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Abstract

This thesis predominantly discusses a handful of problems in additive combinatorics
and incidence geometry.

Our particular interest within additive combinatorics is proving sumset and en-
ergy bounds for convex sets and images of structured sets under convex functions.
For both types of problems, we extend existing techniques and pioneer new ones for
longer sums and functions with higher convexity.

The results and approaches yield applications in short sumset and energy esti-
mates, few product – many sum problems, and counting lattice points on convex
curves.

The secondary focus of this thesis is proving incidence results in the setting
of thickened points and lines (atoms and tubes). We prove a result reminiscent
of the Szemerédi–Trotter Theorem and applications, while also addressing the key
modifications required to adapt results from traditional incidence geometry.
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Notation and Assumed Knowledge

Throughout this thesis, we adopt the following notation and conventions, and assume

the following background knowledge.

Conventions and Notation

Uppercase Latin letters, most often A and B, will always be finite sets. We drop the

word finite unless we wish to emphasise it. Unless otherwise stated, such sets are

subsets of R.

Writing [N ] always refers to the set {1, 2, . . . , N}. When we wish to emphasise that

a set A is indexed in increasing order, we write

A = {a1 < · · · < aN}.

We write |A| to be the number of elements in A. For disjoint union we use the

symbol ⊔.

Write 1S for the indicator variable associated with a statement S, which takes the

value 1 if S is true and 0 if S is false.

Arithmetic operations on sets always refer to sumsets, product sets and their gener-

alisations. For example

A+A := {a+ a′ : a, a′ ∈ A} and AA := {aa′ : a, a′ ∈ A}.

1
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Using
∏

and
∑

with sets always refer to many-fold sumsets and product sets:

s∑
i=1

Ai := A1 + · · ·+As and
s∏

i=1

Ai := A1 . . . As.

We use the shorthand sA :=
∑s

i=1A and A(s) :=
∏s

i=1A when the Ai are all the

same.

At times we abuse the use of the word sumset, using it to refer to any aritmetic

expressions of sets using combinations of + and −. For example, we may describe

either A−A or A+A−A as a sumset.

The realisation function rA+A counts the number of realisations of its argument in

the sumset A+A. That is,

rA+A(x) := |{(a, a′) ∈ A2 : a+ a′ = x}|.

This generalises naturally to different types of sumsets. For example, we may write

rA−B, r2A−2A etc. Where context makes it clear what sumset x is contained in, we

may write simply r(x).

Throughout this thesis, Xr is the set of r-rich sums:

Xr = {x : r(x) ∈ [r, 2r)}.

The particular sumset which x is taken from (for example, A+A,A−B, or 2A−2A)

ought to be clear from context.

Asymptotic Notation

We use Vinogradov’s symbol extensively. Let X := X(N) and Y := Y (N) be

functions depending on the growing parameter N . In all of the following notation,

we assume N is sufficiently large.

We write X ≪ Y 1 to mean that X ≤ CY for some absolute constant C and X ≲ Y

to mean that X ≤ C1Y (log Y )C2 for some absolute constants C1, C2. Furthermore,
1In the literature associate with Chapter 5, ≲ is usually used instead of ≪. We will ignore this

convention in the interest of keeping consistent notation throughout the thesis.
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if X ≪ Y and Y ≪ X, we write X ≈ Y .

If the suppressed constants depend on some other parameters, these are indicated as

subscripts. For example, X ≪α,β Y means that X ≤ C(α, β)Y , where C(α, β) is a

function depending only on α and β. We similarly define ≲α,β,≈α,β etc.

Writing X = O(Y ) will mean the same thing as X ≪ Y . We write X = o(Y ) to

mean that X/Y → 0 as N → ∞. So X = o(1) if X → 0 as N → ∞.

Inequalities

The following inequalities are used throughout without explanation:

The Cauchy–Schwarz inequality states that given real-valued sequences {ai}i∈I , {bi}i∈I ,

we have (∑
i∈I

aibi

)2

≤
∑
i∈I

a2i ·
∑
i∈I

b2i .

More generally, Hölder’s inequality states that given 1 < p, q < ∞ with 1
p + 1

q = 1,

we have ∑
i∈I

aibi ≤

(∑
i∈I

api

)1/p

·

(∑
i∈I

bqi

)1/q

.

For our purposes, often bi = 1 for all i ∈ I. In this case the Cauchy–Schwarz

inequality and Hölder’s inequality respectively become

(∑
i∈I

ai

)2

≤
∑
i∈I

a2i · |I| and
∑
i∈I

ai ≤

(∑
i∈I

api

)1/p

· |I|1/q.

The Cauchy–Schwarz inequality applies in more general inner product spaces, in

which case

|⟨u,v⟩|2 ≤ ⟨u,u⟩⟨v,v⟩.

The Pigeonhole Principle

The pigeonhole principle is the obvious statement that given m pigeons placed inside

n pigeonholes, if m > n then there must be at least two pigeons in at least one of

the pigeonholes.

A more general version says that given m = (k − 1)n + 1 objects to be placed in n
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boxes, at least one box must contain at least k objects.

Dyadic pigeonholing is a way to replace a sum with another sum which is easier to

manage and is approximately the same size. Take a set S with |S| = N where each

element s ∈ S has an associated ϵ(s), and assume that ϵ(s) is always positive and at

most polynomial in N .

Then given any function f , we may write

∑
s∈S

f(s) =

M∑
i=0

∑
s∈S:

ϵ(s)∈[2i,2i+1)

f(s),

where M ≪ logN , whereupon the pigeonhole principle shows that for some i0,

∑
s∈S:

ϵ(s)∈[2i0 ,2i0+1)

f(s) ≫ 1

logN
·
∑
s∈S

f(s).

In this thesis log will always have base 2. Since logN may be thought of as not

asymptotically significant when compared to expressions which are polynomial in

N , we may replace

∑
s∈S

f(s) by
∑
s∈S:

ϵ(s)∈[2i0 ,2i0+1)

f(s),

and not significantly affect the result. This has the advantage that we may henceforth

assume that for all s ∈ S, ϵ(s) ≈ 2i0 , often called the popular value of ϵ(s).



Introduction

This thesis predominantly discusses two distinct but related types of problems. Prin-

cipally, our interest is in studying the additive properties of convex sets and functions.

The secondary problem is to better understand the incidence structure of atoms and

tubes, which can be seen as a thickened analogue of traditional point-line incidence

theory.

A convex set A is a subset of the real numbers in which adjacent spaces be-

tween elements increase along the number line. Convex sets are widely accepted

to be additively unstructured sets, and there are various natural ways to quantify

such a statement. A significant portion of this thesis is devoted to proving results

quantifying the statement that convex sets and functions do not exhibit additive

structure. These results are a combination of sumset and energy bounds as well as

their corollaries and applications.

The final chapter explores the extent to which traditional results and proofs in

incidence geometry have analogues when points and lines are thickened by some small

factor δ. This seemingly small modification appreciably changes the nature of the

problems with some of the main results in standard incidence geometry becoming

manifestly false in the thickened setting. Our work explores the extent to which

these theorems may be salvaged by making extra assumptions in the main theorems

and adopting new techniques from areas such as analysis.

The structure and main results of the thesis are summarised below. In the interest

of transparency I also explicitly state which results are my work and in which papers

they appear. The relevance of these results is discussed further as they are introduced

in the text.

5
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• Chapter 1 is an introduction to the key results in additive combinatorics, both

those which are explicitly discussed in this thesis and those which are included

for historical depth. A section is devoted to incidence geometry, giving an

overview of some main results and discussions of relations to other problems.

• Chapters 2 and 3 give proofs of various sumset and energy bounds, which

constitute the main theorems of the thesis.

In Chapter 2, Theorem 2.1.2 is a small improvement on previous results by

incorporating some new techniques. Theorem 2.1.3 is also new and has no

precursor. It gives the new Theorem 2.1.4 as an application. These results

appear in [12]. In this chapter, we also present the Equidistribuation Lemma

2.2.2 which I introduced in [13].

In Chapter 3, Theorem 3.1.2, Corollary 3.1.1, Theorem 3.1.3, Theorem 3.1.4,

Corollary 3.1.2, Theorem 3.1.5, and Theorem 3.4.1 are all new results. They

are built up out of new iterative machinery to estimate energies as well as

the Equidistribution Lemma 2.2.2 to incorporate small additive doubling into

additive combinatorial problems. These results all appear in [13].

• Chapter 4 contains applications of results and ideas in Chapters 2 and 3 in two

categories.

Firstly, we prove the new Theorem 4.1.2, containing various sumset and energy

estimates for higher convex sets. The proof methods use existing estimating

methods with a new iterating argument. These are also contained in [13].

The other section contains new applications for the Equidistribution Lemma

2.2.2. These results are Theorems 4.2.1, 4.2.2, and 4.2.3, all appearing in [12].

Theorem 4.2.6 is new and does not appear in any literature. I proved it after,

but independently of, Misha Rudnev.

• Chapter 5 contains all discussion and results relating to continuous incidences.

Theorems 5.1.2 and 5.4.1 are new. Proposition 5.2.1 is a generalisation of its

precursor in [32] . The exposition is also new. These results are included in [11].



Chapter 1

Introduction to Additive

Combinatorics

The study of additive combinatorics and arithmetic combinatorics concerns the arith-

metic structure in sets of numbers. We start generally; let A be a subset of an abelian

group G and write the group operation additively. Studying arithmetic in nonabelian

groups is very different and will not be discussed further. The central question for

us is: to what extent does A exhibit additive structure?

1.1 Additive Structure

Two of the most fundamental quantities of interest in additive combinatorics are

sumsets and energy. The sumset of A is defined as

A+A := {a1 + a2 : a1, a2 ∈ A},

and the energy E(A) is defined as the number of solutions to the equation

a1 + a2 = a3 + a4, (1.1.1)

where a1, a2, a3, a4 ∈ A. While much of the theory we state in this chapter holds for

any group G, our particular interest is when G is a field (and more specifically R).

7



1.1. ADDITIVE STRUCTURE 8

Accordingly, our examples henceforth will be taken from the reals.

Before discussing additive structure more fully, we make a cursory examination

of the properties of sumsets and energies, especially relating to their size. Making

no assumptions whatsoever on the set A, the following elementary bounds hold:

|A| ≪ |A+A| ≪ |A|2 and |A|2 ≪ E(A) ≪ |A|3. (1.1.2)

The lower bound for |A+A| can be seen by observing that for some a ∈ A, we have

|A| = |{a} + A| ≤ |A + A|. The upper bound is clear since there are at most |A|2

pairs (a1, a2).

Finding |A|2 solutions to the energy equation (1.1.1) is realised by taking all

solutions with a1 = a3 and a2 = a4, yielding the lower bound for E(A). Furthermore,

once a1, a2, a3 are fixed in (1.1.1) in |A|3 ways, there is at most one possible solution

for a4 ∈ A, establishing the upper bound for E(A).

Example 1.1.1. The bounds in (1.1.2) are all attainable. Let A be an arithmetic

progression, say A = {1, 2, . . . , N}. Then

A+A = {2, 3, . . . , 2N},

so |A+A| ≈ N . Using the same set A, there are ≈ N3 triples (a1, a2, a3) ∈ A3 such

that a1 ≤ a3 ≤ a2. For each such triple, we can always find a4 ∈ A such that

a1 + a2 = a3 + a4.

It follows that E(A) ≈ N3.

Alternatively, if A is a geometric progression, say A = {20, 21, . . . , 2N}, then each

unordered pair (a1, a2) ∈ A2 gives a different a1 + a2, so |A + A| ≈ N2. This also

means that the only solutions to the energy equation are trivial, so E(A) ≈ N2.

Example 1.1.1 uncovers examples on both ends of the additive structure spec-

trum. We want to think of arithmetic progressions as highly structured and geometric

progressions as highly unstructured. This motivates our options for how we measure

structure; we may say a set A ⊂ G is additively structured if:
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(1) A+A is small,

(2) E(A) is large, or

(3) A resembles a sumset; ie. there exists B ⊂ G such that |A ∩ (B +B)| ≥ |A|
2 .

In this thesis, we measure structure with both (1) and (2). We also use (3) briefly

in Chapter 3.

We have seen that an arithmetic progression A attains both the trivial lower

bound for |A+ A| and upper bound for E(A) in Example 1.1.1 above. The famous

Freiman’s Theorem proves that in fact, any set with small sumset “looks like” a

generalised arithmetic progression.

Definition 1.1.1. A generalised arithmetic progression (GAP) is a finite set of the

form

P = {a0 + a1x1 + · · ·+ adxd : xi ∈ {0, . . . , li} for all i},

where a0, a1, . . . , ad are fixed reals and l1, . . . , ld are all fixed positive integers. We

say d is the dimension of the generalised arithmetic progression.

A generalised arithmetic progression A with dimension d also has the property

that |A+A| ≈d |A|.

Theorem 1.1.1 (Freiman). Let A be a finite subset of G with |A+A| = K|A|. Then

A ⊂ P , where P is a GAP of size at least f(K)|A| and dimension at most d(K),

where f(K), d(K) are constants depending only on K.

A proof can be found in [79]. In light of Freiman’s Theorem, we will henceforth

think of A = [N ] as the canonical example of an additively structured subset of R.

1.1.1 Relating sumsets and energy

It is apparent that |A+A| and E(A) capture similar information. In order for |A+A|

to be small (that is, close to its lower bound |A|), we need many pairs a1, a2 ∈ A

to give duplicates of the same sum a1 + a2. This guarantees that many solutions to

(1.1.1) are realised and E(A) will be close to its upper bound |A|3. The following

lemma captures this heuristic.
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Lemma 1.1.1. Given a finite A ⊂ G, we have

|A+A| E(A) ≥ |A|4. (1.1.3)

Proof. Firstly recall that rA+A(x) is the number of solutions to a1 + a2 = x where

a1, a2 ∈ A. Equipped with this notation, it can be easily checked that

∑
x∈A+A

rA+A(x) = |A|2 and
∑

x∈A+A

r2A+A(x) = E(A).

Applying the Cauchy–Schwarz inequality, one obtains the desired:

|A|4 =

( ∑
x∈A+A

rA+A(x)

)2

≤

( ∑
x∈A+A

12

)( ∑
x∈A+A

r2A+A(x)

)
= |A+A| E(A).

It follows that if either the sumset or energy is small, the other must be large. The

reverse is not true. Both the sumset and energy may be maximised simultaneously

as the following example illustrates.

Example 1.1.2. Let A = A1 ⊔ A2 where A1 is an arithmetic progression, A2 is a

geometric progression, and |A1| = |A2| = N/2. We have

|A+A| ≥ |A2 +A2| ≫ N2 and E(A) ≥ E(A1) ≫ N3.

Since a small sumset implies a large energy, the sumset may be thought of as

a stronger notion of additive structure. However, energy is perhaps a more robust

measure. In the above example, the large sumset may lead one to guess that A is a

totally unstructured set. But we probably wish to think of a set containing a large

arithmetic progression as being structured. This is accounted for by considering the

energy.

Indeed, work of Balog and Szemeredi [2] and Gowers [27] prove that this is the

only required concession to prove a converse result: if a set has large additive energy,

it contains a large subset with a small sumset. The specific formulation of the Balog–

Szemerédi–Gowers Theorem below is due to Schoen [66].
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Theorem 1.1.2 (Balog–Szemerédi–Gowers). Let A be a subset of G with E(A) =

κ|A|3. Then there exists a subset A′ ⊂ A with |A′| ≫ κ|A| and |A′ +A′| ≪ κ−4|A′|.

1.1.2 Longer Sums: Plünnecke’s Inequalities

The definition of sumset is easily generalised to include more summands (which

can be taken from different sets), and including differences as well as sums. In the

language of groups, subtractions are adding inverses of elements of A.

We introduce the following notation to encapsulate these definitions. For the

sumset of sets A1, . . . , As, we write

A1 + · · ·+As or
s∑

i=1

Ai.

If some of the Ai are the same we may group them together with a coefficient, so

that

sA :=

s∑
i=1

A.

One must be careful not to confuse this with the set of dilates of A by s which uses

the same notation at some places in the literature. In this thesis sA only ever refers

to s-fold sumsets. These notations are mixed in natural ways. Some sumsets of

particular importance in this thesis are: A+A−A and (s+ 1)A− sA for integer s.

Longer sumsets are similarly useful metrics of additive structure. Some simple

constraints on the size of long sumsets such as kA are inherited from constraints on

the size of the twofold sumset A+A. These are summarised in a series of identities

of Plünnecke [56, 57] and were subsequently extended to sums and differences with

a new proof given by Ruzsa [64]. Nowadays, results of this type are referred to as

Plünnecke’s inequalities or Plünnecke–Ruzsa Theorems.

Theorem 1.1.3 (Plünnecke). Let A,B be finite subsets of G, with |A+B| = α|A|.

Then there exists a nonempty subset A′ ⊂ A such that

|A′ + sB| ≤ αs|A′|,

holds for all s.
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A simple proof of this result can be found in [54]. The following is a refined form

which will be particularly useful in later chapters. In its original form [40, Corollary

1.5] it is stated over Fp but is equally valid over other abelian groups.

Theorem 1.1.4 (Plünnecke). Let A,B be finite subsets of G, with |A+B| = α|A|.

Then there exists A′ ⊂ A with |A′| ≥ |A|/2, such that

|A′ + sB| ≪ αs|A|,

holds for all s.

For completeness in this section and because of its relevance in Chapter 3, we

introduce energy equations with many terms on each side. Given a set A, the s-fold

energy is defined as

Ts(A) := |{(a1, . . . , a2s) ∈ A2s : a1 + · · ·+ as = as+1 + · · ·+ a2s}|.

It is worth noting that an analogue of Lemma 1.1.1 exists for longer sums:

|sA| Ts(A) ≥ |A|2s.

1.1.3 Sum-product Phenomena

The results discussed thus far apply in all abelian groups G. But as previously

mentioned, we will generally be working over a field F (which will usually be R),

in which case we simultaneously consider F as a group under addition and F∗ as a

group under multiplication. Accordingly, we may discuss the size of both the sumset

A + A and the product set AA together. For the energy, E(A) will always refer to

the additive energy and E×(A) to its multiplicative analogue.

