

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Gui, Zichen

Title:
New Perspectives on Structured Encryption

Attacks, Constructions and Foundations

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

New Perspectives on Structured Encryption
Attacks, Constructions and Foundations

By

Zichen Gui

Department of Computer Science
University of Bristol

A dissertation submitted to the University of Bristol in accordance
with the requirements of the degree of Doctor of Philosophy
in the Faculty of Engineering.

September 2021

Word count: Sixty-six thousand nine hundred and seventeen

Abstract

With the increasing volume of data generated by individuals and organisations, it be-
comes more and more challenging to store and process data locally. Structured encryp-
tion (STE) aims to provide an outsourced storage and query solution to this problem
for structured data while preserving user privacy. This thesis focuses on two subclasses
of STE, namely encrypted range queries (numerically labelled data) and searchable en-
cryption (text-based data).

We develop a multitude of novel attacks on encrypted range queries and searchable
encryption with devastating consequences on user privacy. In particular, we identify
system-wide leakage as a new source of leakage for STE that one of our attacks can ex-
ploit. We experimentally demonstrate that all state-of-the-art STE schemes suffer from
this leakage in their efficient instantiations. We devise the first searchable encryption
scheme that is free from system-wide leakage and is practically efficient. Finally, we
propose a new security notion for STE that aims to prevent attacks at the definitional
level.

1

Dedication and Acknowledgements

From the bottom of my heart I would like to say thank you to Bogdan Warinschi and
Oliver Johnson for your supervision. None of this research would have been possible
without you. I came to Bristol as an undergraduate uncertain what I wanted to do other
than having a passion for mathematics and computer science. I thought those subjects
were just a bit harder than what I have learnt in my secondary school – but no. Your
lectures have completely changed how I think about science and inspired me to pursue
a research career. It was my honour to be supervised by Bogdan on my master thesis
on the same topic which has lead to this thesis. Of course, this thesis will not have
been possible without a tremendous amount of help from Oliver. Thank you for all the
useful technical discussions and your help in improving my writing. You are the best
supervisors!

我由衷感谢Bogdan Warinschi教授和Oliver Johnson教授对我的指导。这份研究没有你
们就不可能完成。我初到布大时除了有对数学和计算机科学的热爱以外，并没有一
个确切的梦想。我甚至一度以为大学的授课内容就只是高中的升级版–然而我错了。
你们的授课完全改变了我对科学的认知，让我有了做科研的梦想。我有幸在大四时
被Bogdan指导硕士论文，而我的博士论文就是当时的衍生。当然，没有Oliver的帮助就
不会有这篇毕业论文。感谢你和我的技术交谈和你对我写作的帮助。你们是最棒的导
师！

During my third year of PhD, I was recommended by Bogdan (thank you again!) to
Kenny Paterson for a research internship. Despite my awful introduction, Kenny ac-
cepted me as a visitor for half a year. Kenny and his group offered some of the best
research experience I could have ever imagined. In particular, Kenny, Sikhar Patranabis
(a member of the group at the time) and I have worked on system-level leakage attacks
and SWiSSSE, which we believe will revolutionise research in structured encryption.
On top of that, the group is very friendly and we have spent a lot of time discussing
everything cryptography and playing together. For that, I want to thank Kenny and
all members of his group (in no particular order), including Sikhar, Benjamin, Matilda,
Mia, Felix, Varun, Igors and Barbara.

在我大三时，Bogdan把我推荐给了Kenny做研究实习。尽管我当时的自我介绍烂透
了，Kenny还是诚心地接受了我。在Kenny组里的时候，我经历了最棒的研究体验。其
中，Kenny、Sikhar和我发现了system-level leakage attacks，设计了SWiSSSE。我们相
信，这两个成果会给structured encryption的研究带来革命。另外，Kenny的研究小组
里的人都很友善。在那边的时候，我们一起讨论了很多密码学相关的内容，也一起玩了
很多东西。为此，我要感谢Kenny和他小组的所有人：Sikhar, Benjamin, Matilda, Mia,
Felix, Varun, Igors and Barbara。

I want to express my gratitude towards Alexandra (Sasha) Boldyreva, who has spent
her free time reading the chapter on foundations and discussing the issues with Bogdan

3

and me. I hope that the results in the chapter will lead to a powerful paper which will
reshape how we think about leakage.

我要感谢Alexandra (Sasha) Boldyreva利用自己的闲暇时间来读foundations的章节，
并与Bogdan和我讨论相关的问题。我希望这个章节里的成果能变成一篇改变我们思
考leakage方式的强力论文。

My PhD journey is certainly not a full smooth ride. When I was at lows, it was my
friends and colleagues who cheered me up. For that, I thank all of you (in no particular
order): Joey, Carolyn, Bin, Jake, Maria, Ben, Miranda, Thinh, Sarah, Dragos, Arnab,
Yan, Rebecca and many more.

我的博士路途并非一路顺风。当我失落的时候，是我的朋友和同事让我有动力再次
出发。为此，我要感谢所有帮助过我的人：Joey, Carolyn, Bin, Jake, Maria, Ben,
Miranda, Thinh, Sarah, Dragos, Arnab, Yan, Rebecca等。

Finally, I want to thank my family for their love and support. Thank you for raising me
and it is now my turn to make you proud!

最后，我要感谢我家人对我的爱和支持。感谢你们把我抚养长大。我希望现在的我能让
你们自豪！

4

Author’s declaration

I declare that the work in this dissertation was carried out in accordance
with the requirements of the University’s Regulations and Code of Practice
for Research Degree Programmes and that it has not been submitted for any
other academic award. Except where indicated by specific reference in the
text, the work is the candidate’s own work. Work done in collaboration with,
or with the assistance of, others, is indicated as such. Any views expressed
in the dissertation are those of the author.

SIGNED: .. DATE: ..

5

Contents

Contents 6

1 Introduction 9
1.1 Structured Encryption . 10
1.2 Development of Structured Encryption 11
1.3 Related Work . 13
1.4 Challenges of Structured Encryption and Our Contributions 14
1.5 Organization of the Thesis . 16
1.6 Published Results . 16

2 Background I: Mathematical Foundation 19
2.1 Probability Theory and Statistics . 20
2.2 Complexity Theory . 25
2.3 Table of Notations . 29

3 Background II: Cryptographic Foundation 31
3.1 Encryption . 32
3.2 Pseudo-random Generators (PRGs) . 36
3.3 Block Ciphers and Modes of Operation 38
3.4 Pseudo-random Functions (PRFs) . 41
3.5 Other Primitives . 42

4 Background III: Structured Encryption 43
4.1 Background . 44
4.2 A Simple Searchable Encryption Scheme 45
4.3 Security of Structured Encryption . 48
4.4 Structured Encryption in the Literature 50
4.5 Leakage Cryptanalysis in the Literature 52
4.6 The Index Retrieval Problem . 55
4.7 A Conundrum . 56

5 Cryptanalysis I: Encrypted Range Queries 57
5.1 Introduction . 59
5.2 Access-pattern Leakage Attacks . 62
5.3 Volume Leakage Attacks . 71
5.4 Discussion . 104

6 Cryptanalysis II: Searchable Encryption 107
6.1 Efficient Deployment of Searchable Encryption 109
6.2 Attack on System-level Leakage . 114
6.3 Formal Description of Access-pattern Leakage Attacks 117
6.4 New Access-pattern Leakage Attacks . 119

6

CONTENTS

6.5 Empirical Evaluation . 131
6.6 Discussion . 137

7 Construction: Searchable Encryption 141
7.1 Preliminaries and Background . 143
7.2 Simple Construction . 144
7.3 Bucketization . 147
7.4 Static SWiSSSE . 148
7.5 Cryptanalysis of Static SWiSSSE . 160
7.6 Dynamic SWiSSSE . 166
7.7 Performance Analysis . 179
7.8 Experimental Results . 181
7.9 Discussion . 185

8 Foundations: Towards a Better Security Notion 187
8.1 Introduction . 189
8.2 Preliminary Results . 192
8.3 New Constructions . 199
8.4 Security Analysis of Our Constructions 202
8.5 Application of Our Notion to Other Schemes 210
8.6 Discussion . 214

9 Conclusion and Discussion 215
9.1 Cryptanalysis . 216
9.2 Constructions . 216
9.3 Foundation . 217
9.4 Leakage vs Efficiency in Related Fields 217

Bibliography 219

7

Chapter 1

Introduction

Structured encryption aims to provide a way of outsourcing a database to an untrusted
server while preserving the privacy of the user and supporting as many search function-
alities as possible. Given the boom of cloud services and e-commerce, encrypted search
sounds like a perfect solution to individuals, organizations and businesses. However, de-
spite years of research, we see very limited adoptions of it in the real world, which begs
the question: why so? In this chapter, we overview potential answers to this question
and outline how our work can bridge the gap between the research community and the
real world.

Contents

1.1 Structured Encryption . 10

1.2 Development of Structured Encryption 11

1.2.1 Early Constructions and Security Notions 11

1.2.2 Modern Security Notion . 12

1.2.3 Modern Constructions . 12

1.2.4 Leakage-abuse Cryptanalysis Against Structured Encryption 13

1.3 Related Work . 13

1.3.1 Data Retrieval Primitives 13

1.3.2 Structured Encryption from Other Primitives 14

1.4 Challenges of Structured Encryption and Our Contributions 14

1.5 Organization of the Thesis . 16

1.6 Published Results . 16

9

CHAPTER 1. INTRODUCTION

1.1 Structured Encryption

There is no denial that we are living in an age of data. According to World Economic
Forum [60], for 2019, every day, there were 500 million tweets sent, 294 billion emails
sent, 5 billion searches were made, and 65 billion WhatsApp messages were sent – and
those numbers are still growing [161].

There is a multitude of ways we benefit from the data we generated, from health moni-
toring with wearable devices to self-driving cars, from quality-of-life improvements with
internet of things (IoT) devices to better user experience on the Internet. In recent years,
the idea of data-driven business has been popularized and it has benefited businesses of
all sizes tremendously. For example, the maintenance and logistics cost can be reduced
with big data, products are shaped by the feedbacks from users, and advertisements are
personalised to increase sales. No wonder, the global big data and business analytics
market was valued at 189.1 billion U.S. dollars in 2019 and is forecasted to grow to 274.3
billion U.S. dollars by 2022 [131].

However, handling the enormous amount of data does not come without challenges. For
individuals and small and medium businesses, they may not have the right knowledge or
tools to gather the data they need or analyse it. It is also possible that it is impractical
for them to store the data locally. This spurred the growth of the cloud storage and
computing industry. According to Microsoft, 78% of small businesses would have fully
adopted cloud computing by 2020 [129]. Amazon, Apple, Google, IBM, Microsoft,
just to name a few key players in the industry, offer a wide range of services in this
category, including infrastructure-as-a-service, platform-as-a-service, packaged software-
as-a-service, email, file hosting, collaborative document edition, and many more.

This raises concerns with data privacy as the user no longer holds onto the data. In
terms of storage, it is not always possible to encrypt the data as the user may want to
use the cloud service to manipulate or analyse the data at the same time. Since the
cloud service provider has the data in plain, he can learn as much, if not more from the
data as the user. The user has no way other than to trust the service provider if he
opts for the service. Even then, there can be security vulnerabilities in the service or
malicious employers in the service provider that will lead to data breaches [173].

Structured encryption has therefore been developed as a mechanism for dealing with
these privacy concerns for structured data – data in a predefined format (e.g. JSON).
On a high level, structured encryption provides a way to outsource data storage and
queries to a cloud server, while preserving the privacy of the user and efficiency of the
processes. In a perfect world, it should meet all the needs of the user, including data
storage, database logging, database auditing, data analysis, and so on. It should also
incur minimal overhead over the unencrypted counterpart. There is a long way we need
to go before getting to the perfect world. We see in this thesis that constructing a
secure and efficient scheme with basic functionalities (e.g. single keyword search) is
already challenging. We focus on two of the fundamental query types for a database.
The first query type is single keyword search – given a set of text-based documents, a
single keyword search on a keyword returns all documents associated to the keyword.
The second query type is range query – given a set of documents each associated to a
value, a range query on range a to b returns all documents with values between a and b.

The setup of structured encryption is shown in Figure 1.1. Here, there are two parties,
namely a user and a server. The user uploads a database to the server and he can

10

1.2. DEVELOPMENT OF STRUCTURED ENCRYPTION

perform queries on the database with the help of the server. In the simplest setting,
the server supports a single type of query on the encrypted data, for instance, simple
keyword search queries on a text-based database or range queries on numerical data.

In terms of security guarantees, a man in-the-middle and even the server should not be
able to learn any important information about the plaintext database and the queries.
For example, for a text-based database that supports single-keyword queries, one may
require that an honest-but-curious server should not learn the keywords associated to the
queries and the keywords associated to the documents in the database. Depending on
the security requirements, one may give the adversary additional powers. For instance,
one may require the above to be satisfied even if the adversary is allowed to inject
malicious documents into the encrypted database.

Figure 1.1: Basic setup of structured encryption.

In this thesis, we only consider the basic scenario mentioned above. There are many
ways structured encryption can be extended. For example, instead of having a sin-
gle user, there can be multiple users. It is possible to have refined roles too, such as
having a database owner who possesses the data, a group of users with different priv-
ileges, and multiple servers that are responsible for different functionalities. One can
design structured encryption schemes for other types of queries, such as SQL queries
and graph-based queries, too. Structured encryption can also be extended to support
normal database functionalities, such as database audition, (encrypted) backlogging,
query cacheing, and many more.

1.2 Development of Structured Encryption

This section provides a high level introduction to the development of structured encryp-
tion, see Chapter 4 for more detail.

1.2.1 Early Constructions and Security Notions

Structured encryption was first studied in the literature in the context of single-keyword
search on text data, which later became known as searchable (symmetric) encryption.
The first scheme of this kind was proposed by Song, Wagner and Perrig [166]. The
construction (and its security notion) is a special symmetric encryption scheme on the
data itself where given a token of a keyword (a token is a string which the server can
use to execute the query), the server can search over the encrypted data to recover the
locations of the keyword. However, with a lack of additional data structures, the search
process has to scan over the entire data, which makes the query complexity linear in the
size of the database and hence, not scalable.

11

CHAPTER 1. INTRODUCTION

As pointed out by Goh [82] and Chang and Mitzenmacher [39] later, the security notion
in [166] is insufficient for searchable encryption, as the definition does not capture secu-
rity of the tokens, meaning that a scheme that is secure as symmetric encryption may
still leak information about the queries through the tokens. For example, the tokens
may be computed using a public function, and the server can use brute force to recover
the keywords associated to the tokens. The authors proposed new security notions to
fix the problem and new constructions that are secure with respect to their security
notions.

1.2.2 Modern Security Notion

The modern security notion for searchable encryption was proposed by Curtmola et al.
in [53]. The notion is simulation-based, and captures what can be inferred from the
execution of a scheme by a leakage profile (see Section 4.3). A security proof in this
notion means that an adversary cannot learn more than what the leakage profile specifies.
The notion is later generalised to structured encryption by Chase and Kamara [40] and
extended to the universal composability framework by Kurosawa and Ohtaki [113].

Many works have introduced additional security properties on top of the standard secu-
rity notion [53, 40]. This includes forward security [25], backward security [29], volume-
hiding [149], d-private access pattern [41], and so on.

1.2.3 Modern Constructions

Structure-only Encryption vs End-to-End Encryption. There are two main
approaches to designing a structured encryption scheme. The first approach is to design
a specialised encrypted data structure for which the user can retrieve the encrypted
indices of the actual data. And the retrieval of the actual data is supported by primitives
such as private information retrieval or oblivious random-access memory (see Section
1.3.1) or hosted on a second trusted server. The second approach is to design an end-to-
end scheme, meaning that the specialised encrypted data structure supports retrieval of
encrypted data directly. The majority of the schemes in the literature, for example [53,
36, 35, 97, 116], take the first approach, as it leads to more efficient constructions for
retrieval of encrypted indices.

Structured Encryption for Various Data Types. There are three main classes of
structured encryption studied in the literature, namely searchable encryption, encrypted
range queries and graph-based encryption.

Searchable encryption includes variants of keyword search on encrypted text-based
database. It has received a lot of attention in the past few years. There is a line of
work [53, 35, 41, 98, 149] focusing on improving security and efficiency of searchable
encryption. There are also works focusing on dynamism [100, 25, 109] and public-key
setting [22, 199, 45]. Many other works tried to expand on the functionality of search-
able encryption. For instance, [19, 81] studied fuzzy keyword search, and [36, 146, 116]
studied boolean queries.

Encrypted range queries is a primitive to perform range queries on encrypted labelled
data. It has been studied in many settings [163, 31, 58, 202, 57]. It may also be
instantiated by a property-preserving encryption scheme, as demonstrated in [20, 151,

12

1.3. RELATED WORK

103, 46, 158].

Graph-based encryption is a collection of structured encryption schemes for graph-based
queries such as k-nearest neighbour query and shortest path query. It was first studied
in [40] by Chase and Kamara, and followed by many works [47, 108, 117].

1.2.4 Leakage-abuse Cryptanalysis Against Structured Encryption

As we mentioned earlier, security of a structured encryption scheme is parametrised
by a leakage profile. This leakage profile quantifies the information leakage which an
adversary can obtain by observing the operations of the structured encryption scheme.
For instance, the leakage profile may include search pattern (if two encrypted queries are
the same query) and query response length pattern (how many data items is returned
by the query), which were believed to be “harmless”.

(Un)surprisingly, leakage-abuse attacks have shown that many of these benign leakage
profiles can be exploited to recover private information about the database and/or the
queries. These include attacks against searchable encryption [94, 33, 155, 17, 143],
attacks against encrypted range queries [33, 115, 87, 88, 89, 111], and attacks against
other primitives that can be used to build a structured encryption scheme [135, 139].

1.3 Related Work

The data retrieval problem has been studied in different settings for many years. In some
sense, structured encryption can be viewed as a specialised data retrieval primitive that
supports searching as opposed to retrieving an element by its position.

In this section, we provide an overview of the other data retrieval primitives in the
literature. We show how they can be used to build structured encryption and argue
that the natural constructions arise from the primitives are inefficient.

1.3.1 Data Retrieval Primitives

Private Information Retrieval. Private Information Retrieval (PIR) [49] is a prim-
itive that allows a user to retrieve an element from a server without letting it learn which
element was accessed. In the standard setting, the database is not encrypted, and hence,
known by the server. Recent constructions [6, 52] have shown that data retrieval in PIR
can be achieved in sub-linear time and there are use-cases where they can be efficiently
deployed.

Homomorphic encryption. Homomorphic encryption (FHE) was introduced by
Ronald Rivest, Leonard Adleman, and Michael Dertouzos [157] as a tool for a server to
compute on encrypted data without learning the underlying plaintexts. Since the semi-
nal paper by Gentry [76] on fully homomorphic encryption, a lot of breakthroughs [181,
78, 30, 107, 106] have been made in the field. FHE can be used as a building block for
data retrieval primitives such as PIR [6, 52] and private database query systems [23, 12].

Oblivious random-access memory. Oblivious random-access memory (ORAM) was

13

CHAPTER 1. INTRODUCTION

proposed by Goldreich and Ostrovsky in [84] as a primitive to access elements of a mem-
ory obliviously, meaning that the access pattern of different elements cannot be distin-
guished by an attacker. There has been many follow-up works in this direction, including
works on multi-server ORAM [170, 123], ORAMs with server computation [195, 61, 74]
and Oblivious Data Structures (ODS) [190].

1.3.2 Structured Encryption from Other Primitives

Certain classes of structured encryption can be realised with generic data retrieval prim-
itives listed above. For example, one can build a structured encryption scheme for single
keyword search by encrypting the database and its index (a map between the keywords
to the document identifiers, the documents corresponding to the document identifiers
must contain the given keyword), applying a suitable PIR scheme on top, and outsource
the resultant database to a server.

Solutions like this certainly meet the functionality requirements of structured encryption,
but they are typically too slow for practical applications. There are two main sources of
inefficiency. Firstly, the underlying data retrieval primitives are built for the strongest
possible security guarantees, and they are necessarily “inefficient”. For example, the
theoretical lower bound on bandwidth overhead for ORAM is proven to be O(log(n))
where n is the number of data elements [84]. For some real-world applications, this kind
of logarithmic overhead is unacceptable.

The second source of efficiency comes from the nature of the primitives used. For
example, ORAM is built for accessing one data element at a time. On the other hand,
structured encryption is built for accessing a list of search results for each query. So
if one was to use ORAM to retrieve all of the search results, the overall bandwidth
overhead will be O(m log(n)), where m is the number of data elements in the search

result. For a large m, i.e. anything on the order of O
(

n
log(n)

)
, the bandwidth will be on

the order of O(n) and it is better to return the entire database in that case. PIR suffers
a similar problem in terms of computation and communication overheads. In short, the
other primitives are built for single element data retrieval and are not optimised for
multi-element data retrieval. The overhead as a result of this can be significant, making
the final scheme inefficient and impractical.

We show a concrete overhead comparison for different constructions of structured en-
cryption in Section 6.1.

1.4 Challenges of Structured Encryption and Our
Contributions

Understanding Leakage-abuse Attacks. There is no doubt that certain leakage
can be problematic given the plenitude of attacks. However, our understanding of these
attacks is very limited. In particular, the optimality of many attacks [94, 33, 155, 17]
is still unknown. This implies that even if we can show that a scheme is secure with
respect to one of these attacks, it does not mean that the scheme is protected from all
leakage-abuse attacks with the same attack goal.

As the community is more aware of these leakage-abuse attacks, many schemes with

14

1.4. CHALLENGES OF STRUCTURED ENCRYPTION AND OUR
CONTRIBUTIONS

countermeasures [33, 26, 99, 41, 149, 198, 57] have been proposed. However, the majority
of the attacks in the literature only work on unperturbed leakage, and there is no obvious
way to extend these attacks to attack the schemes with countermeasures.

Most importantly, all of the attacks make arbitrary choices of auxiliary information and
query distribution. This is understandable as it is hard to find real-world auxiliary
datasets and there has not been any formal studies on query distribution. However, this
gives practitioners a reason to dismiss some of the attacks as unrealistic attacks. Indeed,
attacks such as [94, 33, 17] assume that the attacker has access to the target database,
which is hard to justify in practice.

This thesis addresses all of the issues above. In Chapter 5, we study leakage-abuse at-
tacks on encrypted range queries under many different scenarios. We show that even
for realistic query distributions and schemes with countermeasures, our attacks are suf-
ficient to breach privacy. In Chapter 6, we demonstrate the same idea on searchable
encryption. Along the way, we identify a new source of leakage which we call system-
level leakage, and argue that all structured-only schemes with an efficient data retrieval
phase have this leakage.

Structure-only Encryption vs End-to-End Encryption. As we have pointed
out earlier, there are two main approaches to designing a structured encryption scheme.
The first approach designs schemes for retrieval of encrypted indices and encrypted
documents separately, whereas the second approach does both at the same time. The
majority of the schemes in the literature take the first approach and they are known as
structure-only schemes. There are a handful of schemes taking the second approach and
they are referred to as end-to-end schemes.

As the structured-only schemes often only specifies how encrypted indices should be
retrieved, it raises the question of how retrieval of actual data should be handled. There
are two main proposed solutions to this question. Firstly, one may use generic tools
such as ORAM (see Section 1.3.1) to achieve this. But these tools are typically very
expensive in terms of communication overhead and/or storage overhead, leading to an
overall impractical structured encryption scheme (see Section 6.1). Secondly, one may
use a second trusted server for the job, but one can argue that in that case, one should
just use the trusted server for an unencrypted database.

In addition to the two proposed solutions above, we note that the structure-only schemes
are capable of retrieving actual data, except that they are too inefficient to be practical
(see Section 6.1.1). This is because the techniques used by these schemes, for instance,
document identifier duplication and full padding, do not scale on actual data.

In that light, we are forced to design end-to-end structured encryption schemes from
scratch. There have been attempts at doing this, but to the best of our knowledge, all
of the end-to-end constructions [41, 57] are either inefficient or broken by leakage-abuse
attacks. In Chapter 7, we propose the first end-to-end searchable encryption schemes
that are scalable and resilient to all known leakage-abuse attacks. To fully test the limits
of our constructions, we developed a new leakage-abuse attack in Section 7.5. The attack
is further refined which leads to the results in Chapter 6.

Preventing Leakage-abuse Attacks via a Quantitative Security Notion.
Advances in leakage-abuse attack forced many researchers to take a defensive approach
in designing new schemes. For instance, leaking query response volume is known to

15

CHAPTER 1. INTRODUCTION

be dangerous in many settings [135, 143], so new schemes [149, 98] are designed to
suppress the leakage completely. The techniques used by these schemes either leads to
an inefficient scheme or a lossy one (some of the structures in the plaintext database are
lost after encryption). We demonstrate this in Section 6.1.

On the other hand, we believe that leakage lies at the heart of structured encryption.
Instead of the all-or-nothing approach taken by many, we believe that we should suppress
leakage moderately to the point that leakage-abuse attacks are no longer viable and the
resultant scheme can remain efficient. The current security definition does not allow
us to achieve this goal, as leakage is a part of the security notion, and the security
of a scheme has to be assured via leakage cryptanalysis. The latter process can be
problematic in itself, as security with respect to a particular leakage-abuse attack does
not imply security against all leakage-abuse attacks.

There is a need for a new security notion which one can prove quantitatively the security
of a scheme with respect certain classes of leakage-abuse attack. That is, instead of
defining security by whether an attack can succeed, we need a security notion for which
we can show an upper bound of the damage an attack can do. A scheme can be secure
under our notion even if there is a small chance for an attacker to succeed. We explore
this idea in Chapter 8.

Research efforts in understanding leakage vs efficiency trade-offs. As
discussed before, the main goals of this thesis is to understand the leakage versus effi-
ciency trade-off in structured encryption and propose constructions that are as efficient
as possible with acceptable leakage. This is not the first time such trade-off has been
considered in the literature. In fact, similar efforts have been made in the literature of
storage systems [197], PIR [178], ORAM [185], oblivious algorithms [38] and many more.
Thus, this thesis can be seen as a continuation of work in this direction. In Section 7.2,
we give more details on how our work is connected to the others in the literature.

1.5 Organization of the Thesis

In this thesis, we deal with all of the challenges discussed above. It is organised as
follows. The mathematical and cryptographic foundations are laid in Chapter 2 and 3
respectively. Chapter 4 gives a detailed overview of structured encryption. Chapter 5
and 6 explore attacks on encrypted range queries and searchable encryption respec-
tively. This motivates Chapter 7 which devises the first scalable and secure end-to-end
searchable encryption schemes. Chapter 8 proposes a new security notion for structured
encryption which aims to prevent leakage-abuse attacks at a definitional level. Finally,
Chapter 9 offers a discussion on the results from previous chapters and concludes the
thesis.

1.6 Published Results

Section 5.3.1 to 5.3.5 are based on the [89] paper. The other results in Chapter 5 will
be published in a paper in the future. Chapter 6 will appear in IEEE Symposium on
Security and Privacy 2023 and the ePrint version is available online [90]. Chapter 7 uses
material from [91]. Finally, the results from Chapter 8 are still under active research

16

1.6. PUBLISHED RESULTS

and will be published as a paper in the future.

17

Chapter 2

Background I: Mathematical
Foundation

This chapter serves as an introduction to the mathematical ideas, notions and tools used
in the later chapters. Section 2.1 introduces probability theory and statistics. Section 2.2
outlines the key ideas in complexity theory. Section 2.3 presents the common notations
used in the later chapters. For more detailed studies of the subjects, see [159, 160, 96, 51]
respectively.

Contents

2.1 Probability Theory and Statistics 20

2.1.1 Axioms of Probability . 20

2.1.2 Conditional Probability . 20

2.1.3 Probability Spaces . 21

2.1.4 Random Variables . 22

2.1.5 Central Limit Theorem (CLT) 23

2.1.6 Parameter Estimation . 24

2.2 Complexity Theory . 25

2.2.1 Deterministic Turing Machines 25

2.2.2 Common Complexity Classes 26

2.2.3 Reductions . 29

2.3 Table of Notations . 29

19

CHAPTER 2. BACKGROUND I: MATHEMATICAL FOUNDATION

2.1 Probability Theory and Statistics

Probability theory is the studies of the likelihood of an event occurring from a pool of
possible events. For example, in a coin-tossing experiment, one may be interested in the
likelihood of the coin landing on its head, and determine if the coin is unbiased. Here,
there are two possible outcomes: head (H) or tail (T). The set S = {H,T} is called the
sample space, and the subsets of the set are called the events.

The concept of probability is used throughout this thesis (and cryptography in general)
to argue about security of schemes. See Section 3.1.2 for an example of a typical security
proof.

2.1.1 Axioms of Probability

One way of defining the probability of an event E is in terms of its relative frequency.
Let n(E) be the number of times event E has occurred in the first n independent trials
of the experiment, then we can define the probability of event E happening as:

Pr [E] := lim
n→∞

n(E)

n
.

This definition is certainly intuitive, but there is a major drawback: how do we know
that Pr [E] converges? In modern probability theory, a different approach is taken.
Instead of assuming the convergence of Pr [E], we start with a simpler set of axioms
[159], and then show that Pr [E] does converge in some sense.

Definition 2.1 (Axioms of Probability). Consider an experiment whose sample space
is S. For each event E of the sample space S, we assume that a number Pr [E] is defined
and satisfies the following three axioms:

1. 0 ≤ Pr [E] ≤ 1.

2. Pr [S] = 1.

3. For any sequence of mutually exclusive events E1, E2, . . . (i.e. the intersection of
events Ei ∩ Ej = ∅ for all i ̸= j),

Pr [∪∞i=1Ei] =

∞∑
i=1

Pr [Ei] .

We refer to Pr [E] as the probability of the event E.

2.1.2 Conditional Probability

Sometimes it is useful to look at multiple events together as a single event. For example,
one may be interested in the probability that three dice give a sum of 8. In a more
complicated setting, one may also be interested in the probability that three dice give
a sum of 8 given that one of the dice gives 3. Probabilities of this form are known as
conditional probabilities.

20

2.1. PROBABILITY THEORY AND STATISTICS

Definition 2.2 (Conditional Probability). Let E and F be two events and Pr [F] > 0.
The conditional probability of E given F is defined as

Pr [E | F] :=
Pr [E ∩ F]

Pr [F]
.

This gives us a way to define independent events, i.e. events that do not affect each
other’s probability in a conditional probability.

Definition 2.3 (Independent Events). Let E and F be two events. We say that E and
F are independent if Pr [E | F] = Pr [E], or equivalently

Pr [E ∩ F] = Pr [E]Pr [F] .

A useful theorem involving conditional probability is the law of total probability.

Theorem 2.1 (Law of Total Probability). If events {E1, E2, . . .} is a countably finite
partition of a sample space Ω (i.e. Ω = ∪iEi for mutually exclusive Ei’s), then for any
event F of the same sample space,

Pr [F] =
∑
i

Pr [F ∩ Ei] .

In other words,

Pr [F] =
∑
i

Pr [F | Ei]Pr [Ei] .

2.1.3 Probability Spaces

We define probability spaces in this section. A probability space is a mathematical
construct that provides a formal model of a random process or “experiment”. This then
allows us to define random variables later. To begin with, we need to define σ-algebra.

Definition 2.4 (σ-algebra). Let X be a set and P(X) be the power set of X. Then a
subset Σ ⊆ P(X) is called an σ-algebra if the following conditions are satisfied:

1. X is in Σ and X is considered to be the universal set in the following context.

2. Σ is closed under complementation: if A is in Σ then so is its complement X\A.

3. Σ is closed under countable unions: if A1, A2, . . . ∈ Σ then A = A1 ∪A2 ∪ . . . ∈ Σ.

Elements of the σ-algebra are called measurable sets. An ordered pair (X,Σ), where X is
a set and Σ is a σ-algebra over X, is called a measurable space. A function between two
measurable spaces is called a measurable function if the preimage of every measurable
set is measurable.

Definition 2.5 (Probability Space). A probability space is a triple (Ω,F ,Pr) consisting
of:

� The sample space Ω – an arbitrary set that is non-empty,

21

CHAPTER 2. BACKGROUND I: MATHEMATICAL FOUNDATION

� The event space F – a σ-algebra,

� The probability measure Pr : F → [0, 1] – a function on F such that:

– Pr is σ-additive: if A1, A2, . . . ⊆ F is a countable collection of pairwise disjoint
sets, then Pr [∪∞i=1Ai] =

∑∞
i=1 Pr [Ai],

– the measure of entire sample space is equal to one: Pr [Ω] = 1.

The formalism of probability space appears again in Chapter 8 where the low-level details
are required. In other cases, we implicitly assume the use of the standard probability
space where the event space F is the power set of the sample space Ω.

2.1.4 Random Variables

We are now ready to define random variables. A random variable is built on top of
the events in a probability space in the sense that its random behaviour is determined
by the probability space just as before, but the outcomes of the random variable are
computed from the events.

Definition 2.6 (Random Variable). Let (Ω,F ,Pr) be a probability space and (E, E)
a measurable space. Then an (E, E)-valued random variable is a measurable function
X : Ω→ E.

If E = R, we say that X is real-valued.

Definition 2.7 (Discrete Random Variables). We say that X is a discrete random
variable if the image of the random variableX is countable. Real-valued discrete random
variables can be characterized by their probability mass functions (PMFs). Let X be a
real-valued discrete random variable, then its PMF is written as Pr [X = x]. This is a
shorthand for Pr [ω ∈ Ω | X(ω) = x] which is widely accepted in the literature.

For example, for a fair coin, we may assign head to 1 and tail to 0. The random variable
X which represents the outcome of a coin toss experiment can then be written as:

Pr [X = x] =

{
0.5 if x = 1,

0.5 otherwise.

Discrete random variables are typically used in cryptography to describe the distribution
of inputs and outputs of cryptosystems (e.g. binary strings or elements of a finite field)
as they are finite in nature. See Section 3.1.1 for an example of how discrete random
variables are used in cryptography.

Definition 2.8 (Cumulative Distribution Function (CDF)). An equivalent way to char-
acterize a random variable is through its cumulative distribution function. As opposed
to a PMF, a CDF uses the probability of a random variable less or equal to a value to
characterize it, i.e. Pr [X ≤ x].

Common discrete random variables include Bernoulli random variables, binomial ran-
dom variables, Poisson random variables, geometric random variables, hypergeometric
random variables and so on [159]. A special property of these random variables is that

22

2.1. PROBABILITY THEORY AND STATISTICS

they are classes of random variables that are parametrized by one or more parameters.
For example, a Bernoulli random variable is parametrized by a probability p and a
binomial random variable is parametrized by a natural number n and a probability p.

Although informative, a PMF is often not straightforward enough in describing a random
variable. That is why two numbers, namely expectation and variance, are often used
to summarize a random variable. The expectation of a random variable describes the
average outcome expected from a random variable and the variance of a random variable
describes how far away one expects the outcome to deviate from the expectation.

Definition 2.9 (Expectation and Variance of a Discrete Random Variable). Let X be
a discrete random variable. Then the expectation of X is defined to be

E [X] =
∑
x

xPr [X = x] .

The variance of X is defined to be

var [X] = E
[
(X −E [X])

2
]

= E
[
X2
]
−
(
E [X]

2
)
.

Definition 2.10 (Continuous Random Variables). We say that X is a continuous ran-
dom variable if the image of the random variable X is uncountable. A real-valued
continuous random variable can be described by a probability density function (PDF)
or a cumulative distribution function (CDF).

Common continuous random variables include continuous uniform distribution, Laplace
distribution, normal distribution and so on. Similar to the discrete case, these random
variables are parametrized by one or more parameters. For example, a continuous uni-
form distribution is parametrized by two real numbers a and b, and Laplace distribution
is parametrized by a real number µ and a positive real number b.

In this thesis, continuous random variables are used to approximate discrete random
variables as the earlier are typically easier to work with. Continuous random variables
are heavily used in Section 5.3.1, 6.4 and 7.5.

Similar to the discrete case, we can define the expectation and variance of a continuous
random variable as follows.

Definition 2.11 (Expectation and Variance of a Continuous Random Variable). Let X
be a continuous random variable with PDF f(x). Then the expectation of X is defined
to be

E [X] =

∫
x

xf(x).

The variance of X is defined to be

var [X] = E
[
(X −E [X])

2
]
.

2.1.5 Central Limit Theorem (CLT)

The central limit theorem states that for ‘well-behaved’ independent random variables,
their normalised sum tends toward a normal distribution regardless of their original

23

CHAPTER 2. BACKGROUND I: MATHEMATICAL FOUNDATION

distributions. This theorem is a key concept in probability theory as it allows many
problems involving other types of distributions to be solved via normal approximation.
There are many variants of CLT concerning different types of random variables. The
variant that is stated below requires the random variables to be independent, but not
necessarily identically distributed. The variant of CLT is known as Lyapunov CLT [15].

CLT is used in Section 6.4 and 7.5 as an approximation technique which speeds up the
computation.

Theorem 2.2 (Lyapunov CLT). Suppose X1, . . . , Xn is a sequence of independent
random variables, each with finite expected value µi and variance σ2

i . Define

s2n =

n∑
i=1

σ2
i .

If for some δ > 0, Lyapunov’s condition

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[
|Xi − µi|2+δ

]
= 0

is satisfied, then a sum of Xi−µi

sn
converges in distribution to a standard normal random

variable, as n goes to infinity:

1

sn

∑
i=1

n (Xi − µi)
d−→ N(0, 1).

2.1.6 Parameter Estimation

In the real world, we are often interested in the reverse problem: given the data, what
can we say about the random variable? If the random variable can be approximated by
a known distribution, and we can recover the parameter of that random variable, then
we can use our model to predict the future, or to infer some hidden underlying causes.

Bayesian Parameter Estimation. One of the approaches, known as the Bayesian
parameter estimation, relies on the famous Bayes’ theorem.

Theorem 2.3 (Bayes’ Theorem). Let E1 and E2 be two events where Pr [E2] ̸= 0. Then

Pr [E1 | E2] =
Pr [E2 | E1]Pr [E1]

Pr [E2]
.

By treating the parameter (say θ) of a random variable (say X) as a random variable
itself, we can interpret Bayes’ theorem as follows. If we treat event E1 as a particular
value of θ and event E2 as the samples from the random variable X, then the left-hand
side of the equation can be interpreted as the probability distribution of the parameter
given the samples. The right-hand side then rewrites it into three probabilities:

� Pr [E2 | E1]: the probability of observing the data given a particular value of θ ∈
E1.

� Pr [E1]: the probability of observing the particular value of θ ∈ E1.

24

2.2. COMPLEXITY THEORY

� Pr [E2]: the probability of observing the data.

The first probability can be computed explicitly as we know everything about X in
the conditional probability. The second probability can be computed if we assume a
distribution on θ. The only thing that cannot be explicitly computed (or at least, hard
to be), is Pr [E2]. However, just knowing that Pr [E1 | E2] ∝ Pr [E2 | E1]Pr [E1] allows
us to compare the likelihoods of different parameters of X.

Frequentist Parameter Estimation. Another school of statistical inference, known
as frequentist inference [136], tackles the parameter estimation problem differently. In-
stead of treating the unknown parameter as a random variable, the parameter is believed
to be fixed and hidden. In a parameter estimation problem, a frequentist inference out-
puts a single solution and a confidence interval associated to it.

A common method to estimate the parameter of a random variable for frequentists is
maximum likelihood estimation. The idea is to find the parameter which maximises the
likelihood function:

θ̂ = argmax
θ

Pr [S | θ] ,

where θ is the parameter of a random variable, S is the collection of samples and θ̂ is
the maximum likelihood estimation of the parameter.

We used frequentist parameter estimation in Chapter 6 and 7.

2.2 Complexity Theory

Thanks to advances in computer science and engineering, we are able to solve computa-
tional problems such as speech recognition, machine learning and black hole simulation
we would only dare to dream of a few decades ago. We may be tempted to believe that
we will be able to solve any computational problems if we can make our computers fast
enough. Unfortunately, this does not appear to be true. There are many problems that
can be solved theoretically, but the known algorithms are completely impractical. This
is not all bad news, as modern cryptography relies on a subset of these hard problems
which are hard to solve but easy to verify whether a solution is valid.

This section provides an overview of complexity theory and outlines its use in cryptog-
raphy.

2.2.1 Deterministic Turing Machines

Before discussing the different classes of problems, we need to establish a formal model
of computation. The classical model of computation is called the deterministic Turing
machine (DTM) [96] which is presented below.

Definition 2.12 (Deterministic Turing Machine). A deterministic Turing machine con-
sists of:

1. a finite alphabet Σ containing the blank symbol ∗;

25

CHAPTER 2. BACKGROUND I: MATHEMATICAL FOUNDATION

2. a 2-way infinite tape divided into squares, one of which is the special starting
square. Each square contains a symbol from the alphabet Σ. All but a finite
number of the squares contain the special blank symbol ∗, denoting an empty
square;

3. a read-write head that examines a single square at a time and can move left (←)
or right (→);

4. a control unit along with a finite set of states Γ including a distinguished starting
state s0 and a set of halting states F .

The computation of a DTM is controlled by a transition function:

δ : Γ× Σ→ Γ× Σ× {←,→} .

The control unit is initialised in the starting state s0 and the read-write head is on the
starting square. The transition function tells the machine what to do next given the
current state and the alphabet in the current square. For example, if the control unit is
in state s and the current square contains the symbol σ, then the value of δ(s, σ) tells
the machine three things:

1. the new state for the control unit (if this is a halting state then the computation
ends);

2. the symbol to write in the current square;

3. whether to move the read-write head to the left or right by one square.

The computation of a DTM on input x ∈ (Σ\ {∗})∗ is simply the result of applying the
transition function repeatedly starting with x written in the first |x| tape squares. If the
machine never enters a halting state then the computation does not finish, otherwise
the computation ends when a halting state is reached. We say that a DTM computes a
function f : (Σ\ {∗})∗ → (Σ\ {∗})∗ if the machine halts on every input x ∈ (Σ\ {∗})∗,
and the output in each case is f(x).

2.2.2 Common Complexity Classes

With DTM, we are able to answer two fundamental problems in complexity theory:

� Is a problem Π intrinsically easy or hard to solve?

� Given two problems Π1 and Π2, which is easier to solve?

To address the first problem, we establish classes of problems such that for each class,
the amount of computational resources required for solving problems in the class are
comparable. Then, if we can show that the problem Π requires as much (and not less)
resources as the problems in a certain complexity class, we can say that the problem Π
is as hard as the other problems in that complexity class.

The second question can be addressed by showing that an algorithm for solving one of
the problems can be used to solve the second problem, therefore, the first problem must

26

2.2. COMPLEXITY THEORY

be ‘at least as hard’ as the second problem. This technique is known as reduction and
it lies in the core of modern cryptography.

The most commonly analysed problems in complexity theory are decision problems –
those problems that can be posed as yes-no questions. For example, the question ‘is
the natural number n prime’ is a decision problem. As the set of prime numbers can
be represented as a set, deciding whether a number is prime is equivalent to testing if
a number is in the set of prime numbers. For that reason, we often refer to decision
problems as languages. In terms of the DTM model of computation, we say a DTM M
decides a language L if for all x ∈ L, M(x) halts and accepts x; for all x /∈ L, M(x)
halts and rejects x.

Before diving into different complexity classes, we introduce the big-O notation which
will be useful later.

Definition 2.13 (Big-O Notation). Let f and g be real-valued functions.Let both func-
tions be defined on some unbounded subset of the positive real numbers, and g(x) be
strictly positive for all large enough values of x. One writes

f(x) = O(g(x)) as x→∞

if the absolute value of f(x) is at most a positive constant multiple of g(x) for all
sufficiently large values of x. That is, f(x) = O(g(x)) if there exists a positive real
number M and a real number x0 such that

|f(x)| ≤Mg(x) for all x ≥ x0.

Similarly, we use big-Ω as a lower bound on the growth of functions and big-Θ as a
tight bound on the growth of functions. We omit the formal definitions for the later
notations.

Complexity Class P. To put it simply, the complexity class P are all the problems
which are considered computationally feasible in the DTM model. As the name of the
complexity class suggests, ‘P’ refers to the time complexity of the DTM. We can formally
define the time complexity of a DTM M as follows.

Definition 2.14 (Time Complexity of a DTM). Let M be a DTM which halts on every
input x ∈ (Σ\ {∗})∗. Let tM (x) be the number of steps M takes to compute on x. Then
the time complexity TM : N→ N of M is defined by:

TM (n) = max {t | ∃x ∈ (Σ\ {∗})n : tM (x) = t} .

The class of polynomial time decidable languages P can then be defined as:

Definition 2.15 (Complexity Class P).

P = {L ⊆ (Σ\ {∗})∗ | there is a DTM M which decides L

and a polynomial p(n) such that TM (n) ≤ p(n) for all n ≥ 1}.

The problems in complexity class P are, in some sense, easy to solve, and hence, un-
suitable as building blocks of cryptosystems. Instead, cryptographers are interested in
problems that are hard to solve on their own, but are easy if some information is given.

27

CHAPTER 2. BACKGROUND I: MATHEMATICAL FOUNDATION

For example, such information could be a solution path of the computation, which can
be efficiently verified by a DTM. By sharing the information between different parties,
those parties can solve the problem efficiently whereas an eavesdropper cannot. The
class of problems with this property is known as the complexity class NP.

Definition 2.16 (Complexity Class NP). A language L is in NP if there exists a
polynomial-time DTM, referred to as the verifier, that takes as input a string w and a
certificate string c, and accepts w if w ∈ L and rejects w if w /∈ L.

It is worth to note that the P versus NP problem, that is, if P = NP is still unsolved.
If P = NP, then all cryptosystems that rely on NP problems are broken.

Complexity Class PP Another important complexity class is the class PP. The
key difference between P and PP is that languages in PP relies on a modified Turing
machine, known as a probabilistic Turing machine.

A probabilistic Turing machine (PTM) is similar to a DTM (see Definition 2.12), except
that there are two transition functions δ1 and δ2. At each step, the Turing machine
randomly (50% chance to choose either transition function) applies either the transition
function δ1 or the transition function δ2. This choice is made independent of all prior
choices. Hence, the random choice at each step can be thought of as a coin flip. Due
to the probabilistic nature of the transition functions, the Turing machine may accept
a string on some occasions but reject on the others. To accommodate this, a language
L is said to be recognized with error probability ϵ by a PTM M if:

1. w ∈ L =⇒ Pr [M accepts w] ≥ 1− ϵ;

2. w /∈ L =⇒ Pr [M rejects w] ≥ 1− ϵ.

We can then define the complexity class PP [80] as follows.

Definition 2.17 (Complexity Class PP). A language L is in PP if there exists a
probabilistic Turing machine M , such that:

� M runs for polynomial time on all inputs;

� For all x ∈ L, M outputs 1 with probability strictly greater than 1
2 .

� For all x /∈ L, M outputs 1 with probability less than or equal to 1
2 .

For a secure cryptosystem that is based on a decisional problem, we want to show
that there is no probabilistic Turing machine (equivalently, probabilistic polynomial-
time (PPT) algorithm) to decide the problem. Similarly, for a secure cryptosystem that
is based on a computational problem, we want to show that there is no probabilistic
Turning machine to solve the problem. All of the security notions in this thesis feature
PPT adversaries.

Other Complexity Classes. There are many other complexity classes. For example,
complexity classes AC [7], ACC [184] and TC [93] are complexity classes used in circuit
complexity; complexity classes AM [11] and IP [125] which are used in interactive proof
systems; complexity classes L and NL [73] which concern the space complexity; and

28

2.3. TABLE OF NOTATIONS

complexity classes BQP and QMA [192] which characterise hardness of problems on
quantum computers.

2.2.3 Reductions

A reduction is an algorithm for transforming one problem into another problem. If the
reduction itself is efficient, then it means that the second problem is at least as hard as
the first problem.

Turing Reduction. Consider the following two computational problems:

� Problem A: given an integer n, find one of its prime factors.

� Problem B: given an integer n, find all of its prime factors.

If we want to show that problem B is at least as hard as problem A, we can used a
reduction called Turing reduction [180] which uses an algorithm to solve problem B as
an oracle to construct an algorithm for problem A. To demonstrate how it works, let
M be a DTM for solving problem B, then we can construct another DTM for solving
problem A as:

� Given an integer n, call M to generate the prime factors p1, . . . , pk.

� Return p1.

Turing reduction is by far the most commonly used reduction in security proofs of
cryptosystems. To show that a cryptosystem is secure, we show that breaking the
cryptosystem is at least as hard as breaking the underlying computational hardness
assumptions. Reduction is used in Chapter 7 for security proofs.

Many-one Reduction. Many-one reduction [154] is another important reduction. In
many-one reduction, if one wants to show that problem B is at least as hard as problem
A, he has to construct an algorithm which transforms inputs of problem A so that an
oracle call to an algorithm which solves problem B outputs solutions to problem A.
Many-one reduction can be seen as a special case of Turing reduction where only one
oracle call is allowed in the end.

2.3 Table of Notations

This section lists the notations used in this thesis.

29

CHAPTER 2. BACKGROUND I: MATHEMATICAL FOUNDATION

Notation Description

|X| Absolute value if X is a number, number of elements
in X if it is a set

||f || Size of the support of function f where f is non-zero
← Assignment
R←− Uniform random sampling (from a set or a list)

{} Set
{{}} Multiset
[] List
[x1, . . . xl] + [y1, . . . , ym] List concatenation
s1||s2 String concatenation
negl(λ) Negligible function
poly(n) Polynomial function in n

30

Chapter 3

Background II: Cryptographic
Foundation

This chapter serves as an introduction to cryptography with a focus on the primitives
and cryptosystems used in structured encryption. For a more thorough treatment of the
subject, [83, 164, 24] are good places to start.

Section 3.1 introduces computational ciphers and semantic security, and presents the
formal security frameworks. Section 3.2 introduces pseudo-random generators and show
how they can be used as encryption schemes. Section 3.3 studies another way of building
an encryption scheme, namely block cipher, and shows how to encrypt messages of
arbitrary lengths with it. Section 3.4 studies pseudo-random functions. Section 3.5 offers
a brief introduction to the other primitives that are used by or related to structured
encryption.

Contents

3.1 Encryption . 32

3.1.1 The Perfect Encryption Scheme 32

3.1.2 Computational Ciphers and Semantic Security 34

3.2 Pseudo-random Generators (PRGs) 36

3.2.1 Formal Definition . 36

3.2.2 Encryption with PRG . 36

3.2.3 Drawbacks of Encryption with Stream Cipher 38

3.3 Block Ciphers and Modes of Operation 38

3.3.1 Block Ciphers . 38

3.3.2 Modes of Operation . 39

3.3.3 Chosen-Plaintext Attack Security 40

3.4 Pseudo-random Functions (PRFs) 41

3.5 Other Primitives . 42

31

CHAPTER 3. BACKGROUND II: CRYPTOGRAPHIC FOUNDATION

3.1 Encryption

Suppose Alice wants to deliver a message m to Bob without leaking the content to an
eavesdropper. A simple way to do that is for Alice and Bob to agree on some secret way
of transforming the message, for example, using a substitution table for the alphabets,
so that Alice can apply the transformation to the message m to get a ciphertext c, and
Bob can undo the transformation to recover the message. There is apparently a problem
here. How can Alice and Bob agree on something before sending the message? This
question is answered by key-exchange algorithms [62, 86], but for now, we assume that
Alice and Bob have a way to synchronise the secret.

In modern cryptography, the transformation, known as the encryption algorithm, and
the reverse transformation, known as the decryption algorithm, are publicly known, and
the only secret is the secret key sk which is an input to both algorithms 1.

The same algorithm can be used for other purposes. For example, Alice can encrypt a
message m and store it somewhere. Whenever she needs it later, she can recover the
message m later with her secret key. This is exactly how one can store encrypted files
on a public file storage system.

In this chapter, we show how to build a mathematically perfect solution to the encryption
problem.

3.1.1 The Perfect Encryption Scheme

In this section, we introduce the perfect encryption scheme – one-time pad, and prove
that it is perfectly secure. Before doing that, we give a formal definition of Shannon
cipher [162].

Definition 3.1 (Shannon cipher). A Shannon cipher is a pair E = (E,D) of functions.
Let K be the set of all keys, M be the set of all messages, and C be the set of all
ciphertexts.

� The function E is the encryption function which takes as input a key sk ∈ K and a
message m ∈M (also known as a plaintext), and produces as output a ciphertext
c. That is,

c = E(sk,m).

� The function D is the decryption function which takes as input a key sk ∈ K and
a ciphertext c ∈ C, and produces a message m ∈M. That is,

m = D(sk, c).

� We say that E is correct if

m = D(sk, E(sk,m)). (3.1)

1We focus on the symmetric case here. It is possible to encrypt with a public key and decrypt with
a secret key but that is not the focus of this thesis.

32

3.1. ENCRYPTION

E = (E,D) can be anything: phrases of a language, integers, polynomials, matrices, or
group elements. But in practice, for ease of storage and communication, the elements of
the sets are often represented as sequences of bits. For simplicity of the mathematical
treatment, we assume that K,M and C are all finite in size.

One-time pad. One-time pad is a Shannon cipher E = (E,D) where the keys, messages,
and ciphertexts are bit strings of the same length, that is,

K =M = C := {0, 1}L ,

for some fixed parameter L. The encryption and decryption algorithms are defined as:

E(sk,m) = sk⊕m,

D(sk, c) = sk⊕ c.

Here, ”⊕” is bit-wise exclusive-OR, or component-wise addition modulo 2. It is easy to
verify that E is correct by checking Equation 3.1 holds:

D(sk, E(sk,m)) = D(sk, sk⊕m)

= sk⊕ (sk⊕m)

= (sk⊕ sk)⊕m

= m.

Perfect Security. With a cipher like one-time pad, the natural question to ask is:
how secure is it? In this section, we answer that question by giving a formal definition
of perfect security and prove that one-time pad satisfies the definition.

To begin with, for the definition of perfect security, we assume that the secret key is
uniformly randomly distributed. We see later that the entropy of the key is the source of
perfect security. In practice, this means the key needs to be carefully sampled to ensure
uniformity, as otherwise perfect security will be violated. However, we assume that this
is possible and we have access to independent and identically distributed (IID) fair coin
flips.

Given the randomness of the key, we can look at the probability over the distribution
of the key of a message m producing a ciphertext c, or Prsk[E(sk,m) = c]. If this
probability is the same for all messages, then all messages are equally likely given the
ciphertext c. This is exactly we want in perfect security.

Definition 3.2 (Perfect Security). Let E = (E,D) be a Shannon cipher. Let sk ∈ K be
uniformly distributed. If over the randomness of sk, for all m0,m1 ∈M, and all c ∈ C,

Pr[E(sk,m0) = c] = Pr[E(sk,m1) = c],

we say that E is perfectly secure Shannon cipher [162].

As one can probably see, one-time pad is perfectly secure. This is because for ever pair
of m ∈ M and c ∈ C, there is a unique secret key sk such that E(sk,m) = c, which
means if the secret key sk is hidden, every message is equally likely. Below, we state the
perfect security of one-time pad as a theorem and prove it.

Theorem 3.1 (One-time pad is perfectly secure). Let E be a one-time pad cipher, then
E is perfectly secure.

33

CHAPTER 3. BACKGROUND II: CRYPTOGRAPHIC FOUNDATION

Proof. Let m0,m1 ∈M be two messages and c ∈ C be a ciphertext. Then

Pr[E(sk,m0) = c] =Pr[sk⊕m0 = c]

=Pr[sk = c⊕m0].

Similarly, we get

Pr[E(sk,m1) = c] = Pr[sk = c⊕m1].

Since sk ∈ K is uniformly randomly distributed,

Pr[sk = c⊕m0] = Pr[sk = c⊕m1]

⇒Pr[E(sk,m0) = c] = Pr[E(sk,m1) = c].

The bad news. Careful readers may have already realised that one-time pad needs a
key as long as the message itself. This is problematic as exchanging keys is expensive
– whether Alice and Bob decide to meet physically and exchanging tens of hard disk
drives, or using a modern key exchange protocol. So it is natural to ask if it is possible to
achieve perfect security with a shorter key. Unfortunately, the answer is no. Intuitively,
this is because the entropy of the ciphertext comes from nothing but the secret key, and
if the key is shorter than the message, then there is not enough entropy to make every
ciphertext equally likely. Formally, this is known as Shannon’s theorem [162] which is
shown below.

Theorem 3.2 (Shannon’s theorem). Let E = (E,D) be a Shannon cipher defined over
(K,M, C). If E is perfectly secure, then |K| ≥ |M|.

3.1.2 Computational Ciphers and Semantic Security

As we have seen in Theorem 3.2, it is impractical to use a perfectly secure cipher for
real-world applications. As a way around, we relax the security requirements. Instead
of considering all possible adversaries, we only consider computationally feasible adver-
saries who must perform their computations in a reasonable amount of time and use
a reasonable amount of memory. In terms of the probabilities, we no longer require
something as strong as Prsk[E(sk,m0) = c] = Prsk[E(sk,m1) = c]. We allow for dif-
ferences that are reasonably small, such that with reasonable amount of sampling, the
distributions cannot be distinguished.

In the same vein, we are interested in ciphers that are practical. That is, the encryption
and decryption algorithms are efficient (polynomial time). These ciphers are called
computational ciphers. Formally, we can define them as follows.

Definition 3.3 (Computational cipher). A computational cipher is a pair E = (E,D)
of functions. Let K be the set of all keys, M be the set of all messages, and C be the
set of all ciphertexts, such that K,M, C are all finite.

� The function E is the encryption function which takes as input a key sk ∈ K and a
message m ∈M (also known as a plaintext), and produces as output a ciphertext
c. The function is allowed to be probabilistic, i.e.

c
R←− E(sk,m).

34

3.1. ENCRYPTION

� The function D is the decryption function which takes as input a key sk ∈ K and
a ciphertext c ∈ C, and produces a message m ∈M. That is,

m = D(sk, c).

� We say that E is correct if

m = D(sk, E(sk,m))

with probability 1.

In a more general setting, a computational cipher is parametrised by a security parameter
1λ which is usually a positive integer, and a system parameter Λ which is usually a bit
string.

We are now ready to define semantic security. As opposed to the straightforward prob-
abilistic definition of perfect security, semantic security is defined via a security game.

Definition 3.4 (Semantic Security Game). Let E = (E,D) be a computational ci-
phertext defined over (K,M, C). Let A be an adversary. We define two experiments,
Experiment 0 and Experiment 1. For b = 0, 1, we have

Experiment b:

� The adversary computes m0,m1 ∈ M where |m0| = |m1| and sends them to the
challenger.

� The challenger computes sk
R←− K, c R←− E(sk,mb), and sends c to the adversary.

� The adversary outputs a bit b̂ ∈ {0, 1}.

With the two experiments, we can then define A’s semantic security advantage.

Definition 3.5 (Semantic Security Advantage). For the semantic security game above,
for b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s
semantic security advantage with respect to E as:

AdvSSA,E := |Pr [W0]− Pr [W1]| .

We note that the events W0 and W1 include the randomness from the choice of k, the
choices (if any) made by the encryption algorithm, and the random choices made by the
adversary. The value of AdvSSA,E measures the distinguishing power of the adversary A
at telling the two experiments apart.

Finally, we are ready to define semantic security.

Definition 3.6 (Negligible Function). Let f : N → R be a function. We call f a
negligible function if for every positive integer c there exists an integer Nc such that for
all x > Nc,

|f(x)| < 1

xc
.

Definition 3.7 (Semantic security). A computational cipher E is semantically secure
if for all efficient (PPT) adversaries A, the value AdvSSA,E is negligible in the security
parameter λ.

35

CHAPTER 3. BACKGROUND II: CRYPTOGRAPHIC FOUNDATION

3.2 Pseudo-random Generators (PRGs)

In the last section, we have defined computational ciphers and semantic security. In this
section, we show how to construct a computational cipher which uses a short key.

Recall that for a one-time pad cipher, the keys, messages and ciphertexts are all L-bit
strings for some constant L. The idea is to come up with an algorithm G that takes
a much shorter input, say an l-bit string, and ”stretch” it to an L-bit string to make
it look like a key in a one-time pad cipher. If the output of G is close enough to a
uniformly randomly sampled key in a one-time pad cipher, then we can hope that the
resultant scheme is semantically secure. The class of algorithms that achieves this is
called pseudo-random generators.

3.2.1 Formal Definition

A pseudo-random generator [132] is an efficient and deterministic algorithm G that takes

as input a seed s ∈ S and outputs r ∈ R. Typically, S = {0, 1}l and R = {0, 1}L for
some l < L. We say G is a secure PRG if G(s) for a randomly picked s ∈ S and a

truly random string r
R←− R are computationally indistinguishable. We give the formal

definition below.

Definition 3.8 (PRG Advantage). For a given PRG G defined over (S,R), and for an
adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1,
we define: Experiment b:

� If b = 0, the challenger samples s
R←− S, then computes r ← G(S).

� If b = 1, the challenger samples r
R←− R.

� The challenger sends r to the adversary.

� Given r, the adversary computes and outputs a bit b̂ ∈ {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s
advantage with respect to G as

AdvPRGA,G := |Pr [W0]− Pr [W1]| .

Definition 3.9 (Secure PRG). A PRG G is secure if the value AdvPRGA,G is negligible for
all efficient adversaries A.

3.2.2 Encryption with PRG

In this section, we show how to use a PRG as a primitive for semantically secure en-
cryption. We introduce reduction as a core technique in the proof of semantic security.
The same technique will be used over and over again in the later chapters.

As we have mentioned in the beginning, we can construct an encryption scheme by
padding the plaintext with the output of a PRG G(s) for which the seed s is randomly

36

3.2. PSEUDO-RANDOM GENERATORS (PRGS)

sampled and kept secret to the user. More formally, let G be a PRF, we define a stream
cipher E = (E,D) over ({0, 1}l , {0, 1}L , {0, 1}L) for some l ≤ L be:

E(s,m) := G(s)⊕m,

D(s, c) := G(s)⊕ c.

Game Hopping. To prove semantic security of E , we use a technique called game
hopping [59]. This technique will be used over and over again in the later chapters. The
idea is to start with the original semantic security game for E , change some parts of the
game, and express the new advantage with the original semantic security advantage and
other terms. This process is repeated several times until the original semantic security
AdvSSA,E can be bounded by some constants and advantages of other security games. That
means if we assume that the constants and advantages from the other security games
are negligible, we can show that AdvSSA,E is negligible too. Below, we show how to prove
the security of the stream cipher E defined above.

Theorem 3.3 (Semantic Security of E). If G is a secure PRG, then E is semantically
secure.

Proof. Assume that G is a secure PRF. Let experiments Experiment 0 and Experiment
1 be the semantic security games for cipher E with adversary A, i.e. for b = 0, 1, we get
Experiment b:

� The adversary computes m0,m1 ∈ M where |m0| = |m1| and sends them to the
challenger.

� The challenger computes s
R←− S, c R←− E(s,mb), and sends c to the adversary.

� The adversary outputs a bit b̂ ∈ {0, 1}.

We modify Experiment 1 to be a one-time padding scheme as follows. Experiment 2:

� The adversary computes m0,m1 ∈ M where |m0| = |m1| and sends them to the
challenger.

� The challenger computes r
R←− R, c R←− r ⊕m1, and sends c to the adversary.

� The adversary outputs a bit b̂ ∈ {0, 1}.

Let B be an adversary against PRG security of G. Let Wb be the event that Experiment
b outputs 1, for b = 0, 1, 2. Then we have:

AdvSSA,E = |Pr [W0]− Pr [W1]|
= |Pr [W0]− Pr [W2] + Pr [W2]− Pr [W1]|
≤ |Pr [W0]− Pr [W2]|+ |Pr [W2]− Pr [W1]|
= AdvPRGB,G + AdvPRGB,G

= 2AdvPRGB,G .

37

CHAPTER 3. BACKGROUND II: CRYPTOGRAPHIC FOUNDATION

In the first two lines of the equations, we have added and subtracted Experiments 2
from the advantage. The next line uses triangle inequality to split the probability into
two halves. Following that, we note that the PRG advantage between Experiment 0 and
Experiment 2 is AdvPRGB,G , as the adversary can simply use c −m0 with B to test if the
output of the challenger comes from a PRG or is purely random. Similarly, we argue
that the PRG advantage between Experiment 1 and Experiment 2 is AdvPRGB,G . This tells

us that the semantic security of E is upper-bounded by 2AdvPRGB,G . As we know that

G is a secure PRG, AdvPRGB,G is negligible, so AdvSSA,E must be negligible. That is, E is
semantically secure.

3.2.3 Drawbacks of Encryption with Stream Cipher

In this section, we discuss the drawbacks of encryption with stream cipher and motivate
the need of better encryption schemes. Recall from above that a stream cipher is defined
with a single seed s, which means if the same cipher is used to encrypt the same message
twice, the ciphers will be the same. In other words, stream cipher is vulnerable to
frequency analysis. If a stream cipher is used to encrypt two messages m0 and m1,
although an adversary is not able to tell which of the ciphertexts comes from m0 or m1,
the ciphertexts still can leak important information about the plaintexts. For example,
one can XOR the ciphertexts to obtain the bit-wise XOR of the plaintexts:

E(s,m0)⊕ E(s,m1) = G(s)⊕m0 ⊕G(s)⊕m1 = m0 ⊕m1.

If one of the plaintexts, say m0 is known to the adversary, he can freely change the
ciphertext into any message m1 he wants by XOR-ing m0 ⊕m1 with the ciphertext:

E(s,m0)⊕ (m0 ⊕m1) = G(s)⊕m0 ⊕m0 ⊕m1 = G(s)⊕m1 = E(s,m1).

To defend against these attacks while maintaining a short key length, block cipher with
modes of operation was proposed [137]. The idea is to develop an encryption scheme for
a fixed length message block, and build an encryption scheme for messages of arbitrary
lengths by using the block cipher iteratively in a secure way.

3.3 Block Ciphers and Modes of Operation

Block cipher is a primitive which encrypts messages of a fixed length. The security
requirement for a block cipher is much stronger than that of a stream cipher. Specifically,
we require the block cipher to look like a random permutation. In this section, we give a
definition of block cipher, show its formal security requirements, and demonstrate how
to use a block cipher to encrypt messages of arbitrary lengths securely. We also give the
security definition for the case where the same key is used to encrypt multiple messages.

We use block ciphers for the construction of SWiSSSE in Chapter 7.

3.3.1 Block Ciphers

We define a block cipher as a deterministic cipher E = (E,D) where the key space
is K and the message and ciphertext space are X . The correctness of a block cipher
requires that for all sk ∈ K and m ∈ X , D(sk, E(sk,m)) = m. As the message and

38

3.3. BLOCK CIPHERS AND MODES OF OPERATION

ciphertext space have the same size, this necessarily means that E(sk, ·) and D(sk, ·) are
permutations and they are inverse of each other.

The security of a block cipher is modelled by the following pseudo-random permutation
(PRP) experiments.

Definition 3.10 (PRP Advantage). Let f be a keyed permutation K×X → X . Define
Experiment b for b = 0, 1 for an adversary A as follows:

� The adversary can query the challenger adaptively multiple times.

� Suppose m is the message the adversary challenged. If b = 0, the challenger

samples sk
R←− K, computes c← E(sk,m), and send c to the adversary.

� Suppose m is the message the adversary challenged. If b = 1, the challenger picks a
truly random permutation over X (and fixes it thereafter), say P , and send P (m)
to the adversary.

� At a certain point, the adversary outputs a bit b and the experiments terminates.

For b = 0, 1, let Wb be the event that the adversary outputs 1 in Experiment b. We
define A’s advantage as:

AdvPRPA,f = |Pr [W0]− Pr [W1]| .

Finally, we say that A is a Q-query PRP adversary if A issues at most Q queries.

