-
pressure (a) DFT and (b) classical simulations, respectively. Points overlap
due to lattice symmetry, e.g., all the twelve nearest Mg2+ ions initially lo-
cated at ca. 3 Å from the Ba2+ defect have an approximate displacement of
0.1 Å in both classical and DFT calculations. Only nearest-neighbouring
shells within 6 Å from the Ba2+ defect are considered. The computational
details of the classical calculations based on Buckingham interionic poten-
tials and DFT (GGA-PBESol) calculations are outlined in Subsections 3.2.1
and 3.2.2, respectively.
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of ∼0.25 Å in the classical calculation. Therefore, the non-overlapping points for ions in a

given shell indicate the anisotropic displacement of the ion shell. For instance, an obvious

non-isotropic displacement is noticeable for the twelve O2- neighbours in the second

nearest-neighbouring shell in the DFT simulation, in contrast to those in the classical

simulation. Furthermore, the anisotropic atomic displacements in the DFT calculations

still occur when a convergence threshold on forces of 1.5×10−4 Hartree Bohr−1, i.e.,
half the default value, is used. Hence, decreasing the convergence criterion on forces

in the DFT calculation makes only a slight difference in the atomic displacements in

the defective structure. However, the displacements are plotted on the logarithm scale;

therefore, the absolute values of the atomic displacements are very small, e.g., the largest

atomic displacement on the second O2- shell is ca. 0.01 Å.

In general, the calculated relative and absolute displacements after the structural

relaxation of the ions in the inner shells closer to the defect are much greater than

those in the more remote shells, as shown in Table 3.6 and Figure 3.17. For example,

the displacements of the O2- ions in the first and second nearest-neighbouring shells

of the 64-ion supercell in the classical simulation are 11.46% and 1.09%, respectively.

Similarly, the Mg2+ ions in the first two nearest-neighbouring shells are displaced by

3.96% and 1.17%, respectively. In all defective supercells, the displacements of the Mg2+

ions in the further subsequent shells are smaller than those in the previous inner shells.

Interestingly, for the 216-ion defective supercell in the classical simulation, as shown

in Figure 3.17, the O2- ions in the third nearest shell (originally situated at ∼4.7 Å

from the defect) are displaced from the Ba2+ by 1.34%, while those in the second shell

(initially located at ca. 3.7 Å from the defect) are only displaced by 0.29% due to the

crystal symmetry. This will be briefly discussed and illustrated below. Furthermore, the

classical results in Table 3.6 show that the O2- ions in the fourth and fifth shells are

slightly displaced from the Ba2+ defect, i.e., by 0.33-0.47% and 0.40%, respectively. The

general discussion concerning the atomic displacements in the classical simulation also

applies to the DFT calculations.

In Table 3.6, with increasing supercell size, we observe that the displacements of

the O2- ions in the second nearest-neighbouring shell and the Mg2+ ions in the first

neighbouring shell from the Ba2+ defect in the DFT simulations are slightly smaller than

those in the classical calculations. For instance, the displacements of the second-shell O2-

neighbours in the 216-ion supercell are 0.22-0.25% and 0.29% in the DFT and classical

calculations, respectively. For the 128-ion supercells, the second-shell O2- neighbours are

displaced from the Ba2+ ion by 0.39% and 0.37% in the classical and DFT simulations,
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respectively. The displacements of the O2- ions in the first and third nearest-neighbouring

shells in the DFT calculations are similar in supercells considered, while the classical

results suggest otherwise. For example, in the DFT calculations, the displacements of

the first-shell O2- ions are 12.79-12.98%, 12.98-13.11% and 13.09-13.20% for supercells

with increasing size. On the other hand, the displacements in the analogous classical

calculations are 11.46%, 11.23% and 11.46%, respectively. The O2- ions in the third

neighbouring shell of the optimised 128- and 216-ion supercells in the DFT approach

displace from the Ba2+ defect by 1.38-1.47% and 1.45-1.47%, respectively. In contrast,

the atomic displacements in the classical calculations are 1.24% and 1.34%, respectively.

Here, we investigate further the atomic displacements around a Bax
Mg substitutional

defect in a cubic supercell consisting of 2744 ions of MgO with a supercell dimension of

29.575 Å, i.e., the largest MgO supercell considered in this work, in a static-limit classical

calculation at constant volume. The atomic positions in the initial lattice configuration are

depicted in Figure 3.18. The directions of the atomic displacements of the neighbouring

ions from the Ba2+ defect after structural relaxation at constant volume are marked by

arrows. The size of an arrow on each neighbouring ion indicates the relative magnitude

of the displacement; hence is not observable for a very small displacement. Also, we use

a colour heatmap to quantify the magnitude of the absolute atomic displacement at each

initial atomic position (in Å). The calculated atomic displacements have been refined

using linear interpolations between the adjacent atoms. The colour spectrum spreads

from red to blue for the greatest and smallest displacements. In analogy to Figure 3.17,

the plot of atomic displacements around the Ba2+ defect within a spherical radius of 14

Å as a function of initial interionic separation between the Ba2+ and neighbouring ions

is shown in Figure 3.19.

In Figure 3.18, one can observe that neither the magnitudes nor the directions of the

atomic displacements around the incorporated Ba2+ ion into MgO are spherically radial.

To be more precise, the displacements of all ions are not always pointing away from the

Ba2+ defect, especially for the ions located on the supercell’s edges and at the supercell’s

corner. Due to crystal symmetry and the artefacts of periodic boundary conditions, the

atomic displacements of neighbouring ions are anisotropic (or spherical), e.g., the smaller

atomic displacements of the ions situated along the axes aligned with the Ba2+ defect

can be observed. The ions whose atomic positions are located precisely at the centre of

the two Ba2+ defects (in the two adjacent images of the supercell) are barely displaced,

e.g., the displacements of the ions at the corner and the centre of each of the supercell’s

edges are small, as indicated by the blue colour contour. As expected, the O2- ions in the
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FIGURE 3.18. Atomic displacements around a Bax
Mg substitutional defect along

the (001) plane of an optimised cubic 2744-ion supercell of MgO with a
dimension of 29.575 Å in a constant-volume classical calculation in the
static limit. The head of the arrow on each of the neighbouring ions indi-
cates the direction of the ionic displacement. The arrow size represents
the relative magnitude of the displacement and appears to be absent for
very small displacements. The colour spectrum (in the contour map) are
also used to display the magnitudes of the atomic displacement (in Å) on
the logarithm scale (on the colour bar), i.e., spreading from red to blue for
the largest to smallest displacements, respectively. The magnitudes of the
atomic displacements have been linearly interpolated between adjacent
atoms. Note that the different types of neighbouring ions are plotted at
their initial positions using dots with different sizes. The boundaries of
the supercell are marked by the dotted lines. The computational details of
the classical calculations based on Buckingham interionic potentials are
outlined in Subsection 3.2.1.
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FIGURE 3.19. Plot of atomic displacements around a Bax
Mg substitutional de-

fect in an optimised cubic 2744-ion supercell of MgO with a cell length of
29.757 Å as a function of initial interionic distance from the Ba2+ defect
in a constant-volume classical calculation in the static limit. Only nearest-
neighbouring shells within 14 Å from the Ba2+ defect are plotted. Points
overlap due to crystal symmetry. The computational details of the classical
calculations based on Buckingham interionic potentials are outlined in
Subsection 3.2.1.

closest shell to the Ba2+ defect show the greatest displacement. Then, the displacement

of the ions in a more remote neighbouring shell decreases rapidly with initial interionic

distance from the Ba2+ defect, as shown in Figure 3.19.

Overall, similar trends and magnitudes of the atomic displacements in the neigh-

bouring shells within a defective supercell size have been observed for both DFT and

classical simulations. In both simulation approaches, the degree of atomic relaxation (or

displacements) in the first nearest-neighbouring shells is greatest and is much smaller

for those in the subsequent shells. As the system size increases, the ions’ displacements

in a particular shell of interest are only slightly different in the DFT calculations, while

the displacements of a given shell may differ significantly in supercells with increasing

size in the classical simulation.

Figure 3.20(a) illustrates the defect volume vp as a function of system size for the

Bax
Mg defect formation in bulk MgO in the static limit. These ab initio results can directly

be compared with those obtained from the classical calculations shown in Figure 3.1(a).

Overall, vp converges as the system size is increased. Compared to the classical vp as a
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FIGURE 3.20. (a) Defect volume vp and (b) constant-pressure and constant-
volume defect energies (hp and uv, respectively) as a function of system
size ranging from 8-250 ions for a Ba2+ substitutional defect in MgO in the
static limit. In (a), vp was obtained from the periodic bulk only. For the bulk,
defect quantities for the three different shapes of the supercells are marked
by different symbols. Calculated vp for a 64-ion supercell using bigger basis
sets is also highlighted. In (b), different line styles represent different defect
energies.
*The black markers highlight the calculated defect quantities in the supercell and cluster
containing 64 ions using bigger basis sets: Hay-Wadt pseudopotential basis set with a
6-3111(2d)G163 contraction for Ba, all-electron basis set with a 8-511d1G164 contraction
for Mg, and all-electron basis set with a 8-411d11G165 contraction for O.
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function of system size in Figure 3.1(a), the ab initio values show a significantly faster

convergence with system size, implying the more localised ions located further away from

the point-defect during structural relaxation after the substitution, i.e., a smaller degree

of structural deformation due to the Bax
Mg defect, as discussed above. The defect volume

is much higher for the smallest system containing only eight ions than those of the

bigger supercells due to the higher defect concentration and the stronger defect-defect

interactions. We will discuss these effects in the next subsection. Except for the vp of the

smallest system containing eight ions, Figure 3.20(a) shows that the values of vp are

positive and lie between ca. 26-29 Å3, while the classical values are only around 20-21

Å3. The discrepancy between these numerical results arise from the longer Ba–O (and

Ba–Mg) interatomic distances in the ab initio calculations than those in the classical

approach, as shown in Table 3.5. Again, the face-centred cubic and body-centred cubic

supercells show faster convergence than the simple cubic ones. Here, the vp of 26.5 Å3 for

the largest supercell containing 250 ions, which is a face-centred cubic supercell, should

well represent the value of the defect volume in the dilute limit.

For the bulk with a 64-ion supercell, we have also compared the calculated vp with

the one obtained using bigger basis sets for all the three atomic types, which has been

included in the plot in Figure 3.1(a). A Hay-Wadt pseudopotential basis set with a

6-3111(2d)G contraction was used for the Ba atom,163 while all-electron basis sets

with 8-511d1G164 and 8-411d11G165 contractions were used for the Mg and O atoms,

respectively. Notably, the calculated vp from the smaller basis sets is in good agreement

with the one obtained using the larger basis sets, indicating that the smaller basis sets

are already adequate for calculating the defect properties of this system. This is also the

case for hp and uv shown in Figure 3.20(b).

Figure 3.20(b) shows the variation of the constant-pressure and constant-volume

defect energies, i.e., hp and uv, respectively, in the static limit with system size. In

the system-size range 16-250 ions, the defect energies for the bulk and clusters are all

positive, lying between 12.5-15.0 eV and reflecting the substitution of a smaller Mg2+

ion by a larger Ba2+ ion. These ab initio values are in reasonable agreement with those

obtained via the classical approach of 15.5-16.5 eV. Consistent with equation (2.35) for

smaller systems, the volume constraint results in a higher uv than hp. The difference

between these two energies vanishes or uv than hp both approach the dilute limit as the

system size is increased (see equation (2.32)). Furthermore, the calculated hp and uv in

the 64-ion supercell and cluster using the bigger basis sets are also in line with the ones

obtained from the smaller basis sets.
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FIGURE 3.21. Electron density of bulk MgO: (a) total electron density and
(b) electron-density difference maps in a (100) plane. In each plot, the
black isolines represent the values of electron density in atomic units, i.e.,
electrons/Bohr3. Different electron density ranges are shaded by different
colours. The computational details of the DFT (GGA-PBESol) calculations
are outlined in Subsection 3.2.2.
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FIGURE 3.22. Electron density of defective bulk MgO with a Bax
Mg substitutional

defect: (a) total electron density and (b) electron-density difference maps
in a (100) plane. In each plot, the black isolines represent the values of
electron density in atomic units, i.e., electrons/Bohr3. Different electron
density ranges are shaded by different colours. The computational details
of the DFT (GGA-PBESol) calculations are outlined in Subsection 3.2.2.
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One of the major advantages of the first-principles approach is that it provides insight

into the electronic structure of a given system of interest, as mentioned earlier. The total

electron density maps for the bulk MgO and the defective structure with the Bax
Mg defect

are depicted in Figures 3.21(a) and 3.22(a), respectively. The plots were produced using

the CRYSPLOT visualisation tool.166 Compared to the electron density map of bulk MgO

in Figures 3.21(a), the electron density map of the defective structure in 3.22(a) shows

also the obvious displacements of atoms next to the bigger Ba2+ cation to be further away

from it. Additionally, the charge- or electron-density difference maps in Figures 3.21(b)

and 3.22(b) for the perfect and defective structures, respectively, provide also crucial

information on their electronic properties.

The charge-density difference maps are obtained from the difference in electron

density in the crystals and the superposition of atomic (or ionic) electronic distributions

as the reference charge densities. Strictly speaking, an electron-density difference map

is given by subtracting the super-imposed densities of the non-interacting constituent

atoms (or ions) from the actual crystal electron density. For a given system, the electron-

density difference map provides a pictorial representation of the chemical bonding in

the molecule or solid. In bulk MgO, as a polar solid, the change in electron density in

the vicinity of the Mg atoms must be negative, while that of the O atoms is positive due

to the formation of Mg2+ and O2- ions, as shown in Figure 3.21(b). One can also use the

same concept for considering the nature of ionic bonding of the defective structure in

Figure 3.22(b). Compared to Figure 3.21 for bulk MgO, the density maps for the defective

structure in Figure 3.22 show that one can observe the non-spherical electron densities

of ions in the vicinity of the substituted point defect. This indicates that the Ba2+ ion is

much more polarisable than Mg2+.

3.3.4.2 Temperature Variation of DFT Defect Quantities using QHA

To investigate the temperature dependence of the defect thermodynamics of Bax
Mg in

MgO computationally, we first determine the lattice parameter of MgO as a function of

temperature over 500-1500 K using the quasi-harmonic approximation implemented as

the QHA module in CRYSTAL17.108,109,168–171 The temperature variation of the lattice

parameter a of MgO, referring to the conventional unit cell containing eight ions, is

shown in Figure 3.23(a). Furthermore, the temperature variations of the volumetric

thermal-expansion coefficient, αV , and the bulk modulus, KT , are shown in Figure 3.23(b).

These computed QHA properties are in line with the previous theoretical work of Erba

and co-workers.170 Furthermore, the calculated QHA quantities are also in reasonable

79



CHAPTER 3. DEFECT THERMODYNAMICS IN SOLIDS AND CLUSTERS

600 800 1000 1200 1400
4.22

4.24

4.26

4.28

a
(Å

) (a)

DFT calculation
Experiment

600 800 1000 1200 1400
T (K)

3.0

3.5

4.0

4.5

α
V

(1
0−

5
K

−1
)

(b)

αV (cal.)
αV (exp.)

KT (cal.)
KT (exp.) 120

130

140

150

160

K
T

(G
Pa

)

FIGURE 3.23. Temperature variation of experimental and DFT-QHA calculated
(a) lattice constant and (b) volumetric thermal-expansion coefficient αV
and bulk modulus KT of MgO. The experimental values are taken from
Anderson and co-workers.167 The computational details of the DFT (GGA-
PBESol) calculations are outlined in Subsection 3.2.2.

80



3.3. RESULTS AND DISCUSSION

agreement in terms of trends and magnitudes with those from the experimental work

of Anderson and co-workers.167,172 Although the implementation of the QHA module in

CRYSTAL17 proves very useful for computing temperature-dependent thermodynamic

properties, these calculations are computationally expensive. Therefore, the DFT-QHA

calculations are limited to small systems. For these reasons, the DFT calculation of the

constant-pressure defect quantities in large supercells is practically non-trivial. Here,

we can only present the variation of the ab initio defect properties of the Bax
Mg defect

formation in bulk MgO at constant volume at each temperature, i.e., making some

additional assumptions.

In order to approximate the constant-volume defect quantities of Bax
Mg in MgO at

various temperatures, we first construct supercells of bulk MgO with the equilibrium

volumes obtained from the QHA calculation mentioned above and replace a Mg2+ ion

with a Ba2+ ion in each structure. After that, we optimise the defective structures with

respect to the internal energy U while keeping all the six lattice parameters fixed in

the static limit before performing phonon calculations at each volume, i.e., at different

temperatures, to evaluate the corresponding vibrational contributions, i.e., using the

zero static internal stress approximation (ZSISA).85

Using the numerical procedure outlined above, the variation of ab initio constant-

volume defect properties of the Bax
Mg defect formation in bulk MgO using a simple cubic

supercell containing 64 ions over 500-1500 K can then be estimated, and the results are

shown in Figure 3.24. In Figure 3.24(a), uv is higher than fv at all temperatures over

500-1500 K due to the positive change in constant-volume entropy of defect formation,

sv, as shown in Figure 3.24(b). The difference between uv and fv is slightly temperature-

dependent as fv decreases slightly faster than uv. For instance, uv is ca. 0.1 and 0.3 eV

higher than fv at 500 and 1500 K, respectively. From 500-1500 K, uv, fv and sv decrease

approximately by 7.4%, 9.0% and 12%, respectively, while cv increases by ∼85%.

These first-principles results can directly be compared to the classical calculations in

Figures 3.3 and 3.5. Surprisingly, although the degrees of structural relaxation in both

approaches are slightly different, as shown in Table 3.6, the trends and magnitudes of

all other constant-volume defect quantities obtained from the DFT calculations are in

line with those obtained from the classical simulation. Therefore, this good agreement

implies that the computational approaches we have considered here, i.e., the atomistic

simulation based on classical crystal-potential models and ab initio simulation based

on DFT, are both appropriate for studying the defect thermodynamics in crystalline

solids and their temperature dependence within the quasi-harmonic approximation
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FIGURE 3.24. Temperature variations of (a) defect energies and (b) changes
in entropy and heat capacity of Bax

Mg defect formation in bulk MgO at
constant volume. The results were obtained using a 64-ion supercell of
MgO. Different defect properties are marked by different symbols. In (a),
the horizontal dashed line represents the constant-volume defect energy
in the static limit. The computational details of the DFT (GGA-PBESol)
calculations are outlined in Subsection 3.2.2.
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since they yield exceptionally comparable numerical results. Previously, there have been

only a few direct comparisons between calculated defect energies from force-field based

and first-principles quantum mechanical approaches,173 e.g., De Vita et al. 174 reported

that the calculated defect formation and migration energies in MgO obtained from DFT

calculations are in very good agreement with those obtained using classical calculations

based on empirical pair potentials.

3.3.5 Defects in Metals

Previously, we have mainly been concerned with the thermodynamics of a substitutional

defect formation in a polar solid, i.e., the Bax
Mg defect in MgO. We have, so far, investigated

the effects of (i) temperature, (ii) system size, and (iii) periodicity of the simulation model

on defect thermodynamics. Owing to the fact that the quality of the numerical results

depends greatly on the description of the interatomic interactions (or aka the potential

model) for a given solid of interest. However, with the same strategy for modelling the

substitutional point-defect formation outlined above, one should be able to evaluate

the defect thermodynamics of a particular system adequately by employing any well-

developed and high-quality potential model.

In this subsection, we present the defect thermodynamics of the substitution of a Cu

atom by a larger Ag atom, Agx
Cu, in Lennard-Jones Cu metal and its finite-size clusters

as an example of different kinds of solids, a metal, in order to compare the numerical

results to those of the Bax
Mg defect in MgO, an ionic solid. Again, in this case, we employ

the classical Lennard-Jones potential parameters listed in Table 3.3 and the mixing

rules in equation (3.2), which have already been used in the earlier subsection. Here, we

consider solely cubic supercells and finite-size clusters of Cu metal.

Figure 3.25 shows the variation of (a) the defect energies (gp and fv) and (b) changes

in the entropy of defect formation (sp and sv) with system sizes ranging from 256-

2048 atoms for Agx
Cu in bulk Cu and cubic-shaped Cu clusters at 350 K. These defect

thermodynamics as a function of system size can directly be compared with those of the

Bax
Mg defect in MgO, as shown in Figure 3.8. As expected, the trends of defect energies

for the Agx
Cu defect in bulk Cu and clusters, as shown in Figure 3.25(a), are all consistent

with those of the Bax
Mg defect in MgO, as shown in Figure 3.8(a). Consequently, one can

use the earlier discussion concerning the defect formation energies for the Bax
Mg defect

as a function of system size to explain variations of the defect energies of the Agx
Cu defect

in the same fashion. This is also the case for the defect energies of the finite-size Cu

clusters.
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FIGURE 3.25. Variation of (a) defect energies and (b) entropy changes of defect
formation with system size for Agx

Cu in bulk Cu metal and cubic-shaped Cu
clusters with system sizes ranging from 256-2048 atoms at 350 K. Solid
and dashed lines represent the defect properties of the bulk and clusters,
respectively. Different defect quantities are marked with different marker
styles. The computational details of the classical calculations based on
Lennard-Jones interatomic potentials are outlined in Subsection 3.2.1.
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The defect energies for the Agx
Cu defect in Cu metal and its finite-size clusters lie

between 1.80-2.05 eV, whose magnitudes are much smaller than those of the Bax
Mg defect

(∼15-17 eV). This is due to the weaker interatomic interactions in the Lennard-Jones

solid than those in the ionic solid. In addition, the size mismatch is smaller in this case,

i.e., the van der Waals radius of Ag is only ca. 23% bigger than Cu,175 while the ionic

radius of Ba2+ is ∼88% bigger than Mg2+.176 In Figure 3.25(a), the defect energies of the

clusters are all higher than those of the bulk, and they converge slowly to the bulk limit

as the system size is increased. For the largest system size with 2048 atoms, the defect

energies of the finite-size cluster are all ∼0.1 eV higher than those of the bulk.

Additionally, the variation of sp and sv with system size is shown in Figure 3.25(b).

Again, the smaller (negative) sv than (positive) sp can be explained by the previous

discussion regarding the influence of the mass effects and the volume constraint on

vibrational frequencies, i.e., the mass effects dominate the vibrational frequencies at

constant pressure, while the volume constraint dominates the vibrational modes at

constant volume. In the case of the Agx
Cu defect, sv for the bulk is higher than that of

the clusters, while the Bax
Mg case suggests otherwise. For the systems with 2048 atoms,

sp for the cluster is ca. 0.25kB higher than that of the bulk, whereas sv for the bulk is

approximately 0.20kB higher than that of the cluster.

The temperature variation of the defect properties of the Agx
Cu defect in bulk Cu

metal and Cu cluster with a system size of 216 atoms at constant pressure and constant

volume are shown in Figures 3.26 and 3.27, respectively. Overall, the trends in both

constant-pressure and constant-volume defect quantities are consistent with those of the

Bax
Mg defect, as shown in Figures 3.9 and 3.10. Note that the defect volume vp rises from

7.17 to 7.27 Å3 or increases approximately by 1.4% over 150-350 K. In terms of the defect

energies, Figures 3.26 and 3.27 show that the difference in each of the defect energies of

the bulk compared to that of the cluster depends hardly on temperature. The differences

in those four defect quantities are almost identical at all temperatures, i.e., all the four

defect energies of the cluster are ca. 0.1 eV higher than those of the bulk over 150-350 K.

Over the temperature range considered, sp for the Agx
Cu defect in Cu metal and Cu

cluster consisting of 256 atoms lies between 1.75-3.27kB, and it increases as the temper-

ature is elevated. The difference between sp of the cluster and that of the bulk appears

to be marginally temperature-dependent. For example, sp of the cluster is approximately

0.47kB and 0.52kB higher than that of the bulk at 150 and 350 K, respectively. On the

other hand, sv for both systems lies between -0.8kB and -2.9kB, and decreases as the

temperature is raised from 150-350 K. sv of the bulk is ∼1kB higher than that of the
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FIGURE 3.26. Temperature variation of (a) defect energies and (b) entropy
changes of Agx

Cu in bulk Cu metal and Cu cluster containing 256 atoms at
constant pressure. Solid and dashed lines represent the defect properties
of the bulk and cluster, respectively. In (a), different defect energies are
marked by different symbols. The computational details of the classical
calculations based on Lennard-Jones interatomic potentials are outlined in
Subsection 3.2.1.
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FIGURE 3.27. Temperature variation of (a) defect energies and (b) entropy
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Cu in bulk Cu metal and Cu cluster containing 256 atoms at
constant volume. Solid and dashed lines represent the defect properties
of the bulk and cluster, respectively. In (a), different defect energies are
marked by different symbols. The computational details of the classical
calculations based on Lennard-Jones interatomic potentials are outlined in
Subsection 3.2.1.
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cluster at all temperatures.

The changes in constant-volume heat capacity, cv, for the Agx
Cu defect in bulk Cu

metal and clusters as a function of system size ranging from 256-2048 atoms at 350 K

are shown in Figure 3.28(a). In the range of system size considered, cv for the clusters is

higher than that that of the bulk. For the smallest and largest systems, cv of the cluster

is 0.09kB and 0.05kB higher than that of the bulk, respectively. Again, cv for all systems

is negative since the volume constraint dominates the vibrational frequencies at constant

volume, as discussed previously.

Moreover, Figure 3.28(b) shows the temperature variation of cp and cv of the Agx
Cu

defect in bulk Cu metal and cluster with a system size of 256 atoms in the temperature

range 150-350 K. Note that cp is calculated using equation (3.10). At all temperatures, cv

is negative, while cp is positive, again implying the dominance of the volume constraint

and the mass effects over the vibrational frequencies at constant volume and constant

pressure, respectively. From 150-350 K, cv of the bulk and the cluster increase approxi-

mately by 50% and 62%, respectively. Noticeably, cv for the bulk is higher than that of

the cluster at 150 K, while it is otherwise at higher temperatures. On the contrary, cp

for the bulk and the cluster decrease by ca. 56% and 59%, respectively, over 150-350 K.

So far, we have clearly shown that the defect thermodynamics of another type of

solids, e.g., the Agx
Cu defect in Cu metal and clusters modelled by a classical Lennard-

Jones potential force field, can successfully be investigated. For this case, one can well

apply the previous analysis of the effects of temperature, system size and periodicity

on the defect thermodynamics of the Bax
Mg defect in MgO. Hence, the quasi-harmonic

approximation proves very useful for calculating defect free-energies and investigating

the crucial effects on defect thermodynamics regardless of the type of solid of interest

when a well-developed and high-quality classical potential model is in use.

3.3.6 Effects of Defect Clustering

So far, we have considered the simulation of substitutional defects in crystalline solids

with only a single defect in their periodic supercells. With the periodic-boundary condi-

tions, a smaller defective supercell results in a higher defect concentration and, more

importantly, a stronger defect-defect interaction. To avoid the unnecessary (or artifi-

cially) high defect concentration and strong defect-defect interaction within the supercell

approach, one must perform a convergence test of the defect properties with respect to

supercell size before choosing a large enough and suitable supercell for modelling the

defect. In this subsection, however, we investigate systematically the dependence of de-
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FIGURE 3.28. Variations of changes in heat capacity of Agx
Cu in Cu metal and

cluster with (a) system size and (b) temperature. For (a), cv of each system
size was calculated at 350 K. For (b), a supercell and a cluster of Cu metal
consisting of 256 atoms were used for all temperatures in order to obtain cp
and cv, which are highlighted by different symbols. Solid and dashed lines
represent the change in heat capacity for the bulk and clusters, respectively.
The computational details of the classical calculations based on Lennard-
Jones interatomic potentials are outlined in Subsection 3.2.1.
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fect thermodynamics on defect clustering, i.e., the assembling of multiple substitutional

point-defects in crystals in the static limit.

Firstly, we study the dependence of three defect properties, i.e., vp, hp and uv, of the

Bax
Mg defect in a 1000-ion supercell of MgO containing two Ba2+ ions on Ba–Ba interionic

spacing, dBa−Ba. In this case, we intend to explore systematically the dependence of

those defect quantities on the interionic separation between the two Ba2+ substitutional

defects defining the strength of the defect–defect interaction, i.e., a shorter defect-defect

distance accounts for a stronger defect-defect interaction. Secondly, we illustrate briefly

the dependence of the Bax
Mg defect thermodynamics in MgO on Ba2+ defect concentration.

In the latter case, there might be a number of possible defective structures at a given

defect concentration. However, in this present work, we take only the supercell with the

closest packing of the defects at each concentration into account.

To observe the dependence of vp, hp, and uv on Ba–Ba distance, 23 different defective

1000-ion supercells of MgO containing two Ba2+ substitutinal defects with various

interionic separations (dBa−Ba) varying from ca. 3.0-17.5 Å have been first constructed.

The schematic representations of the first four structures with the shortest dBa−Ba are

shown in Figures 3.30(a)-(d), respectively. Note that the dBa−Ba distances are measured

in the optimised structures. Using these initial structures, the defect thermodynamics

as a function of dBa−Ba at constant pressure and constant volume in the static limit can

separately be computed.