In any field, an arithmetic progression is the example we have in mind for strong

additive structure. Similarly, a geometric progression has strong multiplicative struc-

ture (as this is an arithmetic progression in the multiplicative group). Since the

examples which make A+A and AA small are vastly different, it is natural to guess

that both cannot be small at the same time, as Erdős and Szemerédi did in 1983 [20].
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Conjecture 1.1.1 (Sum-Product Conjecture). For any positive δ < 1, there exists

a constant C(δ) > 0, such that for any sufficiently large A ⊂ R, we have

max{|A+A|, |AA|} ≥ C(δ)|A|1+δ. (1.1.4)

In fact, proving (1.1.4) for a specific δ > 0 would already prove that a set cannot

be both additive and multiplicative. Progress of the last forty years has been in the

form of proving (1.1.4) for increasing δ values. Some landmark results were δ = 1/4

due to Elekes [18] and δ = 1/3 − o(1) due to Solymosi [71]. The record to date is

δ = 1
3 + 2

1167 − o(1) due to Rudnev and Stevens [62].

The state of the art in other fields is weaker. The best known in various other

fields are: δ = 1/3 + c in C (for some small constant c > 0) due to Basit and

Lund [4], δ = 1/4− o(1) in prime fields Fp due to Mohammadi and Stevens [46], and

δ = 1/5 − o(1) in function fields Fq((t
−1)) due to Bloom and Jones [6]. Intuitively,

we expect the quantitatively strongest results in fields with lots of structure that can

be exploited.

There are also many variations on the sum-product problem. These include

the few sums, many products and few products, many sums problems (these will

be discussed further in Chapter 4) as well as sum-product results for longer sums

and products (see [10]). All such problems enshrine the idea that additive and

multiplicative structure cannot both be exhibited by the same set.

1.1.4 Balog–Wooley Decomposition

It would be natural to ask whether an analogue for the sum-product theorem exists

for energy. That is, can one prove that for any set A ⊂ F, we have either E(A) or

E×(A) being small. Recalling that energy quantifies a weaker notion of structure

than the sumset and product set, this does not follow from the sum-product theorem.

Indeed in the strictest sense, it is false. Consider A from Example 1.1.2. This

gives E(A) ≈ E×(A) ≈ N3; that is, both additive and multiplicative energy are

maximized.

However, a partial sum-product-type result for energy has been obtained over
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the reals by Balog and Wooley [3]. Specifically they showed that any set A can be

decomposed into a set which is not additive and a set which is not multiplicative.

Theorem 1.1.5 (Balog–Wooley). Any finite A ⊂ R can be decomposed A = A1⊔A2

such that

E(A1) ≲ |A|3−δ and E×(A2) ≲ |A|3−δ,

where δ = 2/33.

Further progress has been made in these so-called low energy decompositions.

Recently, Xue [82] improved the best known value of δ to 3/11, and Mudgal [47]

proved a similar decomposition for longer sums and products.

1.1.5 Higher Energy

In later chapters, we will occasionally use higher energies. For example, the third

order additive energy, denoted by E3(A) is the number of solutions to the equation

a− a′ = b− b′ = c− c′ where a, a′, b, b′, c, c′ ∈ A.

Equipped with the previously defined notation rA−A(x), we can write

E3(A) =
∑

x∈A−A

r3A−A(x).

The third order energy is the third moment of the realisation function rA−A in the

same way that E(A) is the second moment. Note that higher energies are expressed

as moments of rA−A rather than rA+A. The second order energy is unique in that

E(A) =
∑

x∈A−A

r2A−A(x) =
∑

x∈A+A

r2A+A(x).

Using higher energies precipitates improved bounds in many problems. We give

one example of how this can manifest. By a dyadic pigeonholing argument, we may

instead write

E3(A) =
∑

x∈A−A

r3A−A(x) =
∑

r dyadic

r3|Xr|,
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where Xr is the set of r-rich differences in A − A. In Chapter 3, we prove energy

bounds for convex sets A via upper bounds for |Xr|. It turns out that known bounds

for |Xr| yield sharp bounds for E3(A) but suboptimal bounds for E(A). This is a

fact that will be leveraged in Chapter 4.

1.2 Convexity

A significant portion of this thesis is focused on the additive properties of convex

sets and convex functions. In this section we work exclusively over R.

A set A = {a1 < · · · < aN} is said to be convex if

a2 − a1 < a3 − a2 < · · · < aN − aN−1.

Traditionally, we would describe A as concave if these adjacent differences formed

a decreasing sequence. However, in this work we make no distinction, referring to

both as convex sets.

Convexity is thought to pose an obstruction to additive structure in A. The first

nontrivial result in this direction is due to Hegyvári [36] who showed, in response to

an earlier question by Erdős, that if A is convex,

|A+A| ≫ log |A|
log log |A|

|A| .

Convex sets have been widely studied since by expressing them as A = f([N ])

where f is an increasing function with an increasing first derivative. That this is

always possible is a fact we will take for granted.

Saying a function is Ck(U) means its derivatives exist and are continuous up

to and including order k on an open, connected set U . We say a C1(U) function

f is convex if both f and f ′ are either strictly increasing or strictly decreasing on

U . Throughout this thesis, when we apply such a convex function f to a set A, we

implicitly assume that A ⊂ U . This definition of convex functions is not standard

but will be used throughout this thesis.

The language of convex functions suggests a related problem, that of estimating
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the number of lattice points on a convex curve Γ = {(x, f(x)) : x ∈ I} where f is

a convex function and I is an open set. Jarník [38] addressed this problem in 1926

with a sharp bound. However, by imposing higher smoothness conditions on f , this

is improved, notably by Bombieri and Pila [7]. Their result motivates the study of

functions which are “more convex”; this is discussed later in the chapter.

There is an aphorism in additive combinatorics that convex functions destroy

additive structure; if f is a convex function, then either A or f(A) can be additively

structured, but not both. Statements about the additive structure of A and f(A)

are more general than sum-product results. Indeed, if we have

max{|A+A|, |f(A) + f(A)|} ≫ |A|1+δ (1.2.1)

for some positive δ < 1, then one immediately obtains a sum-product theorem by

choosing f(x) = log(x). Elekes, Nathanson and Ruzsa [19] proved a more general

form of (1.2.1) with δ = 1/4. Specifically they proved, given sets B,C,D with

|C|, |D| ≫ |B|, that

|B + C||f(B) +D| ≫ |B|3/2|C|1/2|D|1/2.

Setting C = B and D = f(B) yields (1.2.1). In 2021, Stevens and Warren [74]

proved the quantitative improvement that given sets A,B and convex functions f, g,

we have

|A+B||f(A) + g(B)| ≳ |A|38/49|B|38/49.

The best known 2-fold sumset and energy bounds to date are due to Schoen and

Shkredov [67] (difference set bound), Rudnev and Stevens [62] (sumset bound) and

Shkredov [68] (energy bound) and are summarised below.

Theorem 1.2.1. If A is convex, then

|A−A| ≳ |A|8/5 = 1.6

|A+A| ≳ |A|30/19 ≈ 1.579 ,

E(A) ≲ |A|32/13 ≈ 2.4615 .
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1.2.1 Higher Convexity

In the remainder of the thesis, we will need a more sophisticated language for talking

about convexity, specifically to capture that some sets are more convex than others.

Definition 1.2.1. A set A = {a1, a2, . . . , aN} is 0-convex if it is monotone (either

strictly increasing or decreasing) with respect to the indexing. Inductively we say A

is k-convex if it is monotone and the set of adjacent differences

a2 − a1, a3 − a2, . . . , aN − aN−1

forms a (k − 1)-convex set.

Under this definition, a 1-convex set is simply a convex set as defined at the start

of the chapter. Henceforth, when we say convex or k-convex we will insist that the

set itself and its iterated differences are not just monotone but monotone increasing.

This will cause no problems; all arguments herein can be easily modified to adjust

for this.

Lemma 1.2.1. If k ≥ 1 and A is a k-convex set, then for any 1 ≤ d < N , the set

∆dA := {ai+d − ai, 1 ≤ i ≤ N − d}

is (k − 1)-convex.

Proof. We use induction on k. A telescoping summation proves that ∆dA is 0-

convex. In particular, this proves the base step. For the induction, assume the

statement holds for all (k − 1)-convex functions. Since ∆dA is monotone, in order

to show that ∆dA is (k − 1)-convex, it suffices to show that

∆1∆dA = {(ai+1+d − ai+1)− (ai+d − ai) : i ∈ [N − d− 1]}

is (k − 2)-convex. Since ∆1∆dA = ∆d∆1A, this follows by the (k − 1)-convexity of

∆1A and the induction hypothesis.

A novel aspect of this work is demonstrating that the higher the convexity, the
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greater the obstruction to additive structure. In fact, by assuming higher convexity

we will later prove an improvement to all the bounds in Theorem 1.2.1.

Theorem 1.2.2. If A is a 2-convex set, then

|A−A| ≳ |A|1+151/234 ≈ 1.645 ,

|A+A| ≳ |A|1+229/309 ≈ 1.587 ,

E(A) ≲ |A|2.4554 .

Incorporating higher convexity (along with clever squeezing arguments), Hanson,

Roche-Newton and Rudnev recently proved new sumset bounds.

Theorem 1.2.3 (Hanson, Roche-Newton, Rudnev). Let k ≥ 1 and A be a k-convex

set. Then

|2kA− (2k − 1)A| ≫ |A|k+1.

Let us further justify the introduction of convex functions. A convex set A may

be expressed as A = f([N ]) for a convex function f and the corresponding convexity

condition becomes

f(2)− f(1) < f(3)− f(2) < · · · < f(N)− f(N − 1).

Each term f(i+1)− f(i) may be thought of a discrete version of the first derivative

f ′ near i. The fact that these terms are increasing in i reflects that convex functions

have increasing first derivative.

But more can be said if A is 2-convex. Then iterating the convexity condition

shows that the terms

(f(i+ 2)− f(i+ 1))− (f(i+ 1)− f(i)) (1.2.2)

are increasing with i. Expression (1.2.2) is a discrete version of the second derivative

f ′′ near i. In this way 2-convexity of a set A = f([N ]) corresponds to f having

monotone derivatives up to order 2. The following discussion generalises this idea to

any order of convexity.
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Definition 1.2.2. We say a Ck(U) function f is k-convex if it has monotone deriva-

tives f (0), f (1), . . . , f (k) on an open, connected subset U . Here monotone means

strictly increasing or decreasing.

A 1-convex function is simply a convex function and a 0-convex function is a

monotone function. To streamline exposition, we henceforth assume that a k-convex

function f has monotone increasing derivatives f (0), f (1), . . . , f (k). If any of them

are decreasing, the proofs herein can be easily modified to handle this. Such modi-

fications are discussed in [33].

It is useful to have some key examples of k-convex functions in mind. The function

f(x) = xk+1 is k-convex but not (k + 1)-convex. This function is often the barrier

to improving sumset and energy results for k-convex functions. Also, f(x) = log(x)

is k-convex for any k, and is important for understanding sum-product phenomena.

We mostly work with k-convex functions rather than k-convex sets due to the

greater generality it enables. We also concretely define “discrete derivatives”. Given

a function f , let its d-derivative be

∆df(x) := f(x+ d)− f(x).

Lemma 1.2.2. Let f be a k-convex function with k ≥ 1, and let d be nonzero. Then

∆df is a (k − 1)-convex function.

Proof. We use induction on k. Suppose f is 1-convex. We have

∆df(x) := f(x+ d)− f(x) =

∫ x+d

x
f ′(y)dy.

Since f ′ is monotone, it follows that ∆df is also monotone, and hence 0-convex.

Next assume the statement holds for (k − 1)-convex functions. Let f be a k-

convex function. By definition, this implies that f ′ is a (k−1)-convex function. The

induction hypothesis implies that ∆d(f
′) is a (k−2)-convex function. But since ∆dA

is monotone (which follows from the base step), and ∆d(f
′) = (∆df)

′, it follows that

∆df is (k − 1)-convex, completing the induction.

The connection between k-convex functions and k-convex sets is intuitive and is
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summarised in the following lemma.

Lemma 1.2.3. If f is a k-convex function, then f([N ]) is an k-convex set.

Proof. We proceed by induction on k. If f is a 0-convex function, then f([N ]) is

clearly ordered as a 0-convex set.

Assume the statement holds for (k−1)-convex functions. Letting f be a k-convex

function, it follows that (∆1f)(x) is a (k − 1)-convex function. By the induction

hypothesis, (∆1f)([N − 1]) is a (k− 1)-convex set, which, combined with the mono-

tonicity of f([N ]) proves that f([N ]) is a k-convex set, completing the induction.

Remark. We assume a converse of Lemma 1.2.3, that for every k-convex set A, there

exists an k-convex function f such that A = f([N ]). This is a nice assumption to

make at several places in the thesis. However, we only require the weaker condition

that A = f([N ]) for some f which has monotone ith divided differences for i =

0, . . . , k. This can be obtained by spline interpolation. For more information about

divided differences, see [45].

1.3 Incidence Geometry

While not strictly a topic in additive combinatorics, a discussion of incidence ge-

ometry forms a fitting end to this chapter, as it facilitates some of the foremost

techniques for solving problems in additive combinatorics. Furthermore, this section

can be seen as the discrete precursor to Chapter 5 which is on continuous analogues

of incidence geometry.

Incidence geometry is concerned with counting how many times various geometric

objects are incident with each other, traditionally points and lines.

Definition 1.3.1. Given a set P of points and a set L of straight lines in R2, we say

that a point p ∈ P lies on a line l ∈ L if p ∈ l. Also define the incidence-counting

function:

I(P,L) := |{(p, l) ∈ P × L : p ∈ l}|.

Specifically we are concerned with bounds on I(P,L). It is easy to see that if
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none of the points p ∈ P are incident with any of the lines l ∈ L, then I(P,L) = 0.

More interesting is studying upper bounds for I(P,L).

A superficial investigation of the properties of points and lines already allows one

to make nontrivial observations about the maximum size of I(P,L). In R2, a pair of

points lie together on exactly one line and two lines intersect in at most one point.

If we work in the projective plane P2(R) rather than R2 then two lines intersect in

exactly one point. This condition alone limits the maximum size of I(P,L). For

example, it is impossible to have two distinct points p1, p2 which are both incident

with two distinct line l1, l2.

These simple properties along with application of the Cauchy–Schwarz Inequality

obtains the following so-called trivial incidence bounds.

Theorem 1.3.1. Let P be a set of points and L be a set of lines in R2. Then

I(P,L) ≤ |L||P |1/2 + |P | and I(P,L) ≤ |P ||L|1/2 + |L|.

Proof. Applying the Cauchy–Schwarz Theorem, we get

I(P,L)2 =

∑
p∈P

∑
l∈L

1p∈l

2

≤ |P |
∑
p∈P

(∑
l∈L

1p∈l

)2

= |P |
∑

l1,l2∈L

∑
p∈P

1p∈l1∩l2

= |P |

∑
l1=l2

∑
p∈P

1p∈l1∩l2 +
∑
l1 ̸=l2

∑
p∈P

1p∈l1∩l2

 .

Observe that the first term in the brackets is simply I(P,L). Next note that once the

distinct lines l1, l2 are fixed, there is at most one point p which lies on both of them,

so the second term is bounded above by |L|2. Rearranging the obtained equation

I(P,L)2 ≤ |P |(I(P,L) + |L|2),
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and making some simple estimates yields

I(P,L) ≤ |L||P |1/2 + |P |.

The other inequality is obtained by reversing the roles of points and lines in the

above calculation.

1.3.1 The Szemerédi–Trotter Theorem

In their 1983 paper [78], Szemerédi and Trotter proved a sharp upper bound for

I(P,L), which has come to be known as the Szemerédi–Trotter Theorem.

Theorem 1.3.2 (Szemerédi–Trotter Theorem). Let P be a set of points and L be a

set of lines in R2. Then

I(P,L) ≪ |P |2/3|L|2/3 + |P |+ |L|. (1.3.1)

We present a proof of the Szemerédi–Trotter Theorem which closely follows the

proof of Kaplan, Matousěk and Sharir [39], which is itself based on polynomial

partitioning arguments of Guth and Katz [30]. The proof of the partitioning results

use the polynomial ham sandwich theorem, also known as the Stone–Tukey Theorem

[75]. Szekély gives another very nice proof of the Szemerédi–Trotter Theorem which

uses lower bounds on the crossing number of a particular graph [77].

The proof method below is as follows. A polynomial partitioning lemma is used

to partition the plane into pieces containing roughly the same number of points, upon

which we locally apply the trivial bounds of Theorem 1.3.1. This will be particularly

instructive when we wish to translate incidence problems and their proofs to the

continuous setting in Chapter 5.

We require a basic definition which can be found in any introductory text in

algebraic geometry; see for example [23].

Definition 1.3.2. Let f(x, y) be a real polynomial. Define the set of zeroes of f as

Z(f) := {(x, y) ∈ R2 : f(x, y) = 0}.
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In the proof below, we also require the following polynomial partitioning theorem.

For a proof, see [30].

Theorem 1.3.3. If S is a finite subset of R2 and d any positive integer, then there

exists a degree d polynomial f such that each connected component of R2\Z(f) con-

tains ≪ |S|d−2 points of S.

Proof of the Szemerédi–Trotter Theorem. Our method will be to partition R2 into

cells using Theorem 1.3.3, then estimate the incidences in these cells and on their

boundaries using Theorem 1.3.1 and some trivial bounds.

By point-line duality, we may assume without loss of generality that |L| ≥ |P |.

Using Theorem 1.3.3 with parameter d to be chosen later, we partition R2 into a set

of open cells C. That is, the cells of C are the connected components of R2\Z(f).

Harnack’s Curve Theorem proves that a degree d polynomial in R2 partitions the

plane into ≪ d2 cells. Thus |C| ≪ d2.

In estimating I(P,L), we need to count three types of incidences (p, l):

1. p ∈ C for some C ∈ C,

2. p ∈ Z(P ), and l does not lie in Z(f),

3. p ∈ Z(P ), and l does lie in Z(f).