Definition 3.11 (Secure PRP). We say f : K×X → X is a secure PRP if for all PPT
adversaries A, AdvPRPA,f is negligible.

We note that it is very hard for a block cipher to meet this security. Let P (X) be all
permutations on X , then the number of permutations is

|Perm(X)| = |X |!,

where Perm(·) represents the set of all possible permutations. On the other hand, the
number of permutations a block cipher E can generate is limited by its key space, or |K|
possible permutations in total. To illustrate the difference with some numbers, consider
|K| = |X | = 2128, we have |Perm(X)| ≈ 22

135

, which is a lot larger than the key space!

3.3.2 Modes of Operation

Just like stream ciphers, block ciphers can be used to encrypt messages directly. How-
ever, it suffers from the same problems as stream ciphers. That is, repetition of message
is leaked and the messages can be changed by tweaking the ciphertexts. To address
the problems above, we need to make the blocks of ciphertexts depend on more than
one plaintext block. At the same time, we need to have integrity check build into the
encryption.

One of the first mode of operation [137] that achieves this is called cipher block chaining
(CBC) [64]. Let m0, . . . ,ml be the message blocks, the idea is to encrypt the i-th
message block with the i− 1-th ciphertext block. That way, even if two message blocks

39

CHAPTER 3. BACKGROUND II: CRYPTOGRAPHIC FOUNDATION

are the same, since they are XOR-ed with seemingly random ciphertext blocks, there is
an overwhelming chance that their ciphertexts will be different. As a slight complication,
the message block m0 does not have a ciphertext block to be XOR-ed with. To fix the
problem, we randomly generate an initial value (IV) block, and it is send to the receiver
together with the ciphertext blocks. Formally, we can write the encryption algorithm
as:

1. IV
R←−M

2. c0 ← E(sk,m0 ⊕ IV)

3. For i← 1, . . . , l: cj ← E(sk,mi ⊕ ci−1)

4. Output (IV, c)

We note that it is not enough to just have CBC to defend against attacks. For example,
an attacker can append more ciphertext blocks to the ciphertext to potentially generate
adversarial plaintexts. To solve this problem, the length of the plaintext is padded to
the plaintext before encryption. Unfortunately, CBC mode is known to be vulnerable
to padding oracle attacks.

Counter mode is another mode of operation [64]. On its own, it achieves a weaker
security guarantee than CBC mode, but it can be made secure against all of the attacks
discussed above. In counter mode, the user randomly picks an initial value (IV) as
a counter, and for each message block, he increments the counter, encrypts it, and
XOR it with the message block. In some sense, it is very similar to a stream cipher,
and as expected, it is vulnerable to all attacks against a stream cipher. To fix the
security vulnerabilities, one can use a message authentication algorithm to authenticate
the ciphertexts. The most well-known mode that does this is called Galois/Counter
mode (GCM). For the purpose of encrypting document identifiers and documents in a
database, GCM suffices for the security needs.

3.3.3 Chosen-Plaintext Attack Security

We now know that we can use a secure block cipher to encrypt messages of arbitrary
lengths. But this does not automatically imply security when the block cipher is used
to encrypt multiple messages. Of course, one can generate a key each time before
encryption, but this step is time consuming in practice and we want to avoid it as much
as possible. This motivates the security notion known as semantically secure against
chosen-plaintext attack where the security notion is almost identical to semantic security
introduced in Section 3.1.2 except that the attacker can choose more than one pair of
plaintexts adaptively :

Definition 3.12 (Chosen-plaintext Attack (CPA) Game). Let E = (E,D) be a com-
putational ciphertext defined over (K,M, C). Let A be an adversary. We define two
experiments, Experiment 0 and Experiment 1. For b = 0, 1, we have

Experiment b:

� For i = 1, 2, . . ., the adversary computes (mi,0,mi,1) ∈ M where |m0| = |m1| and
sends them to the challenger.

The challenger computes sk
R←− K, c R←− E(sk,mi,b), and sends c to the adversary.

40

3.4. PSEUDO-RANDOM FUNCTIONS (PRFS)

� The adversary outputs a bit b̂ ∈ {0, 1}.

Definition 3.13 (CPA Advantage). For the semantic security game above, for b = 0, 1,
let Wb be the event that A outputs 1 in Experiment b. We define A’s semantic security
advantage with respect to E as:

AdvCPAA,E := |Pr [W0]− Pr [W1]| .

3.4 Pseudo-random Functions (PRFs)

Another primitive which we will use later (in Chapter 7) is pseudo-random function. A
PRF F is a deterministic algorithm that takes as input a key sk ∈ K, a message x ∈ X ,
and outputs a sequence of bits y ∈ Y. For a secure PRF, the outputs should look like
outputs from a truly random function. Such a function F allows one to completely
mask a message (provided that it is short enough as an input to the PRF) from an
eavesdropper, yet for someone else with the key, he can recompute the output of the F
to verify if the message has been tampered.

For structured encryption, PRFs can be used to generate search keys for the queries, so
as to hide the identity of the queries themselves. We note that encryption algorithms can
do the same job, but practical implementations of PRFs are much faster than encryption
algorithms so the earlier is preferred for the application. In this section, we give a formal
security definition of PRF.

Definition 3.14 (PRF Advantage). For a given PRF F defined over (K,X ,Y), and for
an adversary A, we define two experiments, Experiment b for b = 0, 1:

� If b = 0, the challenger picks: sk
R←− K, f ← F (k, ·).

� If b = 1, the challenger picks: f
R←− Funs(X ,Y).

� The adversary repeatedly query the challenger with xi ∈ X ; the challenger com-
putes yi ← f(xi) and return yi to the adversary.

� The adversary outputs a bit b̂ ∈ {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s
advantage with respect to G as

AdvPRFA,F := |Pr [W0]− Pr [W1]| .

Definition 3.15 (Secure PRF). A PRF F is secure if for all PPT adversaries A, the
value AdvPRFA,F is negligible.

We note that in this definition, the adversary is only allowed to query the challenger
once. There are other variants of the definition, including non-adaptively security where
the attacker generates multiple queries at once; weak security where at every invocation
the challenger returns the pair (x, F (x)) for a random x ∈ X ; and sequential security
where the i-th call to the challenger is answered by the value F (i). In the later chapters,
we use AdvPRFA,F to mean non-adaptive PRF security, and the key is omitted from the
PRF for readability.

41

CHAPTER 3. BACKGROUND II: CRYPTOGRAPHIC FOUNDATION

3.5 Other Primitives

In this section, we introduce other primitives that appear in or are related to structured
encryption.

Public-key Cryptography. The primitives we have listed above are all symmetric
primitives. In other words, the encryption key and the decryption key are identical.
However, there are scenarios for which this is not sufficient. For example, if someone
wants to build a database which everyone can encrypt and upload documents to it
but only certain people can decrypt, he needs a scheme that is built from a public-key
primitive [65, 130, 110]. Public-key cryptography is also very helpful when one wants
fine-grained access control on the database. For example, the data owner can issue
search keys to the users such that each key can only be used for a subset of the search
queries.

Oblivious Random-access Memory. Oblivious random-access memory (ORAM)
[84] is a primitive which transforms a program into one such that the memory access
pattern is independent of the original program. This is motivated by the fact that an
adversary can obtain non-trivial information about the execution of a program and the
underlying data just by observing the access pattern during the execution of the program
even if the contents of the memory are encrypted. More recently, there are works to
generalise ORAM to other data structures [190, 67]. These ideas can be applied to
structured encryption as access-pattern leakage is known to be problematic (see Section
4.5 and Chapter 6). On the other hand, ORAM is known to be relatively inefficient.
Larsen and Nielsen [118] have shown that for any online ORAM, the lower bound for
the bandwidth overhead is Ω(log(n)), where n is the size of the memory.

Private Information Retrieval. A private information retrieval (PIR) protocol
[49] is a protocol which allows a user to retrieve an item from a server without revealing
which item is retrieved. This can be trivially achieved by retrieving the entire database.
However, this is not an efficient solution. In practice, we are interested in computational
PIRs where the server is computationally bounded, and multi-server PIRs where there
are more than one server and they are assumed to be non-cooperating. There is a long
line of work [9, 77, 179, 32] which focused on improving the communication efficiency of
a PIR protocol. Finally, in 2015, Kiayias et al. [105] have shown a PIR protocol with
optimal communication rate.

Fully-homomorphic Encryption. Fully-homomorphic Encryption (FHE) [76] is a
primitive which allows a user to perform arbitrary computations on encrypted data. This
leads to many works [124, 42, 3, 176, 95] on cloud computation. These techniques can be
applied directly to an structured encryption scheme to allow for secure statistical queries.
The major drawback of FHE is its ciphertext expansion. TFHE [48] for example, requires
the ciphertext to be 10 thousand times longer than the plaintext for a reasonable level
of security (100 bits).

42

Chapter 4

Background III: Structured
Encryption

This chapter formally recalls the core ideas around structured encryption (STE). Section
4.1 provides the syntax of structured encryption. Section 4.2 uses a simple construc-
tion to demonstrate the core ideas behind structured encryption. Section 4.3 gives the
standard security notion used in the literature. Section 4.4 offers an overview of the
constructions in the literature. Section 4.5 highlights the typical information leakage
associated to the use of structured encryption and lists the classes of known attacks on
some of these leakages. Section 4.6 and 4.7 discuss the research challenges of structured
encryption.

Contents

4.1 Background . 44

4.1.1 Abstract Data Types . 44

4.1.2 Syntax . 44

4.1.3 Refinement for Specialised Schemes 44

4.2 A Simple Searchable Encryption Scheme 45

4.3 Security of Structured Encryption 48

4.4 Structured Encryption in the Literature 50

4.4.1 Early Constructions . 50

4.4.2 Modern Security Notions and Constructions 51

4.4.3 Richer Queries . 52

4.5 Leakage Cryptanalysis in the Literature 52

4.5.1 Characterisation of Leakage Cryptanalysis 53

4.5.2 Typical Leakage Functions 53

4.5.3 Leakage Cryptanalysis on Searchable Encryption 54

4.5.4 Leakage Cryptanalysis on Encrypted Range Queries 54

4.6 The Index Retrieval Problem . 55

4.7 A Conundrum . 56

43

CHAPTER 4. BACKGROUND III: STRUCTURED ENCRYPTION

4.1 Background

In this section, we describe the basic objects used in structured encryption and the
syntax of structured encryption.

4.1.1 Abstract Data Types

An abstract data type is a collection of data objects and a set of operations defined on
those objects. For instance, set with an operation to initialise a set and the common set
operations is an abstract data type. Operations on abstract data types can be broadly
categorised into two groups: static operations which do not change the data objects;
and dynamic operations which may change the data objects. We use Query to denote
static operations and Updt to denote dynamic operations.

4.1.2 Syntax

Let T be an abstract data type supporting query operationQuery and update operation
Updt. Then, a private-key structured encryption scheme Σ for T is a tuple Σ =
(Setup,Querye,Updte) where:

� Setup is the setup algorithm which takes as input some data D of structure T ,
and outputs a secret key sk and some encrypted data ED.

� Querye is the query protocol between the client and server. The client takes as
input a secret key sk and a query q, and the server takes as input some encrypted
data ED; after the interaction between the client and server, the client obtains a
response rsp.

� Updte is the update protocol between the client and server. The client takes as
input a secret key sk and an update query q, and the server takes as input some
encrypted data ED; after the interaction between the client and server, the client
obtains a response rsp, and the server obtains updated encrypted data ED′.

Here, we assume that the query protocol supports query types that do not change the
underlying data, whereas the update protocol supports query types that do. If the
scheme Σ does not support update queries, we say that scheme Σ is static, otherwise we
say that scheme Σ is dynamic. For the purpose of this thesis, we assume that there is
only one user and one server.

Scheme Σ is correct if for all data D and all sequences of polynomially many queries, an
execution of scheme Σ on encrypted data ED ← Setup(sk,D) yields the same query
responses as an execution of the same queries using query operation Query and update
operation Updt on the plaintext data D.

4.1.3 Refinement for Specialised Schemes

This thesis considers two abstract data types, namely keyword-based databases and
value-based databases. The corresponding structured encryptions for these abstract

44

4.2. A SIMPLE SEARCHABLE ENCRYPTION SCHEME

data types are known as searchable encryption and encrypted range queries. In this
section, we give a detailed description for each abstract data type.

Searchable Encryption. A keyword-based database DB consists of a set of doc-
uments doci, each associated to a set of keywords Wi, so DB = {(doci,Wi)}. The
database DB must support keyword search queries, where a keyword search query q on
keyword kw returns the set of documents containing the keyword, i.e. {doci | kw ∈Wi}.
The database DB may support additional static query types such as boolean queries
and keyword search queries with wildcards. If DB is dynamic, then it must support
document insertions and deletions. A structured encryption scheme for keyword-based
databases is known as searchable encryption. Here, we focus on the symmetric-key
setting and searchable symmetric encryption is typically abbreviated as SSE.

Encrypted Range Queries. A value-based database DB consists of a set of docu-
ments doci, each associated to a value vali, so DB = {(doci, vali)}. The database DB
must support range queries, where a range query q on range (a, b) returns all docu-
ments with associated values greater or equal to a and less than or equal to b, that
is, {doci | a ≤ vali ≤ b}. The database DB may support additional static and dynamic
queries. A structured encryption scheme for value based databases is known as encrypted
range queries.

Notations. We use the following notations for the two types of structured encryp-
tion above. For a keyword-based database DB = {(doci,Wi)}, we assume an implicit
order and write DB[i] to mean the i-th document and associated keywords. We write
KW (doc) to mean the set of keywords associated to document doc. We write KW (DB)
to mean all of the keywords in the database. For a keyword search query q, we write
KW (q) to mean the keyword associated to the query. We use DB(W) to mean the set
of documents containing all of keywords in W .

For a value-based database DB = {(doci, vali)}, we write val(doc) to mean the value
associated to document doc. We write DB[a, b] to mean the set of documents with
values between a and b.

4.2 A Simple Searchable Encryption Scheme

This section shows how to construct a simple keyword-based database which supports
keyword search queries only. For simplicity, we use database to refer to keyword-based
database in this section thereafter. We then modify the database with cryptographic
primitives to achieve some level of privacy. This construction is then used to motivate
the standard security notion for structured encryption and other structured encryption
schemes in the literature.

Searching in An Unencrypted Database. Taking a step back, let us consider
how searching can be done on an unencrypted database. For now, we ignore privacy
concerns and focus on the efficiency of the search protocol. Suppose that the user wants
to retrieve all documents containing keyword kw. There is not a lot he needs to do
other than to send the keyword in plain to the server. A naive server (Algorithm 4.1)
can then iteratively scan through the documents and grab the documents for which
kw ∈ kw(doc).

45

CHAPTER 4. BACKGROUND III: STRUCTURED ENCRYPTION

Algorithm 4.1 A naive server

1: input A keyword kw
2: output The set of documents {doci | (doci,Wi) ∈ DB, kw ∈W} containing keyword

kw

3: procedure Search(kw,DB)
4: rsp← {}
5: for (doc,W) ∈ DB do
6: if kw ∈W then
7: rsp← rsp ∪ doc

8: Return rsp

Careful readers should have already realised that the approach is not scalable: even if
there is a single document containing keyword kw, the server still has to scan through
the whole database to find the document in interest. As a solution to this problem,
the server can create and maintain an inverted index (also known as a search index or
lookup index) to make the search time linear in the response size.

An inverted index I is a map KW (DB) → P(DB), where P(DB) is the power set of
database DB, which is indexed by the keywords and I(kw) contains all the documents
containing keyword kw. The server can build the inverted index when the user uploads
the database to him, and for subsequent queries, he can simply use it to lookup for
the query results. The pseudocode for the search algorithm on the server is shown in
Algorithm 4.2. The pseudocode for building the inverted index is omitted as the server
can simply invoke Algorithm 4.1 on all keywords.

Algorithm 4.2 An improved server with an inverted index

1: input A keyword kw
2: output The set of documents {doci ∈ DB | kw ∈ kw(doci)} containing kw

3: procedure Search(kw, I)
4: Return I(kw)

In practice, the inverted index often operates on the document identifiers as opposed
to the documents directly. This is because if the documents are used directly (not as
pointers but as hard copies), the inverted index will be much larger than the original
database as each document appears as many times as the number of keywords in it. The
document identifiers on the other hand are short strings and duplication does not hurt
storage a lot. To retrieve the actual documents, the client simply send the database to
the server along with the inverted index; upon a search query, the server can look up for
the document identifiers from the inverted index and send the documents corresponding
to them back to the client. The pseudocode for the construction described above is
shown in Algorithm 4.3.

A Simple Searchable Encryption Scheme. There are two major privacy concerns
with the unencrypted database above. Firstly, the server can see all documents in clear.
This is clearly a problem for sensitive documents such as medical or financial records.
Secondly, the keywords of the queries are sent and processed in clear. This means that
the server can learn the query pattern of the user, and potentially infer information
about the documents even if they are encrypted.

46

4.2. A SIMPLE SEARCHABLE ENCRYPTION SCHEME

Algorithm 4.3 A refined server with an inverted index on the document identifiers

1: procedure Build Index(DB)
2: I← {}
3: EDB← {}
4: for (doci,Wi) ∈ DB do
5: for kw ∈Wi do
6: I(kw)→ I(kw) ∪ i

7: Return (I,DB)

8: procedure Search(kw, I,DB)
9: rsp← {}

10: I ← I(kw)
11: for i ∈ I do
12: rsp← rsp ∪DB[i]

13: Return rsp

We make two modifications to the scheme above to address these security concerns.
Firstly, the documents are encrypted with a semantically secure symmetric key en-
cryption scheme before uploading to the server. Secondly, instead of letting the server
generating the inverted index, the client generates it, with the keywords replaced with
the outputs of a PRF, i.e. F (kw) if kw was used originally. The key of the PRF is
omitted from the notation for readability.

The document identifiers are also encrypted with a semantically secure symmetric key
encryption scheme. The pseudocode of the modified scheme is shown in Algorithm 4.4
and 4.5, where Enc() and Dec() are the encryption and decryption algorithms of the
semantically secure symmetric key encryption scheme the client uses. Just as before,
the key used by the encryption scheme is omitted to not overload notation. The key
management aspect of the protocol is not shown in the pseudocode. In practice, the
client generates the key and keeps it.

Algorithm 4.4 Client of the Searchable Encryption Scheme

1: procedure Enc Docs(DB)
2: EDB← []
3: for doci ∈ DB do
4: EDB→ EDB+ [Enc(doci)]

5: Return EDB

6: procedure Build Index(DB)
7: I← {}
8: for doci ∈ DB do
9: for kw ∈ kw(doci) do

10: I(F (kw))→ I(F (kw)) ∪Enc(i)

11: Return I

12: procedure Gen Query(kw)
13: Return F (kw)

Security of the Simple Searchable Encryption Scheme. Consider a passive

47

CHAPTER 4. BACKGROUND III: STRUCTURED ENCRYPTION

Algorithm 4.5 Server of the Searchable Encryption Scheme

1: procedure Search(t, I,EDB)
2: rsp← {}
3: for ei ∈ I(t) do
4: Ask the client for i← Dec(ei)
5: rsp← rsp ∪EDB[i]

6: Return rsp

attacker who can only observe the encrypted database and the transcripts of the queries.
The natural question to ask is: what can he learn about the database and the queries?
He can certainly learn something. For example, the documents are encrypted one by
one, so by simply looking at the encrypted index, the attacker can recover the number
of documents in the database. The attacker can also look at the number of documents
returned and figure out the frequency of any queried keyword. We can carry on and list
everything an attacker can learn, but that is not rigorous, as there is no way of arguing
that everything an adversary can learn is enumerated. The approach is also not robust,
in the sense that a construction depends on other primitives (e.g. PRFs) that are not
perfectly secure, and it is important to establish a concrete cryptographic advantage to
understand the limits of a construction (e.g. how many documents can be encrypted
safely under the same key).

In the next section, we show how information leakage is formally captured in the lit-
erature via leakage profile and we prove the security of our simple construction as a
demonstration.

4.3 Security of Structured Encryption

Formal Definition. The standard security notion for structured encryption was first
proposed by Curtmola et al. [53] as a security notion for searchable encryption. The
notion is later generalised by Chase and Kamara [40] as a security notion for structured
encryption. The idea of the security notion is to enumerate the information leakage of
a scheme with respect to the underlying data just like what we have done in the last
part of Section 4.2. However, instead of stopping there, we need to show that there is a
simulator who has access to the leaked information only, can produce some encrypted
data and transcripts of queries such that an attacker who generates the plaintext data
and the queries, cannot distinguish it from a real execution of the scheme.

Definition 4.1 (CQA2-security). Let Σ = (Setup,Querye,Updte) be a private-key
structured encryption scheme for abstract data type T . Consider the following proba-
bilistic experiments between a challenger C and an adversary A:

� RealΣ,A(1
λ): the adversary A generates data D and sends it to the challenger C.

The challenger C runs the Setup algorithm to generate a secret key sk and some
encrypted data ED. The encrypted data ED is sent to the adversary. After that,
the adversary picks a polynomial number of queries adaptively and send them
to the challenger. The challenger and adversary executes the Querye protocol
and Updte protocol on the queries where the challenger plays the client and the
adversary plays the server. Finally, the adversary outputs a bit b that is output
by the experiment.

48

4.3. SECURITY OF STRUCTURED ENCRYPTION

� IdealΣ,A,S(1
λ): the adversary A generates data D and LSetup(D) is sent to the

simulator S. The simulator S generates encrypted data ED using the leakage and
sends it back to the adversary. The adversary picks a polynomial number of queries
q1, . . . ,ql adaptively, and for qi, the simulator is given either LQuerye

(qi,D) or
LUpdte(qi,D) depending on the type of the query. The simulator and adversary
executes the Querye protocol or the Updte protocol on the queries where the
simulator plays the client and the adversary plays the server. Finally, the adversary
outputs a bit b that is output by the experiment.

We define the semantic advantage of adversary A against simulator S to be

AdvCQA2
C,Σ (λ) =

∣∣Pr [RealΣ,A(1
λ) = 1

]
− Pr

[
IdealΣ,A,S(1

λ) = 1
]∣∣ .

We say that Σ is (LSetup,LQuerye
,LUpdte)-secure against adaptive chosen-query at-

tacks if for all probabilistic polynomial-time (PPT) adversaries A, there exists a PPT
simulator S such that

AdvCQA2
C,Σ (λ) ≤ negl(1λ).

We say that Σ is non-adaptively secure if the adversary A chooses the queries before
executing them. We say that Σ is adaptively secure if the adversary A can choose his
queries based on the past transcripts.

Any scheme is secure if the leakage is all of the database and the queries – that is not
the point of the security notion. The idea is to show the minimal amount of information
(often called the leakage profile) required for a simulator to work, and if that piece of
information is harmless, for example, number of documents in a keyword-based database,
we can say that the scheme is practically secure. A caveat to this approach is that ‘the
minimal amount of information’ is usually difficult to specify, and it is not trivial to
argue about security with it. Therefore, cryptanalysis is a necessary step after proving
the leakage profile of a scheme.

Leakage of the Simple Searchable Encryption Scheme. We present the leakage
of the simple searchable encryption scheme. For simplicity, we assume that the docu-
ments have the same length. Let us call the simple searchable encryption scheme Σ. In
terms of the setup stage, we claim that the adversary learns the number of documents in
the database and the frequencies of the keywords (as a multiset) from the search index:

LSetup(DB) = (|DB| , {{|DB(kw)| | kw ∈ kw(DB)}}).

Whenever the user makes a query on keyword kw, we claim that the scheme leaks
the document identifiers of the matching documents, known as the access pattern; and
whether it is the same as one of the previous queries, known as the search pattern.
Traditionally, the search pattern is represented as a q-by-q array, where q is the number
of queries made so far, and the i, j-th entry of the array is 1 if the i-th query has the
same keyword as the j-th query, and 0 otherwise. For readability, we will simply call it
SP(kw) below.

LSrch(kw) = ({i | kw ∈ kw(doci)} ,SP(kw)).

The leakage of a construction is often shown by presenting a black-box simulator (see
Definition 4.1) which works for all adversaries. We demonstrate how it is done for the

49

CHAPTER 4. BACKGROUND III: STRUCTURED ENCRYPTION

simple construction. For the setup algorithm, the simulator is given

(|DB| , {{|DB(kw)| | kw ∈ kw(DB)}}).

From |DB|, he can generate an encrypted database EDB by encrypting |DB| documents
filled with strings of zeros (the length of the documents are fixed and publicly known)
using a randomly generated key. To generate the inverted index, the simulator picks
random non-repeating strings as the keywords, and applies the F used by the client to
the strings to generate the keys in the inverted index. He fills the inverted index with
encryptions of strings of zeros according to {{|DB(kw)| | kw ∈ kw(DB)}}: an instance
of k in the multiset indicates that one of the keywords has k matching documents, so k
encryptions of strings of zeros is added to one of the empty keys of the inverted index.

To simulate a query on keyword kw, the simulator checks if the keyword has appeared
in an earlier query before using the search pattern leakage SP(kw). If so, he replays his
execution of the previous query. Otherwise, he picks a key in the inverted index such
that the number of encrypted documents returned matches |{i | kw ∈ kw(doci)}|, and
returns {i | kw ∈ kw(doci)}.

Security requires us to show that real and ideal games are indistinguishable. This is
done using standard game-hopping technique. Let game G0 be the real execution of the
scheme, and game G1 be the same as G0 except that the encryptions of the documents
are replaced with encryptions of zeros (of appropriate lengths). The advantage of an
adversary A distinguishing G0 and G1 cannot be higher than AdvCPAA,E where E is the
underlying cipher used to encrypt the documents. To transform game G1 to game G2,
we replace the PRF outputs used for the keys of the search index with random strings
of the same length. The advantage of an adversary B in distinguishing G1 and G2 is
clearly AdvPRFB,F , where F is the underlying PRF used. Finally, the transcripts of the
queries are replaced with the random strings generated for the documents and keys. We
call this game G3. Game G3 and G2 are indistinguishable as there is no cryptographic
operations involved and the leakage is consistent. In all, the advantage of an adversary
who tries to distinguish G0 and G3 is bounded by the sum of AdvCPAA,E and AdvPRFB,F . So if
E is CPA secure and F is a secure PRF, the semantic security advantage of the scheme
AdvSSC,Σ(λ) for any adversary C must be negligible.

4.4 Structured Encryption in the Literature

This section gives an overview of the constructions of structured encryption in the
literature, with a focus on searchable encryption.

4.4.1 Early Constructions

The first construction of searchable encryption dates back to 2000 in a paper by Song,
Wagner and Perrig [166]. The construction uses something similar to a stream cipher to
encrypt the database, and each ciphertext block can be decrypted by the server with the
right keyword-derived token. The major drawback of this approach is that the search
process has to scan through the entire database regardless of the actual frequency of the
queried keyword. The authors have also proposed to use a search index to tackle the
problem above. They noted that a search index may leak a lot of statistical information
and it makes it difficult to craft dynamic schemes, which are exactly the two major
research challenges that the community are facing now.

50

4.4. STRUCTURED ENCRYPTION IN THE LITERATURE

Goh [82] proposed a construction based on Bloom filter. A Bloom filter [18] is a data
structure with two operations: insertion and membership testing. An insertion operation
inserts an element into the bloom filter. A membership testing operation takes as input
an element and outputs True if the element was inserted into the Bloom filter before
(false positives are possible); it outputs False if the element was not inserted into the
Bloom filter before (false negatives are impossible). By creating a Bloom filter for each
document, and inserting keyword-derived tokens into the Bloom filters, the user can
search over the database by sending the search token of the keyword he wants to search
for to the server, and the server uses the Bloom filters to check if the documents contain
the keyword and return all the documents that do. As before, the amount of work the
server has to do is proportional to the number of documents.

Chang and Mitzenmacher [39] devised a construction based on an inverted index. Unlike
the inverted index introduced in Section 4.2, the inverted index in [39] is a |kw(DB)|-
by-|DB| bit matrix where every row is a bit string of length |DB| to indicate if each
of the documents contains the keyword indexed by the row. The search time of the
construction is linear in the number of documents due to this representation.

4.4.2 Modern Security Notions and Constructions

The modern notion. The modern security definition in the searchable encryption
setting was introduced by Curtmola et al. in the seminal paper [53]. It was the first se-
curity definition based on leakage functions, and it captures the security of the database
and the security of the search tokens at the same time. The authors have proposed
the first searchable encryption scheme with search time proportional to query response
size, using a search index based on linked list. This has inspired many works, including
[100, 36, 97, 29, 116, 56]. The notion was later generalised to structured encryption by
Chase and Kamara [40].

The Universal Compostability (UC) Model. Kurosawa and Ohtaki [113] con-
sidered the setting where the adversary can be malicious, and formulated UC-security
for searchable encryption. They proposed a static searchable encryption scheme that is
secure under their security definition, and extended it to dynamic databases [114].

Forward and Backward Security. The first efficient dynamic searchable encryp-
tion scheme was proposed by Kamara, Papamanthou and Roeder in 2012 [100]. How-
ever, it and other index-based schemes such as [35] are vulnerable to file-injection attacks
[200]. This has inspired the notion forward security, where a scheme that is secure with
respect to this notion should not leak any information about an updated keyword in the
update query itself. Schemes which satisfies this notion were proposed in [169, 25].

A dynamic searchable encryption scheme may also expose unwanted information about
deleted documents in future queries. To prevent such leakage, backward privacy was
considered by Bost, Minaud and Ohrimenko [29], who also proposed a forward and
backward private searchable encryption scheme.

51

CHAPTER 4. BACKGROUND III: STRUCTURED ENCRYPTION

4.4.3 Richer Queries

Boolean Queries. Many works tried to expand on the query types supported by a
searchable encryption scheme. In particular, Cash et al. [36] and Pappas et al. [146]
focused on support for boolean queries, where the user can issue queries with ‘and, or, or
not’ between/in front of the keywords. For example, the user can retrieve all documents
with keyword A and not keyword B with a single query. This was later improved by
Kamara and Moataz in [97] in terms of search complexity and Lai et al. [116] in terms
of leakage.

Other Text-based Queries. Instead of the boring exact keyword matches, Faber et
al. [69] have shown how to search with wildcards, substrings and phrases. Boldyreva and
Chenette [19] demonstrated how to perform fuzzy search (approximate string matching).

SQL-like Queries. It is important to note that all of the aforementioned constructions
support limited query types and it is nowhere close to unencrypted databases used in
practice. To bridge the gap, legacy-compatible constructions such as CryptDB [152]
and Arx [150] are proposed. CryptDB is built from primitives such as homomorphic
encryption, deterministic encryption and order-preserving encryption; whereas Arx is
built with common techniques found in the encrypted database literature.

Multi-user Searchable Encryption. Another line of works [182, 191, 183] focused
on searchable encryption in the multi-user setting where there is one centralised server
but many users. This setting allows the users to have different privileges in terms of
their permitted operations, which keywords they can search/update, and which subset
of the database they can retrieve from. The biggest security threat, other than the ones
applied to searchable encryption in general, is the possibility of colluding users. For that
reason, works in this direction use a different security notion to traditional searchable
encryption and the constructions are often built from different primitives.

Other Abstract Data Types. Besides searchable encryption, some works focused
on searching on other abstract data types. Chase and Kamara [40] proposed structured
encryption as a generalization of searchable encryption to any data structure. Meng
et al. [128] proposed a scheme supporting approximate shortest distance queries on
graph databases. There are also works studying k-nearest neighbour queries on graph
databases [66, 47] and location queries on geographical databases [201]. Finally, there
is a line of research which focuses on encrypted range queries [163, 31, 58, 57].

4.5 Leakage Cryptanalysis in the Literature

As explained above, the security of structured encryption is parametrized by a leakage
function. The leakage function captures what an (honest-but-curious) adversary can
learn. The problem with this approach is that unless the leakage is well understood
to be harmless, for example, the number of documents in a database, there is a good
chance that the leakage can be abused to recover some information the scheme intends
to hide.

The process of studying security impact of leakage is known as leakage analysis in

52

4.5. LEAKAGE CRYPTANALYSIS IN THE LITERATURE

the literature. This section serves as an overview of leakage analysis, with a focus on
searchable encryption and encrypted range queries.

4.5.1 Characterisation of Leakage Cryptanalysis

The leakage cryptanalysis in the literature can be characterised by the following factors:

� Attack Model: The adversary may be snapshot (with access to only the en-
crypted data) or persistent (with access to both the encrypted data and the “his-
tory” of query operations). We note that an encrypted database may contain the
history of query operations as part of its cache. In that case, a snapshot adversary
is equivalent to a persistent one.

� Attack Target: The adversary may target either data recovery or query recovery.
For data recovery, there exists weaker versions of it such as approximate data
recovery and distribution recovery.

� Attack Assumptions: The adversary is assumed to have some auxiliary data to
facilitate his attack. In a known-data attack, the adversary is assumed to know
a subset of the original data. In an inference attack, the adversary is assumed to
have a (potentially noisy) statistical representation of the original database. In a
known-query attack, the adversary is assumed to know a subset of the queries.

� Adversarial Power: The adversary may either passively observe the leakage
(referred to as leakage-abuse attacks) or actively create leakage by modifying the
client’s data (referred to as injection attacks).

4.5.2 Typical Leakage Functions

Works in leakage analysis typically focus on a single leakage function. The commonly
studied leakage functions are as follows:

� Search Pattern: For a given query q, the search pattern leakage reveals if the
query is identical to any previous queries.

� Access Pattern: For a given search query q, the access pattern leakage reveals
the set of encrypted data elements retrieved by query q.

� Volume: For a given search query q, the volume leakage reveals the number of
data elements returned.

� Co-occurrence Pattern: for given search queries qi and qj , the co-occurrence
count leakage reveals the number of encrypted data elements retrieved by queries
qi and qj at the same time.

These leakage functions are allowed to be different from that of unencrypted data.
For instance, a query q may retrieve n documents in a keyword-based database DB,
but retrieves 2n documents from an encrypted database EDB built for DB using a
searchable encryption scheme Σ. The latter leakage is still called volume leakage.

We note that access pattern leakage can be used to construct volume and co-occurrence
pattern leakage. As a result, attacks in the literature using the latter leakages are
typically referred to as access pattern leakage attacks as well.

53

CHAPTER 4. BACKGROUND III: STRUCTURED ENCRYPTION

4.5.3 Leakage Cryptanalysis on Searchable Encryption

Search Pattern Leakage Attacks. Search pattern is the information whether
two queries have the same underlying keyword. Many constructions [53, 100, 29] use
fixed tokens to query the database, which means that search pattern is leaked. With
some background information on how the queries are distributed, an adversary can use
simple frequency matching to guess the underlying keywords of the queries with high
accuracy [122, 126, 143].

Access-pattern Leakage Attacks. Access pattern is the information which set of
document (or document identifiers) are accessed by a query. This piece of information
is extremely useful as the access patterns of different queries overlaps only if the un-
derlying keywords all appear in the same document. This allows an adversary to build
a co-occurrence pattern from the queries. If he has some auxiliary information on the
distribution, he can match the two and recover the underlying keywords of the queries,
as demonstrated in [94, 102, 155, 17]. These attacks are devastating as a successful
query recovery attack implies a data recovery attack (recovering the keywords in the
documents).

File-injection Attacks. File-injection attacks are a class of attacks where the ad-
versary can insert malicious documents with keywords of his choice into the database.
By observing when those documents are retrieved by future queries (with unknown
underlying keywords), the adversary can guess the underlying keywords of the queries
easily [200, 17]. If the targeted scheme leaks access pattern, a successful file-injection
attack also means that the adversary can recover all keywords in the other documents.

4.5.4 Leakage Cryptanalysis on Encrypted Range Queries

Access-pattern Leakage Attacks. Unlike access-pattern leakage attacks on search-
able encryption, access-pattern leakage attacks on encrypted range queries do not re-
quire auxiliary information. This makes access-pattern leakage attacks on encrypted
range queries much more devastating than those on searchable encryption.

For a dense database with N labels, Kellaris et al. [102] have proposed an attack with
O(N2 log(N)) query complexity assuming uniform queries. The result is later improved
by Lacharité et al. [115] to O(N log(N)) for full database reconstruction and O(N) for
approximate reconstruction. Grubbs et al. [88] extended the attacks with statistical
learning theory and proved the lower bound on the query complexity of access-pattern
leakage attacks.

Volume-leakage Attacks. The more surprising result is perhaps that the benign
volume leakage is problematic for encrypted range queries. Volume leakage is defined to
be the numbers of documents returned from the queries. From these volumes, Kellaris
et al. [102] have shown that the distribution of the database (how many documents are
associated to each label) can be recovered with O(N4 log(N)) uniform queries. Grubbs
et al. [87] improved the query complexity of the attack to O(N2 log(N)) with the same
assumptions.

54

4.6. THE INDEX RETRIEVAL PROBLEM

4.6 The Index Retrieval Problem

A major caveat is that the schemes in the literature often use expensive techniques to
achieve security. For instance, many searchable encryption schemes [53, 100, 36, 97, 29,
116, 56] use duplication to suppress leakage. The general idea of duplication is shown in
Figure 4.1. Here, every instance of a keyword generates a key in the search index and
each document generates k encrypted documents in the document array where k is the
number of keywords in that document. This represents a huge storage overhead on the
search index and the document array, especially when each document contains a large
number of keywords or when the documents are large.

Figure 4.1: Demonstration of the duplication technique. The left side shows the documents and the
keywords they contain. The right side shows the inverted index and document array with duplication.
Note that the number of entries in the inverted index and document array is equal to the number of
keyword-document pairs which can be extremely large for certain applications.

This has lead to three schools of thoughts on how those schemes should be used:

1. Security should never be compromised and the expensive techniques should be
applied to the search index and document array at the same time.

2. Although large, the overhead induced by the schemes on the search index is still
manageable as entries of the index are short (document identifiers). So one can
use those schemes to retrieve document identifiers and use another space-efficient
primitive (e.g. ORAM) to retrieve actual documents.

3. Efficiency is important and only encrypted indices should be built with expensive
techniques. The documents should be left naively encrypted.

None of the proposed solutions is satisfactory. The first solution is, by definition, not
efficient. The second solution suffers from time-efficiency problems as pointed out by
Naveed [134] (see Section 6.1 for a detailed discussion). The last solution is insecure as
pointed out by our results in Chapter 6.

55

CHAPTER 4. BACKGROUND III: STRUCTURED ENCRYPTION

4.7 A Conundrum

Given all of the attacks and constructions, a natural question to ask is: is there a struc-
tured encryption scheme (for a particular abstract data type) that is secure against all
of the known attacks and is practically efficient? The answer to the question is a defi-
nite ‘no’, even for simple types of structured encryption such as searchable encryption.
While there are secure searchable encryption schemes proposed in the literature, they
often focus on the index retrieval problem (a keyword search query returns the identifiers
of the matching documents) and completely ignoring the document retrieval problem (a
keyword search query returns the actual matching documents).

There is not a lot we can borrow from related primitives to make more efficient con-
structions too. For example, we know access-pattern leakage is problematic, but to hide
it fully requires ORAM or something with a similar overhead [134, 27, 148], which is
not going to be efficient for database applications in their current forms. We refer the
readers to Section 6.1 for a detailed discussion.

In this thesis, we address the conundrum by creating a new paradigm: instead of the
all-or-nothing approach, we try to construct schemes with partial leakage which allows
for much better efficiency. In order to achieve the goal, we need to further our under-
standings on the leakages of the constructions (Chapter 5 and 6), design more efficient
schemes (Chapter 7), and refine the security notion so that a security proof is meaningful
with respect to leakage-abuse attacks (Chapter 8).

56

Chapter 5

Cryptanalysis I: Encrypted Range
Queries

Range queries are one of the fundamental query types of a database system. In the con-
text of structured encryption, the majority of the constructions consider one-dimensional
range query only, that is, there is only one attribute that can be queried by the user.
Despite the simplification, we are still very far from a secure and efficient construction.

In this chapter, we explore the different ways a structured encryption scheme that sup-
ports range queries can be broken, and learn which of the leakages to avoid. Section
5.1 provides an introduction to the techniques used in the previous constructions and
the attacks on some of them. In Section 5.2, we demonstrate how some of the previous
constructions which are secure against previous access-pattern leakage attacks can be
broken. Section 5.3 improves on the previous volume leakage attacks. Unlike previous
attacks in this direction, we are interested in imperfect volume leakages, meaning that
not all volumes from the possible queries have been observed by the attacker as a result
of a particular query distribution or active suppression of the leakage. Finally, we dis-
cuss in Section 5.4 what we have learnt from the attacks and highlight the leakages to
avoid.

Contents

5.1 Introduction . 59

5.1.1 Previous Constructions . 59

5.1.2 Previous Attacks . 59

5.1.3 Discussion . 60

5.1.4 Chapter Outline . 60

5.2 Access-pattern Leakage Attacks . 62

5.2.1 Background . 62

5.2.2 Full Database Reconstruction Attack using Access-pattern
Leakage from Search Query 64

5.2.3 Full Database Reconstruction Attack using Access-pattern
Leakage from Search Query and Update Query 67

5.3 Volume Leakage Attacks . 71

5.3.1 Basic Attack . 71

5.3.2 Simple Variations on the Leakage 81

5.3.3 Attack on Observed Volumes with Bounded Window Size . 88

5.3.4 Partial Reconstruction . 93

5.3.5 Use of Side Information . 95

57

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

5.3.6 Attacks on Binary-tree-based Constructions 96

5.4 Discussion . 104

58

5.1. INTRODUCTION

5.1 Introduction

In this section, we give a brief introduction to constructions of encrypted range queries
and known attacks on them. We also discuss shortcomings of previous attacks and
outline how we improve them. The syntax of encrypted range queries can be found in
Section 4.1.

5.1.1 Previous Constructions

Previous constructions of structured encryption supporting range queries can be cate-
gorised into three groups.

The first group of constructions rely on property-preserving encryption schemes. This
includes constructions based on order-preserving encryption [20, 21, 152, 177, 103] and
order-revealing encryption [120, 46, 121]. Order-preserving encryption preserves the
order of plaintext upon encryption and a search operation on the plaintext corresponds
to a search operation on the ciphertext with the end-points of the query rescaled. Order-
revealing encryption does not reveal the order of the ciphertexts until they are queried.
However, with enough queries, it reveals as much information as an order-preserving
encryption scheme would. Schemes in this group leak two pieces of information which
an attacker can abuse, namely the search-pattern and access-pattern information. The
search-pattern refers to whether two queries are the same, and the access-pattern refers
to which query accesses which document.

The second group of constructions are tree-based constructions, including [186, 69, 58,
187, 203]. The idea of these constructions is to use different nodes of the tree to answer
different queries, so as to avoid the access-pattern leakage.

The last group of constructions are custom constructions that do not fall into the other
two categories. This includes [188, 163, 75].

5.1.2 Previous Attacks

For an attack on encrypted range queries, there are three main attack goals, namely
query reconstruction, database reconstruction and distribution reconstruction. In a
query reconstruction attack, the goal of the attacker is to recover the end-points of the
range queries. In a database reconstruction attack, the goal of the attacker is to recon-
struct the values of the encrypted documents. Finally, in a distribution reconstruction
attack, the goal of the attacker is to reconstruct the shape of the database, i.e. how
many documents there are for each value.

A scheme that is vulnerable to one of the attacks can leak sensitive information. Just as
an example, a distribution reconstruction attack may look innocuous, but such an attack
on the distribution of diseases1 can lead to regional discrimination by the employers.

In terms of the attack techniques and the types of leakages used, there are three main
categories of attacks, namely search-pattern leakage attacks, access-pattern leakage at-
tacks and volume-leakage attacks.

1Diseases in medical databases are coded with International Classification of Diseases [193] which
can be sorted and searched by range queries.

59

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

A scheme that leaks the search pattern is vulnerable to a search-pattern leakage attack.
The OyaKer20 attack [142] is one of the attacks that uses search pattern to reconstruct
the queries. All of the schemes described above are vulnerable to this attack.

If a scheme leaks the access pattern like all of the schemes in the first group do, then
it is vulnerable to an access-pattern leakage attack. In such an attack, the adversary is
able to reconstruct everything about the database – the queries, the database and the
distribution – if enough queries have been made. The KKNO16 attack, LMP18 attack
and GLMP19 attack [102, 115, 88] are some of the examples.

Finally, if a scheme leaks the query response sizes or volumes like all the schemes in
the first group do, then the scheme is vulnerable to the volume-leakage attacks in the
literature [102, 87, 111]. However, those attacks assume that all possible volumes are
observed so they do not apply to some of the schemes in the second and third group.

It is worth to note that these attacks are closely related to traffic analysis [72, 70, 144,
133]. The key difference between the two is that for encrypted range queries, the server
is assumed to be honest-but-curious, so the attack surface is larger.

5.1.3 Discussion

Before moving on, we briefly discuss three aspects of the above attacks. Although they
expose a clear source of insecurity, most of the attacks rely on strong assumptions on
the information the adversary learns. For instance, the KKNO16 attack and LMP18
attack [102, 115] assume a uniform query distribution and will only work if all queries
have been observed, and the OyaKer20 attack [142] assumes that the attacker has some
background information on the query distribution. Indeed, since at the moment we
have little understanding of what is the query distribution in practical applications, it is
difficult to confirm the assumptions required by the attacks. Is it unclear how reasonable
it is to assume that the adversary gets to observe answers to all possible queries. The
independence and uniformity assumptions on the query distribution are perhaps even
harder to justify.

Furthermore, it seems easy to defend against these attacks on the schemes they are ap-
plicable to, since they do not seem robust under small departures from the assumptions
on which they rely. Put differently, do the attacks fail if a few queries are missing?
What if the adversary never gets to see the answer to q(1, N) or queries of the form
q(i, i), both of which are crucial for some of the attacks to work? These are not merely
rhetorical questions. One tempting proposition is to deploy protocols with a modicum
of protection which invalidate the assumptions required by the attacks. For example,
one could simply ensure that certain volumes are never returned [58], prevent queries for
large ranges, or introduce noise in the database or communication [57]. Each of these
countermeasures thwarts existing attacks, with no obvious way to bypass them.

Finally, the attacks only applies to a subset of the schemes in the literature, and a
natural question to ask is if the other schemes are secure against leakage-abuse attacks.

5.1.4 Chapter Outline

This chapter is an attempt to address the questions above. There are two main sections.

60

5.1. INTRODUCTION

In Section 5.2, we show how to abuse access-pattern leakage on schemes with coun-
termeasures to achieve database reconstruction. Section 5.2.2 presents an attack on
[203, 187] using access-pattern leakage from search queries, and Section 5.2.3 presents
an attack on the same constructions if access pattern leakage from update queries is avail-
able too. We show that the latter attack requires an order of magnitude less queries
(assuming a uniform distribution of search and update queries) for it to succeed.

In Section 5.3, we demonstrate viability of volume leakage attacks with much less infor-
mation than what is required by the previous attacks. We also develop a new volume
leakage attack for schemes with non-standard volume leakage. Section 5.3.1 presents
a distribution reconstruction attack where only queries from ‘small windows’ are ob-
served. Section 5.3.2 demonstrates the viability of distribution reconstruction attacks
even if there are further variations to the small-window assumption. Section 5.3.3 shows
that elementary volumes which are critical in previous attacks [102, 87, 111] are not
needed for distribution reconstruction attacks. Section 5.3.4 shows how to reconstruct a
segment of a database uniquely if full distribution reconstruction is not possible. Section
5.3.5 shows how side information can be used to improve the attacks above. Section
5.3.6 generalises the basic attack in Section 5.3.1 to constructions [58, 57] which try to
defend against volume-leakage attacks.

A summary of the results is shown in Table 5.1.

Section Leakage Goal Query Complexity Targets

5.2.2 AP from search
queries

QR & DBR O(N2 log(N)) SQ [203, 187]

5.2.3 AP from search
and update queries

QR & DBR O(N log(N)) SQ and
O(N log(N)) UQ

[203, 187]

5.3.1 V from windows
smaller than b

DR O(b log(N)) SQ -

5.3.2 Noisy V from win-
dows smaller than b

DR O(b log(N)) SQ -

5.3.3 V from windows
sizes between a and
b

DR O(b log(N)) SQ -

5.3.4 V from windows
smaller than b

Partial DR O(b log(N)) SQ -

5.3.5* Noisy V from win-
dows smaller than b

DR O(b log(N)) SQ -

5.3.6 V from search
queries

DR & Ap-
prox. DR

O(N2 log(N)) SQ [58, 57]

Table 5.1: Acronyms in the table: access pattern (AP); volume (V); query recovery (QR); database
reconstruction (DBR); distribution reconstruction (DR); search query (SQ); update query (UQ). The
query complexity (i.e. the number of queries required to meet the requirements of the attack) is com-
puted based on uniformly distributed queries. *: The key difference between the attacks in Section 5.3.5
and 5.3.2 is that the attacker in Section 5.3.5 is assumed to have some side information.

Finally, in Section 5.4, we discuss what we have learnt from the attacks and highlight the
leakages to avoid when designing a structured encryption scheme that supports range
queries.

61

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

5.2 Access-pattern Leakage Attacks

This section shows how access-pattern leakage from range queries can be exploited. Ear-
lier literatures [102, 115, 88] have shown how this can be done on a naive construction
where the original access pattern is leaked. We extend this class of attacks to construc-
tions with countermeasures.

5.2.1 Background

Full Database Reconstruction Attack. In an access-pattern leakage attack, we
assume there is an honest-but-curious adversary who has access to the transcripts of the
queries but is unable to decrypt the documents. Without loss of generality, we can write
the encrypted database as a set of encrypted documents: EDB = {edoci}, and there
is a function val(·) which associates a value between 1 and N to each document. Upon
observing a sequence of queries, that is, for each query, the adversary gets to see a set
of encrypted documents returned by the query, the goal of the adversary is to recover
the values of the documents. We call this attack full database reconstruction attack.

Target leakage profile. In previous attacks [102, 115, 88], it was shown that such
an attack is viable on a naive construction, where for a search query (Srch, (i, j)) on
values from i to j results in leakage

L0(Srch, (i, j)) = {edoc ∈ EDB | val(edoc) ∈ [i, j]} .

These attacks have motivated binary-tree-based constructions [203, 187] which tried to
hide the leakage. These constructions work as follows:

1. A leaf node Ti,i is constructed by the encryptions of documents with value i.

2. Nodes above are created by iteratively merging the nodes below. The documents
are encrypted under fresh randomness so the edges of the tree are not directly
leaked.

Figure 5.1 gives a visual representation of the constructions.

Figure 5.1: The binary tree built for answering range query. Ti,j contains all encrypted documents
with value between i and j. To answer a search query (Srch, (i, j)), the minimum set of nodes that
covers the range is returned as the query response. As an example, to retrieve all documents with values
between 1 and 3, nodes T1,2 and T3,3 are returned.

62

5.2. ACCESS-PATTERN LEAKAGE ATTACKS

To answer a query, a technique called best range cover (Algorithm 5.1) is used. This
technique finds the minimum number of nodes required to answer a query, and hence,
achieves optimal communication complexity in this case.

Algorithm 5.1 Best range cover

1: procedure BRC(i, j)
2: if i > j then
3: return ∅
4: w = 2⌊log2(j−i+1)⌋

5: i′ = ⌈i/w⌉ ∗ w + 1
6: return (i′, i′ + w) ∪BRC(i, i′ − 1) ∪BRC(i′ + w + 1, j)

There are two complications to the description above. Firstly, instead of encryptions of
the actual documents, only the document identifiers are stored in this search index. This
is because duplication is expensive in terms of storage and people want to avoid it. On
the other hand, if only the document identifiers were used in the search index, and the
actual (encrypted) documents were retrieved from the server, the adversary effectively
has access to leakage profile L0 which we know is insecure for any construction. In
this section, we show that even if the scheme above has been applied on the documents
directly, an attacker can achieve query reconstruction.

Secondly, although the constructions are motivated by a binary tree, the search index
does not take shape of one. In particular, the edges are not part of the search index as
otherwise it defeats the purpose of the constructions. In [203, 187], the tree is wrapped
in a single-keyword search index, that is, the nodes are used as the keywords and the
contents of the nodes are used as the documents (identifiers) associated to the keywords.
Nonetheless, the leakage of the constructions with a wrapper is exactly the same as that
of a binary tree, which allows us to use the latter in our leakage analysis.

These constructions also support document insertions and deletions. As one might
expect, an insertion (or deletion) affects all nodes containing the value of the document.
For example, in Figure 5.1, if we want to insert a document with value 1, we have to
update nodes T1,1, T1,2, T1,4 and T1,8. [203, 187] using forward and backward-secure
searchable encryption schemes as the wrappers so the identity of the nodes will not be
immediately leaked after a update query, but a future query on the nodes will reveal
this piece of information. For simplicity, we assume that the identity of the nodes are
leaked immediately after an update query.

Formally, we can write the leakage L1 of the binary-tree-based constructions as:

L1(Srch, (i, j)) = {(Ti′,j′ , |Ti′,j′ |) | (i′, j′) ∈ BRC(i, j)} ,
L1(Insert, (i, doc)) = {(Ti′,j′ , |Ti′,j′ |) | 0 ≤ k ≤ log(N),

i′ = ⌊(i− 1) · 2−k⌋ · 2k + 1, j′ = i′ + 2k},
L1(Delete, (i, doc)) = {(Ti′,j′ , |Ti′,j′ |) | 0 ≤ k ≤ log(N),

i′ = ⌊(i− 1) · 2−k⌋ · 2k + 1, j′ = i′ + 2k}.

The type of operation is leaked by the constructions but we omit them in the description
of the leakage function for readability.

Density of the database. We say that a database DB is dense if |DB[i]| ̸= 0 for
all i. We say that a database is sparse if it is not dense. If a database is sparse, then

63

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

some of the search queries may return no result. [203] and [187] leak this explicitly and
our access-pattern leakage attack is compatible with sparse databases.

Access-pattern Leakage Attacks. We present two full database reconstruction
attacks in this section. The first attack uses access-pattern leakage from search query
only and the number of uniformly distributed queries required for the attack to succeed
with high probability is O(N2 log(N)), where N is the maximum value of the database.
The second attack uses access-pattern leakage from search query and update query,
and the attack is expected to succeed with O(N log(N)) uniformly distributed update
queries and O(N log(N)) uniformly distributed search queries.

As the search pattern leakage is not obscured in [203, 187], a successful full database
reconstruction attack implies a full query recovery attack. In particular, for the second
attack, this means that the attacker can recover the update history of the database.

5.2.2 Full Database Reconstruction Attack using Access-pattern
Leakage from Search Query

Attack Setting. The attack we describe in this section works on leakage profile L1.
The adversary only uses the leakage from the search queries so the attack is applicable
to the static and dynamic constructions at the same time.

We assume that an honest client uses one of the schemes that satisfies leakage profile
L1 to make a sequence of k randomly generated search queries q1, . . . ,qk. The attacker
records the leakages of the queries as L1(q1), . . . ,L1(qk), and his goal is to reconstruct
the database. More specifically, by the end of the attack, the adversary outputs an array
A of length N where N is the maximum value in the database, such that A[i] contains
all documents with value i up to reflection (except A[1] and A[N] which are empty for
reasons we will discuss later). Here, the documents in array A must only come from the
leaf nodes of the binary tree.

The reconstruction of the leaf nodes allows an attacker to trivially reconstruct the values
of the other nodes, by exploiting appropriate query leakages. We omit the details of how
this can be done. We also note that a database reconstruction attack for leakage profile
L1 allows for trivial query reconstruction. Details of this is omitted from the thesis for
the same reason.

If the underlying scheme supports update queries, then two queries on the same range
may not give the same leakage. For simplicity, we assume all queries issued by the client
are search queries. The attack can be easily generalised to the dynamic setting where
some of the queries are insertion or deletion queries. To demonstrate that, consider an
insertion query with a document that has value 1. This translates to document insertions
on nodes of the shape T1,2i for i = 0, . . . , log(N) which means that the attacker can
always undo the insertion and use a canonical version of the leakage.

We note that the query response volumes are not obscured in leakage profile L1 which
means all previous volume-leakage attacks [102, 115, 88] apply immediately. However,
our proposed attack uses access-pattern leakage of the search queries only which means
that even if fake documents are introduced, as long as access-pattern is not obscured,
our attack applies to that scheme.

64

5.2. ACCESS-PATTERN LEAKAGE ATTACKS

To simplify our notation in the description of the attack, we write L1(Srch, (i, j)) =
{Ti′,j′ | (i′, j′) ∈ BRC(i, j)}.

Intuition. Let ri,j be the number of distinct queries that retrieve node Ti,j . We show
that ri,j differs for different choices of i and j, which means if the adversary has observed
all queries at least once, he can infer the nature of the nodes by simply computing ri,j
for each node. As an abuse of notation, we write r(Ti,j) = ri,j .

We categorises the nodes into three groups, namely left leaf node, right leaf node and
non-leaf node. The left leaf nodes are nodes of the shape Ti,i where i = 1 mod 2 if
i ≤ N

2 and i = 0 mod 2 if i > N
2 . The right nodes are the leaf nodes that are not left

leaf nodes. The non-leaf nodes are the remaining nodes. The node categorisation is
illustrated in Figure 5.2.

Figure 5.2: In the figure, red nodes are left nodes, green nodes are right nodes and black nodes are
non-leaf nodes.

For a left leaf node Ti,i with i ≤ N
2 , the node will only be covered by query ranges of the

shape (j, i) where 1 ≤ j ≤ i. This is because for any query with right endpoint greater
than i, a node above Ti,i will be retrieved by the query instead. Hence, the number of
distinct queries that retrieve a left leaf node Ti,i is simply

ri,i = i if i = 1 mod 2.

Using a similar argument on the right leaf nodes, we have that

ri,i = N − i+ 1 if i = 1 mod 2.

This can be seen easily from Figure 5.3.

Figure 5.3: Node T3,3 is a left leaf node. It appears in search queries with endpoints (1, 3), (2, 3) and
(3, 3). The other nodes that can appear together with node T3,3 are highlighted in green.

65

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

We can use the same counting argument on the non-leaf nodes and get ri,j for i ̸= j as:

ri,j =

N − i+ 1 if j

j−i+1 = 0 mod 2,

j if j
j−i+1 = 1 mod 2 and j − i+ 1 ̸= N,

1 otehrwise.

This is demonstrated in Figure 5.4.

Figure 5.4: Node T3,4 is a non-leaf node. It appears in search queries with endpoints
(2, 4), (3, 4), (3, 5), (3, 6), (3, 7) and (3, 8). The other nodes that can appear together with node T3,4

are highlighted in green.

Observe that all ri,i are all odd whereas all ri,j for i ̸= j are even except r1,N , this means
that the adversary can immediately differentiate the leaf nodes from the non-leaf ones
except the root node. Furthermore, ri,i is unique up to reflection, i.e. ri,i = rj,j if and
only if i + j = N + 1, so the leaf nodes can be re-identified up to reflection using r∗,∗
only. Finally, to disambiguate the reflection, we can fix T2,2 and TN−1,N−1 and check
if there is a query where T2,2 appears together with the node in interest. For example,
T3,3 appears together with T2,2 in the search query (Srch, (2, 3)), but TN−2,N−2 does
not.

The procedure above allows us to re-identify all the leaf nodes except T1,1 and TN,N .
To identify the other nodes, we can simply use the leakage from some of the queries.
Without loss of generality, let Ti,j where i ̸= 1 and j ̸= N be the node the adversary
is trying to re-identify. As we assume that all the queries have been issued once, there
must be a search query of the shape (Srch, (i − 1, j + 1)). The leakage of the query is
L0(Srch, (i − 1, j + 1)) = {Ti−1,i−1, Ti,j , Tj+1,j+1}. This is the only query containing
Ti−1,i−1, Tj+1,j+1 and another node, so Ti,j can be easily re-identified.

Attack Overview. The attack algorithm A1 is given inputs a sequence of query
leakages L = (ℓ1, . . . , ℓk) and the maximum value of the database N . The output of the
algorithm is an array A of leaf nodes with values from 2 to N − 1. The first and last
positions in A are marked by ⊥ as the two leaf nodes T1,1 and TN,N cannot be uniquely
re-identified. The algorithm proceeds in two steps as shown in Algorithm 5.2. In the
first step, the algorithm removes duplicate queries and identifies all the nodes of the
encrypted database. In the second step, the r-value of each node is computed and the
leaf nodes are re-identified. Query reconstruction and database reconstruction from A
are trivial and they are omitted from the pseudocode.

Theoretical Analysis. The attack described requires all queries involving the leaf
nodes as part of the leakage to be observed at least once. Any missing query would
change the values of r∗,∗ computed by the attacker, hence leading to the failure of

66

5.2. ACCESS-PATTERN LEAKAGE ATTACKS

Algorithm 5.2 Access-pattern Leakage Attack using Search Query Leakage

1: procedure A1(L,N)
2: /* Convert L into a set */
3: L← {ℓ ∈ L}
4: /* Set T to be the union of the query tokens */
5: T ← ∪ℓ∈Lℓ

6: /* Initialise an array of size N for the leaf nodes */
7: A← [⊥ for i ∈ 1, . . . , N]
8: /* Fix the reflection with two of the leaf nodes */
9: {t1, t2} ← {t ∈ T | r(t) = N − 1}

10: A[2]← t1
11: A[N − 1]← t2
12: /* Fill the other leaf nodes */
13: for i← 3, . . . , N

2 do
14: {t1, t2} ← {t ∈ T | r(t) = i}
15: if (i mod2 = 0) ∧ (∃ℓ ∈ L, {t1, A[2]} ∈ ℓ) then
16: A[i]← t2, A[N − i+ 1]← t1
17: else if (i mod2 = 0) then
18: A[i]← t1, A[N − i+ 1]← t2
19: else if (i mod2 = 1) ∧ (∃ℓ ∈ L, {t1, A[2]} ∈ ℓ) then
20: A[i]← t1, A[N − i+ 1]← t2
21: else
22: A[i]← t2, A[N − i+ 1]← t1

23: return A

the reconstruction algorithm. More concretely, the number of queries required for the
algorithm to succeed is O(N2 log(N)) and we state it as a theorem below.

Theorem 5.1 (Number of queries required for Attack A1 to succeed). Suppose that the
queries follow a uniform distribution. Then the number of queries required for attack
A1 to succeed with high probability is O(N2 log(N)).

Proof. We know that the number of distinct queries is N(N+1)
2 . As the queries are

uniformly distributed, the number of queries required to observe all distinct queries at

least once can be formulated as a coupon collector’s problem [71] with N(N+1)
2 coupons.

A standard argument shows that the number of queries required is N(N+1)
2 HN(N+1)

2
=

O(N2 log(N)), where Hn is the n-th harmonic number.

5.2.3 Full Database Reconstruction Attack using Access-pattern
Leakage from Search Query and Update Query

Attack Setting The attack we describe in this section works on leakage profile L1 in
the dynamic setting. Just like the previous attack A1, we assume that the adversary
who is honest-but-curious observes random queries generated by the honest client. These
queries are a mixture of search queries, insertion queries and deletion queries. The goal
of the adversary is to reconstruct the database just like before. More specifically, by
the end of the attack, the adversary outputs an array A of length N where N is the

67

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

maximum value in the database, such that A[i] contains all documents with value i up
to reflection (with A[1] and A[N] as the leakage from update queries allows for it). Here,
the documents in array A must only come from the leaf nodes of the binary tree.

There are two key differences between this attack and the previous one. Firstly, this
attack will only work if there is at least one update query on each value, which means
it is not applicable to static schemes. Secondly, this attack is capable to re-identify the
two endpoints (A[1] and A[N]) which attack A1 cannot identify.

As before, we omit the volume leakage from the leakage profile and use the access pattern
leakage only. For simplicity, we assume that the nodes in the queries are not changed
by the insertion or deletion queries.

Intuition To motivate the attack, consider a database with N = 8. Imagine that the
client inserts a document doc1 with value 1 and a document doc2 with value 2. Then
the leakages of the two insertion queries are

LInsert(Insert, (1, doc1)) = {T1,1, T1,2, T1,4, T1,8} ,
LInsert(Insert, (2, doc2)) = {T2,2, T1,2, T1,4, T1,8} .

So |LInsert(Insert, (1, doc1)) ∩ LInsert(Insert, (2, doc2))| = 3.

On the other hand, suppose that the client also inserts a document doc3 with value 3,
then

LInsert(Insert, (3, doc3)) = {T3,3, T3,4, T1,4, T1,8} .

So

|LInsert(Insert, (1, doc1)) ∩ LInsert(Insert, (3, doc3))|
= |LInsert(Insert, (2, doc2)) ∩ LInsert(Insert, (3, doc3))|
=2.

Straightforwardly, the insertions are nothing but the common ancestries between the
leaf nodes touched by the insertion queries, and by computing the cardinalities of the
insertions, the adjacencies between the leaf nodes can be learnt immediately.

The nature of the other nodes are revealed too. For example, node T1,8 is the only node
covered by all insertion queries, node T1,4 and T5,8 are the only two nodes covered by
four insertion queries.

It remains to recover the order of the leaf nodes up to reflection. This can be done by
fixing a pair of adjacent leaf nodes (T1, T2) and extend it iteratively using the leakages
from the search queries. Without loss of generality, assume that node T3 and T4 are
adjacent nodes and there is a search query with leakage {T2, T5, T4}. Then we know
that the order of nodes T1, T2, T3, T4 must be T1, T2, T4, T3, with a gap between node T2

and T4 as the query width of node T5. As we can recover the query width of node T5 by
looking at how many times it is covered by unique insertion queries, we have recovered
the order of nodes T1, T2, T3, T4 completely. The process can then be repeated until the
order of all leaf nodes are fixed. The non-leaf nodes can be re-identified easily by using
the ancestry information of the leaf nodes.

Attack Overview The attack algorithm A2 is presented in Algorithm 5.3. The attack
takes as input a sequence of leakages L = (L1(q1), . . . ,L1(qk)) and the maximum value

68

5.2. ACCESS-PATTERN LEAKAGE ATTACKS

N , and outputs an array B that contains the leaf nodes of the binary tree in order
(up to reflection). The attack is broken down into three steps. Firstly, the leakages
are separated by their query types. Secondly, the adjacent leaf nodes are identified.
Thirdly, the leaf nodes are ordered using the access-pattern leakage from the search
queries. For readability, the detailed pseudocode for the third step is omitted. Query
reconstruction and database reconstruction from B are trivial and they are omitted from
the pseudocode.

Algorithm 5.3 Access-pattern Leakage Attack using Search Query and Update Query
Leakage

1: procedure A2(L,N)
2: L1 ← access-pattern leakage from the update queries
3: L2 ← access-pattern leakage from the search queries

4: /* Identify adjacent leaf nodes */
5: A← {}
6: for ℓ1 ∈ L1 do
7: for ℓ2 ∈ L1, ℓ2 ̸= L1 do
8: if ℓ1 ∩ ℓ2 = log(N) then
9: A← A ∪ {{ℓ1 − ℓ2, ℓ2 − ℓ1}}

10: B ← [⊥ for i ∈ 1, . . . , N]
11: B ← ordered leaf nodes from A using L2

12: return B

Theoretical Analysis. The attack described requires an update query on every value
and a few more search queries. We assume that both types of queries follow uniform
distributions and we provide a theorem on the number of queries of each type required
below.

Theorem 5.2 (Number of queries required for Attack A2 to succeed). Suppose that
the search queries and update queries follow uniform distributions. Then the number of
search queries required for attack A2 to succeed with high probability is O(N log(N))
and the number of update queries required for that is O(N log(N)).

Proof. The proof is separated into two parts. In the first part, we show that the number
of update queries required is O(N log(N)). Then, we show that the number of search
queries required is O(N log(N)) too.

(# update queries) The number of distinct update queries is N . By assuming that
the update queries are uniformly distributed and apply coupon collector’s problem, we
have that the number of queries required to observe all update queries at least once is
O(N log(N)).