The variation of vp per defect with Ba–Ba spacing is shown in Figure 3.30(a). The

horizontal dashed line marks the calculated vp from the same supercell containing only

a single Ba2+ substitutional defect. Overall, vp per defect tends to decrease as the Ba–Ba

spacing is increased. This implies that the aggregation of substitutional defects tend to

enlarge the defective crystal volume. Interestingly, vp per defect of the second structure

with a Ba–Ba distance of ca. 4.5 Å is ∼0.32 Å3 larger than the first structure, whose

dBa−−Ba is approximately 2.5 Å. The sudden increase in vp per defect arises from the

more strained central O2- ion confined in the Ba–O–Ba linear alignment, as shown in

Figure 3.29(b). The huge structural strain causes the longer interionic separations in

the relaxed structure and results eventually in a greater amount of structural distortion

and a larger vp per defect. This is also the case for the third structure in Figure 3.29(c),

where there is a perfectly in-between Mg2+ ion in the linear arrangement of Ba–Mg–Ba,

leading to a larger vp per defect than the single-defect limit. However, vp per defect for

the first structure with the linear Ba–O–Ba arrangement is approximately 0.1 Å3 larger

than that of the third structure with the linear Ba–Mg–Ba alignment due to the stronger
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(a) Mg Ba O
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FIGURE 3.29. Schematic illustration of the first four initial defective 1000-ion
supercells of bulk MgO with two Ba2+ ions of the Bax

Mg substitutional defects.
The interionic separation of the two Ba2+ ions (dBa−Ba) are marked by the
two-headed arrows. Mg2+ and Ba2+ ions are represents by the smallest and
largest dots, respectively.
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FIGURE 3.30. Variation of (a) defect volume and (b) defect energies per defect
with interatomic distance of two Ba2+ ions of the Bax

Mg substitutional de-
fects (dBa−Ba) in bulk MgO with a supercell containing 1000 ions in the
static limit. In both plots, the horizontal dashed lines represent the defect
quantities obtained from the same supercell consisting only one Bax

Mg defect.
Different defect energies are highlighted by different markers. The construc-
tion of the initial defective supercells is consistent with Figure 3.29. The
computational details of the classical calculations based on Buckingham
interionic potentials are outlined in Subsection 3.2.1.
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short-range repulsion between the oppositely charged Ba2+ and O2- ions. The idea can

also be used to explain the sudden increases in vp per defect, e.g., vp of the fifth and

eighth structures in Figure 3.30(a). Furthermore, the larger vp for smaller supercells can

also be explained by this concept, e.g., in Figures 3.1(a) and 3.20(a). For the structures

with dBa−Ba larger than ca. 10 Å, the increases in vp per defect, if any, are not dramatic

due to the smaller structural strain.

In Figure 3.29(a) for the first structure with the shortest dBa−Ba possible, on the

contrary, there is no ion between the two Ba2+ ions. In this case, there is no enormous

repulsive interaction between pairs of ions, leading to a less strained structure and

smaller vp per defect than the single-defect limit. One could also imagine that the

combination of the two Ba2+ defects located very close to each other gives rise to a single

substitutional defect with a charge of +4, leading to stronger cation-anion attractive

interactions, shorter interionic distances and, hence, a smaller vp per defect compared

to the single-defect limit. Apart from the special cases for the structures with linear

alignments of ions with the two defects, a larger defect-defect separation results in a

smaller vp per defect than the single-defect limit. Strictly speaking, the further apart

two defects tend to decrease the defective crystal volume.

Figure 3.30(b) shows the variation of hp and uv per defect with dBa−Ba. As expected,

as the defect-defect spacing is increased, the defect energies are in better agreement

with their single-defect limits. The two defects that are situated very far away from

each other, i.e., with a very large dBa−Ba, can be viewed as completely-separated two

Bax
Mg point-defects. Again, uv per defect is higher than hp per defect at all Ba–Ba

distances as a direct consequence of the volume constraint in the constant-volume

calculations. The defect energies per defect for the first structure, in Figure 3.29(a), are

much lower than their single-defect limits due to the stronger attractive interactions

between the (approximately) more positive (combined) substitutional defect cation with

the surrounding anions. This concept can also be used to describe the decrease in defect

energies per defect of the third structure, in Figure 3.29(c). The defect energies per defect

for the second and the fourth structures, in Figures 3.29(b) and 3.29(d), on the other

hand, are higher than the single-defect limits due to the strong repulsive interactions

between the Ba2+ cations and their O2- neighbours.

The variation of defect quantities per defect with mole fraction (concentration) of

Bax
Mg defects, XBa, in a 1000-ion supercell of MgO is shown in Figure 3.32. In this

study, XBa ranges from 0.002 to 0.064 for 1-32 Bax
Mg defects in the supercell of bulk MgO

containing 1000 ions in total. Note that XBa indicates the number of the Ba2+ ions divided
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(b)

(c) (d)

FIGURE 3.31. Schematic illustration of the first four initial defective 1000-ion
supercells of bulk MgO with multiple (2-5) Ba2+ ions of the Bax

Mg substitu-
tional defects. The successive substitution is done by replacing any of the
Mg2+ ions located closest to the existing defect cluster by a Ba2+. Mg2+ and
Ba2+ ions are represents by the smallest and largest dots, respectively.
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FIGURE 3.32. Variation of defect volume and defect energies per defect with
mole fraction (or number) of the Ba2+ ions of the multiple Bax

Mg substitu-
tional defects (XBa) in bulk MgO with a supercell containing 1000 ions
in the static limit. Different defect quantities are highlighted by different
markers. The construction of the initial defective supercells is consistent
with Figure 3.31. The computational details of the classical calculations
based on Buckingham interionic potentials are outlined in Subsection 3.2.1.

by 500, the total number of the cations in the supercell. At a given mole fraction, only

the supercell with the closest packing of the Bax
Mg defects is used to calculate the defect

thermodynamics. Figures 3.31(a)-(d) show schematically the first four initial defective

structures with 2-5 Bax
Mg defects, i.e., with XBa ranging from 0.002-0.010, respectively.

In Figure 3.32, uv per defect is higher than hp per defect at all Ba2+ concentrations

due to the volume constraint in the constant-volume calculations. At constant pressure,

hp per defect decreases rapidly, while vp per defect rises dramatically, i.e., for supercells

with XBa higher than 0.008, as XBa is increased. The previous discussion concerning the

significant reduction in vp per defect for supercells with two Bax
Mg defects can be used to

describe the decrease in vp per defect for the supercells with low XBa here in this case.

The dramatic decrease in hp per defect with the increasing XBa indicates that the defects

prefer thermodynamically to aggregate or cluster together, while the defect volume per

defect increases (or the volume of the defective crystal expands) to accommodate more
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of the bigger Ba2+ cations. At low XBa, uv per defect decreases as XBa is increased and

remains approximately constant when the concentration of the Bax
Mg defects is higher.

However, uv per defect increases gradually when XBa is higher than 0.050, again due to

the volume constraint.

3.3.7 Applications

So far, we have shown that we can calculate defect free-energies in solids and clusters

via atomistic simulation based on classical potential models and first-principles DFT

using quasi-harmonic lattice dynamics (QLD). The simulation technique is not only

appropriate for computing defect thermodynamics over a wide range of temperatures,

i.e., up to two-thirds of the melting points, but the approach also proves very useful

for the calculation of defect quantities under a wide range of pressures.89,139,140,177

Moreover, this simulation technique can generally be employed to study crystalline

solids’ temperature- and pressure-dependent properties. For more than two decades now,

our research group, in particular, has extensively been using this fruitful technique to

study computationally the properties and behaviour of numerous types of crystalline

solids at various temperatures and pressures.

For instance, in combination with ab initio Hartree-Fock theory and classical molecu-

lar dynamics (MD), QLD can give insightful information on the superionic properties

of Li2O at high temperatures.178 Apart from bulk properties of metal oxides, e.g., MgO,

Li2O and NiO, one can use the lattice dynamics within the quasi-harmonic approxima-

tion to calculate their surface free-energies at elevated temperatures.179 Most recently,

the properties of Fe3S under the condition of planetary cores at high temperatures and

pressures have been explored via ab initio DFT calculations using the QHA.180

However, in the following chapter, we focus mainly on two geochemical applications

of the calculation of defect thermodynamics or particularly defect formation energies

in crystalline solids: (i) trace-element partitioning in minerals and melts, and (ii) solid

solutions and highly-disordered systems. Previously, the atomistic computer simulation

of the incorporation of trace elements including noble gases in minerals and melts has

comprehensively reviewed by, e.g., Allan and co-workers,127,173,181 and more recently

by Dubacq and Plunder.182 The simulation technique based on QLD for studying the

properties of solid solutions and highly-disordered systems has also previously been

summarised in review articles by members of our research group.183,184

96



3.4. CONCLUSIONS

3.4 Conclusions

The quasi-harmonic approximation proves very useful for computing constant-pressure

and constant-volume defect free-energies in various types of crystalline solids within the

supercell approach both classically and ab initio. Quasi-harmonic lattice dynamics can be

used to probe the effect of temperature on those defect thermodynamics, which has often

been neglected in previous studies. We have shown that the defect properties, i.e., for a

substitutional Ba2+ defect in MgO as a study case, are strongly temperature-dependent;

hence, the temperature effect is not negligible as universally assumed. We have shown

that defect thermodynamics depend on system size when small supercells are used, and

the defect quantities converge to their dilute limit as the system size increases. For that

reason, large supercells are required to ensure convergence towards the dilute-limit

values. The difference between constant-pressure and constant-volume defect properties

in the dilute limit becomes negligible.

In the quasi-harmonic approach, at a given temperature, the vibrational entropy and

heat capacity of a particular system depends solely on the vibrational frequencies, which

rely on the interatomic force constants and atomic masses. For the incorporation of a

larger (and heavier) substitutional defect in a lattice crystal, there are two competing

effects on the changes in entropy and heat capacity of the defect formation at constant

volume. The volume constraint increases the vibrational frequencies resulting in a

lower entropy and heat capacity, whereas the heavier substitutional defect decreases

the frequencies leading to a higher entropy and heat capacity. On the contrary, the

volume constraint is much less significant at constant pressure; hence the mass effect

dominates. Amongst the defect thermodynamics of our interest, the constant-pressure

heat capacity is the least straightforward to compute as the parameters relating to the

lattice expansion are required. However, we have shown that the numerical calculation

of the constant-pressure heat capacity can be done in various ways. Evaluating the

constant-pressure heat capacity via the partial derivatives of enthalpy with respect to

temperature is the most fundamental and convenient approach. Plots of phonon density

of states can be used to observe and compare the changes in entropy and heat capacity of

defect formation at constant volume and constant pressure.

Alternatively, non-periodic finite-size clusters of solids can be used instead of peri-

odic supercells when modelling the substitutional defects in crystals. Compared to the

supercell approach, calculating the defect thermodynamics of non-periodic clusters is

computationally cheaper, and this can be performed via many widely used ab initio codes
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for molecular modelling. The defect properties obtained from the two models are expected

to be comparable when a large finite-size cluster is in use, i.e., the defect quantities of

larger finite-size clusters are closer to the bulk limit. However, there will always be differ-

ences between the defect properties of clusters and periodic systems due to the interfaces

in the non-periodic model. The discrepancy between the defect thermodynamics obtained

from the two models arises from the different degrees of structural relaxation at (or near)

the surfaces in defective and perfect non-periodic structures. Furthermore, the degrees

of structural relaxation around the point defect in the periodic and non-periodic models

might also be significantly different. For clusters with increasing size, the degrees of

the surface relaxation in defective and perfect clusters are expected to be very similar

but not identical. As the number of atoms at (and near) the surfaces and those atoms

that surround the incorporated defect grows very rapidly as the cluster size is increased,

these accumulating effects are the direct consequence of the significant difference in

defect properties of clusters and periodic bulk systems. Therefore, one should be aware of

these finite-size effects when choosing between the periodic and non-periodic models for

simulating defects in crystals. The two approaches have their own merits and drawbacks

regarding software availability and computational cost.

In addition to the computation of the defect thermodynamics via the classical ap-

proach based on empirical force-field parameters, we have also performed analogous

calculations via first-principle methods based on density functional theory (DFT) in

order to compare the numerical results obtained from these two simulation approaches

directly. Although the DFT calculations are much more computationally expensive than

the classical simulation, they can provide insights into the electronic structures and

related properties of the systems of interest. For instance, electron density plots can

be used to study the nature of the chemical bonding and the polarisability of different

atomic types in crystalline solids. The atomic displacements of the neighbouring ions due

to the Ba2+ substitutional defect in MgO in both simulation approaches have thoroughly

been investigated. Similar trends and magnitudes of the atomic displacements in the

neighbouring shells within the defective supercells have been found in both simulation

techniques. Ions in the inner neighbouring shells displace away from the incorporated

defect more greatly than the more remote ones. The atomic displacements around the

defect in the classical simulation are more isotropic than those in the DFT calculation.

However, neither the magnitudes nor the directions of the atomic displacements are

spherically radial and isotropic due to crystal symmetry and the artefacts of periodic

boundary conditions. Even though the structural relaxations around the point defect in
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both approaches are slightly different, the defect thermodynamics obtained from the two

methods agree well with each other.

The temperature and system-size dependence of the defect thermodynamics in metals,

where the bonding is very different from ionic oxides, has also been examined. For

example, we have investigated the substitution of a Cu atom by a Ag atom in classical

Lennard-Jones Cu metal and clusters. Interestingly, we have found that the trends of the

defect thermodynamics in different types of crystalline solids are similar. Accordingly,

the quasi-harmonic approximation proves very useful for computing defect free-energies

and studying the defect thermodynamics (i.e., valid up to two-thirds of the melting point)

regardless of the type of a solid as long as a well-developed and high-quality classical

potential model is being used.

The concentration of substitutional point defects also plays a crucial role when

calculating the defect properties since there will be stronger defect-defect interactions in

systems with higher defect concentrations, e.g., in small supercells or supercells with

several substituted defects. In the case of a supercell with a couple of substitutional

defects, we observe that the defect properties vary with the distance between a pair of

substitutional defects, i.e., especially when they aggregate or cluster together, and the

trends of those defect properties depend strongly on crystal symmetry. As expected, the

defect properties converge to their dilute limit when the pair of substitutional defects

are more isolated, e.g., located further away from each other. For the case of supercells

with various numbers of defects, the defect quantities vary significantly with the defect

concentration. In our case, a larger number of substitutional Ba2+ ions in MgO results in

a larger defect volume per defect in general which, again, depends also on the crystal

symmetry. On the contrary, the defect energies (per defect) tend to decrease as more

defects cluster together.

Within the quasi-harmonic approximation, the computational technique outlined in

this chapter has successfully been used for modelling defects in crystalline solids and

clusters over a wide range of temperatures, i.e., up to two-thirds of the melting point,

and a wide range of pressures through both classical and first-principles approaches.

The following chapter will show its potential geochemical applications for studying the

partitioning behaviour of trace elements between minerals and melts and investigating

the properties of solid solutions and highly-disordered systems.
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4
TRACE-ELEMENT PARTITIONING IN MINERALS AND

MELTS

This chapter first discusses the crucial factors that control the partitioning of trace

elements into minerals and a simple geological model for explaining the exper-

imental partitioning data. After that, we review fundamental thermodynamic

approaches before discussing the use of simple lattice strain models for studying the

incorporation of trace elements into minerals and melts. The following sections concern

the limitations of the simple lattice strain models and the use of atomistic modelling

to explore those limitations. Finally, we comment briefly on the connection of these

approaches to the study of solid solutions and highly-disordered systems.

4.1 Partitioning Controlling Factors

According to the well-known qualitative Goldschmidt rules, the primary controls on

trace-element partitioning between a solid and melt at a given temperature T and

pressure P are the dissimilarity or mismatch in electrical charge (or valence) and ionic

radius between the substituent ion (dopant) and substituted (host) species.185 We can

summarise these rules as follows:

1. Substituting a given ionic type in a polar solid by other ions with similar ionic radii,

e.g., the difference in ionic radius is less than ∼15%, can extensively occur. The
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insertion of smaller ions into the crystal occurs more favourably than the larger

ones. Note that the substitution by much larger ions is very limited.

2. Substituting a given type of ions by ions with similar electrical charges, e.g., ions

whose charges differ by ±1, can slightly occur. Ions with higher electrical charges

enter the solid more readily. Note that any substitution can occur only when the

crystal’s electrical neutrality is preserved.

3. One of the two competing ions occupying a particular lattice site with higher ionic

potential interacts more strongly with its surrounding anions. Note that the ionic

potential of a given cation is the ratio of the electrical charge to its ionic radius.

As trace-element partitioning is a thermodynamic process, it depends fundamentally

on temperature and pressure. Furthermore, apart from the mismatch in ionic radius

and valence of the dopant and host ion, as mentioned above, substitutions at intrinsic or

extended defects might also be important.127 Additionally, oxygen fugacity ( fO2) is also

crucial for controlling partition coefficients of trace elements with various valence states,

e.g., vanadium (V) and rhenium (Re).186,187 Slow diffusion has also been found to control

the partitioning process kinetically.188,189

For almost three decades now, an extensive number of experimental studies of the

influence of these controlling factors on partitioning coefficients for various minerals (e.g.,
olivine, garnet, clinopyroxene, calcite, orthopyroxene, wollastonite and amphibole) and

melts (such as silicate and carbonate) over a wide range of temperatures and pressures

have been carried out.33,190–213 The overview picture of the experimental studies of trace-

element partitioning in minerals and melts and the crucial contributing factors to their

partition coefficients have comprehensively been reviewed by Blundy and Wood,29,214–216

and recently by Mollo and co-workers.217

4.2 Onuma Diagrams of Experimental Partition
Coefficients

According to Onuma et al.,32 a curve of the experimental partition coefficients for iso-

valent cations as a function of ionic radius can be observed.32,218 A schematic Onuma

diagram is illustrated in Figure 4.1(a), and the experimental Onuma diagram for clinopy-

roxene equilibrated with silicate melts in the diopside-albite system is shown in Figure

4.1(b). The experimental data are taken from the DC23 run in the work of Blundy and
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FIGURE 4.1. (a) Schematic illustration of an Onuma diagram: the plot of ex-
perimental partition coefficients D as a function of cation radius. In (a)
the labelled parameters are obtained from fitting the data into equation
(4.18) and described by equation (4.13) using a lattice strain model. (b) The
experimental Onuma diagram for clinopyroxene equilibrated with silicate
melts in the diopside-albite system.196 Error bars of ±1 standard deviation
for multiple analyses are shown. Again, the curve for each isovalent cation
series represents fits to equation (4.18).
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Dalton.196 In the DC23 experiment, a mixture of 80% diopside and 20% albite (Di80Ab20)

was used as the starting composition resulting in the co-existing phases of clinopyroxene

crystal and silicate melt at 0.8 GPa and 1375◦C. Further details on experimental methods

and conditions can be found in Blundy and Dalton.196 Monovalent (+1), divalent (+2)

and trivalent (+3) cations entering the large M2-site are considered. The Shannon ionic

radii of VIII-coordinated cations are used.176 The three parameters in Figure 4.1(a) and

the curve for each isovalent cation series in Figure 4.1(b) can be obtained from fitting the

data into equation (4.18) using a lattice strain model. However, we will thoroughly dis-

cuss this lattice strain model for explaining trace-element partitioning in solid minerals

and melts later in the next section.

The experimental Onuma diagram in Figure 4.1(b) shows, as expected, that the

partition coefficients of the divalent cations tend to be greater than those of the trivalent

or monovalent cations with similar ionic radii as Ca2+ is the host ion on the M2-site

of clinopyroxene. The curvature of a given Onuma diagram tends to become tighter

with increasing valence, e.g., the Onuma curve of the trivalent ions has a greater (or

tighter) curvature than the divalent and monovalent cations, respectively. For solid

minerals containing various crystallographic sites available for substitutions, the overlap

of multiple curves can experimentally be observed for each isovalent species.30,32,218

These minerals include, for example, clinopyroxene,219–221 olivine,222 and many silicates.

One can distinguish the series of the overlapping curves in an Onuma diagram for

a given cation valence in minerals with several sites prone to exchange by different

maxima corresponding to the optimal radii of the various substituted sites. However,

greater overall partition coefficients for some cations than would have been expected can

be observed due to their ability to distribute between two (or more) different sites in a

given crystal. In this case, considering the size mismatch on a single site alone would be

insufficient.

In the following sections, we outline the thermodynamic foundation of trace-element

partitioning in minerals and melts and then discuss the use of simple elastic lattice

strain models in crystalline solids to justify those observations. However, those simple

lattice strain models have several limitations, and we will explore those limitations via

the mean of atomistic modelling. Despite those limitations, we will also demonstrate

that the calculation of defect thermodynamics via atomistic simulation, which has been

comprehensively discussed in Chapter 3, can be used to provide insights into partitioning

experimental observations through computer simulation.
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4.3 Thermodynamic Foundation of Trace-Element
Partitioning

As mentioned earlier in Chapter 1, an equal partial molar Gibbs free energy is required

for the distribution of a given trace element in the co-existing crystal and melt phases

at equilibrium. Therefore, the fundamental thermodynamics of the incorporation of

trace cation or cation defect into the solid and melt phases must be addressed in any

discussion concerning trace-element partitioning. Trace-element partitioning can be

viewed as substituting a host cation am+ by a trace cation bn+ on a particular lattice site

α in the crystal. From a thermodynamic viewpoint, it is vital to adopt the appropriate

stoichiometry (or charge-balance mechanism) to construct activity-composition formulae,

even though the partition coefficient D of a single trace element is required in most

geochemical models. This is particularly essential for heterovalent substitutions, i.e.,
where n ̸= m. We use B and A to denote trace and host mineral components, respectively.

For isovalent substitutions (n = m), components A and B have the same stoichiometry,

such as Mg2SiO4 and Ni2SiO4 for Ni2+ incorporation into forsterite. On the other hand,

component B must incorporate additional cations for balancing the charge for heterova-

lent substitutions, e.g., CaMgSi2O6 and LaMgAlSiO6 for La3+ incorporation into diopside,

which makes the Onuma diagram unclear as two distinct substituent cations are being

considered.

The partitioning behaviour of trace elements in minerals and melts has been ra-

tionalised via different thermodynamic approaches. Trace-element partitioning can be

viewed as either (i) a fusion reaction of a fictive trace-element mineral component (B),

with an appropriate charge balancing scheme, or (ii) an exchange reaction between host

mineral component A and trace-element mineral B, and their corresponding melt phases.

Therefore, the two thermodynamic approaches for describing the incorporation of a trace

element in a mineral solid are briefly discussed below.

4.3.1 Fusion Equilibria for Mineral-Melt Partitioning

The fusion reaction of B, a ‘fictive’ trace-element end-member mineral, e.g., SrMgSi2O6

or CeMgAlSiO6, is given by

B(crystal)⇐⇒ B(melt). (4.1)
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The change in Gibbs energy for the fusion reaction is given by ∆Gfus
B , and one can write

the equilibrium constant KB at a given temperature T as

KB = amelt
B

acrystal
B

= exp

(
−∆Gfus

B

RT

)
, (4.2)

where aB ’s refer to the activity of the trace-element component B in the melt and crystal

phases, and R is the gas constant. If ∆GB were known, one can readily calculate KB and

convert it into the partition coefficient Db for b2+ via appropriate activity-composition

relations for crystal and melt. Unfortunately, data on the free energy of fusion of minerals,

e.g., SrMgSi2O6 or CeMgAlSiO6, are almost unavailable.127 Hence, one must take an

alternative approach into account.

Wood and Blundy 192 proposed that ∆GB is comprised of (i) the structural strain

around the ‘misfit’ cation and (ii) the strain caused by temperature and exerted pressure.

To relate the partition coefficient, D, to the equilibrium constant, K , they define a fictive

mineral component as a crystal that is able to accommodate a cation with the proper

charge without generating any structural strain. For instance, the crystal component

J for clinopyroxene, j2+MgSi2O6, where j2+ is a trace cation with an ionic radius of r0

that fits exactly into the M2-site. Note that r0 does not need to be identical to that of the

host cation, ra. The fusion equilibrium of the component J is

J(crystal)⇐⇒ J(melt), (4.3)

and associated with the equilibrium constant

K0 =
amelt

J

acrystal
J

= exp

(
−∆G0,fus

J

RT

)
, (4.4)

where ∆G0,fus
J = G0

J(melt) −G0
J(crystal). Using activity-composition relationships for solid

and melt, one can relate directly K0 in equation (4.4) to the observed Nernst (and molar)

partition coefficient D0 defined by

D0 = [ j]crystal

[ j]melt =
X crystal

j

Xmelt
j

, (4.5)

where [ j]’s and X j ’s denote, respectively, the weight and mole fractions of trace-element

j in the two co-existing phases.190,192,223,224

Before relating K0 directly to D0, the effect of substituting j2+ in the crystal and melt

phases by a homovalent b2+ with radius rb present at a very low concentration must

106



4.3. THERMODYNAMICS OF TRACE-ELEMENT PARTITIONING

be first considered.192 In analogy to equation (4.3), the fusion reaction of b2+ between

crystal and melt is given by

B(crystal)⇐⇒ B(melt). (4.6)

The component B in this case is, however, present at infinite dilution in a host of the

pure component J. ∆Gfus for the fusion reactions (4.3) and (4.6) would be identical if

the b2+ and j2+ ions had exactly the same ionic radius. On the other hand, in the case

when rb ̸= r j, the difference between the free energies of fusion reactions (4.3) and (4.6)

is presumably due to the strain energies after introducing the misfit b2+ cation into the

crystal and melt. This assumption works well for closed-shells cations, e.g., Mg2+, Ca2+

and Sr2+, and this is also the case for the lanthanides, where crystal-field effects are

small.33 Using the concept outlined earlier, the change in Gibbs energy of the fusion

reaction (4.6) can therefore be given by

∆G0,fus
B =∆G0,fus

J −∆Gmelt
strain −∆Gcrystal

strain , (4.7)

where ∆Gstrain’s denote the strain energies associated with the substitution of one mole

of j2+ by b2+ in an extremely large amount of the melt and crystal co-existing phases

of the essentially pure J. We will discuss the estimation of these strain energies using

lattice strain models later on in the following section.

4.3.2 Exchange Equilibria for Mineral-Mineral Partitioning

Apart from the fusion reaction, an exchange reaction involving trace and host (B and

J) components in the co-existing melt phase can alternatively be used to explain the

trace-element partitioning. Here, in analogy to the fusion equilibria outlined above, we

consider the incorporation of b2+ trace cation into forsterite (Fo) using oxide species bO

in the melt phase at the given temperature T and pressure P of interest:

bO(L)+Mg2SiO4(Fo)⇐⇒MgO(L)+bMgSiO4(Fo), (4.8)

or, using pyroxene species instead of the oxide in the melt:

bSiO3(L)+Mg2SiO4(Fo)⇐⇒MgSiO3(L)+bMgSiO4(Fo), (4.9)

where (L) denotes, in general, species in a liquid phase including melts and metamor-

phic fluids.182 The simple exchange reactions (4.8) and (4.9) were used by Purton and

co-workers to study computationally and experimentally the homovalent cation incorpo-

ration in forsterite at elevated temperatures.30,225
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According to Beattie et al.,226 the equilibrium constants (or exchange coefficients)

KD for the exchange reactions (4.8) and (4.9) can be written as

Kb−Mg
D(4.8) =

aFo
bMgSiO4

·aL
MgO

aFo
Mg2SiO4

·aL
bO

= exp

(
−
∆Gex

(4.8)

RT

)
(4.10)

Kb−Mg
D(4.9) =

aFo
bMgSiO4

·aL
MgSiO3

aFo
Mg2SiO4

·aL
bSiO3

= exp

(
−
∆Gex

(4.9)

RT

)
, (4.11)

where ∆Gex
(4.8) and ∆Gex

(4.9) refer to the changes in Gibbs free energy for the exchange

reactions (4.8) and (4.9), respectively. ∆Gex is the free energy required to remove a Mg2+

from the solid mineral, and then insert it into the melt phase, while extracting a b2+

ion from the melt and incorporating it into the same crystal at the same time. In this

case, on the contrary to the fusion equilibrium constant in equation (4.4), Kb−Mg
D , i.e., in

equations (4.8) and (4.9), involves both dopant and substituted species. Therefore, Kb−Mg
D

includes the partition coefficients of both b2+ and Mg2+ cations. As a consequence, the

free energies of fusion for both fictive trace (B) and host (J) mineral components are

explicitly included in the exchange-equilibrium approach.

As two similar mineral components, i.e., in terms of stoichiometry, tend to have

similar changes in entropy of fusion (∆Sfus), the exchange coefficients is generally

less temperature-dependent than partition coefficients.127 This consideration proves

very useful when comparing computational and experimental results. According to the

previous study on forsterite-melt partitioning by Purton et al.,225 several simplifications

have been made in order to relate directly the computed exchange enthalpies (∆Hex)

to experimentally-observed partition coefficients for a large number of divalent trace

cations using equation (4.9). These assumptions include (i) the cations in the octahedral

sites in crystal and melt are disordered at high temperatures,227 (ii) ∆Sex in equation

(4.9) is omitted as a result of similar ∆Sfus of several olivines,228 and (iii) the averaged

molecular weights of the crystal and melt are almost the same. Note that b2+ is at infinite

dilution in forsterite and melt. Consequently, the simplified expression of equation (4.9)

is given by

Kb−Mg
D(4.9) =

XFo
b · XL

Mg

XFo
Mg · XL

b

= Db

DMg
= exp

(
−∆Hex

RT

)
, (4.12)

where Db and DMg refer to the partition coefficients for b2+ and Mg2+ cations, respectively,

∆Hex is the exchange enthalpy, and X ’s denote the mole fractions. The calculated DMg is

1.43 as a result of the choice of melt composition. Using equation (4.12), Db can readily
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be calculated by computing ∆Hex for each trace divalent cation and directly compared

with the experiments. Again, ∆Hex can be estimated using a lattice strain model.

4.4 Lattice Strain Models

For a given series of isovalent trace cations, the curvature of the Onuma diagram varies

from crystal to crystal and is characterised by the crystal’s elastic modulus,33 i.e., a

crystal with a larger bulk modulus tends to results in a tighter Onuma curve. This

implies that the exchange of misfit trace cations occurs more preferentially in crystals

with smaller elastic moduli. With this concept, there will always be an elastic response

of the crystalline solid or mineral to strain when incorporating misfit trace cations

whose ionic radii are different from the host cation. Therefore, this elastic response

quantifies the ability of a particular trace cation to exchange in a given solid-melt system.

As crystals are typically more rigid than melts, they are less tolerant of misfit trace

cations. For this reason, the crystal lattice is assumed to predominate the trace-element

partitioning energetically.