The core idea is that if d is large, then the number of points in each cell is

small, and the second bound from Theorem 1.3.1 is strong. If d is small, then each

line cannot intersect many cells (as intersections arise from solutions to a univariate

polynomial of degree d) and therefore cannot contribute many incidences. We later

choose d to appropriately to balance this trade-off.

We start by counting the first class of incidences. For each cell C ∈ C, let LC be

the set of lines which pass through the interior of C and PC be the set of points on

the interior of C. Note that |PC | ≪ |P |d−2 by construction. Additionally, each line

intersects ≪ d cells, so that
∑

C |LC | ≪ d|L|. By applying Theorem 1.3.1 in each

cell C ∈ C and then the Cauchy–Schwarz inequality, the first class of incidences can
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be estimated by

∑
C

I(PC , LC) ≤
∑
C

|PC |
√
|L|C +

∑
C

|LC |

≤ |P |
d

√∑
C

|LC |+
∑
C

|LC |

≪
|P |
√
|L|√
d

+ d|L|.

Next, since each line intersects with Z(f) at most d times, the number of inci-

dences in the second class is at most d|L|.

Finally, there are at most d lines lying in Z(f) (which is realised if Z(f) is a

union of lines). Then the number of incidences is at most d|P | ≤ d|L| (using the

assumption that |P | ≤ |L|).

Putting everything together we get I(P,L) ≪ |P |
√

|L|√
d

+ d|L|, which we minimise

by setting d = min{|P |2/3|L|−1/3, 1}. If d = 1, then |P | ≪ |L|1/2, whence I(P,L) ≪

|L|. Note that since we assumed that |L| ≫ |P |, this term subsumes the |P | term in

the bound (1.3.1). Otherwise if d = |P |2/3|L|−1/3 then I(P,L) ≪ |P |2/3|L|2/3, and

the proof is complete.

An alternative formulation of the Szemerédi–Trotter Theorem gives a bound for

the number Lk(P ) of k-rich lines induced by a set of points P (or, by duality, the

number of k-rich points Pk(L) induced by a set of lines L).

Definition 1.3.3. Given a set P of points, Lk(P ) denotes the set of lines passing

through ≥ k points from P . We call these k-rich lines.

Given a set L of lines, Pk(L) denotes the set of points passing through ≥ k lines

from L. We call these k-rich points.

In the above definition, we intentionally did not specify the space we are working

in. The same notation is used for any Rn (and indeed if we work over Fn for some

other field F).

We sometimes use the shorthand Lk (or Pk) when the point (or line) set is obvious.
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Theorem 1.3.4. The following are both equivalent to the Szemerédi–Trotter Theo-

rem:

(I) Let P be a set of points in R2 and let k ≥ 2. Then

Lk(P ) ≪ |P |2

k3
+

|P |
k

. (1.3.2)

(II) Let L be a set of lines in R2 and let k ≥ 2. Then

Pk(L) ≪
|L|2

k3
+

|L|
k

. (1.3.3)

Proof. It is immediate by duality that (I) and (II) are equivalent, so it remains to

show that (I) is equivalent to Theorem 1.3.2.

Assume that (1.3.1) holds. Given a point set P , let Lk be the set of k-rich lines

induced by P , where k ≥ 2. Then

k|Lk| ≪ I(P,L) ≪ |P |2/3|Lk|2/3 + |P |+ |Lk|.

We now consider which is the dominant term on the right-hand side. If the first

term on the right-hand side dominates, then rearranging yields |Lk| ≪ |P |2k−3. If

the second term dominates, then |Lk| ≪ |P |k−1. The third term cannot dominate.

Combining these terms, we get

|Lk| ≪
|P |2

k3
+

|P |
k

.

For the other direction we start with a set P of points and a set L of lines, and

we suppose that (I) holds. If |P | ≫ |L|2, then

I(P,L) ≪ |P |1/2|L|+ |P | ≪ |P |,

and we are done. Similarly, if |L| ≫ |P |2, we are done. We may henceforth assume

that |P |1/2 ≪ |L| ≪ |P |2.
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Partition L as L = L(1) ⊔ L(2) ⊔ L(3), where

L(1) = set of lines incident with ≥ |P |1/2 points,

L(2) = set of lines incident with ≥ 2 and < |P |1/2 points,

L(3) = set of lines incident with one point.

Then I(P,L) = I(P,L(1)) + I(P,L(2)) + I(P,L(3)). Each of these terms will be

bounded individually.

Firstly it is clear that I(P,L(3)) = |L(3)| ≪ |L|. Next, notice that (1.3.2) yields

|L(1)| = |L|P |1/2(P )| ≪ |P |1/2. Then the the trivial incidence bound gives

I(P,L(1)) ≤ |L(1)||P |1/2 + |P | ≪ |P |.

Finally, we split L(2) into “poor” and “rich” lines by a parameter k∗ to be chosen. For

the poor lines we use a trivial incidence bound and for the rich lines we use (1.3.2)

in a dyadic sum, yielding

I(P,L(2)) ≪ |L|k∗ +
∑
k>k∗
dyadic

k|Lk| ≪ |L|k∗ + |P |2

k∗2
.

Note that the second term of (1.3.2) does not appear above as the first term al-

ways dominates when |L|1/2 ≪ |P | ≪ |L|2. Choosing the optimal value of k∗ =

|P |2/3/|L|1/3 gives

I(P,L(2)) ≪ (|P ||L|)2/3.

Combining these estimates yields (1.3.1).

A slightly different way of defining k-rich is to say that given a point set P (or

analogously for a line set), a line is k-rich if it passes through k′ points, where k′ ∈

[k, 2k). After a dyadic decomposition it is apparent that the bounds of Theorem 1.3.4

also hold under the new definition for k-rich but with a different constant implied

by the ≪ notation. Henceforth, we use the two definitions of k-rich interchangeably.

Use of incidence geometry in additive combinatorics dawned as a result of a
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beautiful paper of Elekes [18]. By artificially imposing a points and lines structure

on a finite set A, as well as its sumset A + A and product set AA, he applied

the Szemerédi–Trotter Theorem to obtain the δ = 1/4 bound in the sum-product

problem over R. Generalisations of this approach appear in [19]. Many further

applications and refinements of these techniques ensued. Indeed, combinations of

incidence geometry with other techniques are common; for example, the best sum-

product bound in R [62].

There are also applications in discrete geometry. Beck’s theorem states that

given n points in the plane with at most n − k on any line, the number of lines

connecting at least two such points is ≫ nk. In other words, there are either ≫ n

points on a single line, or the set of points induce ≫ n2 lines by connecting pairs of

points. Another previously mentioned problem is to estimate the number of points

of the integer lattice [N ] × [N ] which intersect a particular convex curve. A sharp

upper bound of N2/3 exists and will be discussed later. Both of the above problems

admit solutions by simple applications of the Szemerédi–Trotter Theorem. Further

applications are discussed in the survey paper of Dvir [17].

1.3.2 Other results in Incidence Geometry

Several other incidence results are also widely applicable, especially when working

in higher dimensions or over fields other than R. None of the following will be used

hereafter, but we mention them to have a more complete background.

Guth–Katz

If P ⊂ R2 is a finite set of points, then the distance set is defined as

∆(P ) := {∥p− p′∥ : p, p′ ∈ P}.

The distinct distance problem seeks to lower bound the size of ∆(P ) for a general

point set P . In their breakthrough paper [30], Guth and Katz resolved the distinct

distance problem in R2, giving the following bound which is sharp up to logarithmic
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factors:

|∆(P )| ≫ |P |
log |P |

.

Their method used the Elekes–Sharir framework, a parametrisation of rigid motions

in R2, to convert information about distances in R2 into information about point-line

incidences in R3.

The key new piece of their method is an ingenious application of the polynomial

method yielding the following incidence bound.

Theorem 1.3.5 (Guth–Katz). Let L be a set of lines in R3 with at most |L|1/2 lines

concurrent or lying in a plane or doubly ruled surface. Suppose that k ≥ 2. Then

|Pk(L)| ≪
|L|3/2

k2
.

Further applications of the Guth–Katz incidence bound have been found in recent

years. See for example [53,61].

Rudnev’s points-planes theorem

One great drawback of the Szemerédi–Trotter Theorem is that it doesn’t hold over

a general field. Indeed, all known proofs assume in some way the topology of the

reals. The partitioning argument we sketched in this thesis makes no sense in a field

where no notion of a “cell” exists.

As alluded to, incidences between objects other than points and lines are also

studied. Rudnev proved the following point-plane incidence bound in three dimen-

sions [60] which importantly applies in any field (with characteristic not equal to 2).

Theorem 1.3.6. Let P and Π respectively be finite sets of points and planes in pro-

jective 3-space over some field F. Let |P | ≥ |Π| and if F has positive characteristic,

let p ̸= 2 and |Π| ≪ p2. Let k be the maximum number of collinear planes. Then

I(P,Π) ≪ |P ||Π|1/2 + k|P |.

The proof idea is as follows. Lines in P3(F) (projective 3-space) can be parametrised

as points on a 4-dimensional variety in P5(F) known as the Klein quadric. There is
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a particular sense in which an incident point-plane pair (p, π) in P3(F) becomes a

pair of incident lines in a section of the Klein quadric. Using the same machinary as

Guth and Katz, a suitable bound on the number of these line-line incidences may be

obtained. For a short proof (but one which hides the underlying geometry), see [16].

One of the most important applications is a pair of point-line incidence bounds

in general fields due to Stevens and de Zeeuw [73].

Theorem 1.3.7 (Stevens–de Zeeuw). Let A,B ⊂ F and L be a set of lines in F2 with

|A| ≤ |B| and |A||B|2 ≤ |L|3. If F has positive characteristic p, assume |A||L| ≪ p2.

Then

I(A×B,L) ≪ |A|3/4|B|1/2|L|3/4 + |L|.

Theorem 1.3.8 (Stevens–de Zeeuw). Let P be a set of points and L a set of lines

in F2, with |P |7/8 < |L| < |P |8/7. If F has positive characteristic p, also assume

|P |−2|L|13 ≪ p15. Then

I(P,L) ≪ |P |11/15|L|11/15.

Theorem 1.3.7 was a core result in proving the best known sum-product bound

over finite fields [46]. The points-planes incidence theorem is a highly influential

result in the area and has seen many applications in additive combinatorics and

discrete geometry. See for example [49,55,58].





Chapter 2

Convexity: Estimating Long

Sumset Sizes

2.1 Introduction

In the previous chapter we defined convex sets and convex functions. We also defined

higher convexity, a way of quantifying that some sets and functions are more convex

than others.

A central intuition in the area is summarised in the following two statements:

1. Convex functions destroy additive structure.

2. The more convex a function, the more additive structure it destroys.

The main results of this chapter are sumset theorems supporting this intuition.

A simple and clever squeezing approach for proving sumset bounds for convex sets

first appeared in [63], proving the sharp lower bound

|A+A−A| ≫ |A|2 (2.1.1)

where A is a convex set. Setting A = {12, 22, . . . , N2} demonstrates its sharpness.

This approach was significantly extended in [33], proving the following estimate for

longer sums of more convex sets. The right-hand bound is again optimal.

31
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Theorem 2.1.1. Let A be a k-convex set. Then, we have

|2kA− (2k − 1)A| ≫k |A|k+1. (2.1.2)

Both (2.1.1) and (2.1.2) capture the aforementioned intuition. Take (2.1.1) for

example. We can rewrite this as

|f([N ]) + f([N ])− f([N ])| ≫ N2,

where f is a convex function. Recall that [N ] is the canonical example of an additively

structured set. The convex function f “destroys” this additive structure, which is

indicated by f([N ]) having a large threefold sumset f([N ]) + f([N ])− f([N ]).

Moreover, by rewriting (2.1.2) as

|2kf([N ])− (2k − 1)f([N ])| ≫k Nk+1

where f is a k-convex function, we see that higher convexity elicits greater growth

in the sumset (albeit a longer sumset). Note that insisting on A being k-convex is

necessary; if we allowed f(x) := xk (a (k − 1)-convex function) then

2kf([N ])− (2k − 1)f([N ]) ⊂ Z ∩ [−(2k − 1)Nk, 2kNk],

so trivially

|2kf([N ])− (2k − 1)f([N ])| ≪k Nk,

a contradiction to (2.1.2).

The main results of this chapter address the following question. Can similar

results be obtained if we replace [N ] with some other additively structured set? We

will consider two types: sets B with a small sumset B +B −B, and sets which are

sumsets in their own right, say sB − sB. We may call this the near -convex setting

as A = f(B) may not be k-convex for any k, but may imitate some of the structure

of a convex set. The results are summarised in the forthcoming Theorem 2.1.2 and

Theorem 2.1.3. In what follows, we always think of k and s as being constants and
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therefore much smaller than |B|.

Theorem 2.1.2. [12] Let B be a finite set of real numbers and f be a k-convex

function. Then if |B +B −B| ≤ K|B|, we have

|2kf(B)− (2k − 1)f(B)| ≫k
|B|2k+1−1

|B +B −B|2k+1−k−2
≥ |B|k+1K−(2k+1−k−2).

Theorem 2.1.2 proves that guaranteeing growth in the sumset does not require

k-convexity, but near k-convexity suffices. It is an analogue of Theorem 2.1.1, where

A = f(B) and we can quantify the effect of our choice of B in terms of the dou-

bling constant |B +B −B|/|B|. Applying Plünnecke’s inequality, this result can be

expressed in terms of the more traditional doubling constant |B − B|/|B|, slightly

weakening the result.

Theorem 2.1.2 is an improvement on the main result in [33] by logarithmic factors.

Specifically, we use a lemma from [13] (Lemma 2.2.2 in this document) to sidestep

the need for dyadic pigeonholing and streamline the proof. The right-hand bound

in its precursor result from [33] was best-possible up to logarithmic factors, while in

Theorem 2.1.2, it is genuinely sharp. Set f(x) = xk+1 and B = [N ] to verify. Several

applications to sum-product problems are also discussed in [33].

In [34], it is proved that if B is a finite real set and f is any convex function, then

|2f(B ±B)− f(B ±B)| ≫ |B|2.

We prove the following generalisation.

Theorem 2.1.3. [12] Let B be a set of reals and f be a k-convex function. If k is

even with k = 2s then

|2kf((s+ 1)B − sB)− (2k − 1)f((s+ 1)B − sB)| ≫k |B|k+1

and if k is odd with k = 2s− 1 then

|2kf(sB − sB)− (2k − 1)f(sB − sB)| ≫k |B|k+1.
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Notice that in both cases, the number of summands inside the function f is the

same as the power of |B| on the right-hand side. For the purposes of discussion,

assume we are in the odd k case. A generic set B is expected to have |sB − sB| =

|B|2s = |B|k+1, and therefore |f(sB − sB)| = |B|k+1 as well since f is a monotone

function. However, obviously sB − sB may be significantly smaller than |B|k+1.

Theorem 2.1.3 affirms that even in this case, sufficiently many sums and differences

of f(sB − sB) guarantee the same |B|k+1 growth. Here too, the right-hand bound

|B|k+1 cannot be improved, evinced by setting B = [N ] and f(x) = xk+1.

In both Theorem 2.1.2 and Theorem 2.1.3, it is unlikely that the number of terms

in the sumset is optimal. That is, in order to get growth of order |B|k+1K−O(k) in

Theorem 2.1.2 or |B|k+1 in Theorem 2.1.3, we expect that fewer than 2k+1 − 1

summands are required in the sumset.

We conjecture that the right number of summands is quadratic in k. There is

some evidence in this direction. It seems that Nk+1 := {ik+1 : i = 1, . . . N} is the

worst possible k-convex set for growth in sumset. There has been significant work

by Wooley [80, 81] and Bourgain [9] into bounding the number of representations

of an integer n as the s-fold sum of (k + 1)th powers. Using their bounds, we get

|sNk| ≫ϵ N
k−ϵ whenever s ≫ k2. We conjecture that for any other k-convex set or

near k-convex set A, the sumset sA will at least match the growth of sNk+1. This

suggests that sumsets with the order of k2 terms ought to give rise to the same sumset

growth we see above. Our techniques appear insufficient to make improvements in

this direction.

In Theorem 2.1.3, it is also expected that sB − sB is not optimal, and we con-

jecture the following.

Conjecture 2.1.1. Let B be a set of reals and f be a k-convex function. Then

|2kf(B −B)− (2k − 1)f(B −B)| ≫k |B|k+1.

Moreover, in both Theorem 2.1.2 and Theorem 2.1.3, the high convexity condition

cannot be relaxed. If f were only a (k − 1)-convex function, we could set f(x) = xk

and B = [N ] to obtain a contradiction to both theorems.
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Growth for products of generalised difference sets

It was conjectured in [1] that for any s > 0, there exists m = m(s) such that if A is

a finite real set then

|(A−A)(m)| ≫s |A|s, (2.1.3)

where (A − A)(m) denotes an m-fold product set (A−A) . . . (A−A)︸ ︷︷ ︸
m times

. This was

proved in [35] for the case when A ⊂ Q. Balog, Roche-Newton and Zhelezov proved

(2.1.3) for s = 3, and additionally that for s = 17/8, choosing m = 3 suffices – the

first known results for s > 2. Recently, Hanson, Roche-Newton and Senger proved

(implicitly) [34] that (2.1.3) holds if m = 8, s = 33/16, but their method was stronger

in the sense that some of the A−A terms could be replaced with A− a for specific

values of a ∈ A. They use this to improve the best known lower bound for |Λ(P )|

where Λ(P ) is the set of dot products induced by a point set P in R2. They proved

|Λ(P )| ≳ |P |
2
3
+ 1

3057 ,

the first result to break the threshold |P |2/3. See [59] for more connections between

similar problems and growth in A−A.

We prove a result approaching this conjecture from a different direction, namely

allowing for products of many-fold sums and differences.

Theorem 2.1.4. [12] Given any natural number s ∈ N, there exists m = m(s) such

that if A is a finite set of reals, then

|(sA− sA)(m)| ≫s |A|s.

Theorem 2.1.4 is an easy corollary of Theorem 2.1.3; if Conjecture 2.1.1 holds,

then (2.1.3) is the natural corollary.