(# search queries) The search queries are used to fix the orientation of the adjacent
nodes recovered from update query leakage. There are N

2 pairs of adjacent nodes, and
for every two pairs of adjacent nodes, there is a single query that fixes the orientation
between them. In that light, the problem of finding the orientation of the pairs of
adjacent nodes is equivalent to making a connected graph where the nodes are the pairs
of adjacent nodes and the edges are the queries that fixes the respective orientation
between the pairs of adjacent nodes.

69

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Let Ti be the number of queries required to reduce the number of connected components
of the graph from i to i− 1. Then the number of queries required to fix the orientation

of all pairs of adjacent nodes can be expressed as
∑N

2
i=2 Ti. We will give an upper bound

on the expectation of E [Ti] for each i and then combine the expectations to give an
upper bound of the expectation of T .

Suppose that there are i connected components in the graph, and the number of nodes
in the connected components are x1, . . . , xi, then there are

i∑
j=1

xj ·
(
N

2
− xj

)

queries that can reduce the number of connected components to i−1. With
∑

j xj =
N
2 ,

the expression can be simplified to (
N

2

)2

−
i∑

j=1

xj .

This expression can be bounded from below by(
N

2

)2

−
(
N

2
− i+ 1

)2

− (i− 1)

=N(i− 1)− (i− 1)(i− 2)

=(i− 1)(N − i+ 2).

As i runs from 2 to N
2 in the summation, N − i+ 2 > N

2 for all i ∈
{
2, . . . , N

2

}
, so

i∑
j=1

xj ·
(
N

2
− xj

)
> (i− 1) · N

2
.

As there are N(N+1)
2 possible queries in total and the queries are uniformly randomly

distributed, the probability that a query reduced i connected components to i − 1 of
them is at least

(i− 1) · N2
N(N+1)

2

=
i− 1

N + 1
.

This implies that the expectation of Ti is at most N+1
i−1 . Thus,

E [T] =

N
2∑

i=2

E [Ti]

<

N
2∑

i=2

N + 1

i− 1

< (N + 1)HN
2

= O(N log(N)).

70

5.3. VOLUME LEAKAGE ATTACKS

5.3 Volume Leakage Attacks

In this section, we describe and analyse our volume leakage attacks. In Section 5.3.1,
we begin with a simple attack where the attacker is assumed to be able to observe
all volumes from small windows. In Section 5.3.2, we apply additional variations on
top of the small-window assumption, and show that the attacker can still reconstruct a
significant amount of databases uniquely. In Section 5.3.3, we show that the elementary
volumes are not required for the reconstruction attack. In Section 5.3.4, we devise a
partial reconstruction attack for databases that are not fully reconstructable. We show
how side information can help in improving the success rate of the attacks above in
Section 5.3.5. Finally, we demonstrate in Section 5.3.6 how the ideas in our attacks can
be used on similar but different volume leakage profiles that have not been broken in
the previous attacks.

5.3.1 Basic Attack

In this section, we describe and analyse our basic reconstruction attack. We assume that
only queries of small windows are observed by the attacker. More formally, we define
the leakage function as

Lb(DB) =

{
y∑

i=x

vi | y − x+ 1 ≤ b

}
. (5.1)

The adversary then learns W = Lb(DB) for some database DB = (v1, . . . , vN); his goal
is to recover DB. By setting b = N , we recover the leakage function in the previous
attacks [102, 87]. It is the only case for which previous attacks work: both attacks
require volumes generated by all possible queries. On the other hand, our attack works
with considerably smaller b.

5.3.1.1 Reconstruction Algorithm

Intuition. Given a tuple of observed volumes, say (w1, . . . , wk), we can tell if it looks
like a subarray of DB, since we know a set of conditions need to be satisfied: all the
sums of two consecutive volumes need to be present in W ; similarly, the sums of three
to b consecutive volumes need to be present in W . Given a large number of constraints,
it is unlikely that an arbitrary choice of (w1, . . . , wk) meets all the constraints. Hence,
a partial solution of length k is likely to be a continuous segment of DB.

Our basic attack is a variant of breadth-first search with pruning which extends partial
solutions iteratively. There are several choices for the initial partial solutions. For
certain databases, the minimum observed volume suffices as an initial partial solution.
This choice may not work on some databases as the number of partial solutions grows
too quickly. In that case, we opt for a clique-finding subroutine inspired by GLMP18
[87] to generate partial solutions of length b. In each iteration, our attack tries to extend
the partial solutions found in the previous iteration to the left and right by checking
the new constraints introduced by the new volume. Partial solutions that cannot be
extended by any observed volume are discarded. After obtaining the partial solutions of
length N , we check if the solutions generate the expected leakage, and the solutions that

71

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

do not are discarded. The remaining solutions are returned by our attack. Pseudocode
of our attack is shown in Algorithm 5.5.

Initial Solution via Clique-finding. An obvious starting partial solution is the
smallest observed volume: since all elementary volumes are observed the smallest volume
is necessarily an elementary volume. Looking ahead, this strategy may not work (e.g.
when the smallest volume is suppressed). We therefore employ a more robust mechanism
inspired by the GLMP18 attack and which shares some ideas with a heuristic which
complements the KKNO16 attack. Below, we describe how an initial solution can be
identified by finding a clique in a certain graph. Let W be the set of observed volumes.
We define the set of complemented volumes C to be {v | v ∈W ∧max(W)− v ∈W} ∪
{max(W)}. Nodes of our graph are defined by the elements of C. For v1, v2 ∈ C, there
is an edge between nodes v1 and v2 if |v1 − v2| ∈W . We know max(W) is the sum of b
elementary volumes, so a clique of size b with one of the volumes as max(W) describes
a partial solution of length b.

In GLMP18 the reconstruction of the entire database is reduced to finding a clique (with
N nodes). Here we only use clique finding to initialize our search, so we only need to
recover a small segment of size b of the database.

Detailed pseudocode of our clique-finding algorithm can be found in Algorithm 5.4. In
line 13, we use g⟨i⟩ to mean i-th smallest volume in g. It is also worth pointing out
that our algorithm employs a similar pruning strategy suggested in Appendix E of the
KKNO16 paper [102]. Without going into too many details, that algorithm verifies
similar constraints with our pruning mechanism to identify a plausible segment of the
hidden database.

Algorithm 5.4 Finding initial solution set

1: input W = {
∑y

i=x vi | y − x+ 1 ≤ b} , b
2: output {(w1, . . . , wb) | w ∈W ∧ Lb(w1, . . . , wb) ⊂W ∧

∑
i wi = max(W)}

3: procedure Initial Solution(W, b)
4: C = {v | v ∈W,max(W)− v ∈W}
5: G2 = {{v,max(W)} | v ∈ C}
6: for i← 3, b do
7: Gi = {}
8: for g ∈ Gi−1, v ∈ C do
9: if {|h− v| | h ∈ g} ⊂W then

10: Gi = Gi ∪ {g ∪ {v}}
11: S = {}
12: for g ∈ Gb do
13: s = (g⟨1⟩, g⟨2⟩ − g⟨1⟩, . . . , g⟨b⟩ − g⟨b− 1⟩)
14: S = S ∪ {s}
15: return S

A Running Example. Let DB = (11, 5, 12, 20, 19) and b = 3, we get

W = {5, 11, 12, 16, 17, 19, 20, 28, 32, 37, 39, 51} .

According to Algorithm 5.4, we start by identifying a set C where for every volume v in
C, we can also find another volume v′ ∈W such that v+v′ = maxW . For the database

72

5.3. VOLUME LEAKAGE ATTACKS

in the example, C = {12, 19, 32, 39}.

The algorithm then proceeds to find G2 = {{12, 51} , {19, 51} , {32, 51} , {39, 51}} which
is essentially a set of sets where each set contains one of the volumes in C and the
maximum volume. These sets are used as representations of part of the database. For
example, {12, 51} is a representation of (v3, v4 + v5) in the form {v3, v3 + v4 + v5}.

Our goal in the next step is to refine G2 so that we find a set {v3, v3 + v4, v3 + v4 + v5}.
This is done by testing every volume in C, and check if it fits in the sets in G2. Using the
set {v3, v3 + v4 + v5} as an example, the absolute differences between the new volume
and other volumes in the set have to be observed volumes. For {12, 51}, the volume that
satisfies the conditions is 32, so one of the sets in G3 is {12, 32, 51}. For this example,
we get two sets in G3 where the other set is {19, 30, 51}. If b is larger, we need to carry
this step iteratively until the sets have size b.

Finally, to extract the partial solutions from Gb, we order the volumes in the sets and
take differences in the way that is shown in line 13 of Algorithm 5.4. This step produces
two partial solutions in the example which are (12, 20, 19) and (19, 20, 12). These two
solutions are reflections of each other and we will always get them from Algorithm 5.4.

Attack Overview. Pseudocode of our basic attack is shown in Algorithm 5.5. Our
clique-finding algorithm (Algorithm 5.4) is used as the initial solution finding algorithm
but other choices are possible. In line 4, the set of initial solutions are computed. The
partial solutions are then iteratively extended by running procedures Extend Left and
Extend Right. In these two procedures, only the sums involving the new volume w
has to be checked, as all the other constraints are checked in previous iterations. After
obtaining the partial solutions of length N , we recompute the leakage associated to each
one and discard those for which the result is different from the input to the algorithm.

A Running Example (continued). Recall from above that we haveDB = (11, 5, 12, 20, 19)
and b = 3, and the set of observed volumes is

W = {5, 11, 12, 16, 17, 19, 20, 28, 32, 37, 39, 51} .

We have obtained two initial solutions (12, 20, 19) and (19, 20, 12) from the initial solu-
tion finding algorithm. Our basic attack takes these partial solutions and tries to extend
them. Using (12, 20, 19) as an example, the algorithm will check if (w, 12, 20, 19) is a valid
partial solution for all w ∈ W , so does all partial solutions of the shape (12, 20, 19, w).
For instance, (11, 12, 20, 19) cannot be a partial solution of length 4 as 11 + 12 /∈W , so
it is eliminated by the algorithm. Only (5, 12, 20, 19) and (19, 20, 12, 5) are a plausible
partial solutions of length 4 after this iteration. The process is continued until solutions
of length N are found. For the example, only one more iteration is required to produce
solutions of length N = 5.

Before outputting these solutions, the algorithm checks if the observed volumes generate
the exact set of observed volumes. In the example, the only two solutions of length 5
are (11, 5, 12, 20, 19) and (19, 20, 12, 5, 11) and they pass the test expectedly. As a result,
(11, 5, 12, 20, 19) and (19, 20, 12, 5, 11) are the solutions output by Algorithm 5.5.

73

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Algorithm 5.5 Basic attack

1: input W = {
∑y

i=x vi | y − x+ 1 ≤ b}, b,N
2: output {(w1, . . . , wN) | wi ∈W}

3: procedure Attack(W, b,N)
4: Sb = Initial Solution(W, b)
5: for i← b+ 1, N do
6: Si ← ExtendLeft(Si−1,W, b)∪

ExtendRight(Si−1,W, b)

7: SN ← {s | s ∈ SN ∧ Lb(SN) = W}
8: return SN

9: procedure Extend Left(Si,W, b)
10: S′ ← {}
11: for all (w1, . . . , wi) ∈ Si, w ∈W do

12: if {w +
∑k

j=1 wj | k < b} ⊆W then
13: S ′ ← S′ ∪ {(w,w1, . . . , wi)}
14: return S′

15: procedure Extend Right(Si,W, b)
16: S′ ← {}
17: for all (w1, . . . , wi) ∈ Si, w ∈W do

18: if {w +
∑k

j=1 wi−j+1 | k < b} ⊆W then
19: S′ ← S′ ∪ {(w1, . . . , wi, w)}
20: return S′

5.3.1.2 Correctness

For convenience, we denote our basic attack algorithm as A1. It takes as input the set
of observed volumes W = Lb(DB), bound b and maximum label N . We say that A1

is correct if the output of the attack is precisely the set of databases that generates the
given leakage. Formally, the correctness of our attack is established by the following
theorem.

Theorem 5.3 (Correctness of the basic attack). Let DB be a database, N = |DB|
and b be any natural number less or equal to N . Let SN be the output of A1, i.e.
SN = A1(Lb(DB), b,N). Then

1. ∀DB′ ∈ Lb(DB)N ,Lb(DB′) = Lb(DB)⇔ DB′ ∈ SN ,

2. DB ∈ SN .

Proof of Theorem 5.3. Statement (2) follows from (1), so it suffices to prove (1).

(⇐) We obtain this implication for free as line 7 of the algorithm ensures that Lb(DB′) =
Lb(DB).

(⇒) Assume that Lb(DB′) = Lb(DB). We show that at iteration i of the algorithm
in line 6, we have the invariant that ∀DB′ ∈ Lb(DB)N , Lb(DB′) = Lb(DB) =⇒

74

5.3. VOLUME LEAKAGE ATTACKS

∃(x1, . . . , xi) ∈ DB′ s.t. (x1, . . . , xi) ∈ Si. In particular, this implies that for solutions
of length N , DB′ ∈ SN . We prove this by induction.

The correctness of the base case relies on the correctness of the initial solution finding
algorithm. We prove that Algorithm 5.4 is correct. Assume for the sake of contradiction
that there exists some clique of size b, (w1, . . . , wb) which is not in the output of the

algorithm. Then
{
w1, w1 + w2, . . . ,

∑b
j=1 wj

}
must not be in Gb. This is impossible as{

w1,
∑b

j=1 wj

}
∈ G2 and for i between 3 and b, adding

∑i
j=1 wj to the previous set of

volumes generates a valid element in Gi. Therefore, our assumption must be false and
the correctness of the clique finding algorithm follows.

In the inductive step, we assume that at iteration k, there exists (x1, . . . , xk) ∈ DB′

such that (x1, . . . , xk) ∈ Sk. Without loss of generality, we can assume xk is not the last
volume to the right of DB′, so there is some xk+1 such that (x1, . . . , xk, xk+1) ∈ DB′.
Running the Extend Right procedure from line 15 to 20, we check if{

xk+1 +

j∑
i=0

xk−i | 0 ≤ j ≤ min{b− 1, k}

}
⊆ Lb(DB).

This is indeed the case as Lb(DB′) = Lb(DB). So there exists (x1, . . . , xk, xk+1) ∈ DB′

such that (x1, . . . , xk, xk+1) ∈ Si+1.

Hence, we conclude that after the final iteration, ∀DB′ ∈ Lb(DB)N , Lb(DB′) =
Lb(DB) =⇒ ∃(x1, . . . , xN) ∈ DB′ s.t. (x1, . . . , xN) ∈ Si, and the desired result
follows.

The correctness property of the attack implies that our attack is optimal in terms of
database recovery, meaning that there is no algorithm that can eliminate more partial
solutions from the set of solutions, if there is no further information.

5.3.1.3 Uniqueness

Correctness of our algorithm only ensures that we recover all the valid solutions from
the leakage. It is possible to have multiple databases (up to reflection) generating the
same leakage. For example, L3((1, 1, 1, 2, 1, 1)) = L3((2, 1, 1, 1, 1, 1)) = {1, 2, 3, 4}, so the
databases (1, 1, 1, 2, 1, 1) and (2, 1, 1, 1, 1, 1) are indistinguishable given the leakage. Yet,
our experiments show that our attacks recover unique solutions for an overwhelming
amount of real-world databases. In this section we investigate why this is the case. We
assume that the databases are randomly sampled from some underlying distribution V
and we are therefore interested in the probability that the database can be reconstructed
uniquely from the leakage:

punique = Pr
DB←V

[
S ← A1(Lb(DB), b,N),∃s, S =

{
s, sR

}]
.

It becomes immediately clear that the probability is computationally infeasible to com-
pute from its analytical expression. We outline how to use a series of bounding and
approximation techniques to find an estimation of the probability. We use a very rough
approximation where we are interested in the event that all of the partial solutions dis-
covered/maintained by our attack are genuine, that is they are solutions of the form

75

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

(vi, . . . , vj) for some i and j or their reflections. First we bound the probability that at
iteration b the set of partial solutions contains only genuine solutions. Here, we use the
Chen-Stein method [44, 43] to estimate the distribution of the observed volumes and
derive the probability that an arbitrary choice of b volumes from the set of observed
volumes satisfies all the constraints. This allows us to derive the probability that all the
partial solutions of length b are genuine solutions (Lemma 5.3). Then, we bound the
probability that the solution set contains only genuine solutions at iteration i+ 1 given
that all solutions are genuine at iteration i. A bound on punique follows by observing

that the only genuine solutions of length N are DB and DBR (Theorem 5.5).

Our derivation uses the underlying distribution on the database as an abstract pa-
rameter. We can then computationally determine concrete values for the bound by
instantiating with concrete distributions.

Distribution of observed volumes. We write W to denote the distribution of
observed volumes. Unlike a simple random variable, a draw from W generates a set of
volumes. Given the distribution of elementary volumes as V = (V1, . . . , VN), and bound

b, a draw fromW is equivalent to
{∑j

i vi | vi ← Vi, j − i+ 1 ≤ b
}
. Volumes inW have

significant dependencies amongst each other, and it is not trivial to compute W. We
appeal to the works of Stein [172] and Chen [44, 43], later known as the Chen-Stein
method. The main result we use is proven by Arratia, Goldstein and Gordon [8].

Theorem 5.4. Let U =
∑

α∈I Xα be the number of occurrences of dependent events,
and let Z be a Poisson random variable with E [Z] = E [U] = λ < ∞. For each α ∈ I,
we define Bα ⊂ I with α ∈ Bα as the neighbourhood of Xα.The neighbourhood of Xα is
the set of random variables that have dependency with Xα. Define

b1 =
∑
α∈I

∑
β∈Bα

pαpβ ,

b2 =
∑
α∈I

∑
α̸=β∈Bα

pαβ , where pαβ = E [XαXβ] ,

b3 =
∑
α∈I

E [E [Xα − pα | σ(Xβ : β ̸= Bα)]] .

Then ∣∣Pr[U = 0]− e−λ
∣∣ < min(1, λ−1)(b1 + b2 + b3).

For our purpose, Xα’s are indicator random variables that tell us if the sum of adja-
cent elementary volumes associated with the index α takes a particular value u or not.
These events usually happen with small probability so it is reasonable to use Poisson
approximation.

Let V = (V1, . . . , VN) be the distribution of elementary volumes and b be the maximum
window size. We define the index set as I = {(i, j) | j − i + 1 ≤ b}. We define
the neighbourhood set of index (i, j) as β(i,j) = {(k, l) | i < k < j, l > j, l − k + 1 ≤ b}∪
{(k, l) | k < i, i < l < j, l − k + 1 ≤ b}. We define X(i,j)(u) =

1
{∑j

k=i Vk = u
}

to be the indicator random variables to check if the sum of i-th el-

ementary volume through j-th elementary volume is equal to some volume u. Then
U(u) =

∑
α∈I Xα(u) is the random variable for the number of times we see u in the set

of observed volumes. Using Theorem 5.4, we find an upper bound on the probability
that we do see u. The result is summarized in the following lemma. See the full version
for the proof.

76

5.3. VOLUME LEAKAGE ATTACKS

Lemma 5.1 (Distribution of Observed Volumes). Let V = (V1, . . . , VN) be the distribu-
tion of elementary volumes and b be the maximum window size. Let I be the index set,
β(i,j) be the neighbourhood set, and X(i,j)(u) be the indicator random variables defined
above. Let U(u) =

∑
α∈I Xα(u). Then

Pr[U(u) > 0] ≤ 1− e−λ(u) +min(1, λ−1)(b1 + b2),

where

λ(u) =
∑
(i,j)

j−i+1≤b

Pr

(
j∑

k=i

Vk = u

)
,

b1(u) =
∑
(i,j)

j−i+1≤b

p(i,j)(u)
2

+
∑
(i,j)

j−i+1≤b

∑
(k,l)

i<k<j,l>j
l−k+1≤b

p(i,j)(u)p(k,l)(u)

+
∑
(i,j)

j−i+1≤b

∑
(k,l)

k<i,i<l<j
l−k+1≤b

p(i,j)(u)p(k,l)(u),

b2(u) =
∑
(i,j)

j−i+1≤b

∑
(k,l)∈β(i,j)

(k,l)̸=(i,j)

∑
x

Pr

(
k−1∑
m=i

Vm = x

)
·

Pr

(
j∑

m=k

Vm = u− x

)
· Pr

 l∑
m=j+1

Vm = x

 .

Distribution of out-of-order sum of observed volumes. An out-of-order sum
of the observed volumes is a summation of volumes picked from the set of observed
volumes in random order. So the sum does not necessarily correspond to a sum of adja-
cent elementary volumes. We need the distribution of out-of-order sum of the observed
volumes because it is key to derive the probability that a random sum of the observed
volumes is equal to one of the observed volumes.

To derive the distribution, we do not find the Chen-Stein method as useful as the
neighbourhood set is always everything, and b1 and b2 are too large to provide any
meaningful bound. Instead, we simply use union bound for this purpose. The results
are summarized in Lemma 5.2. The proof is presented in the full version of the paper.
As of notation, we write Ui for the distribution of the summation of i volumes from the
set of observed volumes, where the database is distributed with V = (V1, . . . , VN). By
abusing notation, we write U to mean the distribution of the observed volumes.

Lemma 5.2 (Distribution of out-of-order sum of observed volumes). Let V = (V1, . . . , VN)
be the distribution of elementary volumes and b be the maximum window size. Write U
for the distribution of observed volumes and Uk for the distribution of summations of k
volumes from the set of observed volumes. We have

Pr[u ∈ Uk] ≈ Pr[U ∗ . . . ∗ U = u] / i!,

where U ∗ . . . ∗ U is the convolution of U k times.

77

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Collision probability and uniqueness of solution. Suppose we have more than
one solution by the end of A1. This means that there is at least one non-genuine solution
satisfying all the constraints. The solution has to be different from the original database
by at least one volume. With some simplification, we assume that this volume is in
the middle of the tuple, then the solution must satisfy two two-way out-of-order sum of
observed volumes, three three-way out-of-order sum of observed volumes and so on. In
other words, there are two volumes drawn from U2 that are in U by chance, and so on.

We define k-way collision probability by

Pr[k-way collision] = max
x

[Pr[U(x) > 0] Pr[x ∈ Uk]] .

This is the maximum probability that a random sum of k out-of-order observed volumes
equal to one of the observed volumes. This allows us to derive the probability that the
solutions of length b contains only genuine solutions in Lemma 5.3. The proof can be
found in the full version of the paper.

Lemma 5.3. Let V = (V1, . . . , VN) be the distribution of elementary volumes and b be
the maximum window size. Let Sb be the solutions of length b. Then Sb contains only
genuine solutions with probability approximately

1−
i−1∑
j=1

(
i− 1

j

)
|W |j

i∏
k=2

Pr[k-way collision]min{j·k,i−k+1}.

The next Theorem establishes an estimation for punique.

Theorem 5.5 (Estimation of punique). Let V = (V1, . . . , VN) be the distribution of
elementary volumes and b be the maximum window size. We can estimate punique as

Pr[Sb contains only genuine solutions]− (N − b)q,

where q = 2 |W |
∏b+1

k=2 Pr[k-way collision].

Proof. We know from Lemma 5.3 there is a certain probability that the solutions of
length b contains only genuine solutions. We seek the probability that the solution set
remains genuine for all further iterations. There are |W | to be tested on the left and
right of the genuine solutions in each iteration. If our algorithm finds a solution by
chance, there must be a k-way collision for all 2 ≤ k ≤ b. Hence, using union bound, we
get

Pr[Sj+1 contains
only genuine solutions |

Sj contains
only genuine solutions]

≈1− 2 |W |
b∏

k=2

Pr[k-way collision]

=1− q.

Applying union bound again, we find

punique

≈Pr[Sb contains only genuine solutions]

−
N∑

j=b+1

1− Pr[Sj+1 contains
only genuine solutions |

Sj contains
only genuine solutions]

=Pr[Sb contains only genuine solutions]− (N − b)q.

78

5.3. VOLUME LEAKAGE ATTACKS

5.3.1.4 Complexity Analysis

We find worst-case complexity analysis uninformative, as there are cases where the solu-
tion set is exponentially large throughout the execution of the algorithm. Furthermore,
the worst case scenarios would impact even an average-case analysis. Instead, we con-
centrate on bounding the probability that the number of partial solutions maintained
does not exceed a certain size. In turn, this bound implies a bound on the total runtime
of the attack.

It turns out that we can reuse the analysis of uniqueness discussed above. We are inter-
ested in the same event as our analysis of uniqueness, that is, we bound the probability
that the set of partial solutions of length b to N contain only genuine solutions. As there
are at most 2(N−i+1) genuine solutions of length i, we know that if the event happens,
the number of solutions of length b to N cannot exceed 2N . On the other hand, the
number of solutions before iteration b cannot exceed |W |b−1. Therefore, we conclude

that the number of partial solutions never exceed |W |b−1 with probability punique.

As a consequence, the space complexity of the attack is O(|W |b−1) with probability
punique. In each iteration of the attack, every partial solution is appended with all vol-
umes in W to the left and to the right, and at most b conditions are checked. Therefore,
extending a partial solution takes O(2b |W |) operations, and the total time complexity

is maxiO(bN |Si|) = O(bN |W |b) with probability punique.

5.3.1.5 Experimental Data

In order to validate our basic attack and the other attacks we will present in this chap-
ter, we chose to use the Healthcare Cost and Utilization Project (HCUP) dataset as
the attack target. The HCUP dataset is maintained and published by the Agency for
Healthcare Research and Quality (AHRQ) who is the lead Federal agency in US with a
mission to improve the safety and quality of America’s healthcare system. One of the
datasets in the HCUP is the National (nationwide) Inpatient Sample (NIS), which is
the largest publicly available all-payer inpatient healthcare database in US. It contains
data from over 7 million hospital stays each year.

The NIS has been anonymised to protect patient privacy. We did not attempt to
deanonymise any of the data, nor are our attacks designed to deanonymise
medical data. I and the other authors involved in the original paper have completed
the HCUP Data Use Agreement training and submitted signed Data Use Agreements
to the HCUP Central Distributor.

We use the HCUP dataset from year 2004, 2008 and 2009 for our experiments. For each
year the dataset contains data for about one thousand hospitals. The median number of
inpatients is around 3 to 4 thousand depending on the year. Most of the data fields are
for discharge information and hence, not suitable for our attacks. We choose admission
month (AMONTH), number of diagnoses (NDX), number of procedures (NPR), age (AGE),
and length of stay (LOS) as the target attributes for our attacks as these attributes are
suitable for range queries and they have diversified distributions. For the attributes NDX
and NPR, there are 16 categories for year 2004 and 2008 and these attributes are labelled

79

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

as NDX-16 and NPR-16 respectively. For the same attributes, there are 26 categories for
year 2009 and these attributes are labeled as NDX-26 and NPR-26 respectively. Summary
statistics of the attributes can be found in Table 5.2. We also offer a comparison of the
number of queries required to observe all volumes in the leakage for the GLMP18 attack
and our basic attack with a typical window size, assuming an uniform query distribution.

Attribute Max. N Avg. N Dense b GLMP Basic
AMONTH 12 11.9 97.8% 3 451.2 149.1
NDX-16 16 12.0 4.3% 3 598.4 175.0
NDX-26 26 17.2 8.0% 4 1221.3 341.6
NPR-16 16 9.2 15.3% 3 343.2 113.2
NPR-26 26 10.7 1.0% 4 463.8 168.7
AGE 83 71.1 39.2% 6 16666.3 1714.5
LOS 366 45.9 0.0% 6 6671.6 805.9

Table 5.2: Summary statistics on the attributes used in the attacks.

5.3.1.6 Experimental Validation

We present an experimental evaluation of our basic attack. We perform attacks on the
attributes AMONTH, NDX, NPR and AGE as these attributes have a variety of N ranges
and different distributions, allowing us to understand the effectiveness of our attack on
different databases. We excluded experimental results on the attribute LOS, as most of
the databases on the attribute cannot be recovered uniquely with a relatively small b.
We discuss how to relax the adversarial goal to recover a part of the database uniquely
in Section 5.3.4. We also give numerical examples and simulations to the analysis of
uniqueness of solutions presented in Section 5.3.1.3.

Experimental results. For efficiency of implementation, we abort as soon as the size
of the solution set exceeds |W |2. Although our earlier analysis suggests that the solution
size can grow exponentially, our experiments show a small threshold is sufficient for most
attacks. We test our attack on the attributes and parameters shown in Table 5.3. For
each attribute in turn, we report on the fraction of databases we recover uniquely and
the fraction of databases for which more than one solution exist. We also indicate the
fraction of databases for which our clique-finding initialization procedure fails and the
the fraction of databases where our attack runs out of space.

For the attributes with moderate N , our attack works sufficiently well with bounds as
small as 3 to 5. Our attack is less effective on the attribute AGE as the databases on the
attribute often contain segments of small volumes that cannot be recovered uniquely
given the bounds. Nonetheless, even here our attack recovers uniquely (up to reflection)
one in five databases.

Theoretical analysis of uniqueness of solutions and simulation. We com-
pare the quality of the theoretical bound on uniqueness with experimental simulation,
using the theoretical bound described in Section 5.3.1.3. We perform experiments on
distributions of databases where the elementary volumes are modelled by independent
and identically distributed binomial distributions, for b = 5 to 8, and N = 40. There

80

5.3. VOLUME LEAKAGE ATTACKS

Attribute b Unique Ambiguous Clique fail Abort Avg. time (s)
AMONTH 3 78.5% 3.2% 0.0% 18.3% 0.0087
NDX-16 3 87.3% 2.1% 0.0% 10.7% 0.0083
NDX-26 4 82.7% 4.1% 0.3% 12.9% 0.0494
NDX-26 5 88.3% 40.0% 1.2% 6.4% 0.0498
NPR-16 3 89.1% 10.2% 0.0% 0.7% 0.0011
NPR-26 4 81.2% 15.2% 0.0% 3.7% 0.0124
NPR-26 5 84.6% 14.2% 0.0% 1.2% 0.0131
AGE 6 22.4% 0.9% 41.1% 35.7% 17.60
AGE 8 32.1% 0.6% 52.6% 14.7% 15.99

Table 5.3: Experimental data for the basic attack.

are two types of synthetic distributions we have considered, namely databases with an
increasing/decreasing elementary volumes and those with an inverted-U shape.

For the first type of database, we sample the elementary volumes asDBi ∼ Binom(20i+
200, 0.5). For the second type of database, we sample the elementary volumes as DBi ∼
Binom(400 − 20i, 0.5) for N ≤ 20 and DBi ∼ Binom(20i − 200, 0.5) for N > 20.
We compute the theoretical estimations of the uniqueness rates for the two types of
databases and compare those to the simulations.

For the simulations, we generate 1000 databases from the type of database in interest
and execute our basic attack. We report the uniqueness rates with out the final leakage
check procedure (line 7 of Algorithm 5.5) so that the comparison with our theoretical
estimations is more direct. The experimental results are shown in Table 5.4 respectively.

Our theoretical analysis of the uniqueness of solutions can be overly pessimistic with
small b, but it is fairly accurate for larger b. Our experiments provide some initial
evidence that databases with large variations of elementary volumes are susceptible to
volume leakage attacks.

b Experimental Theoretical
5 0.0% 98.1%
6 73.8% 98.1%
7 95.8% 99.8%
8 99.5% 99.7%

b Experimental Theoretical
5 0.0% 85.9%
6 0.0% 98.7%
7 40.4% 99.7%
8 88.0% 99.6%

Table 5.4: Experiments on the databases with a decreasing shape (left) and inverted-U shape (right).

5.3.2 Simple Variations on the Leakage

In this section, we study the robustness of our basic attack with variations on the basic
leakage function in Equation (5.1). These variations correspond to more realistic query
distributions, the use of countermeasures, or both. For example, we look at the case
where the user may issue some queries with window size larger than b, or decide not
to query some of the small ranges. Additionally, the server can pad some fake records
to the query responses to invalidate our basic attack. Recall that our basic attack
incrementally extends solutions using volumes which need to verify some constraints so
additional volumes, or missing ones, will impact our algorithm. Nonetheless, we show
that many of the databases can still be reconstructed uniquely under these variations.

81

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

5.3.2.1 Spurious Volumes

First, we consider two types of spurious volumes in our attack, namely volumes from
queries with larger windows and random volumes. We show that with slight modification
to our basic attack, a significant proportion of the databases from the HCUP dataset
can still be recovered uniquely.

Attack Overview. To model additional volumes we use some distribution N . We
write n ← N (DB) for sampling a volume from this distribution. Notice that we allow
the distribution to depend on the real database counts: this is useful to model both
the case when noise consists of real volumes (due to real queries outside of unexpected
window size) and noise which is calibrated with respect to the real data. The leakage
function in the presence of such noise is

Lb,N ,I(DB) = Lb(DB) ∪ {ni | i ≤ I, ni ← N (DB)}. (5.2)

for some I which itself may depend on DB. The goal of the adversary is to reconstruct
database DB given a sample from Lb,N (DB).

For this type of scenarios, we argue that the same strategy (with a minimal change)
works. That is, we use the same way to incrementally build solutions by checking the
same constraints as before. While all solutions can still be found (if the attack does
not abort) the presence of noise may lead to additional solutions which include fake
volumes. Worse, since the adversary learns W ← Lb,N (DB) we cannot sift potential
solutions by checking that Lb(DB) = W . We experimentally confirm that the success
of the adversary does not drastically degrade.

We do need to change the way we initialize our attack: due to noise our initial solution
finding algorithm may fail to return a genuine partial solution. For example, if the
maximum observed volume is a fake volume, our clique-finding algorithm will certainly
no generate proper partial solutions. To overcome this problem, we run the initial
solution finding algorithm, iteratively, starting with different volumes and use the union
of all initial solutions found this way as the starting point for the iterative part of the
attack.

Our attack in the presence of noise is the same as Algorithm 5.5, except that we omit the
final check on the leakage (line 7 of Algorithm 5.5) and employ a slightly more elaborate
algorithm for identifying starting partial solutions. We refer to the resulting attack as
A2.

Theoretical Analysis. Since we can no longer check for equality of leakages in A2,
we cannot ensure that any solution DB′ output by the attack satisfies Lb(DB′) = W ,
though it must be the case that Lb(DB′) ⊆ W . The modified correctness property is
established by the following theorem. The proof is identical to that of the basic attack
so it is omitted.

Theorem 5.6 (Correctness of the attack in the presence of noise). Let DB be a database,
N = |DB| and b be any natural number less or equal to N . For any possible sample from
the leakage function W ← Lb,N (DB), let SN be the output of A2, i.e. SN = A2(W, b,N).
Then

1. ∀DB′ ∈WN ,Lb(DB′) ⊆W ⇒ DB′ ∈ SN ,

82

5.3. VOLUME LEAKAGE ATTACKS

2. DB ∈ SN .

Experimental Results. We use NDX-26 and NPR-26 as the attributes to perform
experiments: since our basic attack succeeded with high probability for these attributes,
they offer a good starting point to understand the effects of the noise.

For uniformly distributed random noise, the fake volumes are drawn without replacement
from a discrete uniform distribution with lower limit as the minimum observed volume,
and upper limit as the maximum observed volume. The minimum observed volume is
used as the initial solution to the attacks. We compare recovery rate of our attack with
b = 5 and noise levels 0.5 and 1, where with noise level α, α · |Lb(DB)| fake volumes are

added to Lb(DB). We abort an attack as soon as the solution set is larger than |W |2.
The results are summarized in Table 5.5.

Attribute α Unique Ambiguous Abort Avg. Time (s)
NDX-26 0.5 62.3% 15.9% 21.9% 0.72
NDX-26 1 58.1% 16.4% 25.5% 1.70
NPR-26 0.5 61.4% 16.7% 22.0% 0.61
NPR-26 1 60.1% 18.1% 21.7% 1.37

Table 5.5: Experimental data for the attack with uniform random noise.

For volumes from larger windows, we test our attack on b = 5 and larger window of size
8. The minimum observed volume is used as the initial solution. We use noise levels
α = 0.5 and 0.75 in our experiments, where with noise level α, α · |L8(DB)\L5(DB)|
volumes from larger windows are added to L5(DB). We abort an attack as soon as the

solution set is larger than |W |2. The results are summarized in Table 5.6.

Attribute α Unique Ambiguous Abort Avg. Time (s)
NDX-26 0.5 64.5% 14.3% 21.2% 0.46
NDX-26 0.75 60.4% 16.1% 23.5% 1.00
NPR-26 0.5 43.6% 20.1% 36.4% 0.45
NPR-26 0.75 41.8% 20.9% 37.3% 0.61

Table 5.6: Experimental data for the attack with noise from larger windows.

5.3.2.2 Missing Queries

In our basic attack, every volume within a given window size is assumed to be observed
by the adversary, so all the constraints within the window size b can be checked. In
practice, it is possible that some of the queries are not issued by the user as they are
uninteresting. It is also possible that the user/server actively blocks some of the queries
in an attempt to defend against volume leakage attacks. We demonstrate that it is
still possible to reconstruct the database uniquely, even if some of the volumes from
the small windows are missing. For simplicity, within each window of size b, we assume
the adversary does not have access to k randomly chosen volumes. Furthermore, we
assume that the elementary volumes and all two-way sums of the elementary volumes
are always part of the leakage. Our assumptions are somewhat arbitrary but our attack
demonstrate that there is a lot of redundancy in the leakage function to cope with
missing volumes.

83

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Attack Overview. We start with a description of the leakage function one may
observe when some queries are suppressed. Let k be a natural number that is less or
equal to b− 2, let I be an index set of pairs of values as follows:

1. ∀i ≤ N, (i, i) ∈ I,

2. ∀i ≤ N − 1, (i, i+ 1) ∈ I,

3. ∀i ≤ N − b, |{(x, y) ∈ I | i ≤ x ≤ y ≤ i+ b− 1}| ≥ b(b+1)
2 − k.

Indexes (x, y) that appear in I are the queries the adversary observes. Notice that
condition (3) allows for a certain number of queries to be missing (more specifically k
queries for each individual window of size b.

For a fixed I, the adversary learns the leakage function

Lb,I(DB) =

{
y∑

i=x

vi | (x, y) ∈ I, y − x+ 1 ≤ b

}
. (5.3)

The adversary is given the leakage of some database Lb,I(DB) and k, and his goal is
to reconstruct all DB that generates the set of observed volumes, potentially with a
different index set that satisfies all the constraints.

We can no longer check all the additive constraints within the windows, but given our
assumption on I, we know that a solution is not plausible if in any window, there are
more than k missing constraints. Therefore, we extend a solution by some new volume
only if at most k of the constraints associated to the new volume are missing. Our
attack is described by Algorithm 5.6, and we call the attack A3.

Algorithm 5.6 Attack with missing queries

1: input W = {
∑y

i=x DBi | (x, y) ∈ I, y − x+ 1 ≤ b} , b, k,N
2: output {(w1, . . . , wN) | wi ∈W}

3: procedure Attack(W, b, k,N)
4: S1 = {(min(W))}
5: for i← 2, N do
6: Si ← ExtendLeft(Si−1,W, b, k)∪

ExtendRight(Si−1,W, b, k)

7: return SN

8: procedure Extend Left(Si,W, b, k)
9: S′ ← {}

10: for all (w1, . . . , wi) ∈ Si do
11: for all w0 ∈W do
12: m← 0
13: for all (x, y), x < y, y ≤ b− 1 do

14: if
(∑y

j=x wj

)
/∈W then

15: m← m+ 1

16: if m ≤ k then
17: S ′ ← S′ ∪ {(w0, w1, . . . , wi)}
18: return S′

84

5.3. VOLUME LEAKAGE ATTACKS

Theoretical Analysis. We say that A3 is correct if for all solutions found by the
algorithm, there exists an index set satisfying all the constraints and the resultant leakage
is the same as the leakage from the input. The following theorem establishes that A3 is
correct. The proof is similar to that of the basic attack with the invariant changed to
Lb,I′(s) ⊆W for some index set I ′ and partial solution s, so it is omitted.

Theorem 5.7 (Correctness of the attack with missing queries). Let DB be a database,
N = |DB| and b be any natural number less or equal to N . Let I be an index
set described above. Let W = Lb,I(DB) and SN be the output of A3, i.e. SN =
A3(W, b, k,N). Then

1. ∀DB′ ∈WN ,∀I ′ ∈ ([N]× [N])∗,Lb,I′(DB′) = W ⇒ DB′ ∈ SN ,

2. DB ∈ SN .

Experimental Results. We test our attack on the attributes NDX-26 and NPR-26,
with the missing queries generated uniformly, and the results are shown in Table 5.7. A
significant proportion of the databases can still be reconstructed uniquely in the setting
b = 6 and k = 2, indicating that banning some of the queries is not an efficacious
countermeasure.

Attribute b k Unique Ambiguous Abort Avg. Time (s)
NDX-26 5 1 42.8% 23.7% 33.4% 2.20
NDX-26 6 1 59.4% 16.7% 23.9% 21.31
NDX-26 6 2 40.1% 27.4% 32.5% 40.33
NPR-26 5 1 44.6% 20.5% 34.9% 1.18
NPR-26 6 1 56.1% 15.9% 27.9% 5.97
NPR-26 6 2 40.4% 24.0% 35.5% 11.87

Table 5.7: Experimental data for attack with missing queries.

5.3.2.3 Adding Fake Records

To a large extent, our attacks rely on checking equality of volumes, i.e. if v1 and v2 are
adjacent volumes, then their sum should be in the set of observed volumes. An obvious
defense strategy is to pad the responses with fake records. An entire spectrum of instan-
tiations of this idea is possible. We discuss some considerations in padding strategies,
and present an attack which bypasses a plausible instantiation of this countermeasure.

The best defense is to pad all answers with a large number of fake records. While there
is clearly no effective database reconstruction attack, the scheme is highly inefficient.
For efficiency one may choose to pad a small fraction of the queries with a small number
of fake records. If the parameters of the padding strategy are chosen inappropriately,
the attacker may be able to recover the true observed volume and use our basic attack
to reconstruct the underlying database. Interestingly, the padding strategy plays an
important role in the security too. For example, if the size of the padding is generated
uniformly at random for each individual query then an attacker may be able to learn
the true volumes from the perturbed volumes for some databases. On the other hand,
if the size of the padding stays is an (unknown) constant r for all queries, then it is easy
to see that the optimal guess of any elementary volume always has an uncertainty of r.

85

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Attack Overview. Let N = {Nx,y} be some noise distribution (which can potentially
depend on the indices of the queries and the volumes of the query responses). We
formally define the leakage function as

Lb,N (DB) =

{
y∑

i=x

vi + nx,y | y − x+ 1 ≤ b, nx,y ← Nx,y

}
. (5.4)

Given the leakage of some database Lb,N (DB) and a description of N , the adversary
is asked to find all databases that can generate the set of observed volumes. We study
the case where each query is padded with up to r fake entries selected uniformly and
independently. That is, i.e. for all x, y, Nx,y = Uniform(1, r).

Our attack A4 begins by guessing the ranges for the observed volumes. A guess is of
the form (w1, w2) where w1 is the lower bound and w2 is the upper bound (inclusive) of
the guess. A partial solution is a tuple just like that in the basic attack A1, except that
the entries are ranges of the form (w1, w2) as described above. The solution extension
procedure uses the same idea as the basic attack, but the constraints checked are changed
to if the partial solution can generate the padded volumes. We present the pseudocode
of the attack in Algorithm 5.7.

Algorithm 5.7 Attack with padded queries

1: input R,W = {
∑y

i=x DBi + r | y − x+ 1 ≤ b, r ← N} , b,N, r = max(N)
2: output {(w1, w2), . . . , (w2N−1, w2N))}

3: procedure Attack(R,W, b,N, r)
4: S1 = {(min(R))}
5: for i← 2, N do
6: Si ← ExtendLeft(R,Si−1,W, b, r)∪

ExtendRight(R,Si−1,W, b, r)

7: for all s ∈ SN do
8: if ∃w ∈W, ∀(x, y),

∑y
i=x s[i][1] < w − r and∑y

i=x s[i][2] > w − 1 then
9: SN ← SN\ {s}

10: return SN

11: procedure Extend Left(Si, R,W, b, r)
12: S′ ← {}
13: for all (w1, . . . , wi) ∈ Si do
14: for all w0 ∈ R do
15: if ∀j < b,∃w ∈W,

∑j
k=0 wk[1] ≥ w − r and∑

k = 0jwk[2] ≤ w − 1 then
16: S ′ ← S′ ∪ {(w0, w1, . . . , wi)}
17: return S′

We note that our notion of approximate reconstruction is different from that of the
GLMP19 attack [88]. In their notion, the adversary is given the access pattern leakage
of all queries and his goal is to guess the value of every record within a certain threshold
of error. For our attack, the approximation is on the elementary volumes, and this is
the best the adversary can do as the volumes are perturbed.

86

5.3. VOLUME LEAKAGE ATTACKS

As the goal of the adversary is to approximately recover the database, he can give up
some accuracy in his guess to allow for more databases to be uniquely reconstructed. By
that, we mean that if there are two solutions ((w1, w2), (w3, w4)) and ((w1, w5), (w3, w4))
and w5 > w2, the adversary can merge the guesses as ((w1, w5), (w3, w4)) at a loss of
accuracy. In our attack, we achieve this trade-off by allowing relaxed guesses on the
observed volumes.

Theoretical Analysis. The solutions in the final solution set SN are of the form
((w1, w2), . . . , (w2N−1, w2N)). We say that the attack is correct if given any solution of
that form, there is a database (DB1, . . . ,DBN) that can generate the given leakage W
and the solution contains the database, i.e. w2i−1 ≤ DBi ≤ w2i for all i = 1, . . . , N .
We formalize the correctness of A4 as follows. The proof is similar to that of the basic
attack except that the invariant is changed to that there is a realisation of Lb,N (s) that
generates a subset of W . The proof is omitted due to space limitation.

Theorem 5.8 (Correctness of attack with padded queries). Let DB be a database,
N = |DB| and b be any natural number less or equal to N . Let N = {Nx,y} be
distributions of noises with Nx,y = Uniform(1, r) for some natural number r. Let W ←
Lb,N (DB), R be some estimations of the true volumes and SN be the output of A4, i.e.
SN = A4(R,W, b,N, r). Then

1. ∀DB′ ∈ NN ,W ∈ supp(Lb,N (DB′))⇒ ∃s ∈ SN ,∀si, si[1] ≤ DB′[i] ≤ si[2],

2. DB ∈ SN .

Experimental Results. We study the effectiveness of our attack with two sets of
attacks on the attributes NDX and NPR with b = 5 and r = 10. Our choice of r is
arguably small but that is due to the fact that the elementary volumes themselves are
small. For instance, for the attribute NPR-26, over 54% of the elementary volumes are
below 100. As before, we abort if the number of partial solutions is over |W |2.

For the first set of attacks, we aim to reconstruct all elementary volumes with the best
possible precision. To do that, we compute R as R = {(v − r, v − 1) | v ∈W} and
execute our attack (Algorithm 5.7). The experimental results are shown in Table 5.8.

Attribute Unique Ambiguous Abort Avg. Time (s)
NDX-16 4.5% 16.2% 79.3% 0.92
NPR-16 10.0% 13.1% 76.9% 0.64
NDX-26 1.4% 6.0% 92.6% 2.82
NPR-26 6.7% 8.4% 84.9% 1.25

Table 5.8: Experimental data for the attack with perturbed volumes, the unique solutions are the most
information-theoretically precise solutions.

For the second set of attacks, we trade precision for more unique solutions. We compute
R just as before, and iteratively merge ranges (w1, w2), (w3, w4) in R into (w1, w4) if
w2 ≥ w3. The experimental results are shown in Table 5.9.

An overwhelming proportion of the attacks abort as the databases often contain similar
elementary volumes. After perturbing, these volumes can often be swapped without
violating the constraints. Overall, adding fake records is a better countermeasure than
the other ones we have considered.

87

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Attribute Unique Ambiguous Abort Avg. Time (s)
NDX-16 19.1% 10.8% 70.1% 0.84
NPR-16 19.7% 9.8% 70.5% 0.50
NDX-26 11.1% 6.7% 82.1% 2.10
NPR-26 12.1% 9.2% 78.7% 0.74

Table 5.9: Experimental data for the attack with perturbed volumes, the guesses on the elementary
volumes are relaxed.

5.3.3 Attack on Observed Volumes with Bounded Window Size

All attacks in the literature and our attacks described above require the set of elementary
volumes to be part of the observed volumes, so one may suspect that these are absolutely
necessary. In this section, we show that this is not the case. We construct a successful
adversary which only observes volumes for queries of medium window sizes, i.e. there
is a lower bound and an upper bound on the window size. More formally, we define the
leakage function as:

La,b(DB) =

{
y∑

i=x

vi | a ≤ y − x+ 1 ≤ b

}
(5.5)

for some 0 < a < b ≤ N . For simplicity, we assume b and N are multiples of a. The
assumptions are not necessary requirements for our attack to work, though they make
our attack simpler to present and understand. We do need however that b is somewhat
large compared with a, more specifically that b > k · a, for some k. We explain below
the role played by this restriction.

5.3.3.1 Reconstruction Algorithm

Intuition. We provide an overview of the ideas that go into our attack. For con-
creteness, let’s assume that a = 3, b = 9, N = 12. The database counts are DB =
(v1, . . . , v12). Here, and throughout this section, we write DB[i] for vi, and we write

DB[i, j] for
∑j

k=i vk. Clearly, DB[i, j] +DB[j + 1, k] = DB[i, k].

Our attack proceeds in two stages. In the first stage we recover the sequence D̃B0 =
(DB[1, 3],DB[4, 6],DB[7, 9],DB[10, 12]) (i.e. disjoint queries with window size a which
cover the entire database). To piece together D̃B0 we observe that the leaked informa-
tion allows us to check constraints on neighbouring entries in D̃B. For example, we have
that DB[4, 6] +DB[7, 9] = DB[4, 9] and DB[4, 9] occurs in the leakage (it corresponds
to a query with window size 6). Similarly, DB[4, 6]+DB[7, 9]+DB[10, 12] = DB[4, 12]
also occurs in the leakage (query with window size 9).

Based on the above observations, we construct D̃B0 by viewing its entry as elementary
volumes and applying our basic search strategy. Every entry needs to satisfy between
k − 1 and 2k − 2 constraints, where k = b/a2. Importantly, notice that from D̃B0 we
can also recover all volumes of the form DB[1, 3i].

Next, we determine volumes of the form DB[1, 3i + 1] by reconstructing the sequence
D̃B1 = (DB[1, 4],DB[5, 7],DB[8, 12]). One can think of D̃B1 as a variant of D̃B0

2k is the “window size” for D̃B0 – the larger the ration of b to a the more constraints we have
available

88

5.3. VOLUME LEAKAGE ATTACKS

shifted by 1. The first query has window size a + 1, and all but last of the subsequent
ones have window size a. The last query has size 2a−1. Here, again we use the strategy to
incrementally build solutions from shorter ones. In addition to the additive constraints
which have to be satisfied by neighbouring entries (e.g. that DB[1, 4] +DB[5, 7] occurs
in the leakage) we also use two other types of constraints. Taking w = DB[1, 4] as an
example, notice that it must be the case that v[1, 3] ≤ w ≤ v[1, 6]. It also must be the
case that the values DB[1, 9]−w = DB[5, 9] and DB[1, 12]−w = DB[5, 12] occur in the
leakage (since these correspond to queries of window size 5 and 8 respectively whereas
the maximum size of a query window size is 9). Similar conditions on size and relation
to the entries in the leakage hold for the rest of the entries in D̃B1. Figure 5.5 depicts
the key ideas in the attack.

Figure 5.5: The bottom row of the figure represents the elementary volumes in the database. The row
on top represents a solution for D̃B0. By finding the correct solution D̃B1 which ‘shifts’ all volumes
by one position, we can recover all volumes of the shape v3i+1 as indicated by the red lines.

Finally, we also recover DB[1, 3i+2] by reconstructing the sequence D̃B2 = (DB[1, 5],
DB[6, 8],DB[9, 12]) using a similar strategy.

At this point, since we have recovered all volumes of the form DB[1, 3i], DB[1, 3i + 1]
and DB[1, 3i+ 2] we can recover almost all entries in DB since DB[t+ 1] = DB[1, t+
1]−DB[1, t]. In our example, we can recover the values (DB[4],DB[5], . . . ,DB[9]).

To complete the attack we recover the elementary volumes in the windows of size 3 at the
start and end of DB. This can be done by simply extending (DB[4],DB[5], . . . ,DB[9])
to the left and right: since all volumes with window size between 3 and 9 are part of
the leakage, we can check 6 constraints on DB[3] and DB[10], and so on.

One difficulty which in the above description is not apparent, is that when reconstructing
D̃B0, D̃B1, D̃B2 we may obtain more than one solution for each. In brief, we overcome
this difficulty by relying on constraints that need to hold between the entries in the
three different sequences.

Attack overview. Our attack begins by finding all plausible solutions which consists
of consecutive volumes corresponding to queries of window size a. That is, we find all
valid D̃B0 from the example above. Call this set S0. Next, for every solution in S0, we
find sequences of consecutive volumes: the first one belonging to the interval DB[1, a]
and subsequent ones being elementary volumes – this step subsumes roughly identifying
D̃B1, D̃B2, . . . and (most) of the elementary volumes in DB. The result is a set S′ of
sequences where the first and last entry correspond to compound entries (i.e .queries
of window size greater than 1) whereas all other entries are actual elementary volumes.
Finally, for each sequence in S′ we recover the elementary volumes on the sides (and
remove the compound entries). All solutions are added to a set of tentative solutions
S. Finally, we sift through S and only keep those entries that generate the leakage
observed. Full pseudocode of the attack can be found in Algorithm 5.8.

89

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Algorithm 5.8 Attack with bounded window size

1: input W = {
∑y

i=x vi | a ≤ y − x+ 1 ≤ b}, a, b,N
2: output {(w1, . . . , wN) | wi ∈W}

3: procedure Attack(W, b,N)
4: X ← ∅
5: S ← A2(W, b/a,N/a)
6: for all s ∈ S do
7: S′ ← Offset Solutions(s,W, b/a,N/a)
8: S′ ←Merge Solutions(S′, s,W, a, b,N)
9: for all s′ ∈ S′ do

10: s′ ← Finalise Solution(s′,W, a, b,N)
11: X ← X ∪ {s′}
12: X ← {x | x ∈ X,La,b(x) = W}
13: return X

14: procedure Offset Solutions(s,W, b,N)
15: S1 ← ∅
16: for all w ∈W do
17: if Check 1(w, s,W) then
18: S1 ← S1 ∪ {(w)}
19: for all i← 2, N − 2 do
20: Si = ∅
21: for all s′ ∈ Si−1, w ∈W do
22: if Check 2(w, s′, s,W) then
23: Si ← Si ∪ {s′ + (w)}
24: SN−1 = ∅
25: for all s′ ∈ SN−1 do

26: if
{∑

i s[i]−
∑j

i=1 s
′[i] | N − b ≤ j ≤ N − 2

}
⊂W then

27: SN−1 ← SN−1 ∪ {s′ + (
∑

i s[i]−
∑

i s
′[i])}

28: return SN−1

5.3.3.2 Correctness

We say our algorithm is correct if it identifies the set of solutions such that every solution
in the set generates the same set of observed volumes as the one given at the start of
the attack. For convenience, we call our attack on observed volumes with bounded
window size A5. We establish that the algorithm works as expected, under some further
assumptions on the parameters a and b.

Theorem 5.9 (Correctness of the attack with bounded window sizes). Let DB be a
database, N = |DB| and a, b be natural numbers less or equal to N with b > 2a. Let S
be the output of the attack, i.e. S = A5(La,b(DB), a, b,N). Then

1. ∀DB′ ∈ La,b(DB)N ,La,b(DB′) = La,b(DB)⇔ DB′ ∈ S,

2. DB ∈ S.

Proof of Theorem 5.9. We sketch the proof of the correctness of the attack. This

90

5.3. VOLUME LEAKAGE ATTACKS

29: procedure Merge Solutions(S, s,W, a, b,N)
30: S0 ← {()}
31: for all i← 1, N/a− 2 do

32: Si ←
{
s′ +

(∑i
j=1 s[j]

)
| s′ ∈ Si−1

}
33: X ←

{∑i
j=1 s

′[j] | s′ ∈ S
}

34: for all x ∈ X, s′ ∈ Si do

35: if
{
x+

∑b
j=a−1 s

′[j]
}
⊂W∧{(∑k

j=1 s[j]
)
− x | i+ 2 ≤ k ≤ i+ b/a+ 1, k < |s|

}
⊂W then

36: Si ← Si ∪ {s′ + (x)}
37: Si ← {s′ | s′ ∈ S′, |s′| = i · a}
38: S′ ← {(s′[0], s′[1] − s′[0], . . . , s′[N − a] − s′[N − a − 1],

∑
i s[i] − s[N/a − 1] −

s′[N − a], s[N/a− 1]− s[N/a]) | s′ ∈ SN/a−2}
39: return S′

40: procedure Finalise Solution(s,W, a, b,N)
41: if s = () then
42: return ∅
43: S′ = {s[2 : |s| − 1]}
44: for all i← 1, a do
45: Stmp ← ∅
46: for all x ∈ S′, w ∈W do

47: if
{
w +

∑k
j=a x[j] | k = a, . . . , b− 1

}
⊂W then

48: Stmp ← Stmp ∪
{(

w −
∑a−1

j=1 x[j]
)
+ x
}

49: S′ = Stmp

50: S′ ← {xR | x ∈ S′}
51: for all i← 1, a do
52: Stmp ← ∅
53: for all x ∈ S′, w ∈W do

54: if
{
w +

∑|x|−a+1
j=k x[j] | |x| − b ≤ k ≤ |x| − a+ 1

}
⊂W then

55: Stmp ← Stmp ∪
{
x+

(
w −

∑a−2
j=0 x[|x| − j]

)}
56: S′ = Stmp

57: return S′

is done through a sequence of correctness proofs of the sub-routines. The correctness
proofs are all simple inductions and they are omitted from the paper. At a high level,
the correctness of the sub-routines states that if we begin with a database that has the
same leakage profile as what is given, and run the sub-routines with appropriate inputs
including some transformation(s) of the database, then the outputs contain some other
transformation(s) of the database.

Lemma 5.4 (Correctness of the Initial Solutions). Let DB be a database, N = |DB| and
a, b be natural numbers less or equal to N with b > 2a. Let S = A2(La,b(DB), b/a,N/a).
Let s = (DB[1, a],DB[a+ 1, 2a], . . . ,DB[N − a+ 1, N]). Then

(s ∈ S) ∨
(
sR ∈ S

)
.

Lemma 5.5 (Correctness of procedure Offset Solutions). Let DB be a database, N =

91

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

|DB| and a, b be natural numbers less or equal to N with b > 2a. Let s = (DB[1, a],DB[a+
1, 2a], . . . ,DB[N − a + 1, N]). Let S = Offset Solutions(s,La,b(DB), b/a,N/a).
Then for all sk := (DB[1, a+ k],DB[a+ k+1, 2a+ k], . . . ,DB[N − 2a+ k+1, N]) with
1 ≤ k < a, we have

sk ∈ S.

Lemma 5.6 (Correctness of procedure Merge Solutions). Let DB be a database, N =
|DB| and a, b be natural numbers less or equal to N with b > 2a. Let s = (DB[1, a],DB[a+
1, 2a], . . . ,DB[N−a+1, N]). Define sk := (DB[1, a+k],DB[a+k+1, 2a+k], . . . ,DB[N−
2a + k + 1, N]) with 1 ≤ k < a. Let S = Merge Solutions(S′, s,La,b(DB), a, b,N).
If sk ∈ S′ for all k, then

(DB[1, a],DB[a+ 1], . . . ,DB[N − a],DB[N − a+ 1, N]) ∈ S.

Lemma 5.7 (Correctness of procedure Finalise Solution). Let DB be a database,
N = |DB| and a, b be natural numbers less or equal to N with b > 2a. Let s =
(DB[1, a],DB[a+1], . . . ,DB[N−a],DB[N−a+1, N]). Let S = Finalise Solutions(s,
La,b(DB), a, b,N). Then

DB ∈ S.

We are ready to prove our main theorem.

Proof of Theorem 5.9. We get statement (2) for free if we can prove statement (1).
Backward implication of statement (1) is trivial, as equality of leakage is checked in line
12 of the attack. It remains to prove the forward implication.

(⇒) Let DB′ be any database with La,b(DB′) = La,b(DB), we show that DB′ is one
of the solutions to A5(La,b(DB), a, b,N). By the correctness of the procedure Initial
Solution, we know that s = (DB′[1, a],DB′[a+ 1, 2a+ 1], . . . ,DB′[N − a+ 1, N]) or
its reflection is one of the solutions returned by procedure Initial Solution. With-
out loss of generality, we assume s is one of the solutions. By the correctness of the
procedure Offset Solutions, the offset solutions sk associated to DB′ are contained
in the set of solutions returned by Offset Solutions. This means the procedure
Merge Solutions returns solutions including DB′ with volumes in range 1 to a and
N − a + 1 to N merged. Finally, with the correctness of the procedure Finalise So-
lution, the solution found in the previous step is restored to DB′ and potentially
some other solutions. Check of equality of leakage in line 12 does not affect DB′ as
we assumed La,b(DB′) = La,b(DB) from the beginning. Therefore, we conclude that
DB′ ∈ A5(La,b(DB), a, b,N) and the proof is complete.

5.3.3.3 Experimental Results

We test our attack on the attributes NDX-26 and NPR-26 of the HCUP database exten-
sively, as our basic attack recovers the databases on the attributes uniquely with high
success rate so attacking the databases with leakage function La,b is informative. At the
same time, N for the attributes are large enough so that we can study effectiveness of
our attack under a variety of choices of a and b. The threshold before aborting is set as
|W |2. The experimental results are shown in Table 5.10.

Our attack on the attribute NDX-26 with a = 3 and b = 9 has recovered over 78% of
the databases uniquely. This suggests that banning queries from small windows alone is

92

5.3. VOLUME LEAKAGE ATTACKS

Attribute a b Unique Ambiguous Abort Avg. Time (s)
NDX-26 3 9 78.1% 1.2% 20.7% 0.49
NDX-26 4 12 80.2% 1.1% 18.7% 1.02
NDX-26 4 16 85.0% 2.5% 12.5% 1.90
NPR-26 3 9 79.8% 0.5% 19.7% 0.30
NPR-26 4 12 84.9% 0.3% 14.8% 0.68
NPR-26 4 16 91.6% 0.4% 8.0% 1.92

Table 5.10: Experimental results for the attack on bounded window size.

ineffective as a countermeasure. Furthermore, our attack on the attribute NPR-26 with
a = 4 and b = 16 is able to reconstruct over 91% of the databases uniquely, indicating
that the use of larger b makes the databases more vulnerable to volume leakage attacks.

5.3.4 Partial Reconstruction

Not all databases are uniquely reconstructable as shown by our previous attacks. How-
ever, the information in the observed volumes often allows unique reconstruction of a
segment of the database. Consider database DB = (100, 2, 1, 1, 1, 2, 1). The database is
not uniquely reconstructable from L3(DB). However, by setting 100 as the initial solu-
tion and run our basic attack, we find (100, 2, 1) (and its reflection) as the only solution
of length 3. This means we have uniquely reconstructed (100, 2, 1) as a segment of the
database.

We introduce the partial reconstruction problem as follows. The adversary obtains
leakage L(DB) for some database DB, and his goal is to output a segment of the
database s ∈ DB (up to reflection). There is more than one choice on how to measure
the effectiveness of an adversary with respect to this kind of attacks. Of the several
different choices on how to quantify the success of the adversary we consider two. The
first simply counts the fraction of values for which the attack recovers the correct counts;
the second, also accounts for the size of the counts themselves. For example, an adversary
may correctly identify counts for a small fraction of the values, but the total number of
records associated to these values can be overwhelming.

5.3.4.1 Partial Reconstruction Algorithm

Intuition. Our partial reconstruction attack can be viewed as a special case of our
basic attack where instead of reporting all solutions of length N , we return the longest
solution that can be uniquely identified. Databases that can only be reconstructed
partially usually have a segment of small volumes. For example, the length of stay of
the patients in hospitals is usually less than 10 days, with occasional longer stays. If we
use the minimum observed volume as the initial solution, it is very likely for the number
of solutions to grow out of control. Hence, we initialise our partial reconstruction attack
with the clique-finding algorithm described by Algorithm 5.4. Unlike our basic attack,
solutions for the partial reconstruction attack have to be extended in one direction at a
time. This is because extending the solutions in both directions inherently introduces
ambiguity (and we aim to identify a unique common subsequence).

Attack Overview. Our partial reconstruction attack is described by Algorithm 5.9.

93

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

We begin by running Algorithm 5.4 as the initial solution finding algorithm. Reflections
are removed from the initial solutions. The set of partial solutions is then extended
iteratively by procedures Extend Left and Extend Right of the basic attack. Only
the longest partial solution that is unique is kept. For practical purposes, the set of
partial solutions is extended as much as possible until some threshold on its size has
reached, and the longest unique solution amongst those is kept by the attacker. If a
unique solution is found with line 15 of the algorithm, we return the solution in line 16.

Algorithm 5.9 Partial reconstruction attack

1: input W = {
∑y

i=x vi | y − x+ 1 ≤ b}, b,N
2: output (w1, . . . , wm) with m ≤ N and for all i, wi ∈W

3: procedure Attack(W, b,N)
4: Sb ← Initial Solution(W, b)
5: for s ∈ Sb do
6: if sR ∈ Sb then
7: Sb ← Sb\ {s}
8: for i← b+ 1, N do
9: Si ← ExtendLeft(Si−1,W, b)

10: j ← maxi{i | |Si| = 1}
11: for i← j + 1, N do
12: Si ← ExtendRight(Si−1,W, b)

13: if min{|Si|} > 1 then
14: return ()

15: j ← maxi{i | |Si| = 1, i ≥ j}
16: return Sj .pop()

5.3.4.2 Correctness and Complexity Analysis

Correctness. Correctness of the partial reconstruction attack needs to be formalized
differently from other attacks as we do not recover the whole database most of the time.
However, whenever we recover a unique solution, it must be a segment of the original
database (up to reflection). We call our partial reconstruction attack A6. The following
Theorem establishes the correctness of partial reconstruction attack. The proof is similar
to that of the basic attack with the additional constraint that the partial solution is
unique so it is omitted.

Theorem 5.10 (Correctness of the partial reconstruction attack). Let DB be a database,
N = |V | and b be any natural number less or equal to N . Let s = A6(Lb(DB), b,N).
Then s ∈ DB or sR ∈ DB.

Complexity. Algorithm 5.4 takes at most O(|W |b) time and space following a standard
argument for brute-force clique finding. The solution extension procedures takes at most
O(|W |b−1) space and O(b · N · |W |b) time as the clique finding step generates at most

O(|W |b−1) solutions. Therefore, the overall space complexity of the attack is O(|W |b)
and the overall time complexity of the attack is O(b ·N · |W |b).

94

5.3. VOLUME LEAKAGE ATTACKS

In practice, we stop the attack as soon as there are more than |W |2 solutions (including

the clique finding step). So the space complexity in practice is O(|W |2) and the time

complexity is O(b ·N · |W |3).

5.3.4.3 Experimental Results

We choose LOS as the attribute to attack from the HCUP dataset since our basic at-
tack performs poorly due to presence of small elementary volumes. In addition to the
performance parameters introduced at the start of the section, we measure the fraction
of databases for which our attack fails due to the computational threshold of |W |2 or
inability to identify a unique solution.

Attribute b Length Volume Failed Time (s)
LOS 4 37.5% 95.6% 14.7% 0.31
LOS 6 48.1% 97.3% 14.2% 0.99
LOS 8 54.5% 98.2% 15.3% 2.24
LOS 10 59.0% 98.7% 16.5% 4.54

Table 5.11: Experimental results for the partial reconstruction attack.