Blundy and Wood 33 have proposed an elastic lattice strain model to describe the

dependence of experimentally-determined partition coefficients D on ionic radius for an

isovalent trace-cation series in a mixture of mineral and melt in an Onuma curve, e.g., in

Figure 4.1(b). The model employs the cubic polynomial for the strain energy Ustrain (per

mole of trace element b) previously introduced by Brice,34 which quantifies the extent of

the size mismatch between the trace-cation radius rb and the radius of a given spherical

crystallographic site α with Young’s modulus (or elasticity) of Yα normally occupied by a

host cation with an ionic radius of r0 in a particular solid mineral:

Ustrain = 4πYαNA

[
r0

2
(rb − r0)2 + 1

3
(rb − r0)3

]
, (4.13)

where NA is the Avogadro’s number. Several studies have shown that the equation

(4.13) appears to explain the dependence of Db on rb adequately for, e.g., clinopyroxene,

plagioclase, amphibole, and many other minerals.33,192,193,195,196,198,208,209,229–236

However, the estimation of strain energy around the misfit cation bn+ using the

expression of Brice 34 in equation (4.13) does not take shear and volumetric strains into

account, as solely the Young’s modulus is used in the formulation. Hence, the model of

Brice 34 is inadequate and oversimplified for describing strains in the strained crystal.

Consequently, this oversimplification gives rise to one of the several limitations of the

lattice strain model of Blundy and Wood,33 which will be discussed in more detail below.
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An analogous approach to the strain model of Brice 34 has previously been proposed

by Nagasawa 237 which is given by

Ustrain = 6πr3
0φαKαΩ, (4.14)

where

Ω= ϵ2
[
1+ ϵ(1+σα)

3(1−σα)

]
, φα = 2(1−2σα)

3(1−σα)
, and ϵ= rb − r0

r0
.

Here, for a given lattice site α in a crystal, Kα and σα are the site’s bulk modulus and

Poisson’s ratio, respectively. The previous work of Beattie,222 for instance, shows that the

model of Nagasawa,237 i.e., in equation (4.14), can well be used to study the partitioning

behaviour of divalent and trivalent trace elements in olivine and silicate melts.

Silicate melts have a zero shear modulus; hence, the corresponding strain energy

in equations (4.13) and (4.14) is zero. The strain energies obtained from the models of

Brice 34 and Nagasawa 237 are similar, as they differ no more than ca. 10% for the largest

misfit ions.30,127 In spite of the fact that several simplifications have been made in their

formulations, these two lattice strain models enable us to quantify conveniently the

partitioning of an isovalent series of trace cations on a specific lattice site as a function

of a small set of parameters, e.g., as shown in Figure 4.1(a).

For a crystal with various lattice sites prone to exchange, i.e., where multiple substi-

tutions can occur, the overall partition coefficient for a given trace cation is the sum of

its partition coefficients on all the individual sites, each of which is characterised by an

optimal radius and an effective Young’s modulus. Nevertheless, these two lattice strain

models have their own merits and drawbacks. The lattice strain model of Brice 34 is

more convenient to use. In contrast, the Nagasawa 237 model provides a more complete

description of the lattice strain formation process as non-radial stresses around the

misfit trace ion are explicitly considered. However, in the present work, we focus mainly

on the Brice 34 lattice strain model.

One can now incorporate the cubic function of Brice 34 in equation (4.13) into the

developed thermodynamic scheme discussed above. This can be done by either: (i) setting

∆Gmelt
strain to zero and equating Ustrain with ∆Gcrystal

strain in equation (4.7) or (ii) equating

Ustrain with ∆Hex in equation (4.12). Consequently, for case (i), the relationship between

equilibrium constants of the fusion reactions (4.3) and (4.6) can be given by

KB = amelt
B

acrystal
B

= exp

(−∆G0,fus
J +∆Gcrystal

strain

RT

)
= K0 exp

(
∆Gcrystal

strain

RT

)
. (4.15)

In equation (4.15), given the assumption that strain energy terms dominate the free

energy of fusion, it gives the relationships between the fusion reactions of the trace
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substituent cation b and host substituted species j. Wood and Blundy 192 relate KB in

equation (4.15) to the partition coefficient Db for trace element b by setting the activity

coefficient for J in the crystal γcrystal
J to be 1, i.e., in Raoult’s law region, and the identical

activity coefficient for B and J in the melt is assumed, i.e., γmelt
B = γmelt

J . Using equations

(4.4) and (4.5), the proportionality between D0 and K0 depends on the activity coefficient

of J in the melt, γmelt
J , and the correction term for mean molecular weights of the melt

and crystal:

D0 =
γmelt

J

K0

 M
melt
w

M
crystal
w

 , (4.16)

where Mw’s denote the mean molecular weights of the two phases on a six-oxygen

basis. Given these assumptions, one can convert the relationship between KB and K0 in

equation (4.15) into a relationship between Db and D0 written as:33

Db = D0 exp

(
−∆Gcrystal

strain

RT

)
. (4.17)

Equating ∆Gcrystal
strain and Ustrain from equation (4.13) gives

Db = D0 exp
{−4πYαNA

RT

[
r0

2
(rb − r0)2 + 1

3
(rb − r0)3

]}
, (4.18)

where D0, i.e., the strain-compensated (or strain-free) partition coefficient for a particular

lattice site α, is the maximum value of Db.

As we have seen earlier, the experimentally-determined partition coefficients for a

series of isovalent cations on a particular lattice site α of a given mineral equilibrated

with a melt phase as a function of ionic radius, e.g., data shown in Figure 4.1(b), can be

fitted to equation (4.18) of Blundy and Wood 33 model. Using this approach, all partition

coefficients for a series of isovalent trace cations on a given lattice site α, for instance,

lanthanides entering the M2-site in clinopyroxene,223 can be described by three fit

parameters: (i) the optimal radius r0, (ii) the lattice site’s effective Young’s modulus Yα,

and (iii) the strain compensated partition coefficient D0. The schematic plot of the simple

model of Blundy and Wood 33 is illustrated in Figure 4.1(a). Figure 4.1(a) shows that

the ‘most compatible’ or ‘best-fit’ trace cation has an ionic radius of r0 and a partition

coefficient of D0 corresponding to the peak of the curve. The partition coefficient of

a particular trace cation bn+, whose ionic radius rb deviates away from r0 in either

positive or negative directions, will generally be smaller than D0. The curvature and the

derivative ∂D/∂rb increase with increasing Yα, the site’s Young’s modulus.
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TABLE 4.1. Lattice strain parameters for the experimental partition coefficients
of cations entering the M2-site of diopside equilibrated with silicate melts,
as shown in Figure 4.1(b). The data are taken from the DC23 run in a
diopside-albite system at 0.8 GPa, 1375◦C by Blundy and Wood.33 One
standard deviation error for each of the parameters is indicated, and is
absent if it is zero in the place of the least significant digit. Note that the
experimental bulk modulus KT for diopside mineral is 113 GPa.242

Cations Yα (GPa) r0 (Å) D0
Monovalent (+1) 30±11 1.014±0.136 0.05±0.02
Divalent (+2) 127 0.995 2.23±0.01
Trivalent (+3) 283±34 1.032±0.006 0.25±0.01

Although the lattice strain model of Blundy and Wood 33 has successfully been

employed for describing the partitioning of trace elements on a single site, the model is

basically insufficient in cases where the substitution can occur on multiple lattice sites

prone to exchange.238 In those cases, the overall partition coefficient of a given trace

cation is the sum of the partition coefficients on all the individual lattice sites, e.g., REEs

(rare-earth elements) entering M1- and M2-sites in pyroxenes.207,239 When necessary,

it is possible to parameterise the three fit parameters, i.e., r0, D0, and Yα, in terms of

changes in pressure P, temperature T, and mineral and melt compositions.192,195,240,241

D0 and to a much lesser degree Yα, vary with pressure and temperature, and r0 varies

primarily with mineral composition.127

As presented above, Figure 4.1(b) shows fits to the experimentally-determined parti-

tion coefficients of trace cations entering the large M2-site in clinopyroxene equilibrated

with silicate melts in a diopside-albite system from the DC23 experiment by Blundy and

Dalton 196 using equation (4.18). The fit parameters for each series of isovalent cations

are listed in Table 4.1. Note again that Ca2+ is the host ion occupying the M2-site of

clinopyroxene. Hence, the partition coefficients of the divalent cations tend to be larger

than trivalent or monovalent cations with similar ionic radii. YM2 for the monovalent

cations is the largest, whereas that of the trivalent cations is the smallest, reflecting the

curvatures of their Onuma diagrams in Figure 4.1(b). According to numerous experimen-

tal partitioning data, the applications and main features of these three fit parameters

from the lattice strain model of Blundy and Wood 33 are briefly summarised below.

The best-fit ionic radius r0 is one of the crystallographically meaningful parameters

from fittings as it reflects well the known metal-oxygen interionic separation for the

lattice site in a crystal of interest after considering the ionic radius of 1.38 Å for four-
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coordinated O2-.176 Again, note that r0 is not necessary to be identical to that of the

host cation at the lattice site of interest. As shown in Table 4.1, r0 for the M2-site of

clinopyroxene is comparable with the ionic radius of eight-coordinated Ca2+ normally

resident at that site, as several previous experiments on partitioning in clinopyroxene

and melts have suggested.192,193,196 This is also the case for various solid solution series,

e.g., garnets195 and plagioclases.33 Several observations of the partitioning of trace

cations with varying charges from +1 to +4 in, e.g., garnet,195 clinopyroxene,196 and

wollastonite,197 have shown that r0 decreases with increasing ionic charge. However,

the decreasing variation is non-linear as the r0 flattens out at higher charges than

+3.197 Allan et al. 127 and Karato,243 for example, suggest that the shorter optimal radius

of the site (r0) for a series of highly-charged cations might be a direct consequence of

the relaxation of the neighbour oxygen ions to become closer to the positively-charged

dopant. On the contrary, a cation series with a lower ionic charge is expected to yield a

longer r0 due to the weaker electrostatic interactions resulting in the longer interionic

separations with their O2- neighbours compared to those of the dopants with a higher

positive charge.127

By definition, for a given material, the Young’s modulus Y quantifies the degree of

the material’s resistance to the change in length along the axis of interest, while the bulk

modulus KT refers to its ability to resist the change in volume. In an isotropic material,

the relationship between the two moduli is given by

Y = 3KT(1−2σ), (4.19)

where σ is Poisson’s ratio. In the literature, most oxides and minerals are assumed to be

ideal Poisson solids, i.e., isotropically elastic materials, with σ≈ 0.25; hence, equation

(4.19) gives Y ≈ 1.5KT . However, it is worth noting that the crystal lattices of solid

minerals are not isotropically elastic media in general.244–247

Given the definitions above, for a given crystallographic site α in a crystal of interest,

the apparent Young’s modulus Yα quantifies the site’s elasticity (or stiffness), i.e., a stiffer

site has a larger Yα. On the other hand, the apparent site’s bulk modulus Kα for an

isotropically elastic lattice site α specifies the site’s volumetric elasticity, which can also

be related to Yα using equation (4.19). The results in Table 4.1 show that Yα increases

with increasing ionic charges. Yα of a given site is found to exhibit an approximately

linear variation with cation charge,29,127 and it relates directly to the material’s bulk

modulus KT as their elastic response to strain is consistent with the known bulk moduli

of oxides and minerals.248 Hence, the magnitude of fitted Yα is often compared to that
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of KT in the literature. For homovalent substitution, e.g., the incorporation of divalent

cations (+2) onto the M2-site in clinopyroxene,196 trivalent cations (+3) onto the X -site in

garnet,195 and divalent cations (+2) onto the M-site in plagioclase,33,191 the magnitude

of Yα appears to be in good agreement with that of KT for the crystal. For instance, the

magnitude of the fitted Yα of 127 GPa for the incorporation of divalent cations onto the

M2-site of clinopyroxene in Table 4.1 is close to that of the experimental bulk modulus

KT of 113 GPa for diopside mineral.242 However, the definitions of Young’s and bulk

moduli are fundamentally different, hence making a direct comparison between these

two parameters is ambiguous as there are evidently several exceptions.

Hill and co-workers, for instance, have found that the fitted YM1 for the substitution

of tetravalent cations (4+) at the M1-site in clinopyroxene is unrealistically large, i.e.,
5870±314 GPa,198,208 and this is also the case for the Zr-site in Zircon.249 In those

cases, heterovalent substitutions result in charged defects which would definitely not

give a fitted Yα close to the experimental elastic moduli. Moreover, van Westrenen et
al.195,200,250 have observed that YX of the X -site in garnet does not show linear variations

with cation charge along the pyrope-grossular join. The implication of these findings is

that the observed elastic properties of the crystal are often controlled broadly by the

elastic properties of the large cation lattice site, although some smaller cation lattice

sites might deform due to the distortion of the rigid tetrahedral framework of Si–O(–

Al). According to the computational work of van Westrenen et al.,251 the anomalous

partitioning behaviour along the pyrope-grossular solid solution is mainly due to the local

ordering in the crystal. Nonetheless, these experimental findings emphasise that the

elasticity of the rigid crystal, rather than the more flexible melt, controls the partitioning

behaviour of trace elements primarily.

Lastly, the strain-free partition coefficient D0 also varies with cation charge, e.g.,
as shown in Table 4.1. D0 is typically smaller for heterovalent substitution than for

homovalent substitution. D0 exhibits a parabolic dependence on cation charge, similar

to Onuma diagrams, where the peak of the curve corresponds to the optimal ionic

charge at the lattice site of interest.252 Several studies show that D0, as expected for a

thermodynamic parameter, is temperature- and pressure-dependent.29

4.5 Limitations of Lattice Strain Models

For a few decades now, lattice strain models, e.g., the simple strain model of Blundy and

Wood 33 in equation (4.18), have been used for studying the partitioning of trace elements
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between solid minerals and melts. The lattice strain models provide an apparent link

between experimentally-determined partition coefficients D and the mismatch in ionic

radius of the trace and host cations in crystals, and it relates also the D’s to the mineral’s

elastic properties. The approach has successfully advanced the conventional constant-D
strategy for studying the partitioning of trace elements between minerals and melts

by enabling the potential to vary systematically D’s in response to changes such as

temperature, pressure, and mineral composition.215

However, the simple lattice strain model of Blundy and Wood 33 has several limita-

tions in terms of the inadequate definition of lattice strains, arising mainly from the

simplifications made in the formulation of the expression for the lattice strain energy, i.e.,
the strain model of Brice 34 in equation (4.13).127,182 The use of continuum mechanics in

the model of Brice 34 is also deficient for studying microscopic structural deformation in

minerals, e.g., oxides and silicates, as the lattice strain around incorporated point defects

is non-continuous. Strictly speaking, explaining strain energies using the expression of

Brice 34 in the strain model of Blundy and Wood,33 i.e., in equations (4.13) and (4.18),

is said to be oversimplified in various aspects for estimating lattice strain due to the

incorporation of a trace cation in a solid mineral.

In the strain model of Brice,34 the total strain around the substituted cation with an

ionic radius of rb at the site of a host cation with a radius of r0 is given by
∫ ∞

rb
ϵ dr = rb−r0,

corresponding to the sum of the displacements of all constituent particles within the

strained crystal. However, this expression goes against the fundamental definition of

strain, which is defined as a dimensionless quantity scaled to the original volume (or

length), i.e., ϵ= (Vb −V0) /V0 or ϵ= (rb − r0) /r0. In an extremely large strained material

(or at a given remote distance from the incorporated cation), the strain resulting from the

atomic displacements around the substitutional defect tends to vanish, which contradicts

the definition of Brice.Brice 34

Describing strains (or expressing the strain energies) in elastically isotropic crystal

lattices in terms of a Young’s modulus and Poisson’s ratio is inadequate. The model of

Brice 34 does not give a complete description of the overall lattice strain as non-radial

strains are not taken into account explicitly, in contrast to the strain model of Naga-

sawa,237 as briefly discussed earlier. According to Eshelby,244–246 after incorporating

a misfit cation at the origin of an infinite-sized isotropic crystal, the elastic displace-

ment along a given direction depends also on the materials’ bulk and shear moduli. For

instance, Figure 3.18 depicts clearly the anisotropic atomic displacements around the

incorporated point-defect Ba2+ cation in MgO crystal. In other words, the function for the
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strain energy is strongly asymmetric around the misfit cation. Hence, in addition to the

Young’s modulus, the bulk and shear moduli must also be included in an expression of

the strain energy in order to describe the lattice strain process fully, even in an isotropic

material.182,243 Apart from the strain arising from the mismatch between the ionic radii

of the trace and host cations, the environment of the lattice site of exchange also has a

great influence on the lattice strain. For instance, some structural deformation of the

lattice may occur through other mechanisms, e.g., twisting of surrounding Si–O(–Al)

rigid polyhedra, rather than the simple elastic strain process, especially in anisotropic

and vacancy-rich minerals.127,173,182,195,250,251,253

Furthermore, when evaluating the strain energy due to the incorporation of a misfit

cation in a perfect crystal lattice using equation (4.13), the use of a hard-sphere model

with fixed size for O2- and cations (and fixed ionic separations), e.g., employing the

ionic radii derived by Shannon,176 is also seemingly unrealistic. Moreover, calculated

strain energies using the model of Brice 34 depends strongly on the choice of empirical

assumptions about the substitution mechanism (or the charge-compensation mechanism),

especially in the case of heterovalent substitutions where there might be ordering

between the dopant and its compensating species,31 which affects the formulation of

activity-composition relationship directly.31,127,173,250,254 Furthermore, there are a large

number of possible charge-balancing mechanisms for heterovalent substitutions. For

instance, the incorporation of a La3+ trace cation into diopside mineral (CaMgSi2O6)

can occur through two different possible mechanisms: (i) replacing three divalent (+2)

host cations by two trivalent (+3) cations ‘and’ leaving one divalent-cation vacancy or

(ii) substituting two divalent host cations by a La3+ ion ‘and’ an additional monovalent

(+1) cation, e.g., Li+ or Na+, as a charge-balancing ion.31,173 As a result, these numerous

possibilities give rise to one of the major complications for quantifying and modelling

the partitioning behaviour of trace elements in minerals.31,127,173,182 Again, the use of

only one effective Young’s modulus Yα for describing strains due to the simultaneous

incorporation of two heterovalent cations is questionable since Yα is charge-dependent.

More importantly, the lattice strain model does not take the role of the melt phases

into account explicitly.127,182,243 Again, this is oversimplified as several studies suggest

that the structure and composition of the melt phases play also a crucial role in trace-

element partitioning between solid minerals and melts.255–262

Each of these oversimplifications and assumptions limits the application of the lattice

strain model. The theoretical insight into these limitations can be provided by state-of-

the-art computer simulation techniques that have been developed and employed to study
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the incorporation of cation defects in the structures of various solid minerals at the trace

levels,127 as briefly summarised in Chapter 2 (Section 2.2). In the previous section, we

have comprehensively investigated the incorporation of a Ba2+ ion in periclase mineral

(cubic MgO) as a simple case study to illustrate the application of those simulation

techniques for studying important factors on the thermodynamics of the substitutional

defect formation. Using the same approach, in the subsequent subsection, we present

the relaxation energies (as the equivalent of strain energies), defect formation energies,

and solution energies for the incorporation of trace-element cations in lime (cubic CaO)

and diopside minerals via both classical and ab initio DFT atomistic simulations (in

regard of continuum mechanics) to investigate more fully and illustrate more clearly the

limitations of the lattice strain model.

4.6 Defect, Relaxation and Solution Energies

4.6.1 Definitions of Energy Terms

In this subsection, we shall first define the three important computed thermodynamic

quantities for studying the solid-solid partitioning of trace elements theoretically: (i)

defect energies, (ii) relaxation energies, and (iii) solution energies. In the previous chapter,

i.e., in Section 3.3, we have thoroughly discussed the computation of ‘defect energies’ of

Bax
Mg in MgO, e.g., using equations (2.30) and (3.1) in the supercell approach. We have

used gp and fv for the defect free energies at constant pressure and constant volume,

respectively. In this section, however, as we will solely concentrate on the constant-

volume defect energies in the static limit within the supercell approach, and we use E’s

to denote those energy terms for simplicity. For example, the substitution of a Ca2+ ion

by a Mg2+ ion, Mgx
Ca, in an optimised supercell of CaO (lime mineral) containing 2x ions

is

CaxOx +Mg2+ =⇒MgCax−1Ox +Ca2+, (4.20)

with the corresponding defect energy

Edef(Mgx
Ca)= [

Elat(MgCax−1Ox)+Eion(Ca2+)
]− [

xElat(CaO)+Eion(Mg2+)
]
, (4.21)

where Elat(MgCax−1Ox) refers to the ‘final lattice energy’ of the ‘relaxed’ defective

MgCax-1Ox structure, and Elat(CaO) is the ‘lattice energy’ per formula unit of the opti-

mised perfect structure of CaO. Hence, the term xElat(CaO) is equivalent to the lattice

energy of a supercell of CaO containing 2x ions. Eion refers to the ‘ion energy’. Note that
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Eion’s are zero in the classical approach, whereas they are non-zero in the first-principles

simulation. Hence, Eion’s must be taken into account when calculating ab initio defect

energies.

In the defective structure of MgCax-1Ox the ‘relaxation energy’, Erel, for the incor-

poration of a Mg2+ substitutional defect in CaO is defined as the difference between

Elat(MgCax−1Ox) before and after structural relaxation or the difference in energy of the

initial (unrelaxed) and final (relaxed) MgCax-1Ox structures:

Erel(Cax
Mg)= Einitial

lat (MgCax−1Ox)−Efinal
lat (MgCax−1Ox). (4.22)

As we have discussed in the previous section, the lattice strain energies, Ustrain, e.g., in

equations (4.13) and (4.14), relate most closely to the relaxation energies, Erel, obtained

from the atomistic simulations. Ustrain can be approximated by Erel from computer

simulations. The application of the simulated Erel to the lattice strain model of Brice 34

will be discussed below.

In other oxides and ceramics, Edef can be used to determine ‘solution energy’, which

does not involve only the defect energy, but also the lattice energies of the host and

substituent species.263–266 For instance, using the notation of Kröger and Vink,131 the

simple exchange reaction of Mg2+ and Ca2+ in CaO as the host solid oxide is written as

MgO+Cax
Ca =⇒Mgx

Ca +CaO, (4.23)

and this gives the solution energy

Esol(Mgx
Ca)= Efinal

lat (Mgx
Ca)+Elat(CaO)−Elat(MgO). (4.24)

Note that this reaction is analogous to the exchange equilibria presented earlier, e.g., in

equations (4.8) and (4.9).

4.6.2 Models and Computational Details

Here, we present calculated defect formation, relaxation (approximate strain) and so-

lution energies for the incorporation of homovalent (+2) and heterovalent (+1 and +3)

cations into two end-member minerals: (i) lime (solid CaO), and (ii) clinopyroxene diopside

(CaMgSi2O6) via both classical and DFT calculations. In many previous computational

studies, for example, Purton et al.,30,31 van Westrenen et al.,250 and Allan et al.,173

those substitutional defect thermodynamics in ionic solids and minerals were computed

based solely on the Mott-Littleton model,125 as illustrated in Figure 2.2(a), and classical

118



4.6. ENERGIES OF TRACE-ELEMENT INCORPORATION IN MINERALS

Buckingham interionic potentials. Hence, in those studies, defect concentration and

quantum-mechanical effects have not been explicitly considered and incorporated when

evaluating those defect thermodynamic quantities. Here, we intend also to make a direct

comparison between the classical and DFT results as there have previously been only a

few direct comparisons between calculated defect energies from force-field based and ab
initio quantum-mechanical approaches.173 For example, De Vita et al. 174 have previously

shown that the calculated defect formation and migration energies in MgO obtained

from DFT calculations are in very good agreement with those obtained using classical

calculations based on empirical pair potentials. However, the Mott-Littleton approach

has not recently been implemented into any widely used DFT software packages for

modelling defects in solids. In order to compare the classical and DFT results directly,

the supercell approach, as illustrated in Figure 2.2(b) is currently the only choice.

In the present study, all the calculations based on classical force-field potentials were

performed using the GULP program.91,156 As we are dealing with various types of atomic

species (or dopants), a consistent set of atomic pseudopotentials for the first-principles

simulation of the incorporation of trace elements in crystals is crucial. Fortunately,

as mentioned earlier in Chapter 2, the standard solid-state pseudopotentials (SSSP)

library121,267 provides consistent sets of pseudopotentials covering most elements across

the periodic table optimised for modelling solid-state materials using the Quantum

ESPRESSO code.103,104 For that reason, the Quantum ESPRESSO program coupled

with a consistent set of atomic pseudopotentials provided by the SSSP library were chosen

to perform all the plane-wave DFT calculations in the present study. The first-principles

elastic constants of CaO and diopside crystals were obtained using the thermo_pw code268

implemented in the Quantum ESPRESSO program.

For the classical calculations, we take the empirical force-field parameters from the

previous computational studies of Purton et al.,30,31 and the full list of those parameters

is in Table 4.2. Buckingham potentials, i.e., φBuck(r i j)= A exp(−r i j/ρ)−C/r6
i j, were used

for two-body interionic short-range interactions between O2- and cations and a three-body

harmonic potential, i.e., φangle(θ)= 0.5kθ(θ−θ0)2, was applied for O–Si–O triplets. The

shell model of Dick and Overhauser 73 was used for polarisable O2- ions, while all the

cations were treated as non-polarisable rigid ions; hence, interactions between cations

are purely Coulombic. In the core-shell model, an O2- ion consists of a ‘massless shell’
and a ‘massive core’, connected to each other by a harmonic spring with a spring constant

kcore-shell. The polarisation effects arise from electric dipoles as a results of the core-shell

displacements relative to each other. A cutoff of 12 Å was used throughout the classical
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TABLE 4.2. Classical interionic potential parameters used for modelling the
incorporation of trace-element cations into lime (cubic CaO) and diopside
minerals.

Atom Charge (e)
Buckingham parameters

A (eV) ρ (Å) C (eV Å6)
O (shell)(a) -2.86902 22764.0881 0.1490 27.8801
Ca +2 1090.4020 0.3437 0.0000
Mg +2 1428.5077 0.2945 0.0000
Sr +2 1375.0070 0.3500 0.0000
Ba +2 931.7031 0.3949 0.0000
Mn +2 1007.4043 0.3262 0.0000
Fe +2 1207.6020 0.3084 0.0000
Co +2 1491.7095 0.2951 0.0000
Ni +2 1582.5116 0.2882 0.0000
Eu +2 1248.5101 0.3556 0.0000
Li +1 262.5414 0.3476 0.0000
Na +1 1266.8457 0.3065 0.0000
K +1 680.4412 0.3798 0.0000
Rb +1 919.3840 0.3772 0.0000
Sc +3 1299.4057 0.3312 0.0000
La +3 1439.7064 0.3651 0.0000
Nd +3 1379.9062 0.3601 0.0000
Eu +3 1358.0053 0.3556 0.0000
Gd +3 1336.8050 0.3551 0.0000
Ho +3 1350.2051 0.3487 0.0000
Lu +3 1347.1051 0.3430 0.0000
Yb +3 1309.6058 0.3462 0.0000
Si(b) +4 1283.9147 0.3205 10.6546
(a)kcore-shell = 74.9238 eV Å−2,
(b)kθ = 2.0936 eV rad−2 and θ0 = 109.47◦
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TABLE 4.3. Calculated and experimental lattice parameters of CaO and diopside
(CaMgSi2O6). The lattice parameters of CaO and diopside refer to their
conventional standard unit cells, i.e., eight-atom cubic CaO (Fm3m space
group) and 40-atom monoclinic CaMgSi2O6 (C2/c space group) crystals,
respectively. The computational details for the classical calculations based
on Buckingham interionic potentials and the core-shell model and the plane-
wave DFT (GGA-PBE) simulation can be found in Subsection 4.6.2.

Solid a (Å) b (Å) c (Å) β (◦)

CaO
Experimental(a) 4.815 - - -
DFT 4.830 - - -
Classical 4.807 - - -

Diopside
Experimental(b) 9.745 8.899 5.251 105.63
DFT 9.893 9.027 5.333 106.49
Classical 9.805 9.014 5.242 105.12

(a)Fiquet et al.,270 (b)Cameron et al. 271

simulation for the oxygen’s shell/cation short-range potentials. A more detailed discussion

of interionic potentials can be found in the review article of Allan and Mackrodt.10

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimisation algorithm143–146 with

a convergence criterion on the forces of 1.0×10−4 Hartree Bohr−1 (∼ 5.1×10−4 eV Å−1)

was used for structural optimisation.

In the DFT simulation, all the atomic potentials were represented by the pseudopo-

tentials taken from the standard solid-state pseudopotentials (SSSP) library optimised

for precision.121,267 The electronic exchange and correlation energies were evaluated

using the generalised-gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE)

DFT functional.114 A kinetic energy plane-wave cutoff of 90 Ry and a charge-density

cutoff of 1080 Ry were used. The Monkhorst-Pack k-point grids269 of 5×5×5 and 3×3×5

were used for the standard conventional unit cells of CaO and diopside, respectively.

Gaussian smearing with a spreading width of 0.01 Ry was used throughout the DFT

calculations. In the periodic calculations of the energies of isolated cations Eion, the

compensating jellium background charge was used to remove the divergences of the elec-

trically non-neutral unit cells.103,104 The convergence threshold for the self-consistent

field calculation was set to 1.0×10−6 Ry (∼ 1.4×10−5 eV). For structural optimisation

using the BFGS minimisation method, the convergence criteria on the total energy and

forces of 1.0×10−4 Hartree (∼ 2.7×10−3 eV) and 1.0×10−3 Hartree Bohr−1 (∼0.051 eV

Å−1), respectively, were used.

A comparison between the experimental and calculated results for the structural
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TABLE 4.4. Calculated and experimental elastic properties of CaO and diopside
(CaMgSi2O6). K , Y and G denote the mean values of bulk, Young’s and shear
moduli (in GPa), respectively. σ is Poisson’s ratio. The mean values of Y and
σ for diopside, as an elastically anisotropic material, are calculated using
the Voigt-Reuss-Hill (VRH) approximation.272 The computational details
for the classical calculations based on Buckingham interionic potentials and
the core-shell model and the plane-wave DFT (GGA-PBE) simulation can
be found in Subsection 4.6.2.