2.2 Squeezing Arguments

By squeezing smaller intervals inside larger intervals, one may construct many ele-

ments in certain sumsets, in turn proving that the sumsets must be large. This section
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will attempt to demystify both the original argument of Ruzsa, Shakan, Solymosi

and Szemerédi [63], as well as the generalisations of Hanson, Roche-Newton and

Rudnev [33]. Identifying the key elements of the argument will assist in developing

the argument further in later sections.

The basic idea is the following. Recall that a set A = {a1 < · · · < aN} is convex

if the adjacent differences between elements is increasing

a2 − a1 < a3 − a2 < · · · < aN − aN−1.

It follows that if i is fixed, then for any j ≤ i, the terms

ai + (aj+1 − aj) ∈ A+A−A

are all unique and lie in (ai, ai+1]. That is, for j ≤ i an interval of each width

aj+1 − aj can be squeezed in the larger interval (ai, ai+1] to obtain a unique element

of A + A − A (as seen in Figure 2.1). We may apply this for any i to obtain∑N−1
i=1 i ≈ |A|2 elements of |A+A−A|, proving (2.1.1).

a1 a2 a3 ai ai+1 aN
. . . . . .

ai ai + (a2 − a1) ai + (a3 − a2) ai + (ai − ai−1)
ai+1

. . .

Figure 2.1: Simple squeezing

Let us generalise this proof for 2-convex sets, specifically proving Theorem 2.1.1

for k = 2. This ought to clarify how to prove the full theorem by induction, but

complete details can be found in [33]. Let di := ai+1− ai for i ∈ [N − 1]. Then since

A is convex we have

d1 < d2 < · · · < dN−1,

but additionally, since A is 2-convex, we also have

d2 − d1 < d3 − d2 < · · · < dN−1 − dN−2. (2.2.1)
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In the previous proof, we saw that we can produce unique elements of the form

ai + dj ∈ A+A−A

by finding elements of A−A which can be squeezed in (ai, ai+1]. But now, in light of

(2.2.1), we can additionally squeeze elements of (A−A)−(A−A) in (ai+dj , ai+dj+1].

Specifically, if i, j are fixed (with j ≤ i), then for any k ≤ j ≤ i the terms

ai + dj + (dk+1 − dk) ∈ A+ (A−A) + ((A−A)− (A−A)) = 4A− 3A

are all unique and lie in (ai+ dj , ai+ dj+1] (as seen in Figure 2.2). We apply this for

every pair i, j with i ≤ j to obtain
∑

i,j:j≤i j ≈ N3 elements of 4A− 3A, completing

the proof.

a1 a2 a3 ai ai+1 aN
. . . . . .

ai ai + d1 ai + d2 ai + dj ai + dj+1
ai+1

. . . . . .

ai + dj ai + dj + (d2 − d1) ai + dj + (d3 − d2) ai + dj + (dj − dj−1) ai + dj+1

. . .

Figure 2.2: Second order squeezing

A k-fold squeezing argument involves k-iterations of the squeezing argument de-

scribed above.

With the intention of expressing the above arguments in convex function notation,

recall the definition of the d-derivative of a function f :

∆df(x) := f(x+ d)− f(x).

If f is convex, A = {a1 < · · · < aN} and d > 0, then Lemma 1.2.2 implies that ∆df

is increasing, meaning that

f(a1 + d)− f(a1) < · · · < f(aN + d)− f(aN ).
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Consequently if i is fixed, then for any j ≤ i the terms

f(ai) + f(aj + d)− f(aj)

are all different and lie in (f(ai), f(ai + d)]. We usually take d to be at most the

smallest difference between adjacent elements of A to ensure that these intervals are

disjoint. These observations are summarised in the following.

Lemma 2.2.1 (The squeezing lemma). Let f be a convex function and d > 0. Let

y be a real number and Y− a set of numbers no larger than y. Then

f(y) + ∆df(Y−) ⊂ (f(y), f(y + d)].

The above discussion and squeezing lemma will provide a way of performing

similar squeezing arguments with convex functions, which is the primary method in

this chapter.

2.2.1 The Equidistribution Lemma

One of the most important tools in our proofs for the remainder of this thesis is

an extremely simple result first appearing in [13], which we call the Equidistribution

Lemma. It is so called because it argues that in a very particular sense, the set

A + A − A is uniformly spaced along the number line. Specifically we argue the

following: given two elements a, a′ ∈ A with a < a′, if the interval (a, a′] is large, it

contains many elements of A+ A− A. The reason is that for a wide interval (a, a′]

there will be a large number of smaller intervals which can be squeezed between a

and a′.

We will also introduce the following notation: if a′ < a, then

nA(a
′, a) := |(A+A−A) ∩ (a′, a]|.

Lemma 2.2.2 (Equidistribution Lemma). [13] Let D := {d1 < d2 · · · < d|D|} be

the positive differences in A − A. Let 1 ≤ Z ≤ |D|. If a, a′ ∈ A with a′ < a and

nA(a
′, a) ≤ Z, then a− a′ ≤ dZ .
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In other words, if there are at most Z elements of A+A−A in (a′, a], then a−a′

must be among the Z smallest positive differences in A−A.

Proof. If not then a− a′ = dY where Y > Z. But then

a′ < a′ + di ≤ a,

for i = 1, . . . , Y . Thus there are at least Y > Z elements of A + A − A in (a′, a],

contradicting that nA(a
′, a) ≤ Z.

2.3 Proof of Theorem 2.1.3

In the language of convex functions rather than convex sets, Theorem 2.1.1 states

that given a k-convex f ,

|2kf([N ])− (2k − 1)f([N ])| ≫k Nk+1.

This is proved using a k-fold squeezing argument. To properly motivate Theorem

2.1.3 and its proof, one must identify the feature of the set [N ] which allows for

k-fold squeezing.

It turns out that having many translates (about N) of the same (k + 1)-term

arithmetic progression (AP) is sufficient for k-fold squeezing to be possible. To

illustrate, consider the (k+1)-AP {0, d, 2d, . . . , kd}. Roughly speaking, combinations

of the k + 1 points f(a), f(a + d), . . . , f(a + kd) can produce discrete analogues of

the first k derivatives of f near the point a. With many copies of the exact same

(k+1)-AP, we can show that these discrete derivatives form monotone sequences, and

therefore admit the standard squeezing argument to be applied k times. Theorem

2.1.3 follows since the aforementioned structure must exist in sets of the form sB−sB

and (s+ 1)B − sB.

In proving Theorem 2.1.3, we will actually prove the following stronger but more

cumbersome result, because it makes the induction step more manageable. It also

exactly emulates the discussed structure required for k-fold squeezing.
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Proposition 2.3.1. [12] Let B = {b1 < · · · < bN} be any set of reals (with N ≥ 2),

k be a positive integer and f be a k-convex function. Also let d > 0 be such that

kd ≤ bi − bj for all j < i. (2.3.1)

For i = 1, . . . , N , set

Pk,i = {bi, bi + d, . . . , bi + kd}

and for i = 2, . . . , N , set

Sk,i = ∪i−1
j=1Pk,j .

Then the set

2kf(Sk,N )− (2k − 1)f(Sk,N )

contains ≫k |B|k+1 elements in (min f(B),max f(B)].

Proof. The proof is by induction on k. We begin with the base step. Let d ≤ bi − bj

for all j < i. We have

S1,N = {b1, b1 + d, b2, b2 + d, . . . , bN−1, bN−1 + d}.

It is worth noting that bi + d may equal bi+1 for some i values. This causes no

problems. Since f is a convex function it follows that

f(b1 + d)− f(b1) < · · · < f(bN−1 + d)− f(bN−1)

and consequently if i is fixed, then for all j ≤ i the terms

f(bi) + f(bj + d)− f(bj)

are different and lie in the interval Ii = (f(bi), f(bi + d)]. This produces i elements

of f(S1,N ) + f(S1,N ) − f(S1,N ). Since d ≤ bi − bj for all j < i, the intervals Ii are

disjoint. Apply this argument for i = 1, . . . , N − 1, producing

N−1∑
i=1

i ≈ |B|2
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elements of f(S1,N ) + f(S1,N ) − f(S1,N ) lying in (min f(B),max f(B)], thus com-

pleting the base step.

We proceed to the induction. For i = 2, . . . N , we use the squeezing lemma

(Lemma 2.2.1) and (2.3.1), yielding

f(bi) + ∆df(Sk−1,i) ⊂ (f(bi), f(bi + d)] ⊂ (f(bi), f(bi+1)].

Since f is k-convex, the new functions gi := f(bi) + ∆df are all (k − 1)-convex by

Lemma 1.2.2, and also

gi(Sk−1,i) ⊂ (f(bi), f(bi+1)].

From (2.3.1), the inequality (k − 1)d ≤ bi − bj trivially holds for all j < i, so the

induction hypothesis can be applied to Bi := {b1, . . . , bi}, showing that the set

2k−1gi(Sk−1,i)− (2k−1 − 1)gi(Sk−1,i) ⊂ 2kf(Sk,N )− (2k − 1)f(Sk,N )

contains ≫k |Bi|k = ik elements in (f(bi), f(bi+1)]. Applying this for each function

gi we get

|2kf(Sk,N )− (2k − 1)f(Sk,N )| ≫k

N∑
i=2

ik ≈ |B|k+1,

and all constructed elements lie in (min f(B),max f(B)], closing the induction.

Since each k-convex set A is f([N ]) for some k-convex function f , Theorem 2.1.1

is a special case of Proposition 2.3.1 by setting B and d appropriately such that Sk,N

is an arithmetic progression of size ≈k N .

Proof of Theorem 2.1.3. Given B = {b1 < · · · < bN}, let b, b′ ∈ B be such that

d0 = b− b′ is the smallest positive element of B −B.

We start by proving the case where k = 2s is even. We set

B′ = {bk − sd0, . . . , bkM − sd0},

where M = ⌊N/k⌋. Now apply Proposition 2.3.1 to B′ with d = d0. Since d0 ∈ B−B

we get Sk,M ⊂ (s+ 1)B − sB, and the result follows.
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If k = 2s− 1 is odd, then instead using

B′ = {bk − sd0 − b′, . . . , bkM − sd0 − b′}

completes the proof.

We now prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Set f(x) = log(x) and B = A in the case k = 2s − 1 of

Theorem 2.1.3. Using a crude upper bound on the size of the quotient set, we get

that for any natural number s,

|(sA− sA)(2
k)|2 ≫s

∣∣∣∣∣ (sA− sA)(2
k)

(sA− sA)(2k−1)

∣∣∣∣∣≫ |A|2s.

Taking square roots and setting m(s) = 2k = 22s−1 completes the proof.

2.4 Proof of Theorem 2.1.2

We already mentioned that given a k-convex f and a set B containing many translates

of a (k+1)-AP, k-fold squeezing of f(B) works. In fact, it is enough for B to contain

many translates of a generalised arithmetic progression of the form

P = {h1x1 + · · ·+ hkxd : xi ∈ {0, 1} for all i}

with dimension k. Notice that if all the hi are equal, P is simply a (k + 1)-AP.

With this in mind, the proof of Theorem 2.1.2 has the following structure (after

mild simplifications). Given that |B+B−B| = K|B| is small, the Equidistribution

Lemma 2.2.2 proves that bi+1−bi may not take many values, whereupon some of these

differences must have many realisations. Consider some such difference h1 ∈ B −B

and define Bh1 := {bi : bi+1 − bi = h1}. Since |B + B − B| is small, so must be

|Bh1 + Bh1 − Bh1 |, and we may again apply the Equidistribution Lemma to find

many repetitions of some difference h2 in Bh1 − Bh1 . This shows that B contains

many translates of the set {0, h1, h2, h1 + h2}, the required generalised arithmetic
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progressions of dimension d = 2. Iterating the same argument yields many translates

of a generalised arithmetic progression of dimension d = k, on which k-fold squeezing

may be used. The above discussion is for explanatory purposes; many of these details

are hidden in our induction argument.

Proof of Theorem 2.1.2. The proof will be by induction on k. The actual statement

we will prove is the slightly stronger statement that all sums produced lie in the

interval (min f(B),max f(B)]. So the base step (which we leave for now, as it is

proved in the forthcoming Theorem 4.2.1) states that f(B) + f(B)− f(B) contains

≫ |B|3|B +B −B|−1 elements in (min f(B),max f(B)].

Let B = {b1 < · · · < bN}. We now prove the statement in Theorem 2.1.2 under

the inductive hypothesis that for any (k − 1)-convex function g, the set 2k−1g(B)−

(2k−1 − 1)g(B) contains ≫k
|B|2k−1

|B+B−B|2k−k−1
elements in (g(b0), g(bN )].

We say that bi ∈ B is good if

nB(bi, bi+1) ≤
2|B +B −B|

|B|
.

Since
∑N−1

i=1 nB(bi, bi+1) ≤ |B+B−B|, the pigeonhole principle shows that a positive

proportion of all bi ∈ B are good. We henceforth restrict our attention to the good

bi. Consider the differences bi+1 − bi and let H be the set of all such differences.

Since we are only considering good values of bi, the Equidistribution Lemma 2.2.2

implies that |H| ≪ |B +B −B||B|−1. For each h ∈ H, define

Bh = {bi : bi+1 − bi = h}.

We furthermore know that
∑

h∈H |Bh| ≈ |B|.

If Bh = {be1 < · · · < beL} then let Bi
h = {be1 < · · · < bei} be the truncation

taking only the smallest i elements of Bh. For any bei ∈ Bh, the squeezing lemma

(Lemma 2.2.1) implies that

f(bei) + ∆hf(B
i
h) ⊂ (f(bei), f(bei+1)].

Since f is a k-convex function, Lemma 1.2.2 proves that gi := f(bei) + ∆hf is a
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(k − 1)-convex function, and we have

gi(B
i
h) ⊂ (f(bei), f(bei+1)].

It follows from the induction hypothesis that

2k−1g(Bi
h)− (2k−1 − 1)g(Bi

h) ⊂ 2kf(B)− (2k − 1)f(B)

contains ≫k
|Bi

h|
2k−1

|Bi
h+Bi

h−Bi
h|2

k−k−1
elements in (f(bei), f(bei+1)]. This argument can be

run for every element of Bh, and then also for each h ∈ H to obtain

|2kf(B)− (2k−1 − 1)f(B)| ≫k

∑
h∈H

|Bh|∑
i=1

|Bi
h|2

k−1

|Bi
h +Bi

h −Bi
h|2

k−k−1

≫ 1

|B +B −B|2k−k−1
·
∑
h∈H

|Bh|2
k
. (2.4.1)

Above we have used the trivial facts that |B+B−B| ≫ |Bi
h+Bi

h−Bi
h| and |Bi

h| = i.

Now by Hölder’s inequality, we have

∑
h∈H

|Bh|2
k · |H|2k−1 ≥

(∑
h∈H

|Bh|

)2k

≈ |B|2k . (2.4.2)

Recalling that |H| ≪ |B +B −B||B|−1, (2.4.1) and (2.4.2) yield the desired

|2kf(B)− (2k−1 − 1)f(B)| ≫k
|B|2k+1−1

|B +B −B|2k+1−k−2
,

with all constructed elements lying in (min f(B),max f(B)].

Remark. Hanson, Roche-Newton, and Rudnev use [33, Lemma 3.1] to find a con-

secutive difference h ∈ B − B with many realisations, and this is done by dyadic

pigeonholing.

Instead we have found a large set of consecutive pairs (bi, bi+1) which don’t have

many elements of B+B−B in between them. By the Equidistribution Lemma 2.2.2,

there are few possible values that bi+1 − bi can take, and therefore the pigeonhole

principle proves that some of these differences must be realised many times. This
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approach avoids the logarithmic factors intrinsic to a dyadic pigeonholing argument.

2.5 Open Problems

• While the right-hand bounds in Theorems 2.1.2 and 2.1.3 are best-possible, it

is extremely unlikely that the number of summands in the sumset is optimal.

Improvements in this direction will likely need to employ new techniques.

• As previously mentioned, it is conjectured that given any s > 0, there exists

m := m(s) such that given any finite real set A, we have

|(A−A)(m)| ≫s |A|s.

Our Theorem 2.1.4 makes an approach at this problem, but for many interesting

applications (for example, the distinct dot products problem) we genuinely need

a bound for |(A − A)(m)| rather than |(sA − sA)(m)|. Even if we use the full

strength of Proposition 2.3.1, it is not clear how to approach improvements.

It would also be new to prove a result for any fixed s > 3.





Chapter 3

Convexity: Estimating Energy

3.1 Introduction

Verifying the lack of additive structure in convex sets by proving upper bounds on

additive energy will be the topic of this chapter. We have already defined the energy

E(A,B) associated with sets A,B to be the number of solutions to the equation

a1 + b1 = a2 + b2

where a1, a2 ∈ A and b1, b2 ∈ B. It can also be expressed as the second moment of

the realisation function rA+B:

E(A,B) =
∑

x∈A+B

r2A+B(x).

More generally, “longer” convolutions are as follows.

Definition 3.1.1. Let A1, . . . , As be sets of reals. Define

T (A1, . . . , As) := |{(a1, . . . , as, a′1, . . . , a′s) ∈
s∏

i=1

Ai×
s∏

i=1

Ai : a1+· · ·+as = a′1+· · ·+a′s}|.

(3.1.1)

We also sometimes write T (A1, . . . , As) as Ts(A1, . . . , As) in our proofs when we wish

to emphasise the number of terms in the energy equation. In the case that Ai = A

47
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for all i,

Ts(A) := T (A, . . . , A︸ ︷︷ ︸
s times

).

For the special case when there are only two summands, we write E(A) := T2(A)

and E(A,B) := T (A,B).

As above, T (A1, . . . , As) is the second moment of the realisation function:

T (A1, . . . , As) =
∑

x∈A1+···+As

r2(x),

where r(x) counts the realisations of x as an s-fold sum in A1 + · · ·+As.

The notation T to denote energy is not as standard as E. However, our convention

distinguishes between Es which usually refers to sth order energy (that is, the sth

moment of the realisation function r) whereas Ts is still a second moment estimate

but the realisation function r considers longer sums. In general, we will write E for

energies of twofold sums and T for longer energies.