Our experimental results are summarised in Table 5.11 where we report both the fraction
of values correctly identified (column ”Length”) and the fraction of correctly identified
values but weighted by their value (column ”Volume”). Our partial reconstruction attack
works on over 85% of the databases on LOS for bound b as small as 4. Although only
37.5% of the values can be recovered uniquely on average, it corresponds to 95.6% of the
inpatients. This means that the partial reconstruction attack has effectively recovered
the majority of the entries of the databases uniquely. The attack is very efficient despite
the expensive clique-finding procedure.

5.3.5 Use of Side Information

Side information on the underlying databases can be used to boost our attacks. In this
section, we discuss and experiment with two general ways of using side information.

Post-processing. The most straightforward use of side information is to post-process
the results of our attacks to further sift the possible solutions output by our attacks.
We note that the solutions output by our attacks are naturally ambiguous as it is
information-theoretically impossible to distinguish the database from its reflection. With
the help of minimal knowledge on the database, the attacker may be able to distinguish
the database from its reflection. For instance, over 92% of the databases in HCUP, for
the attribute AGE it holds that that DB[2, 5] < DB[N−4, N−1] so almost all databases
can be distinguished from their reflections. More interestingly, if the adversary has access
to more concrete side information, he may be able to identify the real database from a
large set of solutions. For example, if the attacker knows some true volumes of some
segments of the database, he can use that information to disambiguate the solutions.

Dynamic. Side information can also be used dynamically to prune the search space
more effectively and reduce the number of ambiguous solutions. For example, over 50%
of the databases on the attribute NPR-26 satisfies the condition DB[i] > DB[i + 1]
for 2 ≤ i ≤ N − 1. This means if the attacker knows the target database has this

95

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

property, the partial solutions must be decreasing in the middle, and the volumes used
to extend the partial solutions to the left must be larger than the first volume of the
partial solution and vice versa.

We experimentally verify the effect of side information on two of our attacks. We attack
the attribute NDX-26 in the setting of missing queries, with the same parameters as
those in Table 5.7. In addition to the observed volumes and relevant parameters to the
attack, the adversary is given the volume of the answer to up to 3 queries of window
size within b. The queries are generated uniformly at random. For each hospital, we
run the attack 10 times with freshly selected known queries, and report the average rate
of success. We observe a considerable increment in the uniqueness rate of solutions as
compared to the case where the attacker has received no additional information (Table
5.7), as shown by Table 5.12.

Unique
b k m = 1 m = 2 m = 3 Abort
5 1 51.8% 55.7% 57.7% 34.0%
6 1 64.7% 67.5% 68.9% 24.9%
6 2 50.2% 53.6% 55.9% 34.3%

Table 5.12: Experimental data for attack with missing queries on the attribute NDX-26. The attacker
is given m = 1, 2, 3 random known queries.

On the same attribute, we have also tested known DB[1] and DB[N] as the side infor-
mation, and the results are shown in Table 5.13. The uniqueness rates of solutions are
higher than those in the previous setting. This hints that the ambiguity in the solutions
often comes from the initial and final segments of the databases.

b k Unique Ambiguous Abort
5 1 63.3% 2.4% 34.3%
6 1 72.9% 1.8% 25.3%
6 2 64.7% 1.6% 33.7%

Table 5.13: Experimental data for attack with missing queries on the attribute NDX-26. The attacker
is given DB[1] and DB[N].

We attack the attribute NPR-26 in the setting of perturbed volumes, with b = 5 and
r = 10. The attack is conducted on the databases with the property DB[i] > DB[i+1]
for 2 ≤ i ≤ N − 1, and this information is given to the attacker. The side information
improves the fraction of the databases that can be reconstructed uniquely from 12.1%
(Table 5.9) to 24.8%.

5.3.6 Attacks on Binary-tree-based Constructions

This section extends our basic attack to constructions that try to hide volume leakage
by only permitting certain queries [58] and using padding [57].

5.3.6.1 Leakages of the Constructions

Leakage profile L1. Recall from Section 5.2.1 that in a naive construction, the
partition of the documents is leaked through access pattern leakage. To suppress this
leakage, Demertzis et al. [58] proposed the Logarithmic-SRC construction which uses

96

5.3. VOLUME LEAKAGE ATTACKS

a data structure called tree-like Directed Acyclic Graph (TDAG). TDAG can be built
from the binary tree used in leakage profile L1 by adding intermediate nodes to the
internal nodes as shown in Figure 5.6. We hereafter refer to the data structure as the
Logarithmic-SRC data structure. To perform a query, the client simply retrieves the
smallest node that covers the range. The algorithm to find the endpoints of the query
is shown in Algorithm 5.10.

Figure 5.6: The Logarithmic-SRC data structure built for answering range query. The blue nodes are
the additional nodes the data structure uses so that the search queries can be covered by a single node
with bounded overhead. As an example, to retrieve all documents with values between 1 and 3, node
T1,4 is returned as the query response.

Algorithm 5.10 Single Range Cover

1: procedure SRC(i, j)
2: w = 2⌊log2(j−i+1)⌋

3: i′ = ⌈i/w⌉ ∗ w
4: return (i′, i′ + w)

The Logarithmic-SRC construction supports update operations by batching the queries
and creating new Logarithmic-SRC data structures periodically. This means that the
server is able to learn the information from all the data structures simultaneously
through search queries. Let the Logarithmic-SRC data structures stored by the server
be T 1, . . . , T t, we can formally define the leakage profile L1 be:

L1(Srch, (i, j)) =
((

T 1
SRC(i,j),

∣∣∣T 1
SRC(i,j)

∣∣∣) , . . . ,(T t
SRC(i,j),

∣∣∣T t
SRC(i,j)

∣∣∣)) .
We abuse the notation T ∗SRC(i,j) to mean the search token(s) associated to the node. It
is important to note that the trees are ordered as the adversary can learn that from the
insertion operations.

An immediate consequence of this construction is that an attacker can no longer observe
query response volumes from all queries. For instance, a search query on (1, 3) will be
turned into a search query on (1, 4) by the construction. So previous volume leakage
attacks [102, 115, 88] and our basic attack do not apply to this construction. Our attack
presented in Section 5.3.2.2 does apply, but it is sub-optimal as the assumed leakage is
slightly different.

Leakage profile L2. To reduce the leakage further, Demertzis et al. [57] proposed
a scheme called RANGE-ADJ-SE which combines the Logarithmic-SRC construction

97

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

with a static searchable encryption scheme called searchable encryption with adjustable
leakage (SEAL).

SEAL is built from an oblivious RAM (ORAM) and a padding algorithm. The number
of ORAMS maintained by SEAL is 2α where α is an adjustable parameter. Let N be
the number of keywords in the database, then each ORAM stores documents associated
to N

2α keywords.

To build an encrypted database, RANGE-ADJ-SE starts by constructing a Logarithmic-
SRC tree with the plaintext database. It then uses the values of the nodes of the
Logarithmic-SRC tree as the keywords of SEAL and the contents of the nodes as doc-
uments associated to the keywords. The documents are then padded with fake ones
such that the number of documents associated to each keyword is the smallest power
of x above the current number of documents associated to that keyword, where x is a
parameter picked by the user.

To achieve dynamism, the authors have proposed to batch the update queries and build
a new encrypted database once in a while. As a terminology, we call the encrypted
databases sub-databases. As a result of this construction, for each search query, the
client has to interact with all sub-databases to retrieve the query responses. In the
process, the server learns a set of volumes associated to the search query.

The leakage of the search queries can be described formally as follows. Define padx(n) =
x⌈logx(n)⌉. Assume without loss of generality that there are t sub-databases at the point
of a search query (Srch, (i, j)). By labelling the Logarithmic-SRC data structures built
as T 1, . . . , T t, the leakage from RANGE-ADJ-SE can be expressed as:

L2(Srch, (i, j)) =
(
padx(T

1
SRC(i,j)), . . . ,padx(T

t
SRC(i,j))

)
.

Note that the volumes in the leakage are ordered as the adversary can tell which sub-
database these volumes come from and in which order were these sub-databases added.

5.3.6.2 Volume-leakage Attack against leakage profile L1

Attack Setting. The volume leakage attack presented in this section works on leak-
age profile L1 in the static setting. We assume an honest client who issues uniformly
randomly distributed search queries and that the adversary learns the number of doc-
uments retrieved for each query. In addition, the adversary learns the query equality,
meaning that if q1 and q2 are the same search query, the adversary knows that they are
equal. The adversary is persistent and passive, meaning that it has access to the query
leakage over a long period of time and he does not actively interfere with the client or
the server.

To simplify the notation we re-define L1 as a map between a database and a multiset of
natural numbers, that is,

L1(DB) = {{v[i, j] | (i, j) ∈ Im(SRC)}} ,

where Im(SRC) is the image of SRC. This leakage function reflects all the volume
information the adversary can extract from the queries. Given the leaked volumes W =
L1(DB), the goal of the adversary is to output a tuple of tuples ((w1

1, . . . , w
t
1), . . . , (w

1
N , . . . , wt

N))

such that for all i, j, wj
i = vji or for all i, j, wj

i = vjN−i+1.

98

5.3. VOLUME LEAKAGE ATTACKS

Intuition. The attack works in a similar way to the basic attack in Section 5.3.1 where
the attack begins with a set of short partial solutions and iteratively extend them until
the partial solutions have length N .

The iterative step we use here is different from that of the basic attack as the leakages are
very different. Consider a partial solution of length 4, say (w1, w2, w3, w4). In our basic
attack, the adversary can take an observed volume w and check if (w1, w2, w3, w4, w5) is
a plausible partial solution with 4 additive constraints if the window size is larger than
4. On the other hand, for leakage L1, we are only able to check if w+w4 is an observed
volume as the other additive constraints are not present in the leakage function to begin
with. As a result of this, we will get a lot of false positive partial solutions even when
the partial solutions are already very long.

To tackle this problem, we design the attack algorithm as follows. The attack initialises
the partial solution with all observed volumes. For the subsequent iterations, let S
be the set of partial solutions, the attack algorithm checks all pairs of s1, s2 ∈ S2 if
L1(s1 ∥ s2) ⊆ L1(DB). Partial solutions s1 ∥ s2 that do are used as the new partial
solutions. The process is repeated until the partial solutions have length N . Finally, the
partial solutions that do not generate the exact set of observed volumes are eliminated
and the remaining solutions are returned. We note that this approach works for our
basic attack and all attacks in Section 5.3.2 too but it is not necessary as those attacks
are already efficient enough.

Straightforwardly, this means that the attacker achieves the goal of the attack if the
attacker returns one solution that is self-reflecting, or two solutions that are reflections
of each other.

Attack Overview. The attack algorithm A7 takes as input a multiset of tuples
W and the maximum value of the database N , and outputs a set of tuples of tuples
{((w1

1, . . . , w
t
1), . . . , (w

1
N , . . . , wt

N))} where each tuple of tuples represents a guess of the
distribution of the database DB. The pseudocode of the algorithm can be found in
Algorithm 5.11. The algorithm proceeds in three steps. In the first step, the algorithm
generates a set of partial solutions of length 1 with all observed volumes. Then, the
partial solutions are iteratively extended to produce longer partial solutions. Finally,
after the partial solutions hit length N , the solutions that do not generate the exact
observed volumes as W are eliminated and the remaining solutions are returned. In the
pseudocode, we write s1 ∥ s2 to mean concatenation of tuples s and w.

Correctness of the Attack. The attack algorithm does not always return a unique
solution (up to reflection) as there may be other solutions generating the same leaked
volumes as the underlying database. However, the attack algorithm returns all solutions
s such that L1(s) = W . We state this as a theorem and give a proof of it below.

Theorem 5.11 (Correctness of Attack A7). Let DB be any database and W =
L1(DB). Let S = A7(W, |DB|). Then for all databases DB′, L1(DB′) = W if and only
if DB′ ∈ S.

Proof. (⇐) The proof in the direction is trivial as the databases that do not generate
W are eliminated by the last step of the attack (line 13 to 16 of Algorithm 5.11).

(⇒) Suppose L2(DB′) = W . By denoting the segment of the database from value i to
j as DB′[i, j], it is straightforward to see that L2(DB′[1, i]) ⊆W . We are ready to give

99

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Algorithm 5.11 Full Distribution Reconstruction Attack

1: procedure A7(W,N)
2: /* Generate the set of initial solutions */
3: S1 ← {w | w ∈W}

4: /* Iteratively extend the partial solutions */
5: i← 1
6: while i < N do
7: S2i ← {}
8: for s1, s2 ∈ Si × Si do
9: if L1(s1 ∥ s2) ⊆W then

10: Si ← Si ∪ {s1 ∥ s2}
11: i← 2 · i

12: /* Finalise the solutions */
13: S ← {}
14: for s ∈ SN do
15: if L1(s) = W then
16: S ← S ∪ {s}
17: return S

a proof using induction. The attack is initialised with all w ∈W as the initial solutions.
We know that DB′[i, i] ∈ W so DB′[i, i] ∈ S1 for all DB′. Assume that DB′[ni +
1, ni+n] ∈ S1 for all i ∈

{
0, . . . , N

n − 1
}
, we want to show that DB′[2ni+1, 2ni+2n] ∈

S12n for all i ∈
{
0, . . . , N

2n − 1
}
. This is indeed the case as DB′[2ni + 1, 2ni + n] and

DB[2ni + n + 1, 2ni + 2n] are in S1, and the check in line 9 of Algorithm 5.11 passes
for DB′[2ni + 1, 2ni + 2n]. As n grows to N , we get DB′[1, N] ∈ S1. Finally, these
solutions will not be eliminated by the last step of the algorithm ((line 13 to 16 of
Algorithm 5.11)) as L2(DB′) = W and the proof is complete.

A Variant of the Attack. We show how attack A7 can be modified to attack a
related scheme called RANGE-SRC-SE [57] with certain parameters. RANGE-SRC-SE
is a construction built from the Logarithmic-SRC construction and SEAL, where SEAL
is a searchable encryption scheme with two adjustable parameters α and x. SEAL
uses 2α oblivious RAMs to store the nodes of the Logarithmic-SRC data structure, and
the volume of each node is padded to a power of x. As ORAM is costly, the authors
recommend α = log(N) for their RANGE-SRC-SE construction. With regards to the
choice of x, the authors recommended x = 16 for their dataset but the slow-down factor
from the Logarithmic-SRC scheme they reported in the paper is of order 105. This
renders this scheme impractical for some applications under these choices of parameters.

Some practitioners may be willing to pay the price in terms of oblivious RAM but not in
terms of padding. This is because the use of oblivious RAM only increases the latency
but not the storage. On the other hand, if the nodes of the Logarithmic-SRC data
structure are padded to a power of x, then the storage expands by a factor of x too.
The storage cost may be too high with padding as the Logarithmic-SRC data structure
already introduces an expansion factor of O(log(N)).

In effect, this means some practitioner may instantiate RANGE-SRC-SE with a large
α and x = 1. This of course invalidates our previous attack A7 as the search pattern

100

5.3. VOLUME LEAKAGE ATTACKS

is hidden by the oblivious RAMs, but with a simple adjustment, our attack can still be
applied to RANGE-SRC-SE.

Formally, let Pα be a partition of the nodes of the Logarithmic-SRC data structure such
that there are 2α equally distributed subsets. Then after all queries have been observed
by the adversary, the leakage of the database can be expressed as:

L′2((v1, . . . , vN)) = {{v[i, j] | (i, j) ∈ P} | P ∈ P2α} .

Unsurprisingly, with a choice of large α, the ORAMs contain only a handful of the nodes,
which means there is a good chance that the observed volumes from the ORAMs are
unique. If that is indeed the case, then we can build the multiset of observed volumes
from the smaller sets directly and run attack A7. If that is not the case, then the adver-
sary can at least learn the upper bound of the multiplicities of the observed volumes. By
representing the upper bound as a multiset as shown in Algorithm 5.12, the adversary
can attempt to run attack A7 anyway to generate all the plausible solutions. However,
the attacker should not run the final part of Algorithm 5.11 as Merge Vols(L′1(DB))
is not equal to L1(DB). We call the modified attack A8.

Algorithm 5.12 Multiset Generation

1: /* M is the maximum number of unique volumes in an ORAM */
2: procedure Multiset Gen(W,M)
3: W ′ ← {{}}
4: for w ∈W do
5: m←M − |w|+ 1
6: for i ∈ {1, . . . ,m} do
7: W ′ ←W ′ ∪ w
8: return W ′

5.3.6.3 Volume-leakage Attack against leakage profile L2

Attack Setting. The volume leakage attack works on leakage profile L2 in the dy-
namic setting where there are sufficient number of update operations. We assume
an honest client who generates uniform search queries and update the database reg-
ularly. The adversary on the other hand, is honest-but-curious. He learns the volume
information of the queries as the client issues the queries. . For simplicity, we as-
sume that the adversary is interested in the distribution of a snapshot of the database
DB. As DB is made up of sub-databases generated by update queries, we can write
DB = ((v11 , . . . , v

1
N), . . . , (vt1, . . . , v

t
N)). From the observed volumes, the goal of the ad-

versary is to reconstruct the distribution of the database. However, due to the use of
padding, the distribution reconstructed by the adversary is only approximate. For ex-
ample, if 5 is a volume in the database, and all volumes are padded to a power of 2,
then the adversary is going to observe 8 instead of 5, and the best guess it can have on
the true volume is a range between 5 and 8.

Intuition. As the volumes are padded, the attacker can no longer use attack A9 to
reconstruct the distribution of the database, however, as similar strategy can be used
to identify adjacent volumes. To demonstrate the idea, consider a database DB =
((v1, . . . , vN)) such that v1 = 3 and v2 = 10, and the volumes are padded to a power of

101

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

2. Due to the padding, the two volumes will become 4 and 16 respectively. Certainly,
the attacker cannot verify if 4 + 16 is an observed volume as all observed volumes are
padded, but if 4 and 16 are two adjacent volumes, then the volumes before padding
must be between 3 and 4, and 9 and 16 respectively. This implies that the sum of the
volumes must be between 12 and 20, and hence, the observed volume must be 16 or 32.

An attack with this approach can certainly recover the original database, but there is
likely going to be multiple databases generating the same leakage as padding is removing
a lot of distributional information. However, this does not mean all databases cannot be
reconstructed uniquely given the padded volumes. Recall that updates on the database
is done by batching the queries and creating new sub-databases once in a while. In
particular, if the database has been updated several times, then the adversary can learn
a set of volumes for each search query, and use that to improve the reconstruction attack.
Consider the following example where the database isDB = ((v11 , . . . , v

1
N), (v21 , . . . , v

2
N)).

A search query with (Srch, (1, 1)) gives leakage (4, 16), a search query with (Srch, (2, 2))
gives leakage (16, 1). Using the same argument as before, the observed volume for a
search query that combines v11 and v12 on the first sub-database must be 16 or 32, and
that on the second sub-database must be 16 or 32. Combining these two together
gives that the observed volume for the whole query must be (16, 16), (16, 32), (32, 16)
or (32, 32). The chance of a false positive is lower in this case as the actual observed
volumes are entangled.

From the practical perspective, the client is likely to create small sub-databases for the
updates as it otherwise defeats the purpose of outsourcing. This means that a search
query will retrieve a large number of volumes and make it easier for the attacker to
identify the distribution of the database uniquely.

Attack Overview. The attack algorithm A9 takes as input a set of tuples W and the
maximum value of the database N , and outputs a set of tuples of tuples {(w1, . . . , wN)}
where each tuple of tuples (w1, . . . , wN) represents a guess of the padded version of
DB. Just as attack A9, the algorithm begins by generating the set of initial solutions.
All tuples of observed volumes are used as the initial solutions. Then the solutions
are extended iteratively just as before. The only difference is that the attacker can no
longer check for exact equalities due to padding. To resolve the problem, the attacker
computes the lower and upper bounds on the sums of volumes, and check if they exist
in the set of observed volumes. The finalization step is omitted from the attack as the
sums of elementary volumes are not uniquely identified by the elementary volumes.

Correctness of the Attack. The attack algorithm does not always return a unique
solution (up to reflection) as there may be other solutions generating the same leaked
volumes as the underlying database. However, the attack algorithm returns all solutions
s such that L2(s) = W . We state this as a theorem and below. We omit the proof as it
is very similar to the proof of Theorem 5.11.

Theorem 5.12 (Correctness of Attack A7). Let DB be any database and W =
L2(DB). Let S = A9(W, |DB|). Then for all databases DB′, L2(DB′) = W if and only
if DB′ ∈ S.

102

5.3. VOLUME LEAKAGE ATTACKS

Algorithm 5.13 Approximate Distribution Reconstruction Attack

1: procedure A9(W,N)
2: /* Generate the set of initial solutions */
3: S1 ← {(w) | w ∈W}

4: /* Iteratively extend the partial solutions */
5: i← 1
6: while i < N do
7: S2i ← {}
8: for s1, s2 ∈ Si × Si do
9: if s1 ∥ s2 can be generated from W then

10: Si ← Si ∪ {s1 ∥ s2}
11: i← 2 · i
12: /* Finalise the solutions */
13: S ← {}
14: for s ∈ SN do
15: if L2(s) = W then
16: S ← S ∪ {s}
17: return S

5.3.6.4 Experimental Results

We present the experimental results of the attacks on Logarithmic-SRC, RANGE-SRC-
SE and RANGE-ADJ-SE in this section.

Dataset and Pre-processing. We used the HCUP dataset (see Section 5.3.1.5)
for our experiments. To simulate document insertions, each of the database is split
into sub-databases of size 128, 256 and 512 respectively. In the figures below, the
experimental results for sub-databases of different sizes are shown in that order. The
splitting of the database is done uniformly randomly, so that the elementary volumes
of the sub-databases are distributed identically. For the attacks on Logarithmic-SRC
and RANGE-SRC-SE, the sparse version of the dataset is used. For the attacks on
RANGE-ADJ-SE, the dense version of the database is used.

Experimental Setup. The attacks we have presented in this section can take a long
time to terminate as the number of partial solutions can grow rapidly. To address this
problem, we pre-emptively terminate an attack if the number of partial solutions at any
iteration exceeds 10 |W |2 where W is the set of observed volumes, or if the time taken
for an iteration exceeds 120 seconds. In these cases, we report the results of the attacks
as aborts.

Experimental Results on Attack A7. The experimental results on the attack
against Logarithmic-SRC are shown in Figure 5.7. The attack is able to recover an
overwhelming proportion of the dense databases. On sparse databases, the attack per-
forms well on attributes with small numbers of values and struggles against attributes
with large numbers of values. Length of stay (LOS) is the hardest attribute to attack
with less than 20% of the sparse databases reconstructed uniquely. There is a signifi-
cant proportion of the databases on LOS that can only be reconstructed ambiguously,
indicating that the attack is weak against sparse databases with long and flat tails.

103

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Figure 5.7: Experimental results on the attack against Logarithmic-SRC.

Experimental Results on Attack A8. The experimental results on the attack
against Range-SRC-SE are shown in Figure 5.8. There are two sets of experiments
performed. The first set (top figure) used small ORAMs with size 16 each (α = log(N)−
4), whereas the second set (bottom figure) used large ORAMs with size 64 each (α =
log(N)− 6). The attack with larger ORAMs is noticeably worse on attributes AGE, LOS
and NDX. The attack almost always aborts on sparse databases, indicating that the use
of ORAMs is effective in protecting sparse databases against volume-leakage attacks.

Experimental Results on Attack A9. The experimental results on the attack
against RANGE-ADJ-SE are shown in Figure 5.9. The attack almost always aborts on
the attributes with large numbers of values so they are not shown in the figure. On the
attributes with relatively small numbers of values, the attack is still able to recover a
significant proportion of the databases uniquely. Attack A9 performs better on small
sub-databases. This can be explained by the fact that smaller sub-databases means
more of them, so there are more constraints that can be tested by the attack, leading
to more unique recoveries.

5.4 Discussion

This chapter studies access-pattern leakage attacks and volume leakage attacks on struc-
tured encryption schemes that support range queries. We show that the constructions
with countermeasures in mind in the literature still do not offer enough security as the
structures in the leakages can be exploited by an attacker relatively easily.

A natural question to ask is: why do we not use more aggressive parameters on the
existing schemes to achieve security? We certainly can do that, except that it will make
the already inefficient schemes worse. Just to quote a few numbers (see Figure 13 of
[57]), RANGE-SRC-SE has a query time overhead on order of 10 times if the sizes of

104

5.4. DISCUSSION

Figure 5.8: Experimental results on the attack against Range-SRC-SE.

the nodes in the Logarithmic-SRC tree are padded to powers of 2 and no ORAM is
used; the overheads grows to order of 102 times if the sizes of the nodes are padded
to powers of 25. If RANGE-ADJ-SE is used instead, these two numbers are on order
of 104 instead. To make it worse, the overheads here are with respect to a searchable
encryption scheme, which means it is a few more orders of magnitudes slower than a
plaintext database. This gives practitioners very little incentive to adopt a scheme like
this.

It is not to say that we do not value security. It is important for us to hide access-
pattern leakage and suppress volume leakage. However, we need to take a radically
different approach to this in order to come up with a scheme that is practically secure

105

CHAPTER 5. CRYPTANALYSIS I: ENCRYPTED RANGE QUERIES

Figure 5.9: Experimental results on the attack against RANGE-ADJ-SE.

and efficient. We present our key ideas and leave a full construction as future work.

To hide access-pattern leakage and still achieving a good storage overhead, we need to
avoid duplication as much as possible. Instead, we need to rely on random reads and
writes just like an ORAM. However, using a full ORAM incurs too much query time
overhead so we need to look for a more efficient (and less secure) alternative.

To suppress volume leakages, we need to be a lot more aggressive and use padding in a
way which is less dependent on the true query response volumes. Recall from our attacks
in Section 5.3, one of the key reasons why the attacks work against the padding-based
countermeasures is because the paddings used in those countermeasures depend on the
true query response volumes. For example, if we start with v1 = 2 and v2 = 10 and pad
both to the next power of 2, we get v′1 = 2 and v′2 = 16. Even though we cannot tell
the original volumes from the padded ones, we can still tell that v1 < v2 and v1 + v2
falls within a certain range. To address this, one possible solution is to use random
amount of padding on the fly, meaning that every time a query is issued, the number of
documents retrieved changes in some way. This is of course not going to work by itself
if the access pattern is leaked, so we do need to consider the padding strategy together
with how access-pattern is suppressed.

As a starting point, we can also look for inspirations from the rich literature of traffic
analysis and countermeasures [14, 72, 196, 54]. In particular, dummy traffic and traffic
morphing are similar to the countermeasures we have proposed above, and they can be
explored further for better security and efficiency trade-offs.

In all, designing an efficient and secure structured encryption scheme is challenging, and
it is a recurring theme in the chapters to follow.

106

Chapter 6

Cryptanalysis II: Searchable
Encryption

A keyword search on text-based database usually consists of two steps. In the first step,
a search is performed on an inverted index and the client gets the set of document iden-
tifiers containing the queried keyword by the end. In the second step, these document
identifiers are used to retrieve the actual documents from the document array.

A typical searchable encryption scheme works in a similar way: an encrypted inverted
index and an encrypted document array are built, and a search query is broken into
document identifier retrieval and document retrieval just as before. In this chapter,
we show that almost all searchable encryption schemes can only be used to solve the
document identifier retrieval problem, and are not scalable for the document retrieval
problem. We further argue that the only efficient deployment of searchable encryption
is to use a naively encrypted document array, which generates additional leakage which
we call system-level leakage. We design novel query reconstruction attacks and show
how this source of leakage can be exploited.

This chapter is organised as follows. In Section 6.1, we experimentally demonstrate inef-
ficiency of the state-of-the-art searchable encryption schemes at the document retrieval
problem, and argue that the only efficient use of searchable encryption is to encrypt
the documents naively. In Section 6.2, we give a detailed overview of previous attacks
and motivate our own attacks. Section 6.3 gives a formal introduction to access-pattern
leakage-abuse attacks. Section 6.4 identifies the leakages of the constructions we are
targetting and develops the attack algorithm we use. Section 6.5 provides an empirical
evaluation of our attacks. Finally, we close the chapter with a discussion in Section 6.6.

Contents

6.1 Efficient Deployment of Searchable Encryption 109

6.1.1 Comparison of Overheads between Deployments of Search-
able Encryption . 109

6.1.2 Discussion . 113

6.2 Attack on System-level Leakage . 114

6.2.1 Access-pattern Leakage Attacks 114

6.2.2 Previous Attacks . 115

6.2.3 Practical Attacks against the State-of-the-Art Schemes . . . 116

6.2.4 Overview of Our Attacks . 116

6.3 Formal Description of Access-pattern Leakage Attacks 117

107

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

6.4 New Access-pattern Leakage Attacks 119

6.4.1 Attack Targets and Co-occurrence Pattern Leakages 120

6.4.2 Mathematical Derivations of the Distributions of the Co-
occurrence Matrices . 122

6.4.3 Attack Model . 124

6.4.4 Mathematical Derivations of the Likelihood Functions . . . 128

6.5 Empirical Evaluation . 131

6.5.1 Overview . 131

6.5.2 Varying the Security Parameters of the Constructions . . . 133

6.5.3 Varying the Number of Keywords in Auxiliary Information . 134

6.5.4 Varying the Level of Noise in Auxiliary Information 135

6.5.5 Use of Stemming . 136

6.6 Discussion . 137

108

6.1. EFFICIENT DEPLOYMENT OF SEARCHABLE ENCRYPTION

6.1 Efficient Deployment of Searchable Encryption

Recall from Section 4.2 that the core idea of designing a searchable encryption scheme
is to build an inverted index and encrypt it in a clever way so that it can be queried
later. To suppress leakage, the most common technique used is called duplication, where
instead of having an inverted index between keywords and sets of document identifiers,
an inverted index between instances of keywords and document identifiers is used. A
pictorial demonstration of the technique can be found in Figure 4.1.

As we have argued, the duplication technique is not scalable – it may be fine to be
used on inverted indices as the entries are short, but the storage overhead it creates on
actual documents easily overwhelms any modern storage system. We demonstrate this
experimentally in Section 6.1.1.

This leaves us with two other options as outlined in Section 4.6, namely using searchable
encryption to build an encrypted index only and relying on a space-efficient primitive
to handle document retrieval, or using searchable encryption to build an encrypted
index only and encrypting the document array naively. We show experimentally in
Section 6.1.1 that the earlier option is not practically feasible and the only efficient
deployment of searchable encryption is the later option.

6.1.1 Comparison of Overheads between Deployments of
Searchable Encryption

6.1.1.1 Target Schemes

In this section, we investigate the overheads incurred when one tries to protect the ac-
tual documents in the same way as the inverted index. This means the actual document
retrieval should not leak more than what the inverted index already does. For example,
it is okay to leak query equality (when two queries are for the same keyword) but it
is not okay to leak query response volume (how many documents match a query) or
co-occurrence (if two different queries touch the same document). We consider three
document encryption methods based on searchable encryption schemes and two addi-
tional methods based on other primitives.

The three searchable encryption schemes include a naive searchable encryption scheme
without duplication (see the last construction in Section 4.2) and two state-of-the-art
SSE schemes. We pick pseudo-random transform from [98] and volume-hiding encrypted
multi-maps from [149]1 as they represent the typical storage overhead seen in the liter-
ature. We give a brief overview of the two schemes below.

The two other primitives are Path ORAM [171] and SealPIR [6]. We choose these two
constructions because they are the state-of-the-art schemes in their respective fields. We
give a brief overview of the two schemes below.

Pseudo-random Transform. As a potential countermeasure to leakage-abuse at-
tacks, Kamara and Moataz [98] introduced the concept of volume-hiding encrypted
multi-maps (EMMs) that hide response length patterns (and exact access patterns)

1These schemes are called multi-maps but they are really intended to be used as searchable encryp-
tion.

109

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

while providing better search performance compared to worst-case padding (adding fake
documents so that all keywords return the same number of documents). They proposed
the first construction of volume-hiding EMMs based on an obfuscation mechanism called
pseudo-random transform. The idea is to pad or truncate the query response lengths
of queries on a multi-map with a pseudo-random function. We call this construction
PRT-EMM in this thesis.

Volume-hiding Encrypted Multi-maps. Patel et al. proposed two volume-hiding
encrypted multi-maps (EMM) in [149]. Both of the constructions use Cuckoo hashing
[145] as the underlying data structure. The two schemes proposed by the authors are
only different in terms of the padding mechanism on the query response lengths.

The first scheme uses full padding, meaning that all query response lengths are padded
to the maximum query response length. This is done by querying additional addresses
in the hash table deterministically (generated by a pseudo-random function) so no addi-
tional fake documents are required. We call this construction FP-EMM in this thesis.
The second scheme uses differentially-private volume hiding as opposed to full padding.
It has the same storage overhead as the first scheme. We call the construction DP-
EMM in this thesis.

Path ORAM. Path ORAM is an ORAM construction proposed by Stefanov et al. [171]
with a logarithmic communication overhead and small client storage. The idea of the
construction is as follows. The server stores the data elements (documents in the search-
able encryption setting) in random locations of a binary tree. The binary tree has depth
log(N) where N is the number of data elements and each node of the tree consists of
Z data blocks of size B each. The client stores the the locations of the data elements
locally. On top of that, it also has a stash that can be used to store a small number of
data elements.

When the client wants to fetch a data element, it first looks up its location in the lookup
table he stored locally. It then fetches all data elements on the path of the target data
element. At this stage, it has already obtained the data element it is looking for. After
that, it randomises the locations of the data elements that are in the stash and flush as
many of them as possible to the binary tree stored on the server.

It is possible to reduce the storage on the client further by storing the lookup map for
the locations of the data elements on the server by recursively applying the ORAM
construction outlined above, but we do not consider that in our experiments below for
simplicity.

It is straightforward to use Path ORAM to retrieve documents. The client can simply
break down the documents into chunks that are small enough to fit into the blocks of
Path ORAM and simply run the setup algorithm of Path ORAM. When the client wants
to make a query, it first queries the inverted index to obtain the document identifiers,
the documents can then be fetched from the ORAM one by one. To hide volume leakage,
the client can pad the number of fetch requests to the maximum query response volume,
i.e. making dummy queries to the ORAM if the true query response volume is smaller.

SealPIR. SealPIR [6] is a computational private information retrieval scheme that
is highly efficient. On a high level, the scheme uses FHE to encode the plaintexts
(performed by the server). When the client wants to retrieve a particular plaintext, he
encodes the position of that plaintext in a few FHE ciphertexts and send them to the

110

6.1. EFFICIENT DEPLOYMENT OF SEARCHABLE ENCRYPTION

server. The ciphertexts are then processed by the server to obtain a few FHE ciphertexts
that contain the response and they are sent back to the client.

To turn SealPIR into a document retrieval scheme, we can simply encrypt the documents
first before running the SealPIR protocol. Similar to the case of Path ORAM, the query
response volume has to be padded to the maximum query response volume to hide
volume leakage.

6.1.1.2 Experimental Data

We use the Enron email corpus [194] as the target database as it is the most common
choice in the literature. This dataset is also used for other experiments later in this
thesis. This section provides some general information on the Enron email corpus and
how it is pre-processed in our experiments.

General Information. The Enron email corpus is a collection of over 600 thou-
sand emails generated by 158 employees of the Enron Corporation and acquired by the
Federal Energy Regulatory Commission (FERC) during its investigation of the Enron
scandal. At the conclusion of the investigation, and upon the issuance of the FERC staff
report, the email corpus is released to the public for historical research and academic
purposes. The Enron dataset is widely used as a target for cryptanalysis on structured
encryption [94, 33, 17] as it is one of the only public real-world dataset.

Pre-processing. We implemented our email processing and keyword extraction script
in Python using the Natural Language Toolkit [156] module as the tokeniser. The
English stop words and other keywords with frequency higher than 5% are removed.
Some of our experiments require stemmed keywords and we used the Porter Stemming
Algorithm [153] for this process.

To suppress document volume leakage, the emails in our dataset are split into documents
of length at most two thousand characters. If this cannot be done for any reason (e.g.
the header is longer than two thousand characters), the emails are split into documents
of length the smallest multiple of two thousand characters.

General Statistics. Figure 6.1 gives some general statistics of the Enron email corpus
after pre-processing.

Without Stemming With Stemming
documents 480000 480000
keywords 33366 24947
keyword-document pairs 17415721 16881119
Max. keyword frequency 23989 40714
Min. keyword frequency 1 1
Mean keyword frequency 522.0 676.7
Max. # keywords per document 3483 2939
Min. # keywords per document 1 1
Mean # keywords per document 36.8 35.7

Figure 6.1: General statistics of the Enron email corpus after pre-processing.

111

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

Figure 6.2 shows the frequency distribution of the 5000 most frequent keywords after
pre-processing.

Figure 6.2: Frequency distribution of the 5000 most frequent keywords.

6.1.1.3 Empirical Evaluation

Parameters. The following parameters are used in our evaluation. We use PRFs with
256-bit output. We use the most space-efficient parameters for PRT-EMM proposed
in the original papers [98], namely α = 0.5. For Path ORAM [171], we assume each
block has size 1 KB and there are 4 blocks per bucket. For SealPIR, we assume that the
degree of ciphertext is N = 2048, the size of the coefficients are 60 bits and the database
is represented in d = 2 dimensions as per the original paper [6].

Evaluation. We report communication volume, storage cost, and the number of core
cryptographic operations needed for each option described above in Table 6.1. We split
computation and communication costs into client and server costs, and report only server
storage costs (client storage costs are low).

Storage and communication costs are measured in total volumes. Additional overheads
arising from how the data is structured and packaged for communication are ignored.

Computation costs are measured by the number of core cryptographic operations. The
operations that we consider include: prf for PRF computation; enc and dec for en-
cryption and decryption with a symmetric primitive; acc for disk/RAM access (read
or write); henc and hdec for encryption and decryption with FHE; hmul, hsub, hadd
for multiplication, substitution and addition for FHE ciphertexts. Reporting operation
counts in place of running times makes our comparison independent of implementation
details.

We opt to not include latency as this depends on several factors such as data access
speed and network delay, and these are hard to compare concretely and fairly.

112

6.1. EFFICIENT DEPLOYMENT OF SEARCHABLE ENCRYPTION

Scheme Storage (Server)
Query (Client) Query (Server)

Computation Communication Computation Communication

Näıve* 470 MB
f prf
f dec

32 B f acc f KB

Duplication 17 GB (36x)
24K prf
24K dec

750 KB (46x) 24K acc 23 MB (46x)

PRT-EMM [98] 390 GB (860x)
12K prf
12K dec

370 KB (23x) 12K acc 12 MB (23x)

FP-EMM [149] 43 GB (94x)
48K prf
48K dec

1.5 MB (92x) 48K acc 47 MB (92x)

SealPIR [6] 120 GB (260x)
1 henc
1 hdec

1.46 GB (94,000x)
23B hmul
11B hsub
11B hadd

5.9 GB (12,000x)

Non-recursive Path
ORAM [171]

1.8 GB (4x)
3.4M acc
1.7M dec
1.7M enc

1.65 GB (110,000x) 3.4M acc 1.7 GB (3,300x)

Table 6.1: Evaluation of different document retrieval primitives with minimal leakage. The
numbers in the brackets indicate overheads beyond the baseline provided by the Näıve scheme.
We assume 522 documents (mean keyword frequency) are retrieved by the Näıve scheme in
the computations of the overheads. *: f is the real query response volume (since there is no
padding).

Discussion. It is clear that all of the options suffer significant storage overheads.
For Duplication, PRT-EMM and FP-EMM, this is caused by duplication. The
expansion factor grows linearly with the number of keywords per document. For PIR,
the expansion factor comes from the use of homomorphic encryption. It is not clear
how the ciphertexts can be compressed to reduce the overhead. It is conceivable that
alternative PIR schemes might avoid such expansion. For ORAM, the overhead comes
from the use of multiple blocks per bucket. This is necessary to prevent overflowing
buckets, meaning the storage overhead cannot be reduced significantly.

With regard to queries, Duplication, PRT-EMM and FP-EMM have reasonable
computational costs, but the communication costs from the server to the client are high
in each case. The server needs to send 2.5% to 10% of the entire document collection
to the client per query, which is a lot more than the average keyword frequency might
suggest (0.109% for the Enron corpus). The PIR and ORAM options naturally suffer
from high computation and/or communication overheads since they are not designed for
large-scale document retrieval. In fact, with bad choice of parameters, as shown in [79],
the communication volume produced and ORAM can be several orders of magnitude
larger than the database itself.

Of course, the state-of-the-art implementations of various cryptographic primitives that
we have chosen for our experiments could very well be improved upon in terms of
concrete efficiency in future work. Nonetheless, the concrete numbers that we provide
are indicative of what is possible by employing state-of-the-art approaches for realizing
these primitives.

6.1.2 Discussion

To summarise, with currently available techniques, searchable encryption can only be
used as a tool for secure index retrieval, and there is no known secure primitive that is
both time and space-efficient for document retrieval. If we ever want to use searchable
encryption in an efficient way, we are forced to encrypt and retrieve the documents
naively.

This chapter shows that the approach above inevitably generates more leakage than
what the schemes claimed for. And this source of leakage, which we call system-level
leakage, can be exploited by an adversary to achieve query and data reconstruction

113

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

attacks.

In Section 6.2, we give a detailed overview of access-pattern leakage attacks in the
literature and outline their shortcomings. In Section 6.3, we formally define access-
pattern leakage attack. Section 6.4 describes our generic attack and how we apply it to
the state-of-the-art schemes. Section 6.5 provides empirical evaluation of our attacks and
demonstrate their effectiveness on the state-of-the-art schemes on real-world datasets.
Finally, we conclude with final remarks in Section 6.6.

6.2 Attack on System-level Leakage

In this section, we give a detailed overview of our query reconstruction attacks on the
state-of-the-art searchable encryption schemes [98, 149], assuming that they are only
used to encrypt the inverted index, and a naively encrypted document array is used.

We begin by giving an informal description of access-pattern leakage attacks and an
overview of the existing attacks in the literature. We show that those attacks are insuf-
ficient to break the state-of-the-art searchable encryption schemes even if the document
array is naively encrypted and motivate our own attacks.

6.2.1 Access-pattern Leakage Attacks

Access-pattern Leakage. Access-pattern leakage is an important class of leakage for
searchable encryption. Informally, access-pattern leakage can be described as the docu-
ment identifiers that an adversary can learn for each query. Using the last construction
in Section 4.2 as an example, a query on keyword kw consists of two steps:

1. the client computes F (kw) and retrieves all encrypted document identifiers asso-
ciated to keyword kw,

2. the client decrypts the encrypted document identifiers and retrieves all encrypted
documents associated to those identifiers.

For simplicity, we assume that the document identifiers of the encrypted documents
are their original document identifiers, i.e. they are not encrypted. Encrypting the
document identifiers (e.g. by using PRF output of the original document identifiers)
does not add any security against our attacks as the same encrypted documents are
retrieved regardless of whether the document identifiers are encrypted.

Aggregated Access-pattern Leakage. Access-pattern leakage becomes interesting
when multiple queries are made. Consider a collection of documents {doc1, doc2, doc3}
where document doc1 contains keywords kw1 and kw2, document doc2 contains key-
words kw1 and kw3, and document doc3 contains keywords kw3. A query on keyword
kw1, kw2, kw3 leaks document identifiers {1, 2} , {1} , {2, 3} respectively. As queries on
keywords kw1 and kw3 both return two documents, it is impossible to distinguish them
just by using query response volume. However, only keyword kw3 appears by itself
in a document, so by looking at the access-pattern leakage from multiple queries, an
adversary can distinguish a query on keyword kw1 from that on keyword kw3.

114

6.2. ATTACK ON SYSTEM-LEVEL LEAKAGE

Access-pattern Leakage Attacks. There are three major factors in characterising
an access-pattern leakage attack:

� Attack Target. The adversary may either target query recovery or data recovery
(or both).

� Attack Assumptions. The adversary may have access to some auxiliary data.
In a known-data attack, the adversary knows a subset of entries in the original
database. In an inference attack the adversary has a set of entries that are dis-
tributed statistically close to the entries in the database (but not necessarily an
actual subset of the data). In a known-query attack, the adversary knows a subset
of the queries made by the client.

� Attack Nature. The adversary may either passively observe the leakage (referred
to as leakage-abuse attacks) or actively create leakage by tampering with the
client’s database (referred to as injection attacks).

We say that an access-pattern leakage attack is successful if it breaches the security
guarantee offered by the target searchable encryption scheme.

6.2.2 Previous Attacks

Known-data Attacks. Most of the query reconstruction attacks exploiting access-
pattern leakage known in the literature are known-data attacks. This includes the first
attack proposed by Islam et al. [94], the Count attack proposed by Cash et al. [33] and
the more recent attacks proposed by Blackstone et al. [17].

These attacks are known-data attacks for different reasons. For the IKK attack [94],
the authors did propose the attack as an inference attack (i.e. auxiliary data is a noisy
statistical representation of the target database). However, Cash et al. [33] pointed
out later in their paper that the IKK attack only performs well as a known-data (and
known-query) attack. They have also proposed their own attack called Count attack 2.
Later in [17], Blackstone et al. pointed out that the earlier two attacks only performs
well when the attacker has access to close to the entire database in the known-data
setting, and developed new known-data attacks which work well even when only a small
fraction of the documents are known to the attacker.

Inference Attacks. There are two works on inference attack against searchable
encryption for query reconstruction in the literature. The first work was developed by
Pouliot and Wright [155]. The paper is a direct improvement over the IKK attack:
the authors proposed to use graph-matching algorithms instead of simulated annealing
as the optimization algorithm, and showed that their attacks work in the inference
setting. The attack targets of the paper are Shadowcrypt [92] and Mimesis aegis [119].
Shadowcrypt uses deterministic hashing to generate search tags so it leaks naive access
pattern. On the other hand, Mimesis aegis uses bloom filters, and its leakage is more
complicated. Still, the authors managed to show that their attack works in the latter
case.

2The authors found bugs in their conference version of the paper, and updates have been made in
their eprint version of the paper [34]

115

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

More recently, Oya and Kerschbaum [143] have proposed the first inference attacks
exploiting search pattern and volume leakage at the same time 3. Their attack works
even if the volume leakage is perturbed by the underlying construction [41, 149, 57].

Other Attacks. Attacks with other assumptions on auxiliary data and adversarial
power are studied in the literature too. For example, the IKK attack described earlier
is in fact a known-query attack too. There are also attacks [200, 17] assuming stronger
adversarial power, such as the ability to inject documents.

6.2.3 Practical Attacks against the State-of-the-Art Schemes

A natural question to ask is “does any of the attacks above work on the state-of-the-art
schemes?”. The answer to that question is unfortunately “No”. All of the attacks above,
except the OyaKer21 attack [143], only work on unperturbed (or almost unperturbed)
access-pattern leakage where the documents are naively encrypted and retrieved. For the
state-of-the-art schemes, even if we assume that the documents are naively encrypted,
the access-pattern leakage will be noisy, as the inverted index has built-in noise (e.g.
padding keyword response volume to the maximum). Moreover, these attacks are known-
data attacks which is hard to justify in practice.

On the other hand, the OyaKer21 attack [143] requires search-pattern leakage (if two
queries are the same) and background knowledge on query frequency (how often each
query is issued) to achieve a meaningful attack. As background knowledge on query
frequency is hard to find in the real world, we believe that the attack has limited impact
on the security of the targeted schemes.

It is therefore an open question whether the state-of-the-art schemes with a naively
encrypted document array are secure to practical access-pattern leakage attacks. In
this chapter, we answer this in the negative. We design an attack with the following
characteristics:

� is query reconstruction in nature and can be extended to database reconstruction,

� works in inference mode,

� requires minimal distributional auxiliary information,

� is effective against the state-of-the-art schemes [98, 149] with a naively encrypted
document array.

We also show that our attack is flexible and can be adapted to attack other schemes [41]
with heavily perturbed access-pattern leakage from the inverted index directly. Table
6.2 gives a comparison of our attack and previous attacks.

6.2.4 Overview of Our Attacks

Our query reconstruction attacks in this chapter work as follows. Given a scheme, we
begin by identifying its distribution of co-occurrence leakage. This allows us to compute

3The authors claimed that their attacks exploit search pattern and access pattern leakage, but the
only form of access-pattern leakage they used is volume leakage.

116

6.3. FORMAL DESCRIPTION OF ACCESS-PATTERN LEAKAGE ATTACKS

Attack Attack
Assumption

Leakage
Exploited

Additional
Requirements

Perturbed
Leakage?

IKK [94] Known-data Access pattern Known queries No

Count [33] Known-data Access pattern Known queries* No

BKM20 [17] Known-data Access pattern – No

Graph
Matching
Attacks [155]

Inference Access pattern – Yes**

SAP [143]*** Inference Search pattern
and response
length

Query frequency
pattern

Yes

This chapter Inference Access pattern – Yes

Table 6.2: Comparison of existing passive and persistent query reconstruction attacks exploiting co-
occurrence and/or access pattern leakage. * Count attack does not need known queries if the entire
database is known by the attacker; known queries are only helpful when only part of the database is
known by the attacker. ** The attack targets [92, 119] in the graph matching attacks [155] have weakly
perturbed leakage. *** The SAP attack makes strong assumptions on the availability of auxiliary
information about query frequency patterns.

the likelihood score for every assignment of queries to keywords given the observed co-
occurrence and auxiliary data. To find the best assignment, we simply use simulated
annealing [2]. Technical details of our attacks can be found in Section 6.4.

We verify the effectiveness of our attacks against the target constructions [41, 98, 149]
using the Enron email corpus [194]. Our attacks are run in inference mode – the dataset
is randomly split into two halves, one half of it is used as the target dataset whereas a
portion of the other half is used as auxiliary information. We investigate the effect of
different factors on our attacks, including:

� the number of observed queries,

� the choices of security parameters of the target constructions,

� the size of the keyword universe,

� the level of noise in auxiliary information, and

� the use of stemming in the pre-processing of the dataset.

Our experiments show that in most scenarios, our attacks manage anywhere from 50%
to 80% query recovery rate, indicating that the target schemes are vulnerable to query
reconstruction attacks. Details of our experiments can be found in Section 6.5 and a
discussion of the implications of our attacks is presented in Section 6.6.

6.3 Formal Description of Access-pattern Leakage Attacks

In this section, we give a formal description of access-pattern leakage attacks on search-
able encryptions. The description focuses on a subset of access-pattern leakage known
as co-occurrence pattern leakage (see Section 4.5).

117

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

Access-pattern Leakage. We are now ready to formally describe the class of leakage
which we are targeting in this chapter. The class of leakage, known as access-pattern
leakage refers to the information leakage associated to retrieval of documents/values.
For instance, in a naive searchable encryption scheme (see Algorithm 4.4 and 4.5), the
Srch protocol may return the exact set of encrypted documents matching the queried
keyword, hence, leaking the information that the given set of documents contains the
queried keyword.

In a query reconstruction attack using access-pattern leakage, we assume that the un-
derlying scheme Σ leaks some form of access pattern from the queries and the goal of
the adversary is to recover the keywords associated to the queries. There can be other
leakage from scheme Σ, such as search-pattern leakage, but it is not used in our attacks
so it is omitted from the description of leakage. For example, if scheme Σ leaks the
original access pattern, we can write the leakage of a query q on database DB as

LSrch(q,DB) = {i | kw(q) ∈ kw(doci), (doci, kw(doci)) ∈ DB} ,

where kw(q) denotes the keyword associated to query q. We note that although the
leakage here is represented by the document identifiers, it is equivalent to an encrypted
document based representation. We choose the earlier as the representation is more
compact.

Co-occurrence Pattern Leakage. Access pattern leakage from different queries
can be represented equivalently as a matrix, known as co-occurrence pattern leakage.
Consider a database DB where

DB = {(doc1, {kw1, kw2, kw3})
(doc2, {kw1, kw2})
(doc3, {kw3})}.

Let qi be a query on keyword kwi. If the original access pattern is leaked, we know that

LSrch(q1,DB) = {1, 2} ,
LSrch(q2,DB) = {1, 2} ,
LSrch(q3,DB) = {1, 3} .

This allows us to take intersections between the leakages as follows.

LSrch(q1,DB) ∩ LSrch(q2,DB) = {1, 2} ,
LSrch(q1,DB) ∩ LSrch(q3,DB) = {1} ,
LSrch(q2,DB) ∩ LSrch(q3,DB) = {1} .

The cardinality of the intersections can be very useful in an attack. For example, the co-
occurrence pattern leakage of the database above can be represented as a co-occurrence
matrix M̄ :

M̄(q1,q2,q3;DB) =

2 2 1
2 2 1
1 1 2

 ,

118

6.4. NEW ACCESS-PATTERN LEAKAGE ATTACKS

where the i, j-th entry of the matrix is
∣∣LSrch(qi,DB) ∩ LSrch(qj ,DB)

∣∣. If we know
the underlying database perfectly, we can re-identify q3 as a query on kw3 as it is the
only keyword that only shares one document with other keywords. This qualifies as a
query reconstruction attack.

We note that co-occurrence pattern leakage contains strictly less information than the
original access pattern leakage. However, co-occurrence pattern leakage is often sufficient
in practice so it is used instead of the full leakage.

There are three complications to the representation of co-occurrence pattern leakage in
practice. Firstly, the schemes we consider usually leak search pattern too. That is, if
kw(qi) = kw(qj), the attacker knows that the two queries are for the same keyword.
In terms of co-occurrence pattern leakage, we use only one of the queries in the rep-
resentation to simplify the problem. Secondly, the queries are unordered in practice.
That means there is no standard representation of the leakage in terms of the known
keywords. We use the convention that the i-th row and column of the co-occurrence
matrix corresponds to the i-th non-repeating query in our representation. Finally, not
all schemes leak the original access pattern and some schemes may even be randomised.
In those cases, we need to use a suitable representation of the co-occurrence information,
which may differ from what we have described above.

Auxiliary Information. Similar to a co-occurrence matrix, the auxiliary information
the attacker receives can be represented as a matrix M . The matrix is indexed by the
known keywords and typically contains full information on all keywords. In stronger
attacks, M is assumed to be noisy in the sense that it is not generated directly from the
target document collection. Instead, an auxiliary dataset is used for the purpose.

LetDB = {(doci, kw(doci))} be an auxiliary document collection with keywords {kw1, . . . , kwn}.
In our attack, the i, j-th entry of M represents the empirical probability (derived from
the auxiliary data DB) of seeing kwi and kwj together in a document. It is computed
as:

Mi,j =
|{doci | kwi ∈ kw(doci) ∧ kwj ∈ kw(doci)}|

|DB|
,

where |DB| denotes the number of documents in the collection.

Attack Setting. Let Σ be a searchable encryption scheme. Our attack exploits its co-
occurrence pattern leakage M̄(·;DB) to recover the queries. The attack can be formally
described as follows. Let queries q1, . . . ,ql be a sequence of queries on the document
collection, so the attacker observes co-occurrence pattern leakage M̄(q1, . . . , ql;DB).
Suppose that the attacker has access to some auxiliary information M . The goal of the
attacker is to recover kw(qi) after observing the co-occurrence pattern leakage M̄ and
knowing auxiliary information M .

6.4 New Access-pattern Leakage Attacks

In this section, we show how system-level leakage from the state-of-the-art searchable
encryption schemes [98, 149] can be modelled and attacked. We also show how our
attack can be adapted to another scheme [41] with heavily perturbed co-occurrence
leakage.

119

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

There are four main steps in each attack:

1. Identify the leakage function.

2. Derive a mathematical model of the co-occurrence leakage.

3. Design an attack for the co-occurrence leakage.

4. Experimentally evaluate the attack in various settings.

The first three steps of the attacks are presented in Section 6.4.1 through 6.4.3 and the
last step of the attacks is presented in Section 6.5. The mathematical concepts (i.e.
distributions and parameter estimations) can be found in Section 2.1.6.

The derivation of the attacks relies heavily on probability theory and statistics. See
Section 2.1 for a refresher.

6.4.1 Attack Targets and Co-occurrence Pattern Leakages

Volume-hiding EMMs via Pseudo-random Transform. As a potential counter-
measure to leakage-abuse attacks, Kamara and Moataz [98] introduced the concept of
volume-hiding encrypted multi-maps (EMMs) that hide response length patterns (and
exact access patterns) while providing better search performance compared to näıve (or
worst-case) padding. They proposed the first construction of volume-hiding EMMs
based on an obfuscation mechanism called pseudo-random transform. Their idea is to
pad or truncate the query response lengths of queries on a multi-map with a pseudo-
random function as follows. Let key be a key for the multi-map and Fsk(·) be a pseudo-
random function with key sk. The client computes: n′key = λ+ Fsk(key||nkey)

n′key = λ+ Fsk(key||nkey)

as the new query response length, where λ is a free parameter which the client can
choose and nkey is the original query response length.

These new query response lengths are used to build a multi-map on document identifiers
as follows:

� If nkey ≤ n′key, add ⊥ symbols in the multi-map on key key before encryption.

� If nkey > n′key, truncate the multi-map on keyword key to the first n′key entries.

The multi-map is then encrypted with an underlying encrypted multi-map scheme and
uploaded to the server. As a searchable encryption scheme, we assume that PRT-EMM
is used to encrypt inverted index and a naive encrypted document array is used; when
a query is issued, the client retrieves a set of document identifiers from the encrypted
inverted index, and all of the document identifiers are used in the document retrieval
phase.

We note that the original construction pads query responses with ⊥ symbols if the real
query response length is shorter. If the ⊥ symbols are ignored in actual document
retrieval, the attacker will be able to learn the true query response lengths when there

120

6.4. NEW ACCESS-PATTERN LEAKAGE ATTACKS

is padding. This leakage may allow for simpler attacks which use frequency information
only. However, in our attack, we assume the ⊥ symbols are replaced by randomly picked
indices, so the true query response lengths are not leaked. We show that even in this
setting, the scheme is vulnerable to access-pattern leakage attacks.

Newer Constructions of Volume-hiding EMMs. Recently, Patel et al. proposed
two volume-hiding EMM constructions in [149]. Both of the constructions use Cuckoo
hashing [145] as the underlying data structure. Just like PRT-EMM [98], we assume
that the constructions are used to encrypt inverted index only.

The two schemes proposed by the authors are only different in terms of the padding
mechanism on the query response lengths. The first scheme uses full padding, meaning
that all query response lengths are padded to the maximum query response length. In
terms of the hash table, this is done by querying additional addresses deterministically
(generated by a pseudo-random function) for each key.

The second scheme uses differentially-private volume hiding as opposed to full padding.
Let 2nkey be the true query response length of a query on key key, where 2 comes from
the fact that Cuckoo hashing uses two hash tables. Then the scheme pads the query
response length to 2nkey + n∗ + Lapsk(2/ϵ), where n∗ is a parameter set by the client
to offset the query response length in case the latter random variable is negative, and
Lapsk(·) is a Laplace distribution with secret key sk as the seed.

Searchable Encryption with Differentially-Private Access Pattern. Chen
et al. [41] proposed using differential privacy as a means to prevent leakage-abuse attacks
that exploit access pattern leakages. They proposed a searchable encryption scheme
where a differential privacy mechanism is used to obfuscate the plaintext database before
building an encrypted database, such that a slight change in the real access pattern does
not affect the obfuscated access pattern significantly. There are two key ingredients in
their construction. Firstly, they used an erasure code [63] to split every document into
m shards, each with size 1

k of the original document. The erasure code has the property
that any k shards of a document can be used to reconstruct the original document. The
client then picks two probabilities p and q, and does the following to each shard:

1. For any keyword that is originally in the shard, remove the keyword with proba-
bility 1− p.

2. For any keyword that is originally not in the shard, add it to the shard with
probability q.

We refer to this scheme as DPAP-SE.

Intuitively, a smaller p and a larger q means more distortion to the co-occurrence in-
formation, and hence more “secure” against access-pattern leakage attacks. However,
to ensure that enough shards are returned with high probability, p has to be decently
large. Similarly, to control the communication overhead, q has to be small. In terms
of the effect of the countermeasure on the co-occurrence pattern leakage, it transforms
query response lengths into noisy keyword response lengths on the shards; co-occurrence
counts are now leaked as noisy co-occurrences on the shards.

121

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

6.4.2 Mathematical Derivations of the Distributions of the
Co-occurrence Matrices

In this section, we give the mathematical derivations of the distributions of the co-
occurrence matrices. We note that leakage referred in the literature usually mean real-
isation as opposed to distribution. Here, we derive the latter so that we can compute
likelihood scores for realisations.

Derivation for PRT-EMM [98]. Recall that in PRT-EMM, the query response
lengths are padded or truncated according to:

n′key = λ+ Fsk(key||nkey).

Let DB be a multi-map and q1, . . . ,ql be non-repeating search queries with associated
keys key1, . . . , keyl on DB encrypted with PRT-EMM. We abuse the notation key(qi)
to mean the key associated to qi. By denoting the maximum value of the PRF F as
|F |, the diagonal entries of the co-occurrence matrix can be expressed as:

M̄(q1, . . . ,ql;DB)i,i ∼ λ+Uniform(0, |F |),

where Uniform(·) is a uniform distribution.

There are three cases to be considered for the off-diagonal entries of the co-occurrence
matrix. Without loss of generality, let the keys in concern be keys keyi and keyj . In the
first case, both of the query response lengths associated to the keys are larger than the
true query response lengths. This corresponds to n′keyi − |DB(keyi)| random document

retrievals for queries on key keyi and n′keyj −
∣∣DB(keyj)

∣∣ random document retrievals

for queries on key keyj . These random document retrievals can create additional co-
occurrence counts among themselves or with the real document retrievals. The co-
occurrence counts in this case can be approximated by:

M̄(q1, . . . ,ql;DB)i,j

∼
∣∣DB(keyi, keyj)

∣∣
+Hypergeometric

(
n′keyi − |DB(keyi)| , |DB| , n′keyj

)
+Hypergeometric

(
n′keyj −

∣∣DB(keyj)
∣∣ , |DB| , n′keyi

)
,

where Hypergeometric(n,N,K) denotes a hypergeometric distribution which makes
n draws without replacement, from a population of size N that contains exactly K
objects with the desired feature.

In the second case, one of the query response lengths is truncated and the other one is
padded. Without loss of generality, let key keyi be the truncated key and key keyj be
the padded key. Then, the co-occurrence count associated to keys keyi and keyj can be
modelled as a process where the co-occurrence count is first reduced by the truncation
and then increased by the padding. Its distribution is given below:

x ∼ Hypergeometric
(
n′keyi , |DB(keyi)| ,

∣∣DB(keyi, keyj)
∣∣),

M̄(q1, . . . ,ql;DB)i,j ∼x+Hypergeometric
(
n′keyj −

∣∣DB(keyj)
∣∣ ,

|DB| , n′keyi − x
)
.

122

6.4. NEW ACCESS-PATTERN LEAKAGE ATTACKS

Finally, in the last case, both of the query response lengths are truncated. Similar to
above, the distribution of the co-occurrence count associated to keys keyi and keyj can
be expressed as:

x ∼ Hypergeometric
(
n′keyi , |DB(keyi)| ,

∣∣DB(keyi, keyj)
∣∣),

M̄(q1, . . . ,ql;DB)i,j ∼Hypergeometric
(
n′keyj ,

∣∣DB(keyj)
∣∣ , x).

Derivation for new volume-hiding multi-maps in [149]. The volume-hiding
multi-maps in [149] are special cases of PRT-EMM [98], where the query response
lengths are either padded to the maximum query response length or ones that are larger
than the true query response lengths. Specifically, for the full padding version (PRT-
EMM),

M̄(q1, . . . ,ql;DB)i,i ∼ 2max
key
|DB(key)| .

And for the differentially-private version (DP-EMM),

M̄(q1, . . . ,ql;DB)i,i ∼ 2 |DB(key)|+ n∗ + Lap(2/ϵ),

where n∗ is a fixed constant to offset the query response length in case the latter random
variable is negative.

For the co-occurrence counts, we get:

M̄(q1, . . . ,ql;DB)i,j

∼
∣∣DB(keyi, keyj)

∣∣
+Hypergeometric

(
n′keyi − |DB(keyi)| , |DB| , n′keyj

)
+Hypergeometric

(
n′keyj −

∣∣DB(keyj)
∣∣ , |DB| , n′keyi

)
,

where n′keyi and n′keyj are the padded query response lengths for keyword kwi and kwj

respectively.

Derivation for DPAP-SE [41]. Let DB be a database and q1, . . . ,ql be non-
repeating search queries with associated keywords kw1, . . . , kwl on DB encrypted with
the searchable encryption scheme above [41]. The diagonal entries of the co-occurrence
matrix M̄(q1, . . . ,ql;DB), i.e. the query response volumes, represent the numbers of
shards retrieved by the client. For a particular query qi, the number of shards retrieved
is determined by:

� The number of shards which contain keyword kwi before the pre-processing step,
and the keyword is not removed from them.

� The number of shards which do not contain keyword kwi before the pre-processing
step, but the keyword is added to them.

Formally, the diagonal entries of the co-occurrence matrix can be expressed in terms of
the true query response lengths as:

M̄(q1, . . . ,ql;DB)i,i ∼ Bin(m · |DB(kwi)| , p)
+Bin(m · |DB| −m · |DB(kwi)| , q),

123

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

where m comes from splitting the documents into shards, DB(kwi) denotes the set of
documents containing keyword kwi associated to query qi, |DB| denotes the number of
documents in database DB, and Bin(·) denotes a binomial distribution.

For the off-diagonal entries of the co-occurrence matrix, assume without loss of generality
that the keywords in concern are kwi and kwj . The co-occurrence count for keywords
kwi and kwj can increase if:

� A shard contains one of the keywords, say kwi, and the keyword is not removed
by the scheme. At the same time, the other keyword, kwj in this case, is added
to the shard.

� A shard contains none of the keywords, and both of the keywords are added to
the shard.

On the other hand, the co-occurrence count for keywords kwi and kwj can decrease if
a shard contains both of the keywords and at least one of the keywords is removed.

The actual distribution of the off-diagonal entries of the co-occurrence matrix is com-
plicated due to dependencies. Here, we approximate the off-diagonal entries of the
co-occurrence matrix by assuming independence:

M̄(q1, . . . ,ql;DB)i,j

∼Bin(m · |DB(kwi, kwj)| , p2)
+Bin

(
m · (|DB| − |DB(kwi)| − |DB(kwj)|+ |DB(kwi, kwj)|) , q2

)
+Bin(m · |DB(kwi)| − |DBkwi, kwj | , pq)
+Bin(m · |DB(kwj)| − |DBkwi, kwj | , pq).

6.4.3 Attack Model

6.4.3.1 Attack Overview

Given the observed co-occurrence matrix M̄ and auxiliary co-occurrence matrix M
(which may not have the same dimensions), the goal of the adversary is to find an as-
signment P between the queries and the keywords such that the observed co-occurrence
matrix fits the auxiliary information. In our formulation, the diagonal entries in the ob-
served co-occurrence matrix are the query response lengths, and the off-diagonal entries
are the number of documents accessed by two queries at the same time; the diago-
nal entries in the auxiliary co-occurrence matrix are probabilities such that a document
contains the given keywords. For simplicity, we assume identical and independent distri-
bution of the keywords, meaning that the true query response lengths can be modelled as
binomial distributions. Furthermore, we assume that the off-diagonal entries in the aux-
iliary co-occurrence matrix specify the distribution of co-occurrences of keywords, and
we use multinomial distributions to model the distributions. Given that there is random-
ness in the generation of leakage, we propose to use a likelihood function L

[
P | M̄,M

]
to measure the fitness of the data. As the search space for the assignment is huge, a
brute-force approach is impractical. We propose to use simulated annealing [2] to search
for the most likely assignment. In the next section, we explain how simulated annealing
works and outline the subroutines of the algorithm.