Solid K (GPa) Y (GPa) G (GPa) σ

CaO
Experimental 111.25(a) 181(b) 74.05(b) 0.22(b)

DFT 103.89 179.69 74.14 0.21
Classical 136.32 149.17 78.91 0.32

Diopside
Experimental 113(c) 160.5(d) 65.1(c) 0.26(d)

DFT 107.99 175.98 71.63 0.23
Classical 125.69 168.46 65.65 0.28

(a)Chang and Graham,273 (b)Hite and Kearney,274

(c)Kevien et al.,242 (d)Aleksandrov et al. 275

FIGURE 4.2. The crystal structure of the clinopyroxene diopside.271
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and elastic properties of CaO and diposide is shown in Table 4.3. The experimental and

simulated lattice parameters of CaO and diopside refer to their conventional standard

unit cells, i.e., eight-atom cubic CaO (Fm3m space group) and 40-atom monoclinic

CaMgSi2O6 (C2/c space group) crystals, respectively. The crystal structure of diopside271

is shown in Figure 4.2. The elastic properties, i.e., the average values of bulk (K), Young’s

(Y ) and shear (G) moduli (in GPa) and Poisson’s ratios σ from the experiments and

simulations are listed in Table 4.4. The clinopyroxene diopside is, in fact, an elastically

anisotropic mineral.242,275,276 However, the reported experimental and calculated Young’s

modulus Y and Poisson’s ratio σ for diopside in Table 4.4 are the averaged values from

the Voigt-Reuss-Hill (VRH) approximation.272 Overall, the magnitudes of the calculated

structural and elastic parameters obtained from both computational approaches are in

reasonable agreement with experimental data.

For modelling the incorporation of a trace cation (or cations for heterovalent substitu-

tions) into CaO, cubic supercells containing 512 atoms (4×4×4 supercell) and 64 atoms

(2×2×2 supercell) of CaO were used in the classical and DFT simulations, respectively.

On the other hands, supercells of CaMgSi2O6 consisting of 640 atoms (2×2×4 supercell)

and 80 atoms (1×1×2 supercell) were used for simulating the substitutional defect

formation in diopside in the classical and DFT calculations, respectively. For both crys-

tals, the initial geometries were prepared using the VESTA visualiser program.136 The

vast series of defective crystal structures with incorporated trace-element cations were

generated using a simple Python script written in the Jupyter Notebook,147 as an imple-

mentation in the Anaconda Software Distribution.148 A uniform 3×3×3 Monkhorst-Pack

k-mesh was used for the reciprocal space summations for both structures in the DFT

calculations. In both computational approaches, the static-limit defect formation and

relaxation energies, i.e., Edef and Erel, were obtained at constant volume, i.e., all the

six lattice parameters were kept fixed during the geometry optimisation. In all cases,

however, the atomic positions are not fixed by their initial crystal symmetry during the

structural relaxation.

The three calculated thermodynamic quantities, i.e., (i) defect formation, (ii) relax-

ation (as equivalent to strain energies) and (iii) solution energies, of the incorporation of

trace cations into CaO and diopside as a function of ionic radii are now used to investigate

the partitioning behaviour of trace elements and the limitations of the simple lattice

strain models theoretically. In order to compute the solution energies, as mentioned

earlier, the lattice energies of binary oxides are required. The oxides of divalent (+2),

monovalent (+1) and trivalent (+3) have the forms of MO (Fm3m space group), M2O
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TABLE 4.5. Six-fold and eight-fold coordinated cation radii (in Å) taken from
Shannon,176 calculated lattice energies per formula unit, and DFT ion
energies (all in eV) for studying the incorporation of trace cations in CaO and
diopside. The lattice energies of the binary oxides are used for calculating
the solution energies, while the ion energies are used for calculating the
DFT defect energies. The classical and DFT lattice energies of diopside are
also provided for computing the solution energies. The computational details
for the classical calculations based on Buckingham interionic potentials and
the core-shell model and the plane-wave DFT (GGA-PBE) simulation can
be found in Subsection 4.6.2.

Cation
Ionic radius (Å)(a) Lattice energy (eV) DFT
VI-fold VIII-fold Classical DFT ion energy (eV)

Divalent (MO)
Ca2+ 1.00 1.12 -35.95 -116.88 -73.86
Mg2+ 0.72 0.89 -41.31 -167.24 -123.93
Sr2+ 1.18 1.26 -33.88 -112.07 -69.19
Ba2+ 1.35 1.42 -31.33 -478.07 -435.33
Mn2+ 0.83 0.96 -38.79 -252.91 -209.61
Fe2+ 0.78 0.92 -40.21 -370.92 -327.49
Co2+ 0.75 0.90 -40.91 -340.09 -296.61
Ni2+ 0.69 N/A(a) -41.68 -384.87 -341.33
Eu2+ 1.17 1.25 -33.77 -684.47 -641.65
Monovalent (M2O)
Li+ 0.76 0.92 -29.69 -70.87 -14.04
Na+ 1.02 1.18 -26.25 -212.18 -84.82
K+ 1.38 1.51 -22.50 -267.77 -112.72
Rb+ 1.52 1.61 -21.66 -139.57 -48.66
Trivalent (M2O3)
Sc3+ 0.75 0.87 -145.27 -439.79 -154.44
La3+ 1.03 1.16 -126.73 -1042.28 -456.35
Nd3+ 0.98 1.11 -129.83 -1200.57 -535.37
Eu3+ 0.95 1.07 -132.19 -1410.72 -640.36
Gd3+ 0.94 1.05 -132.80 -1493.84 -681.93
Ho3+ 0.90 1.02 -135.49 -1785.03 -827.42
Lu3+ 0.86 0.98 -138.27 -2286.19 -1077.96
Yb3+ 0.87 0.99 -137.45 -2147.88 -1008.79
Diopside

- - -337.53 -6454.22 -
(CaMaSi2O6)
(a)Shannon 176
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TABLE 4.6. The calculated final defect formation, relaxation and solution ener-
gies for the incorporation of homovalent dopants into CaO obtained from
both classical and DFT simulations. All energy values are in eV. The com-
putational details for the classical calculations based on Buckingham inte-
rionic potentials and the core-shell model and the plane-wave DFT (GGA-
PBE) simulation can be found in Subsection 4.6.2.

Dopant Defect energy (eV) Relaxation energy (eV) Solution energy (eV)
cation Classical DFT Classical DFT Classical DFT
Mg2+ -4.2138 -3.2601 0.6100 0.1903 1.1493 0.7014
Sr2+ 2.3705 2.3122 0.2436 0.1699 0.2993 0.2820
Ba2+ 5.8911 5.0785 0.9835 0.9823 1.2702 1.2503
Mn2+ -2.4437 -3.7050 0.2230 0.0833 0.3958 0.1278
Fe2+ -3.4813 -4.7789 0.4241 0.1405 0.7819 0.7196
Co2+ -3.9864 -5.5844 0.5342 0.1681 0.9794 0.6425
Ni2+ -4.4612 -6.5795 0.6766 0.1711 1.2737 0.4592
Eu2+ 2.4835 3.1663 0.2394 0.0730 0.3053 0.4167

(Fm3m space group) and M2O3 (Ia3 space group), respectively, where M’s denotes the

corresponding metal cation. In the DFT calculations, the energies of the isolated metal

ions are are also needed to calculate the defect formation energies. The six-fold and

eight-fold coordinated ionic radii from Shannon,176 classical and DFT lattice energies per

formula unit, and DFT ionic energies for all cations considered in this work are listed in

Table 4.5. The ionic radii for the six-fold coordination are used for the cation substitutions

in CaO and the cation exchange at the M1-site of diopside, which is normally occupied

by a Mg2+ ion. The eight-fold coordinated ionic radii, on the contrary, are used for the

substitutions at the M2-site of a Ca2+ ion in diopside. The calculated classical and DFT

lattice energies of the clinopyroxene diopside are also given in Table 4.5 for computing

the solution energies.

4.6.3 Homovalent Trace Elements in CaO and Diopside

We first concentrate on the energetics of the incorporation of divalent (or homovalent

+2) trace cations in CaO. For example, equations (4.21), (4.22) and (4.24) are used to

compute the thermodynamics of the incorporation of a Mg2+ into CaO within the supercell

approach. The calculated final defect formation, relaxation and solution energies for

all the homovalent substitutions in CaO and diopside from both the classical and DFT

methods are tabulated in Tables 4.6 and 4.7, respectively. In the case of diopside, the

substitution can occur at both M1- and M2-sites of the six-fold coordinated Mg2+ and
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TABLE 4.7. The calculated final defect formation, relaxation and solution en-
ergies for the incorporation of homovalent dopants into the clinopyroxene
diopside obtained from both classical and DFT simulations. All energy
values are in eV. The computational details for the classical calculations
based on Buckingham interionic potentials and the core-shell model and the
plane-wave DFT (GGA-PBE) simulation can be found in Subsection 4.6.2.

Dopant Defect energy (eV) Relaxation energy (eV) Solution energy (eV)
cation Classical DFT Classical DFT Classical DFT
M2-site (Ca2+ Site)
Mg2+ -3.9031 -2.9907 0.6965 0.6375 1.4601 0.9709
Sr2+ 2.0609 1.8530 0.2152 0.2007 -0.0103 -0.1772
Ba2+ 5.6573 4.1509 0.9845 1.1249 1.0364 0.3227
Mn2+ -2.1918 -3.0842 0.2288 0.3976 0.6477 0.7487
Fe2+ -3.1844 -4.2387 0.4613 0.6809 1.0789 1.2598
Co2+ -3.6791 -4.9378 0.5923 0.8533 1.2866 1.2891
Eu2+ 2.2152 3.2160 0.2181 0.2032 0.0370 0.4664

M1-site (Mg2+ Site)
Ca2+ 5.6580 4.2653 1.2595 0.9779 0.2949 0.3038
Sr2+ 8.6637 7.0498 3.5145 3.0903 1.2294 1.0580
Ba2+ 12.8771 10.2056 6.2031 7.6936 2.8931 2.4158
Mn2+ 2.3904 0.3708 0.1738 0.1409 -0.1332 0.2421
Fe2+ 0.9983 -0.8591 0.0306 0.0560 -0.1016 0.6778
Co2+ 0.3406 -1.7046 0.0068 0.0166 -0.0568 0.5608
Ni2+ -0.3298 -2.7672 0.0026 0.0115 0.0419 0.3099
Eu2+ 8.7937 8.3346 3.4190 2.9878 1.2523 1.6235

eight-fold coordinated Ca2+ host cations, respectively, as shown in Figure 4.2; hence, the

energetics of the incorporation of trace-element cations at the two lattice sites in diopside

are reported separately.

4.6.3.1 Defect Energies

Figures 4.3 and 4.4 show the variations of the final relaxed defect energies, Edef, with

ionic radius for divalent trace-element cations entering CaO and diopside, respectively.

In both minerals, the calculated values of Edef show a linear variation with cation radius

in the classical approach. In contrast, the Edef’s obtained from the DFT calculations

show two separate linear trends for the closed-shell cations, i.e., Mg2+, Ca2+, Sr2+ and

Ba2+, and for the open-shell cations, including Ni2+, Co2+, Fe2+, Mn2+ and Eu2+. This

could possibly arise from the use of the inappropriate (fixed) ionic radii for the 3d-block

4 f -block ions. According to Shannon,176,277 the determination of these cation radii is less
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FIGURE 4.3. Variation of calculated final relaxed defect energies with ionic
radius for homovalent substitutions in CaO. The computational details for
the classical calculations based on Buckingham interionic potentials and
the core-shell model and the plane-wave DFT (GGA-PBE) simulation can
be found in Subsection 4.6.2.

straightforward compared to the other main-group (close-shell) cations due to various

factors, e.g., the crystal-field and ligand-field stabilisation effects. For Mn2+, Fe2+, and

Co2+, the size of each cation depends on its spin state; for example, the VI-fold coordinated

ionic radii of Mn2+ are 0.67 and 0.83 Å in low-spin and high-spin complexes, respectively.

Furthermore, the size of a given open-shell cation depends greatly on the nature of its

local environment, i.e., the strength of the ligand field surrounding the ion determines

its size due to the non-spherical electron distribution (see more details in, e.g., Orgel 278

and Figgis and Hitchman 279).

It is important to note that Edef can either be positive or negative depending on the

difference in ionic radius of the size compared to the host cation, i.e., Edef of a dopant

smaller than the host cation is expected to be negative and vice versa. However, the

negative values of DFT relaxation energies for the incorporation of Co2+ and Fe2+ whose

six-fold coordinated Shannon radii are larger than the host cation Mg2+ at the M1-site

have been observed, as shown in Figure 4.4(b). This is, again, possibly due to the artefact

of using the inappropriately fixed cation radii.
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FIGURE 4.4. Variation of calculated final relaxed defect energies with ionic
radius for homovalent substitutions in the clinopyroxene diopside. The
computational details for the classical calculations based on Buckingham
interionic potentials and the core-shell model and the plane-wave DFT
(GGA-PBE) simulation can be found in Subsection 4.6.2.
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FIGURE 4.5. Variation of calculated relaxation energies with ionic radius for
divalent substitutions in CaO. The dashed lines represent fits of the re-
laxation energies from both simulation approaches to equation (4.13) of
Brice.34 The computational details for the classical calculations based on
Buckingham interionic potentials and the core-shell model and the plane-
wave DFT (GGA-PBE) simulation can be found in Subsection 4.6.2.

4.6.3.2 Relaxation Energies

Plots of the relaxation energies, Erel, as a function of cation dopant size for the divalent

substitutions in CaO and diopside are shown in Figures 4.5 and 4.6, respectively. In

contrast to the Edef, which can either be positive or negative, the Erel of any substitution

is always positive as the energy falls as all other constituent ions move in order to ac-

commodate the new substituent cation. In all cases, Erel must be zero (i.e., no relaxation)

for the host cation, while the more positive Erel’s are generally expected for the cations

whose ionic radii differ more from that of the host cation. Strictly speaking, the greater

is the size mismatch between the host and homovalent substituent cations, the higher

is Erel. As mentioned above, these Erel’s can roughly be used as approximate strain

energies, Ustrain, e.g., in the Brice 34 strain model in equation (4.13). Analogously to Erel,

a greater value of Ustrain is expected for a larger difference in cation radii. In Figures 4.5

and 4.6, the dashed lines represent fits of Erel from both simulation approaches to the

cubic equation (4.13).

For the divalent substitutions in CaO, as shown in Figure 4.5, the fitted r0 is identical

for both classical and DFT simulations, i.e., at 1.0 Å corresponding to the ionic radius of
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FIGURE 4.6. Variation of calculated relaxation energies with ionic radius for
divalent substitutions at (a) M2-site and (b) M1-site of the clinopyroxene
diopside. The dashed lines represent fits of the relaxation energies from
both simulation approaches to equation (4.13) of Brice.34 The computa-
tional details for the classical calculations based on Buckingham interionic
potentials and the core-shell model and the plane-wave DFT (GGA-PBE)
simulation can be found in Subsection 4.6.2.
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Ca2+ host cation. On the other hand, the fitted Ca-site Young’s moduli, YCa, are consider-

ably different in the two simulation approaches, i.e., 194 and 126 GPa in the classical

and DFT calculations, respectively. The significantly larger YCa in the classical approach,

i.e., resulting in a tighter curve, implies that the classical Ca-site is less elastically

compressible or stiffer than that in the DFT simulation. Note that the experimental

‘crystal’ Young’s modulus is 181 GPa.274 From our calculations, the crystal of CaO is

elastically isotropic with the calculated Poisson ratios of 0.21 and 0.32 in the DFT and

classical approaches, respectively. Using the relationship between the bulk and Young’s

moduli in equation (4.19), the fitted ‘site’ Young’s moduli can be converted to the ‘site’
bulk moduli, KCa. As a result, the DFT and classical KCa are approximately 72 and

180 GPa, respectively. Note also that the experimental ‘crystal’ bulk modulus is 111.25

GPa.273

For divalent substitutions in diopside, as shown in Figure 4.6, the fitted r0’s are

consistent with the six-fold and eight-fold coordination ionic radii of the host cations

Mg2+ (0.72 Å) at the M1-site and Ca2+ (1.12 Å) and the M2-site, respectively. The

curvature of each cubic function varies from site to site in a manner consistent with their

elastic compressibilities determined from high-pressure crystal structure observations.

The fitted M1-site’s modulus, YM1, is larger than YM2 in both simulation approaches, i.e.,
the classical and DFT YM2 are ca. 246 and 291 GPa, respectively, whereas the classical

and DFT YM1 are approximately 372 and 470 GPa. The larger YM1 compared to YM2

results in a tighter curve, which implies that the M2-site is more compressible than

the M1-site of the clinopyroxene diopside. This is in line with the experimental work of

Levien and Prewitt,280 which emphasises that the M1-site is relatively less compressible

than the M2-site. The previous computational study of Purton et al. 30 has shown that

the plots for Mg-sites in diopside and forsterite are similar. Therefore, it is clear that the

rigidity or stiffness of the site’s local environment rather than that of the bulk determines

the relaxation (approximate strain) energy. Explicit consideration of the variations in

the size of dopant and oxygen ions with bond length may improve the application of the

lattice strain model.182

In Figure 4.6(a), the relaxation energies for the incorporation of Mn2+, Fe2+ and Co2+

at the M2-site of diopside deviate slightly from the trend for other cations as we have

seen earlier in the case of the defect energies. Again, this arises from the use of the

fixed unrealistic ionic radii. Therefore, we highlight this as a limitation of the use of the

simple strain model of Brice 34 in equation (4.13), where the strain energy is expressed

as a function of fixed cation radius (with fixed-size O2-) derived by Shannon,176 to study
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trace-element partitioning.

4.6.3.3 Solution Energies

The defect energies themselves do not relate directly to the incorporation process. Besides,

they contribute to the solution energies of the trace-cation exchange reactions, e.g., for

the Mgx
Ca substitution reaction in equation (4.23) with the solution energy obtained using

equation (4.24). Again, note that the calculation of the solution energy does not include

only the simulated defect energy Edef(Mgx
Ca), but also the difference in lattice energies

of the two binary oxides, i.e., Elat(CaO)−Elat(MgO). It is also important to note that

a negative defect energy does not necessarily mean that the overall solution energy is

negative. Here, we use the binary oxides to provide a reference level (simple starting

point) for our model for explaining mineral-melt partitioning as the ultimate goal. The

explicit incorporation of the heats of fusion of these binary oxides makes only a slight

difference.281 Using heats of formation of molten oxides instead of solid oxides, the heat

of solution for exchanging Sr with Mg at the M1-site of diopside, for instance, changes

only by ∼0.1 eV. Although the size of trace-element dopant cation gives a simple rule of

thumb, the magnitude of the solution energy cannot always be examined from a sole

consideration of its size.

Figure 4.7 shows the variation of classical and DFT solution energies, Esol, with

cation dopant size for divalent substitutions in CaO. Overall, the curve of the solution

energies as a function of ionic radius exhibits a similar shape to that of the relaxation

energies in Figure 4.5, with a minimum at the radius of the Ca2+ cation. The shape

of the curve is a result of two opposite effects: (i) the increase in defect energy and (ii)

the decrease of the difference in lattice energy between CaO and MO with increasing

dopant size. The variation of the solution energies with cation radius for homovalent

substitutions at the M2- and M1-sites of diopside is illustrated in Figure 4.8. The minima

of the curves for the classical solution energies are more well-defined, in contrast to

those of the DFT solution energies. The two minima of the classical solution energies at

the two lattice sites are also well-separated as clearly shown in Figure 4.9, i.e., ∼1.2 Å

and 0.8 Å for the M2- and M1-sites, respectively, indicating the strong site preference

of trace-element cations based on their size. Only cations with in-between radii will

show equipartitioning between the M2- and M1-sites. Similarly to the variation of the

relaxation energies with dopant size as discussed above, the dependence of the solution

energies on ionic radius also varies from site to site, again indicating the importance of

the site’s local environment in controlling cation exchange.
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FIGURE 4.7. Variation of calculated solution energies with ionic radius for
divalent substitutions in CaO. The computational details for the classical
calculations based on Buckingham interionic potentials and the core-shell
model and the plane-wave DFT (GGA-PBE) simulation can be found in
Subsection 4.6.2.

So far, we have shown that both the classical and DFT simulation techniques are

useful for computing the defect, relaxation and solution energies for the incorporation of

divalent cations in CaO and diopside in order to investigate the partitioning behaviour

theoretically. The magnitudes and trends in these thermodynamic properties obtained

from both techniques are also in reasonable agreement. Even though the magnitudes and

trends in relaxation energies for the homovalent substitutions in CaO and diopside from

both simulation approaches are similar, as shown in Figures 4.5 and 4.6, respectively,

the classical and DFT values of the site Young’s moduli obtained from the fits of the

relaxation energies to the strain model of Brice 34 are significantly different. The classical

calculations based on empirical force fields are much computationally cheaper than the

DFT calculations. However, they cannot provide insights into the electronic properties

and other related quantum mechanical effects, e.g., crystal-field and ligand-field stabil-

isation for the open-shell metal cations. The quality of the numerical results depends

strongly on the accuracy of the empirical force fields and atomic pseudopotentials (and

basis sets) used in the classical and DFT approaches, respectively. Previously, Purton

et al. 31 have extended these classical calculations to heterovalent trace impurities in

forsterite and diopside. In the following subsection, we will discuss the calculation of the
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FIGURE 4.8. Variation of calculated solution energies with ionic radius for diva-
lent substitutions in the clinopyroxene diopside. The computational details
for the classical calculations based on Buckingham interionic potentials and
the core-shell model and the plane-wave DFT (GGA-PBE) simulation can
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valent substitutions at M1- and M2-sites of diopside. The computational
details for the classical calculations based on Buckingham interionic poten-
tials and the core-shell model can be found in Subsection 4.6.2.

thermodynamic quantities of heterovalent substitutions in CaO and diopside using the

same classical and DFT simulation techniques outlined in the earlier section.

4.6.4 Heterovalent Trace Elements in CaO and Diopside

The incorporation of heterovalent cations involves ions with charges different from that of

the host ion in a given mineral. For example, the substitution of Ca2+ by Li+ or La3+. Such

heterovalent substitution gives rise to several problems. Firstly, the lattice polarisation

due to the charged defect must be taken into account explicitly.125,282 Secondly, an

appropriate charge-balancing or charge-compensating mechanism must be considered

in order to maintain electroneutrality. As mentioned in the previous section, there are

a large number of possible charge-balancing mechanisms, e.g., by forming vacancies or

incorporating other charge-compensating ions.

As a simple example, in the supercell approach, the incorporation of La3+ in a super-

cell of CaO containing 2x ions can occur through various possible charge-compensation

mechanisms, for instance, by incorporating Li+ as a compensating cation:

CaxOx +La3++Li+ =⇒ LaLiCax−2Ox +2CaO, (4.25)

135



CHAPTER 4. TRACE-ELEMENT PARTITIONING IN MINERALS AND MELTS

with the corresponding defect energy

Edef(La•
Ca +Li′Ca)= Elat(LaLiCax−2Ox)

− [
(x−2)Elat(CaO)+Eion(La3+)+Eion(Li+)

]
.

(4.26)

In this case, we consider two ‘associated’ substitutional defects of La•
Ca and Li′Ca situated

as close as possible to one another. Alternatively, the two defects can be very far from

each other in a given crystal. These are referred to as ‘isolated’ defects. In the latter case,

the total defect energy should well be estimated from the sum of the defect energies of

two isolated defects, i.e., Edef(La•
Ca)+Edef(Li′Ca). In contrast to the defect energies, the

relaxation energies, Erel, are ‘not’ additive and they ‘cannot’ be estimated simply from

the separate relaxations of the two isolated defects. We shall see in the discussion below

that the associated defect energy, denoted as Edef(La•
Ca +Li′Ca), will be lower than the

isolated defect energy Edef(La•
Ca)+Edef(Li′Ca) due to the association energy between the

two point defects. In fact, we have already seen the lowering in defect energy per defect

for the clustering of multiple Bax
Ba substitutional defects in MgO, i.e., in Figure 3.32. The

decrease in defect energy per defect for multiple Bax
Ba defects in MgO is also due to the

association energy of those Bax
Ba defects. It is worth noting that the reaction (4.25) can

also be viewed as the incorporation of Li+ into CaO with a charge-compensating La3+

cation.

To evaluate the solution energy, using the Kröger and Vink notation,131 the exchange

reaction (4.25) can be expressed as

1
2

La2O3 + 1
2

Li2O+2Cax
Ca =⇒ La•

Ca +Li′Ca +2CaO, (4.27)

with the corresponding solution energy

Esol(La•
Ca +Li′Ca)= Efinal

lat (La•
Ca +Li′Ca)+2Elat(CaO)

− [0.5Elat(La2O3)+0.5Elat(Li2O)] .
(4.28)

Alternatively to the reaction mechanism (4.27), the incorporation of La3+ into CaO can

occur by substituting two Ca2+ ions by two La3+ ions and creating a single Ca2+ cation

vacancy, denoted by ‘V’:

Lu2O3 +3Cax
Ca =⇒ 2Lu•

Ca +V′′
Ca +3CaO. (4.29)

In addition to reaction (4.27), the incorporation of Li+ (a monovalent cation) into CaO

can occur by exchanging two Ca2+ host ions with two Li+ cations and creating a single

O2- vacancy:

Li2O+Ox
O +2Cax

Ca =⇒ 2Li′Ca +V••
O +2CaO. (4.30)
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In forsterite and diopside crystals, for example, other charge-compensation mechanisms

with an effective positive charge involve oxygen interstitials and (for +3 dopants) trivalent

exchange with Si coupled with Al substitution for Mg. These reaction mechanisms are

much higher in energy than the reactions listed above;31,173 hence, they shall not be

considered further.

These examples are only a few possibilities amongst many other possible charge-

compensating mechanisms for heterovalent substitutions in minerals. For instance,

many other charge-balancing cations can be used in the heterovalent substitution re-

action (4.27), e.g., using Na+ instead of Li+ or using Sc3+ instead of La3+. A different

charge-compensating cation results in different values of the defect thermodynamic

properties.31,127,173 As discussed earlier, the (associated) defect-defect distance deter-

mines also those calculated defect properties. Consequently, any computational study

must consider various possible charge-compensating mechanisms, types of dopants, and

their structural arrangements for heterovalent substitutions in a given mineral. The

issue becomes more complicated for the incorporation of heterovalent cations in a crystal

with several lattice sites prone to exchange. In this study, we consider solely the ther-

modynamic properties of the heterovalent substitutions with additional heterovalent

charge-compensating cations for simplicity.

The classical and DFT defect, relaxation and solution energies for both associated

and isolated +1 and +3 trace elements in CaO are listed in Table 4.8. In the case of the

associated defects, the two point defects are located as close as possible to each other,

whereas the two defects are placed as far as possible from each other in the case of the

isolated defects. The calculated thermodynamics for all the monovalent substitutions

with a La3+ charge-compensating defect are plotted in Figure 4.10, while the calculated

energies for the trivalent substitutions with a Li+ charge-balancing cation are shown

in Figure 4.11. As expected, all three classical and DFT thermodynamic quantities for

the associated defects are lower than those for the isolated defects due to the association

energy between the two incorporated heterovalent cations in each structure.

For the clinopyroxene diopside, the classical and DFT defect, relaxation and solution

energies for +1 and +3 trace elements are listed in Table 4.9. Here, we consider solely

the three thermodynamic quantities of two ‘associated’ defects for a given heterovalent

cation of interest and its corresponding charge-compensating defect. Again, the calculated

energetics of the heterovalent substitutions at the M1-site and M2-site of diopside are

reported separately. Note that the distances between two closest M1–M1, M2–M2 and

M1–M2 sites in diopside are ca. 3.1, 4.4 and 3.2 Å, respectively. These different lattice-
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TABLE 4.8. Calculated defect, relaxation and solution energies for heterovalent
substitutions in CaO. The computational details for the classical calcula-
tions based on Buckingham interionic potentials and the core-shell model
and the plane-wave DFT (GGA-PBE) simulation can be found in Subsection
4.6.2.

Dopant Defect energy (eV) Relaxation energy (eV) Solution energy (eV)
cation Classical DFT Classical DFT Classical DFT

Monovalent (+1) - with associated La3+ compensating defect
Li+ -5.2778 -0.9547 2.5461 0.5954 1.0365 0.9111
Na+ -4.2425 0.0995 2.9321 0.6281 0.3514 0.2307
K+ -1.1997 2.1862 4.2823 1.1366 1.5194 0.9077
Rb+ -0.0191 3.5560 5.2668 1.8138 2.2789 1.8108

Monovalent (+1) - with isolated La3+ compensating defect
Li+ -4.9252 -0.7941 4.9041 0.9444 1.3890 1.0716
Na+ -3.9640 0.2185 5.3642 1.0028 0.6298 0.3496
K+ -0.9328 2.3056 6.7259 1.4842 1.7864 1.0270
Rb+ 0.2461 3.6757 7.7121 2.1407 2.5442 1.9306

Trivalent (+3) - with associated Li+ compensating defect
Sc3+ -14.4527 -10.1706 5.1652 1.3918 1.1317 0.6515
La3+ -5.2778 -0.9547 2.5461 0.5954 1.0365 0.9111
Nd3+ -7.0199 -2.9422 2.7649 0.5509 0.8427 0.6049
Eu3+ -8.2786 -3.9734 3.0066 0.5228 0.7641 0.7316
Gd3+ -8.5951 -3.9430 3.0842 0.6237 0.7513 0.5394
Ho3+ -9.9538 -5.5052 3.4295 0.7108 0.7388 0.4692
Lu3+ -11.3000 -6.0480 3.8546 0.8959 0.7848 0.4823
Yb3+ -10.9070 -5.9489 3.7395 0.8516 0.7668 0.6915

Trivalent (+3) - with isolated Li+ compensating defect
Sc3+ -14.2890 -10.0531 7.7120 1.7104 1.2954 0.7690
La3+ -4.9252 -0.7941 4.9041 0.9444 1.3890 1.0716
Nd3+ -6.7087 -2.8138 5.1641 0.9173 1.1539 0.7333
Eu3+ -7.9965 -3.8429 5.4351 0.7925 1.0461 0.8621
Gd3+ -8.3207 -3.8275 5.5203 0.9903 1.0256 0.6549
Ho3+ -9.7096 -5.4118 5.8958 1.0829 0.9830 0.5627
Lu3+ -11.0853 -5.9567 6.3504 1.2681 0.9995 0.5737
Yb3+ -10.6846 -5.9489 6.2277 0.8516 0.9892 0.6915
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FIGURE 4.10. Variations of calculated (a) defect, (b) relaxation and (c) solution
energies with cation radius for monovalent substitutions in CaO with a La3+

ion as the compensating defect. The computational details for the classical
calculations based on Buckingham interionic potentials and the core-shell
model and the plane-wave DFT (GGA-PBE) simulation can be found in
Subsection 4.6.2.
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FIGURE 4.11. Variations of calculated (a) defect, (b) relaxation and (c) solution
energies with cation radius for trivalent substitutions in CaO with a Li+

ion as the compensating defect. The computational details for the classical
calculations based on Buckingham interionic potentials and the core-shell
model and the plane-wave DFT (GGA-PBE) simulation can be found in
Subsection 4.6.2.
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TABLE 4.9. Calculated defect, relaxation and solution energies for heterovalent
substitutions in diopside. The computational details for the classical calcu-
lations based on Buckingham interionic potentials and the core-shell model
and the plane-wave DFT (GGA-PBE) simulation can be found in Subsection
4.6.2.