The quantities Ts(A) are easily interpreted via L2s-norms of trigonometric poly-

nomials with frequencies in A, see e.g. [37].

The goal of this chapter is to prove upper bounds on energies, such as Ts(A)

for a k-convex set A. As mentioned in Chapter 2, sumsets sA with s > 2 have

been studied quite extensively in the context of the Erdős-Szemerédi sum-product

conjecture [20], see for example [10, 14, 69]. However, although the questions about

(the lack of) additive structure in convex sets may be viewed as a generalisation

of pivotal questions in sum-product literature (such as the few products – many

sums question, to be discussed more fully in Chapter 4), the methods developed in

the sum-product literature rely heavily on algebraic ring properties of addition and

multiplication that have no analogue in the convex setting.

Hence, for s > 2 the estimates in this chapter have no precedents, and the

methodology enabling us to induct in s is new, a synthesis of a 20-year-old idea of

Garaev [26], to be described shortly.

If |A| = N , then trivially N s ≤ Ts(A) ≤ N2s−1, and we are interested in proving

non-trivial upper bounds for Ts(A), under the heuristic that having enough convexity
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should push these upper bounds, ideally, close to the lower bound N s.

The utility of incorporating higher convexity into the main results is as follows.

For 1-convex sets, the best known estimates for Ts(A) have been derived in [37] using

induction and Szemerédi-Trotter bounds, namely

Ts(A) ≪s N
2s−2+2−(s−1)

. (3.1.2)

This in particular implies that |sA| ≫s N2−2−(s−1) . This estimate cannot be im-

proved beyond N2, as evinced by the first N squares, which form a 1-convex (but

not 2-convex) set. Consequently, the energy bound (3.1.2) is almost best-possible.

Insisting on a higher degree of convexity excludes the examples where A is the set

of consecutive kth powers, where k is small.

One would naturally therefore hope for (and expect) better estimates for higher

convex sets. Many of today’s state of the art results concerning additive properties

of convex sets have been obtained via a particular version of the Szemerédi–Trotter

theorem, which replaces the line set L with a particular set of convex functions. This

approach appears to have been first applied to convex sets by Elekes, Nathanson

and Ruzsa [19]. Additionally, the special case where the point set P is a Cartesian

product uses an elementary lucky pairs argument. The lucky pairs terminology has

been adopted from J. Solymosi, in particular going back to [72].

In this chapter, we also define a notion of lucky pairs, however a different one

and without proceeding towards geometric incidence arguments. Instead, we develop

the idea of Garaev from [26], which underlies his elementary proof of the following

energy bound. This bound was previously established by Konyagin [42] via the

Szemerédi-Trotter theorem.

Theorem 3.1.1 (Konyagin–Garaev). Let A be a convex set of N elements. Then

E(A) ≪ N5/2.

For completeness and contrast, both the Szemerédi–Trotter method and Garaev’s

elementary method will be discussed in this chapter.

Garaev’s method has been brought to our attention by the work [51] by Olmezov.
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In fact, the argument uses only the following weaker implication of the convexity of

A, namely that for every 1 ≤ d < N , the collection of differences {ai+d−ai} is indeed

a set, rather than a multiset. In our forthcoming induction of Garaev’s argument

for k-convex sets, we will iterate this property, applying it to the difference sets

{ai+d − ai} as well as to A.

Our extension of Theorem 3.1.1 to k-convex sets is as follows.

Theorem 3.1.2. [13] For k ≥ 0, let s ≥ 2k and let A1, . . . , As be k-convex sets with

|Ai| ≤ N for all 1 ≤ i ≤ s. Then

T (A1, . . . , As) ≪s N
2s−1−k+αk ,

where α0 = 0 and αk =
∑k

j=1 j2
−j = 2− 2−k(k + 2).

Loosely speaking, Theorem 3.1.2 says that provided our sets are convex enough,

each time we double the number of terms s in the energy equation (3.1.1), we essen-

tially get a “saving” of an additional factor of N off the trivial estimate N2s−1 for

the quantity T (A1, . . . , As).

We remark that in recent work, Mudgal [47] has shown, using an ingenious appli-

cation of the Balog-Szemerédi-Gowers theorem on cardinality bounds such as Theo-

rem 2.1.2, that for a k-convex set A one has the estimate Ts(A) ≤ N2s−1−k+βk , with

βk → 0 as k → ∞. Mudgal’s method only operates on the scale of extremely large s;

it requires s ≥ 2C2k log k for some fixed constant C, whereas we require s ≥ 2k only.

However in this range, his result is an improvement as it has βk → 0 whereas ours

has αk → 2, as k → ∞.

Theorem 3.1.2 has a standard sumset implication after an application of the

Cauchy–Schwarz inequality, which also illustrates the rough saving of N every time

s doubles.

Corollary 3.1.1. [13] For k ≥ 1, let s ≥ 2k and let A1, . . . , As be k-convex sets

with |Ai| = N for all 1 ≤ i ≤ s. Then

|A1 ±A2 ± · · · ±As| ≫k N1+k−
∑k

j=1 j2
−j

.
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We remark that for k ≥ 2, the proof of Theorem 3.1.2 can be refined to give

the improved αk = − 2
13 +

∑k
j=1 j2

−j and slightly more for higher values of k. This

follows from us bounding 2k−1
2k

by 1 in the induction proof of Theorem 3.1.2 plus the

fact that the induction can start at s = 2, where we have Shkredov’s [68] estimate

E(A) ≲ |A|32/13, see Theorem 4.1.1 below. However, this is not the focus of the

theorem and perturbs the exposition so we only comment on the modifications needed

to admit this improvement.

However, since we will use the explicit bounds for s = 4 in Chapter 4, we state

the improved result, according to the remark above.

Theorem 3.1.3. [13] If A1, A2, A3, A4 are 2-convex sets all of size N , then

T (A1, A2, A3, A4) ≲ N4+24/13 and |A1 ±A2 ±A3 ±A4| ≳ N2+2/13 .

Moreover, for A1, A2, A3, A4 being k-convex with k > 1 and 1 ≤ r ≤ N3, one has

|{x : rA1±A2±A3±A4(x) ≥ r}| ≲ N4

r7/3
Ek−1 , (3.1.3)

where

Ek = sup
B k−convex

|B|=N

E(B).

As in Chapter 2, we again generalise k-convex sets to near-k-convex sets where

A = f(B), f is a k-convex function, and

|B −B +B| ≤ K|B| .

The parameter K is again referred to as the doubling constant associated with B.

Our main result, Theorem 3.1.4, reflects the previously mentioned maxim that

convex functions destroy additive structure, and that the more convex a function,

the more it destroys additive structure. Its proof arises from generalising Garaev’s

method to longer sums and more convex sets. One can view Theorem 3.1.2 as its

corollary by setting B1 = · · · = Bs = [N ].
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Theorem 3.1.4. [13] Let B1, . . . Bs be any sets with |Bi| = N , |Bi+Bi−Bi| = KiN

for all 1 ≤ i ≤ s. With k ≥ 0 and s ≥ 2k, let Ai = fi(Bi) for some k-convex functions

f1, . . . , fs. Then we have

T (A1, . . . , As) ≪s

 2k∏
i=1

K
2−(2+2k−2αk)2

−k

i

 ·N2s−1−k+αk ,

where α0 = 0 and αk =
∑k

j=1 j2
−j .

By setting all the Bi and all the fi to be the same, Theorem 3.1.4 yields the

following corollary.

Corollary 3.1.2. [13] Let B be any set with |B| = N and |B + B − B| = KN . If

A := f(B) where f is a k-convex function and s ≥ 2k, then

Ts(A) ≪ K2k+1−2−2k+2αk ·N2s−1−k+αk ,

where α0 = 0 and αk =
∑k

j=1 j2
−j . Thus

|A±A± · · · ±A︸ ︷︷ ︸
s times

| ≫ K−2k+1+2+2k−2αk ·N1+k−αk . (3.1.4)

Corollary 3.1.1 and estimate (3.1.4) in Corollary 3.1.2 demonstrate that these

energy bounds imply, at least on the qualitative level, results akin to Theorems 2.1.1

and 2.1.2. Returning to the standard k-convex examples A = {ik+1 : i ∈ [N ]} and

f(x) = xk+1, our Theorems 3.1.2 and 3.1.4 are sharp up to a factor of Nαk ≪ N2, so

for large k these energy bounds do very well. Furthermore, the sumset corollaries hold

for many different k-convex sets and admit any combination of plus and minus in the

sumset. In this way our energy bounds are qualitatively stronger but quantitatively

Theorems 2.1.2 and 2.1.1 are stronger as they are indeed sharp.

Our condition that s ≥ 2k is an artifact of the induction proof we employ. How-

ever, we conjecture that the same energy bound can be obtained for s ≥ k2 for

similar reasons to those discussed in the sumset case. Unfortunately, our methods

seem insufficient to approach this.

It should be mentioned that such bounds which depend on doubling constants
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can be used to obtain sum-product-type results, along the lines of [33, Corollary 1.5].

Other sum-product type results in the context of convex sets can be seen in recent

work of Stevens and Warren [74].

We also prove the following asymmetric two-fold energy bound:

Theorem 3.1.5. [13] Let B,C be sets with |B| = N , |B + B − B| = KN and

|C| = L. If A := f(B) for some convex function f , then

E(A,C) ≪ K1/2NL3/2.

Our result improves the following result, which is a generalisation of Theorem

3.1.1. It is proved by a straightforward extension of Konyagin’s Szemerédi–Trotter

proof, and appears in this form in work of Li and Roche-Newton [44]. Our improve-

ment is in the dependence on K. Indeed, Theorem 3.1.6 follows from Theorem 3.1.5

by applying Plünnecke’s inequality (Theorem 1.1.4).

Theorem 3.1.6 (Li–Roche-Newton). Let B,C be sets with |B| = N , |B−B| = KN

and |C| = L. If A := f(B) for some convex function f , then

E(A,C) ≪ KNL3/2.

The improved Theorem 3.1.5 is sharp when |A| = |C|. Let A = C = f(B) where

B = {x2 : x ∈ [N ]} and f(x) :=
√
x. Then we get E(A,C) = K1/2|A||C|3/2 = N3.

In this chapter, k and s are assumed to be small compared to other parameters.

Subscripts in the asymptotic notation will be suppressed in the exposition without

risk of confusion.

3.1.1 Aside: The Szemerédi–Trotter Theorem

In this section, we prove Theorem 3.1.1 using Konyagin’s incidence geometric ap-

proach. Primarily this is to illustrate how it differs from our approach and its ap-

parent limitations.

Historically, the utility in expressing a convex set as f(B) for a convex f is

that for many years, the state-of-the-art method for studying convex functions has
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been a particular version of the Szemerédi–Trotter Theorem. Technically, it is a

generalisation of the Szemerédi–Trotter Theorem which instead bounds incidences

between points and and a family of pseudolines, which is essentially a set of geometric

objects whose properties mimic those of sets of lines.

Definition 3.1.1. A family of pseudolines L is a set of simple curves where each

pair l, l′ ∈ L intersect at at most one point where they cross.

Theorem 3.1.7 (Szemerédi–Trotter Theorem). Let P and L respectively be a set of

points and a family of pseudolines in R2. Then

I(P,L) ≪ |P |2/3|L|2/3 + |P |+ |L|.

A proof is given in [15]. Henceforth, we do not distinguish Theorem 1.3.2 and

Theorem 3.1.7, referring to both as the Szemerédi–Trotter Theorem.

Proof of Theorem 3.1.1. Let A be a convex set. Recall that

Xr = {x ∈ A−A : rA−A(x) ∈ [r, 2r)},

that is the set of r-rich differences in A−A. It was mentioned in 1.1.5 that in light

of the formulas

E(A) =
∑

r dyadic

r2|Xr| and E3(A) =
∑

r dyadic

r3|Xr|,

a suitable upper bound on |Xr| produces upper bounds on E(A) and E3(A). We

will prove that

|Xr| ≪ N3/r3. (3.1.5)

This will suffice to complete the proof: we write E(A) =
∑

r dyadic r
2|Xr| and, for

some parameter r∗ to be chosen, use the trivial bound |Xr| ≪ N2/r for r ≤ r∗ and

estimate (3.1.5) for r > r∗. Choosing the optimal r∗ = N1/2 yields the desired

E(A) ≪ N5/2.
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Identifying A with f([N ]) for some convex function f , let C = {(x, f(x)) : x ∈ I}

where I is an interval containing [N ]. Let

P = [N ]×Xr and L = C − (([−N,N ] ∩ Z)×A).

The convexity of f guarantees that any two translates of C can only intersect in a

single point, so L is a family of pseudolines.

Take any point (n, x) ∈ P . Since x ∈ Xr, we can write

x = f(e1)− f(e′1) = · · · = f(er)− f(e′r).

Thus

(n, x) = (ei, f(ei))− (ei − n, f(e′i))

for i = 1, . . . , r, whereupon the point (n, x) lies on at least r pseudolines from L.

This gives the lower bound of r|P | for the number of incidences. Applying the

Szemerédi–Trotter Theorem yields

r|P | ≪ I(P,L) ≪ |P |2/3|L|2/3 + |P |+ |L|.

If |P | dominates the right-hand side, then r = 1 and the result holds trivially. If |L|

dominates then |Xr| ≪ 1 and the result again holds trivially. With |P |2/3|L|2/3 as

the dominant term, rearranging gives (3.1.5).

We reprove (3.1.5) in the next section as a means to demystify Garaev’s approach

to the same problem, which uses only elementary combinatorial techniques and no

incidence geometry. Previously, it was believed stalwartly that Szemerédi–Trotter

arguments were the gold standard in studying such problems. While this may still

be true, the advent of new elementary methods in recent years has resulted in several

interesting discoveries and papers [12,13,33,34,63].

Konyagin’s method for bounding |Xr| is fairly robust in the sense that it can

be generalised to sums and differences of the form A ± C where A is convex but C

is any finite set. It allows for A = f(B) where f is a convex function and B has
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small additive doubling, that is |B+B| is small. However, it appears insufficient for

generalising to longer sums and more convex sets, whereas the new arguments we

present from [13] address both.

For proving the main results of this chapter, we dispense with any use of incidence

geometry. All techniques henceforth will be purely elementary.

3.2 Methods

We begin by presenting a version of Garaev’s proof of Theorem 3.1.1. This proof

is essentially synthesised from its exposition by Olmezov [51], with an additional

observation that convexity can be used more sparingly, which enables one to extend

the estimate for E(A) to E(A,B), where A is a convex set and B is any set. This is

based on replicating estimate (3.2.4) below, known earlier via the Szemerédi-Trotter

theorem.

In the forthcoming argument (as in Konyagin’s proof), we only need the following

property of a convex set A = {a1 < a2 < . . . < aN}: for each d < N , the differences

ai+d − ai, i = 1, . . . , N − d are all distinct.

Proof of Theorem 3.1.1. We are estimating the number of solutions to

ai1 + aj1 = ai2 + aj2 : (ai1 , aj1 , ai2 , aj2) ∈ A4 . (3.2.1)

Unlike the previous proof of this result, let Xr be the r-rich sums. That is, r ≤

rA+A(x) < 2r for each x ∈ Xr. Note that it doesn’t matter whether we work with

sums or differences when finding an energy bound. Write

x = ai1 + aj1 = · · · = air + ajr ,

with i1 < i2 < . . . < ir. Since aiu +aju = x for all u, we also have j1 > j2 > . . . > jr.

We may also assume that ju ≥ iu for all u, affecting only the multiplicative constant
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implied in the ≪ notation of the final estimate. It follows that

r−1∑
u=1

(iu+1 − iu) ≤ N and
r−1∑
u=1

(ju − ju+1) ≤ N.

By the pigeonhole principle, at least 3r/4 of the summands in each sum cannot

exceed 4N/r. This implies that there is a set of indices U ⊂ [r − 1] with |U | ≥ r/2

such that for every u ∈ U , iu+1 − iu ≤ 4N/r and ju − ju+1 ≤ 4N/r. For u ∈ U ,

we say the pair (aiu , aju), (aiu+1 , aju+1) is a lucky pair, so there are at least r/2 lucky

pairs associated with the sum x.

Since each lucky pair gives rise to a solution to the energy equation (3.2.1), there

are least r/2 distinct solutions of the equation

ai1+d1 − ai1 = x = ai2+d2 − ai2 ,

where i1, i2 ∈ [N ] and 1 ≤ d1, d2 ≤ 4N/r.

By considering all x ∈ Xr, it follows that

r|Xr| ≪ (N/r)2 max
1≤d1,d2≪N/r

|{(i1, i2) ∈ [N ]2 : ai1+d1 − ai1 = ai2+d2 − ai2}| .

Now comes the only part of the argument where we use the convexity of A: given

d1, all differences ai1+d1 − ai1 are distinct, hence for any fixed d1 and d2, we have

trivially that

|{(i1, i2) ∈ [N ]2 : ai1+d1 − ai1 = ai2+d2 − ai2}| ≤ N . (3.2.2)

It follows that

|Xr| ≪ N3/r3. (3.2.3)

Substituting into a dyadic sum completes the proof.

We remark that since the lucky pairs argument itself involves solely the pigeonhole

principle and no assumptions on the set A, the above proof generalises immediately
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to the case of E(A,B), where A is convex and B any set. Bound (3.2.3) becomes

|Xr| ≪ |A||B|2/r3 , (3.2.4)

with Xr now being the set of r-rich sums in A + B. Indeed, the only necessary

changes to the proof are that now d2 pertain to the set

B = {b1 < b2 < . . . < b|B|},

so that 1 ≤ d2 ≪ |B|/r, and the trivial bound (3.2.2) is replaced by |B|. This takes

into account that given d2, the quantities bi2+d2 − bi2 are not necessarily all distinct.

What matters is that ai1+d1 − ai1 are all distinct.

Hence, Garaev’s method enables one to obtain the standard corollary of estimate

(3.2.4), which is usually proved using the Szemerédi-Trotter theorem.

Corollary 3.2.1. If A is a convex set, then for any B,

E3(A,B) :=
∑

x r
3
A±B(x) ≪ |A|B|2 log |A| ,

E1+p(A,B) :=
∑

x r
1+p
A±B(x) ≪ |A||B|1+p/2 , for 0 < p < 2 .