124

6.4. NEW ACCESS-PATTERN LEAKAGE ATTACKS

6.4.3.2 Simulated Annealing

We give a brief overview of simulated annealing [2] in this section. Simulated annealing
is a probabilistic technique for searching for the global optimum of a given function. It
is very similar to a greedy search algorithm – randomize the input of the function, in our
case, that is the assignment P , recompute the score, and if the score is larger than before,
the assignment is kept as the new solution, and it is discarded otherwise – except that a
worse solution is accepted in simulated annealing if it is not too bad. This is to prevent the
algorithm from sticking in a local optimum. More concretely, simulated annealing uses
a temperature T which decreases per iteration and the differences between the current
score of the target function and the previous best score maintained by the algorithm
to compute an acceptance probability p, and with probability p the new solution is
accepted. This probability is 1 if the new score is higher than the previous best, and
less than 1 otherwise. For the same difference in the scores, a lower temperature T leads
to a lower acceptance probability, which means simulated annealing acts more and more
like a greedy search algorithm as the iterations go on.

Formally, simulated annealing consists of five subroutines, namely a function InitPerm
to generate an initial assignment, a cooling scheme Cooling, a neighbourhood gener-
ation algorithm Neighbour, a function Score to compute the score and a function
AccptProb to compute the acceptance probability. The syntax of the subroutines are
defined below:

� InitPerm: takes as input an observed co-occurrence matrix M̄ and a background
co-occurrence matrix M , and outputs an assignment P .

� Cooling: takes as input a temperature T and the current iteration number i and
outputs a new temperature T ′.

� Neighbour: takes as input a assignment P , an observed co-occurrence matrix M̄
and a background co-occurrence matrix M , and output a new assignment P ′.

� Score: takes as input an observed co-occurrence matrix M̄ , a background co-
occurrence matrix M and an assignment P , and output a score.

� AccptProb: takes as input a temperature T , a previous best score s and the new
score s′, and output a probability.

We are now ready to give an overview of simulated annealing. The algorithm be-
gins with an initial temperature T0 and a random assignment P . An initial score s
is computed on this assignment P . Then, the algorithm computes a new tempera-
ture T ← Cooling(T0, 1), find a new assignment P ′ using the neighbourhood function
Neighbour(·), and compute a new score s′ with the score function Score(·). An accep-
tance probability is computed as p← AccptProb(T, s, s′). A random number between
0 and 1 is generated and if the random number is less or equal to p, the new solution
s′ is accepted by the algorithm and kept as the new optimum solution. This process is
repeated until the maximum number of iteration is reached. A detailed pseudocode of
simulated annealing is presented in Algorithm 6.1.

125

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

Algorithm 6.1 Simulated Annealing

1: procedure Attack(M̄,M, T0, imax)
2: P ← InitPerm(M̄,M)
3: T ← T0

4: s← Score(M̄,M,P)
5: for i← 1, . . . , imax do
6: T ← Cooling(T, i)
7: P ′ ← Neighbour(P, M̄,M)
8: s′ ← Score(M̄,M,P ′)
9: if AccptProb(T, s, s′) > rand(0, 1) then

10: P ← P ′

11: s← s′

12: return P

6.4.3.3 Application of Simulated Annealing to Query Reconstruction
Attacks using Co-occurrence Pattern Leakage

In this section, we specify the subroutines we used in our attacks. We used T ′ ← 0.995T
as our cooling scheme Cooling(·) and p ← exp(− s−s′

T) as our function AccptProb(·)
to compute the acceptance probability for all three leakages we have considered. These
choices are commonplace for simulated annealing problems [55, 168]. We used the like-
lihood functions as the score functions Score(·), and detailed derivations of them are
shown in Section 6.4.4. We find the choices of InitPerm(·) and Neighbour(·) have a
significant impact on the performance and effectiveness of our attacks. The subroutines
presented in this section are the most effective variants we have found.

Initial Assignment Finding Subroutine InitPerm(·). An initial assignment find-
ing subroutine InitPerm(·) is an efficient algorithm for guessing keywords/keys of the
queries, so as to provide a starting point for the more expensive iterative steps later.
For our attacks, only the query response lengths are used to avoid expensive computa-
tions. We observe that although the observed query response lengths are different from
the true query response lengths for all of the schemes we target, these two are related.
In particular, for DP-EMM [149] and DPAP-SE [41], we can compute the expected
observed query response lengths from the query response lengths in the background
co-occurrence matrix, and matching the queries to the keywords in the background co-
occurrence matrix as good as we can. For PRT-EMM [98] and FP-EMM [149], the
observed keyword frequencies are independent from the true keyword frequencies.

Neighbourhood Generation Subroutine Neighbour(·). A neighbourhood gen-
eration subroutine generates new assignments for the attack. Although a uniformly
randomly picked assignment works all the times, it may not be the most efficient choice.
In particular, for DP-EMM [149] and DPAP-EMM [41], we know that if an observed
query response length is too far from the expectation, the assignment is very unlikely,
and can be safely discarded. This means the neighbourhood generation subroutines for
the attacks on these two schemes can make use of this, and output a new assignment
only if it is sound. The pseudocodes for these subroutines can be found in Algorithm
6.2 and 6.3.

We note that these neighbourhood generation subroutines may prevent some correct
assignments in the output of the attack if their observed query response lengths are too

126

6.4. NEW ACCESS-PATTERN LEAKAGE ATTACKS

Algorithm 6.2 Neighbourhood Generation Algorithm for DP-EMM [149]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: b0 ← NMj,j − 1.96NMj,j(1−Mj,j)− 1.96/ϵ
5: b1 ← NMj,j + 1.96NMj,j(1−Mj,j) + 1.96/ϵ
6: if there exists k such that P (k) = j then
7: b2 ← NMP (i),P (i) − 1.96NMP (i),P (i)(1−MP (i),P (i))− 1.96/ϵ
8: b3 ← NMP (i),P (i) + 1.96NMP (i),P (i)(1−MP (i),P (i)) + 1.96/ϵ

/* Check the condition with k only if it exits */
9: while ¬(b0 < M̄i, i < b1) ∨ ¬(b2 < M̄k,k < b3) do

10: Resample i, j, k

11: P ′ ← P
12: P ′(i)← j
13: if there exists k such that P (k) = j then
14: P ′(k)← P (i)

15: return P ′

Algorithm 6.3 Neighbourhood Generation Algorithm for DPAP-SE [41]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: b0 ← kpNMj,j + kqN(1−Mj,j)− 1.96kNMj,j(1−Mj,j)− 1.96kN(p+ q)
5: b1 ← kpNMj,j + kqN(1−Mj,j) + 1.96kNMj,j(1−Mj,j) + 1.96kN(p+ q)
6: if there exists k such that P (k) = j then
7: b2 ← kpNMP (i),P (i) + kqN(1 −Mj,j) − 1.96kNMP (i),P (i)(1 −MP (i),P (i)) −

1.96kN(p+ q)
8: b3 ← kpNMP (i),P (i) + kqN(1 −Mj,j) − 1.96kNMP (i),P (i)(1 −MP (i),P (i)) −

1.96kN(p+ q)
/* Check the condition with k only if it exits */

9: while ¬(b0 < M̄i, i < b1) ∨ ¬(b2 < M̄k,k < b3) do
10: Resample i, j, k

11: P ′ ← P
12: P ′(i)← j
13: if there exists k such that P (k) = j then
14: P ′(k)← P (i)

15: return P ′

far from the expected query response lengths. By relaxing the bounds, we can make the
chance of that happening arbitrarily small. However, the algorithm is going to be less
efficient as more iterations are required for a convergence. Hence, we see our choice of
bounds as a trade-off between query recovery rate and attack efficiency.

For PRT-EMM [98] and FP-EMM [149], we have to use uniformly randomly picked
assignments as the observed query response lengths are independent from the true query
response lengths. The pseudocode of this neighbourhood generation subroutine can be
found in Algorithm 6.4.

127

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

Algorithm 6.4 Neighbourhood Generation Algorithm for PRT-EMM [98] and FP-
EMM [149]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: P ′ ← P
5: P ′(i)← j
6: if there exists k such that P (k) = j then
7: P ′(k)← P (i)

8: return P ′

6.4.4 Mathematical Derivations of the Likelihood Functions

The likelihood function L
[
P | M̄,M

]
can be written as follows:

L
[
P | M̄,M

]
=Pr

[
M̄,M | P

]
=

∑
M ′∈NN×N

Pr
[
M̄,M,M ′ | P

]
=

∑
M ′∈NN×N

Pr
[
M̄ |M,M ′, P

]
Pr [M ′ |M,P]

=
∑

M ′∈NN×N

Pr
[
M̄ |M ′, P

]
Pr [M ′ |M] ,

where N is the number of keywords and NN×N is all N by N natural number valued
matrices. In the third line of the equation, we used the law of total probability to turn the
likelihood into a summation over all possible real co-occurrence matrices. The lines after
break the probability into a sum of products of two probabilities. The first probability
Pr
[
M̄,M ′ | P

]
is the probability that M̄ is the observed co-occurrence matrix and M ′

is the real co-occurrence matrix given P is the permutation. The second probability is
the probability of getting M ′ as the real observed co-occurrence matrix knowing that
M is the auxiliary co-occurrence matrix.

We assume the same structure of the auxiliary co-occurrence matrix M for all of our
leakage functions so its derivation is shared by all three leakage functions. We note
that only some of the real co-occurrence matrices generate a non-zero likelihood, as
the sum of off-diagonal entries of a row must be less or equal to the diagonal entry for
correctness. By writing a row of a matrix M without the i-th entry as Mi,·, for those
real co-occurrence matrices, we can derive the probability as:

Pr [M ′ |M]

=
∑
i

Pr
[
M ′i,i |Mi,i

]
Pr
[
M ′i,· |M ′i,i,Mi,·

]
.

In the second line, the first term is the probability of getting M ′i,i documents containing
keyword kwi, and the second term is the probability of observing the off-diagonal co-
occurrence counts.

Derivation for PRT-EMM. For PRT-EMM [98], query response lengths may be
truncated by a random amount. This means that based on the query response length in

128

6.4. NEW ACCESS-PATTERN LEAKAGE ATTACKS

the auxiliary co-occurrence matrix M ′ and that in the observed co-occurrence matrix,
an attacker can estimate how many documents in the off-diagonal entries are expected
to be removed. For observed co-occurrence count between keywords kwj and kwj where
i ̸= j, the real process can be modelled as a sequential application of two hypergeometric
distributions on the real co-occurrence count.

Pr
[
M̄,M ′ | P

]
=
∏

i < jPr
[
M̄i,j ,M

′ | P
]

=
∏

i < j
∑
k

Pr
[
Hypergeometric

(
M ′P (i),P (i),M

′
P (i),P (j), M̄i,i

)
= k

]
Pr
[
Hypergeometric

(
M ′P (j),P (j), k, M̄j,j) = M̄i,j

]
.

Derivation for FP-EMM [149]. To simplify the first term of the likelihood decom-
position, we assume independence of the entries in the observed co-occurrence matrix.
Without loss of generality, we assume that all query response lengths are padded to m.
This means we can express the probability as:

Pr
[
M̄,M ′ | P

]
=
∏

i < jPr
[
M̄i,j ,M

′
P (i),P (j) | P

]
=
∏

i < jPr
[
Hypergeometric

(
2N, 2m− 2M ′P (i),P (i),

2m− 2M ′P (j),P (j)

)
= M̄i,j −M ′P (i),P (j)

]
.

Derivation for DP-EMM [149]. The first term of the likelihood decomposition for
differentially private volume-hiding EMMs [149] is similar to that of the full padding
version, except that the query response lengths are padded according to a Laplacian
distribution as opposed to padding to the maximum query response length. Let n∗ be
the constant to offset the Laplacian random variable Lap(2/ϵ), the first term of the
likelihood decomposition can be expressed as:

Pr
[
M̄,M ′ | P

]
=
∏

i = jPr
[
M̄,M ′

]
+
∑
i<j

Pr
[
P | M̄,M ′ | P

]
=
∏

iPr
[
M̄i,i,M

′
P (i),P (i) | P

]
+
∏

i < jPr
[
M̄i,j ,M

′
P (i),P (j) | P

]
=
∏

iPr
[
2M ′P (i),P (i) + n∗ + Lap(2/ϵ) = M̄i,i

]
+
∏

i < jPr
[
Hypergeometric(2N, 2M̄i,i − 2M ′P (i),P (i),

2M̄j,j − 2M ′P (j),P (j)) = M̄i,j − 2M ′P (i),P (j)

]
.

Derivation for DPAP-SE. Recall that in DPAP-SE [41], the documents are split
into shards and the keywords for the shards are randomized. This means that each
diagonal entry of the observed co-occurrence matrix contain the counts from the real
shards which have kept the keyword, and the counts from the other shards which have
gained the keyword from the randomization process. Similarly, each off-diagonal entry

129

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

of the observed co-occurrence matrix contain the counts from the real shards which
have kept both of the keywords, and the other counts from the other shards which have
gained one of the keywords or both of them from the randomization process. Let p be
the probability that a shard keeps its keywords, q be the probability that a fake keyword
is introduced to a shard, and m to be the number of shards, we can express the first
term in the likelihood decomposition as:

Pr
[
M̄,M ′ | P

]
=
∏
i=j

Pr
[
M̄,M ′ | P

]
×
∏
i<j

Pr
[
M̄,M ′ | P

]
=
∏
i

Pr
[
M̄i,i,M

′ | P
]
×
∏
i<j

Pr
[
M̄i,j ,M

′
P (i),P (j) | P

]
=
∏
i

Pr
[
Bin

(
mM ′P (i),P (i), p

)
+Bin

(
mM ′P (j),P (j), q

)
= M̄i,i

]
×
∏
i<j

Pr

[
Bin

(
mM ′P (i),P (j), p

2
)

+Bin

(
m

(
M ′P (i),P (i) −

∑
k>1

M ′P (i),P (k)

)
, pq

)

+Bin

(
m

(
M ′P (j),P (j) −

∑
k>1

M ′P (j),P (k)

)
, pq

)

+Bin
(
m
(
N −M ′P (i),P (i) −M ′P (j),P (j) +M ′P (i),P (j)

)
, q2
)
= M̄i,j

]
.

Approximation Techniques. As it can be seen, it is computationally infeasible to
sum over all possible real co-occurrence matrices. We propose to sum over all possible
real co-occurrence matrices such that Pr

[
M ′ | M̄

]
is significant. In our experiment, we

used symmetric endpoints on every entry of M ′ such that the resultant interval covers
at least 95% of the probability density function. We use Normal approximation in the
first term of the likelihood decomposition for PRT-EMM [98] to remove the need of a
convolution. To further improve the computational efficiency, we used simple rectangle
rule to approximate large products, such as the convolutions in the first term of the
likelihood decomposition for DPAP-SE [41].

Speeding up the Score function. The Score functions are by far the most com-
putationally demanding functions of our attacks. If we just implement them näıvely,
the amount of computation required in an iteration is proportional to l2, where l is
the number of non-repeating queries observed (it is also the dimension of the observed
co-occurrence matrix M̄). However, we note that the score functions in our attacks are
essentially likelihood functions of the shape∏

i≤j

Pr
[
M̄P (i),P (j),M

]
,

and the neighbourhood function Neighbour only changes the assignment P for one
or two values. Without loss of generality, let P (a) be the changed assignment. It
means only the probabilities with P (a) involved are changed, that is, the new likelihood

130

6.5. EMPIRICAL EVALUATION

function can be written as ∏
i≤j
i,j ̸=a

Pr
[
M̄P (i),P (j),M

]
×
∏
i≤a

Pr
[
M̄P (i),P (a),M

]
×
∏
a<j

Pr
[
M̄P (a),P (j),M

]
.

The terms in the first product were already computed in the previous iteration so they
can be used directly. The only terms that need re-computation are in the second and
third products. This reduces the amount of computation required for the Score function
(from the second iteration onwards) to something that is proportional to l.

In our implementation, we maintain an l-by-l matrix where the i, j-th entry of the matrix
records Pr

[
M̄P (i),P (j),M

]
. Only l (or 2l if the assignment is changed on two queries)

of these entries are updated according to the likelihood function, and the score function
simply outputs the sum of the entries of this matrix.

6.5 Empirical Evaluation

6.5.1 Overview

Experimental Data and Auxiliary Information. We use the Enron email corpus
[194] as the target dataset for all of our attacks. A description of the dataset and our
pre-processing step can be found in Section 6.1.1.2. A major challenge for inference-style
leakage-abuse attacks is deciding an appropriate model for evaluating their effectiveness
in practice. Such a model should take into account both the distribution of queries as well
as the distribution of the auxiliary information available to the adversary. Unfortunately,
there do not exist concrete guidelines in the literature for how to construct such models;
given this lack of precedence, we make certain assumptions that we believe are reasonable
in practice.

Query Distribution. We use uniformly distributed keyword queries to evaluate our
attacks. This is exactly as in previous attacks [94, 33, 17]. We note here that our attacks
do not explicitly depend on the distribution of queries; hence a uniform distribution
appears to be a reasonable choice.

Auxiliary Data Distribution. For the IKK attack, Islam et al. [94] proposed a
method to model auxiliary information in an inference-style attack setting; their sugges-
tion was to use an auxiliary co-occurrence pattern leakage obtained by adding Gaussian
noise to the original co-occurrence pattern. However, this implicitly assumes a homoge-
neous distribution of keywords amongst the documents, which may not always be the
case in practice. Instead, we opt to split the overall dataset into two halves: out of the
480000 documents in the dataset, half of the documents are used as the attack target
and (a subset of) the other half of the documents are used to generate auxiliary infor-
mation about the dataset. In total, we generate 10 different splits of the documents. For
each split, we run 10 independent attacks with freshly generated observed co-occurrence

131

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

matrices. We measure the fraction of correctly guessed keywords/keys and report the
average over the 100 runs as the query recovery rate.

Keyword Extraction and Stemming. We extract keywords using the Natural
language toolkit [156] in Python. Since previous attacks [94, 33, 17] used stemming, we
run additional experiments with stemming and study its effects on query reconstruction
rate in Section 6.5.5.

Keyword and Query Selection. We use the 1000, 2000, 3000 and 4000 most fre-
quent keywords to build auxiliary co-occurrence matrices, and sample uniformly ran-
domly without replacement from these most frequent keywords subsets of 250, 500, 750
keywords as queried keywords. These queried keywords are used to build observed co-
occurrence matrices. These observed and auxiliary co-occurrence matrices are then used
as the inputs to our attacks. Further discussion on the choice of keywords for our attacks
is presented in Section 6.6.

Security Parameter Selection for the Target Constructions. We use the
security parameters suggested in the original papers to run our attacks. We also inves-
tigate how changes in the security parameters affect query reconstruction rates.

Recall that PRT-EMM from [98] allows the client to pick a public parameter λ which
controls the padded query response lengths as:

n′key = λ+ Fsk(key||nkey).

The authors suggested to set λ between 0 and 0.25nmax. We use λ = 0 and 0.25nmax in
our experiments. In addition, we use λ = 0.5nmax to see the effect of additional padding
on query reconstruction rate.

FP-EMM from [149] does not have a tunable parameter and we run our attacks on
the FP-EMM as it is. DP-EMM from [149] uses parameter ϵ to set query response
volumes to:

2nkey + n∗ + Lapsk(2/ϵ).

The authors suggested ϵ = 0.2. In our attack, we use ϵ = 0.2 just as suggested in the
original paper. We also run experiments where ϵ is significantly smaller (more “secure”),
ranging from 0.1 to 0.01.

For DPAP-SE [41], the authors suggested m = 6 (the number of shards per doc-
ument), k = 2 (a parameter of the erasure code which does not affect our attack),
p = 0.88703 (the probability for which a keyword is kept in a shard) and q = 0.04416
as the parameters for the Enron [194] dataset. We used similar parameters where
m = 6, k = 2, p = 0.89 and q = 0.045 in our experiments. A smaller q or a bigger
q significantly reduces the efficiency of the construction so we opt to not run additional
experiments with those parameters. Instead, we investigate how a smaller q affects query
reconstruction rate. We use q = 0.0045, 0.00045 and 0.000045 as additional choices of
parameters in our experiments.

Implementation. We implement our attacks in C using GNU Scientific Library [85]
for randomness generation and probability calculations. We use our custom code for
simulated annealing for the best performance. We parallelize our implementation using
OpenMP [140]. Our implementation is highly scalable. It takes less than one minute

132

6.5. EMPIRICAL EVALUATION

per run on the differentially-private schemes (DP-EMM and DPAP-SE) and no more
than 6 minutes per run on the other schemes (PRT-EMM and FP-EMM) for all of
our experimental settings, on a machine with an 8-core (16-thread) Sandy Bridge CPU
clocked at 2.6 GHz.

Experiments. We present three sets of experiments on the target constructions in
this section. In Section 6.5.2, we present the experimental results in basic settings,
where the auxiliary co-occurrence matrix is built from all of the documents allocated
for auxiliary information (50% of the total) using the 1000 most frequent keywords. We
set the number of queried keywords to 250, 500 or 750, and the security parameters are
allowed to vary. In Section 6.5.3, we set the number of queried keywords to 250, 500 or
750, and the security parameters to those suggested in the original papers, and vary the
number of keywords used to build auxiliary information between 1000 and 4000. Just
as before, all available documents are used in building auxiliary information. Finally,
in Section 6.5.4, we use anywhere from 2.5% to 20% of the documents (5% to 40% of
the 50% of documents allocated for auxiliary information) to build the auxiliary co-
occurrence matrix, as a means to simulate auxiliary information with different levels of
noise. The number of keywords used is set to 1000, and the number of queries is allowed
to vary from 250 to 750. The security parameters are set to the ones recommended in
the original papers.

6.5.2 Varying the Security Parameters of the Constructions

(a) PRT-EMM [98]. nmax is the maximum
query response length.

(b) FP-EMM [149].

(c) DP-EMM [149]. (d) DPAP-SE [41].

Figure 6.3: Experimental results with varying security parameters. The 1000 most frequent keywords
are used in auxiliary information.

The experimental results on PRT-EMM are shown in Figure 6.3a. We observe an
increasing query recovery rate with more queried keywords and larger λ. The attack
performs significantly worse with λ = 0. This is likely due to removal of co-occurrence

133

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

counts as the query response lengths are significantly shorter.

The experimental results on FP-EMM [149] are shown in Figure 6.3b. As expected,
the attack performs better with more queried keywords. The attack is able to recover
over 80% of the queried keywords if over 500 keywords have been queried, suggesting
that full padding is ineffective at adding noise to the co-occurrence pattern leakage.

The experimental results on DP-EMM are shown in Figure 6.3c. The attack does not
seem to be affected by the number of observed queries and the choice of ϵ much.

The results on DPAP-SE are shown in Figure 6.3d. The attack is able recover over
80% of the queries in all cases we have considered. The attack does not seem to perform
worse with fewer observed queries. Interestingly, the attack performs better with a
larger q. Intuitively, a larger q should generate more noise in the co-occurrence matrix,
but it works in the favour of our attack. One possible explanation is that the auxiliary
co-occurrence matrix is very different from the observed one, so our neighbourhood
generation subroutine over-fits the assignments.

6.5.3 Varying the Number of Keywords in Auxiliary Information

(a) PRT-EMM [98]. λ is set to 0.25nmax. (b) FP-EMM [149].

(c) DP-EMM [149]. ϵ = 0.2. (d) DPAP-SE [41]. The security parameters
used are m = 6, k = 2, p = 0.89 and q = 0.045.

Figure 6.4: Experimental results with varying number of keywords in auxiliary information.

Our experimental results on varying the number of keywords in the auxiliary information
are shown in Figure 6.4. The security parameters we used can be found in the captions.
Interestingly, the constructions behave very differently with respect to the number of
keywords in the auxiliary information. In particular, our attack on DPAP-SE [41] is
able to recover more than 70% of the keywords even with 4000 queried keywords. Our
attack on PRT-EMM [98] works reasonably well with large numbers of keywords in
the auxiliary information, managing over 50% query recovery rate except for the case

134

6.5. EMPIRICAL EVALUATION

with 250 queried keywords and 4000 keywords in the auxiliary information.

Our attacks are less successful on FP-EMM and DP-EMM [149]. For FP-EMM,
the query recovery rate falls rapidly as soon as the number of keywords in the auxiliary
information is greater than 2000, whereas our attack on DP-EMM has lower query
reconstruction rates with more than 3000 keywords in the auxiliary information. This
suggests that FP-EMM and DP-EMM (with our choice of parameters) introduces
more uncertainty than the other schemes.

6.5.4 Varying the Level of Noise in Auxiliary Information

Given that there is no widely accepted way of modelling noise in auxiliary information,
we opt to use different numbers of documents in auxiliary information as a way to
simulate different levels of noise – fewer documents means more noise. We use absolute
distance and modified probability score to measure the level of noise introduced in each
set of experiments we run. These measurements are defined as follows.

Absolute distance. Inspired by the Kolmogorov–Smirnov test [165], we define abso-
lute distance to be the maximum absolute difference between the target co-occurrence
matrix and auxiliary co-occurrence matrix:

D = max
i,j

∣∣∣∣M̄P (i),P (j)

N
−Mi,j

∣∣∣∣ ,
where M̄ is the co-occurrence matrix generated from the target database (without using
any construction on top), M is the co-occurrence matrix generated for auxiliary infor-
mation, P is the true keyword assignments between the queries and keywords, and N
is the number of documents in the target database. Intuitively, more noisy auxiliary
information means a larger absolute distance.

Modified Probability Score. The second measurement of the level of noise we
propose is the probability score. As the name suggests, the measurement is simply:

Pr
[
M̄ |M

]
.

It is clear that less noisy auxiliary information produces a larger probability score.

The probability score is very small for our datasets, so we use

D = log(− log(Pr
[
M̄ |M

]
))

as a modified probability score instead. Less noisy auxiliary information produces a
larger modified probability score just as before.

The measurements on the level of noise for the auxiliary datasets used in our attacks can
be found in Figure 6.5. It can be seen clearly that the absolute distance and modified
probability score increase as less documents are used as auxiliary information.

Our experimental results on varying auxiliary information are shown in Figure 6.6.
The security parameters we used can be found in the captions. We observed that the
attacks do not perform well when only 2.5% of the documents are used to construct
the auxiliary information. This is likely due to the fact that the keywords are not
identically distributed within the documents, as indicated by Figure 6.5. On the other

135

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

(a) Absolute distance. (b) Modified probability score.

Figure 6.5: Measurements of the level of noise of the auxiliary data in our experiments.

hand, our attacks have comparable query reconstruction rates with 10% and 50% of
the documents in the auxiliary information, suggesting that 10% of the documents is
sufficient as auxiliary information and that our attacks are robust in a noisy setting.

(a) PRT-EMM [98]. λ is set to 0.25nmax. (b) FP-EMM [149].

(c) DP-EMM [149]. ϵ is set to 0.2. (d) DPAP-SE [41]. The security parameters
used are m = 6, k = 2, p = 0.89 and q = 0.045.

Figure 6.6: Experimental results with varying auxiliary information.

6.5.5 Use of Stemming

This section provides additional experimental results on the Enron dataset after stem-
ming. We used the Porter Stemming Algorithm [153] implemented in the Natural lan-
guage toolkit [156] as our stemming algorithm. The security parameters used for the
constructions can be found in the captions.

Varying the Number of Keywords in Auxiliary Information. Our experimen-
tal results with varying number of keywords in auxiliary information is shown in Figure

136

6.6. DISCUSSION

6.7. The security parameters for the constructions used in our experiments can be found
in the captions. The experimental results with stemming agree with those without stem-
ming (Section 6.5.3), except for PRT-EMM, which performs worse with stemming as
the number of keywords in auxiliary information increases. This is possibly because
significantly more noise is introduced with stemming for PRT-EMM, as indicated by
the frequency distribution plot in Figure 6.2 .

(a) PRT-EMM [98]. λ is set to 0.25nmax. (b) FP-EMM [149].

(c) DP-EMM [149]. ϵ = 0.2. (d) DPAP-SE [41]. The security parameters
used are m = 6, k = 2, p = 0.89 and q = 0.045.

Figure 6.7: Experimental results with varying number of keywords in auxiliary information.

Varying the Level of Noise in Auxiliary Information. Our experimental re-
sults with varying level of noise in auxiliary information is shown in Figure 6.8. Just like
before, the most frequent 1000 keywords are used to build auxiliary information. The
security parameters for the constructions used in our experiments can be found in the
captions. The performance of our attacks on auxiliary information with stemmed key-
words is almost indistinguishable from those on auxiliary information with unmodified
keywords.

6.6 Discussion

In this section, we discuss the implications of our attacks, the choices made in our
experiments, and the practicality of our attacks.

On System-level leakage. As the state-of-the-art schemes do not scale for document
retrieval and there is no other secure primitive that does, the only efficient instantiation
of searchable encryption is to use one of the state-of-the-art schemes for the inverted
index and build the encrypted document array naively. Our attacks show that this leads
to insecure schemes.

137

CHAPTER 6. CRYPTANALYSIS II: SEARCHABLE ENCRYPTION

(a) PRT-EMM [98]. λ is set to 0.25nmax. (b) FP-EMM [149].

(c) DP-EMM [149]. ϵ is set to 0.2. (d) DPAP-SE [41]. The security parameters
used are m = 6, k = 2, p = 0.89 and q = 0.045.

Figure 6.8: Experimental results with varying auxiliary information.

In fact, this is not a limitation of the state-of-the-art schemes, but a limitation of the
duplication technique (which is used in almost all schemes in the literature) – as long as
we have to use it for the encrypted document array to suppress access-pattern leakage,
we will not be able to design a scalable searchable encryption scheme that is free from
access-pattern leakage.

The natural question to ask is therefore:

How to design an efficient and system-wide secure searchable encryption scheme?

We answer that question in Chapter 7.

New Research Directions. In Section 6.1, we have argued that the information
retrieval techniques in the literature are not suitable for searchable encryption. This is
because the available techniques considered the single-document retrieval problem and
they are not optimised for the many-document retrieval problem. This naturally raises
the question: How do we design information retrieval schemes that are optimised for

the many-document retrieval problem? The schemes we present in the next chapter are,

in some sense, work in this direction.

Another interesting research direction is the trade-off between security and efficiency.
Currently, the focus of the research is, by and large, on zero-knowledge information
retrieval techniques. On the other hand, if we know we can leak certain information in
an application without causing security/privacy problems, allowing for that leakage to
exist may allow for design of much more efficient schemes. These papers [178, 185] can
be used as the starting point of research in this direction.

138

6.6. DISCUSSION

On Differentially Private Access Patterns. Our attack on DPAP-SE [41]
serves as a warning about the potential pitfalls of applying techniques from the dif-
ferential privacy literature to STE without appropriately modelling and analysing the
resulting leakage. As stated by Chen et al. in [41]:

“d-privacy implies that the adversary cannot distinguish between queries using distinct
search terms that induce access patterns that are within specified distance (in terms of
a distance metric d) of one another.”

We believe, as demonstrated by our experiments, that d-privacy is not sufficient for query
privacy, as the statistical distance between queries are far apart and easy to distinguish.
Thus, provable guarantees in terms of differential privacy do not necessarily translate
into security guarantees against leakage-abuse attacks in general.

We note here that the authors of [41] did establish the security of DPAP-SE (for
certain sets of parameters) against existing attacks [94, 33], which necessarily rely on
exact co-occurrence leakage. However, it is perhaps unwise to assume that security
against a small set of known attacks translates to security against all possible attacks.
Rather, one should assume that attacks can always get stronger. This is precisely what
we demonstrate by showcasing stronger leakage-abuse attacks that work even in the
presence of “noisy” co-occurrence pattern leakage.

On the Practicality of Our Attacks. As inference attacks exploiting perturbed
access-pattern leakage and using only noisy auxiliary information, our attacks are more
practical than the previous attacks [94, 33, 17, 143]. However, there are three important
issues that impact the practicality of our attacks. These issues include modelling of
auxiliary information, modelling of query distribution, and understanding the security
impacts of our attack on different databases.

In our experiments, we use part of the database as auxiliary information. This is not
always possible in practice. This raises questions on how different auxiliary information
can be from the target database: do we need something that is statistically close, or some
generic distribution suffices (just like classic frequency analysis). In addition, we used
some of the most frequent keywords as the keyword universe and generated queries from
a subset of these keywords in our experiments. This is most likely not how users would
construct and query a database. In that sense, our experimental results can only be used
as indications of security vulnerabilities. Finally, we have only experimented with one
dataset. There can certainly be databases, for example, small databases with “poor” co-
occurrence information, that are resilient against our attacks. Nonetheless, our attacks
serve as a warning of excessive access-pattern leakage and system-level leakage.

This motivates us to propose a more robust security notion in Chapter 8. In addition
to capturing system-wide security, the notion allows for different choices of auxiliary
information, query distribution, and database. Hence, a security proof with respect to
this notion fully quantifies if an attack (with a specific setting) is viable on a scheme.

Extending Our Attacks. We could potentially extend/strengthen our attacks based
on other related attacks on property-preserving encryption/STE. For example, we could
use Bayesian inference as in [16] if a good model for the prior distribution could be
established.

139

Chapter 7

Construction: Searchable Encryption

As we have seen in Chapter 6, system-level leakage can lead to devastating attacks on
the state-of-the-art searchable encryption schemes. Unfortunately, no existing technique
can suppress this leakage in an efficient way – standard searchable encryption techniques
lead to impractical storage overhead and other space-efficient primitives are not time-
efficient.

This motivates SWiSSSE, a system-wide secure and practically efficient searchable en-
cryption scheme, which we present in this chapter as a middle ground between these
two classes of primitives. We build SWiSSSE gradually in this chapter. In Section 7.1,
we devise the system-wide security notion for searchable encryption and present the
basic data structure used by our scheme. Section 7.2 introduces the core ideas be-
hind SWiSSSE with a simplified construction. Section 7.4 develop the construction into
a system-wide secure static searchable encryption scheme. The leakage of the static
scheme is then carefully cryptanalysed in Section 7.5 with the techniques we have de-
veloped in Chapter 6. Section 7.6 extends the static construction into a dynamic one.
Section 7.7 presents an asymptotic performance analysis of SWiSSSE. Section 7.8 show-
cases practical efficiency of SWiSSSE. Finally, Section 7.9 summarises our contribution
with SWiSSSE and discusses future research problems.

Contents

7.1 Preliminaries and Background . 143

7.1.1 System-wide Security Definition for Searchable Symmetric
Encryption . 143

7.1.2 Key-value Store . 144

7.2 Simple Construction . 144

7.3 Bucketization . 147

7.4 Static SWiSSSE . 148

7.4.1 Changes from the Simplified Case 149

7.4.2 Formal Description of Static SWiSSSE 151

7.4.3 Correctness . 154

7.4.4 Formal Leakage Description 156

7.5 Cryptanalysis of Static SWiSSSE 160

7.5.1 Cryptanalysis with Known Attacks 160

7.5.2 Cryptanalysis with A Refined Attack 161

7.5.3 Experimental Results of the Refined Attack 163

7.5.4 Discussion . 165

7.6 Dynamic SWiSSSE . 166

141

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

7.6.1 Overview . 166

7.6.2 Formal Description of Dynamic SWiSSSE 168

7.6.3 Correctness . 172

7.6.4 Security . 172

7.6.5 Oblivious Operations . 174

7.6.6 Forward and Backward Privacy of Dynamic SWiSSSE . . . 176

7.7 Performance Analysis . 179

7.8 Experimental Results . 181

7.8.1 Experimental Setup . 181

7.8.2 Comparison to Other Searchable Encryption Schemes 184

7.9 Discussion . 185

142

7.1. PRELIMINARIES AND BACKGROUND

7.1 Preliminaries and Background

7.1.1 System-wide Security Definition for Searchable Symmetric
Encryption

Recall from Section 4.3 that the standard security notion for searchable symmetric
encryption captures security of the underlying scheme with a leakage function. A scheme
that is proven secure with leakage function L should not leak more than what L describes.
All of the schemes we have attacked in Chapter 6 are proven secure under this notion,
but only for the index – that is the very reason why our attacks work in the first place.

To formally prevent system-wide attacks, the security notion should not focus on the
index only. It should include document retrieval. We present the system-wide secure
notion in Definition 7.1 below.

It is helpful to distinguish between the different places where leakage can occur, so we
formally define a leakage function as a quadruple L = (LSetup,LSrch,LInsert,LDelete).

The security definition is parametric in the type of queries the adversary is allowed: if
these are only search queries then we are in the static setting whereas if they also include
update queries then we are in the dynamic scenario. Furthermore, we can distinguish
between non-adaptive and adaptive adversaries, depending on how they chose their
queries. In both cases the adversary attempts to distinguish between a real world (where
it interacts with the real scheme) and an ideal world (where it interacts with a simulator
which can only access the leakage from the real execution).

Definition 7.1 (Security of SSE schemes). Let Σ = (Setup,Srch, Insert,Delete) be
an SSE scheme and consider the following probabilistic experiment where A is a stateful
adversary, S is a stateful simulator and L be the leakage function.

RealΣ,A(1
λ) :

1. The adversary A selects a database DB and gives it to the challenger C.

2. The challenger C generates a key sk, and encrypts the database as EDB ←
Setup(1λ, sk,DB). The challenger C sends the encrypted database EDB to the
adversary A.

3. The adversary picks a polynomial number of queries q1, . . . ,qpoly(λ). For each
query, the challenger C interacts with the adversary A to execute the query pro-
tocol, where the challenger plays the client and the adversary plays the server.

4. Finally, the adversary A outputs a bit b ∈ {0, 1}.

IdealΣ,A,S(1
λ) :

1. The adversary A selects a database DB and gives LSetup(DB) to the simulator
S.

2. Using LSetup(DB), the simulator S generates an encrypted database EDB and
return it to the adversary A.

143

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

3. The adversary picks a polynomial number of queries q1, . . . , qpoly(λ). For each
query, the simulator S computes the transcript of the query using the appropriate
component of the leakage function L, and sends it to the client.

4. Finally, the adversary A outputs a bit b ∈ {0, 1}.

We say that Σ is L-secure, if there exists a probabilistic polynomial-time (PPT) simu-
lator S such that for all PPT adversary A,∣∣Pr[RealΣ,A(1

λ) = 1]− Pr[IdealΣ,A,S(1
λ) = 1]

∣∣ ≤ negl(λ).

We say that Σ is non-adaptively secure if the adversary A chooses the queries before
executing them. We say that Σ is adaptively secure if the adversary A can choose his
queries based on the past transcripts.

7.1.2 Key-value Store

The basic data structure used by all our constructions is a “key-value store”. This
data structure implements an associative array abstract data type that maps (non-
cryptographic) keys to values. The data structure supports efficient execution of the
following operations:

� init : takes no input and initialises an empty key-value store.

� get : takes as input a key k and returns the value associated to the key. We abuse
the notation and use get for getting the values for a set of keys too.

� put : takes as input a key-value pair (k, v) and sets the value associated to k to
v. We abuse the notation and use put for putting a set of key-value pairs too.

� contains : takes as input a key k and returns a boolean which indicates if k is one
of the keys in the key-value store.

� del: takes as input a set of keys I and remove the key-value pairs with the keys
in I from the key-value store.

� pop: takes as input a natural number n. It selects n uniformly random key-value
pairs from the store, removes them from the store and returns them as the result
of the call.

We do not explicitly distinguish between the name of the data structure and its state.
For example, if S is a key-value store we write S.get(k) for the result returned by get(k)
on the current state of S.

7.2 Simple Construction

To highlight some of the key techniques underlying SWiSSSE, we start by considering
a highly simplified setting where we have a static database in which each document
contains precisely one searchable keyword. We explain how to extend this approach to
the general case of arbitrarily many keywords per document in Section 7.4.

Server Storage. Our SSE scheme offloads the storage of two encrypted data struc-
tures to the server – an encrypted lookup table that is indexed by the set of keywords

144

7.2. SIMPLE CONSTRUCTION

in the database, and an encrypted document array, which is indexed by the documents.
For each keyword, the corresponding entry in the lookup table stores (in encrypted form)
pointers to the corresponding entries in the document array. For each document, the
document array stores (again in encrypted form) the contents of the document, the list
of keywords it contains, and some auxiliary information necessary for searches. Both
indices are implemented as key-value stores where keys are calculated using a pseu-
dorandom function, and values are encryptions under a symmetric key owned by the
client.

Bucketization. To limit keyword frequency leakage (i.e. in how many documents a
keyword appears), we use a frequency bucketization strategy, i.e., we pad the outsourced
database with fake occurrences of keywords as well as with additional fake documents.
For each entry in the keyword lookup index we store a mix of pointers pointing to
“real” and “fake” documents in the document array. Bucketization inherently introduces
a trade-off between security and efficiency, since the work done by the server is now
proportional to the “bucket frequency” as opposed to the true frequency of the keyword.
We expand more on this in Section 7.3.

Local Stash and Write-backs. If the server-side data structures use static ad-
dresses (meaning that a given address in the keyword lookup index and/or the docu-
ment array always corresponds to a fixed keyword and/or document), then the scheme
inherently suffers from “access pattern leakage”. To prevent such leakage (and hence
the known attacks exploiting them), we ensure that all accesses, even those involving
the same keyword, “touch” different parts of the server state. We achieve this through a
delayed, pseudorandom write-back technique: after each operation involving a keyword
we update the addresses of the keyword and of all documents containing it across the
encrypted data structures stored at the server.

More concretely, we first “locally stash” all the information returned by a server in
response to a keyword search query at the client. This information includes the list
of documents, the number of times the keyword has been accessed, and the number
of times each document containing the keyword has been accessed. Then, at a later
time, the client issues a “write-back operation”, wherein it flushes out this information
from its stash onto the encrypted data structures at the server, using fresh encryptions
and to a new, pseudorandomly generated set of addresses. The next time the client
issues a search query involving the same keyword, the server will access the new set of
addresses in both the lookup index and the document array, and will observe only the
fresh encryptions of the same (or updated) content.

Note that addresses as described above correspond to keys in the server’s key-value
stores. The client need only assume that the server provides a correct implementation
of the key-value store and avoid using colliding addresses/keys. We defer a formal
description of the stashing and write-back procedure to Section 7.4. Note also that,
intuitively, a larger client stash leads to a larger storage requirement on the client, but
lowers the frequency with which the client needs to flush its stash and trigger write-
back operations. This allows flexibility in trading-off client storage with bandwidth
requirements.

Garbage Collection. Observe that each write-back operation uses up newly gener-
ated addresses (keys) in the encrypted keyword lookup index and the encrypted docu-
ment array. The corresponding “old addresses” are never used in the future and can be

145

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

garbage-collected by the server after handling a query. This avoids the required server-
side storage growing linearly with the number of queries. Of course, at this point, the
data read is already stored in the stash of the client, so there is no data loss on account
of the garbage collection.

Similar Techniques in the Literature. The techniques we used in SWiSSSE have
been widely used in the literature.

Bucketization or padding has been widely used in the literature. This includes padding
in traffic volumes [72], storage systems [197], and structured encryption schemes [33,
26, 98, 149, 57]. The idea of stash and randomised write-back were heavily used in the
literature of ORAM [84, 171, 50, 189, 74, 147].

However, SWiSSSE is the first scheme that combines the two in the particular way and
it is the first time we are able to show that a “leaky” scheme is practically secure with
cryptanalysis.

Search Queries. A search query involving a keyword kw proceeds as follows:

1. The client first checks its private stash to see if the transcript of a previous query
involving kw already exists in its stash. If yes, it directly obtains the search
result from the stash and does not initiate any further interaction with the server.
Otherwise, the client sends a search token to the server and receives back the entry
corresponding to kw in the encrypted lookup index.

2. Next, the client decrypts the entry received from the server and retrieves the list
of pointers to addresses in the encrypted document array, which it sends across
to the server. The server retrieves the corresponding entries from the encrypted
document array and sends these back to the client.

3. Upon receiving the encrypted entries from the server, the client decrypts them,
discards any fake documents and retains the real ones.

4. Finally, the client caches the whole transcript of the search operation in its local
stash, so that its contents may be written-back at a later point in time.

Figure 7.1 illustrates with an example how keyword searches and delayed write-backs
affect the client stash and the state of the encrypted data structures at the server. Note
that write-backs are only triggered intermittently by the client whenever its private stash
is filled to capacity and needs to be flushed. Hence, the search latency is not affected
by the latency of write-back operations.

System-level Leakage. There are two kinds of system-level leakage potentially in-
curred by SWiSSSE – access-pattern leakage and write-back leakage. We provide here
an informal overview of what the server can infer from these leakage. We defer the
formal leakage profile enumeration and its cryptanalysis to Sections 7.4 and 7.5.

Observe that across both encrypted data structures, the server accesses any given address
at most twice, once during a write-back and once during a subsequent read operation (the
entry is subsequently deleted and the corresponding address is never re-used). Hence,
unlike most existing SSE schemes, including those in [53, 36, 35, 97, 116], the access-
pattern leakage in our simplified schemes does not allow the server to immediately infer

146

7.3. BUCKETIZATION

Figure 7.1: An illustration of the operations related to keyword search and delayed write-backs corre-
sponding to two keywords kw1 (which occurs in documents doc1 and doc2) and kw2 (which occurs in
documents doc3 and doc4). The query on kw2 is executed before the query on kw1. The figure on the
left shows the status of the client stash and the encrypted data structures before the query on kw1.
As soon as the query on kw1 is made, the corresponding entries in the encrypted data structures are
deleted by the server, while the client stash gets updated with the same information. The figure in the
middle reflects this. The figure on the right illustrates a delayed write-back operation for kw2.

whether the same keyword was queried twice. It also does not immediately reveal if
the same document identifier appears across searches pertaining to different keyword
queries.

The other potential source of leakage is the write-back operations. In order to make
it hard to correlate write-back operations relating to the same search operation, we
use a “randomized” write-back strategy. More specifically, write-backs corresponding
to multiple queries are randomly interspersed in time and do not follow any specific
ordering: what is written back during a particular write-back operation is pseudoran-
domly selected from everything sitting in the stash. Thus write-backs “mix and match”
across multiple queries from the client’s stash. Hence, each individual write-back that
occurs at time t may correspond to more than one query executed prior to time t, and
an adversarial server will find it hard to correlate a write-back operation to the query
to which it corresponds.

Intuitively, the ease with which the leakage can be exploited grows with the frequency of
write-back operations, and hence inversely with the size of the local stash at the client.
This provides yet another source of security-efficiency trade-off that we discuss in detail
subsequently.

7.3 Bucketization

As mentioned in Section 7.2, we mitigate volume leakage in SWiSSSE through a fre-
quency bucketization strategy over the set of keywords in the document collection. At a
high level, this entails dividing the list of all keywords across multiple buckets such that
each keyword in the same bucket is “padded” to have the same frequency as the most
frequent keyword in that bucket (also referred to as “bucket frequency”). The core aim
of bucketization is to prevent generic volume/frequency leakage-based attacks on SSE.

Bucketization can either be implemented as a pre-processing step on the raw docu-

147

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

ments (i.e. adding/removing keywords from the real documents and/or creating fake
documents) or during queries directly (i.e. retrieve more/less document identifiers and
documents depending on the bucket size). We pick the earlier option.

In this section, we detail the bucketization strategy used in our constructions. Later, in
Section 7.5, we present our cryptanalysis results on the bucketization strategy, propose
concrete parameters and discuss security versus efficiency trade-offs.

Worst-case padding. Note that a trivial bucketization strategy is “worst-case padding”
where every keyword is padded to have the same frequency. Although theoretically free
of volume leakage, this approach is extremely inefficient and either imposes a linear
search overhead [149] or a quadratic storage complexity, which we wish to avoid. Hence
we opt for strategies that, while theoretically less secure, offer significantly better leakage
versus efficiency trade-offs in practice.

Bucketization strategy. Our bucketization strategy works as follows. Firstly, we
arrange the keywords in decreasing order of frequency and divide them into buckets of
certain sizes (it can vary from bucket to bucket). We then pad with fake data so as to
equalise the frequency of all keywords in each bucket. Hence, the adversary can guess
the queried keyword with probability at most one over the bucket size if there is no
other leakage. The trade-off here is that larger buckets incur lower leakage but more
padding and so greater search overheads.

We provide in Section 7.5 an empirical evaluation of the security offered by this strategy
with different bucket sizes against co-occurrence leakage-based cryptanalysis over real-
world databases, as well as their impacts on the storage and communication overheads
of SWiSSSE.

Padding Strategies. Bucketization of keywords requires padding the original database
with fake data. A natural padding strategy is to add “fake occurrences” of each keyword
across the existing documents, such that the keyword frequencies grow to the desired
bucket frequency. This approach incurs only moderate additional storage overheads at
the server since the number of documents remains the same, and only the encrypted
lookup index grows in size. Indeed this suffices for the static version of SWiSSSE.

However, we choose to additionally insert fake documents containing uniformly random
keywords into the database, subject to the constraints imposed by the bucketization
strategy. While this requires more storage on the server, it supports dynamic databases
more elegantly, since once can perform document insertion by “transforming” the slot
for a fake document into a slot for a real one in a computationally indistinguishable
manner (see the dynamic version of SWiSSSE in Section 7.6 for details).

7.4 Static SWiSSSE

In this section, we formally describe SWiSSSE for general but static databases, where
each document in the database contains multiple searchable keywords. The main tech-
nical challenge compared to the simplified case described in Section 7.2 is that each time
we update a document address (during a write-back) we must also update all pointers to
that new address for the multiple keywords that appear in that document. We handle
this using auxiliary write-backs.

148

7.4. STATIC SWISSSE

We begin with an overview of the key changes from the simplified case, and then provide
the formal description. The formal description adheres to the definitions for SSE in
Section 7.1.1.

7.4.1 Changes from the Simplified Case

Auxiliary Write-Backs. At a high level, we opt for the following strategy in the
case of general databases: whenever a document docℓ is scheduled to be flushed from the
client’s stash and written back to the encrypted document array, the client additionally
schedules an auxiliary write-back for each keyword kwi occurring in docℓ.

To understand why auxiliary write-backs ensure search correctness, consider the follow-
ing three scenarios:

1. Suppose that a query on kwi is issued before docℓ is written back. At this point,
the client can directly retrieve docℓ from its private stash.

2. Next, suppose that a query on kwi is issued after docℓ has been written back but
before the auxiliary write-back for kwi is executed. In this case, the pointer in
the lookup index is invalid, but client can refer to its stash to check if an auxiliary
write-back for kwi is scheduled. This allows it to recover the new pointer and use
it for the search operation.

3. Finally, suppose that a query on kwi is issued after the auxiliary write-back for
kwi has been executed. This again does not affect search correctness because the
entry for kwi in the keyword lookup index now points to the “new” address for
docℓ in the document array.

Moreover, these write-backs impose no extra bookkeeping overhead at the client, since
they do not need to be executed in sync with the original write-back for the document.

Restructuring the Keyword Lookup Index. To support auxiliary write-backs,
we restructure the keyword lookup index. For simplicity of presentation, we present a
simplified version of the restructuring. This incurs some undesirable leakage, which we
address subsequently.

Instead of storing a single entry for each keyword kwi, we now store an entry for each
keyword-document pair (kwi, docℓ) such that docℓ contains kwi. The address for this
entry is generated as F (K, kwi||j||cntkwi

), where F is a PRF with key K, j is a counter
that runs from 0 to |DB(kwi)| − 1 (where DB(kwi) denotes the set of documents
containing keyword kwi), and cntkwi

is a per-key word counter held in the client’s stash
which records how many times kwi has appeared in search queries. Each entry stores
a ciphertext encrypting a single pointer to the address of some docℓ in the document
array.

In keeping with our “frequency bucketization strategy”, we also create and store in

the lookup index additional “fake” entries of the form (kwi, d̃ocℓ), where d̃ocℓ is a fake
document. The address for each such fake entry is generated as F (K, kwi||j′||cntkwi

),
where j′ is a counter that runs from |DB(kwi)| to one less than the bucket size for kwi.
Each such entry again stores a single ciphertext, now encrypting a pointer from kwi to

the fake document d̃ocℓ.

149

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Figure 7.2: An illustration of the operations related to keyword search and delayed normal/auxiliary
write-backs corresponding to keyword kw3 (which occurs in the document doc3) and document
doc2 (which contains multiple keywords, including kw1 and kw2), respectively. The figure on the
left shows the client stash and the encrypted data structures before the query on kw3. As soon as
the query on kw3 is made, the corresponding entries in the encrypted data structures are deleted by
the server, while the client stash gets updated with the same information. The figure in the middle
reflects this. Finally, the figure on the right illustrates a delayed auxiliary write-back operation for
doc2. Observe that doc2 gets written back (in encrypted form) to a pseudorandomly generated location
in the document array. Additionally, as part of the auxiliary write-backs associated with doc2, the
keyword-document pairs (w1, doc2) and (w2, doc2) get written back (in encrypted form) to pseudoran-
domly generated locations in the keyword lookup index.

This makes the lookup index amenable to auxiliary write-backs. In particular, the auxil-
iary write-back for a keyword kwi occurring in docℓ targets the address F (K, kwi||j||cntkwi

),
and updates specifically the pointer from kwi to docℓ.

Leakage to the Server. Note that each auxiliary write-back corresponding to a
keyword-document pair (kwi, docℓ) causes the server to overwrite an existing entry in the
keyword lookup index. This is never the case for “normal” write-back operations, since
they target freshly generated pseudorandom addresses. This leaks some information
to the server. In particular, the server is able to correlate each auxiliary write-back
involving a certain keyword kwi with the last normal write-back involving kwi (since
both sets of write-back operations target the same addresses in the lookup index). This
leaks the following information: (a) whether kwi was the subject of a previous query,
and if yes, (b) that kwi must have been queried at some point in time prior to the
corresponding normal write-back operation.

Auxiliary Addresses for Auxiliary Write-Backs. To prevent the server from
correlating auxiliary write-backs to the last normal write-back involving the same key-
word, we choose to dissociate the two sets of addresses. More concretely, we generate
separate sets of addresses for normal and auxiliary write-backs involving the same key-
word:

addrnorm(kwi, docℓ, cntkwi) = F (K, kwi||j||(2 ∗ cntkwi)),

addraux(kwi, docℓ, cntkwi
) = F (K, kwi||j||(2 ∗ cntkwi

+ 1)),

where j is again a counter that runs from 0 to |DB(kwi)| − 1 and cntkwi
is again the

per-key word counter held in the client’s stash which records how many times kwi has

150

7.4. STATIC SWISSSE

appeared in search queries. Similarly, for the fake documents associated with kwi, we
generate separate sets of addresses for normal and auxiliary write-backs:

addrnorm(kwi, d̃ocℓ, cntkwi
) = F (K, kwi||j||(2 ∗ cntkwi

)),

addraux(kwi, d̃ocℓ, cntkwi
) = F (K, kwi||j||(2 ∗ cntkwi

+ 1)),

where j′ is a counter that runs from |DB(kwi)| to one less than the bucket size for kwi.

Ensuring Search Correctness. Finally, to ensure that a search query on the key-
word kwi correctly takes into account all auxiliary write-backs involving kwi, the client
now requests the server to access both sets of write-back addresses for kwi – normal
and auxiliary – in the keyword lookup index. If both sets of addresses exist for a par-
ticular document, the client uses the pointer stored in the auxiliary write-back address;
otherwise it uses the pointer stored in the normal write-back address.

Figure 7.2 illustrates with an example how keyword searches and delayed normal/auxiliary
write-backs affect the client stash and the state of the encrypted data structures at the
server in the general version of static SWiSSSE.

7.4.2 Formal Description of Static SWiSSSE

We now turn the aforementioned ideas into a formal description of static SWiSSSE.

Notations. We write DB[i] to mean the i-th document in the database DB (by
assuming an explicit ordering). We write KW (DB[i]) to mean the set of keywords in
document DB[i].

SWiSSSE.Setup. Algorithm 7.1 describes the setup procedure of static SWiSSSE. The
description uses a symmetric encryption scheme (KGen1,Enc,Dec) and a pseudoran-
dom function F with key generation algorithm KGen2. Note that for readability, we
omit explicitly describing the keys used by these cryptographic functions.

Note that the server stores an encrypted lookup table Svr.EI (to store the map between
the keywords and the document addresses in the encrypted form) and an encrypted
document array Svr.EA (to store the map between the document addresses and the actual
documents in encrypted form). The addressing mechanism and encrypted contents for
these data structures are as described in Section 7.1.2.

Similarly, the client stores in its local stash a plaintext lookup index Clt.I (to store the
map between the keywords and where they are in the encrypted document array before
they are written back to the server), and a plaintext document array Clt.A (to store the
map between the document identifiers and the documents). In particular, the plaintext
document array is used to store the documents retrieved from the previous queries and
randomly select an appropriate number of documents for auxiliary write-backs.

To implement the keyword bucketization strategy, the client creates a “padded version”
DB′ of the original database DB before encrypting and offloading it to the server. More
concretely, the client selects a map G : KW → N. This map assigns each keyword to
a bucket, such that all keywords in the same bucket have the same frequency in the
padded database DB′.

151

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Algorithm 7.1 Static SWiSSSE.Setup

1: procedure Clt.Setup(1λ,DB)
2: /* Key generation */
3: Clt.sk1 ← KGen1(1

λ)
4: Clt.sk2 ← KGen2(1

λ)
5: Generate map G : KW → N for bucketization
6: Clt.G← G

7: /* Generate fake documents */
8: DB′ ← Fake Doc Gen(DB, Clt.G)
9: Clt.N ←

∣∣DB′
∣∣

10: /* Clt.N allows the client to locally maintain the size of the padded database.
This is used subsequently in the keyword search algorithm. */

11: EI, EA← {}
12: for i ∈ 1, . . . ,

∣∣DB′
∣∣ do

13: /* Get the set of keywords with counters */
14: x←

{
(kw, Clt.KWCtr[kw]) | kw ∈ KW (DB′[i])

}
15: /* Update the lookup index */
16: /* In the following expression, KW (DB′[i]) denotes the set of keywords in

the i-th document of the padded database. */
17: for kw ∈ KW (DB′[i]) do
18: j ← Clt.KWCtr[kw]
19: EI← EI ∪ (F (kw||j||0),Enc(id(DB′[i])))
20: /* Note that the zero at the end of the PRF input essentially indicates

that the number of search operations involving kw is initially 0 at setup */
21: Clt.KWCtr[kw]← Clt.KWCtr[kw] + 1

22: /* Insert the encrypted document */
23: EA← EA ∪ (F (i||0),Enc(x||DB′[i]))

24: /* Reset the keyword counter */
25: for kw ∈ KW (DB′) do
26: Clt.KWCtr[kw]← 0

27: /* Initialise the stash */
28: Clt.I.init()
29: Clt.A.init()
30: Send (EI, EA) to the server

31: procedure Svr.Setup(EI, EA)
32: Svr.EI.init()
33: Svr.EA.init()
34: Svr.EI.put(EI)
35: Svr.EA.put(EA)

Let |DB(kw)| and
∣∣DB′(kw)

∣∣ denote the frequency of the keyword kw in the original
and padded databases, respectively. The map G allows the client to determine a padding
procedure Fake Doc Gen; the procedure pads the input database DB with “fake”
documents to obtain a padded version DB′ such that

∣∣DB′(kw)
∣∣ = G(kw) for each

keyword kw. The client may use any padding strategy to achieve the desired keyword
frequencies as specified by G.

Additionally, to suppress volume leakage, the document addresses and the document
contents are padded to fixed lengths ℓ0 and ℓ1 respectively (both assumed to be pub-

152

7.4. STATIC SWISSSE

Algorithm 7.2 Static SWiSSSE.Srch: Address Retrieval Sub-Routine

1: procedure Clt.TokenGen(kw)
2: L← {}
3: /* Generate all the possible addresses for the keyword */
4: for j ∈ 0, . . . , Clt.G(kw)− 1 do
5: L← L ∪ {F (kw||j||2 ∗ Clt.KWCtr[kw])}
6: L← L ∪ {F (kw||j||2 ∗ Clt.KWCtr[kw] + 1)}
7: /* Roll forward the counter corresponding to kw in preparation for the next query

on kw */
8: Clt.KWCtr[kw]← Clt.KWCtr[kw] + 1
9: Send L to the server

10: procedure Svr.Index Lookup(L)
11: Send Svr.EI.get(L) to the client

Algorithm 7.3 Static SWiSSSE.Srch: Encrypted Document Retrieval Sub-Routine

1: procedure Clt.Document Retrieval(kw,EL)
2: L← the latest addresses of the keywords from Dec(EL) if they are not in Clt.I
3: Add random document identifiers between 0 and Clt.N − 1 that are not in the

stash to L until |L| = 2 · Clt.G(kw)
4: M ← {}
5: for id ∈ L do
6: /* Compute the document addresses */
7: M ←M ∪ F (id||Clt.ArrCtr[id])
8: /* Increase the counters */
9: Clt.ArrCtr[id]← Clt.ArrCtr[id] + 1

10: Send M to the server

11: procedure Svr.Document Retrieval(M)
12: Send Svr.EA.get(M) to the client

lic parameters) prior to encryption. Note, however, that we do not perform worst-case
document padding, which would potentially incur huge storage and communication over-
heads. Instead we use a fragmentation strategy where each document is fragmented into
sub-documents of size ℓ1; so we only really perform padding for the last fragment in case
it has size less than ℓ1. We avoid these details in Algorithm 7.1 for the sake of readability.

SWiSSSE.Srch. We now describe the keyword query procedure for SWiSSSE. For
ease of representation, SWiSSSE.Srch is broken up into three sub-routines described
in Algorithms 7.2, 7.3 and 7.4. Again, for readability, we omit explicitly describing the
keys used by the cryptographic functions in these algorithms.

These algorithms formally depict the following steps taken by the client during a keyword
query:

� Algorithm 7.2: The client generates a search token to look up both the normal
and auxiliary write-back addresses for kwi in the encrypted keyword lookup index,
receives the corresponding encrypted entries from the server, and decrypts the
results locally to identify the relevant entries in the encrypted document array. It

153

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Algorithm 7.4 Static SWiSSSE.Srch: Auxiliary Write-Back Sub-Routine

1: procedure Clt.Write Back(M, k̄w)
2: UA← {}
3: /* Get random documents from the stash, bi is a bit to indicate if kwi was the

leading keyword */
4: D ← Clt.A.pop(⌊|Clt.A| /2⌋)
5: for ({(kwi, ji, bi)} , doc) ∈ D do
6: /* Encrypt the new documents */
7: UA← UA ∪ {(F (id(doc)||Clt.ArrCtr[id(doc)]), Enc({(kwi, ji)} ||doc))}
8: /* Update the stash for the lookup index */
9: for (kw, j, b) ∈ {(kwi, ji, bi)} do

10: Clt.I.put((F (kw||j||2 ∗ Clt.KWCtr[kw] + b),Enc(id(doc))))

11: /* Decrypt the documents retrieved and insert them into the document array */
12: Clt.A.put(Dec(M))
13: Send (Clt.I.pop(⌊|Clt.I| /2⌋), UA)

14: procedure Svr.Write Back((UI, UA))
15: Svr.EI.put(UI)
16: Svr.EA.put(UA)

also updates the counter keeping track of the number of search operations involving
kwi (this helps generate the new write-back address for kwi in the encrypted
keyword lookup index).

� Algorithm 7.3: The client then generates a search token and retrieves the corre-
sponding encrypted documents from the encrypted document array at the server,
and decrypts the results locally to filter out the fake documents. For each ac-
cessed document, the client updates the local counter keeping track of the number
of times the document has been addressed (this helps generate the new write-back
address for kwi in the encrypted document array).

� Algorithm 7.4: Finally, the client updates its local stash with the documents re-
trieved in the previous step. These will be written back to the encrypted document
array at the server via normal auxiliary write-backs at a later point of time. Each
write-back operation involves the client randomly sampling a certain proportion
of the documents and half of the lookup indices from its local stash (created over
multiple search operations in the past), and writing them back to the correspond-
ing encrypted data structures at the server. For the specific instance described in
Algorithm 7.4, this fraction is set to one-half; however this can also be a parameter
input to the write-back sub-routine.

7.4.3 Correctness

The scheme as described does not have perfect correctness: the addresses where var-
ious information is stored are generated with a PRF and so the client may generate
repeated addresses unintentionally and overwrite the encrypted document addresses or
the encrypted documents. Worse still, it is possible that the queries are adversarially
controlled to maximize the failure probability.

154

7.4. STATIC SWISSSE

The following theorem establishes an upper bound on the advantage of any adversary
against the correctness of our scheme. The probability is upper-bounded by negligible
terms which account for collisions in the outputs of the PRF used in the construction,
and the security of the PRF itself.

Theorem 7.1. [Correctness of Static SWiSSSE] Let |DB| and |KW {DB}| denote the
total number of documents and document-keyword pairs, respectively, in the database
DB, and let l denote the output length of the PRF F used in static SWiSSSE. Then the
advantage of any adversary A, which issues at most k queries, in breaking the correctness
of static SWiSSSE over the database DB is at most:(

|DB|2 + 4t0 |DB|+ 4 |KW {DB}|2 + 8t1 |KW {DB}|
)

2l+1

+Adv
PRF,|DB|+2t0
F,B + Adv

PRF,2|KW{DB}|+2t1
F,C ,

where t0 = k ·maxk w |DB(kw)|, t1 = k ·maxk w |kw {DB(kw)}|, and B and C denote
probabilistic polynomial-time adversaries in independent security experiments against
the PRF F .

Proof. We use standard game-hopping to reduce the correctness game G to finding a pair
of collisions in a game where the adversary interacts with truly random functions. Let
game G2 be the game where the PRF used to generate the addresses for the encrypted
documents is replaced by a truly random function. The number of addresses used for
the encrypted documents with k queries is at most |DB|+2k ·maxk w |DB(kw)|, so the

difference in the advantages between game G and G2 is Adv
PRF,|DB|+2k·maxk w|DB(kw)|
F .

In our static construction, for database DB, we use |DB| addresses to store the en-
crypted documents during initialisation, which means the probability of a pair of colli-
sions is upper-bounded by |DB|2 · 2−(l+1).

In the subsequent write-backs, the number of active addresses in the encrypted document
array is at most |DB| and the number of new addresses we generate is upper bounded
by maxk w |DB(kw)|. This means that there are at most |DB| ·maxk w |DB(kw)| new
potential pairs of collisions for each query. Using the birthday bound, the probability of
finding a collision in the addresses of the encrypted document array in each write-back
is upper bounded by |DB| ·maxk w |DB(kw)| · 2−l.

Similarly, we define game G3 be the game where the PRF used to generate the ad-
dresses for the encrypted lookup table is replaced with a truly random function. The
number of addresses used for the encrypted lookup table is at most 2 |KW{DB}| +
2maxk w |DB {kw}|, so the difference in the advantages between game G2 and G3 is

Adv
PRF,2KW{DB}+2maxk w|DB{kw}|
F .

Using a similar argument as above, the probability of a pair of collision in the addresses
for the encrypted lookup table during initialisation is at most 4 |KW{DB}|2 · 2−(l+1),
and the probability of a pair of collision for the encrypted lookup table for each query
is at most 4 |KW{DB}| ·maxk w |DB {kw}| · 2l.

Combining everything together with a union bound on all k queries, we conclude that

155

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

the failure probability of the construction is at most(
|DB|2 + 4t0 |DB|+ 4 |KW {DB}|2 + 8t1 |KW {DB}|

)
· 2−(l+1)

+Adv
PRF,|DB|+2t0
F + Adv

PRF,2KW{DB}+2t1
F ,

where t0 = k ·maxk w |DB(kw)| and t1 = k ·maxk w |kw {DB(kw)}|.