Dopant Defect energy (eV) Relaxation energy (eV) Solution energy (eV)
cation Classical DFT Classical DFT Classical DFT

Monovalent (+1) at M2 - with La3+ associated compensating defect at M1
Li+ 0.9705 3.9588 4.6709 4.2704 1.9217 1.8631
Na+ 1.8836 4.9873 4.7936 4.0503 1.1143 1.1569
K+ 4.9884 6.5857 5.8915 4.6045 2.3444 1.3456
Rb+ 6.0909 7.6698 6.6840 5.3717 3.0258 1.9631

Monovalent (+1) at M1 - with La3+ associated compensating defect at M2
Li+ 0.0837 2.8704 2.9352 0.5459 1.0349 0.7746
Na+ 1.9974 4.4789 4.5872 1.0625 1.2281 0.6484
K+ 6.1923 7.3450 8.0848 3.8284 3.5483 2.1050
Rb+ 7.7231 9.0004 10.8915 6.8084 4.6580 3.2937

Trivalent (+3) at M2 - with Li+ associated compensating defect at M1
Sc3+ -7.6529 -5.0747 4.7132 1.3505 2.5684 1.7858
La3+ 0.0837 2.8704 2.9352 0.5459 1.0349 0.7746
Nd3+ -1.3629 1.2247 2.9868 0.4696 1.1366 0.8103
Eu3+ -2.4173 0.2691 3.1060 0.4236 1.2622 1.0126
Gd3+ -2.6722 0.4189 3.1496 0.5004 1.3110 0.9397
Ho3+ -3.8285 -0.8531 3.3665 0.4822 1.5010 1.1598
Lu3+ -4.9636 -1.2946 3.6631 0.7397 1.7581 1.2742
Yb3+ -4.6130 -1.4523 3.5792 0.5038 1.6976 1.2266

Trivalent (+3) at M1 - with Li+ associated compensating defect at M2
Sc3+ -9.3379 -6.2916 2.5263 0.6722 0.8833 0.5689
La3+ 0.9705 3.9588 4.6709 4.2704 1.9217 1.8631
Nd3+ -0.9524 1.8716 3.7119 2.8892 1.5471 1.4571
Eu3+ -2.3568 0.7807 3.2080 2.3818 1.3227 1.5241
Gd3+ -2.7118 0.6767 3.0909 2.1213 1.2714 1.1975
Ho3+ -4.2394 -1.0493 2.7466 1.5332 1.0901 0.9636
Lu3+ -5.7611 -1.7989 2.5281 1.1367 0.9606 0.7699
Yb3+ -5.3190 -1.6809 2.5679 1.2688 0.9917 0.9979
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FIGURE 4.12. Variations of calculated (a) defect, (b) relaxation and (c) solu-
tion energies with cation radius for monovalent substitutions in diopside
with a La3+ ion as the compensating defect. b+(M1)/La3+(closest M2) and
b+(M2)/La3+(closest M1) are considered for monovalent substitutions at
M1-site and M2-site, respectively. The computational details for the classi-
cal and plane-wave DFT (GGA-PBE) simulation can be found in Subsection
4.6.2.
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FIGURE 4.13. Variations of calculated (a) defect, (b) relaxation and (c) solu-
tion energies with cation radius for trivalent substitutions in diopside
with a Li+ ion as the compensating defect. b3+(M1)/Li+(closest M2) and
b3+(M2)/Li+(closest M1) are considered for trivalent substitutions at M1-
site and M2-site, respectively. The computational details for the classical
and plane-wave DFT (GGA-PBE) simulation can be found in Subsection
4.6.2.
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site separations lead to different computed energies. For simplicity, we consider only

the heterovalent substitutions at the closest M1–M2 sites. For example, a monovalent

substitution at an M2-site is coupled with a La3+ compensating defect substituted at the

closest M1-site, i.e., b+(M2)/La3+(M1). On the other hand, a monovalent substitution

at an M1-site is coupled with a La3+ compensating cation incorporated at the closest

M2-site, i.e., b+(M1)/La3+(M2). The variation of the three thermodynamic quantities

with ionic radius obtained from both classical and DFT calculations for the monovalent

substitutions is shown in Figure 4.12. Furthermore, the calculated energies as a function

of dopant size for the trivalent substitutions are also plotted in Figure 4.13.

Overall, in contrast to the case of homovalent substitutions in CaO and diopside, the

magnitudes of the three thermodynamic quantities, i.e., defect, relaxation and solution

energies, for the heterovalent substitutions in CaO and diopside obtained from the

classical and DFT approaches can be significantly different, as listed in Tables 4.8-4.9

and illustrated in Figures 4.10-4.13. Those significant differences in the magnitudes

of the numerical results might be mainly due to the different magnitudes of computed

absolute energy terms from the two computational approaches. However, the trends of

those three thermodynamic quantities obtained from the classical and DFT approaches

are in good agreement. Due to the similarity of the trends of the numerical results

obtained from the classical and DFT methods, we shall solely discuss the DFT defect,

relaxation and solution energies for heterovalent substitutions in CaO and diopside

beyond this point.

4.6.4.1 DFT Defect Energies

In the previous theoretical work by Purton et al.,31 all the calculated classical defect

energies for isolated heterovalent (+1 and +3) impurities in forsterite and diopside

were obtained using the two-region approach with the Mott-Littleton approximation.125

In those calculations, the lattice polarisation arising from the incorporated charged

defect has been taken into account explicitly. According to Purton et al.,30,31 as expected

from classical electrostatic explanations, the ‘isolated’ defect energies follow the order

+3 < +2 < +1 for a given cation radius in forsterite and diopside minerals. In our

calculations based on the supercell approach, on the other hand, the ‘associated’ defect

energies for the +1 trace-element cations in CaO, as shown in Figure 4.14, are not

always higher than those for +2 cation impurities with similar ionic radii. This is

due to the incorporation of an additional +3 charge-compensating defect, i.e., La3+,

in order to maintain the electroneutrality of the defective supercell. Similarly to the
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FIGURE 4.14. DFT defect energies of homovalent (+2) and heterovalent (+1 and
+3) substitutions in CaO. Only associated defect energies are plotted for the
heterovalent substitutions. La3+ and Li+ are chosen as the compensating
defects for monovalent (+1) and trivalent (+3) substitutions, respectively.
The computational details for the plane-wave DFT (GGA-PBE) simulation
can be found in Subsection 4.6.2.

divalent substitutions in CaO, the variation of defect energy with dopant size for both

the monovalent and trivalent cation impurities is approximately linear. The slope of

these linear trends increases in order +1<+2<+3.

Figure 4.15 shows a comparison between the DFT defect energies of homovalent

and heterovalent substitutions at the two lattice sites of diopside with cation radius. At

both lattice sites, similar to the defect energies of trace-element substitutions in CaO

shown in Figure 4.14, the variation of the defect energies of a series of isovalent trace

elements is approximately linear and the slope of those linear trends follows the order

+1<+2<+3. Note again that these associated defect energies do not always follow the

order +3<+2<+1 according to the classical electrostatic arguments for isolated defects.

This is due to the additional +3 charge-compensating defect also incorporated into the

diopside crystal for a monovalent substitution.

4.6.4.2 DFT Relaxation Energies

Using the DFT defect energies of homovalent and heterovalent substitutions in CaO in

Figure 4.14, the corresponding DFT relaxation energies are plotted in Figure 4.16(a).
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FIGURE 4.15. DFT defect energies of homovalent (+2) and heterovalent (+1
and +3) substitutions at (a) M2-site and (b) M1-site of diopside. Only
associated defect energies are computed for the heterovalent substitu-
tions. b+(M1)/La3+(closest M2) and b+(M2)/La3+(closest M1) are consid-
ered for monovalent substitutions at M1-site and M2-site, respectively.
b3+(M1)/Li+(closest M2) and b3+(M2)/Li+(closest M1) are considered for
trivalent substitutions at M1-site and M2-site, respectively. The computa-
tional details for the plane-wave DFT (GGA-PBE) simulation can be found
in Subsection 4.6.2.
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FIGURE 4.16. DFT (a) relaxation and (b) solution energies of homovalent (+2)
and heterovalent (+1 and +3) substitutions in CaO. Only associated defect
energies are plotted for the heterovalent substitutions. La3+ and Li+ are
chosen as the compensating defects for monovalent (+1) and trivalent (+3)
substitutions, respectively. The computational details for the plane-wave
DFT (GGA-PBE) simulation can be found in Subsection 4.6.2.
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FIGURE 4.17. DFT relaxation energies of homovalent (+2) and heterova-
lent (+1 and +3) substitutions at (a) M2-site and (b) M1-site of diop-
side. b+(M1)/La3+(closest M2) and b+(M2)/La3+(closest M1) are consid-
ered for monovalent substitutions at M1-site and M2-site, respectively.
b3+(M1)/Li+(closest M2) and b3+(M2)/Li+(closest M1) are considered for
trivalent substitutions at M1-site and M2-site, respectively. The dashed
lines represent fits of the relaxation energies for divalent ions to equation
(4.13) of Brice.34 The computational details for the plane-wave DFT (GGA-
PBE) simulation can be found in Subsection 4.6.2.
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Additionally, the variations of the DFT relaxation energies with ionic radius for homova-

lent (+2) and heterovalent (+1 and +3) substitutions at both the M1-site and M2-site of

diopside is shown in Figure 4.17. As expected, the relaxation energies for all substitu-

tions are greater than zero as energy is required for the structural relaxation in order

to accommodate the misfit cation (or cations). The relaxation energies for heterovalent

charged defects are always positive and higher than those for homovalent impurities due

to the lattice polarisation. It is worth noting that for the two associated defects at the

M1- and M2-sites of diopside are not additive and cannot simply be approximated from

their separate relaxations. For each series of isovalent trace elements, except for the +1

curve in CaO, the minimum of the relaxation energy curve occurs at a radius close to the

host cations, e.g., VIII-fold coordinated Ca2+ at the M2-site and VI-fold coordinated Mg2+

at the M1-site of diopside, respectively.

An interesting feature of the plots in Figure 4.16(a) and 4.17 is that the curvature of

the relaxation energies as a function of dopant size for +1 trace-element cations is smaller

(less tight) than that for the divalent dopants, while the +3 curve is much tighter than

the other two curves with a larger curvature. In the case of diopside, for each isovalent

series, the curvature of the relaxation energy as a function of ionic radius at the M1-site

is tighter than that at the M2-site, reflecting the relative compressibilities of the two

sites. As discussed earlier, the curvature for each isovalent cation series reflects the site

compressibility. However, fitting the +1 or +3 relaxation energies to equation (4.13) of

the lattice strain model of Brice 34 in order to obtain a single apparent (or effective) site

Young’s modulus, YCa, proves problematic as two heterovalent cations were incorporated

simultaneously in every case. Furthermore, the lattice polarisation is not included in the

expression for strain energy in equation (4.13). This is another key limitation of using

the strain model of Brice 34 for explaining the heterovalent trace-element partitioning in

minerals.

4.6.4.3 DFT Solution Energies

We next consider DFT solution energies for the incorporation of trace elements in CaO,

as shown in Figure 4.16(b). Note again that the solution energy for each heterovalent

substitution was calculated using equation (4.28). The variation of the DFT solution

energies of the homovalent and heterovalent substitutions at the two lattice sites of

diopside is also shown in Figure 4.18. As we have seen earlier in Figures 4.7, 4.8 and

4.9, the variation of the +2 solution energies with dopant size has a similar shape to

that of the corresponding relaxation energies with a minimum at the radius of the Ca2+
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FIGURE 4.18. DFT relaxation energies of homovalent (+2) and heterova-
lent (+1 and +3) substitutions at (a) M2-site and (b) M1-site of diop-
side. b+(M1)/La3+(closest M2) and b+(M2)/La3+(closest M1) are consid-
ered for monovalent substitutions at M1-site and M2-site, respectively.
b3+(M1)/Li+(closest M2) and b3+(M2)/Li+(closest M1) are considered for
trivalent substitutions at M1-site and M2-site, respectively. The computa-
tional details for the plane-wave DFT (GGA-PBE) simulation can be found
in Subsection 4.6.2.
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host cation. Roughly, it is also the case for the +1 and +3 curves, e.g., in Figures 4.10(c),

4.11(c), 4.12(c) and 4.13(c). It is important to keep in mind that the overall solution

energy depends not only on the defect energies, but also several other contributing terms.

Even though the calculated defect energy of a given trace element is lower at the M2-site

than at the M1-site of diopside, a cation may substitute for Ca rather for Mg due to the

contribution of these extra terms.

For a given trace element at a particular lattice site, the exchange-reaction mecha-

nism that yields the lowest solution energy should be considered. As stressed previously,

exploring all the possibilities theoretically is not trivial. Furthermore, comparing solution

energies for different reaction mechanisms can be problematic due to different energy

terms contributing to each reaction. According to the classical simulation of Purton

et al.,31 a reaction mechanism involving the association between the dopant and its

corresponding charge-compensating defect tends to have low solution energy, for example,

the reactions b3+(M1)/Na+(M2) and b3+(M2)/Na+(M2) give the lowest solution energies

for trivalent substitutions at the M1-site and M2-site of diopside, respectively.

4.6.5 Implications for Trace-Element Partitioning

In the first section, we have shown that it is possible to explain trace-element partitioning

in terms of an exchange reaction between host and trace-element minerals and their

corresponding melt species, e.g., in equation (4.8) for the incorporation of a b2+ trace

cation in forsterite or

bO(L)+CaMgSi2O6(Di)⇐⇒CaO(L)+bMgSi2O6(Di), (4.31)

for a b2+ trace element substituting for a Ca2+ host cation at an M2-site of diopside.

Hence, the partitioning behaviour of b2+ in diopside links directly to the solution energy

of reaction (4.31). In the literature, the local environment of the cations in the binary

oxides is often assumed to be identical to that in the melt in order to compare computed

solution energies with experimentally observed partition coefficients conveniently. This

is definitely oversimplified since the composition and the structure of the melt phases

play a vital role in controlling the trace-element partitioning behaviour between minerals

and melts.255–262,283

The variation of experimental partition coefficients of +1, +2 and +3 trace elements

in diopside plotted against cation radius is shown in Figure 4.1(b). As the partition

coefficient Db is the ratio of crystal to melt concentration, the greater is the partition

coefficient, the greater is the preference of the trace element b for the crystal. The
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variation of the partition coefficients for an isovalent cation series with dopant size

shows the optimum radius close to the size of the host cation.192 The curvature of the

plots tends to increase with increasing charge, i.e., the +3 curve is tighter than the +2 and

+1 curves.33 This behaviour can also be observed in the plots of solution energies, e.g., in

Figures 4.9, 4.12(c) and 4.13(c). Where substitution can occur at several lattice sites, a

series of overlapping curves will be observed for each isovalent series.219 In addition to

the trace-element incorporation in the bulk of a given solid, Pinilla et al. 284 have also

pointed out that the adsorption and incorporation of trace elements at the interfaces

also play a vital role when examining the partition coefficients. Incorporation of large

trace-element cations may occur more preferentially at the interfaces than in the bulk of

a mineral, leading to higher partition coefficients than would have been expected from

predictions.284

However, calculated solution energies cannot directly be compared with experimental

partition coefficients for several reasons. Firstly, finite-concentration effects have not

been considered or have even been ignored when evaluating defect energy using the

two-region approach. Secondly, these simulation techniques do not take the nature of

the melt phases into account explicitly. Hence, the variation of the solution energies for

heterovalent substitutions does not always reflect that of their experimentally observed

partition coefficients.173 Crystal chemistry also has a great impact on trace-element

partitioning behaviour. For instance, both Mg2+ and Ca2+ can occupy the M2-site of the

clinopyroxene diopside crystal occurred naturally or synthetically.173 This results in

a shift of the +3 curve’s minimum to a smaller cation radius, and the +3 cations are

more soluble at the M2-site. The experimental study of Wood and Blundy 192 shows

that the optimal ionic radius for the M2-site in diopside decreases with increasing Ca2+

content and decreasing Al3+ content of the clinopyroxene composition. We, therefore,

make brief comments on the computational techniques for studying the incorporation of

trace elements in solid solutions rather than end-member minerals and for predicting

partition coefficients in the following subsection. The direct simulation of trace-element

partition coefficients will also be discussed briefly.

4.6.6 Brief Comments on Solid Solutions and Direct Simulation
Technique

van Westrenen et al.251,285 have previously extended lattice-static simulations using

the Mott-Littleton two-region approach for modelling defects, similar to those outlined
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above, of the pyrope (Py–Mg3Al2Si3O12) and grossular (Gr–Ca3Al2Si3O12) garnet end

members to calculate the energetics of trace-element incorporation in pyrope-grossular

solid solutions.250 The thermodynamic properties were computed using two different

approaches: (i) a mean-field approach assuming the presence of one type of hybrid X -site

with in-between characteristics of pure Mg2+ and Ca2+ X -sites, and (ii) a discrete model

assuming explicit two cation sublattices of Mg2+ and Ca2+ X -sites. Numerical results

have been compared with a wide range of experimental garnet-melt trace-element parti-

tioning data at high temperatures and pressures in order to understand the controlling

factors of the trace-element partitioning into solid solutions. They have found that the

hybrid approach is inadequate to explain the partitioning behaviour of trace elements

due to local distortions of polyhedra in the garnet structure which are averaged out. Inter-

estingly, the results obtained from the discrete model show that trace elements are more

soluble in Py50Gr50 than in each of both end-member compounds mainly due to the local

ordering in the garnet structure. Consequently, large trace cations may substitute for

Mg2+ and small dopants for Ca2+ in Py50Gr50. The calculated solution energies provide

successfully an account of the experimentally observed anomalous partitioning behaviour

of trace elements along the pyrope-grossular join.195 Generally, successful simulation of

effects due to non-ideality in solid solutions will provide more realistic and more accurate

comparisons between computational results and experimental trace-element partitioning

data on natural systems.173

According to, e.g., Kanzaki 286 and Purton et al.,225 solely enthalpies of substitution in

the dilute limit in each phase for mineral-melt trace-element partitioning are considered,

and entropic contributions have been neglected entirely. This means that the nature of

the melt species has been completely ignored. In our group, however, we have performed

direct simulation based on Monte Carlo (MC) simulations in the semi-grand canonical en-

semble (NPT), which determines chemical potential differences and thus gives partition

coefficients directly.127,173,287 The simulation technique proves very useful for studying

the phase diagrams of ceramic oxides and minerals.184,288,289 Using classical potentials

of Lewis and Catlow,74 calculated trace-element partition coefficients Db in solid and

melt phases of CaO vary over more than an order of magnitude for a wide range of trace

cations. Unfortunately, there are no direct experimental data for comparison. However,

the calculations reproduce the shape of an Onuma curve with an optimal radius close

to the cation radius of the Ca2+ host cation. Again, the calculated partition coefficients

can also fit the Brice 34 equation (4.13) to obtain an effective site Young’s modulus, YCa.

Nevertheless, the resulting fitted value of YCa is significantly larger than that of the
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crystal Young’s modulus.

4.7 Conclusions

Understanding the partitioning behaviour of trace elements in minerals and melts is

crucial for mineralogists and igneous geochemists. According to a many experimental

studies, several key factors control the partitioning of trace elements between minerals

and melts. The trace-element partitioning processes depend absolutely on temperature

and pressure. According to the Goldschmidt rules, another primary control on partition-

ing is the valence and cation radius mismatch between the dopant and host cations.

Importantly, structures and compositions of the solid and melt phases also play a vital

role in the trace-element partitioning between the two co-existing phases. The adsorp-

tion and incorporation of trace elements at interfaces must also be considered, as large

trace-element cations may occur more preferentially at the interfaces than in the bulk

of a solid mineral. Oxygen fugacity determines also the partition coefficients of trace

elements with various oxidation states. For a few decades now, the influence of those

controlling factors on trace-element partition coefficients for different minerals over a

wide range of temperatures and pressures has extensively been studied. The variation of

experimental coefficients with dopant size for an isovalent cation series at a given lattice

site of a crystal of interest shows an approximately parabolic curve with a maximum

occurring at an ionic radius close to the host cation. Such a partitioning curve is so-called

an Onuma diagram. The curvature of an Onuma diagram tends to become tighter with

increasing valence. The overlap of multiple curves for each isovalent species can be

observed in crystals with several lattice sites available for substitutions.

Different thermodynamic approaches can explain the trace-element partitioning

behaviour in solid minerals and melts. A partitioning process can be viewed as either

a fusion reaction of a fictive trace-element mineral component or an exchange reaction

between host and trace-element mineral components and their corresponding melt

species. In both approaches, partitioning coefficients can be derived from the equilibrium

constants, which link directly to the change in Gibbs energy of those reactions. By making

several assumptions, the changes in Gibbs energy for substitution/exchange reactions

can be approximated by lattice strain energies in the solid phase. Computer simulation

based on lattice statics and dynamics enables us to calculate the relaxation energies,

equivalent to the strain energies, for the trace-element substitutions in certain minerals.

A lattice strain model can explain roughly the variation of these strain (relaxation)
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energies with ionic radius, e.g., the models of Nagasawa 237 or Brice.34

Using the model of Brice,34 Blundy and Wood 33 have proposed an elastic lattice

strain model to describe the variation of experimental partition coefficients Db with ionic

radius rb, i.e., an Onuma curve. Although the simple strain model of Blundy and Wood 33

appears to explain well the Onuma curve for an isovalent series, describing strains using

the equation of the Brice 34 model is found to be inadequate and oversimplified. In this

model, the poor definition of lattice strain arises mainly from the simplifications made in

the formulation for the lattice strain energy as a function of ionic radius. Additionally, the

Brice 34 model employs continuum mechanics to study the lattice’s structural deformation

microscopically, whereas the lattice strain due to the incorporated defects is strongly

non-continuous. Furthermore, the strain energy expression is derived by assuming that

the crystal of interest is elastically isotropic; hence, it does not give a complete description

of the overall lattice strain since non-radial strains are not considered explicitly. Only one

Young’s modulus is used to describe lattice strains in the model of Brice,34 which seems

very unrealistic. Both shear and bulk moduli should be included in the expression to

describe strains more fully. Lattice strains also depend greatly on the local environment

of the lattice site, which the model cannot sufficiently probe. The use of the fixed ionic

radii derived by Shannon 176 is questionable as a given ion’s ionic radius varies from

crystal to crystal and lattice site to lattice site, depending mainly on its local environment.

And more importantly, the simple strain model of Blundy and Wood 33 underplays the

role of the melt phases.

In this chapter, we have comprehensively investigated the calculated defect, relax-

ation and solution energies of homovalent (+2) and heterovalent (+1 and +3) substitutions

in lime (cubic CaO) and diopside (CaMgSi2O6) minerals using classical force-field based

and plane-wave DFT simulations; therefore, a direct comparison between the numer-

ical results obtained from the two computational approaches has been made, and the

quantum-mechanical effects such as the crystal-field and ligand-field stabilisation effects

have explicitly been included in the DFT calculations. In contrast to many previous

theoretical studies, our calculations are based on the periodic supercell approach rather

than the Mott-Littleton method125 for modelling the point-defect formation in the crys-

tals. Using the supercell approach, one can explicitly take the concentration of the point

defects (or dopants) into account, and the temperature (or pressure) dependence of the

defect thermodynamics can be observed. We observed that the magnitudes and trends

of the three defect thermodynamic quantities calculated using the classical simulation

are in reasonable agreement with those obtained from the DFT method for homovalent
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substitutions in CaO and diopside. However, although the trends of the thermodynamic

quantities obtained from both computational approaches for heterovalent substitutions

are in good agreement, their magnitudes might significantly differ, potentially due to the

more significant differences in the computed absolute energies from the two different

methods.

As mentioned above, the strain energies for incorporating trace-cation defects into

minerals can be estimated by the computed relaxation energies obtained from classical

and first-principles computer simulation techniques based on lattice statics and dynamics

outlined in Chapter 2. For homovalent substitutions, analogously to the Onuma diagram,

the dependence of the calculated relaxation energies on ionic radius is approximately
parabolic, with a minimum occurring at cation radii close to that of the host cation.

The curvature varies from site to site, reflecting roughly their relative compressibilities.

We have shown that the simple lattice strain model of Brice34 can roughly describe

the variation of those relaxation energies with cation radius. However, the relaxation

(and also defect) energies for the incorporation of some open-shell cations, e.g., Mn2+,

Fe2+ and Co2+, deviate slightly from the prediction by the Brice model, indicating the

artefact of using the invariant and unrealistic cation radii in the lattice strain model.

Apart from the relaxation energies, the defect formation and overall solution energies

for the substitution reactions could well be used to explain the partitioning behaviour of

homovalent trace elements in solid minerals.

However, quantifying the partition coefficients and calculating the thermodynamic

properties of heterovalent substitutions prove much more complicated due to many pos-

sible charge-balancing mechanisms. These affect the activity-composition relationship

and the energetics directly. Possible mechanisms often involve the simultaneous incorpo-

ration of two heterovalent cations into a crystal. In those cases, the lattice polarisation

arising from charged defects must be considered explicitly. Thus, the use of a single

effective Young’s modulus in the model of Blundy and Wood 33 to describe the lattice

strain due to multiple heterovalent defects in all the previous studies is ambiguous.

Crystal chemistry is also essential when studying the trace-element partitioning be-

haviour in complex natural systems, e.g., solid solutions. A computational technique

based on Monte Carlo (MC) simulations, where the characteristics of the melt phases

are taken into account explicitly, can be used to calculate partition coefficients and make

more realistic comparisons with those observed experimentally. However, advances in

experimental and computational techniques are still required to thoroughly investigate

the partitioning behaviour of trace elements in minerals and melts.
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5
EXPLORING NON-ARRHENIUS REACTION RATES IN

SOLID-STATE MATERIALS

The main focus of this chapter is to explore the possible factors that can give

rise to the deviation from Arrhenius-like behaviours in solid-state inorganic

catalysis based on the concept of the macromolecular rate theory (MMRT) to

gain a fuller understanding of both types of catalysis through a unified approach. We

first briefly discuss chemical catalysis and the classical models that account for the

variation of catalysed reaction rates with temperature. We then review the application

of the MMRT in describing the non-Arrhenius behaviour of enzymatically-catalysed

reaction rates before discussing the potential of using the MMRT approach to explain

also the non-Arrhenius behaviour of reactions and processes catalysed by solid-state

materials. Next, based on the MMRT concept, we explore the non-Arrhenius behaviour of

reactions catalysed by zeolitic materials, in particular, and possible factors that control

the temperature dependence of those zeolite-catalysed reaction rates. Lastly, we will show

the calculations of temperature-dependent free energies of activation and diffusivity for

diffusion processes in MgO and zeolites using various computer simulation techniques

based on both classical and ab initio DFT approaches, including quasiharmonic lattice

dynamics (QLD), molecular dynamics (MD) and metadynamics. We will comment also on

the possible application of ab initio metadynamics simulations for accurately examining

the temperature dependence of the activation free energy of zeolite-catalysed reactions.
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FIGURE 5.1. Schematic plot of the Arrhenius equation.

5.1 Catalysis and Chemical Reaction Rates

The term ‘catalysis’ was firstly introduced by Oswald in 1984: “Catalysis is the accelera-

tion of a slow chemical process by the presence of a foreign material”.35 Microscopically, a

catalyst accelerates a considerably slow chemical reaction by attaching itself or interact-

ing with the reactant species to lower the activation energy of the process. In this regard,

the activation energy can be defined as the minimum amount of energy consumed by the

reactant(s) to form the product(s). The classical Arrhenius equation has long been used

to explain the rate of a chemical reaction in terms of the rate constant as a function of

the activation energy Ea and temperature T,37 which writes

k = A exp
(
− Ea

RT

)
, (5.1)

where k is the rate constant, A denotes the pre-exponential factor which is the high-

temperature limit of k, and R refers to the gas constant. Ea is empirically assumed to be

independent of temperature.

To illustrate the temperature variation of the rate constant k, the Arrhenius equation

(5.1) is usually plotted in the logarithm scale, ln(k), as a function of reciprocal tempera-

ture, 1/T. The plot results in a straight line with a slope of −Ea/R and an intercept of

ln(A), as shown in Figure 5.1. The transition-state theory (TST), aka Eyring’s absolute

rate, on the other hand, is an extended form of the ordinary Arrhenius equation (5.1),

which expresses the rate constant k in terms of the change in Gibbs energy of activation
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∆G‡, i.e., the difference in Gibbs energy of the transition-state and ground-state species,

k = κkBT
h

exp
(
−∆G‡

RT

)
= κkBT

h
exp

(
∆S‡

R

)
exp

(
−∆H‡

RT

)
,

(5.2)

where κ represents the transmission coefficient. ∆S‡ and ∆H‡ denote the changes in

entropy and enthalpy of activation.290,291 It is worth noting that the transmission coeffi-

cient κ has contributions from quantum mechanical effects, e.g., dynamical recrossing

and tunnelling, and deviations from the distribution of relevant states in equilibrium.292

κ is generally temperature-dependent but is often assumed to equal 1 for simplicity.