Earlier expositions of Garaev’s method appear to overlook the fact that it gen-

eralises easily to embrace two different sets A and B, owing to an overreliance on

convexity in the proof.

In order to generalise Theorem 3.1.1 to the quantity Ts(A), we need to generalise

the concept of lucky pairs from above. In order not to repeat ourselves, we do it in

the most general setting, suitable for all the results in this chapter. In the convex

set setting, B1, . . . , Bs below are all just the interval [N ]. In the near-convex setting,

the full generality of Definition 3.2.1 and Proposition 3.2.1 will be needed.

Definition 3.2.1 (Lucky Pairs). For 1 ≤ i ≤ s, suppose Bi is a finite set of real

numbers, gi is a monotone function and Ai = gi(Bi). Given any r, where r1/(s−1) ≪

|Bi +Bi −Bi| for all 1 ≤ i ≤ s, let

Xr = {x ∈ A1 + · · ·+As : r ≤ rA1+···+As(x) < 2r}
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be the r-rich sums in A1 + · · ·+As. Suppose P := (b1, . . . , bs) and P ′ := (b′1, . . . , b
′
s)

are distinct points, each belonging to
∏s

i=1Bi. For x ∈ Xr, we say (P, P ′) forms a

lucky pair associated with x if the following two conditions hold.

1. The pair (P, P ′) gives rise to a solution to the energy equation for the sum x.

That is,

g1(b1) + · · ·+ gs(bs) = x = g1(b
′
1) + · · ·+ gs(b

′
s).

2. In all coordinates, there are not many elements of Bi+Bi−Bi between P and

P ′. That is,

nBi(bi, b
′
i) ≪ |Bi +Bi −Bi|/r1/(s−1), (3.2.5)

for all 1 ≤ i ≤ s (using notation from Lemma 2.2.2).

Remark. In (3.2.5), we will always be treating the upper bound on nBi(bi, b
′
i) as a

positive integer. This is why we insist that r1/(s−1) ≪ |Bi + Bi − Bi| in Definition

3.2.1. For all the results in this paper, this condition will hold trivially, so it will not

be discussed further.

Proposition 3.2.1. [13] Let r ≥ 1, s ≥ 2 and for 1 ≤ i ≤ s, suppose Bi is a finite

set of real numbers, gi is a monotone function, and Ai = gi(Bi). Then for each

x ∈ Xr, there are ≫ r lucky pairs associated with x.

We will need the following lemma in the proof:

Lemma 3.2.1. [13] Suppose we have an s-dimensional box in Rs (a Cartesian

product of s orthogonal intervals) which is the union of rs smaller (nonidentical)

s-dimensional boxes (or cells) in an r×· · ·× r grid. Then any generic hyperplane H

(not parallel to any one-dimensional edge of the box) can pass through at most srs−1

cells.

Proof. By translation and scaling, we may assume that the origin is one of the corners

of the box, the facets of the box are all parallel to coordinate hyperplanes and that

the hyperplane H is of the form X1 + · · ·+Xs = C for some constant C.

We can index each cell by an s-tuple (e1, . . . , es) which denotes its position among

the cells on each axis, starting from the origin. Now for each cell in which at least
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one of the ei is 1, we define its associated diagonal as the set of cells with indices

(e1 + a, . . . , es + a) for 0 ≤ a ≤ r −maxi ei.

Each cell lies on one of the diagonals and there are srs−1 such diagonals in total.

Since H intersects each diagonal in at most one cell, the proof is complete.

Proof of Proposition 3.2.1. For each i, partition Bi+Bi−Bi into r1/(s−1)/4 intervals,

each containing 4|Bi+Bi−Bi|/r1/(s−1) elements. Since Bi ⊂ Bi+Bi−Bi, this also

partitions the elements of Bi. Doing this for each i partitions
∏

iBi into boxes and

hence, since the gi are all monotone functions, also partitions
∏

iAi into boxes (or

cells).

Now consider some x ∈ Xr. Each solution to

x = g1(b1) + · · ·+ gs(bs)

corresponds to a point (g1(b1), . . . , gs(bs)) on the hyperplane

x = X1 + · · ·+Xs.

By Lemma 3.2.1 this hyperplane can pass through at most (s/4s−1) · r ≤ r/2 cells

and the hyperplane has r points on it. By the pigeonhole principle, there must be

≫ r pairs of points which lie together in the same cell. By construction, these are

lucky pairs, which completes the proof.

3.3 Proof of Theorem 3.1.2

Despite the fact that Theorem 3.1.2 is essentially a less general version of Theorem

3.1.4, we present its proof separately to illustrate exactly how much convexity is

needed.

Proof of Theorem 3.1.2. If suffices to prove when s = 2k; the full result follows by

applying the trivial Ts+1(A) ≤ N2 · Ts(A).
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Let us denote the desired bound for Ts(A1, . . . , As) as

Ts = Ts(N) := N2s−1−k+αk .

Let Ai := {a(i)1 < . . . < a
(i)
N } for each 1 ≤ i ≤ s. We are counting solutions to the

equation

a(1)e1 + · · ·+ a(s)es = a
(1)
e′1

+ · · ·+ a
(s)
e′s

, (3.3.1)

for some indices e1, . . . , es, e
′
1, . . . , e

′
s ∈ [N ].

The proof is by induction on k where s = 2k, the base case k = 0 being trivial:

the number of solutions of

a = a′ : a, a′ ∈ A1

is at most (in fact precisely) N .

We proceed to the induction step. Let us assume that in the equation (3.3.1) no

two terms a
(i)
ei and a

(i)
e′i

are the same for any i = 1, . . . , s. More precisely, suppose

that such non-degenerate solutions to equation (3.3.1) constitute at least half of the

quantity Ts(A1, . . . , As). If not then we would have

Ts(A1, . . . , As) ≪ N
s∑

j=1

Ts−1(A1, . . . , Aj−1, Aj+1, . . . , As)

where the right-hand term is an upper bound for the number of degenerate solutions.

Consider one such summand in the right-hand expression, say Ts−1(A1, . . . , As−1).

Fix all but the first s/2 terms on each side of the energy equation in N s−2 ways. For

each of these choices, we must then count the solutions to the equation

a(1)e1 + · · ·+ a(s/2)es/2
= a

(1)
e′1

+ · · ·+ a
(s/2)
e′
s/2

+ c,

for some fixed c. By a simple application of the Cauchy–Schwarz inequality, this is

bounded above by Ts/2(A1, . . . , As/2). It follows by the induction hypothesis that

Ts(A1, . . . , As) ≪s N
s−1 · Ts/2 ≪ Ts.

Thus if the degenerate solutions constituted more than half of the upper bound, the
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proof would be complete.

Recall that Xr is the set of r-rich sums. For each x ∈ Xr, we apply Proposition

3.2.1 with B1 = . . . = Bs = [N ] and gi(y) := a
(i)
y , for all 1 ≤ i ≤ s. 1 By considering

all lucky pairs arising from any x ∈ Xr, one obtains

r|Xr| ≪ # solutions to (3.3.1) ,

where |ei − e′i| ≪ N/r1/(s−1) for all 1 ≤ i ≤ s. We now fix the combination of

di := ei − e′i for 1 ≤ i ≤ s which maximises the number of solutions to (3.3.1).

Notice that for each di, ∆diAi := {a(i)
e′i+di

− a
(i)
e′i
} is a (k − 1)-convex set (not a

multiset) and has ≤ N elements. Here we have used that di is non-zero, which is

a consequence of the non-degeneracy assumption. We can subtract all the elements

on the right-hand side of (3.3.1), and since there are N s/rs/(s−1) possible values of

(e1 − e′1, . . . , es − e′s), it follows that

r|Xr| ≪
N s

rs/(s−1)
·# of solutions to a1 + . . .+ as = 0

where ai ∈ ∆diAi for 1 ≤ i ≤ s. Rearranging the terms of the above equation so

there are s/2 terms on each side of the equation and using Cauchy-Schwarz, one can

then apply the induction hypothesis to obtain

|Xr| ≪
N s

r(2s−1)/(s−1)
· Ts/2 . (3.3.2)

Using Ts(A1, . . . , As) =
∑

r dyadic r
2|Xr|, we optimise in r by taking, for some r∗

to be determined, the trivial bound r∗N
s for r ≤ r∗, and the dyadic sum with (3.3.2)

over the values of r ≥ r∗. Thus

Ts(A1, . . . , As) ≪ r∗N
s +

N s

r
1/(s−1)
∗

Ts/2 .

Taking the optimal choice of

r∗ = T 1−1/s
s/2 ,

1Technically, we let gi be an increasing function which interpolates gi(y) := a
(i)
y .
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we get

Ts(A1, . . . , As) ≪ N sT 1−1/s
s/2 = N s ·N (s−k+αk−1)(1−2−k) ≪ N2s−1−k+αk .

This closes the induction and completes the proof.

Remark. The step where we apply Cauchy–Schwarz is a generalisation on the well-

known procedure to prove that

E(A,B) ≤ E(A)1/2E(B)1/2.

As alluded to in the introduction, we can refine this approach to obtain a slightly

better bound, specifically a smaller value of αk. If we assume that k ≥ 2 then k = 2

becomes the base case of the induction. Using the bound (3.3.2), T (A1, A2, A3, A4)

can be bounded in terms of E(A) where A is a 1-convex set of size N . Estimating

E(A) using Theorem 3.1.1 produces the improvement αk = −1
8 +

∑k
j=1 j2

−j . Using

instead Shkredov’s stronger bound [68]

E(A) ≪ N32/13,

gives the further improvement αk = − 2
13+

∑k
j=1 j2

−j . These observations constitute

a proof for Theorem 3.1.3.

In the above proof, k-convexity is only used in one place. Since all the Ai are

k-convex, the sets ∆diAi are (k − 1)-convex. In particular, this implies that ∆diAi

will always be a set rather than a multiset which is essential when iterating the

argument.

3.4 Proofs of Theorems 3.1.5 and 3.1.4

In this section, we focus on the results pertaining to sets with small additive doubling.

Proof of Theorem 3.1.5. Let C := {c1 < · · · < cL}. For each x ∈ Xr, we apply

Proposition 3.2.1 with k = 2, with g1(t) := f(t), g2(t) := ct and with B1 = B,B2 =
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[L]. 2 By considering all x ∈ Xr, this implies that the total number of lucky pairs

from r-rich sums is ≫ r|Xr|. Since lucky pairs give rise to solutions to the energy

equation, it follows that

r|Xr| ≪ # solutions to f(b1)− f(b2) = ce2 − ce1 , (3.4.1)

where nB(b1, b2) ≪ KN/r and |e2 − e1| ≪ L/r. By the Equidistribution Lemma

2.2.2, there are at most KN/r possible values that |b2 − b1| can take.

After fixing b1 − b2, e2 − e1 and ce1 in (3.4.1), which can be done in KNL2/r2

ways, the energy equation admits at most one solution since fd(x) := f(x+d)−f(x)

is a monotone function.

It follows that |Xr| ≪ KNL2/r3. Since

E(A,B) ≪
∑

r dyadic

r2|Xr| ≪ r∗
∑

r dyadic
r≤r∗

r|Xr|+
∑

r dyadic
r>r∗

KNL2

r
≪ r∗NL+

KNL2

r∗

we get that, upon choosing r∗ = (KL)1/2,

E(A,B) ≪ K1/2NL3/2.

Proof of Theorem 3.1.4. This proof follows closely that of Theorem 3.1.2, using ap-

propriately the Equidistribution Lemma to incorporate small doubling. As in the

proof of Theorem 3.1.2, it suffices to prove the s = 2k case and again we denote the

desired bound for Ts(A1, . . . , As) as

Ts(N ;K1, . . . ,Ks) :=

(
s∏

i=1

K
2−(2+2k−2αk)2

−k

i

)
·N2k+1−1−k+αk .

We are counting solutions to the equation

f1(b1) + · · ·+ fs(bs) = f1(b
′
1) + · · ·+ fs(b

′
s), (3.4.2)

where bi, b
′
i ∈ Bi for all i.

2Again, technically g2 is an increasing function which interpolates g2(t) := ct.
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The proof is by induction on k where again the base case k = 0 is trivial: the

number of solutions of

f1(b) = f1(b
′) : b, b′ ∈ B1

is at most N .

Let us assume that for each solution to (3.4.2) no two terms fi(bi) and fi(b
′
i)

are equal for any i = 1, . . . , s. More precisely, suppose that such non-degenerate

solutions to equation (3.4.2) constitute at least half of the quantity Ts(A1, . . . , As).

For otherwise, as in the proof of Theorem 3.1.2, using a trivial upper bound and the

induction hypothesis, we would have

Ts(A1, . . . , As) ≪ N s−1Ts/2(N ;Kι1 , . . . ,Kιs/2) ≪ Ts(N ;K1, . . . ,Ks),

where Kι1 , . . . ,Kιs/2 are the largest s/2 terms among all the Ki. This would complete

the proof immediately.

As previously, Xr contains the sums x ∈ A1+· · ·+As with r ≤ rA1+···+As(x) < 2r.

For each x ∈ Xr, we now apply Proposition 3.2.1 with gi(b) := fi(b) for 1 ≤ i ≤ s.

This obtains

r|Xr| ≪ # solutions to (3.4.2),

where nBi(bi, b
′
i) ≪ KiN/r1/(s−1) for all 1 ≤ i ≤ s.

We now choose the di := bi − b′i for 1 ≤ i ≤ s which maximise the number of

solutions to (3.4.2), and then rearrange to obtain

(∆d1f1)(b
′
1) + · · ·+ (∆ds/2fs/2)(b

′
s/2) = (∆ds/2+1

fs/2+1)(bs/2+1) + · · ·+ (∆dsfs)(bs).

(3.4.3)

By the Equidistribution Lemma 2.2.2, there are at most
∏s

i=1(KiN)/rs/(s−1) ways

altogether of choosing the di, so we have

r|Xr| ≪
∏s

i=1(KiN)

rs/(s−1)
·# solutions to (3.4.3).

Applying Cauchy–Schwarz proves that the number of solutions to (3.4.3) is

bounded above by
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T ((∆d1f1)(B1), . . . ,(∆ds/2fs/2)(Bs/2))
1/2

T ((∆ds/2+1
fs/2+1)(Bs/2+1), . . . ,∆ds(fs)(Bs))

1/2.
(3.4.4)

Since all the functions ∆difi are (k − 1)-convex, the induction hypothesis upper

bounds (3.4.4) by

Ts/2(N ;K1, . . . ,Ks/2)
1/2Ts/2(N ;Ks/2+1, . . . ,Ks)

1/2,

whence

|Xr| ≪
∏s

i=1(KiN)

r(2s−1)/(s−1)
· Ts/2(N ;K1, . . . ,Ks/2)

1/2Ts/2(N ;Ks/2+1, . . . ,Ks)
1/2. (3.4.5)

Using Ts(A1, . . . , As) =
∑

r dyadic r
2|Xr|, we optimise in r by taking, for some r∗

to be determined, the trivial bound r∗N
s for r ≤ r∗, and the dyadic sum with (3.4.5)

over the values of r ≥ r∗. Thus

Ts(A1, . . . ,As) ≪

r∗N
s +

∏s
i=1(KiN)

r
1/(s−1)
∗

Ts/2(N ;K1, . . . ,Ks/2)
1/2Ts/2(N ;Ks/2+1, . . . ,Ks)

1/2 .

Taking the optimal choice of

r∗ =

(
s∏

i=1

K
1− 1

s
i

)
· Ts/2(N ;K1, . . . ,Ks/2)

( 1
2
− 1

2s
)Ts/2(N ;Ks/2+1, . . . ,Ks)

( 1
2
− 1

2s
) ,

it is elementary to check that

Ts(A1, . . . , As) ≪ r∗N
s ≪

(
s∏

i=1

K
2−(2+2k−2αk)2

−k

i

)
·N2k+1−1−k+αk .

This closes the induction and completes the proof.

Similar to Theorem 3.1.2, we can refine this approach to obtain a bound with a

slightly smaller (at least by 1/8) value of αk for k ≥ 2.
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The above proofs apply to sums of length s = 2k, where we start the induction

with the trivial estimate for s = 0. One can also easily develop similar inductions

that start with the quantity T (A1, A2, A3) and formulate analogues of Theorems

3.1.2 and 3.1.4 for s = 3 · 2k. We leave this to the interested reader, concluding this

chapter by stating the base case s = 3, since it will be used once in Chapter 4.

Theorem 3.4.1. If A1, A2, A3 are 2-convex sets with N elements. Let Xr be the set

of r-rich sums from A1 +A2 +A3. Then

|Xr| ≪
N14/3

r5/2
. (3.4.6)

In particular

T3(A1, A2, A3) ≪ N4+ 1
9 .

Proof. By the familiar lucky pairs argument

r|Xr| ≪ N3/r3/2 · SA+B=C ,

where SA+B=C is the maximum number of solutions to

a+ b = c : a ∈ A, b ∈ B, c ∈ C

for some 1-convex sets A,B,C with |A| = |B| = |C| ≤ N . It remains to show that

SA+B=C ≪ N5/3.

Consider the r0-rich sums a + b ∈ A + B and recall the corresponding bound

(3.2.4). Combining with a trivial bound, we get

SA+B=C ≪ |A||B|2/r20 + |C|r0 = N3r−2
0 +Nr0,

and optimising in r0, one obtains

SA+B=C ≪ N5/3 .
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3.5 Open Questions

• In Theorem 3.1.4, it takes s = 2k terms on each side of the energy equation to

make a saving of Nk−αk off the trivial bound. As in the sumset case of Chapter

2, it is highly unlikely that an energy equation with so many terms is needed

to make this saving. However, again it seems that new techniques are needed

to approach this.

• Additionally, Theorem 3.1.4 is sharp up to a factor Nαk . As k increases, αk

approaches some small constant (depending on the formulation lying some-

where between 1 and 2). It seems plausible that this can be improved so that

αk → 0 as k → ∞, in line with results of Mudgal [47]. However, it may involve

a method other than induction, because with each iteration of the induction,

the approximations compound and so are unlikely to improve.