7.4.4 Formal Leakage Description

We now formally describe the leakage profile for SWiSSSE with respect to static databases.
Following the approach introduced by previous works on SSE (such as [53] and [36]),
we use a simulation-based framework where a PPT adversary is required to distinguish
between the real world (where the adversary interacts with a real execution of SWiSSSE
that uses the secret key) and the ideal world (where the adversary interacts with a sim-
ulator that only has access to the described leakage profile for SWiSSSE). We say that
the enumeration is provably sound if no PPT adversary can distinguish between these
two worlds with non-negligible advantage over a random guess.

We formally describe the leakage of static SWiSSSE. Unlike most prior SSE construc-
tions, the leakage function for SWiSSSE is stateful. This follows naturally from the
fact that the search protocol in SWiSSSE makes abundant usage of random address
accesses across the encrypted data structures at the server. We use a stateful definition
to capture the leakage from such random accesses.

Leakage at Setup. At setup, the client offloads the encrypted lookup index and the
encrypted document array to the server. These data structures are essentially key-value
stores with pseudorandomly generated keys/addresses and values/entries that are en-
crypted under an IND-CPA secure encryption scheme. Hence, at setup, the server learns
no information about the original database DB other than the number of documents
in the padded database DB′ (including both real and fake documents), and the total
number of keyword-document pairs post-bucketization. Formally, we have:

LSetup
Σ (DB, G) = (

∣∣DB′
∣∣ , ∣∣KW

{
DB′

}∣∣ ,StL),
where Σ denotes a concrete instance of static SWiSSSE.

Note that the leakage function is stateful; it maintains in StL a realisation of the padded
database which is used later by the leakage function for the search queries.

Leakage during Searches and Write-Backs. At a high level, each search query
reveals the following to the server:

1. The set of normal and auxiliary write-back addresses in the encrypted keyword
lookup index corresponding to the queried keyword (but not precisely which of
these are normal and which of these are auxiliary).

2. The set of addresses in the encrypted document array for the real and fake docu-
ments containing the queried keyword (but not precisely the document identifiers,
or even which of the addresses correspond to real documents and the fake docu-
ments, respectively).

156

7.4. STATIC SWISSSE

Similarly, each write-back operation reveals to the server the set of addresses in the
encrypted keyword lookup index and the encrypted document array that are written to
using content from the stash.

We capture these leakage using a probabilistic and stateful leakage function, described
formally in Algorithm 7.5, again for an instance Σ of the static SWiSSSE scheme. The
state of the leakage function contains a realisation of the padded database, everything
in the stash of the client, and two data structures, namely the lookup history IndHist
and the array-access history ArrHist, which we describe formally below.

Lookup and Array-Access Histories. We define the lookup history IndHist and
the array-access history ArrHist to be lists of records corresponding to operations on
the encrypted keyword lookup index and the encrypted document array, respectively.
These capture the access pattern information leakaged during searches in SWiSSSE.

Formally, each lookup (respectively, array-access) record is of the form (i, b, t), where i is
a unique identifier associated with the index (respectively, array) address being operated
on, b is a bit which indicates whether the entry corresponds to a read operation (b = 0)
or a write operation (b = 1), and t is the timestamp of the query that resulted in the
operation. We also overload notation and let IndHist [{ij}] and ArrHist [{ij}] be the
sets of all records corresponding to a given set {ij} of index/array addresses, i.e.,

IndHist [{ij}] = {(i, b, t) | (i, b, t) ∈ IndHist ∧ i ∈ {ij}} .

ArrHist [{ij}] = {(i, b, t) | (i, b, t) ∈ ArrHist ∧ i ∈ {ij}} .

The following theorem formalizes the security of SWiSSSE.

Theorem 7.2 (Security of Static SWiSSSE). Let LSetup
Σ and LSrch

Σ be the leakage func-

tions defined above. Then the instance Σ of the static SWiSSSE scheme is
(
LSetup
Σ ,LSrch

Σ

)
-

secure.

Proof. The proof proceeds with a hybrid argument. LetDB be a database and q1, . . . ,qk

be the set of single-keyword queries with the leading keywords kw1, . . . , kwk. Let
AdvPRF,t

F (λ) be the PRF advantage of the PRF F with at most t evaluations used

in the construction and AdvIND−CPA
Σ′ (λ) be the IND-CPA advantage of the scheme Σ′

used for lookup address encryption and document content encryption. Finally, we as-
sume the plaintext of the lookup addresses is padded to ℓ0 and the plaintext of the
document contents is padded to ℓ1. The simulator has access to ℓ0 and ℓ1 as they are
public parameters.

(Game 0.) Let the real execution of the scheme on the database DB with queries
q1, . . . ,qk be game G0. Then we have that for any adversary A, Pr[RealΣ,A(1

λ) = 1] =
Pr[G0 = 1].

(Game 1.) We define game G1 by letting the leakage function generate the padded
database and replace the addresses in the encrypted lookup index and the encrypted
documents with outputs generated from a truly random function RF with output length
l. We omit the conversion between an integer to a string of appropriate length in the
use of the random function for simplicity. In addition, the encryptions of the document
addresses and the documents themselves are replaced with encryptions of zeros of length
ℓ0 and ℓ1 respectively.

157

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Algorithm 7.5 Static SWiSSSE: Leakage Function for Searches and Write-Backs

1: procedure LSrch
Σ (q,StL)

2: (Srch, kw)← query
3: I, A, I′, A′, KWCtr, ArrCtr, IndHist,ArrHist← StL
4: /* Leakage from the query tokens */
5: IndHist← IndHist ∪ {(T(k̄w, i, 2 ∗ KWCtr[¯kw1]), 0, k) | i ∈ 0, . . . , G(¯kw1)− 1}
6: IndHist← IndHist∪{(T(k̄w, i, 2∗KWCtr[¯kw1]+1), 0, k) | i ∈ 0, . . . , G(¯kw1)−1}
7: KWCtr[kw]← KWCtr[kw] + 1
8: /* Leakage from document array access */
9: L← I[kw]

10: while |L| < 2 · Clt.G(kw) do
11: id← Rand(|A|)
12: if id /∈ {id(doc) | doc ∈ A′} then
13: L← L ∪ id
14: ArrCtr[L]← ArrCtr[L] + 1
15: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

16: /* Leakage from write-back */
17: UI ← I′.pop(|I′| /2)
18: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
19: UA← A′.Pop(⌊|UA| /2⌋)
20: ArrHist ← ArrHist ∪ {(T(id(doc), ArrCtr[id(doc)]), 1, k) | ({wi, ji, bi} , doc) ∈

UA}

21: /* Update the stash for consistency */
22: I′ ← I′ ∪ Index(UA, KWCtr)
23: A′ ← A′ ∪Retrieve(A[L], kw)
24: StL ← (I, A, I′, A′, KWCtr, ArrCtr, IndHist,ArrHist)
25: Return (IndHist,ArrHist),StL

26: procedure Index(UA, KWCtr)
27: I← {}
28: for ({kwi, ji, bi} , doc) ∈ UA do
29: I← I ∪ {T(kw, j, 2 ∗ KWCtr[kw] + b) | (kw, j, b) ∈ {kwi, ji, bi}}
30: Return I

31: procedure Retrieve(A, kw)
32: A′ ← {}
33: for ({kwi, ji} , doc) ∈ A do
34: A′ ← A′ ∪ {kwi, ji, (kwi = kw)} , doc)
35: Return A′

The number of addresses that needs to be generated in the initialisation step is equal to
t0 = 2

∑
kw G(kw) + |DB|, and an equal number of encryptions need to be created, so

the difference in advantages between G0 and G1 is upper-bounded by AdvPRF,t0
F + t0 ·

AdvIND−CPA
Σ′ (λ).

(Game 2.) In game G2, we replace the single-keyword query algorithm with a simulator
that has access to the output of the leakage function only. As before, the addresses are
generated by applying the truly random function RF on the indices provided by the

158

7.4. STATIC SWISSSE

Algorithm 7.6 Game G1 (static construction). Only the setup step is changed.

1: procedure Clt.Setup(DB)

2: (N, p,StL)← LSetup
Σ (DB, G)

3: EI, EA← []
4: /* Generate the encrypted documents */
5: for i = 0, . . . , N − 1 do
6: EA.Insert(RF(2i),Enc(0l0))

7: /* Generate the encrypted document addresses */
8: for i = 0, . . . , 2p do
9: EI.Insert(RF(2i+ 1),Enc(0l1))

10: Send (EI, EA) to the server

Algorithm 7.7 Game G2 (static construction).

1: procedure Clt.Srch(q)
2: (IndHist,ArrHist),StL ← LSrch

Σ (DB,q,StL)

3: /* Encrypted document array address retrieval */
4: L← {}
5: t′ ← the number of single-keyword queries executed
6: for i ∈ {i | (i, b, t) ∈ IndHist, b = 0, t = t′} do
7: L← L ∪RF(2i+ 1)

8: Send L to the server

9: /* Encrypted document retrieval */
10: L← {}
11: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 0, t = t′} do
12: L← L ∪RF(2i)

13: Send L to the server

14: /* Write-back */
15: UI, UA← {}
16: for i ∈ {i | (i, b, t) ∈ IndHist, b = 1, t = t′} do
17: UI ← UI ∪ (RF(2i+ 1),Enc(0l0))

18: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 1, t = t′} do
19: UA← UA ∪ (RF(2i),Enc(0l1))

20: Send (UI, UA) to the server

leakage function. The encrypted documents and the encrypted document addresses are
generated with encryptions of zeros of appropriate length. The way the addresses are
generated is consistent with game G1 as the only difference between the two games is
that the leakage function is responsible for randomising the write-backs.

The number of addresses the algorithm has to generate is upper-bounded by t1 =
2
∑

i G(KW (qi)) + 2
∑

i |DB(KW (qi))|, and the number of encryptions needs to be
created is upper-bounded by the same t1. This means the difference in advantages
between G1 and G2 is upper-bounded by AdvPRF,t1

F + t1 · AdvIND−CPA
Σ′ (λ).

(Conclusion.) By combining the two games above, we see that the difference in ad-

vantages between G0 and G2 is at most AdvPRF,t0+t1
F +(t0 + t1) · AdvIND−CPA

Σ′ (λ).

159

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

7.5 Cryptanalysis of Static SWiSSSE

Having established the precise leakage of static SWiSSSE, we now turn to its cryptanal-
ysis. For a corresponding analysis of dynamic SWiSSSE, see Section 7.6. We begin by
briefly arguing that SWiSSSE is resilient to most well-known cryptanalytic techniques in
the literature, including the query recovery attacks proposed in [94, 33], the document
recovery attacks proposed in [33] and the file-injection attacks proposed in [200]. We
then present a highly refined cryptanalytic technique based on system-level leakage with
a much stronger attack model than assumed by these existing attacks, and demonstrate
that for appropriately chosen bucketization parameters, SWiSSSE manages to resist
even this attack.

7.5.1 Cryptanalysis with Known Attacks

Query and Document Recovery Attacks. Existing query recovery attacks (such
as those proposed in [94] and [33]) and document recovery attacks (such as those pro-
posed in [33]) typically rely on a combination of three kinds of deterministic leakage
– volume/frequency leakage (i.e., the adversary deterministically recovers the number
of documents matching a given query), document access pattern leakage (i.e., the ad-
versary deterministically recovers which (encrypted) document identifiers are accessed
across two or more queries), and query equality leakage (i.e., the adversary recovers
whether two or more queries correspond to the same underlying keyword).

Through the use of keyword bucketization, SWiSSSE makes it possible to suppress
volume leakage sufficiently to prevent these attacks (we subsequently discuss in detail
the appropriate bucket-sizes needed). Similarly, the use of delayed pseudorandom write-
backs corresponding to each query prevents the adversary from deterministically learning
the document access patterns and the query equality patterns across multiple queries.
In summary, existing cryptanalytic techniques for query and document recovery cannot
be applied directly to cryptanalyse the leakage profile for SWiSSSE.

File-Injection Attacks. File-injection attacks [200] are an extremely powerful class
of query recovery attacks in which the adversary has the power to inject maliciously
crafted files into the database. The adversary uses the occurrences of these files in query
outputs to identify the keyword(s) underlying a given query. Once again, query recovery
via file-injection relies crucially on the document access pattern leakage. In particular,
it requires the adversary to identify which of the maliciously crafted files appear in the
outcome of a given query (either from accesses to the search index or to the encrypted
document array).

In SWiSSSE, this leakage is not available during search queries as the document identi-
fiers matching a given query are never revealed in the clear, and the locations of docu-
ments in the encrypted document array change with every write-back operation (making
it hard for the adversary to trace the occurrence of malicious documents across queries).
Hence, file-injection attacks cannot be applied directly to cryptanalyse the leakage profile
for SWiSSSE.

160

7.5. CRYPTANALYSIS OF STATIC SWISSSE

7.5.2 Cryptanalysis with A Refined Attack

To examine security of SWiSSSE fully, we develop a new co-occurrence pattern leakage-
abuse attack which aims at query recovery, by refining our attacks in Chapter 6. We
have also made the attack as “unfriendly” for the scheme as possible. In particular, we
have:

� given the adversary the exact database as auxiliary information as opposed to a
noisy distribution of it;

� used all keywords in the keyword universe as queried keywords;

� given the adversary more leakage than what SWiSSSE leaks.

Even then, we show that with appropriate choice of bucketization strategy, SWiSSSE is
secure against our refined attack.

Attack Assumption. Let M : {1, . . . |kw(DB)|}2 → N to be a two-dimensional co-
occurrence matrix that maps pairs of keywords to the number of documents containing
them both. Formally, we have

Mi,j = |DB(kwi) ∩DB(kwj)| .

It is important to note that this matrix is defined with respect to the original database (be-
fore padding/bucketization). We assume here that at the beginning of the attack, the
adversary has an exact copy of matrix M . This is a very strong assumption, because it
is not obvious how the attacker might obtain this information.

We also simulate an observed co-occurrence matrix M̄ as follows: let M ′ be the co-
occurrence matrix for the padded version of the database. We simulate M̄i,j as a value
sampled according to a binomial distribution as follows:

M̄i,j ← Binom(M ′i,j , 1/q),

where 1/q is a parameter of SWiSSSE denoting the fraction of the local stash flushed
out by the client in each write-back operation (we use q = 2 for our cryptanalysis
experiments in keeping with the description in Section 7.4.2). We assume that the
attacker has access to a randomly permuted version of M̄ , which we abuse the notion
M̄ to denote it.

Again, this is a very strong assumption, because inferring the matrix M̄ from the leakage
profile of SWiSSSE is highly non-trivial. As already discussed, the intermittent and
pseudorandom nature of the write-back operations corresponding to each search query
makes it very hard for the attacker to identify if the same document appears across
multiple search queries. Even in an ideal scenario where the client flushes out its stash
after every q search queries, the attacker can guess any given entry M̄ with probability
at most 1/q. In an actual implementation, the client only partially flushes its stash each
time and writes-back documents from multiple search queries in a single batch, making
such inferences even harder.

We note that search-pattern leakage is necessary to construct the above co-occurrence
matrix. This is given to the adversary in our attack but SWiSSSE does not leak it with
certainty.

161

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Attack Strategy. Given auxiliary information M and observed co-occurrence ma-
trix M̄ , the goal of the adversary is to identify a permutation P : {1, . . . , |kw(DB)|} →
{1, . . . , |kw(DB)|} which assigns each queried keyword in M̄ to keywords in the database.

Similar to the attacks in Chapter 6, we build a probabilistic model of the observed
co-occurrence matrix M̄ , derive the likelihood function for any observed co-occurrence
matrix, and use simulated annealing to find the best permutation P which maximizes
the likelihood function.

Derivation of the Distribution of the Co-occurrence Matrix There are two
steps in the derivation of the distribution of the co-occurrence matrix. In the first step,
we derive the distribution of the co-occurrence matrix of the padded database, that is,
the database after the keywords are bucketized and fake keywords are added. Secondly,
we derive the distribution of the observed co-occurrence matrix.

Call the co-occurrence matrix of the padded database M ′. Recall that fake keywords are
added to the database to achieve bucketization. This creates fake co-occurrence counts
in M ′. Without loss of generality, let us focus on co-occurrence count M ′i,j , for i ̸= j.
There are three ways for M ′i,j to get fake co-occurrence counts. Firstly, it can be the
case that there is a document with the keyword kwi and keyword kwj is added to it.
Secondly, it can be the case that both the keywords kwi and kwj are added to the same
document that did not have them before. Finally, it can be the case that there is a
document with keyword kwj and keyword kwi is added to it. Let d be the total number
of documents after padding, then the number of co-occurrence counts generated by each
way can be expressed as a hypergeometric distribution with parameters,

(d−Mi,j ,Mi,i −Mi,j , M̄j,j −Mj,j),

(d−Mi,j , M̄i,i −Mi,i, M̄j,j −Mj,j),

(d−Mi,j ,Mj,j −Mi,j , M̄i,i −Mi,i)

respectively. And M ′i,j (for i ̸= j) is simply the sum of Mi,j and the realisations of the
three hypergeometric random variables. The diagonal entries of M ′ are simply the size
of the buckets for which the keywords are assigned to.

We are now ready to derive the distribution of the observed co-occurrence. Here, the
co-occurrence counts are obtained from the number of shared documents written back
by the previous flush operation and the current query – documents in this intersection
have a high change of containing the keyword queried in the previous iteration and in
the current one. In our attack, we assume that half of the documents (q = 2) from the
stash are written back to the server, which means the observed co-occurrence count M̄i,j

(for i ̸= j) can be expressed as:

M̄i,j ← Binom(M ′i,j , 0.5).

The diagonal entries of M are simply the size of the buckets for which the keywords are
assigned to.

Derivation of the Likelihood Function. The likelihood function for this attack
can be derived in the same way as that in Section 6.4.4. The only difference between
the derivations is that M here refers to the exact database whereas M in Section 6.4.4
refers to a (noisy) distribution of it.

The likelihood is decomposed in the exact same way so the details are omitted here.

162

7.5. CRYPTANALYSIS OF STATIC SWISSSE

Briefly, we can express the likelihood as:

L
[
P | M̄,M

]
=

∑
M ′∈NN×N

Pr
[
M̄ |M ′, P

]
Pr [M ′ |M] ,

where N is the number of keywords and NN×N is all N by N natural number valued
matrices.

The first term in the likelihood decomposition is the probability of observing the co-
occurrence matrix M given co-occurrence matrix M ′ of the padded database and per-
mutation P . It can be decomposed as:

Pr
[
M̄ |M ′, P

]
=
∏
i<j

Pr
[
M̄i,j |M ′i,j , P

]
=
∏
i<j

Pr
[
Binom(M ′i,j , 0.5) = M̄P (i),P (j)

]
.

The second term in the likelihood decomposition is the probability of observing M ′ as
the co-occurrence matrix of the padded database given M . This probability can be
expressed as:

Pr [M ′ |M]

=
∏
i<j

Pr
[
M ′i,j |Mi,j

]
=
∏
i<j

Prob

[
Mi,j +HyperGeom(|DB| −Mi,j ,Mi,i −Mi,j , M̄j,j −Mj,j)

+HyperGeom((d−Mi,j , M̄i,i −Mi,i, M̄j,j −Mj,j)

+HyperGeom(d−Mi,j ,Mj,j −Mi,j , M̄i,i −Mi,i) = M ′i,j

]
.

Computational Approximations and Optimisations. We use the same computa-
tional approximations and optimisation techniques we have described in Section 6.4.4.

7.5.3 Experimental Results of the Refined Attack

We run our refined attack against the Enron email corpus [194]. See Section 6.1.1.2 for
a description of the dataset. We generate co-occurrence matrices from 400000 emails,
with keywords from different frequency ranges. Specifically, we arranged the keywords
in decreasing order of frequency and chose 800 of the most frequent keywords and 800 of
the keywords from the 95-th to 75-th percentile frequencies respectively. We constructed
the co-occurrence matrices M and M̄ with varying bucket sizes (in the range of 50 to
400) for each of these keyword sets. We repeated the attack for 100 times with freshly
generated M̄ matrices, and the average recovery rates are reported in Figure 7.3.

We observe that the keyword recovery rates do not follow a linear trend. For the most
frequent keywords, we see very high query recovery rates, but as soon as we get to 85-th

163

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Figure 7.3: The average recovery rate over 100 executions of our simulated-annealing based cryptanalytic
attack for keywords in various frequency percentiles. The recovery rate is measured as the fraction
of keywords guessed correctly across all buckets in a single execution of the attack. The keyword
frequencies of the buckets are set to double of the maximum frequencies of the keywords in the given
buckets.

to 90-th percentile, the query recovery rate drops to almost zero. But as the keyword
frequency decreases even further into the 80-th percentile, we begin to see significant
query recovery rate for small bucket sizes again.

This phenomenon is likely due to the interaction between real and fake co-occurrence
counts in different frequency ranges. Concretely, for the Enron dataset with 400000 doc-
uments, the two most frequent keywords occurred 28919 and 28587 times respectively.
So we expect about 2114 fake co-occurrence counts between these two keywords due
to random padding. on the other hand, most of the real co-occurrence counts between
these two keywords and other keywords are in the range of 4000 to 9000, and the amount
of randomness in the fake co-occurrence counts is insufficient to hide the real ones.

For keywords with frequencies in the 85-th to 90-th percentile, the real frequencies are
on the order of 103, and one can expect fake co-occurrence counts on the order of tens.
The later is exactly the range of values one expect to find the co-occurrence counts in,
which means that the noise is just right to mask the real co-occurrence counts.

Finally, for keywords with frequencies in the 80-th percentile and lower, the real fre-
quencies are on the order of 102, and one does not expect any fake co-occurrence counts
between these keywords. This means that our attack is essentially trying to match the
real co-occurrence count to itself (with padded keyword frequencies of course), so it is
not at all surprising to see high query recovery rates for small bucket sizes. We argue
that this is not a weakness of our construction as a real-world adversary is likely going
to get a noisy auxiliary co-occurrence matrix as opposed to the perfect one. In that
case, an attack on these keywords will be much harder as the co-occurrence counts with
these keywords are very small and contain very little information. In fact, our attacks
have shown that using larger bucket sizes on these keywords is already enough to create
enough ambiguity.

164

7.5. CRYPTANALYSIS OF STATIC SWISSSE

Figure 7.4: Overheads incurred by different bucket sizes on the Enron email corpus. The experiments
are conducted with fixed bucket sizes.

7.5.4 Discussion

Implications for Bucketization Strategy. It is natural ask what these cryptanal-
ysis results tell us about the choice of the bucket size we have discussed in Section 7.3.
It is clear that a bucket size of 200 is sufficient for all keywords except the most frequent
ones. We can simply use a larger bucket size for those keywords (e.g. a bucket size of
400 for the most frequent 10% keywords) to achieve better query privacy.

We stress that the attack model used for the cryptanalysis is a lot stronger than what
SWiSSSE permits. And one can expect much lower query recovery rates from real-world
attacks.

Security Versus Efficiency Trade-offs. Our experiments also reveal some in-
teresting insights into the security versus efficiency trade-offs associated with choosing
the bucket size. For example, we saw earlier that a bucket size of 50 for the most fre-
quent keywords leads to almost 100% recovery, while a bucket size of 400 reduces this
to around 30%. But what is the implication of using a larger bucket-size on the storage
requirements and communication bandwidth requirements for SWiSSSE?

In Figure 7.4, we demonstrate through concrete figures how variations in bucket sizes
affect the storage and communication overheads of our construction. Here, the storage
overhead only applies to the index as the number of documents is unaffected by bucke-
tization in SWiSSSE. In general, the total number of (real and fake) keyword-document
pairs grows essentially linearly with the bucket size. This in turn implies that storage
overhead of the search index also grows linearly with bucket size.

Interestingly, the growth in overhead is more gradual when compared to the fall in recov-
ery rate. When the initial bucket size varies from 50 to 400, the storage overhead varies
between 1.04× and 1.36×. On the other hand, as demonstrated earlier, the keyword

165

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

recovery rate falls from 100% to below 30%. This indicates that it is preferable to opt
for a larger bucket size as long as the user can afford it, since it provides significantly
stronger resistance to cryptanalysis while incurring only moderately larger overheads.

Setting Parameters in Practice. Our cryptanalysis experiments seem to suggest
that for a given database, it is preferable to carefully optimise the bucketization strategy
and the bucket size parameters for SWiSSSE to attain a desirable trade-off between
security and efficiency. In practice, this is not easily deployable. Recall however that
we assumed a very optimistic attack setting where the attacker has access to refined
co-occurrence leakage. In practice, the leakage profile of SWiSSSE is significantly more
“noisy”; it is not at all obvious how the attacker might obtain access to such refined
leakage from a real implementation. Hence, we suggest that a pragmatic choice of
bucket size 400 for the 2400 most frequent keywords and 200 for the remaining ones,
which should be adequate for typical applications.

At the same time, we acknowledge the need for further cryptanalysis of the leakage
profile of SWiSSSE and welcome such studies from the community.

7.6 Dynamic SWiSSSE

7.6.1 Overview

In this section, we present an overview of how we extend SWiSSSE to handle dynamic
databases. We refer the reader to Section 7.6.2 for the detailed formal description.

We consider two kinds of updates to the database – document insertion and document
deletion; a document update can be simulated via: (a) a deletion operation on the
old document, followed by (b) an insertion operation on the modified document. We
first present a simple idea for handling document insertions. At a high level, we use
a technique similar to the auxiliary write-backs used in our static construction. This
incurs some undesirable leakage, which we address subsequently.

Handling Insertions—Simple Version. When a document docℓ is to be inserted,
the client simply schedules: (a) a normal document write-back for docℓ targeting a set of
“insert write-backs” for every keyword kwi ∈ docℓ. As with auxiliary write-backs, insert
write-backs target a separate set of addresses to avoid any correlation with prior write-
backs (normal and auxiliary) corresponding to the same keyword. More concretely, we
now generate three separate sets of addresses for normal, auxiliary and update write-
backs involving the same keyword:

addrnorm(kwi, docℓ, cntkwi
) = F (K, kwi||j||(3 ∗ cntkwi

)),

addraux(kwi, docℓ, cntkwi) = F (K, kwi||j||(3 ∗ cntkwi + 1)),

addrinsert(kwi, docℓ, cntkwi) = F (K, kwi||j||(3 ∗ cntkwi + 2)),

where F is a PRF with key K, j is a counter that runs from 0 to |DB(kwi)| − 1 (where
DB(kwi) denotes the set of documents containing keyword kwi), and cntkwi is a per-key
word counter held in the client’s stash which records how many times kwi has appeared
in search and insertion queries.

166

7.6. DYNAMIC SWISSSE

In other words, during the time interval between the tth and (t+1)th queries on keyword
kwi, we use three sets of write-back addresses – {addrnorm(kwi, docℓ, j)} for normal write-
backs, {addraux(kwi, docℓ, j)} for auxiliary write-backs, and {addrinsert(kwi, docℓ, j)} for
insert write-backs. The insert write-backs happen intermittently and can be randomly
interspersed with normal and auxiliary write-backs involving other keywords and docu-
ments.

During a search query involving kwi, the client now requests the server to access all three
sets of write-back addresses – normal, auxiliary and insert – in the keyword lookup in-
dex. The entries corresponding to the normal and insert write-back addresses allow
the client to recover the pointers to already existing documents and freshly inserted
documents, respectively, that contain kwi. The entries corresponding to the auxiliary
write-back addresses allow the client to identify if any of these pointers have been up-
dated subsequently due to searches involving other keywords. Thus, search correctness
is ensured. Finally, as before, we use additional pointers to fake documents to hide the
exact frequency of the keyword kwi, and reveal its bucket size instead.

Leakage. The solution outlined above leaks that a new document has been inserted:
when the client executes a normal document write-back operation for the newly inserted
document docℓ, the total number of actual and dummy addresses in the encrypted docu-
ment array increases by one. While this leakage is currently incurred by all existing dy-
namic SSE schemes, it has some repercussions with respect to file injection attacks [200].
For this attack vector to work, the adversary needs to infer exactly when an insert oper-
ation corresponding to a maliciously constructed file occurs, as well as the effect of this
insertion on subsequent keyword search operations.

This motivates hiding the occurrences of inserts from the server, and hence, masking
the aforementioned leakage. We describe how to achieve this next.

Handling Insertions. An effective way to mask when a document is inserted, is to
avoid creating a fresh entry in the encrypted document array. Instead, we simply convert
an (already existing) dummy entry into a real one.

Concretely, to insert a fresh document docℓ, the client first identifies a “leading keyword”
kw∗ in docℓ. We assume without loss of generality that kw∗ is the keyword in docℓ with
the smallest occurrence frequency in the database. Next, the client issues a search query
on kw∗ and retrieves a list of pointers to real and dummy locations in the document
array. To insert the new document, the client schedules a normal document write-
back targeting one of the dummy addresses, as opposed to a newly generated address.
The insert write-backs are scheduled exactly as described in the simple version above,
except they now encapsulate a pointer to the dummy address as opposed to some newly
generated address.

Handling Deletions. Finally, deletions are handled in a manner that is complemen-
tary to the insertion procedure described above. Namely, when a document is to be
deleted, we convert the real entry corresponding to this document in the document ar-
ray into a dummy entry with some garbage ciphertext. More concretely, the client again
issues a search query on kw∗, and schedules a dummy document write-back targeting
the address corresponding to the document to be deleted. The insert write-backs are
scheduled exactly as for the insert operations, except they now encapsulate pointers to
random addresses in the document array.

167

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Algorithm 7.8 Dynamic SWiSSSE.Setup

1: procedure Clt.Setup(DB)
2: /* Generate fake documents */
3: DB′ ← Fake Doc Gen(DB, Clt.G)
4: Clt.N ←

∣∣DB′
∣∣

5: EI, EA← {}
6: for i = 1, . . . ,

∣∣DB′
∣∣ do

7: /* Get the set of keywords with counters */
8: x←

{
(kw, Clt.KWCtr[kw]) | kw ∈ KW (DB′[i])

}
9: /* Update the lookup index */

10: for kw ∈ KW (DB′[i]) do
11: EI← EI ∪ (F (kw||Clt.KWCtr[kw]||0), Enc(id(DB′[i])))
12: Clt.KWCtr[kw]← Clt.KWCtr[kw] + 1

13: /* Insert the encrypted document */
14: EA← EA ∪ (F (i||0),Enc(x||DB′[i]))

15: /* Reset the keyword counter */
16: for kw ∈ KW (DB′) do
17: Clt.KWCtr[kw]← 0

18: /* Initialise the stash */
19: Clt.I.init()
20: Clt.A.init()
21: Send (EI, EA) to the server

22: procedure Svr.Setup(EI, EA)
23: Svr.EI.init()
24: Svr.EA.init()
25: Svr.EI.put(EI)
26: Svr.EA.put(EA)

Note that in the above strategy, there is the possibility that we run out of dummy ad-
dresses in the document array after a certain number of insert operations. For simplicity
of presentation and analysis, we implicitly assume a cap (determined at setup) on the
maximum number of new document insertions supported by the system. We refer the
reader to Section 7.6.2 for a more detailed discussion on how to generalize the above
proposal to support an uncapped number of insertions.

7.6.2 Formal Description of Dynamic SWiSSSE

We now translate the informal presentation of our approach into a formal description of
the various protocols involved in dynamic SWiSSSE.

Setup. The setup procedure (Algorithm 7.8) for the dynamic construction is very
similar to the static one. The only differences are that the client has to initialise an
array Clt.InsCtr to keep track of the number of insertions for each keyword since the
last time they have been queried as the leading keywords. We omit the key generation
part of the algorithm as that is identical to that of the static scheme.

SWiSSSE.{Srch, Insert,Delete}. We now describe the keyword query, insert and

168

7.6. DYNAMIC SWISSSE

Algorithm 7.9 Dynamic SWiSSSE.{Srch, Insert,Delete}: Encrypted Document Ar-
ray Address Retrieval

1: procedure Clt.TokenGen(kw)
2: L← {}
3: for j ∈ 0, . . . , Clt.G(kw)− 1 do
4: L← L ∪ {F (kw||j||3 ∗ Clt.KWCtr[kw])}
5: L← L ∪ {F (kw||j||3 ∗ KWCtr[kw] + 1)}
6: L← L ∪ {F (kw||j||3 ∗ KWCtr[kw] + 2)}
7: /* Roll forward the counter for the next query */
8: Clt.KWCtr[kw]← Clt.KWCtr[kw] + 1
9: Send L to the server

10: procedure Svr.Index Lookup(L)
11: Send Svr.EI.get(L) to the client

delete procedures for dynamic SWiSSSE. For ease of representation, these procedures
broken up into smaller sub-routines described subsequently.

Encrypted Document Array Address Retrieval. This sub-routine is the same
for a search query, document insertion or document deletion, and is described in Al-
gorithm 7.9, and is very similar to the corresponding sub-routine for document array
address retrieval in the static version of SWiSSSE.Srch, except that the client now
fetches three sets of addresses - normal, auxiliary and insert. For document insertion,
the client simply queries the least frequent keyword in the document he wants to insert.
For document deletion, the client queries the least frequent keyword in the document
he wants to delete. As the index for the inserted keywords are stored by the server, the
client has to compute some additional virtual addresses to retrieve the documents.

Encrypted Document Retrieval. The sub-routine is again identical for a search
query, document insertion and document deletion, and works in the same way as the
corresponding sub-routine for the static version of SWiSSSE (see Algorithm 7.3 in Sec-
tion 7.4.2 for the details of how this sub-routine works).

The final set of sub-routines are the write-back sub-routines corresponding to search
queries, insertions and deletions. Unlike the previous sub-routines, write-backs are exe-
cuted differently for each query type. We describe these next.

Write-Back for search query. The write-back sub-routine under dynamic SWiSSSE.Srch
is described in Algorithm 7.10. Technically, it is very similar to that under static
SWiSSSE.Srch (Algorithm 7.4, Section 7.4.2), except that the client has to perform
some maintenance on the lookup index for the queried keyword to relocate the addresses
for the document insertions to the ones used for fake documents.

More explicitly, recall that during the encrypted document array address retrieval phase,
we have obtained all the normal write-back addresses of the form F (kw||j||3∗KWCtr[kw]),
the auxiliary write-back addresses of the form F (kw||j||3 ∗ KWCtr[kw] + 1) and insertion
write-back addresses of the form F (kw||j||3 ∗ KWCtr[kw] + 2). Our goal is to remove the
additional insertion addresses of the form F (kw||j||KWCtr[kw]+2) by making use of the
fake documents that contain the keyword kw. In terms of the documents, this means
for each newly inserted document, we find a fake document that contains kw, remove

169

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Algorithm 7.10 Dynamic SWiSSSE.Srch: Write-Back Sub-Routine

1: procedure Clt.Write Back Keyword Query(M, k̄w)
2: Replace the lookup addresses of the newly inserted documents which contain k̄w

with the addresses used for the fake documents.
3: UA← {}
4: /* Get random documents from the stash */
5: D ← Clt.A.pop(|Clt.A|)
6: for ({(kwi, ji, bi)} , doc) ∈ UA do
7: /* Encrypt the new document addresses and documents */
8: UA← UA ∪ {(F (id(doc)||Clt.ArrCtr[id(doc)]), Enc({(kwi, ji)} ||doc))}
9: /* Update the stash for the lookup index */

10: for (kw, j, b) ∈ {(kwi, ji, bi)} do
11: Clt.I.put((F (kw||j||3 ∗ Clt.KWCtr[kw] + b),Enc(id(doc))))

12: /* Decrypt the documents retrieved and insert them into the document array */
13: Clt.A.put(Dec(M))
14: Send (Clt.I.pop(⌊|Clt.I| /2⌋), UA)

15: procedure Svr.Write Back((UI, UA))
16: Svr.EI.put(UI)
17: Svr.EA.put(UA)

the keyword from the fake document, and allocate it to the newly inserted document.
We omit the low-level details of the procedure for readability.

Write-Back for Document Insertion. The write-back sub-routine under dynamic
SWiSSSE.Insert is described in Algorithm 7.11. Technically, it is essentially identical
to the corresponding sub-routine under dynamic SWiSSSE.Srch except that the client
has to insert the document locally. This is done by scanning the query response for
fake documents, and replace one of them by the document that is to be inserted. The
keyword pointers are updated so as to maintain correctness of future searches.

Write-Back for Document Deletion. The write-back sub-routine under dynamic
SWiSSSE.Delete is described in Algorithm 7.12. Technically, it is again essentially
identical to the corresponding sub-routine under dynamic SWiSSSE.Srch except that
the client has to overwrite the target document to a fake document in the stash.

Supporting uncapped number of insertions. As one can clearly see from the
bucketization strategy and the fake document generation procedure in our construction,
there is a limit on how many documents the client can insert into the database. One
possible work-around is to instantiate a new encrypted database every time the max-
imum quota is hit. This may not be practical for some systems as the client storage
grows linearly in the number of instances of encrypted databases.

As an alternative, we can extend our dynamic construction to support uncapped docu-
ment insertions at the cost of additional leakages. Without loss of generality, suppose
that the client wants to store a documents more. He can simply insert a fake documents
in the stash and redirect some of the pointers of the fake keywords (which he can obtain
from normal queries) to these new fake documents. These new fake documents can then
be written back to the server just like the normal documents. If the client wants to store

170

7.6. DYNAMIC SWISSSE

Algorithm 7.11 Dynamic SWiSSSE.Insert: Write-Back Sub-Routine

1: procedure Clt.Write Back Insertion(M,
{

¯kwj

}
, ¯doc)

2: Replace the lookup addresses of the newly inserted documents which contain k̄w
with the addresses used for the fake documents.

3: UA← {}
4: /* Get random documents from the stash */
5: D ← Clt.A.pop(|Clt.A|)
6: for ({(kwi, ji, bi)} , doc) ∈ UA do
7: /* Encrypt the new document addresses and documents */
8: UA← UA ∪ {(F (id(doc)||Clt.ArrCtr[id(doc)]), Enc({(kwi, ji)} ||doc))}
9: /* Update the stash for the lookup index */

10: for (kw, j, b) ∈ {(kwi, ji, bi)} do
11: Clt.I.put((F (kw||j||3 ∗ Clt.KWCtr[kw] + b),Enc(id(doc))))

12: /* Decrypt the documents retrieved and insert them into the document array */
13: Clt.A.Insert(Dec(M))
14: Insert document ¯doc with keywords

{
¯kwj

}
into Clt.A

15: Send (Clt.I.pop(⌊|Clt.I| /2⌋), UA)

16: procedure Svr.Write Back((UI, UA))
17: Svr.EI.put(UI)
18: Svr.EA.put(UA)

Algorithm 7.12 Dynamic SWiSSSE.Delete: Write-Back Sub-Routine

1: procedure Clt.Write Back Deletion(M, ¯doc)
2: Replace the lookup addresses of the newly inserted documents which contain k̄w

with the addresses used for the fake documents.
3: UA← {}
4: /* Get random documents from the stash */
5: D ← Clt.A.pop(|Clt.A|)
6: for ({(kwi, ji, bi)} , doc) ∈ UA do
7: /* Encrypt the new document addresses and documents */
8: UA← UA ∪ {(F (id(doc)||Clt.ArrCtr[id(doc)]), Enc({(kwi, ji)} ||doc))}
9: /* Update the stash for the lookup index */

10: for (kw, j, b) ∈ {(kwi, ji, bi)} do
11: Clt.I.put((F (kw||j||3 ∗ Clt.KWCtr[kw] + b),Enc(id(doc))))

12: /* Decrypt the documents retrieved and insert them into the document array */
13: Clt.A.put(Dec(M))
14: Turn ¯doc into a fake document in Clt.A
15: Send (Clt.I.pop(⌊|Clt.I| /2⌋), UA)

16: procedure Svr.Write Back((UI, UA))
17: Svr.EI.put(UI)
18: Svr.EA.put(UA)

a additional documents for a particular keyword kw, he can make a search query on kw
to retrieve the documents associated to kw, increase the address space of kw by a key-
words, and generate a fake documents and point the newly generated keyword pointers
to the new fake documents. These pointers and documents can then be written-back to
the server with normal write-back operations. On a side note, the client should choose

171

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

a such that the new bucket size of kw corresponds to the bucket size of some other
keyword, so that the volume leakage does not trivially leak the identity of kw in the
future queries.

We leave it as an interesting future work to formalize the storage expansion process,
and to analyse the additional leakages thereof.

7.6.3 Correctness

Similar to the static case, there is a possibility for our dynamic construction to fail
if the client generates repeated addresses. We provide an upper bound of the failure
probability of our dynamic construction with adversarially chosen queries below. As the
proof is almost identical to the static case, we omit the proof from the paper.

Theorem 7.3. [Correctness of Dynamic SWiSSSE]

Let |DB| and |KW {DB}| denote the total number of documents and document-
keyword pairs, respectively, in the database DB at any given point of time, and let
l denote the output length of the PRF F used in static SWiSSSE. Then the advantage
of any adversary A, which issues at most k queries, in breaking the correctness of static
SWiSSSE over the database DB is at most:(

|DB|2 + 4t0 |DB|+ 9 |KW {DB}|2 + 18t1 |KW {DB}|
)

2l+1

+Adv
PRF,|DB|+2t0
F,B + Adv

PRF,2|KW{DB}|+2t1
F,C ,

where t0 = k · maxk w |DB(kw)|, t1 = k · maxk w |kw {DB(kw)}| and B and C denote
probabilistic polynomial-time adversaries in independent security experiments against
the PRF F .

7.6.4 Security

Setup. At setup, the client offloads the encrypted lookup index and the encrypted
document array to the server. These data structures are essentially key-value stores
with pseudorandomly generated keys/addresses and values/entries that are encrypted
under an IND-CPA secure encryption scheme. Hence, at setup, the server learns no
information about the original database DB other than the number of documents in
the padded database DB′ (including both real and fake documents), and the total
number of keyword-document pairs post-bucketization. Formally, we have:

LSetup
Σ (DB, G) = (

∣∣DB′
∣∣ , ∣∣KW

{
DB′

}∣∣ ,StL).
Keyword Queries. As we have introduced virtual addresses for the inserted docu-
ments, the insertion history will be revealed by the keyword queries. As in the static
case, we capture these leakages using a probabilistic and stateful leakage function, de-
scribed formally in Algorithm 7.13.

Document Insertion. The leakage of a document insertion is identical to a single-
keyword query except that the inserted document is processed in the state of the leakage.

172

7.6. DYNAMIC SWISSSE

Algorithm 7.13 Dynamic SWiSSSE: Leakage Function for Keyword Queries

1: procedure LSrch(q,StL)
2: (Srch, k̄w)← q
3: I′, A′, KWCtr, ArrCtr← StL
4: IndHist← IndHist ∪ {(T(k̄w, i, 3 ∗ KWCtr[¯kw1]), 0, k) | i ∈ 0, . . . , G(¯kw1)− 1}
5: IndHist← IndHist∪{(T(k̄w, i, 3∗KWCtr[¯kw1]+1), 0, k) | i ∈ 0, . . . , G(¯kw1)−1}
6: IndHist← IndHist∪{(T(k̄w, i, 3∗KWCtr[¯kw1]+2), 0, k) | i ∈ 0, . . . , G(¯kw1)−1}
7: KWCtr[¯kw1]← KWCtr[k̄w] + 1
8: L← I[k̄w]
9: while |L| < 2 · Clt.G(kw) do

10: id← Rand(|A|)
11: if id /∈ {id(doc) | doc ∈ A′} then
12: L← L ∪ id
13: ArrCtr[L]← ArrCtr[L] + 1
14: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

15: UI ← I′.pop(|I′| /2)
16: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
17: State UA← A′.Pop(⌊|UA| /2⌋)
18: ArrHist ← ArrHist ∪ {(T(id(doc), ArrCtr[id(doc)]), 1, k) | ({wi, ji, bi} , doc) ∈

UA}
19: A′ ← A′ ∪Merge Index(A[L], k̄w)
20: StL ← (I′, A′, KWCtr, ArrCtr)
21: Return (IndHist,ArrHist),StL

We capture these leakages using a probabilistic and stateful leakage function, described
formally in Algorithm 7.14.

Document Deletion. The leakage of a document deletion is identical to a single-
keyword query except that the target document to be deleted is marked as fake in the
state of the leakage.We capture these leakages using a probabilistic and stateful leakage
function, described formally in Algorithm 7.15.

Finally, we are ready to state the security of our dynamic construction and prove it.

Theorem 7.4 (Security of Dynamic SWiSSSE). Let Σ be our proposed dynamic SSE

scheme. Let LSetup
Σ and LSrch

Σ , LInsert, and LDelete be the leakage functions defined above,

then Σ is (LSetup
Σ , LSrch

Σ ,LInsert,LDelete)-secure.

Proof. We use a game-based argument to prove the security of the dynamic construction.

(Game 0) Let the real execution of the scheme on the database DB with queries
q1, . . . ,qk be game G0. Then we have that for any adversary A, Pr[RealΣ,A(1

λ) = 1] =
Pr[G0 = 1].

(Game 1) Let game G1 be the same game as G0 except that the execution of the setup
step is replaced by the simulator. Clearly the simulator works the same way as the
static case, so the difference in advantages between G0 and G1 is upper-bounded by
AdvPRF,t0

F + t0 · AdvIND−CPA
Σ′ (λ), where t0 = 2

∑
kw G(kw) + |DB|.

173

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Algorithm 7.14 Dynamic SWiSSSE: Leakage Function for Insertion Queries

1: procedure LInsert(q,StL)
2: (Insert,

{
¯kwi

}
, ¯doc)← q

3: I′, A′, KWCtr, ArrCtr← StL
4: IndHist← IndHist ∪ {(T(k̄w, i, 3 ∗ KWCtr[¯kw1]), 0, k) | i ∈ 0, . . . , G(¯kw1)− 1}
5: IndHist← IndHist∪{(T(k̄w, i, 3∗KWCtr[¯kw1]+1), 0, k) | i ∈ 0, . . . , G(¯kw1)−1}
6: IndHist← IndHist∪{(T(k̄w, i, 3∗KWCtr[¯kw1]+2), 0, k) | i ∈ 0, . . . , G(¯kw1)−1}
7: KWCtr[¯kw1]← KWCtr[¯kw1] + 1
8: L← I[kw]
9: while |L| < 2 · Clt.G(kw) do

10: id← Rand(|A|)
11: if id /∈ {id(doc) | doc ∈ A′} then
12: L← L ∪ id
13: ArrCtr[L]← ArrCtr[L] + 1
14: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

15: UI ← I′.pop(|I′| /2)
16: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
17: UA← A′.Pop(⌊|UA| /2⌋)
18: ArrHist ← ArrHist ∪ {(T(id(doc), ArrCtr[id(doc)]), 1, k) | ({wi, ji, bi} , doc) ∈

UA}
19: I′ ← I′ ∪ Index(UA, KWCtr)
20: M ← Insert(A[L],

{
¯kwi

}
, doc))

21: A′ ← A′ ∪Merge Index(M, ¯kw1)
22: StL ← (I′, A′, KWCtr, ArrCtr)
23: Return (IndHist,ArrHist),StL

(Game 2) In game G2, we replace the query algorithms with the simulator. The
algorithms look the same for all query types so we only show the one for the single-
keyword query. The simulator looks the same as game G2 in the proof of security for
the static case, but the lookup index tokens in the dynamic construction includes the
addresses generated by the insertion queries too.

The number of addresses the algorithm has to generate is upper-bounded by t1 =
2
∑

i G(KW (qi)) + 2
∑

i |DB(KW (qi))|, and the number of encryptions needs to be
created is upper-bounded by the same t1. This means the difference in advantages
between G1 and G2 is upper-bounded by AdvPRF,t1

F + t1 · AdvIND−CPA
Σ′ (λ).

(Conclusion.) By combining the two games above, we see that the difference in ad-

vantages between G0 and G2 is at most AdvPRF,t0+t1
F + (t0 + t1) ·AdvIND−CPA

Σ′ (λ).

7.6.5 Oblivious Operations

We introduce here a new notion of security for dynamic SSE schemes called “oblivi-
ous operations”. Informally, a dynamic SSE scheme supports oblivious operations if
document updates and keyword searches are computationally indistinguishable to an
adversarial server. The formal definition is presented below.

Definition 7.2 (Oblivious Operations). Let Σ be a dynamic SSE scheme. Let DB be
a database, G be the bucketization parameter, q1, . . . , qk−1 be a sequence of queries, and

174

7.6. DYNAMIC SWISSSE

Algorithm 7.15 Dynamic SWiSSSE: Leakage Function for Deletion Queries

1: procedure LDelete(q,StL)
2: (Delete,

{
¯kwi

}
, ¯doc)← q

3: I′, A′, KWCtr, ArrCtr← StL
4:

5: IndHist← IndHist ∪ {(T(k̄w, i, 3 ∗ KWCtr[¯kw1]), 0, k) | i ∈ 0, . . . , G(¯kw1)− 1}
6: IndHist← IndHist∪{(T(k̄w, i, 3∗KWCtr[¯kw1]+1), 0, k) | i ∈ 0, . . . , G(¯kw1)−1}
7: IndHist← IndHist∪{(T(k̄w, i, 3∗KWCtr[¯kw1]+2), 0, k) | i ∈ 0, . . . , G(¯kw1)−1}
8: KWCtr[¯kw1]← KWCtr[¯kw1] + 1
9: L← I[kw]

10: while |L| < 2 · Clt.G(kw) do
11: id← Rand(|A|)
12: if id /∈ {id(doc) | doc ∈ A′} then
13: L← L ∪ id
14: ArrCtr[L]← ArrCtr[L] + 1
15: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

16: UI ← I′.pop(|I′| /2)
17: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
18: UA← A′.Pop(⌊|UA| /2⌋)
19: ArrHist ← ArrHist ∪ {(T(id(doc), ArrCtr[id(doc)]), 1, k) | ({wi, ji, bi} , doc) ∈

UA}
20: I′ ← I′ ∪ Index(UA, KWCtr)
21: M ← Delete(A[L], ¯doc))
22: A′ ← A′ ∪Merge Index(M, ¯kw1)
23: StL ← (I′, A′, KWCtr, ArrCtr)
24: Return (IndHist,ArrHist),StL

Algorithm 7.16 Game G1 (dynamic construction). Only the setup step is changed.

1: procedure Clt.Setup(DB)

2: (N, p,StL)← LSetup
Σ (DB, G)

3: EI, EA← []
4: /* Generate the encrypted documents */
5: for i = 0, . . . , N − 1 do
6: EA.Insert(RF(2i),Enc(0l0))

7: /* Generate the encrypted document addresses */
8: for i = 0, . . . , 2p do
9: EI.Insert(RF(2i+ 1),Enc(0l1))

10: Send (EI, EA) to the server

qk and q′k be two queries such that KW (qk) = KW (q′k). Let ℓ0,St
0
L ← L

Setup
Σ (DB) and

ℓi,St
i
L ← L∗Σ(qi,St

i−1
L) for 0 < i ≤ k where L∗Σ is the appropriate leakage function for

the query qi, and ℓ′k,St
′k
L ← L∗Σ(q′k,St

k−1
L).

We say that Σ supports oblivious operations if ℓk is computationally indistinguishable
from ℓ′k for any choice of DB, G, q1, . . . , qk and q′k.

Note that the definition of oblivious operations only requires the outputs of the leakage
functions (at the point where the query is executed) to be indistinguishable. It does not,

175

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Algorithm 7.17 Game G2 (dynamic construction).

1: procedure Clt.Srch(q)
2: (IndHist,ArrHist),StL ← LSrch

Σ (DB,q,StL)

3: /* Encrypted document array address retrieval */
4: L← {}
5: t′ ← the number of single-keyword queries executed
6: for i ∈ {i | (i, b, t) ∈ IndHist, b = 0, t = t′} do
7: L← L ∪RF(2i+ 1)

8: Send L to the server

9: /* Encrypted document retrieval */
10: L← {}
11: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 0, t = t′} do
12: L← L ∪RF(2i)

13: Send L to the server

14: /* Write-back */
15: UI, UA← {}
16: for i ∈ {i | (i, b, t) ∈ IndHist, b = 1, t = t′} do
17: UI ← UI ∪ (RF(2i+ 1),Enc(0l0))

18: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 1, t = t′} do
19: UA← UA ∪ (RF(2i),Enc(0l1))

20: Send (UI, UA) to the server

however, require the states of the leakage function to be indistinguishable. This makes
sense because the leakage output is available to the adversary as soon as the correspond-
ing operation is executed, which makes for an easy mapping task. On the other hand,
the information contained in the state of the leakage function may be revealed to the
adversary at a later point of time (for instance, via delayed pseudorandom write-backs
in our scheme), and it is computationally hard for the adversary to map it back in time
to the exact query it corresponds to.

Our dynamic SSE scheme naturally satisfies the aforementioned definition of oblivious
operations. Both keyword searches and document updates involve reading a set of
entries from the encrypted data structures, followed by delayed write-backs. The only
functional differences between searches and updated are reflected in how the client locally
manages/updates its stash. From the point of view of the server, the output of the
leakage function at the point of query are simply the accesses made to the encrypted
data structures, which is unconditionally indistinguishable for searches and updates.
This allows us to state the following theorem.

Theorem 7.5 (Oblivious Operations). The dynamic variant SWiSSSE described above
supports oblivious operations.

7.6.6 Forward and Backward Privacy of Dynamic SWiSSSE

In this subsection, we describe the notions of forward and backward privacy achieved
by dynamic SWiSSSE, and compare these with the notions of forward and backward
privacy achieved by existing SSE constructions. In particular, we stress the fact that

176

7.6. DYNAMIC SWISSSE

SWiSSSE is the first dynamic SSE scheme in the literature to achieve strong backward
privacy guarantees against system-level leakages.

Forward Privacy. Forward private SSE was introduced by Chang and Mitzenmacher
in [39], and has been subsequently studied in [169, 28, 25, 74, 109, 29, 68, 167]. An SSE
scheme is said to be forward private if insertion and deletion operations computationally
hide the set of keywords in the underlying document. Forward privacy has received
much attention in light of leakage-abuse and file injection attacks [33, 200], which are
potentially devastating for SSE schemes that try to support updates without being
forward private.

Observe that combining Theorems 7.4 and 7.5 allows us to claim that our dynamic SSE
scheme achieves stronger forward privacy guarantees than existing constructions in the
literature, including those based on computation/communication-intensive techniques
such as ORAM [74, 25, 29, 37]. In particular, existing definitions of forward privacy
do not hide the number of keywords an inserted/deleted document contains, which is
potentially sensitive information. Our construction, on the other hand, achieves the
stronger notion of forward privacy in which we also hide from the server the number of
keywords in a document which is inserted/deleted.

We now present a more detailed argument. By Theorem 7.5, our dynamic SSE scheme
satisfies indistinguishability of operations. Hence, the output of the leakage function for
updates is computationally indistinguishable from the output of the leakage function
for keyword searches. Next, by Theorem 7.4, the leakage function output for searches
is the set of accesses made to the encrypted data structures at the server, which reveals
no information to a computationally bounded adversary about the underlying keywords
and documents Hence, at the point of an update operation, our dynamic scheme not
only computationally hides the actual keywords in the target document, but also the
number of keywords. As discussed later, this has important repercussions with respect
to security against leakage-abuse and file-injection attacks.

Backward Privacy. The notion of backward privacy for dynamic SSE is compar-
atively more recent, and was first formalized by Bost et al. in [29]. Subsequently,
Chamani et al. [37] and Sun et al. [174] proposed SSE schemes supporting single-keyword
search that are backward private under various leakage profiles. The strongest notion of
backward privacy formalized in [29] is called Type-1 backward privacy [29]. A dynamic
SSE scheme is said to be Type-1 backward private if a search query on a keyword kw
reveals no information to the adversary beyond result pattern for kw and the times-
tamps at which the documents containing kw were inserted into the database. The only
constructions to achieve this strong notion of backward privacy adopt ORAM-style tech-
niques and require polylogarithmically many communication rounds for searches [29, 37].

Once again, Theorem 7.4 allows us to claim that our dynamic SSE scheme achieves
stronger than Type-1 backward privacy guarantees. This is particularly notable given
that our construction only require two rounds of communication between the client and
the server for searches.

To begin with, observe that as per Theorem 7.4 the leakage function output at the
point of searches in our construction hides the result pattern and the update history
for the underlying keyword from the server. If the adversary could monitor the state
of the leakage function from the beginning of time up until the point of query, it could
potentially learn the update history associated with a keyword. However, in the actual

177

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Figure 7.5: An illustration of the operations related to a document doc in our construction. At time
i, the document doc is retrieved by a query. The document is in the stash and ready to be written
back at time i + 1. The document itself is written back at time i + t0, where t0 is a random delay
due to randomised write-backs. The encrypted document addresses associated to doc will be updated
randomly in time later than i+ t0.

scheme, the adversary can only glean this through observing the delayed write-backs.
However, given that the write-backs are mixed and matched and target pseudorandom
locations, it is difficult for a computationally bounded adversary to trace each encrypted
document it accesses during a search query at timestamp t back to the timestamp t′ < t
when the document was originally inserted.

In the discussion below, we expand some more on delayed write-backs and their impact
on the leakage of our dynamic scheme using an example. An illustration of the same is
presented in Figure 7.5.

Encrypted document write-back. Without loss of generality, let DB be the
database and (q1, . . . ,qk) be the sequence of queries on the database. Let doc be
one of the documents retrieved in query qi where 1 ≤ i < k. We are interested in the
distribution of t0 for which query qi+t0 triggers the write-back of document doc. As half
of the documents are written back from the stash after each query, t0 clearly follows a
shifted geometric distribution with parameter 1

2 , unless that there is a query qi+j that
retrieves doc. In the latter case, the write-back of document doc will happen at query
qi+j+t0 with t0 following a shifted geometric distribution with parameter 1

2 .

Encrypted document address write-back. Under the same setting as above, let
doc be one of the documents retrieved in query qi where 1 ≤ i < k and kw be one of
the keywords of doc. We are interested in the distribution of t1 for which query qi+t1
triggers the write-back of the encrypted document address associated to keyword kw.
Recall that the write-backs for the encrypted document addresses are scheduled after the
respective documents are written back to the server, and half of the encrypted document
addresses are written back to the server in each query, this means that t1 follows the
sum of a shifted geometric distribution and a geometric distribution both parameterized
by 1

2 , or equivalently, one plus a negative binomial distribution with parameter (2, 1
2).

As before, if the document doc is retrieved by another query qi+j before it is written
back, then we will write the encrypted document address in query qi+j+t1 .

Resistance to Cryptanalysis. Finally, for appropriate parameter choices (e.g.,
bucket sizes and bucketization strategies), dynamic SWiSSSE achieves strong enough
backward privacy guarantees in practice to resist a wide range of cryptanalytic attacks
based on system-wide leakages, such as access pattern and query equality pattern based
attacks [94, 33], file injection attacks [200], and attacks based on highly refined leak-
ages (such as the correlation-leakage based attack described in Section 7.5). Also note-
worthy is the fact that SWiSSSE achieves such strong guarantees without compromising

178

7.7. PERFORMANCE ANALYSIS

Storage
Stash O(maxkw G(kw) + maxkw |KW{DB(kw)})|)
EDB/DB O(

∑
k wG(kw) + |DB|)

Time
complexity

Document retrieval O(G(kw))
Write-back O(maxkw G(kw) + maxkw |KW{DB(kw)}|)

Communication
volume

Document retrieval O(G(kw))
Write-back O(maxkw G(kw) + maxkw |KW{DB(kw)}|)

Figure 7.6: A summary of the performance parameters. Here, kw denotes the leading keyword of a
query, G(kw) is the bucket size of keyword kw, |KW{DB}| is the total number of keyword-document
pairs, and |KW{DB(kw)}| is the total number of keyword-document pairs for the documents that
contain kw.

significantly on search/update performance and communication overheads. This makes
it an attractive candidate for deployment in typical applications involving outsourced
databases.

7.7 Performance Analysis

In this section, we provide an asymptotic performance analysis of SWiSSSE in both the
static and dynamic cases. A summary of the key performance characteristics can be
found in Figure 7.6 and some concrete numbers are presented subsequently.

Size of the stash. For search queries, recall that the half of the stash is flushed
every iteration and filled with the response from the latest query. Since the number of
documents retrieved by any query is less than 2 ·maxkw G(kw) (half of that comes from
randomly generated document addresses), there are at most 4 ·maxkw G(kw) documents
in the stash. The documents are padded to a constant size, which means the storage
of the documents in the stash requires O(maxkw G(kw)) space. For document insertion
queries, the documents to be inserted are processed with the responses, so the same
analysis on the space complexity applies.

The stash also stores a local lookup index. For a search query on keyword kw, the
number of lookup index locations that need to be updated is equal to the number
of keyword-document pairs in the query response, or |KW{DB(kw)}|. Consider a
document insertion query with document doc and keywords {kw1, . . . , kwk}. Without
loss of generality, assume that kw1 is the leading keyword. Then the number of lookup
index locations that need to be updated is at most |KW{DB(kw1)}| + k − 1. Since
the number of keywords in the document is much smaller than |KW{DB(kw1)}|, it is
reasonable to treat k as a constant in the asymptotic analysis. Recalling that half of
the lookup index stored in the stash is flushed to the server after each query, it is not
hard to see that the maximum number of lookup index locations stored by the client is
O(maxkw |KW{DB(kw)}|).

In addition, the client needs to store three arrays of integers, namely an array for
the groupings of the keywords, an array for the number of insertions of the keywords,
and an array for the counters used to generate the document array addresses. These
arrays are all small and of constant size, so they do not contribute to the asymptotic
size of the stash. Combining everything together, we get that the size of the stash is
O(maxkw G(kw) + maxkw |KW{DB(kw)}|).

Size of the encrypted database. The server stores an encrypted lookup index and

179

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

an encrypted document array. The size of the encrypted lookup index is proportional
to the total number of keyword-document pairs whereas the size of the encrypted docu-
ment array is proportional to the number of documents. Hence, the size of the encrypted
database is O(

∑
k wG(kw) + |DB|). Note that this order-of-magnitude calculation ig-

nores the overhead from padding all documents to a constant size,

Time complexity and communication volume of a query. Suppose that the
leading keyword for the query is kw. In our construction, a query consists of three
rounds of interaction. In the first round, the client computes the encrypted lookup index
addresses for the query. This involves O(G(kw)) computation and communication, as
there are at most 3 · G(kw) addresses involved. The server then takes O(G(kw)) time
to retrieve the encrypted document array addresses and send them to the client. This
means that the overall communication volume is O(G(kw)) for the first round.

Upon receiving the O(G(kw)) encrypted document array addresses, the client processes
them and retrieves 2 · G(kw) encrypted documents from the server. The client decrypts
the documents and filters the results locally to obtain the query response. The time
complexity for the overall process is O(G(kw)). The communication volume and the
time complexity for the server are straight-forwardly O(G(kw)).

Finally, after receiving the encrypted documents from the previous step, the client de-
crypts them in O(G(kw)) time. If the query is a document insertion query, the client
has to do at most O(G(kw)) amount of work to turn one of the fake documents into
the document intended for insertion. After that, the client randomly picks at most
2 · maxkw G(kw) documents from the stash, encrypts them and uploads them to the
server. He also randomly picks half of the lookup indices stored in the stash, en-
crypts them, and uploads them to the server. Using the analysis of the stash size
above, we conclude that the time complexity and communication volume for this step
is O(maxkw G(kw) + maxkw |KW{DB(kw)}|). This means the overall time complex-
ity of this step for the client and the communication volume is O(maxkw G(kw) +
maxkw |KW{DB(kw)}|). Similarly, we conclude that the time complexity of this step
for the server is O(maxkw G(kw) + maxkw |KW{DB(kw)}|).

Combining the analyses above together, we conclude that the time complexity of a query
for both the client and the server is O(maxkw G(kw) + maxkw |KW{DB(kw)}|), while
the communication volume of a query is O(maxkw G(kw) + maxkw |KW{DB(kw)}|).
We note that stash handling is not relevant to the retrieval of documents and it can be
performed whenever the client is free. With regards to document retrieval only, the time
complexity for the client and the server is O(G(kw)) and the communication volume is
O(G(kw)).

Alternative Parameters. There are three parameters we have fixed when we first
introduced the construction, namely the number of fake documents, the number of
dummy documents retrieved per query and the write back rate. These parameters can
be changed to achieve different trade-off between efficiency and security.

The number of fake documents we initialise the database with affects the number of
insertion queries we can make on the database. By using a larger number, the database
can support more insertion queries, but as the fake documents have to be initialised
with dummy documents during the setup, the time required to initialise the database is
longer and the storage on the server takes more space. Maybe unexpectedly, more fake
documents implies less noise in the co-occurrence leakage, as each document contains

180

7.8. EXPERIMENTAL RESULTS

fewer keywords. This may mean that a more aggressive padding parameter or padding
strategy has to be used to prevent attacks based on co-occurrence leakage.

Recall that in our construction, every time when the client wants to retrieve some
documents, he retrieves an equal number of dummy documents by generating addresses
at random. This helps to introduce noise in the co-occurrence leakage and prevents an
attacker from identifying the set of retrieved documents exactly. However, if the user
is willing to leak the document access pattern then he can set the number of dummy
document retrievals to zero, as long as the resultant keyword co-occurrence leakage does
not lead to a query recovery attack.

In the write-back phase, we set the number of keyword-document pairs and documents
to be written back to half of the size of the stash. The client can opt to write back a
different fraction of the stash, whenever the stash is full, or after a random number of
queries each time. The choice affects the client storage, the probability of leaking the
search pattern and the level of noise in the keyword co-occurrence leakage. For example,
if the client decides to flush everything in the stash every 4 iterations, the worst-case
client storage doubles, the probability of leaking the search pattern is upper-bounded
by 25%, and the signal-to-noise ratio in the keyword co-occurrence leakage quarters.

7.8 Experimental Results

Overview. In this section, we benchmark a prototype implementation of dynamic
SWiSSSE and compare it to a plaintext database and other state-of-the-art SSE schemes.

As target database we choose the Enron email corpus [194] (see Section 6.1.1.2). It
contains over 500K emails and over 30M keyword-document pairs which makes it a
perfect database to experiment with the scalability of SWiSSSE. We run experiment on
1K to 400K emails and report the performance numbers.

7.8.1 Experimental Setup

Choice of Primitives. We instantiate the PRF in our construction with HMAC-
SHA-256 [112]. Only the first 16 bytes of the output are used as keys to reduce storage.
We use AES-GCM [138, 127] as the encryption function.

Implementation. We implement the client in Java [175], using the Java Cryptography
Extension [141] as the underlying cryptographic library; AES-NI was enabled in our
implementation. We choose to use a single-thread implementation as it provides the most
accurate measurements of performance. We use Redis [1] as the underlying database
system on the server. To reduce memory consumption of Redis, the inverted indices are
stored in hashes 1 as opposed to a direct key-value store. This choice leads to over 5
times of reduction on memory consumption but has a penalty on the time complexity
of insertion and deletion operations. On the other hand, the documents are stored in a
key-value store directly.

1A hash in Redis is a hash table where each entry in the table is a list of key-value pairs. An access
with a “master key” is very efficient but the retrieval of an actual key-value pair requires a linear scan
on the list for which the key-value pair is in.

181

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

We also implement a plaintext database in Java. The database uses an inverted index for
fast lookup as well, except that the keys of the inverted index are simply the keywords,
and the values are lists of document identifiers associated to the keywords.

Bucketization Strategy. We use a bucket size of 400 for the most frequent 2400
keywords and a bucket size of 200 for the remaining keywords. This offers reasonable
practical security and efficiency as shown in Section 7.5.2.

Padding of Documents. The real documents of SWiSSSE are padded to the smallest
multiple of 2 thousand bytes before encryption. The fake documents are generated as
strings of 2 thousand bytes.

Experimental Environment. We run our experiments on an Intel i7-7700K CPU
clocked at 4.7 GHz and 32 GB DDR4 memory clocked at 2400 MHz. The server and
client are run on the same machine.

7.8.1.1 Benchmarks

Setup Time. Figure 7.7a shows the setup time of the plaintext database and SWiSSSE.
SWiSSSE is two orders of magnitudes slower than a plaintext implementation which is
expected due to encryption.