5.2 Non-Arrhenius Behaviour of Enzyme Rates and
Macromolecular Rate Theory

According to the absolute rate law, i.e., equation (5.2), ∆S‡ and ∆H‡ are often assumed

to be independent of temperature. This assumption works adequately for a wide range of

relatively simple chemical reactions. Hence, one can determine ∆G‡ very accurately for

reactions involving small molecules in the liquid or gas phases through computation.293

Many research studies, however, suggest that the assumption of the temperature inde-

pendence of these parameters is not valid for various chemical systems and that the

temperature variation of each of the parameters is quite involved.38,292,294 The recent

study of Roy et al.,295 for example, shows clearly that the value of ∆S‡ for enzymatically

catalysed reactions is significantly sensitive to temperature as initially proposed more

than 70 years ago by Kavanau.296

For some enzyme-catalysed reactions, the curvature of the rate with reciprocal tem-

perature can be negative. This gives rise to an optimal temperature (Topt), as shown

in Figure 5.2.294,297 In the literature, the negative curvature of the temperature vari-

ation of enzymatic rates has been explained by the combination of the Arrhenius-like

behaviour in the temperature region below Topt and the fall of the reaction rate in the

temperature region above Topt, which is due to enzyme denaturation and/or aggrega-

tion.39 Nonetheless, many studies demonstrate that the aggregation or denaturation of

enzymes is somewhat inadequate to account for the decrease in enzymatic rates above

Topt.38,298 For instance, Feller and Gerday 299 illustrate that the reaction rates catalysed

by some psychrophilic (or cold-adapted) enzymes decrease above Topt in the absence of

the aggregation, denaturation or unfolding of those enzymes.
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FIGURE 5.2. Schematic plot of some biologically catalysed reaction rates in the
logarithm scale as a function of 1/T.

Hobbs et al. 39 were the first to propose a theoretical model that incorporates the

temperature dependence of the terms ∆S‡ and ∆H‡ into the Eyring’s absolute rate

equation (5.2), where the rate constant k is expressed as a function of the (non-zero)

change in heat capacity of activation at constant pressure, ∆C‡
p, to describe more fully

the temperature variation of biochemically catalysed reaction rates in the absence

of enzyme aggregation and denaturation. The hypothetical model was later known

as the ‘macromolecular rate theory, MMRT’.297 The MMRT equation is acquired by

expanding the absolute rate equation (5.2) using the temperature-dependent expression

of ∆G‡(=∆H‡−T∆S‡) in terms of ∆C‡
p using two fundamental thermodynamic relations:

∆H‡ =
∫ T

T0

T∆C‡
pdT, and

∆S‡ =
∫ T

T0

∆C‡
p

T
dT;

hence,

∆G‡ =
[
∆H‡

T0
+∆C‡

p (T −T0)
]
−T

[
∆S‡

T0
+∆C‡

p ln
(

T
T0

)]
, (5.3)

where ∆H‡
T0

and ∆S‡
T0

are the changes in enthalpy and entropy of activation at an

arbitrary reference temperature T0, respectively. Using equations (5.2) and (5.3), the
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MMRT equation is written as

ln(k)= ln
(

kBT
h

)
−

[
∆H‡

T0
+∆C‡

p (T −T0)
]

RT
+

[
∆S‡

T0
+∆C‡

p ln
(

T
T0

)]
R

. (5.4)

By definition, the difference in heat capacity between the ground-state reactant

and the transition state, ∆C‡
p, leads directly to the temperature dependence of the

activation parameters ∆H‡ and ∆S‡. Constant-pressure heat capacity Cp, according to

the fundamental thermodynamic relation, is expressed as

Cp =
(
∂H
∂T

)
P
= T

(
∂S
∂T

)
P

. (5.5)

The activation heat capacity can be obtained by

∆C‡
p =

(
∂H
∂T

)TS

P
−

(
∂H
∂T

)GS

P
= T

[(
∂S
∂T

)TS

P
−

(
∂S
∂T

)GS

P

]
, (5.6)

where ‘TS’ and ‘GS’ denote the transition and ground states, respectively. Furthermore,

the constant-pressure heat capacity Cp relates directly to the fluctuations in enthalpy

and entropy:

Cp = 〈δH2〉
kBT2 = 〈H2〉−〈H〉2

kBT2

= 〈δS2〉
kB

= 〈S2〉−〈S〉2

kB
.

(5.7)

The change in heat capacity of activation is thus given by

∆C‡
p = ∆〈δH2〉‡

kBT2 . (5.8)

When ∆C‡
p is equal to zero, equation (5.4) reduces to the ordinary absolute rate

equation (5.2). The MMRT model emphasises that the variation of enzymatic rates with

temperature is explicitly linked to the parameter ∆C‡
p. The MMRT equation implies

further that the magnitude (absolute value) of the term ∆C‡
p can alter Topt.38,298 Topt

can then be obtained by taking the first derivative of the absolute rate equation (5.2) and

setting that first derivative to zero to find the maximum:

Topt =−∆H‡

R
=−

∆H‡
T0

+∆C‡
p(Topt −T0)

R
, and (5.9)

Topt =
∆C‡

pT0 −∆H‡
T0

∆C‡
p +R

≈ T0 −
∆H‡

T0

∆C‡
p

for
∣∣∣∆C‡

p

∣∣∣≫ R. (5.10)
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FIGURE 5.3. Effect of the sign of ∆C‡
p on the temperature variation of chemical

reaction rates modelled using the macromolecular rate theory (MMRT)

Consequently, the value of ∆C‡
p itself tunes Topt which determines the temperature-

dependent behaviour of an enzyme-catalysed rate.

With the assumption that the parameters ∆S‡ and ∆H‡ are dependent of temperature

in the MMRT approach, i.e., when ∆C‡
p ̸= 0, the hypothesis can account for the negative

curvature in several enzymatically catalysed reaction rates in the absence of the enzyme

dysfunction. The effect of the sign of ∆C‡
p on reaction rates, according to the MMRT

equation (5.4), is illustrated schematically in Figure 5.3. Practically, to extract ∆C‡
p of an

enzyme reaction by fitting the experimental kinetic data to the MMRT equation (5.4),

the rate constant in the logarithm scale ln(k) needs to be firstly attained as a function of

temperature T.

For instance, the MMRT fitting of a reaction rate catalysed by an acid phosphatase

observed by Peterson et al.300,301 yields ∆C‡
p = −3.4±0.3 kJ mol−1 K−1, as shown in

Figure 5.4.38 The obtained kinetic data are so-called ‘zero-time’, implying that the data

are independent of enzyme denaturation. The dataset can easily be taken from the source

using the WebPlotDigitizer online tool.302 With the same protocol, ∆C‡
p of −2.8±0.2 and

−3.6±0.3 kJ mol−1 K−1 can be attained for reactions catalysed by adenosine deaminase

and β-lactamase, respectively. Generally, studies have shown that the negative curvature

of various experimentally-observed enzyme-catalysed rates corresponds to negative

values of ∆C‡
p ranging from -1 to -12 kJ mol−1 K−1.38 Previously, research studies have
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Figure 5.4: MMRT equation fitted to kinetic data of a reaction catalysed by acid phos-
phatase where enzyme denaturation is negligible and its associated change in heat
capacity of activation.

suggested that the catalytic activity of an enzyme is likely to be connected with its heat

capacity in some way;38,40 the huge mass of enzymes is related to their catalytic power,

and the mass is directly related to the heat capacity, i.e., heavier enzymes possess higher

heat capacities.303 Possible explanations for the magnitudes and minus sign of ∆C‡
p for

the enzymatic rates were not uncovered until much later.

Wolfenden and Snider 304 showed that the value of ∆G‡ of enzymatically catalysed

reactions is much lower compared to the non-catalysed analogues, arising from the

tighter binding mode of the enzyme-substrate complex at the transition state. This

results eventually in a considerable increase in enzymatic reaction rate. Similarly,

one can expect that the value of ∆C‡
p for an enzyme-catalysed reaction should also be

negative as a direct consequence of a tighter binding mode of the transition-state complex

compared to the more structurally flexible enzyme-substrate complex in the ground state,

as shown in Figure 5.5.

Hobbs et al. 39 provide two possible explanations for a large negative ∆C‡
p. Firstly, in

terms of statistical thermal physics, a very tight binding mode of the transition state

complex and a decrease in the number of available conformational states compared to

those in the ground state give rise to such a large negative ∆C‡
p. Secondly, from the

perspective of the transition state theory, the transition state of the enzyme-substrate

complex has fewer low-frequency vibrational and rotational modes than those of the
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Figure 5.5: Schematic diagram of the change in heat capacity as an enzymatically
catalysed reaction proceeds.

ground-state complex resulting in a large negative ∆C‡
p.

Apart from state-of-the-art experimental techniques, computer simulation also plays

a central role in understanding the temperature variation of enzyme catalysis. Currently,

several studies using advanced experimental methods and sophisticated computer simu-

lation have been performed to elucidate reaction mechanisms of biologically catalysed

reactions and the roots of such highly efficient catalytic power.305–309 In addition, the

combination of modern experimental methods and advanced computer simulation tech-

niques are being adopted to discover the connection between catalysis, dynamics, and

adaptations of enzymes over a wide range of temperatures.295,310,311 From a microscopic

point of view, the temperature does, of course, affect enzyme dynamics directly. However,

the link between the dynamics and catalysis of enzymes has until now been open to

discussion.292,312

Previously, van der Kamp et al. 40 were the first who attempted to obtain ∆C‡
p from

equations (5.5) and (5.6) by extensive atomistic molecular dynamics (MD) simulations.

This study reveals that the transition-state ensemble fluctuates less than the ground-

state ensemble, leading to a large negative value of ∆C‡
p. The contribution from the

tighter binding mode of the enzyme’s active site at the transition state is not solely

responsible for the large negative ∆C‡
p, and one also has to take into account the other

parts in the enzyme structure. More importantly, the computed ∆C‡
p is in good agreement
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FIGURE 5.6. Schematic illustration of the dependence of the magnitude of the
change in heat capacity of activation on the degree of isotopic substitutions
in the substrate species in an enzyme-catalysed reaction.

with that obtained by fitting the kinetic data to the MMRT equation.39 A very recent

study by Winter et al. 42 also reveals the complex relationship between enzyme-substrate

interactions and the dynamics of the protein as a whole. They have found that the

protein dynamics and ∆C‡
p can systematically be mapped to particular enzyme-substrate

interactions. The study provides essentially an overall picture of how changes in substrate

binding affect global changes in dynamics and structural flexibility extending throughout

the whole protein.

Additionally, Jones et al. 41 revealed a possible connection between the change in

heat capacity of activation and the frequency of vibrational modes of enzymatic reactions

through the means of isotope effects experimentally and computationally. The study is

based on the premise that substituting a lighter atom with its heavier isotope gives rise

to a decrease in vibrational frequency. They found that ∆C‡
p is significantly sensitive

to the isotopic substitution. They emphasised further that the magnitude of ∆C‡
p is

progressively influenced by the increase in the degree of isotopic substitution, i.e., ∆C‡
p

becomes less negative when the degree of isotopic substitution is higher, as shown in

Figure 5.6. Furthermore, they demonstrated that even a very small isotopic change in

the substrate can cause an enormous change in the temperature variation of biologically

catalysed reactions.
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The two research studies mentioned above are prime examples for investigating the

temperature variation of enzyme rates based on the MMRT approach experimentally

and theoretically. However, the discussion of the temperature dependence and the non-

Arrhenius behaviour of enzymatically catalysed reaction rates is still ongoing. Two recent

critical review papers on the implications of MMRT by Arcus et al.298,313 provide the

detailed underlying theoretical frameworks, experimental and computational evidence,

and also a consensus on how these data relate to the thermal adaptation of enzymes or

enzyme evolution in general.

In summary, macromolecular rate theory is one of the elegant approaches for explain-

ing the non-Arrhenius behaviour of enzyme-catalysed rates where enzyme aggregation

and denaturation or unfolding are negligible and it gives insights into the fundamental

origins of enzymes’ catalytic performance. With this concept, it can successfully be used

as the basis to understand the directed evolution (thermoadaptation) of a de novo enzyme

and to further computationally design better enzymes43,44 as the research area of the

computational design of novel enzymes remains active.314–316 However, the temperature

variation of Cp for the enzyme complexes is still open to question.298

5.3 Similarities between Enzymes and
Heterogeneous Catalysts

The previous section shows that changes in magnitude and number of thermally ac-

cessible low-frequency vibrational modes are a possible cause of such negative values

of ∆C‡
p of enzymatic reactions. The phenomenon plays a vital role in the temperature

dependence of their reaction rates. However, there are strong parallels in materials and

inorganic chemistry, i.e., heterogeneous catalysis, which still need to be explored.

In a chemical reaction catalysed by an inorganic solid-state catalyst, the catalytic

activity takes place at the surface of the solid. Consequently, a solid-state catalyst with

a larger surface area has better catalytic performance than the perfect single crystal.

Hence, fine powders and micro- or nanoporous materials are well recognised as highly

efficient solid-state catalysts. Even though the characteristics of reaction mechanisms

or the prevalent methods used to study heterogeneous and homogeneous catalyses are

very distinct, the kinetics of both systems can fundamentally be explained by the same

principles.36,46,317

Zeolitic materials are the prime example of heterogeneous catalysts. They might

share several common catalytic features with enzymes, as we shall see later. Zeolites are
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microporous aluminosilicate materials used as ion exchangers, adsorbents, molecular

sieves and gas separators. More importantly, variants of zeolitic compounds can be

used as highly efficient solid-state catalysts, mainly in petrochemical industries.46 For

instance, they prove to be very effective in accelerating the processes of methanol-to-

olefins (MTO) or methanol-to-hydrocarbons (MTH) conversion.318

The fact that catalytic activities of a zeolite occur at an active catalytic centre within

the cavity of its micro-sized pore is a striking resemblance to those occurring within

the active site of an enzyme. During a chemical reaction taking place within micron-

sized voids in a zeolite framework, the transition-state complexes and reactive transient

species are solvated or stabilised via weaker van der Waals and other stronger electro-

static interactions to decrease the activation energy. These solvation or stabilisation

effects influence the catalytic power of the zeolitic framework directly. In this particular

way, zeolites could be viewed as rigid variants of enzymes used for industrial purposes

involving chemical processes at high temperatures.46 However, zeolite catalysis is be-

lieved to be less effective and less selective than enzyme catalysis due to the rigidity of

the zeolitic frameworks and the nature of reaction mechanisms.45

Although zeolites are rigid porous materials, all porous frameworks nevertheless

exhibit some degree of flexibility.319 For example, zeolite frameworks can be deformed

upon heating320 or during adsorption at high pressures of guest molecules.321,322 In

addition, several research studies have found that even a small degree of framework

flexibility results in interesting phenomena, including negative thermal expansion323–325

and special diffusion and transport behaviour.326–329 Of course, framework flexibility

affects their vibrational properties.330 Therefore, the characteristics of zeolites depend

greatly on their framework flexibility which directly affects the chemistry and structural

topology of the materials. For instance, Bereciartua et al. 331 have designed and synthe-

sised novel flexible zeolites to use as gas separators. Several computational studies have

shown that allowing zeolitic frameworks to possess some degrees of flexibility using ad
hoc potential force fields can remove discrepancies between experimentally observed

data and theoretical predictions.332

To date, several recent review articles show clearly that the zeolite research commu-

nity is still very active, e.g., Li et al.,333 Gao et al.,334 Clayson et al.,335 Li and Yu,336 Lu

et al.,337 and Liu and colleagues.338 All reviews emphasise the importance and recent

progress of developing experimental and computational techniques for gaining an in-

depth understanding of the structure-function relationship of zeolitic materials. Due to

the cumulative development in this research area, modern researchers can systemati-
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cally design and synthesise novel and more efficient functionalised zeolitic materials for

their intended purposes beyond trial and error approaches.339

5.4 Exploring Non-Arrhenius Zeolite-Catalysed
Reaction Rates

The main focus of this section is to find parallels between the rates of reactions catalysed

via enzymes and zeolite frameworks based on the concept of macromolecular rate the-

ory (MMRT). Previously, a number of experimentally observed temperature-dependent

kinetic data of the reaction rates catalysed by zeolitic materials have been reported.

Interestingly, many of those kinetic data show apparent deviations from the classical

Arrhenius behaviour. Here, we consider solely the kinetic data that yield negative val-

ues of ∆C‡
p from the MMRT fittings, i.e., Arrhenius plots of zeolite-catalysed kinetics

that exhibit negative curvatures. This section concerns particularly the non-Arrhenius

behaviour of a wide range of chemical reactions catalysed by different zeolitic materials.

For a given surface reaction, three elementary steps occur: (i) the reacting molecule

adsorbs on an active site at the surface, (ii) the surface reaction undergoes and (iii)

the product desorbs from the active site leaving the empty site for a new catalytic

cycle.317 At low temperatures, the rate-determining step is the desorption process,

whereas the adsorption step limits the kinetics at high temperatures. This implies

that the energy barrier of the desorption is higher than that of the adsorption at lower

temperatures and otherwise in the higher-temperature region. In other words, the

reactant molecules diffuse more rapidly at higher temperatures; hence, the occupation of

pores with adsorbed molecules is lower in the steady-state to further react. Consequently,

the rate is controlled or limited by diffusion at high temperatures. The traditional

explanation of the negative curvature of the variation of ln(rate) with 1/T for chemical

reactions over zeolitic frameworks is thus due to the change in the rate-determining step,

and the activation barriers in the high-temperature and low-temperature regions are

reported independently.

Diffusion controls have been used to explain the negative curvature of the Arrhenius

plots for various chemical reactions over a wide range of zeolitic frameworks, such as the

dehydrogenation of propane over a Na-exchanged Fe-ZSM-5 zeolite,49 the oxidation of

nitric oxide over a Cu-SSZ-13 framework50 and the reduction of NOx by ammonia over an

H-AFX zeolite.51 Additionally, a change in the property, e.g., structure and deactivation,

of the catalytic centre (active site) with temperature could also be the origin of the
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FIGURE 5.7. Arrhenius plots of methylation reactions of ethene, propene and
n-butene with methanol into propene, butene and pentene, respectively,
catalysed by H-ZSM-5 zeolite.340,341 Different marker styles are used for
the three different methylation reactions.

negative curvature of the temperature variation of many zeolite-catalysed reactions,

e.g., the ammonia oxidation over a Cu-SSZ-13 zeolite52,53 and the reduction of NOx by

ammonia over an H-AFX zeolite.51,54 On the contrary, Modén et al.,55 Lee,56 and Xie

et al. 57 have found that the negative curvature of the temperature variation of the nitric

oxide decomposition rate over Cu-ZSM-5 zeolites is purely due to kinetic effects rather

than the structural changes or deactivation of the Cu catalytic centres.

Nonetheless, several studies state clearly that the reason for the negative curvature

of the Arrhenius plots is not obvious for many zeolite-catalysed reactions, e.g., the hydroi-

somerisation of 3-methylpentane over a Pt-Y zeolite58 and the non-selective oxidation of

ammonia over Cu-SSZ-13 zeolites,52,53,59 as there is no direct evidence of the decrease in

rate (or activation energy) at high temperatures. As we have comprehensively discussed

earlier, based on the MMRT approach for explaining the non-Arrhenius behaviour of

enzyme rates, the deviation from the classical Arrhenius behaviour of those zeolite-

catalysed reaction rates might also be the direct consequence of negative values of ∆C‡
p.

Note again that a negative ∆C‡
p implies the tighter binding mode of the reactive complex

in the transition state compared to the ground state. We thus turn to investigate the

non-Arrhenius zeolite-catalysed reaction rates using the concept of MMRT.

Much experimental zeolite kinetic data have been published by Svelle and co-
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workers.340,341 These studies report the temperature variation of methylation reaction

rates of ethene, propene and n-butene with methanol converted into propene, butenes

and pentenes, respectively. All the methylation processes were catalysed by an H-ZSM-

5 acidic zeolite. The Arrhenius plots for the three reactions are illustrated in Figure

5.7. All three plots show slight deviations from the linearity as the classical Arrhenius

equation suggests theoretically. According to Svelle and co-workers,340,341 the change in

reaction mechanism due to the difference in the degree of selectivity towards the reacting

alkenes at higher temperatures accounts for the slight deviations from the Arrhenius

model. Despite the slightly non-linear Arrhenius plot, the activation energy for each

methylation reaction was extracted by a single linear fit. Remarkably, as the size of

the reactant molecule increases, the methylation reaction rate at a given temperature

becomes faster, i.e., the rates of methylation follow the order n-butene > propene >
ethene. The results are also in good agreement with those of Hill et al.,342 where the

rates of propene methylation are also higher than those of ethene methylation at the

same temperature.

The faster reaction rate of the n-butene methylation with methanol might be the

direct consequence of tighter confinement at the transition state than the methylation

reactions for the other two smaller alkenes. Several studies have previously shown that

tighter confinements at the transition states may result in a better catalytic perfor-

mance.343–346 Based on this concept, zeolitic frameworks with smaller pores are expected

to reduce the reaction energy barriers more efficiently and accelerate those activated

processes more effectively. For instance, the reaction rate of the esterification of acetic

acid with ethanol over an H-MFI zeolite is approximately 103 times faster than the same

reaction over an H-FER zeolite347 since the H-MFI framework is relatively denser and

has smaller pores compared to the H-FER framework. According to the Database of

Zeolite Structures,348 the purely siliceous MFI and FER frameworks have framework

densities (FDSi) of 18.4T and 17.6T per 103 Å3, respectively. Note that a T value indicates

the average number of silicon tetrahedral sites in the framework. Additionally, the

accessible volumes of the MFI and FER frameworks are 9.81% and 10.01%, respectively.

This is also the case for, e.g., the conversion of n-hexane into benzene over platinum-

exchanged K-L and K-Y zeolites,349 the decomposition of nitric oxide over Cu-ZSM-5

and Cu-Y zeolites,350 and the nitric oxide decomposition over Cu-MOR and Cu-SSZ-13

zeolitic frameworks.57 In all cases, the zeolitic frameworks that have higher T values

and smaller accessible volumes tend to yield faster rates for the same chemical reaction.

After fitting the kinetic data of the three alkene methylation reactions with methanol

170



5.4. EXPLORING NON-ARRHENIUS ZEOLITE-CATALYSED REACTION RATES

500 550 600 650 700

−10

−9

−8

−7

−6

−5

−4

ln
(k

)

∆C‡
p =-0.84±0.31 kJ mol−1 K−1

-0.53±0.18

-0.45±0.06

(a)

ethene
propene
n-butene

600 800 1000 1200
T (K)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

10
00

k

727 K

747 K

752 K

(b)

ethene
propene
n-butene

FIGURE 5.8. (a) Fitted kinetic data of ethene, propene and n-butene methylation
reactions catalysed by acidic zeolite H-ZSM-5 into MMRT equation and their
corresponding calculated ∆C‡

p in kJ mol−1 K−1. (b) Plots of predicted rate
constants for the three methylation processes as a function of temperature
and optimum temperatures are marked by arrows.
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catalysed by the H-ZSM-5 zeolite into the MMRT equation (5.4), the key thermodynamic

parameters ∆C‡
p and Topt can be extracted as shown in Figure 5.8. In Figure 5.8(a), the

magnitude of ∆C‡
p for the methylation of ethene with methanol is greater than those

of the other two larger alkenes, i.e., the smaller reacting alkene leads to the greater

magnitude of (negative) ∆C‡
p. The values of ∆C‡

p with the corresponding standard

errors for the methylation reactions of ethene, propene and n-butene with methanol are

-0.84±0.31, -0.53±0.18 and -0.45±0.06 kJ mol−1 K−1, respectively.

As mentioned earlier, ∆C‡
p for a given reaction indicates the loss of conformational

states and translational, vibrational and rotational modes in the transition state com-

pared to the ground state. Therefore, a larger negative value of ∆C‡
p for the ethene

methylation with methanol in the H-ZSM-5 zeolitic framework suggests a greater loss of

the vibrational and rotational degrees of freedom in the activated complex compared to

those when propene and n-butene are the reactants. As n-butene is more flexible and

has more conformers than propene and ethene, one might expect a greater difference

in the number of conformational states between the transition-state and ground-state

n-butene-methanol complex than those of the propene-methanol and ethene-methanol

complexes.

Figure 5.8(b) demonstrates that Topt decreases slightly with the increasing size of

the reacting alkene. The values of Topt for the zeolite-catalysed ethene, propene and

n-butene methylation reactions with methanol are 752 K, 747 K and 727 K, respectively.

Furthermore, the plots in Figure 5.8(b) may also provide a compelling link between the

predicted kinetic data and the change in entropy of activation ∆S‡. At Topt, the Gibbs

energy of activation ∆G‡ is almost entirely entropic. Strictly speaking, using equation

(5.3), the term ∆H‡ gets very close to zero at the optimum temperature and leaves

∆G‡ ≈−T∆S‡, hence ∆G‡ ≈−T(∆S‡ +∆C‡
p) all at Topt. Therefore, with the assumption

that the Gibbs energy of activation is completely entropic, the differences in rate are

based solely on entropic contributions. One might expect that the ratios of the rates at

Topt may also reflect conformational states of the molecules in the zeolites.

For example, in Figure 5.8(b), the ratio of the rates for the three alkene methylation

reactions with methanol within the H-ZSM-5 framework at Topt, i.e., the ratio of the

peak heights kethene : kpropene : kn−butene, is approximately 1.0:4.7:6.9. It suggests that

∆S‡ of the n-butene methylation is the greatest, and ∆S‡ of the ethene methylation is

the smallest amongst the three methylation reactions. This implies further that the

difference in the number of conformational states between the transition-state complex

of the methylation of n-butene with methanol and its ground-state complex is greater
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TABLE 5.1. MMRT kinetic parameters for reactions catalysed by MFI-type
zeolitic frameworks

Reaction Framework
∆C‡

p Topt
(kJ mol−1 K−1) (K)

Ethene methylation(a) H-ZSM-5 -0.84±0.31 752
Propene methylation(b) H-ZSM-5 -0.53±0.18 747
n-Butene methylation(b) H-ZSM-5 -0.45±0.06 727
Ethene methylation(c) H-MFI -0.64±0.51 499
Propene methylation(c) H-MFI -2.54±1.37 425
Propene-1-13C double-bond shifting(d) Silicalite-1 -1.76±0.50 355
(a)Svelle et al.,340 (b)Svelle et al.,341 (c)Hill et al.,342

(d)Arzumanov and Stepanov 351

than those of the propene-methanol and ethene-methanol methylation reactions. This is

also in line with the interpretation of the obtained ∆C‡
p’s mentioned above.

The acidic H-ZSM-5 zeolites used for the alkene methylation reactions belong to

the MFI framework type.348 Note that the detailed description of the notation used for

the zeolitic framework types can be found in Baerlocher and McCusker 348 and Bell.352

The MFI-type zeolites can be used as highly efficient catalysts for many petrochemical

reactions involving light hydrocarbons.353 Apart from the methylation reactions we

have discussed previously, the Arrhenius plots with negative values of ∆C‡
p for several

other chemical reactions over MFI-type zeolitic frameworks can also be observed. The

fitted activation parameters using the MMRT equation (5.4) for reactions catalysed by

MFI-type zeolitic materials are listed in Table 5.1.

Previously, Liu et al. 354 and Lei et al. 355 have reported the temperature-dependent ki-

netic data of the conversion reactions of n-pentane and neopentane (2,2-dimetylpropane)

over Pt-H-MOR zeolites. The Arrhenius plots of these conversion reactions of the two

pentane isomers are shown in Figure 5.9. For the two reactant isomers, the structure of

n-pentane is a long and thin linear chain, while that of the neopentane is more spherical;

hence, one can expect that neopentane is smaller (shorter) and less conformationally

flexible than n-pentane. As the structure of n-pentane is more flexible in terms of tor-

sional rotations about the single bonds, it has more conformational isomers and a higher

rotational entropy than neopentane.356 Similar to the previous case of the methylation

reactions of alkenes as discussed above, the conversion reaction rates of n-pentane are

expected to be slower than those of neopentane at similar temperatures over the same

zeolitic framework due to the tighter confinement in the transition state.
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FIGURE 5.9. Arrhenius plots of conversion reactions of neopentane and n-
pentane catalysed by Pt-H-MOR zeolites.354,355 Reaction rates are in mol
g−1 s−1 units.

Fits of the reaction rates of the neopentane and n-pentane conversion over Pt-H-

MOR zeolites to the MMRT equation (5.4) and their corresponding fitted parameters

∆C‡
p and Topt are shown in Figure 5.10. The fitted Topt of the neopentane conversion is

561 K, while Topt for the n-pentane conversion is 544 K. Again, the smaller negative

value of ∆C‡
p for the neopentane conversion over the Pt-H-MOR zeolite of -0.77±0.09 kJ

mol−1 K−1 implies a smaller loss of conformational states due to the formation of the

transition-state complex compared to the larger negative values of ∆C‡
p of -1.59±0.06 kJ

mol−1 K−1 for the n-pentane conversion reaction. Given that ∆G‡ is completely entropic

at Topt, the ratio of the peak heights is ca. 1.0:3.4. The peak ratio indicates that ∆S‡

of the n-pentane conversion reaction over the Pt-H-MOR zeolite is greater than that of

the neopentane conversion. Both the activation parameters ∆S‡ and ∆C‡
p suggest that

the conversion of n-pentane over the Pt-H-MOR framework shows a more significant

loss of conformational states due to the transition-state complex formation than that of

the neopentane conversion. The results agree well with those of the alkene methylation

reactions discussed earlier.