Chapter 4

Convexity: Applications

The results of the previous chapters have led to several new and exciting applications,

in particular, new methods and refinements in sumset estimation.

This chapter will be split into two significant parts. Firstly, we use the energy

bounds from Chapter 3 to improve the best-known twofold sumset and energy bounds

when we assume higher convexity. Secondly, we give a number of applications of the

Equidistribution Lemma which allow us to prove new sumset bounds in the reals

as well as the complex numbers and function fields. We also generalise a bound of

Jarník which estimates the number of intersections between a regular grid and a

convex curve.

4.1 Sumset bounds in 2-convex sets

The best known difference set, sumset, and energy bounds for convex sets to date

are respectively due to Schoen and Shkredov [67], Rudnev and Stevens [62], and

Shkredov [68], and are summarised below.

Theorem 4.1.1. If A is convex, then

|A−A| ≳ |A|8/5 = 1.6

|A+A| ≳ |A|30/19 ≈ 1.579 ,

E(A) ≲ |A|32/13 ≈ 2.4615 .

69
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We can get small improvements of all these bounds for k-convex sets, with k ≥ 2.

These estimates rely on using our new bounds for the quantity T4(A) in Theorem

3.1.3, as well as T3(A) in Theorem 3.4.1. We will incorporate them into existing

methods developed by Shkredov and collaborators (see for example [50,67,68]), which

rely extensively on the use of the third moment estimate

E3(A) :=
∑
x

r3A−A(x) ≪ N3 logN ,

derived from (3.2.3). It is essential in what follows to understand how equivalence

classes of triples induce third moment energy bounds, so we have attempted to make

exposition in this section prerequisite-free.

One can write E3(A) (not to be confused with T3(A)) in the following way:

E3(A) =
∑

x∈A−A

r3A−A(x) = |{(a, b, c, a′, b′, c′) ∈ A6 : a− a′ = b− b′ = c− c′}|.

In other words, if (a′, b′, c′) is a translation of the triple (a, b, c) by a vector of the

form (v, v, v), then they contribute to the third moment energy E3(A), and all contri-

butions are of this form. Define an equivalence relation where (a, b, c) ∼ (a′, b′, c′) if

(a, b, c) = (a′, b′, c′) + (v, v, v)

for some v. Let [a, b, c] denote the equivalence class containing (a, b, c) and [A3]

denote the set of all such equivalence classes. If r([a, b, c]) is the number of triples in

equivalence class [a, b, c] then

E3(A) =
∑

x∈[A3]

r2(x) . (4.1.1)

In proving a bound for |A+A| a different equivalence relation will be used. We will

say that (a, b, c) ∼ (a+t, b−t, c+t) for any t ∈ R. We remark that if r(x) is redefined

as the number of triples in equivalence class x according to the new relation, then

again (4.1.1) holds.

Let A be a k-convex set. The improvement comes from (3.1.3) which relates
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representations of 4-fold sums of k-convex sets to the twofold energy Ek−1 for (k−1)-

convex sets. When k = 2, this quantity is estimated by the energy bound for 1-convex

sets in Theorem 4.1.1. Furthermore, for k > 2 this process can then be iterated

to obtain incrementally better energy bounds for more convex sets, the iterations

rapidly converging. We note that even the simpler energy estimate E(A) ≪ N5/2

for 1-convex sets would already improve the estimates of Theorem 4.1.1 for 2-convex

sets. We present only estimates for 2-convex sets in the next theorem; the small

improvements for more convex sets can be found in the forthcoming proofs.

Theorem 4.1.2. [13] If A is a 2-convex set with |A| = N , then

|A−A| ≳ N1+151/234 ≈ 1.645 ,

|A+A| ≳ N1+229/309 ≈ 1.587 ,

E(A) ≲ N2.4554 .

The proofs for all three of the bounds in Theorem 4.1.2 are proved by lower

and upper bounding the number of solutions to certain tautological equations. For

the sum and difference sets A ± A, these lower bounds are proved by pigeonholing

arguments, whereas for the energy E(A), it is proved using Shkredov’s spectral (or

operator) method. The method is so called because it relies on estimating the largest

eigenvalue in the spectrum of a certain matrix.

The upper bounds are proved using a toolbox of standard techniques: Cauchy–

Schwarz Inequality, Hölder’s Inequality, dyadic pigeonholing, as well as various esti-

mates previously discussed in this thesis.

Proof for |A−A|. We begin with the technically least demanding bound for the set

A−A, where A is k-convex for k ≥ 2. Let |A−A| = KN ; we seek a suitable lower

bound for K. Additionally, let D be the elements of A−A which are realised more

than the average number of times. That is,

D := {x ∈ A−A : rA−A(x) ≥ N/4K}.
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Any triple (a, b, c) ∈ A3 satisfies the tautology

a− c = (a− b) + (b− c).

What is less clear is that most triples have the additional property that a−b and b−c

both lie in D. The definition of D means an average element of A−A is expected to

lie in D, so such a claim is intuitive. Specifically we show that the above tautology

is valid for ≫ N3 triples

(a, b, c) ∈ A3 : a− b, b− c ∈ D. (4.1.2)

We say such a triple is good. Since

|{(a, b, c) ∈ A3 : a− b ̸∈ D}| = N
∑

x∈(A−A)\D

rA−A(x) ≤ N · (KN) · (N/4K) = N3/4,

it follows that a − b ∈ D for ≥ 3N3/4 of the triples (a, b, c). Similarly b − c ∈ D

for 3N3/4 of the triples (a, b, c), so by the pigeonhole principle, at least N3/2 of the

triples are good (satisfy (4.1.2)).

Next observe that all triples (a, b, c) in the same equivalence class of [A3] give

rise to the same differences a− b, b− c, a− c, so we can think of good as a property

of the equivalence class rather than the individual triple. Let [S] be the set of good

equivalence classes. Using (4.1.1) in combination with Cauchy-Schwarz, one has

N6 ≪

∑
x∈[S]

r(x)

2

≪ E3(A) |[S]| (4.1.3)

≲ N3 |{(d, d′, d′′) ∈ (A−A)×D2 : d = d′ + d′′}|

≪ N3 (K/N)2
∑

d∈A−A

rA−A+A−A(d).

Treating rA−A+A−A(d) as 1 · rA−A+A−A(d) to apply Hölder’s inequality and using

(3.1.3) with dyadic summation yields

∑
d∈A−A

rA−A+A−A(d) ≲ (KN)4/7(N4Ek−1)
3/7 , (4.1.4)
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with Ek−1 as in (3.1.3). Thus

N19/7 ≲ K18/7E
3/7
k−1 .

Using Shkredov’s bound for Ek−1 yields, for 2-convex A:

K ≳ N
151
234 .

If A is more than 2-convex, one can asymptotically use the forthcoming bound (4.1.9)

for Ek−1, which improves the exponent for |A−A| just by slightly over 0.001. Namely,

if A is sufficiently convex and N is large enough, it follows that

K ≫ N .646 ,

the decimal approximation having accounted for replacing ≲ by ≪.

Proof for |A+A|. We use a slightly more involved pigeonholing technique which is

exposed in full detail in Lemma 4 and the Proof of Theorem 5 in [62]. We give the

skeleton below.

Suppose |A+ A| = KN ; define P to be a set of sums with ≳ N/K realisations.

Technically this proof starts by passing to a large subset with good properties. Ex-

actly as in [62, Proof of Theorem 5], the new regularised subset of A (which we

henceforth refer to simply as A) has the following key property: there exists A′ ⊂ A

with |A′| ≥ 0.9|A| such that

• E(A′) ≫ E(A), and

• For each a ∈ A′,

|(a+A) ∩ P | ≥ 3|A|
4

.

Now let D as be the set of popular differences in A′ − A′ by energy (we will use

energy to connect the difference set with the sum set). Namely D is defined as

follows. By the dyadic pigeonhole principle, there exists D ⊆ A′ − A′, and a real

number 1 ≤ ∆ < |A|, such that for every d ∈ D, ∆ ≤ rA−A(d) < 2∆, and on top of
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this

E(A) ≪ E(A′) ≲ |D|∆2. (4.1.5)

Moreover, by (3.2.3) one has |D|∆3 ≪ |A|3 so

∆ ≲ |A|3/E(A) . (4.1.6)

Then the analogue of the tautology in the previous proof is

(a+ b)− (b+ c) = a− c : a+ b, b+ c ∈ P , a− c ∈ D, (4.1.7)

and we claim that this equation admits ≳ |A||D|∆ solutions. Indeed, choosing a, c

such that a − c ∈ D can be done in |D|∆ ways. For each of these, three-quarters

of the b values have a + b ∈ P and a further three-quarters of the b values have

b+ c ∈ P , whereupon there are ≥ N/2 values of b which yield a solution to (4.1.7).

In this context, notice that the equivalence relation

(a, b, c) ∼ (a+ t, b− t, c+ t) : t ∈ R

has the property that triples from the same equivalence class give rise to the same

equation underlying (4.1.7)

s1 − s2 = d, d ∈ D, s1, s2 ∈ P.

Thus, satisfying (4.1.7) or not, is a property which all triples (a, b, c) in the same

equivalence class share. Hence, using (4.1.1) and Cauchy-Schwarz as in (4.1.3) yields

(|A||D|∆)2 ≪ E3(A) |{(s1, s2, d) ∈ P 2 ×D : s1 − s2 = d :}|

≲ N3(K/N)2
∑
d∈D

rA−A+A−A(d)

≲ K2N19/7E
3/7
k−1|D|4/7 ,

after using Hölder’s inequality and (3.1.3), as in (4.1.4).

Multiplying both sides by ∆6/7 ≲
(

N3

E(A)

)6/7
(see (4.1.6)) to balance the powers
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of |D| and ∆, so one can use |D|∆2 ≳ E(A) (see (4.1.5)), yields

E(A)16/7 ≲ K2E
3/7
k−1N

23/7 .

Substituting Shkredov’s bound for Ek−1 and using the standard Cauchy-Schwarz

bound

K ≥ N3

E(A)

yields

(N3/K)16/7 ≲ K2 · (N32/13)3/7 ·N23/7.

Rearranging we get

K ≳ N
229
390 .

Once again, if A is more than 2-convex, one can asymptotically use the forth-

coming bound (4.1.9) for Ek−1, in which case

K ≳ N
16
27

≈ 0.592 ,

the decimal approximation again accounting for replacing ≲ with ≪.

4.1.1 The Spectral Method

We now turn to the energy E(A) estimate, where the analysis ends up being some-

what more involved. For the reader’s convenience, we recall in the proof the key steps

of Shkredov’s spectral (alias operator) method [68] (for an overview of the method

see [52]). The operator method is designed as a substitute for the lower bounds

obtained from easy tautologies we have already seen in the |A±A| cases.

Proof for E(A). Once again, let D be the set of popular differences by energy, sat-

isfying (4.1.5), (4.1.6).

Identifying D with its characteristic function, consider the quantity

S :=
∑

a,b,c∈A
D(a− b)D(b− c)rA−A(a− c) .
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The quantity S takes triples (a, b, c) ∈ A3 for which a − b, b − c are in the popular

set D, and counts each one the number of times the difference a − c repeats itself.

The spectral method enables one to get a lower bound on S, to be compared with

the upper bound we will again obtain by (4.1.1) and Cauchy-Schwarz.

After fixing an ordering a1, . . . , aN on A, we can view D as an N ×N symmetric

boolean matrix with 1 at the position (i, j) if ai−aj ∈ D and 0 otherwise. Similarly

rA−A can be seen as a square symmetric matrix R (where Rij := rA−A(ai−aj)), which

in addition is non-negative definite (checking this is tantamount to rearrangement of

the energy equation, see e.g. [68]). Thus S = trDDR.

Let µ1 be the unique positive real eigenvalue of D with the largest size, and

v ≥ 0 a normalised eigenvector with all non-negative entries; this is possible by the

Perron-Frobenius theorem. Since D is symmetric and real, the normalised vector

which maximises v ·Dv is an eigenvector corresponding to the largest eigenvalue, so

one can estimate

µ1 = v ·Dv ≥ |D|∆
|A|

, (4.1.8)

replacing v by the vector 1√
|A|

1.

Since D is symmetric, one can write D = QD̃Q⊤ so that D̃ is diagonal with

µ1 in the top left corner, and v is the first column of orthogonal matrix Q. The

basis-invariance of trace gives

S = tr(D̃2Q⊤RQ).

Noting that R is non-negative definite, the trace can be bounded from below by the

(1, 1)-entry, whence

S ≥ µ2
1 v ·Rv.

Since v ≥ 0, this can be estimated from below by making the matrix R entry-wise

smaller, namely replacing it with ∆D. Combining this with (4.1.8) and recalling

that ∆2|D| ≳ E(A) yields

S ≳
(|D|∆)2E(A)

|A|3
.

On the other hand the quantity S, tautologically, is the number of solutions of
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the equation

(a− b) + (b− c) = a′ − c′ : a− b, b− c ∈ D, a′, c′ ∈ A .

If [S′] is the set of equivalence classes [(a, b, c)] under translation for which a−b, b−c ∈

D, then it follows from Cauchy–Schwarz that

S2 =

 ∑
[a,b,c]∈[S′]

r([a, b, c]) rA−A(a− c)

2

≤ E3(A) ·
∑

d1,d2∈D
r2A−A(d1 + d2),

and since each of d1, d2 has at least ∆ representations in A−A, this means

S2 ≲ |A|3∆−2
∑
x

rA−A+A−A(x) r
2
A−A(x).

We partition A − A into “rich and poor” sets D1 and D2, so that for some τ to

be determined, rA−A(x) ≤ τ, for every x ∈ D1.

We firstly consider the poor differences D1. By Hölder’s inequality

∑
x∈D1

rA−A+A−A(x) r
2
A−A(x) ≤

∑
x∈D1

rA−A+A−A(x)
7/3

3/7∑
x∈D1

rA−A(x)
7/2

4/7

.

From (3.1.3) we have, once again,

∑
x

rA−A+A−A(x)
7/3 ≲ N4Ek−1 ,

and from the definition of D1,

∑
x∈D1

rA−A(x)
7/2 ≲ N3τ1/2 .

As for the set D2, we have, from (3.2.3),

|D2| ≤ N3/τ3 .
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Without changing the notation, we replace D2 by its subset {x : τ ≤ rA−A(x) < 2τ};

this will not have consequences, after dyadic summation. Then the quantity to be

estimated is

∑
x∈D2

rA−A+A−A(x) r
2
A−A(x) ≤ τ2|{(a1, . . . , a4, d) ∈ A4×D2 : d = a1+a2−a3−a4}| .

By Hölder’s inequality, this is bounded by

τ2

(∑
x

rA+A−A(x)
5/2

)2/5(∑
x

rA+D2(x)
5/3

)3/5

.

The first bracketed term is estimated directly using (3.4.6). Moreover, by the second

bound of Corollary 3.2.1,

∑
x

rA+D2(x)
5/3 ≪ N |D2|4/3 .

Combining all these estimates, we get

S2 ≲
|A|3

∆2

(
N24/7E

3/7
k−1τ

2/7 +N73/15τ−2/5
)
.

Putting together the upper and lower bounds for S2 gives

|D|4∆6E2(A) ≲ |A|9
(
N24/7E

3/7
k−1τ

2/7 +N73/15τ−2/5
)

and optimising in τ yields

τ = N151/72E
−5/8
k−1 .

Multiplying both sides by ∆2, using E(A) ≲ |D|∆2 (see (4.1.5)) on the left and

∆ ≲ |A|3/E(A) (see (4.1.6)) on the right yields

E8(A) ≲ N15+24/7+151/252E
1/4
k−1 .

It remains to substitute an estimate for Ek−1. If A is 2-convex we can use Shkredov’s
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bound Ek−1 ≲ N32/13 , and we arrive at

E(A) ≲ N2+1705/3744 ≪ N2+.4554 .

One can iterate this bound for higher convexity (namely using it as Ek−1 if

k = 3, etc.) and it is easily seen that the iterates converge rapidly. In the limit when

E(A) = Ek−1 in the above calculation one gets

E(A) ≲ N2+127/279 ≤ N2+.4552 . (4.1.9)

4.2 Applications of the Equidistribution Lemma

As mentioned in Chapter 2, the Equidistribution Lemma is very useful both in

generalising existing results by incorporating a small doubling component and in

this section we will see its utility in proving sum-product-type bounds. We rewrite

it here for ease of reference.

Lemma 4.2.1 (Equidistribution Lemma). [13] Let D := {d1 < d2 · · · < d|D|} be

the positive differences in A − A. If a, a′ ∈ A with a′ < a and nA(a
′, a) ≤ Z, then

a− a′ ≤ dZ .

A new proof of a sumset bound

Recall that in [33], Hanson, Roche-Newton and Rudnev proved, given a convex

function f and any finite set A, that

|A+A−A||f(A) + f(A)− f(A)| ≫ |A|3

log3 |A|
.

We prove the following improvement.

Theorem 4.2.1. [12] Let A be a finite set of reals and f be a convex function. Then

|A+A−A||f(A) + f(A)− f(A)| ≫ |A|3.
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The removal of the logarithmic factors makes the bound of Theorem 4.2.1 sharp.

Indeed, if f(x) = x2 and A = [N ] then

|A+A−A||f(A) + f(A)− f(A)| ≈ |A|3.

Theorem 4.2.1 is simply the base case for Theorem 2.1.2 in Chapter 2. It is stated

separately because we present a short, new proof inspired by the very simple method

by which Solymosi establishes the δ = 1/4 sum-product bound in C [70].

Proof of Theorem 4.2.1. Let A := {a1 < · · · < a|A|}. We say that ai is good if

nA(ai, ai+1) ≪
|A+A−A|

|A|
and nf(A)(f(ai), f(ai+1)) ≪

|f(A) + f(A)− f(A)|
|A|

.

Since

|A|−1∑
i=1

nA(ai, ai+1) ≤ |A+A−A| and
|A|−1∑
i=1

nf(A)(f(ai), f(ai+1)) ≤ |f(A)+f(A)−f(A)|,

by the pigeonhole principle, there is a set A′ with |A′| ≫ |A| such that each element

of A′ is good.