Query Response Time. Figure 7.7b shows the query response time of the plaintext
database and SWiSSSE for the experiment with 400K documents. One thousand key-
words are queried in each experiment. Here, real query response volume refers to the
actual number of documents containing the keywords and query response time is de-
fined to be the time from the start of a query to the point of time for which the client
obtains the plaintext documents. SWiSSSE is about an order of magnitude slower than
a plaintext database. This can be attributed to several reasons. Firstly, SWiSSSE de-
ploys a bucketization strategy which leads to more documents retrieved than the true
query response volume. Secondly, SWiSSSE uses the duplication technique on the in-
verted index, which means the amount of time required for index retrieval become linear
in the bucket size of the queried keyword (as opposed to a single query for the plain-
text database). Thirdly, SWiSSSE has to engage the stash to retrieve locally stored
documents. Finally, SWiSSSE needs to perform cryptographic operations.

We note that the query response time of SWiSSSE can be improved significantly with
parallelisation and multi-threading. For example, the computation of search keys and
decryption of documents can be parallelised. Computation of search tokens and de-
cryption of documents can be separated from interactions with the server into different
threads to reduce unnecessary blocking time between different commands.

As insertion and deletion operations of SWiSSSE essentially calls the search operation
and performs insertion/deletion locally, the query response time in those cases are similar
to the search operation. Therefore, we omit the experimental results on these operations.

182

7.8. EXPERIMENTAL RESULTS

(a) Setup time of the plaintext database and
SWiSSSE.

(b) Query response time of the plaintext database
and SWiSSSE on 400K documents.

(c) Distribution of write-back time of SWiSSSE
on 400K documents.

(d) Storage of the plaintext database and
SWiSSSE .

(e) Stash size of SWiSSSE .

Figure 7.7: Performance comparison between the plaintext database and SWiSSSE.

Write-back Efficiency. We report write-back efficiency for the experiment with
400K documents in Figure 7.7c. As write-back time depends on the number of docu-
ments retrieved in previous queries, reporting an average value is not very informative.
Here, we choose to show the distribution of write-back time with the queries we have
made in the experiment. We observe that over 70% of the write-backs are completed
under 30 seconds but there exists very long write-back times occasionally.

The major bottle-neck of the write-back operation (over 80% of the execution time)
comes from inserting the key-value pairs into the Redis database – as we are using
hashes as opposed to a direct key-value store, this is expected. In practice, the client
can simply upload all the key-value pairs it wants to update and go offline; the server
can then insert these key-value pairs on its own. That will reduce the write-back time
for the client by a factor of 5.

183

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

Storage. Storage of the plaintext database and SWiSSSE is reported in Figure 7.7d.
The main source of overhead for SWiSSSE comes from the inverted index as can be seen
clearly from the graph. This is because the duplication technique is used in SWiSSSE
and a lot more keys needs to be created for the inverted index. On the other hand, the
overhead on document storage is only about a factor of two as expected.

Stash. The distribution of the stash size is shown in Figure 7.7e. The stash size was
kept under 10 MB for over 80% of the queries. There were several times for which the
stash size grows to over 100 MB. However, that is due to queries on keywords with
high frequencies, which are rare in practice. Furthermore, as half of the documents are
written back to the server after each query, the stash size will only be high for a few
queries. Furthermore, in practice, the client can issue dummy queries to help speeding
the process up.

7.8.2 Comparison to Other Searchable Encryption Schemes

In this section, we give a comparison between the state-of-the-art SSE schemes and
SWiSSSE. As concrete performance numbers depend on the optimality of the imple-
mentations, our comparison is based on numbers that are independent of the implemen-
tation.

State-of-the-art SSE schemes. We pick PRT-RMM [98], FP-EMM and DP-
EMM [149] as the schemes to compare to SWiSSSE. See Section 6.4 for a high-level
description of these schemes. These schemes have only specified how document indices
should be retrieved but not how documents should be retrieved. So for a fair comparison,
we constrain ourselves to document indices only.

Setup Time and Storage. A comparison of the size of the search index is shown
in Figure 7.8a. The index size is shown in terms of the number of keyword-document
pairs.

The index size of SWiSSSE shown here is the initial size of the index. It can grow to up
to 2 times in size in the static setting and 3 times in the dynamic setting. Nonetheless,
its size is on par with other schemes and reasonable in practice.

It is clear that the size of index of SWiSSSE is on par with the state-of-the-art SSE
schemes.

Query Response Time. A comparison of query response volume is shown in Fig-
ure 7.8b. Here, we use real query response volume to refer to the actual number of
documents containing the keywords and padded query response volume to refer to the
number of documents retrieved by the schemes. As it can be seen, SWiSSSE has the
smallest query response volume for all keywords with frequency less than 3300. This
corresponds to over 95% of the keywords of the database (see Figure 6.2). SWiSSSE is
outperformed by the other two schemes on more frequent keywords, but these keywords
are less likely to be queried in practice, so we believe that it should not be seen as a
limitation of SWiSSSE.

184

7.9. DISCUSSION

(a) Comparison of index size between the state-
of-the-art SSE schemes and SWiSSSE.

(b) Comparison of query response volume be-
tween the state-of-the-art SSE schemes and
SWiSSSE.

Figure 7.8: Performance comparison between the state-of-the-art SSE schemes and SWiSSSE.

7.9 Discussion

In this Chapter, we describe SWiSSSE, the first system-wide secure SSE scheme that
can be instantiated in both the static and dynamic settings. Through experiments, we
demonstrate that SWiSSSE is practically efficient not only as a search index, but as
a full-fledged document retrieval system. An interesting feature of SWiSSSE is that it
achieves oblivious queries, where an adversary cannot distinguish search, insertion and
deletion queries. However, SWiSSSE has also raised many research questions.

Size of Inverted Index. SWiSSSE uses the duplication technique on the inverted
index just like all other SSE schemes. This leads to three sources of overhead. Firstly,
every keyword has to be masked by a PRF as many times as its number of occurrence.
Given millions of occurrences of keywords, the keys of the inverted index takes up
gigabytes of storage. Secondly, the document identifiers, which are just a few bytes
in size, need to be encrypted by a standard encryption scheme. Just like the keys,
encryption of the document identifiers leads to gigabytes of storage overhead. Finally,
a key-value store requires additional overhead for its internal data structure to support
efficient operations. For our experiment on 400K Enron emails for instance, a naive
key-value store of the inverted index requires over 30 gigabytes of memory, which is far
from scalable. Clearly, the inverted index is a bottleneck for scalability.

As a future research direction, we plan to investigate other techniques on the design of
the inverted index. We also want to find more efficient representations of the encrypted
database.

Size of Stash. As can be seen from our experiments in Section 7.8, the stash size
can grow without control occasionally. This can be problematic for low-storage devices.
In the future, we plan to investigate more efficient ways to use the stash and other
write-back strategies.

Multi-client Setting. SWiSSSE is a single-client SSE scheme by design. It will be
interesting to extend the ideas in SWiSSSE to the multi-client setting.

Richer Search Functionality. SWiSSSE currently only supports basic keyword
search and update functionalities. We leave as future work richer search functionalities

185

CHAPTER 7. CONSTRUCTION: SEARCHABLE ENCRYPTION

such as conjunctive/disjunctive keyword search and keyword search with wildcards.

Security Proof. We prove the security of SWiSSSE in the standard security model
and argue for its security with cryptanalysis on the leakage. In fact, cryptanalysis is the
only tool available for arguing about security right now. This is certainly not enough as
cryptanalysis is not always complete.

In the next chapter, we motivate a new security notion which captures security against
classes of attacks by measuring the gain of the attacker with respect to particular attack
goals.

Security vs Efficiency Trade-off. Unlike most of the works which focus on build-
ing efficient solutions with (close to) no leakage, SWiSSSE is an adventure in building
an efficient solution with practically acceptable leakage. This allows SWiSSSE to by-
pass the theoretical lower bound on efficiency set for schemes with (close to) no leakage.
We believe that it is an important step towards building practical cryptosystems as the
leakage-free alternative is not efficient enough for practical deployment (yet) as demon-
strated in Section 6.1.

Our work is very similar to other “leaky” schemes in the literature [197, 178, 185, 38]
and we hope that SWiSSSE can inspire more works of this kind in the field of structured
encryption and beyond.

186

Chapter 8

Foundations: Towards a Better
Security Notion

The community takes an all-or-nothing approach to tackle leakage-abuse attacks. In-
stead of searching for acceptable leakage and design schemes with those leakage, many
recent works [98, 149, 57] have focused on completely suppressing the information leak-
age that is known to be harmful. As a result, these schemes are forced to use expensive
techniques such as full padding or ORAM, which defeats the purpose of encrypted
databases.

We, on the other hand, believe that leakage is at the heart of structured encryption. It
is unavoidable if we want to achieve efficiency. But at the same time, leakage can be
problematic as demonstrated by leakage-abuse attacks (see Section 4.5, and Chapter 5
and 6). Hence, in order to design an efficient and secure scheme, we need to be able to
answer the ultimate question: how much leakage can we accept before it is too much?

The standard security notion [53, 40] is certainly not the answer to the question as
leakage-abuse attacks are still possible on a provably secure scheme. Leakage-abuse
attacks themselves are not sufficient to answer the question either as they only show
how to break schemes. What we need is a hybrid of the two: a security notion which
features leakage-abuse attacks. If we can prove that a scheme is secure in this notion, we
want to say that the scheme is secure with respect to the featured class of leakage-abuse
attacks under certain assumptions of adversarial power.

In this chapter, we describe a novel security notion which achieves the goal above. Our
notion is inspired by g-leakage [5] and it allows one to measure the security of a scheme
with respect to security goals and adversarial powers on a relative scale. We show how
previous constructions can be adapted to our security notion. We also propose three
new searchable encryption constructions and demonstrate the usefulness of our new
security notion. Finally, we show how our notion can be applied to other schemes in the
literature.

Contents

8.1 Introduction . 189

8.1.1 The Standard Security Notion 189

8.1.2 Other Notions . 190

8.1.3 G-leakage and Our Notion 191

8.2 Preliminary Results . 192

8.2.1 Notation . 192

187

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

8.2.2 Our Security Notion . 192

8.2.3 Computational Indistinguishability of Expectations of Gain
Functions . 193

8.2.4 SS-CQA-B Revisited . 196

8.3 New Constructions . 199

8.3.1 Syntax of Searchable Encryption 199

8.3.2 Additional Notation . 199

8.3.3 Typical Leakage Functions 199

8.3.4 Motivation . 200

8.3.5 Our Constructions . 201

8.4 Security Analysis of Our Constructions 202

8.4.1 Leakage of our Constructions 202

8.4.2 Invariant Properties of our Constructions 204

8.4.3 Security Analysis through Gain Functions 207

8.5 Application of Our Notion to Other Schemes 210

8.5.1 Security of Encrypted Range Queries 210

8.5.2 Security of Searchable Encryption 211

8.5.3 Security of SWiSSSE . 211

8.5.4 Security of the IKK construction 211

8.5.5 Security of GBC . 213

8.5.6 Security of Differentially-private Volume Hiding 213

8.6 Discussion . 214

188

8.1. INTRODUCTION

8.1 Introduction

In this section, we revisit the standard security notion presented in [53, 40]. We discuss
its drawbacks and argue that it is insufficient as a security notion. We also review other
notions which attempted to improve on the standard notion. Finally, we motivate our
own notion and highlight its advantages over the standard notion.

8.1.1 The Standard Security Notion

Recall from Section 4.3 that the standard security notion for structured encryption
presented proposed in [53] and refined in [40] is a simulation-based game where security
is parametrised by a leakage profile. The leakage profile is supposed to quantify what
an adversary is allowed to learn. So if a scheme has a leakage profile that is deemed to
be harmless by the community, we say that the scheme is practically secure.

This has changed since the discovery of leakage-abuse attacks [94, 122, 200, 102, 155, 115,
87, 126, 89, 17, 143]. In a leakage-abuse attack, the attacker is assumed to have some
background information on the database, and the leakage from the schemes are used
with the background information to recover private information about the database,
such as the keywords of the queries and the keywords in the documents.

The key reason why these leakage-abuse attacks exist, even though there is a security
proof, is that the security proof only shows an upper bound of information leakage, and
it does not tell the security impacts of the leakage. For example, DP − EMM [149]
pads query response volumes by a small Laplace random variable (see Section 6.4) so
the resultant leakage is noisy. Of course, one can say that the leakage is differential-
private volume-hiding because the true query response volume is not directly leaked,
but a simple frequency analysis [143] is able to break query privacy of the scheme.

There is also a problem with the quantification of leakage profiles as pointed out by
Kerschbaum and Tueno [104]. Consider an encrypted database for range queries where
the encrypted documents are ordered by their labels. Since the ordering mechanism
is public information, it is not a part of the leakage profile. However, this ordering
information can be used to locate the documents and launch attacks on them. So in
some sense, the leakage profile based notion does not even capture the information
leakage.

Some may argue that a security proof is still useful as it allows for cryptanalysis. This is
certainly true, but it is problematic in several ways. Firstly, most of the leakage-abuse
attacks in the literature make very strong assumptions on adversarial power and back-
ground information. For instance, the IKK attack [94] requires the entire database and
a small portion of the queries to be known by the attacker before being able to recover
a significant amount of queried keywords. This does not reflect a realistic scenario and
it does not show quantitatively how much information is the attacker allowed to obtain
before he breaches security. Secondly, the leakage-abuse attacks use specific techniques.
For instance, our query reconstruction attacks in Chapter 6 relies on likelihood functions
and simulated annealing. A failed attack does not necessarily mean that the underly-
ing scheme is secure against query reconstruction attacks, but rather, it could be the
case that the attack techniques are not suitable for the leakage profile. In that sense,
leakage-abuse attacks offer very limited insights into practical security implications of
leakages. Finally, many constructions in the literature [98, 149, 57] decide to suppress

189

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

a leakage completely if it is shown to be vulnerable to a leakage-abuse attack. This is
of limited value for the development of encrypted databases, as many of these leakages,
exemplified by access-pattern leakage, are expensive to suppress. A leakage-free scheme
is inevitably going to be inefficient which defeats the purpose of an encrypted database.

8.1.2 Other Notions

We briefly mention some previous attempts at addressing the issues with the standard
notion. In [104], Kerschbaum and Tueno pointed out that the standard notion does not
capture the leakage entirely, as explained above. They proposed a new security notion
for encrypted databases that support range queries to fix the problems. Their idea is to
capture the (lack of) ordering information of the documents with an indistinguishability
game, where the goal of the adversary is to guess the label of a document of his choice.
A scheme is said to be secure with respect to the notion if the adversary cannot do
better than random guessing.

Bost and Fouque [26] proposed to use constraints to fix the problems. Their idea is to use
an indistinguishability game where in the two experiments, the adversary generates two
databases and two sets of queries just like the indistinguishability game in [53]. However,
the databases and the queries must satisfy certain constraints. For example, to capture
the KKNO attack [102], the databases generated must have the same co-occurrence
counts, as otherwise there is an adversary who can distinguish the two experiments.

These notions are still insufficient to capture leakage-abuse attacks. For [104], the notion
is very specific to encrypted databases that support range queries, and it only captures
storage privacy. We want a notion that is more general and captures all classes of
attacks. With regards to [26], the security game is indistinguishability based, and it is
not clear how to use it to measure the security impact. Furthermore, the constraints
are rather arbitrary and it is hard to use them to model practical attacks.

In a related work, Boldyreva et al. [21] took a completely different approach to this
problem. Their idea is to use a security notion that measures the success rate of an
attacker with a specific goal directly. Informally, their security game works as follows.
The adversary is given a set of ciphertexts of uniformly random messages and he has to
output an interval of a given size so that at least one plaintext falls into it. The outcome
of the game is 1 if the adversary has succeeded and 0 otherwise. The (windowed one-
way) security of an order-preserving scheme with respect to an adversary is then defined
to be the probability of the game returning 1.

This notion is very similar to the notion we are about to present except three key dif-
ferences. Firstly, the notion in [21] is instantiated with uniformly distributed plaintexts.
For encrypted databases, this is not enough, as databases follow a certain distribution,
and we may design a scheme that is only secure for a certain distribution of databases.
Secondly, the security of a scheme is measured by a probability in [21]. For encrypted
databases, maybe only some of the ciphertexts/queries are interesting so looking at
probabilities are not enough. Finally, the security proofs in [21] can use the idealised
notion directly. We will see later in this chapter that it is not the case for our notion.

190

8.1. INTRODUCTION

8.1.3 G-leakage and Our Notion

Our new security notion is inspired by g-leakage [5]. G-leakage is an information-
theoretical model to measure the information gain of an adversary through an infor-
mation channel. More formally, let X be a set of random events and C a channel which
takes as input an event x ∈ X and outputs another event y ∈ Y . The adversary observes
y and outputs a guess ω ∈ W with the goal to maximise the expectation of a public
function (known as gain function) g : W × X → [0, 1]. In this formulation, g can be
thought of as an attack goal. For instance, g can be 1 if the guess is the same as the
input, and 0 otherwise; or it can be 1 if the guess matches the first bit of the input, and
0 otherwise. The expectation of the gain function then allows one to measure how good
the channel C is at defeating attack g.

We apply this idea to the context of encrypted databases. In particular, we model the
database and the set of queries as X, the setup protocol and query protocols as the
channel C, the transcripts as Y , and the attack goal as g. To allow for auxiliary infor-
mation as an input to the attacker, we modify X to output some auxiliary information
which the adversary can use to produce his guess. By encoding an attack goal, such
as query reconstruction, as a gain function g, one can compute the expectation over
g for a specific adversary. For example, we can let g be 1 if the adversary is able to
guess the keyword associated to a query, and 0 otherwise. Then, if the expectation over
g is small for all adversaries, we know that the chance for the adversary to guess the
keyword associated to a query is small, and the scheme is secure with respect to query
reconstruction attacks.

Our notion is similar to the simulation-based security game in [53] except for a few key
differences. Firstly, we let the environment generate the database and the queries and
the adversary receives some auxiliary information, as opposed to letting the adversary
picking the database and the queries himself. The auxiliary information is used to
model background information in actual attacks. Secondly, upon execution of the setup
protocol and the queries, the adversary outputs a guess. The guess, together with the
database and the queries are used as the inputs to a gain function, and the output
of the gain function is the output of the experiments. The goal of the adversary is to
maximise the gain function given what he observes. Finally, as opposed to claiming that
the scheme is secure if the output of the real game is indistinguishable from the ideal
game, we use the expectation of the output from the real game as a measure of security
impact, and the ideal game is only there to bound the expectation.

There are three main advantages of our security notion. Firstly, our notion is flexible in
terms of auxiliary information. This allows one to quantify security impacts with respect
to adversarial information. Secondly, our notion is relative in the sense that the output
of the notion is no longer a single bit, but rather a number which measures how good a
scheme is against a certain class of attacks. Finally, the attacker is not constrained to
use a specific attack technique. He can use whichever technique that maximises his gain
on the database. That way, we bypass the problem of needing to argue about security
with respect to specific leakage-abuse attacks.

191

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

8.2 Preliminary Results

8.2.1 Notation

We use the shorthand (xi)
N
i=0 to represent a list (x0, . . . , xN). If the indices are clear

from the context, we may simply write (xi) for the list.

We use the notation (outputA, outputB) ← [fA, fB] to represent an execution of the
interactive function f , where A and B are the two parties involved. In the notation, fA
is the part of the interactive function run by party A and fB is the part of the interactive
function run by party B. By the end of the execution, party A obtains output outputA
and party B obtains output outputB .

8.2.2 Our Security Notion

Our Notion. Informally, our security notion on a scheme Σ can be described as follows.
There is an environment Z that generates some data D, polynomially many queries (qi)
and some auxiliary information aux on the data and the queries. The data is encrypted
under some key key and is given to the adversary A with the auxiliary information
aux. The environment then initialises the encrypted data ED and makes queries (qi).
The transcript of the setup phase and the queries are observed by the adversary. After
polynomially many queries, the adversary outputs a guess ω which tries to maximise
the expectation of the gain function g(ω,D, (qi)). We simplify the notation and write
g(ω,D) to mean a gain function that only uses guess ω and data D as the input, or
g(ω, (qi)) if we are interested in query privacy. Security of a scheme with respect to a
gain function g is defined to be supremum of expectation of the gain function over all
adversaries.

Our security notion relies on a clever choice of the gain function g. The gain function g
should reflect the goal of the adversary. For example, in a query reconstruction attack
where the gain function takes shape g(ω, (qi)), a guess ω consists of an index j and a
keyword kw, we may set the gain function g to be:

g((j, kw), (qi)) = 1(W (qj) = kw).

The gain function is 1 if the adversary correctly guesses one of the queried keywords,
and 0 otherwise. Then, the expectation over this gain function equals to the success rate
of a specific query reconstruction attack A. Finally, we take supremum of expectation
over all adversaries as we care for security of scheme Σ with respect to all attacks that
try to maximise the information gain represented by g, regardless of the technique used.

Our security game is shown formally in Definition 8.1.

Definition 8.1 (Our Security notion). Let 1λ be a security parameter. Consider the
following probabilistic experiment for structured encryption scheme Σ where A is a
stateful semi-honest adversary, S is a stateful simulator, Clt is the client played by the
environment in the real game, and Svr is the server played by the adversary.

Real g
Σ,A,Z(1

λ)

192

8.2. PRELIMINARY RESULTS

1: (D, (qi),aux)← Z(1λ)
2: ((key,ED),ED, T0)←

[
SetupClt(1

λ,D),SetupSvr(1
λ)
]

3: for i← 1, . . . , |(qi)| do
4: (rspi,ED, Ti)← [QueryClt(key,qi),QuerySvr(ED)]

5: ω ← A((Ti),aux)
6: return g(ω,D, (qi))

The security of scheme Σ with respect to gain function g is defined to be the expectation

of the experiment, i.e. E
[
Real g

Σ,A,Z(1
λ)
]
.

In addition to the use of a gain function in our notion as highlighted in the motivation,
there are a few key differences between our notion and SS-CQA-B. First of all, the goal
of the adversary in our notion is to learn something about the underlying data and/or
queries, so it is unreasonable to let the adversary pick them. Instead, the environment
Z does it. Secondly, we are able to control the auxiliary information aux given to
the adversary with the environment Z, hence, analysing the security of the underlying
schemes under different prior knowledges. Finally, security of our notion is relative: a
scheme is more secure if the supremum of the expectation of the gain function is smaller.

One can easily generalise our notion to other adversarial models. For example, the
adversary may be allowed to pick the queries after he receives the encrypted data.
This corresponds to an adversary who can execute non-adaptive queries on the server.
A natural extension from there is to make the adversary adaptive, meaning that the
adversary can choose the next query based on what he has seen so far. It is also possible
to allow the adversary to corrupt some of the queries so that the decrypted responses
are revealed to it.

It is, however, difficult to work with our security notion directly as the objects in the
notion are real instances. Instead, we take a similar approach to the standard notion [98]
by moving to an idealised notion. The idealised notion captures information leakage with
leakage functions which allows us to argue about security using information-theoretic
tools. We find that security in our idealised notion does not trivially translate to security
in our notion, and we find conditions for which they do. We also show the relation
between the standard notion and our notion.

8.2.3 Computational Indistinguishability of Expectations of Gain
Functions

Motivation. In order to bound the expectation of our real game, we want to use
the idealised game in Figure 8.1 with some leakage profile L = (LSetup,LSrch), as it
is easier to argue security with a leakage profile. Our idea is to show that the output
by the adversary together with the data and queries in the real and ideal worlds are
computationally indistinguishable, so that the expectation of the gain function in the
real world is close to that in the ideal world. However, interestingly, this is not the case.

Indistinguishability does not Imply Equality in Expectation. For simplicity,
we consider the following example where the environment generates a database DB with

193

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

Ideal g
Σ,A,Z,S(1

λ)

1: (D, (qi),aux)← Z(1λ)
2: ((key,ED),ED, T0)←

[
S(1λ,LSetup(D)),SetupSvr(1

λ)
]

3: for i← 1, . . . , |(qi)| do
4: (rspi,ED, Ti)← [S(LQuery(qi,D),QuerySvr(ED)]

5: ω ← A((Ti),aux)
6: return g(ω,D, (qi))

Figure 8.1: Our idealised security game.

only one file and the file content is a binary string of length n, distributed uniformly in
the domain. n is also the security parameter. The environment generates no query. The
setup algorithm Setup from the client uses an IND-CPA encryption scheme to encrypt
the file except when the content of the document in the file is the string 0n. In the later
case, the encryption is 0n. It is straightforward to see that a binary leakage function
which attains 1 if the document is 0n and attains 0 otherwise can be used to quantify
the setup leakage. For our example, we modify this leakage function slightly as follows:

� if the document is 0n, return 1 with probability 1− 2−n,

� return 0 otherwise.

This new leakage function still works for a SS-CQA-B proof as the chance of returning
a wrong leakage is negligible.

Consider the following gain function:

g(ω,DB) = 22n · 1 {ω = f} where DB = {f} .

In short, the gain function g attains 2n when the adversary guesses correctly the content
of the document in the database and is zero otherwise.

In the real world, when the document is 0n, the adversary can guess the document
content correctly all the times; when the document is anything else, he can guess the

content correctly with probability 1
2n−1 . This makes the expected gain 2n + 22n

(2n−1)2 . In

the ideal world, when the document is 0n, there is a 2−n chance for the document to be
encrypted as a random string that is different from 0n, so the expected gain is reduced

to 2n − 1 + 22n

(2n−1)2 . The difference between the expected gains is not negligible in n.

Computationally Indistinguishable Gain Functions. However, for reasonable
gain functions, we do have that the expectation in the real world differs from the ex-
pectation in the ideal world by at most a negligible constant. Let X = (Ω,F , PX) be
a probability space (See Section 2.1 for the definition of probability space). Let |X| to
be the number of outcomes of X, i.e. |Ω|. For a function g : Ω → R, we write g(X) to
mean a real-valued random variable which maps the outcomes of X to g(·) of it. We
abuse the notation z ∈ g(X) to mean elements in the image of g(X). We formalise the
criterion on the gain function in Theorem 8.1.

The reader may refer to Section 2.1 for the definition of probability space which is used
below.

194

8.2. PRELIMINARY RESULTS

Theorem 8.1 (Bound on Expectations with respect to g). Let X = (Ω,F , PX) and
Y = (Ω,F , PY) be probability spaces and g : Ω → R be a function which maps the
outcomes of the events to real numbers. Then

E [g(X)] ≤ E [g(Y)] + |g(X)| · sup
z
|g(z)| ·∆(g(X), g(Y)),

where ∆(g(X), g(Y)) denotes the statistical distance (or total variation distance) be-
tween g(X) and g(Y), i.e. supz∈g(X) |Pr [g(X) = z]− Pr [g(Y) = z]|.

Proof of Theorem 8.1. We start by expressing the difference between the expectations.

|E [g(X)]−E [g(Y)]|

=
∑

z∈g(X)

z · Pr [g(X) = z]−
∑

z∈g(Y)

z · Pr [g(Y) = z]

=
∑

z∈g(X∪Y)

z · (Pr [g(X) = z]− Pr [g(Y) = z])

=
∑

z∈g(X)

z · (Pr [g(X) = z]− Pr [g(Y) = z]) .

So in particular, there is a z such that

|z · (Pr [g(X) = z]− Pr [g(Y) = z])| ≥ |E [g(X)]−E [g(Y)]|
|g(X)|

.

We can take a weaker bound on the right hand side by replacing z on the left by
supz |g(z)|, and we get∣∣∣∣sup

z
|g(z)| · (Pr [g(X) = z]− Pr [g(Y) = z])

∣∣∣∣ ≥ |E [g(X)]−E [g(Y)]|
|g(X)|

sup
z
|g(z)| · |Pr [g(X) = z]− Pr [g(Y) = z]| ≥ |E [g(X)]−E [g(Y)]|

|g(X)|

|Pr [g(X) = z]− Pr [g(Y) = z]| ≥ |E [g(X)]−E [g(Y)]|
|g(X)| · supz |g(z)|

.

The left hand side is bounded from above by statistical distance ∆(g(X), g(Y)). Finally,
by rearranging the terms, we have the desired result.

∆(g(X), g(Y)) ≥ |E [g(X)]−E [g(Y)]|
|g(X ∪ Y)| · supz |g(z)|

E [g(X)] ≤ E [g(Y)] + |g(X)| · sup
z
|g(z)| ·∆(g(X), g(Y)).

It is straightforward to see that if two probability spaces are computationally indistin-
guishable, and a function g behaves nicely on the probability spaces, we get Corollary
8.1.

195

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

Corollary 8.1 (Bound on Computationally Indistinguishable Probability Spaces with
respect to g). Let 1λ be a security parameter. Let X = (Ω,F , PX) and Y = (Ω,F , PY)
be probability spaces and g : Ω → R be a function which maps the outcomes of the
events to real numbers. Assume that the following conditions hold:

1. X and Y are computationally indistinguishable,

2. |{ω | g(ω) ̸= 0, ω ∈ Ω}| ∈ poly(λ),

3. supz |g(z)| ∈ poly(λ).

Then
E [g(X)] ≤ E [g(Y)] + negl(λ).

8.2.4 SS-CQA-B Revisited

In this section, we bridge the gap between the standard notion and our security notion.
In particular, we show that the black-box security of SS-CQA-B implies the outputs
(ω,D, (qi)) in our real and ideal games are computationally indistinguishable. There-
fore, the corresponding leakage profile and simulator can be used to bound the expected
gain in our real experiment using reasonable gain functions. Our proof requires an in-
termediate security notion which is the same as SS-CQA-B except that the adversary
outputs a string instead. We call this notion SS-CQA-S and its definition is given
below.

Definition 8.2 (Modified Adaptive Security of Interactive STE (SS-CQA-S)). Let 1λ

be a security parameter. Consider the following probabilistic experiments for structured
encryption scheme Σ where A is a stateful semi-honest adversary which outputs a string
in the end, S is a stateful simulator, Clt is the client played by the environment in
the real game, Svr is the server played by the adversary, L = (LSetup,LQuery) is the
leakage profile:

RealSS-CQA-S
Σ,A (1λ)

1: D← A(1λ)
2: ((key,ED),ED, T0)←

[
SetupClt(1

λ,D),SetupSvr(1
λ)
]

3: for i← 1, . . . , N do
4: qi ← A(D, (qj), (Tj))
5: (rspi,ED, Ti)← [QueryClt(key,qi),QuerySvr(ED)]

6: ω ← A(D, (qi), (Ti))
7: return ω

IdealSS−CQA−S
Σ,A,S (1λ)

1: D← A(1λ)
2: ((key,ED),ED, T0)←

[
S(1λ,LSetup(D)),SetupSvr(1

λ)
]

3: for i← 1, . . . , N do

196

8.2. PRELIMINARY RESULTS

4: qi ← A(D, (qj), (Tj))
5: (rspi,ED, Ti)← [S(LQuery(qi,D),QuerySvr(ED)]

6: ω ← A(D, (qi), (Ti))
7: return ω

We say that scheme Σ is string-wise adaptive L-CQA secure in the black-box model if
there is a simulator S such that for every PPT adversary A and distinguisher D,

Pr
[
D(RealSS-CQA-S

Σ,A (1λ)) = 1
]
− Pr

[
D(IdealSS-CQA-S

Σ,A,S (1λ)) = 1
]
≤ negl(λ).

We say that scheme Σ is string-wise adaptive L-CQA secure in the non-black-box model
if for every PPT adversary A and distinguisher D, there is a simulator S such that,

Pr
[
D(RealSS-CQA-S

Σ,A (1λ)) = 1
]
− Pr

[
D(IdealSS-CQA-S

Σ,A,S (1λ)) = 1
]
≤ negl(λ).

If the adversary A in the above experiments has to pick all the queries beforehand, we
say that scheme Σ is string-wise non-adaptive L-CQA secure.

For simplicity, we denote the black-box and non-black-box version of SS-CAQ-B as
B-BB and B-NBB respectively; we denote the black-box and non-black-box version
of SS-CAQ-S as S-BB and S-NBB respectively. The implications between the four
notions are in Figure 8.2.

B-BB

B-NBB

S-BB

S-NBB

Figure 8.2: Implications between the notions

Proof of Implications in Figure 8.2. The implications B-BB⇒ B-NBB and S-BB⇒
S-NBB are trivial.

(S-NBB⇒ B-NBB) Suppose that the underlying scheme Σ is not secure in B-NBB,
then there is an adversary A for all simulators S, the output of the real and ideal
experiments differs with non-negligible probability. We construct an adversary against
S-NBB as follows. At the beginning of the experiment, the adversary outputs some
data D and a sequence of queries (qi). The queries are then executed to generate a
sequence of transcripts (Ti). We run adversary A on input (D, (qi), (Ti)) to obtain a bit
b and set the output of the S-NBB experiment to be (b,D, (qi)). Since the probability
of obtaining b in the real world and the ideal world is different in B-NBB, there must be
a distinguisher who can distinguish (b,D, (qi)) from the real world and the ideal world,
hence, scheme Σ must be insecure in S-NBB.

(S-BB ⇒ B-BB) The proof is similar to S-NBB ⇒ B-NBB so we do not repeat it
here.

197

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

(B-BB ⇒ S-BB) For any simulator S in B-BB, we construct an adversary that gen-
erates a non-negligible difference in probability using adversaries for S-BB as follows.
Let A and D be some adversary and distinguisher that breaks scheme Σ in S-BB for
the simulator S. The adversary against B-BB works as follows. It uses adversary A
to generate some data D and a sequence of queries (qi). The queries are executed to
generate a sequence of transcripts (Ti). The adversary A is called again with input
(D, (qi), (Ti)) to generate a string ω. This string is passed into distinguisher D and a
bit b is produced. Since we assumed that S-BB is insecure, the probability of getting b
in the real world and ideal world is different, and scheme Σ is insecure in B-BB.

We are now ready to state Proposition 8.1 which connects SS-CQA-B to our notion.
Informally, the proposition states that if a scheme is secure in the black-box model of
SS-CQA-B (B-BB) with leakage L, the same leakage can be used to compute the
expected gain in our notion.

Proposition 8.1 (B-BB Security implies Security in our Notion). Let L be a leakage
profile and Σ be B-BB secure. Let g be a function which takes as input a string, some
data and a list of queries, and outputs a positive real number such that:

1. ||g|| ∈ poly,

2. supz |g(z)| ∈ poly,

where ||g|| denotes the size of the support of g where g is non-zero. Then for all envi-
ronments Z, there is a simulator S, for every PPT adversary A,

E
[
Real g

Σ,A,Z(1
λ)
]
≤ E

[
Ideal g

Σ,A,Z,S(1
λ)
]
+ negl(λ). (8.1)

Proof of Proposition 8.1. It suffices to show that the two experiments in our notion
are computationally indistinguishable if the underlying scheme is secure in the B-BB
model. Using Figure 8.2, we know that security in the B-BB model implies security in
the S-BB model. Now, we modify the experiments in the S-BB model by replacing the
first line of the real and ideal worlds with that of our notion, i.e. we let the environment
sample the data, queries and auxiliary information:

(D, (q1, . . . ,qN),aux)
R←− Z.

It is straightforward to see that security in the S-BB model implies security in this
modified model. The only difference between this model and our notion is that the gain
function has not been applied to the output of the experiment yet. It can be easily shown
that the two experiments in our notion are indistinguishable if the modified model is
secure with a simple reduction.

We can then use Proposition 8.1 to show the desired result.

We note that all of the constructions in the literature use B-NBB as their security
notion but the actual proofs are for B-BB. Hence, our security notion can be applied
to those schemes.

198

8.3. NEW CONSTRUCTIONS

8.3 New Constructions

In this section, we devise three searchable encryption schemes to show the usefulness of
our notion. We note that these schemes are nowhere as efficient as SWiSSSE but their
leakages are easier to analyse with our notion. We leave the analysis of the security of
SWiSSSE and other schemes with complex leakage profiles as a future work.

8.3.1 Syntax of Searchable Encryption

The syntax of structured encryption we use in this chapter can be found in Section
4.1. We use searchable encryption as a case study, and we use search protocol Srch in
place of Query and encrypted search protocol Srche in place of Querye to emphasis
that the query type supported by the database is keyword search query. We omit the
subscription when it is clear that we are referring to an encrypted protocol.

We refine the structure of the documents as follows to make our constructions later
more readable. A keyword-based database DB consists of a set of files, so DB = {fi}.
Each file f ∈ DB contains a unique file identifier, some file content and some keywords
specified by the user so f = (id, doc,W). For simplicity, we denote file identifier of a
file as id = id(f), the document associated to a file doc = doc(f), and the keywords
associated to a file as W = KW (f).

An keyword-based encrypted database EDB consists of a collection of encrypted files
and an encrypted index EI for encrypted queries, so EDB = ({efi} ,EI). Each en-
crypted file ef contains a file identifier and some encrypted file content so ef = (id, edoc).
For simplicity of notation, we denote file identifier of a file as id = id(ef) and the set
of keywords associated to an encrypted file by W = KW (ef). For a search query q, we
write KW (q) to mean the keyword associated to the query.

8.3.2 Additional Notation

Let KW (·) denotes a function that takes in a file and returns the set of keywords

associated to it. We write P
KW (DB)
a to mean a permutation on KW (DB), i.e. a

bijection between the keywords in the database, where a is a prime number and Pa

is a product of |KW (DB)|
a disjoint cycles of length a. When the keyword set is well-

understood, we omit it from the notation. Let W be a set of keywords, we abuse the
notation Pa(W) to mean Pa(W) = {Pa(kw) | kw ∈W}.

8.3.3 Typical Leakage Functions

We recall and formalise two typical leakage functions, namely search pattern and access
pattern formally in this section, as our constructions have leakage functions derived from
these.

Search Pattern. Search pattern refers to query equality leakage, meaning that given
two search queries q1 and q2, an attacker is able to tell if the keyword associated to
query q1 is the same as that of query q2. This leakage is typically represented as an
l-by-l matrix, where l is the number of search queries and the (i, j)-th entry of the
matrix is 1 if and only if the i-th search query and the j-th search query have the same

199

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

underlying keyword; the (i, j)-th entry is 0 otherwise. We denote search pattern as
SP((q1, . . . ,ql),DB) in this thesis.

Access Pattern. Access pattern refers to equality leakage during file retrieval. Con-
sider the case where file f contains keyword kw1 and kw2, and a query on each is
executed. For a scheme that does not suppress access pattern leakage, an encrypted
version of file f will be retrieved with both queries, hence, leaking the fact that the two
keywords are present in the same file. The leakage is typically expressed as a |DB|-by-l
matrix, where |DB| is the number of files in the database and l is the number of queries.
An order on the file identifiers is assumed so the indices make sense. The (i, j)-th entry
of the matrix is 1 if and only if the i-th file is retrieved by the j-th query. We denote
access pattern as AP((q1, . . . ,ql),DB) in this thesis.

We note that there are ways to represent search and access pattern. In the matrix
representation above, each row of the matrix represents a query (or a document), and
the order of rows is independent from the underlying queried keywords (or documents).
Later in the thesis, we represent the access pattern leakage with the actual document
identifiers to simplify the notation, and it should be noted that the actual document
identifiers are not leaked by the constructions.

8.3.4 Motivation

As discussed in Section 4.5, access pattern from search queries can be abused by an ad-
versary to recover keywords in documents or queries. The obvious approach to suppress
the leakage is to use ORAM-based constructions [74] to eliminate access pattern leakage
altogether. Given that ORAM is computationally costly, we seek for a scheme with
greater leakage but which preserves enough privacy for the underlying scheme, that is,
the scheme may not be completely leakage-free, but the information gains with respect
to the important classes of leakage-abuse attacks in our framework are low.

All of our constructions rely on a permutation Pa. The idea is that the databases can
be permuted by Pa in some way such that the encrypted view of the database stays the
same. Therefore, the permuted databases and the original database are indistinguish-
able by an honest-but-curious adversary. We show that different ways of applying the
permutation Pa leads to different security properties.

On a high-level, we propose three schemes, all based on some searchable encryption
scheme that leaks only the number of keywords and the number of documents in the
initialisation algorithm, and search pattern and access pattern in the searching phase.
For simplicity, we only demonstrate how our schemes work in the vanilla setting where
the underlying scheme supports keyword search and no update or deletion are allowed.
One can easily extend our schemes to support these two operations. The first scheme
uses the permutation Pa to generate fake files such that the keywords in the same cycle
of Pa generate the same leakage pattern. The second scheme is a modified version of the
first scheme by adding permutations of keywords to the real files instead of creating fake
files. The third scheme adds fake keywords to the documents by using permutations of
keywords from other files.

200

8.3. NEW CONSTRUCTIONS

8.3.5 Our Constructions

Permutation by Adding Fake Documents. Let Σ = (Setup,Srch) be a searchable
encryption scheme with the number of documents and number of keyword-document
pairs as the setup leakage, and search pattern and access pattern as the search leakage.
Our construction Σ1 = (Setup,Srch) pre-processes the plaintext database by adding
fake documents and then uses Σ as the underlying searchable encryption scheme.

To add fake documents, the scheme Σ1 begins by generating a random permutation Pa

of KW (DB) with cycles of size a, where a is a prime. To pre-process the plaintext
database, for every file f in the database, Σ1 generates a − 1 fake files with function
FGen. FGen takes as input a set of keywords W and output a fake file with W as the
keywords associated to the file. Here, the sets of keywords used to generate the fake
files are Pa(KW (f)), P 2

a (KW (f)), . . . , P a−1
a (KW (f)). After the pre-processing step,

scheme Σ1 calls Setup to setup the database. To answer queries, scheme Σ1 simply
invokes Srch and filters fake documents locally. The pseudocode of the setup algorithm
is shown in Algorithm 8.1.

Algorithm 8.1 Setup algorithm of Σ1.

1: procedure Setup(1λ, a,DB)
2: Generate permutation Pa for keyword set KW (DB)
3: DB′ ← {}
4: for f ∈ DB do
5: DB′ ← DB′ ∪ f
6: for i← 1, . . . , a− 1 do
7: DB′ ← DB′ ∪ FGen(P i

a(KW (f)))

8: return Setup(1λ,DB′)

Permutation with Adding Fake Keywords. Let Σ = (Setup,Srch) be a search-
able encryption scheme with the number of documents and number of keyword-document
pairs as the setup leakage, and search pattern and access pattern as the search leakage.
Our construction Σ2 = (Setup,Srch) pre-processes the plaintext database by adding
fake keywords to the existing documents and then uses Σ as the underlying searchable
encryption scheme.

To add fake documents, the scheme Σ2 begins by generating a random permutation
Pa of KW (DB) with cycles of size a, where a is a prime. To pre-process the plain-
text database, for every file f in the database, a− 1 new sets of keywords Pa(KW (f)),
P 2
a (KW (f)), . . . , P a−1

a (KW (f)) are generated and added to file f . The resultant database
is then encrypted and uploaded with Setup. Similar to Σ1, Σ2 uses search protocol Srch
to retrieve documents and filter false-positives locally. The pseudocode of the setup al-
gorithm is shown in Algorithm 8.2.

Permutation with a Documents. Let using the same scheme Σ = (Setup,Srch)
as the underlying searchable encryption scheme, our last scheme Σ3 = (Setup,Srch)
obfuscates access pattern by using a permutation Pa on batches of documents as follows.
During the setup phase, Σ3 generates a permutation Pa of KW (DB) with cycles of size
a, where a is a prime. Σ3 then randomly batches the files into groups of a. Without loss
of generality, let f0, . . . , fa−1 be the files in a batch. Σ3 sets the keywords associated to

201

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

Algorithm 8.2 Setup algorithm of Σ2.

1: procedure Setup(1λ, a,DB)
2: Generate permutation Pa for keyword set KW (DB)
3: DB′ ← {}
4: for f ∈ DB do
5: W ← KW (f)
6: for i← 1, . . . , a− 1 do
7: W ←W ∪ P i

a(KW (f))

8: DB′ ← DB′ ∪ (id(f), doc(f),W)

9: return Setup(1λ,DB′)

file fi to

a−1⋃
j=0

P i−j
a (KW (fj)).

It is easy to see that the keywords associated to fi are contained in this set for all i, and
the padded keyword sets for the files in the same batch are permutations of each other.
The pseudocode of the setup algorithm is shown in Algorithm 8.3.

Algorithm 8.3 Setup algorithm of Σ3.

1: procedure Setup(1λ, a,DB)
2: Generate permutation Pa for keyword set KW (DB)
3: DB′ ← {}
4: for f0, . . . , fa−1 sampled from DB without replacement do
5: W ←

⋃a−1
j=0 P

−j
a (KW (fj))

6: for i← 0, . . . , a− 1 do
7: DB′ ← DB′ ∪ (id(fi), doc(fi), P

i
a(W))

8: return Setup(1λ,DB′)

8.4 Security Analysis of Our Constructions

In this section, we prove the security of the three schemes we have devised earlier with
respect to SS-CQA, and analyse their security with respect to three security goals in
our security model. We demonstrate the usefulness of our framework in measuring the
level of privacy a scheme offers on different aspects, including query privacy and data
privacy.

8.4.1 Leakage of our Constructions

In this section, we present the leakages of the three schemes and prove their security
in the SS-CQA model. All of our constructions are built from a searchable encryption
scheme Σ = (Setup,Srch) with leakage profile:

LSetup(DB) =

(
|DB| ,

∑
i

|KW (DB[i])|

)
,

LSrch(q,DB;q1, . . . ,ql) = (SPΣ((q1, . . . ,ql,q),DB),APΣ((q1, . . . ,ql,q),DB)).

202

8.4. SECURITY ANALYSIS OF OUR CONSTRUCTIONS

As the only difference between Σ and our schemes is the pre-processing step, our schemes
have the same leakage profile as Σ, except that the input database DB is replaced with
a padded version DB′ according to the pre-processing algorithms.

Leakage Profile of Σ1. Recall that our first construction simply generates a − 1
fake files for every real file, with the keywords permuted by different powers of Pa. This
means that even though the encrypted database contains a − 1 times more encrypted
files and keyword-file pairs, the setup leakage of the construction does not change, as
an attacker can simply divide the size of the database and the number of keyword-file
pairs to recover the original size of the database and the number of keyword-file pairs.

The search protocol of the construction leaks search pattern just as before. In terms of
the access pattern, fake files are introduced to mask the real access pattern. As we have
discussed before, access pattern leakage can be represented as a matrix, where the rows
of the matrix represent the files and the columns of the matrix represent the queries.
The order of rows is independent from the order of files in the original database. This
however, adds additional complications to the representation and we decide to represent
the access pattern leakage with the file identifiers even though they are not leaked
directly. One can think of the real access pattern leakage as a row-permuted version of
our representation.

For simplicity, we assume DB[i] is the i-th file in the original database, and it is mapped
to the (ai−a+1)-th file in the encrypted file in the encrypted database with permutation
Pa. We also assume that the fake files generated from the i-th file are mapped to the
(ai−a+2)-th to (ai)-th files in the encrypted database. Then the access pattern leakage
of the construction can be written as:

APΣ1((q1, . . . ,ql,q),DB)i,j =

{
1 if KW (qj) ∈ P

(i−1 mod a)
a

(
KW

(
DB[

⌈
i
a

⌉
]
))

,

0 otherwise.

Leakage Profile of Σ2. Recall that for scheme Σ2, the permuted keywords are
padded directly to the real files using permutation Pa. The resultant files may contain
less than a times of keywords as the permutations may contain the same keywords as
the original files. This means that the setup leakage of Σ2 is slightly different from Σ.
We can describe the setup leakage of Σ2 formally with

LSetup(DB) =

|DB| ,
∑
i

∣∣∣∣∣∣
a−1⋃
j=0

P j
a (KW (DB[i]))

∣∣∣∣∣∣
 .

In terms of leakage from search queries, Σ2 leaks search pattern and a modified access
pattern. The access pattern leakage can be expressed as:

APΣ2
((q1, . . . ,ql,q),DB)i,j =

{
1 if KW (qj) ∈

⋃a−1
k=0 P

k
a (KW (DB[i])) ,

0 otherwise.

Leakage Profile of Σ3. Our scheme Σ3 batches files together randomly and apply
padding with permutation Pa. This means that the leakage is randomised by how the
files are batched. In our description below, we simplify the leakage profile by assuming
a fixed ordering of files.

203

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

The setup leakage of the scheme includes the number of files and the total number of
keyword-file pairs after padding.

LSetup(DB) =

|DB| ,

|DB|
a −1∑
i=0

∣∣∣∣∣∣
a⋃

j=1

P j−1
a (KW (DB[ai+ j]))

∣∣∣∣∣∣
 .

The search leakage of the scheme includes search pattern and access pattern induced by
the padded database. The access pattern leakage can be expressed as:

APΣ3
((q1, . . . ,ql,q),DB)i,j =

1 if KW (qj) ∈
⋃a⌈ i

a⌉+a

k=a⌈ i
a⌉

P i−k
a (KW (DB[k])) ,

0 otherwise.

The setup leakage stays the same if we have not made the assumption on the ordering
of files. The access pattern, on the other hand, will be a row-permuted version of the
matrix above if the assumption is not made.

8.4.2 Invariant Properties of our Constructions

In this section, we show an important property of our constructions which we need in
our security analysis with gain functions later.

Indistinguishable Leakage Profiles under Permutation. Let Pa be the permu-
tation used to pre-process the plaintext database DB. Our schemes are constructed in a
way that the keywords of the files in the database can be permuted by Pa and generate
the same leakage profile. It is also possible to permute the keywords in the queries and
generate the same search pattern and access pattern leakages.

Taking scheme Σ1 as an example. Consider a simple database with a single file f1.
During the pre-processing step, fake files f2, . . . , fa are generated such that the keywords
associated to the files are P j

a (KW (f1)) for j = 1, . . . , a− 1. By permuting the keywords
associated to file f1 with Pa, we get that the new set of keywords is Pa(KW (f1)). If
that is the set of keywords associated to f1 instead, we will get the sets of keywords
associated to the fake files as P j+1

a (KW (f1)) for j = 1, . . . , a − 1. However, the set
of sets of keywords from the real file and the fake files together does not change, as it
stays as P j

a (KW (f1)) for j = 0, . . . , a − 1. This means that an attacker who can only
observe the leakages from the setup step and the subsequent queries is not able to tell
if the set of keywords associated to the encrypted version of f1 is KW (f1) or any other
P j
a (KW (f1)) for j = 1, . . . , a − 1, as any of these choices generate the same leakage

profile. We call this property invariant under keyword sets permutation.

From now on, we abuse the notion Pa(DB) to mean permuting the keyword sets of the
files in DB, or

Pa(DB) = {(id(fi), Pa(KW (fi)), fi)} .

Invariant under Keyword Sets Permutation. We are now ready to formally
define invariant under keyword sets permutation.

Definition 8.3 (Invariant under Keyword Sets Permutation). Let Σ be a searchable
encryption scheme with leakage profile (LSetup,LSrch). We say that Σ is invariant under

204

8.4. SECURITY ANALYSIS OF OUR CONSTRUCTIONS

keyword sets permutation if for all databases DB = {fi}, there exists a permutation P
on the databaseDB which may depend on the particular instance of the setup procedure,
such that

(LSetup(DB),LSrch(·,DB)) = (LSetup(P (DB)),LSrch(·, P (DB))).

We state the invariant under keyword sets permutation property of our constructions as
a theorem below.

Theorem 8.2 (Invariant under Keyword Sets Permutation Property of our Construc-
tions). Schemes Σ1,Σ2 and Σ3 are invariant under keyword sets permutation.

Proof. (Scheme Σ1) Assume Pa is the permutation used in the setup step. It should
be immediately clear that the setup leakage does not change after an application of
permutation Pa, as

LSetup(Pa(DB)) =

(
|Pa(DB)|

a
,

∑
i

∑a−1
j=0

∣∣P j+1
a (KW (DB[i]))

∣∣
a

)

=

(
|DB|
a

,

∑
i

∑a−1
j=0

∣∣P j
a (KW (DB[i]))

∣∣
a

)
= LSetup(DB)

Search query leakage of scheme Σ1 consists of two parts, namely search pattern and
access pattern. Search pattern is not affected by the keyword sets permutation so it
stays the same after the permutation. In terms of access pattern, the permutation of
keywords induces a permutation on the document identifiers. If we can prove that, it
is straightforward to see that the access-pattern stays the same as access pattern is
invariant under document identifier permutation.

To prove the permutation, consider without loss of generality a database DB = {f1},
whereKW (f1) = W . The setup algorithm generates files f2, . . . , fa such thatKW (fi) =
P i−1
a (W).By applying permutation Pa on databaseDB and running the setup algorithm,

we get files {f ′i}, such that KW (f ′i) = P i
a(W). In other worlds, KW (fi) = KW (f ′i−1)

for i = 2, . . . , a and KW (f1) = KW (f ′a). This can be seen as a permutation on the
document identifiers in terms of access pattern leakage. By generalising the argument
to a database with multiple files, we get the desired result.

(Scheme Σ2) Assume Pa is the permutation used in the setup step. If f is a file in the

database DB, the pre-processing step changes its keywords to
⋃a−1

i=0 P i
a(KW (f)). It

should be clear that a permutation with Pa on the keywords of f does not change the
keywords:

Pa

(
a−1⋃
i=0

P i
a(KW (f))

)

=

a⋃
i=1

P i
a(KW (f))

=

a−1⋃
i=0

P i
a(KW (f)).

205

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

So the setup and search leakage are not affected by a keyword sets permutation.

(Scheme Σ3) The invariant property of scheme Σ3 can be proven in a similar way to
Σ1 by treating some of the pre-processed documents as the original documents in Σ1.
Suppose f1, . . . , fa is a batch of files chosen in the setup step of Σ3. Then the keywords
associated to file f1 after pre-processing is

⋃a
i=1 P

1−i
a KW (fi), and it can be verified

easily that Pa(KW (f ′i)) = KW (f ′i+1) for all i = 1, . . . , a − 1, and Pa(KW (f ′a)) =
KW (f ′1). This means files f2, . . . , fa can be treated as the fake files in Σ1, and the proof
follows immediately.

Invariant under Queried Keywords Permutation. Similarly, the queried key-
words can be permuted without changing the query leakage. In a naive construction,
this is certainly not the case: a query on keyword kw1 and a query on keyword kw2

are going to return different numbers of files as long as the number of times these two
keywords appear in the database are different. This is not the case in our constructions.
Suppose Pa is the permutation used to pre-process a database DB. In scheme Σ1, for
every instance of keyword kw1, the scheme generates a fake file containing keyword
Pa(kw1). There are also fake documents generated containing keywords P 2

a ∗ (kw1) and
so on. That means the query response volume for the pre-processed database is the total
number of documents containing kw1, Pa(kw1), . . . , P

a−1
a (kw1). By the same argument,

if keyword kw2 is in the same cycle as keyword kw1 in permutation Pa, the query re-
sponse volume associated to a query on keyword kw2 is kw2, Pa(kw2), . . . , P

a−1
a (kw2).

But since we know kw2 = P j
a (kw1) for some j, the query response volume of a query

with keyword kw2 is the same as that of keyword kw1.

The indistinguishability property does not stop at query response volumes. In fact, the
access pattern matrix will not change after a permutation of queried keywords. This
can be seen easily as a permutation on the queried keywords corresponds directly to
a permutation of file identifiers. Using scheme Σ1 as an example. If file f1 contains
keyword kw1 and kw2, the pre-processing step introduces fake files f2, . . . , fa such that
the keyword in fi is P

i−1
a ({kw1, kw2}). If a permutation of Pa is applied on the queried

keywords, then a query on keyword kw1 is changed to a query on Pa(kw1). So f2 is
returned instead of file f1. Similarly, a query on keyword kw2 is changed to a query on
Pa(kw2) and file f2 is returned instead of file f1. In fact, Pa fixes a permutation on the
file identifiers in terms of the access pattern. This corresponds to a row permutation of
the access pattern matrix, and since it does not change the information carried by the
access pattern matrix, we say that Σ1 is invariant under queried keywords permutation.

By abuse of notation, we write Pa(q) to mean a permutation on the queried keyword
associated to q, and the resultant queried keyword is Pa(KW (q)).

We are now ready to formally define invariant under queried keywords permutation.

Definition 8.4 (Invariant under Queried Keywords Permutation). Let Σ1 be a search-
able encryption scheme with leakage profile (LSetup,LSrch). We say that Σ1 is invari-
ant under keyword sets permutation if for all databases DB = {fi} and all sequences
of search queries q1, . . . ,ql, there exists a permutation P which may depend on the
particular instance of the setup procedure, such that

LSrch(q1, . . . ,ql,DB) = LSrch(P (q1), . . . , p(ql),DB).

We state the invariant under queried keywords permutation property of our construc-
tions as a theorem below.

206

8.4. SECURITY ANALYSIS OF OUR CONSTRUCTIONS

Theorem 8.3 (Invariant under Queried Keywords Permutation Property of our Con-
structions). Schemes Σ1,Σ2 and Σ3 are invariant under queried keywords permutation.

Proof. (Scheme Σ1) Assume Pa is the permutation used in the setup step. As before,
the search pattern is not affected by the permutation on the queried keywords. In terms
of the access pattern, as before, let f1 be a file in the original database, and f2, . . . , fa
be the fake files generated by the setup step. Without loss of generality, let kw be a
keyword in f1. After an application of permutation Pa on a query associated to kw, we
get a query on Pa(kw). This leads to retrieval of f2 instead of f1. We get the same
permutation on document identifiers just as before, so Σ1 is invariant under queried
keywords permutation.

(Scheme Σ2) Assume Pa is the permutation used in the setup step. We note that a
pre-processed file f contains kw if and only if it contains Pa(kw) too. This means a
query on kw retrieves the exact set of files as a query on Pa(kw). This implies that Σ2

is invariant under queried keywords permutation.

(Scheme Σ3) The proof for scheme Σ3 follows from the argument in proof of Theorem
8.2 so it is omitted here.

8.4.3 Security Analysis through Gain Functions

In this section, we demonstrate how to use gain functions to analyse security of our
constructions. We consider three gain functions. The first gain function g1 is used to
measure query privacy, whereas the other two are used to measure data privacy.

Measuring Query Privacy with g1. An important class of attacks on searchable
encryption is query reconstruction attacks. These attacks [94, 33, 17] assume that the
adversary has access to the underlying database or a noisy version of it, and the goal
of the adversary is to recover the keywords associated to the queries. In our security
notion, this can be modelled as an environment Z which outputs auxiliary information
aux = DB0, where DB0 is the underlying database. The goal of the adversary is to
maximise its gain with respect to the function:

g1((j, kw), (DBi), (qi)) = 1(KW (qj) = kw).

As the auxiliary information does not include any information on the actual queries, it
is easy to see that no adversary can achieve an expected gain of more than 1

a on our
constructions, as the constructions are invariant under queried keywords permutation.
We state the security of our constructions with respect to gain function g1 in Theorem
8.4.

Theorem 8.4 (Security of our Constructions with respect to Gain Function g1). Let
scheme Σ be either Σ1,Σ2 or Σ3, and a the size of the cycles in the permutation Pa

generated by the schemes. Let environment Z be one that generates a database and
a sequence of queries uniformly randomly, with auxiliary information aux the same as
the generated database, on a polynomial-size support. Then

sup
A

E
[
Real g1

Σ,A,Z(1
λ)
]
≤ 1

a
+ negl(λ).

207

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

Proof. We know from Theorem 8.3 that schemes Σ1,Σ2 and Σ3 are invariant under
queried keywords permutation. Since the queries are uniformly generated, and no infor-
mation on query distribution is passed to the adversary, a sequence of queries q1, . . . ,ql

generates the same leakage as P i
a(q1), . . . , P

i
a(ql) for i = 1, . . . , a. These possibilities are

equally likely. Hence for scheme Σ which is either Σ1,Σ2 or Σ3, and any simulator S
which satisfies the B-BB notion,

sup
A

E
[
S g
Σ,A,Z,S(1

λ)
]

≤
∑
(Ti)

Pr [(Ti)] max
(j,kw)

∑
((DBi),(qi),aux)

g1((j, kw), (DBi), (qi)) · Pr [((DBi), (qi)) | (Ti)]

≤
∑
(Ti)

Pr [(Ti)] ·
1

a

=
1

a
.

Since the environment Z samples from a polynomial-sized sample space as assumed by
Theorem 8.4, and the image of g1 contains only two values, we get

sup
A

E
[
Real g1

Σ,A,Z(1
λ)
]
≤ 1

a
+ negl(λ)

using Theorem 8.1.

Measuring Data Privacy with g2. Another important class of attacks on searchable
encryption is data reconstruction attacks. These attacks assume that the adversary has
some information on the database and queries, and its goal is to recover one or more
keywords of the encrypted files. This attack is devastating as the recovered keywords can
be used to decipher the content of the encrypted files and completely defeat the purpose
of file encryption. The query reconstruction attacks in the literature [94, 33, 17] are
data reconstruction attacks too on the schemes that leak access pattern.

We can capture data reconstruction attacks with an environment Z that generates a
database and a sequence of queries at random, and set the auxiliary information to the
access pattern of the database (with known queries) in the naive construction. The
reason for this choice of auxiliary information is because a data reconstruction attack is
pointless if the attacker is given the database to begin with. The difference between the
access pattern and the actual database is that the file identifiers are hidden, so there is
uncertainty in the plaintext database. We note that a data reconstruction attack can be
sensitive to the underlying data. For example, if all of the files in the database contain
keyword kw, then an adversary can easily guess a keyword in any file. To make it more
interesting, we restrict the environment Z to generate databases with files such that
for all files f , if kw ∈ f , then P j

a (kw) /∈ KW (f), for j = 1, . . . , a − 1, where Pa is the
permutation generated by the underlying scheme.

We propose to use

g2((ef, kw), (DBi), (qi)) = 1 (kw ∈ KW (DB0[id(ef)]))

as the gain function to measure the success of the adversary, where ef in the adversary’s
guess is an encrypted file which comes from one of the transcripts. Intuitively, gain

208

8.4. SECURITY ANALYSIS OF OUR CONSTRUCTIONS

function g2 measures the ability of an adversary at guessing a single keyword within a
file correctly.

There is a slight complication with gain function g2 on scheme Σ1 as not all encrypted
files are real files. Hence, for scheme Σ1, if the guess of the adversary targets a fake file,
the gain function assumes 0 immediately.

We are now ready to give an upper bound of the expected gain for our constructions in
Theorem 8.5.

Theorem 8.5 (Security of our Constructions with respect to Gain Function g2). Let
Σ be the underlying searchable encryptions scheme used by our constructions. Let
scheme Σ be either Σ1,Σ2 or Σ3, and a the size of the cycles in the permutation Pa

generated by the schemes. Let environment Z be one that generates a database DB
and a sequence of queries uniformly randomly, such that for all files f , if kw ∈ f ,
then P j

a (kw) /∈ KW (f), for j = 1, . . . , a − 1. Let the auxiliary information output by
environment Z be APΣ(·,DB). If the support of Z is polynomial-sized, then

sup
A

E
[
Real g2

Σ,A,Z(1
λ)
]
≤ 1

a
+ negl(λ).

Proof. In the theorem statement, we assume that for all files f , if kw ∈ KW (f), then
P j
a (kw) /∈ KW (f), for j = 1, . . . , a − 1. This implies that the maximum number of

occurrences of a keyword is less than or equal to |DB|
a . This is to prevent naive keyword

guessing attacks.

Consider a guess (ef, kw) from the adversary. Assume without loss of generality that
KW (ef) = W . Given that Σ1,Σ2 and Σ3 are invariant under keyword sets permutation,
and the auxiliary information only includes access pattern of the database, the leakage
observed by the adversary is equally likely to be generated from P i

a(W) for i = 1, . . . , a−
1. Hence, the chance of the adversary making the right guess is less than or equal to 1

a
for any encrypted file and keyword. Formally, this can be expressed as

sup
A

E
[
S g
Σ,A,Z,S(1

λ)
]

≤
∑
(Ti)

Pr [(Ti)] max
(ef,kw)

∑
((DBi),(qi),aux)

g1((ef, kw), (DBi), (qi)) · Pr [((DBi), (qi)) | (Ti)]

≤
∑
(Ti)

Pr [(Ti)] ·
1

a

=
1

a
,

for scheme Σ which is either Σ1,Σ2 or Σ3, and any simulator S which satisfies the B-BB
notion.

Since the environment Z samples from a polynomial-sized sample space as assumed by
Theorem 8.5, and the image of g2 contains only two values, we get

sup
A

E
[
Real g1

Σ,A,Z(1
λ)
]
≤ 1

a
+ negl(λ)

using Theorem 8.1.

209

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

Measuring Data Privacy with g3. Under the same conditions as above, there are
other ways we can measure data privacy. Here, we consider an adversary whose goal is
to recover all keywords of a file. And instead of a one-or-nothing gain function, we can
use a more expressive gain function. For example, we set gain function g3 to be:

g3((ef,W), (DBi), (qi)) = 1− |W△KW (DB0[id(ef)])|
|KW (DB0[id(ef)])|

.

Intuitively, this gain function measures security impact of a guess by looking at the
symmetric difference between the keywords in the guess and the actual keywords in the
target file. If the symmetric difference is large, it means that either the attacker missed
some keywords in the target file or included some keywords in his guess that are not
in the target file. In those cases, the gain function is small. On the other hand, if the
adversary has guessed the keywords of his target file perfectly, the gain function attains
1.

It should be immediately clear that the upper bound of the expected gain cannot exceed
1
a , due to Theorem 8.5. We state this as a theorem below.

Theorem 8.6 (Security of our Constructions with respect to Gain Function g3). Let
Σ be the underlying searchable encryptions scheme used by our constructions. Let
scheme Σ be either Σ1,Σ2 or Σ3, and a the size of the cycles in the permutation Pa

generated by the schemes. Let environment Z be one that generates a database DB
and a sequence of queries uniformly randomly, such that for all files f , if kw ∈ KW (f),
then P j

a (kw) /∈ KW (f), for j = 1, . . . , a − 1. Let the auxiliary information output by
environment Z be APΣ(·,DB). If the support of Z is polynomial-sized, then

sup
A

E
[
Real g3

Σ,A,Z(1
λ)
]
≤ 1

a
+ negl(λ).

8.5 Application of Our Notion to Other Schemes

Our security notion is flexible to analyse security of different schemes and with respect
to different security goals. To illustrate this, we revisit the attacks we have presented
in Chapter 5, 6 and 7 in this new framework. We also show how our framework can be
applied to prove (in)security of other schemes in the literature.

8.5.1 Security of Encrypted Range Queries

In Chapter 5, we demonstrate how to exploit access-pattern and volume leakage of
encrypted range queries and achieve database reconstruction and distribution recon-
struction. These attack goals can be easily converted into a gain function and the
corresponding attacks show lower bounds for the expected gains. Whenever the ex-
pected gain is large, we can conclude that the scheme is insecure with respect to the
attack goal.

An interesting attack we have in Chapter 5 is the partial (distribution) reconstruction in
Section 5.3.4.1. There, the goal of the adversary is to reconstruct the database as much
as possible right before the partial solution becomes ambiguous. There are many gain
functions we can use in this case to measure the success of an adversary (or the security
of a scheme). For example, the gain function may measure the size of the solution

210

8.5. APPLICATION OF OUR NOTION TO OTHER SCHEMES

(how many indices does it cover) or the coverage of the solution (how many records
does it contain). Our attacks in the HCUP dataset does moderately well in terms of
the first gain function and exceptionally well in terms of the second one. In a broader
view, understanding different gain functions and their implications can lead to different
security and efficiency trade-offs for structured encryption.

8.5.2 Security of Searchable Encryption

In Chapter 6, we show how system-wide leakage from searchable encryption schemes
can be exploited. From our experiments in Section 6.5, it can be seem clearly that the
query recovery rate varies with the experimental setting. This suggests that some of the
schemes may be secure in certain use-cases. However, to prove it concretely, we need to
use the security notion we proposed in this chapter.