The recent review articles by, e.g., Shi et al.,360 Yeletsky et al.,361 and Maghrebi et
al.,362 have emphasised the importance of zeolite-catalysed isomerisation and conver-

sion reactions in various fields, including cosmetics and the production of bio-fuel and
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FIGURE 5.10. (a) Fitted kinetic data of neopentane and n-pentane conversion
reactions catalysed by Pt-H-MOR zeolites into MMRT equation and their
corresponding calculated ∆C‡

p in kJ mol−1 K−1. (b) Plots of predicted rate
constants for the two conversion processes as a function of temperature and
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TABLE 5.2. MMRT kinetic parameters for zeolite-catalysed isomerisation and
conversion reactions

Reaction Framework
∆C‡

p Topt
(kJ mol−1 K−1) (K)

3-Methylpentane hydroisomerisation(a) Pt-Y -0.89±0.54 586
n-Hexane conversion(b) Pt-K-L -1.48±0.54 776

Pt-K-Y -1.53±0.67 802
Neopentane conversion(c) Pt-H-MOR -0.77±0.09 561
n-Pentane conversion(d) Pt-H-MOR -1.59±0.06 544
n-Hexane hydroisomerisation(e) Pt-H-β -1.92±0.27 564
Isopropanol Conversion(f) Dealuminated H-Y -1.78±0.32 412
Toluene conversion(g) Y -0.81±0.05 954
Propene-1-13C isomerisation(h) Silicalite-1 -1.76±0.50 355
(a)Martin et al.,58 (b)Lane et al.,349 (c)Lei et al.,355 (d)Liu et al.,354

(e)van de Runstraat,357 (f)Triantafillidis and Evmiridis,358

(g)Anis and Zainal,359 (h)Arzumanov and Stepanov 351

petrochemicals. Apart from the propane conversion reactions, the MMRT kinetic parame-

ters of other isomerisation and conversion reactions over various zeolitic materials are

listed in Table 5.2. The curvature of the Arrhenius plots of all isomerisation/conversion

reactions listed in Table 5.2 is negative, with the values of ∆C‡
p ranging between ca. -0.7

and -2.0 kJ mol−1 K−1. Once again, these negative values of ∆C‡
p might be evidence of

the difference between the number of conformational states in the transition state and

that in the ground state.

The temperature variation of many oxidation-reduction reaction rates of nitrogen-

containing gases, including ammonia and nitrogen oxides, over various copper-based

zeolites show strong deviations from the classical Arrhenius behaviour. For example,

the temperature variation of the decomposition rates of nitric oxide over three different

Cu-based zeolitic frameworks taken from Xie et al. 57 is shown in Figure 5.11. The

negative convex of their Arrhenius plots has traditionally been explained by diffusion

controls50,51,363 or the deactivation of the Cu catalytic centres.52,53,59 However, Li and

Hall,350 Modén,55 Lee,56 and Xie et al. 57 show that the reversibility during temperature

cycling of these reaction rates represents pure kinetic effects, i.e., changes in the rate-

limiting step, and the decrease in reaction rate at higher temperatures is not definitely

due to the catalytic centre deactivation. In the absence of the deactivation of the Cu-

centres and no reaction-mechanism change in different temperature ranges, the MMRT

approach can also be applied to describe their non-Arrhenius behaviour. Table 5.3 lists
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TABLE 5.3. MMRT kinetic parameters for oxidation-reduction reactions of ni-
trogen oxides and ammonia catalysed by Cu-based zeolitic materials

Reaction Framework
∆C‡

p Topt
(kJ mol−1 K−1) (K)

Nitrous oxide decomposition(a) Cu-Na-A -0.60±0.17 871
Nitric oxide decomposition(b) Cu-ZSM-5 -0.64±0.12 794

Cu-M -0.58±0.04 778
Cu-β -0.49±0.04 761
Cu-Y -0.18±0.06 799
Cu-ZSM-5 (Cu/Al=0.36) -1.01±0.13 767
Cu-ZSM-5 (Cu/Al=0.43) -1.07±0.14 772
Cu-ZSM-5 (Cu/Al=0.57) -0.81±0.09 805

Nitric oxide decomposition(c) Cu-ZSM-5 -0.67±0.11 785
Ammonia oxidation(d) Cu-ZSM-5 -0.27±0.09 664
Ammonia oxidation(e) Cu-SSZ-13 (45% Cu-exch.) -1.00±0.21 619

Cu-SSZ-13 (60% Cu-exch.) -0.62±0.41 667
Ammonia oxidation(f) Cu-SSZ-13 (0.065 wt% Cu) -1.05±0.17 794

Cu-SSZ-13 (0.198 wt% Cu) -1.08±0.10 769
Ammonia oxidation(g) Cu-SSZ-13 -1.09±0.04 841
Nitric oxide oxidation(h) Cu-SSZ-13 -0.68±0.09 584
NOx reduction(i) H-AFX -0.42±0.24 714
Nitrous oxide decomposition(j) Cu-SSZ-13 -0.20±0.16 1304
Nitric oxide decomposition(k) Cu-ZSM-5 (Si/Al=11.5) -1.09±0.08 774

Cu-ZSM-5 (Si/Al=20) -0.93±0.13 740
Cu-ZSM-5 (Si/Al=30) -0.63±0.11 699
Cu-ZSM-5 (Si/Al=50) -0.62±0.15 702
Cu-ZSM-5 (Si/Al=100) -0.61±0.18 701
Cu-SSZ-13 -0.53±0.08 702
Cu-MOR-10 -0.50±0.07 685

(a)Akbar and Joyner,363 (b)Li and Hall,350 (c)Modén et al.,55

(d)Yim et al.,364 (e)Gao et al.,52 (f)Gao et al.,59 (g)Gao et al.,53

(h)Kryca et al.,50 (i)Kubota et al.,51 (j)Lin et al.,365 (k)Xie et al. 57
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FIGURE 5.11. Arrhenius plots of decomposition reactions of nitric oxide catal-
ysed by Cu-based zeolites.57

the MMRT parameters we have calculated for oxidation-reduction reaction rates of small

nitrogen-nitrogen molecules catalysed by various Cu-zeolites.

According to Li and Hall,350 Gao et al.,52 and Xie et al.,57 a Ca-based zeolite frame-

work with a higher degree of Cu exchange, i.e., a greater number of Cu catalytic centres,

tends to give faster rates for a given reaction. From Li and Hall,350 the Arrhenius plots

of the decomposition of nitric oxide over Cu-ZSM-5 with three different values of Cu

loading are shown in Figure 5.12. The Arrhenius plots in Figure 5.12 illustrate that the

Cu-ZSM-5 zeolitic framework with a Cu/Al ratio of 0.57 gives the fastest nitric oxide

decomposition rates, whereas the framework with a Cu/Al ratio of 0.36 gives the slowest

rates. From Table 5.3, different degrees of the Cu exchange in a given zeolitic framework

lead to different values of the MMRT parameters Topt and ∆C‡
p. However, the dependence

of the two fitted kinetic parameters on Cu loading is still unclear.

So far, we have seen that copper-based zeolite catalysts are beneficial for accelerating

the oxidation-reduction of small nitrogen-containing gas molecules, including ammonia

and nitrogen oxides.366 The MMRT approach could be a possible explanation for the

negative convex of the Arrhenius plots of the reduction-oxidation reactions of nitrogen

oxides and ammonia over Cu-based zeolites. The MMRT concept can potentially be useful

for designing and improving the temperature-dependent catalytic performance of these

Cu-based zeolitic materials since several recent reviews, such as Mohan et al.,367 Newton
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FIGURE 5.12. Arrhenius plots of decomposition reactions of nitric oxide catal-
ysed by Cu-ZSM-5 zeolites with different Cu loadings.350 Turnover fre-
quency (TOF) is in s−1 site−1 units.

et al.,368 Paolucci et al.,369 Xu et al.,370, Lei et al.,371 and Shan et al.,372 all highlight

that the research community of development of Cu-zeolite catalysts is still very much

active and growing.

Lastly, ∆C‡
p and Topt obtained from MMRT fits for other non-Arrhenius reaction rates

over various zeolitic frameworks are listed in Table 5.4. Overall, the negative values of

∆C‡
p of all the zeolite-catalysed reactions tend to be smaller than those of the enzymatic

rates. The smaller negative ∆C‡
p may reflect that zeolite frameworks are generally much

more rigid than enzyme structures; hence, one would expect a small difference in the

number of conformational states or a small difference in the magnitude of the vibrational

frequencies in the ground-state and transition-state complexes. Again, in addition to the

non-Arrhenius kinetics of various enzyme-catalysed and zeolite-catalysed reactions we

have shown earlier, the fitted MMRT parameters in Table 5.4 suggest that the MMRT

approach could be used as a possible explanation of the negative convex of the Arrhenius

plots of heterogeneously zeolite-catalysed reactions in the absence of diffusion controls in

the high-temperature regime and catalytic centre deactivation. With this idea, the non-

Arrhenius behaviour of both biologically and heterogeneously catalysed reaction rates

can be understood more fully via the unified approach based on the macromolecular rate

theory. In the next section, we will investigate theoretically the non-Arrhenius behaviour
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TABLE 5.4. MMRT kinetic parameters of other chemical reactions catalysed by
various zeolites

Reaction Framework
∆C‡

p Topt
(kJ mol−1 K−1) (K)

Methane oxidation(a) Pd-X -0.13±0.01 770
Carbon monoxide oxidation(b) Fe-Y -0.25±0.04 912
Methanol dehydration(c) Dealuminated H-MOR -3.14±0.46 582
Cumene cracking(d) REY -0.17±0.04 799
Sodium borohydride hydrolysis(e) Ru(0)-Y -0.94±0.29 354
Methane combustion(f) Pd-X -1.12±0.23 690
Styrene oxidation(g) Cr-ZSM-5 -0.37±0.15 366
Acetic acid/ethanol H-FER -1.31±0.12 413
esterification(h) H-MFI -1.49±0.40 407
Glycerol/n-butanol

H-β -1.11±0.48 477
esterification(i)

Propane dehydration(j) Na-Fe-ZSM-5 -1.39±0.71 849
Y-zeolite formation(k) Ultra-stable Y -0.36±0.20 527
(a)Rudham and Sanders,373 (b)Petunchi and Hall,374

(c)Bandiera and Naccache,375 (d)Bellare et al.,376

(e)Zahmakiran and Özkar,377 (f)Wan et al.,378 (g)Saux and Pierella,379

(h)Bedard et al.,347 (i)Nandiwale et al.,380 (j)Yun and Lobo,49

(k)Peng et al. 381

of some activated processes in solid-state materials using classical and first-principles

computer simulation techniques.

5.5 Simulation of Activated Processes in Solid-State
Materials

This final section will investigate the non-Arrhenius behaviour of some activated pro-

cesses in solid-state materials using computer simulation based on the MMRT concept.

Firstly, we examine the temperature variation of the activation energy of the Mg2+

vacancy migration in MgO using classical and DFT quasi-harmonic lattice dynamics

(QLD). Secondly, we carry out classical molecular dynamics (MD) simulation and metady-

namics to calculate the energy barrier of the guest molecule diffusion through a zeolitic

micropore at different temperatures. Next, we use classical MD simulation to study

the temperature variation of the self-diffusivity (diffusion rate) of guest molecules in

180



5.5. SIMULATION OF ACTIVATED PROCESSES IN SOLID-STATE MATERIALS

zeolite frameworks. Additionally, we perform ab initio molecular dynamics (AMD) and

metadynamics simulations to study the temperature dependence of the energy barrier

of the hydrogen hopping or proton jump in an acidic H-LTA zeolite. Finally, we discuss

the application of ab initio simulation to explore the temperature dependence of the

activation energy of zeolite-catalysed reactions theoretically.

5.5.1 Defect Migration in MgO

In Chapter 3, we have comprehensively investigated the temperature variation of the

Bax
Mg defect formation energies in MgO using classical and DFT quasi-harmonic lattice

dynamics. In those cases, the computed defect free energy is the energy difference

between the defective and perfect structures (or product and reactant). In this chapter,

on the other hand, we are particularly interested in the temperature variation of the

activation energy of chemical reactions and activated processes catalysed by solid-state

materials based on the MMRT approach. In other words, we are more interested in the

free energy difference between the ground-state and transition-state structures rather

than that of the two steady states (reactant and product). According to the MMRT model,

a negative value of ∆C‡
p in the MMRT equation (5.4) accounts for the negative curvature

of the Arrhenius plot of an enzyme rate in the absence of enzyme denaturation. Given

that ∆C‡
p is negative, the plot of ∆G‡ versus T should pass through a minimum, as

equation (5.3) suggests. Fortunately, as we shall see later, the computational technique

based on QLD outlined in Chapter 3 can be employed to compute those activation

parameters at different temperatures accurately. In this subsection, we will concentrate

on the classical and DFT calculations of the activation free energy of the Mg2+ vacancy

migration in MgO using quasi-harmonic approximation (QHA).

A Schottky defect in MgO, i.e., a combination of a pair of Mg2+ cation and O2- anion

vacancies, is schematically illustrated in Figure 5.13. The migration or diffusion of

Schottky defects in ionic solids is a direct consequence of their ionic conductivity.12,13

For a given Schottky defect in MgO, the Mg2+ cation vacancy or O2- anion vacancy can

migrate to their adjacent sites occupied by the ions with the same ionic charge as the

absent ions. Such defect migration is an activated process. However, Mahmoud et al. 382

show that the activation energy of the Mg2+ vacancy migration in MgO, as marked by

the arrow in Figure 5.13, is lower than that of the O2- vacancy migration as a Mg2+

ion is smaller than an O2- ion. As a result, the Mg2+ vacancy tends to migrate more

preferentially than the O2- vacancy. Therefore, we consider the temperature variation of

the activation energy of the Mg2+ vacancy migration in MgO over the temperature range
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Mg
O

FIGURE 5.13. Schematic illustration of Mg2+ vacancy migration in MgO. The
two dashed circles represent the Mg2+ and O2- vacancies. The migration
direction is marked by the black arrow.

100-1500 K.

The classical calculations were performed using the GULP program91 and the Buck-

ingham potential parameters due to Stoneham and Sangster 142 listed in Table 3.1. A

cutoff of 9.0 Å was used for the short-range pair potentials. To investigate the temper-

ature dependence of the activation energies of the Mg2+ vacancy migration in MgO,

we first determined the lattice parameter of MgO as a function of temperature over

100-1500 K within the QHA. We then constructed 216-ion cubic supercells of MgO with

their equilibrium volumes at different temperatures. In a given initial defective supercell,

the two Mg2+ and O2- vacancies are located as far as possible from each other. Then,

all defective structures were optimised with respect to the static internal energy while

keeping all six lattice parameters fixed. Then, we performed phonon calculations to

evaluate the vibrational contributions of the statically optimised structures, i.e., using

the zero static internal stress approximation (ZSISA),85 in order to calculate the free

energies of all the ground-state structures. A shrink factor of 6 was used for the Brillouin

zone integrations when calculating the free energies. The migrating Mg2+ ion was placed

approximately half-way between its original position and the Mg2+ vacancy before exe-

cuting transition-state search in the static limit to obtain the transition-state structure.

Again, the vibrational contribution to the lattice energy of the optimised transition-state
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structure was evaluated within the QHA. Note that the imaginary frequencies of the

transition-state structures have been neglected in the QHA phonon calculations.

Analogous DFT calculations were conducted using CRYSTAL17.108,109 Instead, cubic

supercells of MgO containing 64 ions were used in the DFT simulation. The exchange and

correlation energies were evaluated using the GGA-PBESol functional.115 All-electron

basis sets with 8-411G153 and 8-511G152 were used for the O and Mg atoms, respectively.

The QHA module implemented in the CRYSTAL17 code was used to conduct phonon

calculations. A shrink factor of 4 was used for the phonon calculations of all 64-ion

defective supercells. However, structural optimisation was performed using the Quantum

ESPRESSO plane-wave DFT package103,104 instead, as performing geometry relaxation

using CRYSTAL17 was not successful due to the orthogonality problem of the basis sets

used. For geometry optimisation, a plane-wave cutoff of 50 Ry and a density cutoff of

400 Ry were used. The atomic projector-augmented-wave (PAW)383 pseudopotentials

Mg.pbesol-n-kjpaw_psl.0.3.0.UPF and O.pbesol-n-kjpaw_psl.0.1.UPF were used

for Mg and O atoms, respectively.384 A uniform 4×4×4 k-grid was used for all structures.

The transition-state optimisation was carried out using the nudged elastic band (NEB)

method implemented in the Quantum ESPRESSO code. After the structural optimisation,

all the optimised geometries were used for performing the phonon calculations through

the well-developed QHA module in the CRYSTAL17 software package.

The temperature dependence of∆G‡ of the Mg2+ vacancy migration is shown in Figure

5.14. Interestingly, the variation of ∆G‡ with temperature passes through a minimum at

approximately 800 and 300 K in the classical and DFT calculations, respectively. Over

100-1500 K, the calculated DFT ∆G‡ increases approximately by 10%, while the classical

∆G‡ decreases by 2% over 100-800 K and increases by the same degree over 800-1500 K.

After fitting the data to equation (5.3), we obtain ∆C‡
p of -0.0134 ± 0.0004 and -0.0173 ±

0.0009 kJ mol−1 K−1 for the classical and DFT results, respectively. The negative ∆C‡
p

values suggest that the ∆H‡ and ∆S‡ of the defect migration are temperature dependent,

as shown in Figure 5.15. Figure 5.15(a) shows that ∆H‡ decreases by ∼15% and 23%

over 100-1500 K in the classical and DFT simulations, respectively. The classical and

DFT ∆S‡ decrease by ca. 0.03 and 0.05 kJ mol−1 K−1, respectively, as shown in Figure

5.15(b).

In Figure 5.14, we observe that the fitted ∆C‡
p for the Mg2+ vacancy migration in

MgO is much smaller in magnitude than the enzymatic and zeolitic reactions we have

shown previously, leading very close to the Arrhenius behaviour. Again, this might be

due to a smaller change in the magnitude of the vibrational frequencies in the transition
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FIGURE 5.14. Temperature variation of ∆G‡ of Mg2+ vacancy migration in MgO.
The two marker styles represent the DFT and classical results, and the
dashed lines are fits to equation (5.3).

state and ground state, as MgO is much more rigid than zeolite frameworks and enzymes.

We compare ∆C‡
p obtained by the first derivatives of enthalpy using equation (5.6) in

Figure 5.15 with those obtained by fitting ∆G‡ to equation (5.3), as shown in Figure 5.14.

The comparison of those ∆C‡
p values is shown in Figure 5.16. Interestingly, ∆C‡

p obtained

from the first derivatives of entropy or enthalpy of activation using equation (5.6) is

temperature-dependent. For both classical and DFT results, ∆C‡
p decreases rapidly in

the low-temperature range of 100-300 K. However, except for ∆C‡
p at 1400 K from the

DFT simulation, the ∆C‡
p changes only slightly as the temperature is elevated. At 100 K,

∆C‡
p obtained from the MMRT fitting is lower than those from equation (5.6), and the

opposite trend is observed elsewhere. Overall, ∆C‡
p for the Mg2+ vacancy migration lies

between -0.01 and -0.04 kJ mol−1 K−1 at temperatures higher than 200 K.

5.5.2 Ethene and Propene Diffusion through an LTA Zeolitic
Micropore

Previously, Ghysels et al. 385 have shown that the diffusion of small alkenes through

micropores of various zeolitic materials is an activated process, which plays a vital role in

the methanol-to-olefins (MTO) or methanol-to-hydrocarbons (MTO) conversion process in

the petrochemical industry. The energy barrier of the diffusion depends on several factors,
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FIGURE 5.15. Temperature variation of (a) ∆H‡ and (b) ∆S‡ of Mg2+ vacancy
migration in MgO. The two marker styles represent the DFT and classical
results.
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FIGURE 5.16. Temperature variation of ∆C‡
p of Mg2+ vacancy migration in MgO
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p from Figure
5.14. The ±1 standard deviation error of each fitted ∆C‡
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FIGURE 5.17. The crystal structure of the LTA zeolite.
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TABLE 5.5. Buckingham potential parameters for pure-silica zeolitic frame-
works.386

Interaction
Potential parameter Atomic

A (eV) ρ (Å) C (eV Å6) charge (e)
O–O 1338.7730 0.36232 175.0000 q(O) =−1.2
Si–O 18003.7572 0.20520 133.5381 q(Si) =+2.4

including the ring topology and composition and temperature. As previously discussed

in Chapter 2 (in Subsection 2.1.5), one needs to perform advanced molecular dynam-

ics simulations using enhanced-sampling techniques, e.g., metadynamics or umbrella

sampling, in order to accelerate and study the dynamics of rare events and activated

processes such as chemical reactions and the diffusion processes of small guest molecules

adsorbed in porous materials. Therefore, in this subsection, we perform metadynamics

simulations based on classical force fields to study the temperature dependence of the

free energy barriers of the ethene and propene diffusion through an eight-membered ring

window of the pure-silica LTA zeolitic framework over 100-600 K. The crystal structure

of the pure-silica LTA (Linde Type A) zeolitic framework is shown in Figure 5.17. Its

conventional cubic unit cell comprises 72 atoms with a lattice parameter a = 11.9190

Å.348 The largest ring windows in the LTA structure consist of eight T-sites, i.e., eight Si

atoms. Smaller six-ring and four-ring windows are also present in the framework.

A 2×2×2 supercell of the LTA framework was used for the metadynamics simulation.

The BKS force-field parameters386 for the LTA framework are listed in Table 5.5. The

CVFF bonded and non-bonded interaction parameters387 for ethene and propene gener-

ated by the DL_FIELD code133 are listed in Table 5.6. The framework-guest non-bonded

interactions were described by the Lennard-Jones parameters listed in Table 5.7. All the

classical metadynamics calculations were performed using the DL_POLY4 package132,389

integrated with the PLUMED code.135 The Nosé-Hoover thermostat and barostat390,391

with a coupling time constant of 1 ps were used for controlling the temperature and

pressure in the NV T and NPT MD runs, respectively. A cutoff of 10.0 Å was used for

the short-range and long-range interactions. In the DL_POLY4 package, the long-range

interaction potentials are evaluated via the smoothed particle meshed Ewald method.

The Velocity Verlet algorithm was used to integrate the equations of motion.94 The

pressure was set to zero in all MD runs.

NPT MD runs at different temperatures ranging from 100-600 K were first performed

to account for the thermal expansion of the pure-silica LTA framework. In each NPT
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TABLE 5.6. CVFF potential parameters for alkenes.387

Bonded interactions
Bonds: 0.5kr(r− r0)2 kr (eV Å−2) r0 (Å) Charge (e)
Csp2–Csp2 56.82 1.330 q(Csp2) =−0.2
Csp2–Csp3 28.00 1.500 q(Csp3) =−0.2
Csp2–H 31.36 1.090 q(H) =+0.1
Csp3–H 29.54 1.105
Angles: 0.5kθ(θ−θ0)2 θ0 (eV rad−2) θ0 (◦)
Csp2–Csp2–Csp3 3.13948 122.3
Csp2–Csp2–H 3.25222 120.0
Csp2–Csp3–H 3.85063 110.0
H–Csp2–H 2.93134 121.2
H–Csp3–H 3.42568 106.4
Dihedral angles: kn(1+cos(nω−ξ)) kn (eV) n ξ (◦)
Csp2–Csp2–Csp3–H 0.00915 3 0
Csp3–Csp2–Csp2–H 0.17671 2 180
Csp2–Csp2–H–H (out-of-plane bending) 0.48133 2 180
Non-bonded interactions
Lennard-Jones parmaeters ϵ (10−3 eV) σ (Å)
Csp2–Csp2 6.417724 3.617049
Csp2–Csp3 3.294446 3.744001
Csp3–Csp3 1.691157 3.875409
Csp2–H 3.251936 2.976855
Csp3–H 1.669335 3.081338
H–H 1.647794 2.449971

TABLE 5.7. Lennard-Jones potential parameters for host-guest interactions
between alkenes and the zeolite framework.388

Interaction ϵ (10−3 eV) σ (Å)
Csp2–O 8.3642 2.9578
Csp3–O 7.0833 2.9225
H–O 4.9865 2.5568
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FIGURE 5.18. Temperature dependence of the crystal volume of the 2×2×
2 supercell of the LTA framework obtained using NPT MD simulation
based on the BKS classical force field.386 Error bars indicate ±1 standard
deviations.

run, the total simulation time is 5.5 ns (5×105 equilibration and 5×106 integration

steps of 1.0 fs). The trajectories were subsequently averaged out to obtain the initial

configurations for the NV T metadynamics runs. The temperature dependence of the

crystal volume of the LTA framework over 100-600 K is shown in Figure 5.18. The

LTA framework exhibits negative thermal expansion since the crystal volume decreases

slightly by ∼0.8% as the temperature is elevated from 100 to 600 K. A larger fluctuation

in crystal volume can be observed at a higher temperature, indicated by the error bars

in Figure 5.18. The initial structure for the metadynamics simulation is generated by

placing either a single ethene or propene molecule at the centre of an eight-membered

ring window of the LTA framework.

To construct a free energy profile from a metadynamics calculation, a meaningful

collective variable (CV) for distinguishing different steady and transition states must be

defined. The collective variable dz for the metadynamics simulation is defined by the

distance between the geometrical centre of the eight-membered ring window, GCring, and

the centre of mass of the diffusing alkene molecule, COMalkene, projected along the z-axis

perpendicular to the ring plane: dz = z(GCring)− z(COMalkene), as illustrated in Figure

5.19. A Gaussian hill with a height and width of 0.25 kJ mol−1 and 0.4 Å, respectively,

was deposited every 5000 steps. Two potential walls with a harmonic spring constant of
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FIGURE 5.19. Schematic illustration of the collective variable for the metady-
namics simulation of the alkene diffusion through an LTA zeolitic pore.
dz is defined by the distance between the geometrical centre of the eight-
membered ring window and the centre of mass of the diffusing alkene
molecule projected along the z-axis perpendicular to the ring plane.

2000 kJ mol−1 Å−2 were placed at ±8 Å along the collective variable axis to specify the

diffusional region of our interest. An additional harmonic potential wall is introduced

to limit the maximum distance of 5 Å between COMalkene and the z-axis. At a given

temperature, the free energy profile for the diffusion process was averaged out from ten

independent metadynamics runs.

The free energy profiles and the temperature dependence of the energy barriers of

the ethene and propene diffusion through an eight-membered ring window of the LTA

zeolite are shown in Figures 5.20 and 5.21, respectively. As expected, the transition-state

structures occur at dz ≈ 0, i.e., the centre of the window, in both cases. Over 100-600 K,

the free energy barrier of the ethene and propene diffusion increases as the temperature

is elevated. The free energy barrier of the ethene diffusion lies between ca. 5-20 kJ

mol−1 over the temperature range considered, whereas the energy barrier of the propene

diffusion ranges from 15-35 kJ mol−1. At a given temperature, the higher free energy

barrier of the propene diffusion through an LTA zeolite pore reflects the larger size of

the propene molecule than ethene.
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FIGURE 5.20. (a) Free energy profiles and (b) temperature variation of the
energy barrier of the ethene diffusion through an eight-membered ring
window of the LTA zeolite. Transparent bands in (a) and error bars in (b)
indicate ±1 standard deviations.
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FIGURE 5.21. (a) Free energy profiles and (b) temperature variation of the
energy barrier of the propene diffusion through an eight-membered ring
window of the LTA zeolite. Transparent bands in (a) and error bars in (b)
indicate ±1 standard deviations.
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FIGURE 5.22. Mean-square displacement (MSD) plots of the centres of mass
of 64 ethene molecules at 200, 400 and 600 K in a 2×2×2 supercell of the
LTA zeolitic framework.

Figures 5.20(b) and 5.21(b) show that the temperature variation of the two diffu-

sion processes is largely linear. Hence, ∆C‡
p values of the ethene and propene diffu-

sion obtained from the MMRT fitting are very small. ∆C‡
p for the ethene diffusion is

−0.0041±0.0031 kJ mol−1 K−1, while that of the propene diffusion is 0.0099±0.0037

kJ mol−1 K−1. A positive ∆C‡
p implies that the first derivative of ∆H‡ with respect to

temperature is positive and becomes larger at elevated temperatures. This might be

the direct consequence of the more difficult diffusion of propene through the smaller

zeolitic windows at higher temperatures due to the negative thermal expansion of the

LTA framework itself, as shown in Figure 5.18. On the contrary, the value of ∆C‡
p for

the ethene diffusion is small and negative, implying that ∆H‡ decreases more slightly

rapidly as the temperature is elevated. Therefore, the results suggest that the activation

parameters for a diffusion process through a zeolitic micropore depend on the size of the

guest molecule.

5.5.3 Diffusion Rates of Ethene and Propene in LTA Zeolite

In a given MD run, the time-dependent mean-square displacement (MSD) of diffusing

atoms or molecules within the moving fragment, <∆r2 >, can be used directly to compute
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their self-diffusivity or self-diffusion constant, Ds:

<∆r2 >= 6Dst+b, (5.11)

where ∆r2 is the atomic or molecular displacement from its initial position, b is a factor

arising from atomic thermal vibrations, and t is the simulation time.93,94 Note that

the brackets identify the averaged displacement of all the particles of interest. Using

the classical MD simulation technique and the force-field parameters in the previous

subsection, we calculated the MSD of diffusing 64 ethene molecules in a 2×2×2 supercell

of the LTA framework at various temperatures. The MSD plots of the centres of mass

of the ethene molecules at 200, 400 and 600 K are shown in Figure 5.22. At each

temperature, the total simulation time for the NV T run is 11 ns (2×106 equilibration

and 2×107 integration steps of 0.5 fs). The trajectory analysis was performed using the

DL_ANALYSER code.134,392 For each run, the MSD of the centre of mass of the 64 ethene

molecules was estimated using multiple time origins. In these MD runs, we assume that

the crystal volume of the LTA framework does not depend on the guest-molecule loading.

Using equation (5.11), the slope of each MSD plot Figure 5.22 defines the magnitude

of the self-diffusion coefficient Ds. For instance, the slope of the MSD plot at 600 K is

greater than that at 200 K, suggesting that the ethene molecule diffuses more rapidly in

the LTA zeolite at 600 K than at 200 K. Therefore, the diffusion rate Ds is absolutely

temperature-dependent. Analogously to the Arrhenius equation (5.1), the temperature

variation of Ds is written as

Ds = D0 exp
(
− Ea

RT

)
, (5.12)

where D0 is the high-temperature limit of Ds. Again, the activation energy Ea of self-

diffusion is assumed to be temperature-independent.