One important research direction is to understand query distributions in the real world
and how valuable each query is. This allows for design of better informed gain functions
and more efficient searchable encryption scheme with respect to those gain functions.
As an example, if the keywords with high frequency are not so valuable, we can reduce
the gain of the guesses on those queried keywords in the gain function. Then a scheme
does not need to use expensive techniques to protect the corresponding queries which
can lead to better efficiency.

8.5.3 Security of SWiSSSE

In Chapter 7, we propose SWiSSSE and demonstrate its security via attacks. Typically,
one can only use an attack to show a lower bound on a particular gain function on a
scheme. However, in the case of SWiSSSE, the attack we propose is statistically optimal,
meaning that it is the best possible attack given the input. Hence, our attack, in fact,
can be used as a tool to show a tight bound on the expected gain.

A caveat is that although the attack is statistically optimal, its convergence is not guar-
anteed. That is, the weighted gain (over different databases and queries generated from
the specified distribution) output by our attack may be smaller than the true expected
gain. To tackle this problem, we can use approximation algorithms with performance
guarantees [101, 10] whenever possible to derive a concrete upper bound on the expected
gain.

8.5.4 Security of the IKK construction

Without going into too much detail, the IKK construction [94] pads keywords to the
documents so that there is a partition of keywords, and for each partition, if a keyword in
the partition appears in some document, all other keywords in the same partition must
appear in the same document. The padding is done statically for the minimal expansion
of the index size and the authors have not proposed how insertions and deletions can be
done. We refer to the IKK construction as IKK in our proofs.

The scheme is very comparable to bucketisation and scheme2 and has very similar
security properties with respect to keyword guessing attacks. In particular, if kw1 and
kw2 forms a bucket but there is only one document with those two keywords, then the
padding suggested by IKK does not hide the inclusion of kw1 and kw2 in that document.

211

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

On the other hand, by controlling the size of the partitions, one can achieve different
levels of security with respect to query guessing attacks. We show the security statement
formally below.

Definition 8.5 (Keyword Partition). Let W be the set of keywords over all documents
in the database. Let {Si}i be sets such that

1. ∀i ̸= j, Si ∩ Sj = ∅,

2.
⋃

i Si = W ,

3. ∀i, |Si| ≥ a.

We call {Si}i an a-partition of W .

Definition 8.6 (Leakage of the IKK construction). Let DB be a database and W be
the set of keywords. Then the IKK construction produces a database DB′ with some
a-partition {Si}i that satisfies

1. ∀j,KW (DB[j]) ⊆ KW (DB′[j]),

2. ∀kw ∈W, ∀doc ∈ DB′, kw ∈ KW (doc) =⇒ Sj ⊆ KW (doc) where kw ∈ Sj .

Leakage of the IKK construction includes search pattern leakage and access pattern
leakage induced by DB′.

Theorem 8.7 (Security of the IKK construction with respect to query guessing attack).
Let {Si}i be an a-partition. Let Z be the environment in our security notion. Suppose
that DB generated by Z has polynomial size. Assume that the distribution of database
DB generated by Z is uniform from its support. We define the auxiliary information
aux generated by the environment as follows:

aux = {(W, |DB(W)|) |W ⊆ KW (DB)} ,

where DB(W) denotes the number of files contain exactly keywords W . We assume
Z select queries uniformly randomly and all keywords have been queried at least once
before the adversary A is required to output an answer.

Let g1 be the gain function defined in Section 8.4.3. Then

sup
A

E
[
Realg1IKK,A,Z(n)

]
≤ 1

a
+ negl(λ). (8.2)

Proof. Without loss of generality, let kw1 and kw2 be two keywords from some partition
Si. Let (qi) be a sequence of queries on some padded database DB′ specified by the
IKK construction. If queries for kw1 and kw2 are swapped, the access pattern stays
the same, as ∀f ∈ DB′, kw1 ∈ KW (f) ⇐⇒ kw2 ∈ KW (f). Therefore, for any guess
(j, kw) the adversary makes, it is equally likely for KW (qj) to be any keyword in the
partition containing kw. Given that {Si}i is an a-partition, it must be the case that

supAE
[
Idealg1IKK,A,Z(n)

]
≤ 1

a and the desired result follows.

212

8.5. APPLICATION OF OUR NOTION TO OTHER SCHEMES

8.5.5 Security of GBC

Unlike padding the database with fake keywords like IKK has suggested, Liu et al. [122]
proposed to group queries together so that when the user issues some query, other queries
in the same group are issued at the same time. As the queries in the same group appears
together all the times, it is trivial that no adversary with no auxiliary information can
guess the identity of the queries with probability greater than the inverse of the group
size. For this reason, we omit the proof in the paper.

On the other hand, GBC is vulnerable to keyword guessing attacks shown in the previous
section. This can be shown with a data-processing inequality [13, 4] argument. The
authors of GBC proved that the leakage of the scheme includes the access pattern leakage
and group pattern. Previous attacks, including the IKK attack [94] have demonstrated
that access pattern leakage can be used to recover the keywords in the documents, so
GBC with a larger leakage cannot be secure against these attacks.

8.5.6 Security of Differentially-private Volume Hiding

Differential privacy [5] is a popular concept in statistics to hide information about in-
dividuals in a dataset. It was adopted by Patal et al. [149] in their volume-hiding
multi-map construction. We have shown that the differentially-private volume-hiding
multi-map in [149] is insecure in Chapter 6. Recall that in the construction, if nkw is
the true response length of a query on keyword kw, the construction pads the response
length to n̂kw = nkw+n∗+Lapsk(2/ϵ), where n

∗ is a parameter set by the client to offset
the query response length in case the latter random variable is negative, and Lapsk(·)
is a Laplace distribution with secret key sk as the seed.

In this section, we show that differentially-private volume hiding as a technique is vul-
nerable to query reconstruction attacks under certain conditions, even without the pres-
ence of system-wide leakage which is exploited in Chapter 6. In this attack setting,
we assume that the auxiliary information consists of some background information of
the database, namely the keywords, their frequencies, and the associated uncertainties,
i.e. {(kwi, ni, Ni)}. Upon observing a sequence of k uniformly randomly picked queries
q1, . . . ,qk, the goal of the adversary is to guess the keyword of one of the queries of
his choice, that is, his guess takes the form (j, kw). We use gain function g1 defined in
Section 8.4.3 to measure the success of the adversary.

Consider the following likelihood-based adversary A who, picks at random an observed
query qi, computes the likelihood of KW (qi) being every kwj , and uses the keyword
kwj that has the largest likelihood as his guess.

The likelihood of KW (qi) being kwj can be expressed as

Pr
[
l̂(KW (qi)) | nj , Nj

]
= Pr

[
l̂(KW (qi)) = nj +Nj + n∗ + Lap(2/ϵ)

]
.

Define event ωj(l) as the event that keyword kwj produces the largest likelihood given
observed query response volume l. The probability that adversaryA guesses the keyword

213

CHAPTER 8. FOUNDATIONS: TOWARDS A BETTER SECURITY NOTION

kwj associated to query q correctly can be expressed as:

∞∑
l=1

Pr
[
l̂(KW (q)) = l

]
1(ωj(l)) (8.3)

=

∞∑
l=1

Pr
[
l̂(kwj)) = l

]
1(ωj(l)). (8.4)

As the queries are uniformly randomly distributed, the expected gain can be bounded
as

sup
A

E
[
Realg4DPVH,A,Z(n)

]
≥ 1

|KW (DB)|
∑
j

∞∑
l=1

Pr
[
l̂(kwj)) = l

]
1(ωj(l)) + negl(λ).

(8.5)

Concretely, for a database where the true query response volumes l(kwi) are far apart
and the noise Lap(2/ϵ) is small, it is easy to see that Equation 8.4 is large. For example,
if l(kwi) = 100i and ϵ = 0.2, it is easy to check that 1(ωj(l)) >> 0.99 when l is close to

the expectation of l̂(kwj)), and the whole summation is close to 1. This means that the
likelihood-based adversary described above has a high chance of guessing the keyword
associated to a query correctly.

8.6 Discussion

In this chapter, we propose a new security notion which measures security in a relative
way. It allows for flexible auxiliary information and specific attack goals. We propose
three new constructions and demonstrate the merits of using our security notion over
the standard notion.

Although presented as a passive security notion where the adversary has no control
over the generation of the data and the queries, our notion can be extended to an
active setting easily by letting the adversary influence the generating of the data and
the queries in some way. It is also straightforward to extend our notion to an adaptive
setting where the adversary is allowed to pick queries one at a time. It is also possible
to change what the adversary receives to model other adversaries, such as a man-in-the-
middle adversary.

We have only showed a few gain functions as examples and we believe that there are
many more interesting ones. For instance, we can have a gain function which targets
keyword recovery of documents, where each keyword is weighted differently. We can also
have a gain function which targets query recovery, where some queries are more valuable
than the others. Our idea can also be applied to other cryptosystems where there is
leakage. It may also allow for development of weaker but more efficient cryptographic
primitives to be used in cryptosystems.

214

Chapter 9

Conclusion and Discussion

This thesis presents new results on cryptanalysis, constructions and security notions for
structured encryption. In this chapter, we summarise these results, and suggest new
research directions to look at.

Contents

9.1 Cryptanalysis . 216

9.2 Constructions . 216

9.3 Foundation . 217

9.4 Leakage vs Efficiency in Related Fields 217

215

CHAPTER 9. CONCLUSION AND DISCUSSION

9.1 Cryptanalysis

In Chapters 5 and 6, we have presented new attacks on encrypted range queries and
searchable encryption respectively. These attacks aim to be as practical as possible. For
example, our attacks on encrypted range queries in Section 5.3.2 assume that only range
queries from small windows are made and some form of countermeasure is used by the
client. Still, we manage to show that attacks are possible in these scenarios.

In addition, in Chapter 6, we identify a new class of leakage we called system-level
leakage. This does not only lead to devastating attacks, but also motivates system-wide
secure structured encryption such as the ones we devise in Chapter 7.

On the other hand, the attacks we have explored are just the tip of the iceberg. There
are many research challenges that are still open. These include the need for a better
understanding of distribution of databases and queries, a more methodical way of picking
auxiliary information, and a more refined way of measuring the success of the attacker
– all of which have strong implications on design of structured encryption schemes.

Furthermore, many of our attacks and other attacks in the literature [94, 115, 87, 111, 17]
do not have an optimality proof, meaning that there can possibly be better attacks
given the same leakage and auxiliary information. Of course, this does not invalidate
the attacks, but it makes them inappropriate as cryptanalysis to show security of a
construction – a scheme that is secure against one of these attacks may still be vulnerable
to an attack in the future. In that light, we need to better our understanding in designing
of attacks, and search for optimal attacks whenever possible.

9.2 Constructions

In Chapter 7, we present the first constructions of searchable encryption that are system-
wide secure. We show security of our constructions through the cryptanalysis techniques
we have developed in Chapter 6. We demonstrate practical efficiency of our construction
through experiments on a real-world dataset using a Java implementation [175] which
uses Redis [1] as the underlying database system.

It is worth noting that our constructions are secure against all known attacks, including
query reconstruction attacks [94, 33, 155, 17, 143] exploiting various leakages and file-
injection attacks [200, 17].

However, our construction is only the first step towards designing a full-fledged struc-
tured encryption scheme. The schemes we have proposed have clear limitations, in-
cluding a hard upper bound on the number of possible insertions, a relatively slow
insertion/deletion operation, and an oversized search index1.

Furthermore, our constructions only support simple keyword searches and updates.
More research is needed to add more functionality to it. On a related note, all struc-
tured encryption schemes in the literature support a particular set of queries, and the
apparent way to expand on query expressiveness is to “merge” different schemes. This

1The search index has size comparable to the actual database as document identifier duplication
is used. This is a common problem for almost all searchable encryption constructions and there is no
known solutions for this problem.

216

9.3. FOUNDATION

can be problematic as the combined leakage from different schemes may lead to new
attack surfaces. In that light, it is interesting to look into leakage cryptanalysis of this
kind and the possibility of designing “composable” schemes.

In the bigger picture, SWiSSSE can be considered as a particular information retrieval
scheme with non-trivial leakage. In Section 7.8, we show that SWiSSSE is an order of
magnitude slower than an insecure plaintext solution. This however, means that it is a
few orders of magnitudes faster than the state-of-the-art zero-knowledge ORAM/PIR-
based solutions. This opens interesting research directions in non-zero-knowledge infor-
mation retrieval schemes and understanding the trade-off between efficiency and secu-
rity.

9.3 Foundation

In Chapter 8, we point out shortcomings in the standard security definition for structured
encryption [53, 40] and develop a new security notion which aims to capture leakage-
abuse attacks. We show how our proposed notion can be used to prove (in)security of
schemes with respect to classes of leakage-abuse attacks.

There are two main challenges in the use of our security notion. Firstly, a proof of
security in our notion is significantly harder than that in the standard notion. It is easy
to prove the leakage profile of a scheme, but a proof of security in our notion may require
development of new information-theoretic tools. We believe that more research efforts
should be put into this direction.

Secondly, we need to further our understanding of the uses of databases and the adver-
sarial power of an attacker in the real world, so as to fully utilise our security notion.
In particular, current models of distribution of database and adversarial power of an
attacker are mainly synthetic, so we are not able to prove practical security of a scheme
in our notion. If we were able to do so, we can potentially design much more efficient
schemes as these schemes only need to be secure under a specific set of settings. We
believe that more research in leakage cryptanalysis can help us in this direction.

9.4 Leakage vs Efficiency in Related Fields

Our constructions presented in Chapter 7 and security notion presented in Chapter 8
are efforts towards building more efficient schemes than the perfectly secure ones. This
is the first work of this kind in the field and we wish more research can be done in this
direction.

Our work falls under a broad class of works [197, 178, 185, 38] that focus on building
efficient schemes with non-trivial leakage. We hope that the techniques we used in our
work can be generalised to these related fields too.

217

Bibliography

[1] Redis. https://redis.io/. Accessed: 2020-10-15. [Cited on pages 181 and 216.]

[2] Hime Aguiar e Oliveira Junior, Lester Ingber, Antonio Petraglia, Mariane Rem-
bold Petraglia, and Maria Augusta Soares Machado. Adaptive Simulated Anneal-
ing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. [Cited on pages 117,
124, and 125.]

[3] Adi Akavia, Dan Feldman, and Hayim Shaul. Secure search via multi-ring fully
homomorphic encryption. Cryptology ePrint Archive, Report 2018/245, 2018.
https://eprint.iacr.org/2018/245. [Cited on page 42.]

[4] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring in-
formation leakage using generalized gain functions. In 2012 IEEE 25th Computer
Security Foundations Symposium, pages 265–279, June 2012. [Cited on page 213.]

[5] Mário S. Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Geof-
frey Smith. Measuring Information Leakage using Generalized Gain Functions. In
Computer Security Foundations, pages 265–279, Cambridge MA, United States,
2012. IEEE. [Cited on pages 187, 191, and 213.]

[6] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with com-
pressed queries and amortized query processing. In 2018 IEEE Symposium on
Security and Privacy, pages 962–979, San Francisco, CA, USA, May 21–23, 2018.
IEEE Computer Society Press. [Cited on pages 13, 109, 110, 112, and 113.]

[7] Sanjeev Arora and Boaz Barak. Computational complexity. A modern approach.
Cambridge: Cambridge University Press, 2009. [Cited on page 28.]

[8] R. Arratia, L. Goldstein, and L. Gordon. Two moments suffice for poisson ap-
proximations: The chen-stein method. Ann. Probab., 17(1):9–25, 01 1989. [Cited
on page 76.]

[9] Dmitri Asonov and Johann Christoph Freytag. Almost optimal private informa-
tion retrieval. In Roger Dingledine and Paul F. Syverson, editors, PET 2002:
2nd International Workshop on Privacy Enhancing Technologies, volume 2482 of
Lecture Notes in Computer Science, pages 209–223, San Francisco, CA, USA,
April 14–15, 2002. Springer, Heidelberg, Germany. [Cited on page 42.]

[10] G. Ausiello. Complexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer, 2020. [Cited on page 211.]

[11] L Babai. Trading group theory for randomness. Proceedings of the seventeenth
annual ACM symposium on Theory of computing - STOC 85, 1985. [Cited on
page 28.]

219

https://redis.io/
https://eprint.iacr.org/2018/245

BIBLIOGRAPHY

[12] Michael Backes, Rainer W. Gerling, Sebastian Gerling, Stefan Nürnberger, Do-
minique Schröder, and Mark Simkin. WebTrust - A comprehensive authenticity
and integrity framework for HTTP. In Ioana Boureanu, Philippe Owesarski, and
Serge Vaudenay, editors, ACNS 14: 12th International Conference on Applied
Cryptography and Network Security, volume 8479 of Lecture Notes in Computer
Science, pages 401–418, Lausanne, Switzerland, June 10–13, 2014. Springer, Hei-
delberg, Germany. [Cited on page 13.]

[13] Normand J. Beaudry and Renato Renner. An intuitive proof of the data process-
ing inequality. Quantum Info. Comput., 12(5-6):432–441, May 2012. [Cited on
page 213.]

[14] Oliver Berthold and Heinrich Langos. Dummy traffic against long term inter-
section attacks. In Roger Dingledine and Paul F. Syverson, editors, PET 2002:
2nd International Workshop on Privacy Enhancing Technologies, volume 2482 of
Lecture Notes in Computer Science, pages 110–128, San Francisco, CA, USA,
April 14–15, 2002. Springer, Heidelberg, Germany. [Cited on page 106.]

[15] Patrick Billingsley. Probability and Measure. John Wiley and Sons, second edition,
1986. [Cited on page 24.]

[16] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. The tao of inference in privacy-protected databases. Proc. VLDB
Endow., 11(11):1715–1728, July 2018. [Cited on page 139.]

[17] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse
attacks. In ISOC Network and Distributed System Security Symposium –
NDSS 2020, San Diego, CA, USA, February 23–26, 2020. The Internet Society.
[Cited on pages 13, 14, 15, 54, 111, 115, 116, 117, 131, 132, 139, 189, 207, 208,
and 216.]

[18] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 1970. [Cited on page 51.]

[19] Alexandra Boldyreva and Nathan Chenette. Efficient fuzzy search on encrypted
data. In Carlos Cid and Christian Rechberger, editors, Fast Software Encryption
– FSE 2014, volume 8540 of Lecture Notes in Computer Science, pages 613–633,
London, UK, March 3–5, 2015. Springer, Heidelberg, Germany. [Cited on pages
12 and 52.]

[20] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In Antoine Joux, editor, Advances in Cryptology
– EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
224–241, Cologne, Germany, April 26–30, 2009. Springer, Heidelberg, Germany.
[Cited on pages 13 and 59.]

[21] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving
encryption revisited: Improved security analysis and alternative solutions. In
Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841
of Lecture Notes in Computer Science, pages 578–595, Santa Barbara, CA, USA,
August 14–18, 2011. Springer, Heidelberg, Germany. [Cited on pages 59 and 190.]

[22] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
Public key encryption with keyword search. In Christian Cachin and Jan Ca-
menisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027
of Lecture Notes in Computer Science, pages 506–522, Interlaken, Switzerland,
May 2–6, 2004. Springer, Heidelberg, Germany. [Cited on page 12.]

220

BIBLIOGRAPHY

[23] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J. Wu. Private
database queries using somewhat homomorphic encryption. In Michael J. Jacobson
Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors,
ACNS 13: 11th International Conference on Applied Cryptography and Network
Security, volume 7954 of Lecture Notes in Computer Science, pages 102–118, Banff,
AB, Canada, June 25–28, 2013. Springer, Heidelberg, Germany. [Cited on page 13.]

[24] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. http:
//toc.cryptobook.us/. Accessed: 2021-01-10. [Cited on page 31.]

[25] Raphael Bost. Σoϕoς: Forward secure searchable encryption. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016: 23rd Conference on Computer and Communications
Security, pages 1143–1154, Vienna, Austria, October 24–28, 2016. ACM Press.
[Cited on pages 12, 51, and 177.]

[26] Raphael Bost and Pierre-Alain Fouque. Thwarting leakage abuse attacks against
searchable encryption – A formal approach and applications to database padding.
Cryptology ePrint Archive, Report 2017/1060, 2017. https://eprint.iacr.org/
2017/1060. [Cited on pages 15, 146, and 190.]

[27] Raphael Bost and Pierre-Alain Fouque. Security-efficiency tradeoffs in searchable
encryption. Proceedings on Privacy Enhancing Technologies, 2019(4):132–151, Oc-
tober 2019. [Cited on page 56.]

[28] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable dynamic
symmetric searchable encryption: Optimality and forward security. Cryptology
ePrint Archive, Report 2016/062, 2016. https://eprint.iacr.org/2016/062.
[Cited on page 177.]

[29] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private
searchable encryption from constrained cryptographic primitives. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017: 24th Conference on Computer and Communications Security, pages 1465–
1482, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press. [Cited on
pages 12, 51, 54, 55, and 177.]

[30] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE circuit
privacy almost for free. In Matthew Robshaw and Jonathan Katz, editors, Ad-
vances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 62–89, Santa Barbara, CA, USA, August 14–18, 2016.
Springer, Heidelberg, Germany. [Cited on page 13.]

[31] Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera.
Range query integrity in cloud data streams with efficient insertion. In Sara
Foresti and Giuseppe Persiano, editors, CANS 16: 15th International Conference
on Cryptology and Network Security, volume 10052 of Lecture Notes in Computer
Science, pages 719–724, Milan, Italy, November 14–16, 2016. Springer, Heidelberg,
Germany. [Cited on pages 12 and 52.]

[32] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient
private information retrieval. In Yael Kalai and Leonid Reyzin, editors, TCC 2017:
15th Theory of Cryptography Conference, Part II, volume 10678 of Lecture Notes in
Computer Science, pages 694–726, Baltimore, MD, USA, November 12–15, 2017.
Springer, Heidelberg, Germany. [Cited on page 42.]

221

http://toc.cryptobook.us/
http://toc.cryptobook.us/
https://eprint.iacr.org/2017/1060
https://eprint.iacr.org/2017/1060
https://eprint.iacr.org/2016/062

BIBLIOGRAPHY

[33] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse at-
tacks against searchable encryption. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer and Commu-
nications Security, pages 668–679, Denver, CO, USA, October 12–16, 2015. ACM
Press. [Cited on pages 13, 14, 15, 111, 115, 117, 131, 132, 139, 146, 160, 177, 178,
207, 208, and 216.]

[34] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse at-
tacks against searchable encryption. Cryptology ePrint Archive, Report 2016/718,
2016. https://eprint.iacr.org/2016/718. [Cited on page 115.]

[35] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in
very-large databases: Data structures and implementation. In ISOC Network
and Distributed System Security Symposium – NDSS 2014, San Diego, CA, USA,
February 23–26, 2014. The Internet Society. [Cited on pages 12, 51, and 146.]

[36] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryp-
tion with support for Boolean queries. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 353–373, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany. [Cited on pages 12, 51, 52, 55, 146, and 156.]

[37] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. New constructions for forward and backward private symmetric
searchable encryption. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and
Communications Security, pages 1038–1055, Toronto, ON, Canada, October 15–
19, 2018. ACM Press. [Cited on page 177.]

[38] T.-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. Founda-
tions of differentially oblivious algorithms. In Timothy M. Chan, editor, 30th An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 2448–2467, San Diego,
CA, USA, January 6–9, 2019. ACM-SIAM. [Cited on pages 16, 186, and 217.]

[39] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In John Ioannidis, Angelos Keromytis, and
Moti Yung, editors, ACNS 05: 3rd International Conference on Applied Cryptog-
raphy and Network Security, volume 3531 of Lecture Notes in Computer Science,
pages 442–455, New York, NY, USA, June 7–10, 2005. Springer, Heidelberg, Ger-
many. [Cited on pages 12, 51, and 177.]

[40] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure.
In Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume
6477 of Lecture Notes in Computer Science, pages 577–594, Singapore, Decem-
ber 5–9, 2010. Springer, Heidelberg, Germany. [Cited on pages 12, 13, 48, 51, 52,
187, 189, and 217.]

[41] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang. Differentially private access patterns
for searchable symmetric encryption. In IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, pages 810–818, 2018. [Cited on pages 12, 15, 116,
117, 119, 121, 123, 126, 127, 129, 130, 132, 133, 134, 136, 137, 138, and 139.]

[42] Hao Chen, Ran Gilad-Bachrach, Kyoohyung Han, Zhicong Huang, Amir Jalali,
Kim Laine, and Kristin Lauter. Logistic regression over encrypted data from fully

222

https://eprint.iacr.org/2016/718

BIBLIOGRAPHY

homomorphic encryption. Cryptology ePrint Archive, Report 2018/462, 2018.
https://eprint.iacr.org/2018/462. [Cited on page 42.]

[43] Louis H. Y. Chen. An approximation theorem for sums of certain randomly se-
lected indicators. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebi-
ete, 33(1):69–74, Mar 1975. [Cited on page 76.]

[44] Louis H. Y. Chen. Poisson approximation for dependent trials. Ann. Probab.,
3(3):534–545, 06 1975. [Cited on page 76.]

[45] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, and Xiaofen Wang. A new
general framework for secure public key encryption with keyword search. In Ernest
Foo and Douglas Stebila, editors, ACISP 15: 20th Australasian Conference on
Information Security and Privacy, volume 9144 of Lecture Notes in Computer
Science, pages 59–76, Brisbane, QLD, Australia, June 29 – July 1, 2015. Springer,
Heidelberg, Germany. [Cited on page 12.]

[46] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical order-
revealing encryption with limited leakage. In Thomas Peyrin, editor, Fast Software
Encryption – FSE 2016, volume 9783 of Lecture Notes in Computer Science, pages
474–493, Bochum, Germany, March 20–23, 2016. Springer, Heidelberg, Germany.
[Cited on pages 13 and 59.]

[47] Xiang Cheng, Sen Su, Yiping Teng, and Ke Xiao. Enabling secure and efficient
knn query processing over encrypted spatial data in the cloud. Sec. and Commun.
Netw., 8(17):3205–3218, November 2015. [Cited on pages 13 and 52.]

[48] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the torus. Journal of Cryptology,
33(1):34–91, January 2020. [Cited on page 42.]

[49] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-
mation retrieval. In 36th Annual Symposium on Foundations of Computer Science,
pages 41–50, Milwaukee, Wisconsin, October 23–25, 1995. IEEE Computer Society
Press. [Cited on pages 13 and 42.]

[50] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with
Õ(log2 n) overhead. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryp-
tology – ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer
Science, pages 62–81, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer,
Heidelberg, Germany. [Cited on page 146.]

[51] Thomas H. Cormen, Charles Eric. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. [Cited on page 19.]

[52] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sub-
linear online time. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryp-
tology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer
Science, pages 44–75, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg,
Germany. [Cited on page 13.]

[53] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In Ari
Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
CCS 2006: 13th Conference on Computer and Communications Security, pages
79–88, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM Press.
[Cited on pages 12, 48, 51, 54, 55, 146, 156, 187, 189, 190, 191, and 217.]

223

https://eprint.iacr.org/2018/462

BIBLIOGRAPHY

[54] Wladimir De la Cadena, Asya Mitseva, Jan Pennekamp, Jens Hiller, Fabian Lanze,
Thomas Engel, Klaus Wehrle, and Andriy Panchenko. POSTER: Traffic splitting
to counter website fingerprinting. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on
Computer and Communications Security, pages 2533–2535, London, UK, Novem-
ber 11–15, 2019. ACM Press. [Cited on page 106.]

[55] Juan de Vicente, Juan Lanchares, and Román Hermida. Placement by thermo-
dynamic simulated annealing. Physics Letters A, 317(5):415–423, 2003. [Cited on
page 126.]

[56] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. Dynamic searchable encryption with small client storage.
In ISOC Network and Distributed System Security Symposium – NDSS 2020, San
Diego, CA, USA, February 23–26, 2020. The Internet Society. [Cited on pages 51
and 55.]

[57] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. SEAL: Attack mitigation for encrypted databases via adjustable
leakage. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020:
29th USENIX Security Symposium, pages 2433–2450. USENIX Association, Au-
gust 12–14, 2020. [Cited on pages 12, 15, 52, 60, 61, 96, 97, 100, 104, 116, 146,
187, and 189.]

[58] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, and Minos Garofalakis. Practical private range search revisited. In
Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD ’16, page 185–198, New York, NY, USA, 2016. Association for Computing
Machinery. [Cited on pages 12, 52, 59, 60, 61, and 96.]

[59] Alexander W. Dent. A note on game-hopping proofs. Cryptology ePrint
Archive, Report 2006/260, 2006. https://eprint.iacr.org/2006/260. [Cited
on page 37.]

[60] Jeff Desjardins. How much data is generated each day? https://www.weforum.

org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/.
Accessed: 2020-11-19. [Cited on page 10.]

[61] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine
Shi, and Daniel Wichs. Onion ORAM: A constant bandwidth blowup oblivious
RAM. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of
Cryptography Conference, Part II, volume 9563 of Lecture Notes in Computer Sci-
ence, pages 145–174, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg,
Germany. [Cited on page 14.]

[62] Whitfield Diffie and Martin E. Hellman. New directions in cryptography, 1976.
[Cited on page 32.]

[63] Alexandros G. Dimakis, Brighten Godfrey, Martin J. Wainwright, and Kan-
nan Ramchandran. Network coding for distributed storage systems. CoRR,
abs/cs/0702015, 2007. [Cited on page 121.]

[64] William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.
Message verification and transmission error detection by block chaining, 1976.
[Cited on pages 39 and 40.]

224

https://eprint.iacr.org/2006/260
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/

BIBLIOGRAPHY

[65] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.
[Cited on page 42.]

[66] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure k-nearest neighbor query
over encrypted data in outsourced environments. In 2014 IEEE 30th International
Conference on Data Engineering, pages 664–675, 2014. [Cited on page 52.]

[67] Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious query processing for
secure databases. Proc. VLDB Endow., 13(2):169–183, October 2019. [Cited on
page 42.]

[68] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David
Evans. Efficient dynamic searchable encryption with forward privacy. PoPETs,
2018(1):5–20, 2018. [Cited on page 177.]

[69] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin
Rosu, and Michael Steiner. Rich queries on encrypted data: Beyond exact
matches. In Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors,
ESORICS 2015: 20th European Symposium on Research in Computer Security,
Part II, volume 9327 of Lecture Notes in Computer Science, pages 123–145, Vi-
enna, Austria, September 21–25, 2015. Springer, Heidelberg, Germany. [Cited on
pages 52 and 59.]

[70] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons,
Inc., USA, 1 edition, 2003. [Cited on page 60.]

[71] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. Birthday paradox, coupon
collectors, caching algorithms and self-organizing search. Discrete Applied Math-
ematics, 39(3):207–229, 1992. [Cited on page 67.]

[72] Xinwen Fu, B. Graham, Riccardo Bettati, and Wei Zhao. Active traffic analysis
attacks and countermeasures. pages 31– 39, 11 2003. [Cited on pages 60, 106,
and 146.]

[73] M. R. Garey and D. S. Johnson. Computers And Intractability A Guide To The
Theory Of Np-Completeness. Freeman & Company, New York, 1979. [Cited on
page 28.]

[74] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM:
Efficient oblivious RAM in two rounds with applications to searchable encryp-
tion. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
– CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer Science,
pages 563–592, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidel-
berg, Germany. [Cited on pages 14, 146, 177, and 200.]

[75] Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for multi-
dimensional range queries from lattices. In Jonathan Katz, editor, PKC 2015:
18th International Conference on Theory and Practice of Public Key Cryptography,
volume 9020 of Lecture Notes in Computer Science, pages 752–776, Gaithersburg,
MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany. [Cited on
page 59.]

[76] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press. [Cited
on pages 13 and 42.]

225

BIBLIOGRAPHY

[77] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval
with constant communication rate. In Lúıs Caires, Giuseppe F. Italiano, Lúıs
Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005: 32nd In-
ternational Colloquium on Automata, Languages and Programming, volume 3580
of Lecture Notes in Computer Science, pages 803–815, Lisbon, Portugal, July 11–
15, 2005. Springer, Heidelberg, Germany. [Cited on page 42.]

[78] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages
75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Ger-
many. [Cited on page 13.]

[79] Marilyn George, Seny Kamara, and Tarik Moataz. Structured encryption and
dynamic leakage suppression. In Anne Canteaut and François-Xavier Standaert,
editors, Advances in Cryptology – EUROCRYPT 2021, Part III, volume 12698 of
Lecture Notes in Computer Science, pages 370–396, Zagreb, Croatia, October 17–
21, 2021. Springer, Heidelberg, Germany. [Cited on page 113.]

[80] John T. Gill. Computational complexity of probabilistic turing machines. Pro-
ceedings of the sixth annual ACM symposium on Theory of computing - STOC 74,
1974. [Cited on page 28.]

[81] Christian Göge, Tim Waage, Daniel Homann, and Lena Wiese. Improving fuzzy
searchable encryption with direct bigram embedding. In Javier Lopez, Simone
Fischer-Hübner, and Costas Lambrinoudakis, editors, TrustBus 2017: Trust and
Privacy in Digital Business, 14th International Conference, volume 10442 of Lec-
ture Notes in Computer Science, pages 115–129, Lyon, France, August 30–31,
2017. Springer, Heidelberg, Germany. [Cited on page 12.]

[82] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
https://eprint.iacr.org/2003/216. [Cited on pages 12 and 51.]

[83] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge University
Press, USA, 2006. [Cited on page 31.]

[84] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, May 1996. [Cited on pages 14, 42, and 146.]

[85] Brian Gough. GNU Scientific Library Reference Manual - Third Edition. Network
Theory Ltd., 3rd edition, 2009. [Cited on page 132.]

[86] S. L. Graham, R. L. Rivest, and Ralph C. Merkle. Secure communications over
insecure channels, 1978. [Cited on page 32.]

[87] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
Pump up the volume: Practical database reconstruction from volume leakage on
range queries. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communica-
tions Security, pages 315–331, Toronto, ON, Canada, October 15–19, 2018. ACM
Press. [Cited on pages 13, 54, 60, 61, 71, 189, and 216.]

[88] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
Learning to reconstruct: Statistical learning theory and encrypted database at-
tacks. In 2019 IEEE Symposium on Security and Privacy, pages 1067–1083, San

226

https://eprint.iacr.org/2003/216

BIBLIOGRAPHY

Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press. [Cited on
pages 13, 54, 60, 62, 64, 86, and 97.]

[89] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. Encrypted databases: New
volume attacks against range queries. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference
on Computer and Communications Security, pages 361–378, London, UK, Novem-
ber 11–15, 2019. ACM Press. [Cited on pages 13, 16, and 189.]

[90] Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis. Leakage perturbation
is not enough: Breaking structured encryption using simulated annealing. Cryp-
tology ePrint Archive, Report 2021/879, 2021. https://ia.cr/2021/879. [Cited
on page 16.]

[91] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and Bogdan Warinschi.
Swissse: System-wide security for searchable symmetric encryption. Cryptology
ePrint Archive, Report 2020/1328, 2020. https://ia.cr/2020/1328. [Cited on
page 16.]

[92] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Xiaodong
Song. ShadowCrypt: Encrypted web applications for everyone. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference on
Computer and Communications Security, pages 1028–1039, Scottsdale, AZ, USA,
November 3–7, 2014. ACM Press. [Cited on pages 115 and 117.]

[93] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences, 65(4):695–716, 2002. Special Issue on Complexity
2001. [Cited on page 28.]

[94] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In ISOC
Network and Distributed System Security Symposium – NDSS 2012, San Diego,
CA, USA, February 5–8, 2012. The Internet Society. [Cited on pages 13, 14, 15,
54, 111, 115, 117, 131, 132, 139, 160, 178, 189, 207, 208, 211, 213, and 216.]

[95] Malika Izabachène, Renaud Sirdey, and Martin Zuber. Practical fully homomor-
phic encryption for fully masked neural networks. In Yi Mu, Robert H. Deng, and
Xinyi Huang, editors, CANS 19: 18th International Conference on Cryptology and
Network Security, volume 11829 of Lecture Notes in Computer Science, pages 24–
36, Fuzhou, China, October 25–27, 2019. Springer, Heidelberg, Germany. [Cited
on page 42.]

[96] Rothe Jorg. Complexity Theory and Cryptology: An Introduction to Cryptocom-
plexity. 2010. [Cited on pages 19 and 25.]

[97] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with
worst-case sub-linear complexity. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part III, vol-
ume 10212 of Lecture Notes in Computer Science, pages 94–124, Paris, France,
April 30 – May 4, 2017. Springer, Heidelberg, Germany. [Cited on pages 12, 51,
52, 55, and 146.]

[98] Seny Kamara and Tarik Moataz. Computationally volume-hiding structured en-
cryption. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science,

227

https://ia.cr/2021/879
https://ia.cr/2020/1328

BIBLIOGRAPHY

pages 183–213, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Ger-
many. [Cited on pages 12, 16, 109, 112, 113, 114, 116, 117, 119, 120, 121, 122,
123, 126, 127, 128, 130, 132, 133, 134, 136, 137, 138, 146, 184, 187, 189, and 193.]

[99] Seny Kamara, Tarik Moataz, and Olga Ohrimenko. Structured encryption and
leakage suppression. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes in
Computer Science, pages 339–370, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany. [Cited on page 15.]

[100] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable
symmetric encryption. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012: 19th Conference on Computer and Communications Security,
pages 965–976, Raleigh, NC, USA, October 16–18, 2012. ACM Press. [Cited on
pages 12, 51, 54, and 55.]

[101] Viggo Kann. On the approximability of NP-complete optimization problems. PhD
thesis, Royal Institute of Technology, Dept. of Numerical Analysis and Computing
Science, 1992. [Cited on page 211.]

[102] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic
attacks on secure outsourced databases. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016:
23rd Conference on Computer and Communications Security, pages 1329–1340,
Vienna, Austria, October 24–28, 2016. ACM Press. [Cited on pages 54, 60, 61, 62,
64, 71, 72, 97, 189, and 190.]

[103] Florian Kerschbaum. Frequency-hiding order-preserving encryption. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd Con-
ference on Computer and Communications Security, pages 656–667, Denver, CO,
USA, October 12–16, 2015. ACM Press. [Cited on pages 13 and 59.]

[104] Florian Kerschbaum and Anselme Tueno. An efficiently searchable encrypted data
structure for range queries. In Kazue Sako, Steve Schneider, and Peter Y. A. Ryan,
editors, ESORICS 2019: 24th European Symposium on Research in Computer
Security, Part II, volume 11736 of Lecture Notes in Computer Science, pages 344–
364, Luxembourg, September 23–27, 2019. Springer, Heidelberg, Germany. [Cited
on pages 189 and 190.]

[105] Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, and Qiang
Tang. Optimal rate private information retrieval from homomorphic encryption.
Proceedings on Privacy Enhancing Technologies, 2015(2):222 – 243, 01 Jun. 2015.
[Cited on page 42.]

[106] Eunkyung Kim, Hyang-Sook Lee, and Jeongeun Park. Towards round-optimal se-
cure multiparty computations: Multikey FHE without a CRS. In Willy Susilo and
Guomin Yang, editors, ACISP 18: 23rd Australasian Conference on Information
Security and Privacy, volume 10946 of Lecture Notes in Computer Science, pages
101–113, Wollongong, NSW, Australia, July 11–13, 2018. Springer, Heidelberg,
Germany. [Cited on page 13.]

[107] Eunkyung Kim and Mehdi Tibouchi. FHE over the integers and modular arith-
metic circuits. In Sara Foresti and Giuseppe Persiano, editors, CANS 16: 15th
International Conference on Cryptology and Network Security, volume 10052 of
Lecture Notes in Computer Science, pages 435–450, Milan, Italy, November 14–
16, 2016. Springer, Heidelberg, Germany. [Cited on page 13.]

228

BIBLIOGRAPHY

[108] Hyeong-Il Kim, Hyeong-Jin Kim, and Jae-Woo Chang. A secure knn query pro-
cessing algorithm using homomorphic encryption on outsourced database. Data
& Knowledge Engineering, 123:101602, 2019. [Cited on page 13.]

[109] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-Hwan Kim.
Forward secure dynamic searchable symmetric encryption with efficient updates.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, edi-
tors, ACM CCS 2017: 24th Conference on Computer and Communications Secu-
rity, pages 1449–1463, Dallas, TX, USA, October 31 – November 2, 2017. ACM
Press. [Cited on pages 12 and 177.]

[110] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, January 1987. [Cited on page 42.]

[111] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
The state of the uniform: Attacks on encrypted databases beyond the uniform
query distribution. In 2020 IEEE Symposium on Security and Privacy, pages
1223–1240, San Francisco, CA, USA, May 18–21, 2020. IEEE Computer Society
Press. [Cited on pages 13, 60, 61, and 216.]

[112] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. RFC 2104 (Informational), February 1997. Updated by RFC
6151. [Cited on page 181.]

[113] Kaoru Kurosawa and Yasuhiro Ohtaki. UC-secure searchable symmetric encryp-
tion. In Angelos D. Keromytis, editor, FC 2012: 16th International Conference
on Financial Cryptography and Data Security, volume 7397 of Lecture Notes in
Computer Science, pages 285–298, Kralendijk, Bonaire, February 27 – March 2,
2012. Springer, Heidelberg, Germany. [Cited on pages 12 and 51.]

[114] Kaoru Kurosawa and Yasuhiro Ohtaki. How to update documents verifiably in
searchable symmetric encryption. In Michel Abdalla, Cristina Nita-Rotaru, and
Ricardo Dahab, editors, CANS 13: 12th International Conference on Cryptology
and Network Security, volume 8257 of Lecture Notes in Computer Science, pages
309–328, Paraty, Brazil, November 20–22, 2013. Springer, Heidelberg, Germany.
[Cited on page 51.]

[115] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Improved re-
construction attacks on encrypted data using range query leakage. In 2018 IEEE
Symposium on Security and Privacy, pages 297–314, San Francisco, CA, USA,
May 21–23, 2018. IEEE Computer Society Press. [Cited on pages 13, 54, 60, 62,
64, 97, 189, and 216.]

[116] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep
Mukhopadhyay, Ron Steinfeld, Shifeng Sun, Dongxi Liu, and Cong Zuo. Re-
sult pattern hiding searchable encryption for conjunctive queries. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018: 25th Conference on Computer and Communications Security, pages 745–
762, Toronto, ON, Canada, October 15–19, 2018. ACM Press. [Cited on pages 12,
51, 52, 55, and 146.]

[117] Shangqi Lai, Xingliang Yuan, Shifeng Sun, Joseph K. Liu, Yuhong Liu, and Dongxi
Liu. GraphSE2: An encrypted graph database for privacy-preserving social search.
In Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin

229

BIBLIOGRAPHY

Kirda, and Zhenkai Liang, editors, ASIACCS 19: 14th ACM Symposium on In-
formation, Computer and Communications Security, pages 41–54, Auckland, New
Zealand, July 9–12, 2019. ACM Press. [Cited on page 13.]

[118] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM
lower bound! In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer
Science, pages 523–542, Santa Barbara, CA, USA, August 19–23, 2018. Springer,
Heidelberg, Germany. [Cited on page 42.]

[119] Billy Lau, Simon P. Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and
Alexandra Boldyreva. Mimesis aegis: A mimicry privacy shield-A system’s ap-
proach to data privacy on public cloud. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014: 23rd USENIX Security Symposium, pages 33–48, San
Diego, CA, USA, August 20–22, 2014. USENIX Association. [Cited on pages 115
and 117.]

[120] Kevin Lewi and David J. Wu. Order-revealing encryption: New constructions, ap-
plications, and lower bounds. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd
Conference on Computer and Communications Security, pages 1167–1178, Vienna,
Austria, October 24–28, 2016. ACM Press. [Cited on page 59.]

[121] Yuan Li, Hongbing Wang, and Yunlei Zhao. Delegatable order-revealing encryp-
tion. In Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann,
Engin Kirda, and Zhenkai Liang, editors, ASIACCS 19: 14th ACM Symposium on
Information, Computer and Communications Security, pages 134–147, Auckland,
New Zealand, July 9–12, 2019. ACM Press. [Cited on page 59.]

[122] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu an Tan. Search pattern leak-
age in searchable encryption: Attacks and new construction. Cryptology ePrint
Archive, Report 2013/163, 2013. https://eprint.iacr.org/2013/163. [Cited
on pages 54, 189, and 213.]

[123] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party
computation. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography Con-
ference, volume 7785 of Lecture Notes in Computer Science, pages 377–396, Tokyo,
Japan, March 3–6, 2013. Springer, Heidelberg, Germany. [Cited on page 14.]

[124] Wenjie Lu, Shohei Kawasaki, and Jun Sakuma. Using fully homomorphic encryp-
tion for statistical analysis of categorical, ordinal and numerical data. In ISOC
Network and Distributed System Security Symposium – NDSS 2017, San Diego,
CA, USA, February 26 – March 1, 2017. The Internet Society. [Cited on page 42.]

[125] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. In Proceedings [1990] 31st Annual Symposium on Foundations of
Computer Science, pages 2–10 vol.1, 1990. [Cited on page 28.]

[126] Evangelia Anna Markatou and Roberto Tamassia. Full database reconstruction
with access and search pattern leakage. In Zhiqiang Lin, Charalampos Papaman-
thou, and Michalis Polychronakis, editors, ISC 2019: 22nd International Confer-
ence on Information Security, volume 11723 of Lecture Notes in Computer Sci-
ence, pages 25–43, New York City, NY, USA, September 16–18, 2019. Springer,
Heidelberg, Germany. [Cited on pages 54 and 189.]

230

https://eprint.iacr.org/2013/163

BIBLIOGRAPHY

[127] David A. McGrew and John Viega. The security and performance of the ga-
lois/counter mode of operation (full version). Cryptology ePrint Archive, Report
2004/193, 2004. https://eprint.iacr.org/2004/193. [Cited on page 181.]

[128] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. GRECS: Graph
encryption for approximate shortest distance queries. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer
and Communications Security, pages 504–517, Denver, CO, USA, October 12–16,
2015. ACM Press. [Cited on page 52.]

[129] Microsoft. Driving growth together: Small businesses and the cloud.
https://info.microsoft.com/rs/microsoftdemandcenter/images/

driving-growth-together-small-businesses-and-cloud-infographic.pdf.
Accessed: 2020-11-23. [Cited on page 10.]

[130] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in Cryptology – CRYPTO’85, volume 218 of Lecture Notes in
Computer Science, pages 417–426, Santa Barbara, CA, USA, August 18–22, 1986.
Springer, Heidelberg, Germany. [Cited on page 42.]

[131] Kimberly Mlitz. Revenue from big data and business analytics world-
wide from 2015 to 2022. https://www.statista.com/statistics/

551501/worldwide-big-data-business-analytics-revenue/#:~:text=The%

20global%20big%20data%20and,(CAGR)%20of%2013.2%20percent. Accessed:
2020-11-23. [Cited on page 10.]

[132] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications, 1993. [Cited on page 36.]

[133] Milad Nasr, Amir Houmansadr, and Arya Mazumdar. Compressive traffic analysis:
A new paradigm for scalable traffic analysis. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference
on Computer and Communications Security, pages 2053–2069, Dallas, TX, USA,
October 31 – November 2, 2017. ACM Press. [Cited on page 60.]

[134] Muhammad Naveed. The fallacy of composition of oblivious RAM and searchable
encryption. Cryptology ePrint Archive, Report 2015/668, 2015. https://eprint.
iacr.org/2015/668. [Cited on pages 55 and 56.]

[135] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks
on property-preserving encrypted databases. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer
and Communications Security, pages 644–655, Denver, CO, USA, October 12–16,
2015. ACM Press. [Cited on pages 13 and 16.]

[136] Jerzy Neyman. Outline of a theory of statistical estimation based on the classical
theory of probability. Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 236(767):333–380, 1937. [Cited on
page 25.]

[137] NIST. Block cipher modes. https://csrc.nist.gov/Projects/

block-cipher-techniques/BCM. Accessed: 2021-02-06. [Cited on pages
38 and 39.]

[138] National Institute of Standards and Technology Gaithersburg MD. Specification
for the advanced encryption standard (aes). Federal Information Processin Stan-
dards Publication 197, 2001. [Cited on page 181.]

231

https://eprint.iacr.org/2004/193
https://info.microsoft.com/rs/microsoftdemandcenter/images/driving-growth-together-small-businesses-and-cloud-infographic.pdf
https://info.microsoft.com/rs/microsoftdemandcenter/images/driving-growth-together-small-businesses-and-cloud-infographic.pdf
https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/#:~:text=The%20global%20big%20data%20and,(CAGR)%20of%2013.2%20percent
https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/#:~:text=The%20global%20big%20data%20and,(CAGR)%20of%2013.2%20percent
https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/#:~:text=The%20global%20big%20data%20and,(CAGR)%20of%2013.2%20percent
https://eprint.iacr.org/2015/668
https://eprint.iacr.org/2015/668
https://csrc.nist.gov/Projects/block-cipher-techniques/BCM
https://csrc.nist.gov/Projects/block-cipher-techniques/BCM

BIBLIOGRAPHY

[139] Sota Onozawa, Noboru Kunihiro, Masayuki Yoshino, and Ken Naganuma. Infer-
ence attacks on encrypted databases based on order preserving assignment prob-
lem. In Atsuo Inomata and Kan Yasuda, editors, IWSEC 18: 13th International
Workshop on Security, Advances in Information and Computer Security, volume
11049 of Lecture Notes in Computer Science, pages 35–47, Sendai, Japan, Septem-
ber 3–5, 2018. Springer, Heidelberg, Germany. [Cited on page 13.]

[140] OpenMP Architecture Review Board. OpenMP application program interface
version 5.0, 2018. [Cited on page 132.]

[141] Oracle. Java cryptography architecture (jca) reference guide, 4 2020. [Cited on
page 181.]

[142] Simon Oya and Florian Kerschbaum. Hiding the access pattern is not enough: Ex-
ploiting search pattern leakage in searchable encryption, 2020. [Cited on page 60.]

[143] Simon Oya and Florian Kerschbaum. Hiding the access pattern is not enough:
Exploiting search pattern leakage in searchable encryption. In USENIX Security
2021 (To Appear), 2021. [Cited on pages 13, 16, 54, 116, 117, 139, 189, and 216.]

[144] Simon Oya, Carmela Troncoso, and Fernando Pérez-González. Do dummies pay
off? Limits of dummy traffic protection in anonymous communications. In Emil-
iano De Cristofaro and Steven J. Murdoch, editors, PETS 2014: 14th International
Symposium on Privacy Enhancing Technologies, volume 8555 of Lecture Notes
in Computer Science, pages 204–223, Amsterdam, The Netherlands, July 16–18,
2014. Springer, Heidelberg, Germany. [Cited on page 60.]

[145] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Friedhelm Meyer
auf der Heide, editor, Algorithms — ESA 2001, pages 121–133, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg. [Cited on pages 110 and 121.]

[146] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-
ung Geol Choi, Wesley George, Angelos D. Keromytis, and Steve Bellovin. Blind
seer: A scalable private DBMS. In 2014 IEEE Symposium on Security and Pri-
vacy, pages 359–374, Berkeley, CA, USA, May 18–21, 2014. IEEE Computer So-
ciety Press. [Cited on pages 12 and 52.]

[147] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. PanORAMa:
Oblivious RAM with logarithmic overhead. In Mikkel Thorup, editor, 59th Annual
Symposium on Foundations of Computer Science, pages 871–882, Paris, France,
October 7–9, 2018. IEEE Computer Society Press. [Cited on page 146.]

[148] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Lower bounds for encrypted
multi-maps and searchable encryption in the leakage cell probe model. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology –
CRYPTO 2020, Part I, volume 12170 of Lecture Notes in Computer Science,
pages 433–463, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidel-
berg, Germany. [Cited on page 56.]

[149] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leakage in
secure cloud-hosted data structures: Volume-hiding for multi-maps via hashing.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019: 26th Conference on Computer and Communications
Security, pages 79–93, London, UK, November 11–15, 2019. ACM Press. [Cited
on pages 12, 15, 16, 109, 110, 113, 114, 116, 117, 119, 121, 123, 126, 127, 128, 129,
132, 133, 134, 135, 136, 137, 138, 146, 148, 184, 187, 189, and 213.]

232

BIBLIOGRAPHY

[150] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: A strongly en-
crypted database system. Cryptology ePrint Archive, Report 2016/591, 2016.
https://eprint.iacr.org/2016/591. [Cited on page 52.]

[151] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security protocol
for order-preserving encoding. In 2013 IEEE Symposium on Security and Privacy,
pages 463–477, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer Society
Press. [Cited on page 13.]

[152] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. Cryptdb: Protecting confidentiality with encrypted query processing. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP ’11, page 85–100, New York, NY, USA, 2011. Association for Com-
puting Machinery. [Cited on pages 52 and 59.]

[153] M.f. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
[Cited on pages 111 and 136.]

[154] Emil L. Post. Recursively enumerable sets of positive integers and their decision
problems. Bulletin of the American Mathematical Society, 50(5):284–317, 1944.
[Cited on page 29.]

[155] David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016: 23rd Conference on Computer and Communications Security,
pages 1341–1352, Vienna, Austria, October 24–28, 2016. ACM Press. [Cited on
pages 13, 14, 54, 115, 117, 189, and 216.]

[156] NLTK Project. Natural Language Toolkit. https://www.nltk.org/. [Cited on
pages 111, 132, and 136.]

[157] Ronald L. Rivest and M. Dertouzos. On data banks and privacy homomorphisms.
1978. [Cited on page 13.]

[158] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.
POPE: Partial order preserving encoding. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016: 23rd Conference on Computer and Communications Security, pages
1131–1142, Vienna, Austria, October 24–28, 2016. ACM Press. [Cited on page 13.]

[159] Sheldon M. Ross. A first course in probability. Pearson Education Limited, 2020.
[Cited on pages 19, 20, and 22.]

[160] Richard J. Rossi. Mathematical statistics: an introduction to likelihood based in-
ference. Wiley, 2018. [Cited on page 19.]

[161] Jeff Schultz. How much data is created on the internet each day? https://blog.

microfocus.com/how-much-data-is-created-on-the-internet-each-day/.
Accessed: 2020-11-23. [Cited on page 10.]

[162] C. E. Shannon. Communication theory of secrecy systems. The Bell System
Technical Journal, 28(4):656–715, 1949. [Cited on pages 32, 33, and 34.]

[163] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and
Adrian Perrig. Multi-dimensional range query over encrypted data. In 2007 IEEE
Symposium on Security and Privacy, pages 350–364, Oakland, CA, USA, May 20–
23, 2007. IEEE Computer Society Press. [Cited on pages 12, 52, and 59.]

233

https://eprint.iacr.org/2016/591
https://www.nltk.org/
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/

BIBLIOGRAPHY

[164] Nigel P. Smart. Cryptography Made Simple. Springer Publishing Company, Incor-
porated, 1st edition, 2015. [Cited on page 31.]

[165] N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions.
The Annals of Mathematical Statistics, 19(2):279 – 281, 1948. [Cited on page 135.]

[166] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In 2000 IEEE Symposium on Security and Privacy,
pages 44–55, Oakland, CA, USA, May 2000. IEEE Computer Society Press. [Cited
on pages 11, 12, and 50.]

[167] Xiangfu Song, Changyu Dong, Dandan Yuan, Qiuliang Xu, and Minghao Zhao.
Forward private searchable symmetric encryption with optimized I/O efficiency.
Cryptology ePrint Archive, Report 2018/497, 2018. https://eprint.iacr.org/
2018/497. [Cited on page 177.]

[168] Julian Stander and Bernard W. Silverman. Temperature schedules for simulated
annealing. Statistics and Computing, 4(1):21–32, 1994. [Cited on page 126.]

[169] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic
searchable encryption with small leakage. In ISOC Network and Distributed Sys-
tem Security Symposium – NDSS 2014, San Diego, CA, USA, February 23–26,
2014. The Internet Society. [Cited on pages 51 and 177.]

[170] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th Confer-
ence on Computer and Communications Security, pages 247–258, Berlin, Germany,
November 4–8, 2013. ACM Press. [Cited on page 14.]

[171] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013: 20th Conference on Computer and Communications Security,
pages 299–310, Berlin, Germany, November 4–8, 2013. ACM Press. [Cited on
pages 109, 110, 112, 113, and 146.]

[172] Charles Stein. A bound for the error in the normal approximation to the dis-
tribution of a sum of dependent random variables. In Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Proba-
bility Theory, pages 583–602, Berkeley, Calif., 1972. University of California Press.
[Cited on page 76.]

[173] LLC StorageCraft Technology. 7 most infamous cloud security breaches. https://
blog.storagecraft.com/7-infamous-cloud-security-breaches/. Accessed:
2020-11-23. [Cited on page 10.]

[174] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo,
and Surya Nepal. Practical backward-secure searchable encryption from symmetric
puncturable encryption. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and
Communications Security, pages 763–780, Toronto, ON, Canada, October 15–19,
2018. ACM Press. [Cited on page 177.]

[175] SWiSSE. System-wide Security for Symmetric Searchable Encryption, 2020.
https://github.com/SWiSSSE-crypto/SWiSSSE. [Cited on pages 181 and 216.]

234

https://eprint.iacr.org/2018/497
https://eprint.iacr.org/2018/497
https://blog.storagecraft.com/7-infamous-cloud-security-breaches/
https://blog.storagecraft.com/7-infamous-cloud-security-breaches/
https://github.com/SWiSSSE-crypto/SWiSSSE

BIBLIOGRAPHY

[176] Benjamin Hong Meng Tan, Hyung Tae Lee, Huaxiong Wang, Shu Qin Ren,
and Khin Mi Mi Aung. Efficient private comparison queries over encrypted
databases using fully homomorphic encryption with finite fields. Cryptology ePrint
Archive, Report 2019/332, 2019. https://eprint.iacr.org/2019/332. [Cited
on page 42.]

[177] Isamu Teranishi, Moti Yung, and Tal Malkin. Order-preserving encryption se-
cure beyond one-wayness. In Palash Sarkar and Tetsu Iwata, editors, Advances in
Cryptology – ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Com-
puter Science, pages 42–61, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014.
Springer, Heidelberg, Germany. [Cited on page 59.]

[178] Raphael R. Toledo, George Danezis, and Ian Goldberg. Lower-cost ϵ-private in-
formation retrieval. Proceedings on Privacy Enhancing Technologies, 2016(4):184–
201, October 2016. [Cited on pages 16, 138, 186, and 217.]

[179] Jonathan T. Trostle and Andy Parrish. Efficient computationally private infor-
mation retrieval from anonymity or trapdoor groups. In Mike Burmester, Gene
Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors, ISC 2010: 13th International
Conference on Information Security, volume 6531 of Lecture Notes in Computer
Science, pages 114–128, Boca Raton, FL, USA, October 25–28, 2011. Springer,
Heidelberg, Germany. [Cited on page 42.]

[180] Alan Turing. Systems of logic based on ordinals (1938). The Essential Turing,
2004. [Cited on page 29.]

[181] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 24–43, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg,
Germany. [Cited on page 13.]

[182] Cédric Van Rompay, Refik Molva, and Melek Önen. Multi-user searchable encryp-
tion in the cloud. In Javier Lopez and Chris J. Mitchell, editors, ISC 2015: 18th
International Conference on Information Security, volume 9290 of Lecture Notes
in Computer Science, pages 299–316, Trondheim, Norway, September 9–11, 2015.
Springer, Heidelberg, Germany. [Cited on page 52.]

[183] Cédric Van Rompay, Refik Molva, and Melek Önen. Fast two-server multi-user
searchable encryption with strict access pattern leakage. In David Naccache,
Shouhuai Xu, Sihan Qing, Pierangela Samarati, Gregory Blanc, Rongxing Lu,
Zonghua Zhang, and Ahmed Meddahi, editors, ICICS 18: 20th International
Conference on Information and Communication Security, volume 11149 of Lec-
ture Notes in Computer Science, pages 393–408, Lille, France, October 29–31,
2018. Springer, Heidelberg, Germany. [Cited on page 52.]

[184] Heribert Vollmer. Introduction to circuit complexity: a uniform approach.
Springer, 2011. [Cited on page 28.]

[185] Sameer Wagh, Paul Cuff, and Prateek Mittal. Differentially private oblivious
RAM. Proceedings on Privacy Enhancing Technologies, 2018(4):64–84, October
2018. [Cited on pages 16, 138, 186, and 217.]

[186] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. Maple: scalable
multi-dimensional range search over encrypted cloud data with tree-based index.
In Shiho Moriai, Trent Jaeger, and Kouichi Sakurai, editors, ASIACCS 14: 9th

235

https://eprint.iacr.org/2019/332

BIBLIOGRAPHY

ACM Symposium on Information, Computer and Communications Security, pages
111–122, Kyoto, Japan, June 3–6, 2014. ACM Press. [Cited on page 59.]

[187] Jiafan Wang and Sherman S. M. Chow. Forward and backward-secure range-
searchable symmetric encryption. Cryptology ePrint Archive, Report 2019/497,
2019. https://eprint.iacr.org/2019/497. [Cited on pages 59, 61, 62, 63,
and 64.]

[188] Lingyu Wang, Yingjiu Li, Duminda Wijesekera, and Sushil Jajodia. Precisely
answering multi-dimensional range queries without privacy breaches. In Einar
Snekkenes and Dieter Gollmann, editors, ESORICS 2003: 8th European Sympo-
sium on Research in Computer Security, volume 2808 of Lecture Notes in Com-
puter Science, pages 100–115, Gjøvik, Norway, October 13–15, 2003. Springer,
Heidelberg, Germany. [Cited on page 59.]

[189] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of
the Goldreich-Ostrovsky lower bound. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer and Com-
munications Security, pages 850–861, Denver, CO, USA, October 12–16, 2015.
ACM Press. [Cited on page 146.]

[190] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi,
Emil Stefanov, and Yan Huang. Oblivious data structures. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference on Computer and
Communications Security, pages 215–226, Scottsdale, AZ, USA, November 3–7,
2014. ACM Press. [Cited on pages 14 and 42.]

[191] Yunling Wang, Jianfeng Wang, Shi-Feng Sun, Joseph K. Liu, Willy Susilo, and
Xiaofeng Chen. Towards multi-user searchable encryption supporting Boolean
query and fast decryption. In Tatsuaki Okamoto, Yong Yu, Man Ho Au, and
Yannan Li, editors, ProvSec 2017: 11th International Conference on Provable
Security, volume 10592 of Lecture Notes in Computer Science, pages 24–38, Xi’an,
China, October 23–25, 2017. Springer, Heidelberg, Germany. [Cited on page 52.]

[192] John Watrous. Quantum computational complexity, 2008. [Cited on page 29.]

[193] WHO. Icd-11 for mortality and morbidity statistics. https://icd.who.int/

browse11/l-m/en. Accessed: 2020-12-03. [Cited on page 59.]

[194] CMU William W. Cohen, MLD. Enron email dataset. [Cited on pages 111, 117,
131, 132, 163, and 181.]

[195] Peter Williams and Radu Sion. Single round access privacy on outsourced storage.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012: 19th
Conference on Computer and Communications Security, pages 293–304, Raleigh,
NC, USA, October 16–18, 2012. ACM Press. [Cited on page 14.]

[196] Charles V. Wright, Scott E. Coull, and Fabian Monrose. Traffic morphing: An ef-
ficient defense against statistical traffic analysis. In ISOC Network and Distributed
System Security Symposium – NDSS 2009, San Diego, CA, USA, February 8–11,
2009. The Internet Society. [Cited on page 106.]

[197] Qiuyu Xiao, Michael K. Reiter, and Yinqian Zhang. Mitigating storage side chan-
nels using statistical privacy mechanisms. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer and Com-
munications Security, pages 1582–1594, Denver, CO, USA, October 12–16, 2015.
ACM Press. [Cited on pages 16, 146, 186, and 217.]

236

https://eprint.iacr.org/2019/497
https://icd.who.int/browse11/l-m/en
https://icd.who.int/browse11/l-m/en

BIBLIOGRAPHY

[198] L. Xu, X. Yuan, C. Wang, Q. Wang, and C. Xu. Hardening database padding for
searchable encryption. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pages 2503–2511, 2019. [Cited on page 15.]

[199] Rui Zhang and Hideki Imai. Generic combination of public key encryption with
keyword search and public key encryption. In Feng Bao, San Ling, Tatsuaki
Okamoto, Huaxiong Wang, and Chaoping Xing, editors, CANS 07: 6th Inter-
national Conference on Cryptology and Network Security, volume 4856 of Lec-
ture Notes in Computer Science, pages 159–174, Singapore, December 8–10, 2007.
Springer, Heidelberg, Germany. [Cited on page 12.]

[200] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries
are belong to us: The power of file-injection attacks on searchable encryption. In
Thorsten Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX
Security Symposium, pages 707–720, Austin, TX, USA, August 10–12, 2016.
USENIX Association. [Cited on pages 51, 54, 116, 160, 167, 177, 178, 189, and 216.]

[201] L. Zhao, Q. Liu, H. Huang, and X. Jia. Efficient privacy-preserving query process-
ing on outsourced geographic databases. In 2018 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, 2018. [Cited on page 52.]

[202] Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. Dynamic
searchable symmetric encryption with forward and stronger backward privacy. In
Kazue Sako, Steve Schneider, and Peter Y. A. Ryan, editors, Computer Security
– ESORICS 2019, pages 283–303, Cham, 2019. Springer International Publishing.
[Cited on page 12.]

[203] Cong Zuo, Shifeng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. Dynamic
searchable symmetric encryption schemes supporting range queries with forward
(and backward) security. In Javier López, Jianying Zhou, and Miguel Soriano,
editors, ESORICS 2018: 23rd European Symposium on Research in Computer
Security, Part II, volume 11099 of Lecture Notes in Computer Science, pages
228–246, Barcelona, Spain, September 3–7, 2018. Springer, Heidelberg, Germany.
[Cited on pages 59, 61, 62, 63, and 64.]

237

	Contents
	Introduction
	Structured Encryption
	Development of Structured Encryption
	Related Work
	Challenges of Structured Encryption and Our Contributions
	Organization of the Thesis
	Published Results

	Background I: Mathematical Foundation
	Probability Theory and Statistics
	Complexity Theory
	Table of Notations

	Background II: Cryptographic Foundation
	Encryption
	Pseudo-random Generators (PRGs)
	Block Ciphers and Modes of Operation
	Pseudo-random Functions (PRFs)
	Other Primitives

	Background III: Structured Encryption
	Background
	A Simple Searchable Encryption Scheme
	Security of Structured Encryption
	Structured Encryption in the Literature
	Leakage Cryptanalysis in the Literature
	The Index Retrieval Problem
	A Conundrum

	Cryptanalysis I: Encrypted Range Queries
	Introduction
	Access-pattern Leakage Attacks
	Volume Leakage Attacks
	Discussion

	Cryptanalysis II: Searchable Encryption
	Efficient Deployment of Searchable Encryption
	Attack on System-level Leakage
	Formal Description of Access-pattern Leakage Attacks
	New Access-pattern Leakage Attacks
	Empirical Evaluation
	Discussion

	Construction: Searchable Encryption
	Preliminaries and Background
	Simple Construction
	Bucketization
	Static SWiSSSE
	Cryptanalysis of Static SWiSSSE
	Dynamic SWiSSSE
	Performance Analysis
	Experimental Results
	Discussion

	Foundations: Towards a Better Security Notion
	Introduction
	Preliminary Results
	New Constructions
	Security Analysis of Our Constructions
	Application of Our Notion to Other Schemes
	Discussion

	Conclusion and Discussion
	Cryptanalysis
	Constructions
	Foundation
	Leakage vs Efficiency in Related Fields

	Bibliography