In this subsection, we intend to probe the temperature dependence of the self-

diffusivity of ethene and propene molecules in the LTA zeolite based on the MMRT

approach, i.e., by assuming that the thermodynamic activation parameters of the self-

diffusion are temperature-dependent. We have performed ten independent MD runs at a

given temperature to obtain the average ethene diffusion coefficient Ds. The Arrhenius

plot of the ethene diffusion rate in the LTA zeolite is shown in Figure 5.23(a). The plot

shows an obvious deviation from the classical Arrhenius law. After fitting the data to

the MMRT equation (5.4), we obtain ∆C‡
p =−0.0282±0.065 kJ mol−1 K−1. Again, this

negative value of ∆C‡
p implies a tighter binding mode in the transition state than in the

ground state. It is important to note that the energy barriers of all activation processes
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FIGURE 5.23. (a) Arrhenius plot and (b) MMRT fit of the ethene diffusion rate in
the LTA zeolite over 100-600 K. Error bars indicate ±1 standard deviations.
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FIGURE 5.24. (a) Arrhenius plot and (b) MMRT fit of the propene diffusion
rate in the LTA zeolite over 100-600 K. Error bars indicate ±1 standard
deviations.

during the simulation, e.g., diffusion through pores, adsorption and desorption processes,

contribute to the overall activation energy.

Analogous calculations have been performed to study the temperature dependence

of the self-diffusivity of propene molecules in the LTA zeolitic framework. Figure 5.24

shows the Arrhenius plot and MMRT fit of the propene diffusion rate in the LTA zeolite

over 100-600 K. At a given temperature, propene diffuses more slowly than ethene in

the LTA framework due to its larger size. The Arrhenius plot for the propene diffusion
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FIGURE 5.25. Structure of the H-LTA zeolite used for modelling the hydrogen
hopping process.

in Figure 5.24(a) shows, again, a deviation from the Arrhenius law with a fitted ∆C‡
p of

0.0125±0.0072 kJ mol−1 K−1. Interestingly, the fitted ∆C‡
p for the propene self-diffusivity

is close to that obtained from the free energy barriers of its diffusion through a zeolite

pore in the previous subsection (0.0099±0.0037 kJ mol−1 K−1).

5.5.4 Hydrogen Hopping in the H-LTA Zeolite

In this subsection, we investigate the temperature dependence of the free energy barrier

for the hydrogen hopping or proton jump in the acidic H-LTA zeolite using ab initio MD

and metadynamics simulation based on DFT. In an acidic zeolite framework, a proton

Brønsted acid site is introduced by replacing one of the Si atoms with an Al atom. As

a simple case study for modelling the proton hopping in the H-LTA zeolitic framework,

we use the smallest 73-atom unit cell of the H-LTA structure with a Brønsted acid site

located in an eight-membered ring, as shown in Figure 5.25. The CP2K code110 with a

mixed Gaussian and plane-wave (GPW) basis set approach393–395 was used to perform

all the DFT calculations. The revised version of GGA-PBE functional (revPBE)396 with

Grimme DFT-D3 dispersion corrections397 were employed. The DZVP-GTH basis sets and
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FIGURE 5.26. Climbing image nudged elastic band (CI-NEB) energy profile for
hydrogen hopping in the H-LTA zeolite.

pseudopotentials were used for all the four atomic types.398 The Nosé-Hoover thermostat

and barostat390,391,399 with a coupling time constant of 1 ps were used to control the

temperature and pressure of the NV T and NPT MD simulations. Metadynamics free-

energy calculations were carried out using the PLUMED software package.135

The hopping of the proton between two different oxygen atoms in the (Si–O)3–Al(OH)

moiety, i.e., labelled by O1 and O2 in Figure 5.25, is an activated process. The minimum

energy path of the transition, obtained using a climbing image nudged elastic band

method (CI-NEB)400,401 with seven replicas, is shown in Figure 5.26. Here, we plot the

energies of the replicas as a function of the difference in interatomic distance between

O1–H and O2–H, i.e., r(O1–H)−r(O2–H). Note that the difference in distance r(O1–

H)−r(O2–H) will later be used as the collective variable for the free energy profile

construction in metadynamics runs. The NEB energy profile in Figure 5.26 demonstrates

that the static-limit activation energy for the proton hopping in the H-LTA zeolite is ca.
70 kJ mol−1. The replica with the highest energy is the approximate transition-state

structure occurring at r(O1–H)−r(O2–H) ≈ 0 Å. The energies of the two steady states

(or reactant and product) are different as the two oxygen atoms, O1 and O2, are not

equivalent. Next, we will study the temperature variation of the free energy barrier of

the proton jump in the H-LTA framework through metadynamics simulations.

To account for the thermal expansion of the pure-silica LTA framework, we performed
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FIGURE 5.27. Temperature dependence of the lattice parameter a of the LTA
zeolitic framework obtained using NPT molecular dynamics simulation
based on DFT. Error bars indicate ±1 standard deviations.

NPT MD runs at different temperatures ranging between 10 and 2050 K, and the

pressure was set to zero. In each MD run, the total simulation time is 37.5 ps (5000

equilibration and 70000 integration steps of 0.5 fs). At each temperature, the average

structure is obtained from the trajectory file, and this will then be used as the initial

configuration for the metadynamics runs in the NV T ensemble. The temperature varia-

tion of the average lattice parameter a of the pure-silica LTA framework over 100-1500

K is shown in Figure 5.27. We have found that the temperature variation of the lattice

parameter over the temperature range considered is roughly constant (around 11.950-

11.975 Å). A larger fluctuation is observed at a higher temperature, as indicated by the

error bars in Figure 5.27.

The initial structures of the H-LTA zeolite with a single Brønsted acid site (in Figure

5.25) for NV T metadynamics runs were constructed with the equilibrium volumes

obtained from the previous NPT runs. Similar to the NEB calculation in Figure 5.26, we

use r(O1–H)−r(O2–H) as the collective variable to represent the reaction coordinates in

the free energy profiles of the proton jump in the H-LTA zeolite. In each metadynamics

run, the total simulation time is 67.5 ps (104 equilibration and 1.25×105 integration

steps of 0.5 fs). A Gaussian hill with a height and width of 0.35 kJ mol−1 and 0.1 Å,

respectively, was deposited every 25 MD steps. Twenty independent metadynamics runs

have been performed at each temperature and subsequently averaged out to determine
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FIGURE 5.28. Free-energy profiles at 10, 1050 and 2050 K for hydrogen hopping
in the H-LTA zeolite. Each profile has been averaged out from twenty
independent metadynamics runs, and the transparent band indicates a ±1
standard deviation error.

the sampling error. A few harmonic potential restraints with a spring constant of 2000

kJ mol−1 Å−2 have been introduced to ensure that the hydrogen atom does not escape

from the reaction proximity of interest. Two potential walls were placed at ±2 Å along

the collective variable axis. The maximum Al–H distance of 3.0 Å was constrained by

another harmonic wall. Additionally, the H–O1–Al–O2 torsion angle was also fixed at 0

rad by another potential wall.

The free energy profiles of the hydrogen hopping in the H-LTA framework at 10, 1050,

and 2050 K averaged out from twenty independent metadynamics runs are shown in

Figure 5.28. Similar to the NEB energy profile in Figure 5.26, the approximate transition

state for the hydrogen hopping occurs at r(O1–H)−r(O2–H) close to zero. Unfortunately,

the free energy barriers at the three temperatures are not significantly different, as

indicated by the overlapping error bands. The temperature dependence of the free energy

barrier for the hydrogen hopping in the H-LTA framework over 10-2050 K is shown in

Figure 5.29. Over the temperature range considered, the free energy of activation for the

proton hopping process lies between 55-65 kJ mol−1, compared to the NEB static-limit

value of ∼70 kJ mol−1. The energy barrier tends to slightly decrease as the temperature

is elevated. Again, the large error bars imply the insignificant difference of those energy

barriers at various temperatures. Unfortunately, our calculated free energy barriers
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FIGURE 5.29. Temperature variation of the free energy barrier for hydrogen
hopping in the H-LTA zeolite. Error bars represent ±1 standard deviations.

cannot be fitted to the MMRT equation (5.6). However, we have shown that the computer

simulation method based on ab initio metadynamics is very useful for calculating the

free energy barrier of a given activated process in a solid-state material and investigating

their temperature dependence.

5.5.5 Ab initio Simulation of Zeolitic Reactions

The experimental apparent activation energy of 103 kJ mol−1 for the methylation of

ethene by methanol over the H-ZSM-5 zeolite at 350 ◦C has been reported by Svelle et
al..340 Van Speybroeck et al. 402 have performed first-principles calculations to study the

kinetics of the ethene methylation by methanol over the H-ZSM-5 framework. Surpris-

ingly, the computational results are in excellent agreement with those obtained from

the experimental observations. Hence, the theoretical work of Van Speybroeck et al. 402

provides a crucial link between the experimental and theoretical kinetic studies of zeolite-

catalysed methylation reactions.318,402 According to Svelle et al.,340 the reaction orders

of the ethene methylation with methanol over the H-ZSM-5 zeolite are one and zero with

respect to ethene and methanol, respectively. This means that methanol molecules cover

all the catalytic sites fully, and these adsorbed sites undergo a bimolecular methylation

reaction with ethene to form water and propene molecules. In this subsection, we will

briefly present our periodic plane-wave DFT calculations of the methylation reaction of

201



CHAPTER 5. NON-ARRHENIUS REACTION RATES IN SOLIDS

FIGURE 5.30. Structure of the H-ZSM-5 zeolite for modelling ethene methyla-
tion reaction by methanol. All other framework Si and O atoms have been
omitted for clarity.

ethene by methanol over the H-ZSM-5 zeolite before discussing the potential application

of ab initio metadynamics to investigate the temperature dependence of the free energy

barrier of the zeolite-catalysed ethene methylation reaction.

The plane-wave DFT calculations in this subsection were performed using the Vi-

enna Ab initio Simulation Package (VASP).105–107,403 The atomic wave functions were

represented by the projected-augmented-wave (PAW) pseudopotentials.404 The GGA-

PBE functional was chosen for evaluating the exchange-correlation contribution.114

The plane-wave cutoff of 400 eV and a 2×2×3 k-mesh were used for all calculations.

The transition-state search was performed using the dimer method implemented in

the VASP program.405,406 The crystal structure of the pure-silica MFI parent zeolite

framework, i.e., the conventional unit cell consisting of 288 atoms, was taken from the

IZA database.348

Figure 5.30 shows the optimised structure of the H-ZSM-5 zeolite with a single

Brønsted acid site on its large ten-membered ring. To construct the energy profile for the

methylation reaction, we create our model structures according to the bimolecular reac-

tion mechanism proposed by Svelle et al.340 and Van Speybroeck and colleagues.402 For

instance, the transition-state geometry of the ethene methylation reaction by methanol
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FIGURE 5.31. Transition-state geometry for the methylation reaction of ethene
by methanol catalysed by the H-ZSM-5 zeolite. All other framework Si and
O atoms have been omitted for clarity.
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over the H-ZSM-5 is shown in Figure 5.31. Consequently, the energy diagram for the

methylation reaction is shown in Figure 5.32. Note that the apparent activation energy

is measured using the energy difference between the transition-state structure and the

zeolite with adsorbed methanol and gas-phase ethene molecules, while the intrinsic
activation energy refers to the energy difference between the transition-state complex

and the complex with both adsorbed reactant molecules.318,340,402 Interestingly, our

calculated apparent barrier of ca. 105 kJ mol−1 is also in excellent agreement with the

experimental value of 103 kJ mol−1.340

Although the DFT method used in this subsection proves extremely useful for calcu-

lating the energy barrier of the methylation reaction, these plane-wave DFT calculations

are tremendously expensive in terms of computational resources and computer time. At

first, we intended to study the temperature variation of the free energy barrier of the

ethene methylation reaction by methanol catalysed by the H-ZSM-5 based on the MMRT

approach via ab initio molecular dynamics and metadynamics. However, those calcula-

tions are far beyond the capability of our computational resources, and the computer

time for such calculations is too long. For these reasons, we currently cannot perform ab
initio metadynamics to probe the temperature dependence of the free energy barriers of

zeolite-catalysed reactions.

Recently, Bailleul et al. 407 have performed advanced ab initio enhanced-sampling

free-energy calculations, including metadynamics, variationally-enhanced sampling,

umbrella sampling, and thermodynamic integration or umbrella integration, for the

methylation reaction of ethene by methanol over the H-ZSM-5 zeolite. Bailleul et al. 407

have only carried out the calculations at 623 K. The calculated energy barriers obtained

from those sophisticated simulation techniques agree very well with the experimentally-

observed values. Therefore, those advanced simulation methods have great potential

to theoretically study the temperature variation of the free energy barriers of zeolite-

catalysed reactions.

5.6 Conclusions

In this chapter, we have shown that many experimentally-observed zeolite-catalysed

reaction rates, for instance, the methylation reactions of alkenes by methanol over

the H-ZSM-5 zeolite and the oxidation-reduction reactions of nitrogen-containing gas

molecules over copper-based zeolitic frameworks, are lower than expected as the temper-

ature is increased based on the Arrhenius law. A negative value of the change in heat
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capacity of activation is one possible reason for the negative curvature of the Arrhenius

plots for those zeolitic reaction rates, as macromolecular rate theory (MMRT) explains.

Consequently, the non-Arrhenius behaviour of those zeolite-catalysed reactions could

be the direct consequence of the tighter binding mode in the transition state than in

the ground state in the absence of the diffusional controls or changes in properties

of catalytic centres in the high-temperature regime, as other possibilities previously

suggested.55–57 However, we have observed that the magnitudes of the negative heat

capacity of activation for zeolite-catalysed reactions obtained from the MMRT fits are

significantly smaller than those for enzyme reactions and rationalised this in terms of the

much more rigid frameworks of zeolites compared to enzyme structures. Furthermore,

the MMRT kinetic parameters, i.e., the heat capacity of activation and the optimum

temperature, also depend on various factors, including the size of the reactant species

and the topology and composition of the zeolitic framework. Hence, the MMRT concept

offers the potential of designing and synthesising novel zeolitic materials with adjustable

temperature-dependent catalytic properties of interest.

In the final part of the chapter, based on the MMRT approach, we have investigated

the temperature dependence of the thermodynamic properties of activation and kinetic

properties for various activated processes catalysed by zeolites theoretically via classical

and first-principles computer simulation. First, we have performed classical and DFT

calculations using quasi-harmonic lattice dynamics (QLD) to examine the temperature

dependence of the free energy barrier of the Mg2+ vacancy migration in MgO. We have

found that the entropy and enthalpy of activation for the Mg2+ vacancy migration are

strongly temperature-dependent. The temperature variation of the free energy barrier

can well be fitted to the MMRT equation, resulting in a small negative heat capacity of

activation due to the rigid structure of the MgO crystal. The relatively small value of

the heat capacity of activation for the defect migration process reflects the temperature-

dependent behaviour close to that predicted by the Arrhenius law.

Next, we have carried out classical molecular dynamics (MD) and metadynamics to

study the temperature-dependent free-energy barriers of the diffusion of ethene and

propene through a pore of the LTA zeolite. Our MMRT fits show that the ethene diffusion

through the LTA pore shows a small negative value of the heat capacity of activation. In

contrast, the rates of the propene diffusion through the zeolite pore shows a positive heat

capacity of activation. These results from the MMRT fittings are also consistent with

those of their computed self-diffusion rates in the LTA zeolite obtained by classical MD

simulations. The positive values of the heat capacity of activation for rates of the propene
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diffusion in the LTA framework may be the direct consequence of the negative thermal

expansion of the framework. Note again that the small values of the heat capacity of

activation for these diffusion processes lead close to the classical Arrhenius behaviour.

Furthermore, we have performed static and metadynamics simulations based on

DFT to compute the activation energy for the hydrogen hopping in an acidic H-LTA

zeolite. The activation energy obtained from the static run is in reasonable agreement

with the free-energy barriers obtained from the metadynamics calculations. However,

the free-energy barriers for the hydrogen hopping in the H-LTA zeolite at different

temperatures are not significantly different, and they cannot be fitted to the MMRT

equation. Lastly, we have carried out static DFT calculations to evaluate the activation

energy of the ethene methylation reaction over an acidic H-ZSM-5 zeolite. The calculated

apparent activation energy for the ethene methylation is in excellent agreement with

the experimental value. We commented that the temperature dependence of the free-

energy barrier of the ethene methylation over the H-ZSM-5 zeolite could potentially be

investigated using ab initio metadynamics.
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CONCLUSIONS AND FUTURE WORK

A ll the results presented in this thesis have emphasised the importance of various

atomistic modelling techniques to understand reactions and processes involving

solid-state materials more thoroughly. The increasing power of highly-parallel

supercomputers and advances in software engineering enable us to simulate highly

complex chemical systems to gain microscopic insights into the chemical phenomena.

Although numerous computational methods are available for simulating those complex

systems, one must always consider the trade-off between computational cost and accuracy

when contemplating the methods. This chapter summarises the results of all the thesis

chapters individually and draws general conclusions from those results before discussing

the future work.

6.1 Summaries

The results of our work have been presented in three independent chapters. In Chapter 3,

we presented the computational study of the defect thermodynamics in crystalline solids

and clusters. Next, we highlighted the application of the defect modelling discussed

comprehensively in Chapter 3 in explaining the trace-element partitioning in minerals

and melts in Chapter 4. Also, Chapter 4 discussed the computational investigation of

the limitations of widely-used simple lattice strain models for describing trace-element

partitioning. Lastly, in Chapter 5, we concentrated on exploring the non-Arrhenius

behaviour of zeolite-catalysed reactions based on macromolecular rate theory (MMRT).
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In general, we are particularly interested in studying the temperature dependence of

reactions and processes in solid-state materials through the mean of computer simulation,

e.g., the temperature variation of the defect free-energies in solids and clusters in Chapter

3 and the temperature dependence of the zeolite-catalysed reactions in Chapter 5.

6.1.1 Defect Thermodynamics in Solids and Clusters

In Chapter 3, classical and first-principles density functional theory (DFT) calculations

based on quasi-harmonic lattice dynamics (QLD) were performed to examine the temper-

ature variation of defect properties in solids and clusters. We studied the substitutional

defect formation in polar and metallic solids: (i) the substitution of a Mg2+ by a Ba2+ in

MgO and (ii) the substitution of a Cu atom by a Ag atom in Cu metal. We emphasised

that the temperature variation of those defect thermodynamics is significant and cannot

be negligible as often assumed. We used the QLD technique to probe the effects of several

factors on defect thermodynamics, including finite-size effects when using finite-size

clusters of solids, system size and volume constraints in the periodic supercell approach,

and defect clustering.

The calculated defect formation energies of larger finite-size clusters are closer to the

bulk limit than those of the smaller clusters. The existence of the interfaces of finite-size

clusters gives rise to the difference in degree of structural relaxation in the two simulation

models. When performing calculations at constant-volume, the volume constraints also

determine the calculated defect free energies, as they directly affect the interatomic force

constants when evaluating the vibrational contributions via phonon calculations. The

calculated defect volume and energy depend greatly on the concentration of defects in

the crystal. The computed defect energies of the Ba2+ substitutional defect formation

in MgO obtained from the classical simulations agree reasonably with those from DFT

calculations.

6.1.2 Trace-Element Partitioning in Minerals and Melts

In Chapter 4, we use the computer simulation technique based on lattice statics to study

the partitioning behaviour of trace elements between minerals and melts theoretically.

The defect, relaxation and solution energies for the incorporation of homovalent (+2)

and heterovalent (+1 and +3) trace elements in CaO and diopside minerals have been

calculated via classical and DFT static calculations in the supercell approach.
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The elastic lattice strain model of Blundy and Wood 33 uses the strain-energy expres-

sion of Brice 34 to explain trace-element partitioning. We assessed such models critically

by comparing the predictions of the models with those from the simulations. Although

the Blundy and Wood 33 model appears to explain the Onuma curve for an isovalent

series, describing strains using the equation of Brice 34 is found to be inadequate and

oversimplified. This is due to the poor description of lattice strains, which arises mainly

from the simplifications made in the model formulation. The Brice 34 model assumes that

the crystal medium is continuous and elastically isotropic; only one Young’s modulus

describes the lattice strains. However, our calculations show clearly that structural

strains around the point defect are highly anisotropic. Additionally, the use of the fixed

ionic radii is questionable as the radius of a given cation varies from crystal to crystal

and lattice site to lattice site, depending greatly on the local environment. Describing the

Onuma curve for a heterovalent series by a single Young’s modulus is ambiguous as two

heterovalent cations are simultaneously incorporated in the crystal. More importantly,

the model of Blundy and Wood 33 does not take the role of the melt phases into account

explicitly.

6.1.3 Non-Arrhenius Reaction Rates in Solids

In Chapter 5, we explored the non-Arrhenius zeolite-catalysed reaction rates based on

macromolecular rate theory (MMRT). We found that many zeolite-catalysed reactions

reported in the literature exhibit the non-Arrhenius behaviour in which the rate of reac-

tion is lower than expected at higher temperatures. The changes in reaction mechanism,

structural and dynamical changes of the catalytic centres and diffusional controls in

different temperature ranges have previously been suggested as accounting for devia-

tions from the the classical Arrhenius equation. However, studies have shown that the

non-Arrhenius behaviour of several zeolite-catalysed reactions does not relate to those

phenomena as the reaction rates are reversible during temperature cycling.55–57 Conse-

quently, a negative change in heat capacity of activation is one possible explanation of the

negative curvature of the Arrhenius plots for those zeolitic reaction rates, as the MMRT

approach suggests. The MMRT fits of the zeolite-catalysed reactions considered in this

work yield smaller negative changes in heat capacity of activation than those of enzyme

reactions. This has been rationalised in terms of the much more rigid frameworks of

zeolites compared to enzyme structures. The fitted kinetic parameters depend on various

factors, including the size of the reactant species, framework topology and composition.

Hence, the MMRT approach offers the potential of designing and synthesising novel
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zeolites with tunable temperature-dependent catalytic properties of interest.

We used various classical and ab initio simulation techniques, including QLD, molec-

ular dynamics (MD) and metadynamics, to investigate the temperature dependence of

the free energy barriers and kinetics of several diffusion processes in MgO and zeolitic

frameworks. We found that the temperature variation of the calculated classical and DFT

free energy barrier of the Mg2+ vacancy diffusion in MgO based on QLD can well be fitted

to the MMRT equation. The MMRT fit of the calculated free-energy barrier of the ethene

diffusion inside the framework and through a pore of the LTA zeolite from classical

metadynamics simulations gives also a negative value of the heat capacity of activation.

In contrast, the rates of the propene diffusion through the zeolite pore exhibits a positive

heat capacity of activation. The MMRT fitted parameters for the ethene and propene

diffusion through an LTA zeolite are also consistent with those from their self-diffusion

rates in the LTA zeolite calculated by classical MD simulations. The negative thermal

expansion of the framework is a possible cause of the positive values of the heat capacity

of activation for the rates of the propene diffusion in the LTA zeolite.

We computed the activation energy for hydrogen hopping in an acidic H-LTA zeolite

via DFT static and metadynamics simulations. The static-limit activation energy is in

reasonable agreement with the metadynamics free-energy barriers. The temperature

variation of the free-energy barriers of the hydrogen hopping in the H-LTA zeolite is

insignificant. Lastly, we carried out static DFT calculations to calculate the activation

energy of the ethene methylation reaction over an acidic H-ZSM-5 zeolite. The com-

puted activation energy for the ethene methylation is in excellent agreement with the

experimental value.

6.2 General Conclusions

In conclusion, we have shown that advanced atomistic computer simulation techniques

based on classical force fields and first-principles methods play a crucial role in under-

standing the properties of inorganic and highly-porous solid-state materials, such as

oxides, silicate minerals and zeolitic materials. Materials modelling provides insight

into physical and chemical phenomena statically and dynamically at the microscopic

level. In this thesis, in particular, we have emphasised the applications of state-of-

the-art simulation methods, including lattice statics, quasi-harmonic lattice dynamics,

advanced molecular dynamics and metadynamics simulations, in the fields of solid-state

geochemistry and heterogeneous chemical catalysis.
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Quasi-harmonic lattice dynamics simulations are useful for investigating the tem-

perature dependence of the defect formation free-energies in oxide and metallic crystals

and their finite-size clusters. Lattice statics calculations are helpful for studying the

energetics and behaviour of the incorporated trace elements in oxides and silicates and

investigating the critical limitations of the use of widely-used simple lattice strain models

to explain the trace-element partitioning in minerals and melts. Molecular dynamics

simulations are beneficial for examining the temperature variation of the self-diffusivity

or self-diffusion rates of small guest molecules in porous zeolitic frameworks. Molecular

dynamics can also be used to observe the negative thermal expansion of zeolites. Meta-

dynamics simulations are useful for probing the temperature effects on the free-energy

barrier of a specific process, for example, the diffusion of a small molecule through a

narrow-ring window in a zeolite material and the proton hopping at a Brønsted acid site

in an acidic zeolite. Ab initio metadynamics gives the promising potential of studying

the temperature dependence of zeolite-catalysed chemical reactions. Based on macro-

molecular rate theory (MMRT), the computational techniques used in this work are also

helpful for understanding more fully the non-Arrhenius behaviour of activated processes

catalysed by solid-state materials by taking the temperature dependence of the enthalpy

and entropy of activation due to a negative activation heat capacity into account explicitly.

As the concept of molecular rate theory proves useful for understanding the enzyme ther-

moadaptation and designing better enzymes with the desirable temperature-dependent

properties, we hope that our theoretical findings will also help modern researchers gain

a more insightful understanding of the properties of complex solid-state materials and

design and synthesise novel materials for special purposes.

6.3 Future Work

Several challenging tasks remain for studying the defect thermodynamics in crystalline

solids and clusters theoretically. Firstly, although we have shown that the temperature-

dependent defect formation energies in solids and clusters are significantly different from

the static-limit values, and one should not ignore the temperature effects on these defect

properties when performing defect modelling, we have not yet investigated the effects

of pressure on those defect energies. Both temperature and pressure effects are crucial

in many geochemical processes under extreme conditions, such as at high pressures

and temperatures of planetary cores.180 Furthermore, the effects of temperature and

pressure on the defect thermodynamics could be beneficial in making a more systematic
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observation of the mineral-melt partitioning behaviour of trace elements under very

different conditions computationally. Secondly, the dependence of the calculated quasi-

harmonic vibrational entropies and heat capacities on small changes in the magnitude

and number of low-frequency vibrational modes needs to be examined more thoroughly,

e.g., through the vibrational density of states analysis. Finally, apart from the structural

and energetic properties of the defect formation in solids, other quantum mechanical

properties, for instance, electronic structures and spectroscopic properties, must also be

examined comprehensively.

The natural systems involving the partitioning process of trace elements between

minerals and melts are far more complex than the computational models we have used

to study the trace-element partitioning behaviour so far. Furthermore, existing simple

models used to explain the trace-element partitioning behaviour, e.g., the lattice strain

model of Blundy and Wood,33 are found to be inadequate and oversimplified due to

many reasons, e.g., the description of lattice strains is incomplete and the nature of the

melt species is not taken into account explicitly. Therefore, further improvements to the

underlying theoretical frameworks and computational models are needed. Firstly, we

have studied only a few examples of many possible charge-compensating mechanisms for

heterovalent substitutions in minerals. Other possibilities must also be explored. Several

previous studies, e.g., Purton et al.,31 used mainly classical simulation techniques to

model heterovalent substitutions through various charge-compensating mechanisms. On

the other hand, quantum mechanical simulations for the other compensation possibilities

may reveal more insightful results since the lattice response to strains depends greatly on

the local environment and local ordering (see, e.g., van Westrenen et al.251,285). Secondly,

an explicit account of the variation of cation radii could improve the application of the

Onuma diagrams and the lattice strain model of Blundy and Wood 33 in describing the

trace-element partitioning in minerals and melts.182 Lastly, direct simulation techniques

based on Monte Carlo (MC) methods outlined in, e.g., Lavrentiev et al. 287 and Allan and

co-workers,408 could potentially be extended to model the heterovalent trace-element

partitioning more realistically.

We also need to extend our work to explore the origins of the non-Arrhenius behaviour

of the rates of activated processes catalysed by zeolitic materials and other solid-state

catalysts computationally. For instance, metadynamics simulations can directly and

straightforwardly be used to investigate the temperature variation of the free-energy

barrier of the Mg2+ vacancy migration in MgO instead of running multiple series of

calculations using the zero static internal stress approximation85 and quasi-harmonic
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lattice dynamics. For investigating the temperature dependence of the self-diffusion

rates of small molecules in zeolites or free-energy of activation of the diffusion of a

small molecule through a zeolite window, other various effects, such as the type of the

zeolitic frameworks, the framework and ring composition, the number (or loading degree)

of guest molecules, and so on, also need to be considered. Furthermore, as ab initio
metadynamics are computationally expensive for calculating the temperature-dependent

activation free energy of a zeolite-catalysed reaction, we must seek other computationally

cheaper methods to perform such calculations. The computer simulation techniques

based on the hybrid quantum mechanical/molecular mechanical (QM/MM) (see, e.g.,
Metz et al. 409) and density functional based tight-binding (DFTB) (see, e.g., Spiegelman

et al. 410) methods may offer access to comparably accurate results and the much faster

computation compared to purely ab initio simulations. The concept of MMRT has been

proved very useful for understanding enzyme thermoadaptation and designing better

enzymes with the desirable temperature-dependent properties.43,44 As we have shown

that zeolite frameworks share some common catalytic features of enzymes and they can

be viewed as rigid variants of enzymes, we hope that a more insightful understanding

of the non-Arrhenius behaviour of zeolite-catalysed reaction rates will help researchers

design and synthesise novel zeolitic materials with tunable temperature-dependent

properties for specific uses.
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