Now consider the map

Ψ : ai 7→ (ai+1 − ai, f(ai+1)− f(ai)).

By the mean value theorem, there exits a sequence {ci} where ci ∈ (ai, ai+1) and

f(ai+1)− f(ai)

ai+1 − ai
= f ′(ci).

Once f(ai+1)− f(ai) and ai+1− ai are fixed, ci is known uniquely since f ′ is strictly

monotone. Thus ai is also known uniquely, and Ψ is injective.

Restrict the domain of Ψ to A′. Since Ψ is injective, the size of its domain A′

equals the size of its image Ψ(A′), proving that

|A| ≪ |A′| = |Ψ(A′)|. (4.2.1)
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A suitable upper bound for |Ψ(A′)| will complete the proof.

Since each ai ∈ A′ is good it satisfies

nA(ai, ai+1) ≪
|A+A−A|

|A|
.

The Equidistribution Lemma 4.2.1 shows that ai+1−ai is among the smallest |A+A−A|
|A|

positive elements in A−A and therefore, there are ≪ |A+A−A|
|A| values it can take. By

an identical argument there are ≪ |f(A)+f(A)−f(A)|
|A| values f(ai+1)− f(ai) can take.

This proves that |Ψ(A′)| ≪ |A + A − A||f(A) + f(A) − f(A)||A|−2. It follows

from (4.2.1) that

|A| ≪ |A+A−A||f(A) + f(A)− f(A)||A|−2,

and rearranging completes the proof.

Remark. In Chapter 2, we will claim that Theorem 4.2.1 is the base case for the induc-

tion proof of Theorem 2.1.2. In fact, we will need the slightly stronger statement that

f(A)+f(A)−f(A) contains ≫ |A|3|A+A−A|−1 elements in (min(f(A)),max(f(A))].

This is immediate after modifying the definition of “good” in the above proof: say ai

is good if

nA(ai, ai+1) ≪
|A+A−A|

|A|
, and

nf(A)(f(ai), f(ai+1)) ≪
|(f(A) + f(A)− f(A)) ∩ (f(a1), f(a|A|]|

|A|
.

Sum-product type results

Studying the sizes of sumsets and product sets which are not the traditional A+ A

and AA has led to many variations of the sum-product problem. See for example

[10, 50, 74]. What these and many other results do share with the sum-product

problem is they all enshrine the philosophy that additive structure and multiplicative

structure cannot coexist in the same set. We may refer to any such result as a sum-

product type result.

The sum-product problem has been studied in other fields as well. We partic-
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ularly note that for A ⊂ C, (1.1.4) is known for all δ < 1/3 + c (for some small

c) [4]. Previous best-known results in C include δ = 1/4 by Solymosi [70] (using a

similar method to ours in this section), δ = 3/11− o(1) 1 a precursor to Solymosi’s

breakthrough approach to the sum-product problem over R [71], and δ = 1/3− o(1)

due to Konyagin and Rudnev [43] by generalising [71] from R to C.

The function field Fq((t
−1)) is defined to be the field of all Laurent series of the

form
k∑

i=−∞
αit

i, where αi ∈ Fq for all i.

For subsets A of the function field Fq((t
−1)), the sum-product theorem is known for

all δ < 1/5 (with the implied constant C also depending on q and the closeness of δ

to 1/5) [6]. The smallness of q compared to |A| is essential in their method.

It is worth mentioning that there is a correlation between the best known sum-

product results and the usable structure in the field. The numerically strongest sum-

product result is in R, which has a total ordering on its elements which is preserved

under addition and multiplication by positive numbers. These elementary properties

form the basis for proving the best-known bounds. In contrast, the function field

Fq((t
−1)) admits a norm structure but this does not give a total ordering with good

properties. However in finite fields Fp, there appears to be no sensible norm structure.

One would therefore expect the sum-product results to be numerically stronger in

Fq((t
−1)) than in Fp. However the reverse is observed in practice: the best known

is δ = 1/4 in Fp and δ = 1/5− ϵ for any ϵ > 0 in Fq((t
−1)). This is owing to a nice

incidence geometric method in finite fields [46] which has no analogue in function

fields. Nevertheless, we conjecture that matching the δ = 1/4 bound in Fq((t
−1))

using elementary methods is a tractable problem.

In this chapter, we prove a related sum-product type result in each setting. Over

the complex numbers we have the following.

Theorem 4.2.2. [12] Let A ⊂ C be a finite set. Then the following holds:

|A+A−A||AA|2 ≫ |A|4.
1where o(1) in this context means a term approaching zero as the size of the set A grows
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Over function fields, we prove the following.

Theorem 4.2.3. [12] For any finite A ⊂ Fq((t
−1)) and any ϵ > 0, we have

|A+A−A|3|AA|4 ≫ϵ q
−2|A|9−ϵ.

Theorem 4.2.3 does not extend to function fields where the base field is not

finite. Furthermore, the dependence in this result on q is necessary (and cannot be

improved), since Fq((t
−1)) has small non-trivial subfields. Indeed, setting A = Fq

demonstrates this sharpness. It is also worth mentioning that the same proof of

Theorem 4.2.3 holds for finite subsets of any field with nonarchimedean norm and

finite residue field. In particular, it holds for finite subsets of the p-adic numbers Qp.

A form of Plünnecke’s inequality (Theorem 1.1.4) shows that given any set A in

some group G, there exists A′ ⊂ A with |A′| ≥ |A|/2 such that

| −A′ +A+A| ≪ | −A′ +A|2

|A|
.

If A′ ⊂ A ∈ C, then applying Theorem 4.2.2 to A′ and some simple inequalities

yields

|A−A|2|AA|2 ≫ |A|5, (4.2.2)

which matches Solymosi’s bound [70] (though a bound which has since been im-

proved). Similarly, if A′ ⊂ A ∈ Fq((t
−1)), then applying Theorem 4.2.3 to A′ yields

|A−A|3|AA|2 ≫ϵ q
−1|A|6−ϵ. (4.2.3)

This matches Bloom and Jones’ bound in [6], which is the best known sum-product

bound in function fields with finite residue field. Unfortunately, the bounds (4.2.2)

and (4.2.3) to not follow from our theorems if A−A is replaced with A+A.

It is in the few products, many sums framework that Theorems 4.2.2 and 4.2.3

are most relevant. The full sum-product conjecture is open and likely very difficult.

A weaker version of the same problem is the few products, many sums problem,

which also appears to be the key to understanding sum product phenomena.

Specifically, we conjecture that if |AA| ≪ M |A|, then |A± A| ≫ M−O(1)|A|2−ϵ.
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Over R, the best known is that |A−A| ≫ M−5/3|A|5/3−o(1) when |AA| ≪ M |A| [50].

In many fields, the few products, many sums problem has not been studied explicitly

and the best known bounds are realised as corollaries of sum-product results.

In various fields there are also very strong results if |AA| ≪ |A| and there is no

small multiplicative doubling parameter M . Granville and Solymosi showed that if

A ⊂ C and |AA| ≪ |A|, then |A + A| ≫ |A|2
2 [28]. In finite fields, Shkredov and

Vyugin showed for sufficiently small subgroups A of the multiplicative group F∗
p, that

|A±A| ≳ |A|5/3.

We also mention that over the reals, the sister problem, few sums, many products

was resolved by Solymosi [71].

Our results specifically address the few products, many 3-fold sums problem. For

example, if we know that |AA| ≪ M |A|, then for A ⊂ C we have

|A+A−A| ≫ M−2|A|2

and for A ⊂ Fq((t
−1)) we have

|A+A−A| ≫ϵ q
−2/3M−4/3|A|5/3−ϵ.

Both results appear to be new. Indeed, the few products, many h-fold sums problem

has been studied in [14, 41], but both appear to only apply to sums rather than

sums and differences, and give quantitatively weaker bounds than Theorems 4.2.2

and 4.2.3.

The proofs of Theorems 4.2.2 and 4.2.3 are both inspired by the combination of

techniques used to prove Theorem 4.2.1.

Proof of Theorems 4.2.2 and 4.2.3

The Equidistribution Lemma works equally well in fields other than R, provided a

suitable norm can be found. In particular we need a version of Lemma 4.2.1 which is

applicable in C and in Fq((t
−1)). Let (F, ∥ ·∥) be a field with a norm. In this section,
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we will use extensively the notation

B(a, r) = {x ∈ F : ∥x− a∥ ≤ r}.

That is, B(a, r) is the ball around a with radius r.

Lemma 4.2.2. [12] Let (F, ∥ · ∥) be a field with a norm, and let A be a finite subset

of F. Write D := A − A = {0} ∪ {d1, . . . , d|D|} such that the norms of the di are

non-decreasing. If a, a′ ∈ A and

|(A+A−A) ∩B(a, ∥a− a′∥)| ≤ Z,

then ∥a− a′∥ ≤ ∥dZ∥.

The proof is almost identical to the proof of Lemma 2.2.2.

Proof. If not then a− a′ = dY where Y > Z, whence

a+ di ∈ B(a, ∥a− a′∥),

for i = 1, . . . , Y . This produces Y > Z elements of A + A − A in B(a, ∥a − a′∥), a

contradiction.

Importantly Lemma 4.2.2 can be applied to finite subsets of C with the usual

complex modulus as the norm, and Fq((t
−1)) with ∥x∥ = qdeg x as the norm.

Sum-product type result in C

We prove Theorem 4.2.2 following a method of Solymosi [70] and incorporating

Lemma 4.2.2 to obtain an improvement.

Proof of Theorem 4.2.2. For notation, let BA(a) := B(a, |a− b|) where b is a nearest

neighbour (in A) of a (according to the standard modulus function in C). We will
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say that (a, b, c) ∈ A3 is good if:

b ∈ BA(a)\{a},

|(A+A−A) ∩BA(a)| ≪
|A+A−A|

|A|
, and (4.2.4)

|(AA) ∩ c ·BA(a)| ≪
|AA|
|A|

. (4.2.5)

Note that balls of the form BA(a) have no elements of A\{a} in their interior.

We argue that every complex number x is contained in at most six such balls. By

translation invariance we may assume x = 0. Assume we have seven such balls,

whose centres form the set A′. Thus for a, a′ ∈ A′, |a| and |a′| are no larger than

|a− a′|. This is only true if the angle subtended by a, a′ at x = 0 is at least 60◦ for

each pair a, a′ ∈ A′. With seven points this is impossible.

Therefore, we have

∑
a∈A

|(A+A−A) ∩BA(a)| =
∑

v∈A+A−A

∑
a∈A

1v∈BA(a) ≤ 6|A+A−A|, (4.2.6)

and for any c ∈ A

∑
a∈A

|(AA) ∩ (BA(a))| =
∑

v∈AA/c

∑
a∈A

1v∈BA(a) ≤ 6|AA|. (4.2.7)

Since each a ∈ A has at least one nearest neighbour, applying the pigeonhole principle

to (4.2.6) and (4.2.7), there exists a subset T ∈ A3 with |T | ≫ |A|2 such that each

triple (a, b, c) ∈ T is good. Now consider the set T under the map

Ψ : (a, b, c) 7→ (a− b, ca, cb).

As long as a ̸= b (which certainly holds for all triples in T ), Ψ is injective, whereupon

|A|2 ≪ |T | = |Ψ(T )|.

We now search for an upper bound on |Ψ(T )| and will do this crudely by counting,

given that (a, b, c) is a good triple, how many values a − b may take, and then
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separately, how many values the pair (ac, bc) can take.

Because (a, b, c) is good, a satisfies (4.2.4). Also, since b ∈ BA(a), we know that

BA(a) = B(a, |a − b|), so Lemma 4.2.2 proves that there are ≪ |A + A − A||A|−1

possible values that a− b may take.

The number of values of that ac may take is trivially upper-bounded by |AA|.

Once ac is fixed, since bc lies in c · BA(a) and (4.2.5) holds, there are ≪ |AA||A|−1

values that bc may take.

Putting this together we obtain

|A|2 ≪ |A+A−A||AA|2|A|−2,

which we rearrange to arrive at the desired result.

Sum-product type result in Fq((t
−1))

Next we prove Theorem 4.2.3 with the method of Bloom and Jones [6] and necessary

modifications to incorporate the |A+A−A| term.

We will firstly introduce some notation that will be used throughout the proof.

We can put a norm structure on Fq((t
−1)) by saying that ∥x∥ = qdeg x, where deg is

the standard degree for Laurent series. Observe that the norm of a difference ∥a−a′∥

is a measure of how similar a and a′ are; specifically it determines the highest degree

term on which the Laurent expansions of a and a′ disagree. Next let

RA(a) = min
a′∈A\{a}

∥a− a′∥,

and

BA(a) = B(a,RA(a)).

We will argue that any intersecting balls in Fq((t
−1)) are nested; that is, if y ∈

B(x1, r1) ∩ B(x2, r2), then either B(x1, r1) ⊂ B(x2, r2) or B(x2, r2) ⊂ B(x1, r1).

Indeed, if r1 ≤ r2 the former occurs, if r2 ≤ r1 the latter occurs. It follows that if

r1 = r2 then B(x1, r1) = B(x2, r2).

For a proof suppose r1 ≤ r2 and that y ∈ B(x1, r1)∩B(x2, r2). This means that
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the Laurent series for x1, y agree on degrees ≥ r1 and x2, y agree on degrees ≥ r2.

Since r1 ≤ r2, this implies that x1, x2 agree on degrees ≥ r2. Now if w ∈ B(x1, r1),

then w agrees with x1 on degree ≥ r1. It follows that w agrees with x2 on degree

≥ r2. This demonstrates that w ∈ B(x2, r2), completing the proof.

We will use the same definition and notation for separable sets and A-chains as

in [6].

Definition 4.2.1. A finite set A ∈ Fq((t
−1)) is separable if its elements can be

indexed as

A = {a1, . . . , a|A|}

such that for each 1 ≤ j ≤ |A| there is a ball Bj with

A ∩Bj = {a1, . . . , aj}.

We also say that C = (c1, . . . , cn) ∈ An is an A-chain of length n if all the ci are

different and

BA(c1) ⊂ · · · ⊂ BA(cn).

The following two lemmata are proved in [6]. We list them here without proof.

Lemma 4.2.3. If A ⊂ Fq((t
−1)) is a separable set, then for any natural numbers

k, n,m such that n+m = k,

|nA−mA| ≫k |A|k.

Remark. In [6], this Lemma is stated only for sumsets, not difference sets. However,

since the result is proved by showing that the corresponding energy is minimum

possible, it also proves the corresponding bound for difference sets.

Lemma 4.2.4. If the elements of C form an A-chain, then C contains a separable

set of size at least |C|/q.

The strategy of our proof is as follows: if we can find a suitably large A-chain,

then Lemma 4.2.4 shows that it contains a large separable set U . Then Lemma

4.2.3 shows that U has a large k-fold sumset, and therefore so does A. Applying
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Plünnecke’s Inequality will then complete the proof. Thus the key result is the

following:

Proposition 4.2.1. [12] Let A ⊂ Fq((t
−1)) be finite. Then A contains an A-chain

C with

|C| ≫ |A|4

|A+A−A||AA|2(log |A|)3
.

Proof. For each a ∈ A write N(a) to be the length of the longest A-chain (c1, . . . , ck)

where ck = a. We begin by dyadic pigeonholing: for each 0 ≤ j ≤ log |A|, let Aj

be the set of a ∈ A such that 2j ≤ N(a) < 2j+1. There exists some j0 such that

|Aj0 | ≥ |A|/ log |A|.

To complete the proof, it suffices to show that

2j0 ≫ |A|4

|A+A−A||AA|2(log |A|)3
.

To this end, we say that a triple (a, b, c) ∈ A3 is good if

a ∈ Aj0 , (4.2.8)

b ∈ BA(a)\{a}, (4.2.9)

|(A+A−A) ∩BA(a)| ≪
2j0 |A+A−A|

|Aj0 |
, and (4.2.10)

|(AA) ∩ c ·BA(a)| ≪
2j0 |AA|
|Aj0 |

. (4.2.11)

Let T be the set of all good triples. We complete the proof by showing the following

upper and lower bounds on |T |:

|T | ≫ 2j0 |Aj0 ||A| (4.2.12)

|T | ≪ 22j0 |A+A−A||AA|2

|Aj0 |2
. (4.2.13)

We begin by proving (4.2.12). Observe that

∑
a∈Aj0

|(A+A−A)∩BA(a)| =
∑

v∈A+A−A

∑
a∈Aj0

1v∈BA(a) =
∑

v∈A+A−A

|Cj0(v)|, (4.2.14)
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where Cj0(v) is the set of a ∈ Aj0 such that v ∈ BA(a). Similarly, for any c ∈ A

∑
a∈Aj0

|(AA)∩c·BA(a)| =
∑

u∈AA

∑
a∈Aj0

1u∈c·BA(a) =
∑

v∈AA/c

∑
a∈Aj0

1v∈BA(a) =
∑

v∈AA/c

|Cj0(v)|.

(4.2.15)

It is worth noting that unlike when we are working in C, |Cj0(v)| is not bounded

by any constant. However, for all a ∈ Cj0(v), the corresponding balls BA(a) all share

the point v and are therefore nested. In other words, the elements of Cj0(v) can be

ordered to form an A-chain. It follows that for some a0 ∈ Cj0(v) ⊂ Aj0 ,

|Cj0(v)| ≤ N(a0) ≤ 2j0+1.

Applying the pigeonhole principle to (4.2.14) and (4.2.15), there is a subset A′ ⊂ Aj0

with |A′| ≫ |Aj0 | such that for each a ∈ A′ and c ∈ A, (4.2.12) and (4.2.13) both

hold.

Given an A-chain C = (c1, . . . , cN(a)) with cN(a) = a ∈ Aj0 , the definition of an

A-chain shows that ci ∈ BA(a) for i = 1, . . . , N(a). It follows that

2j0 ≤ N(a) ≤ |BA(a) ∩A|. (4.2.16)

Now for any c ∈ A and a ∈ A′, it follows that (4.2.8),(4.2.10),(4.2.11) all hold. Once

a is fixed (4.2.16) shows that at least 2j0 values of b will satisfy (4.2.9), completing

the proof that

|T | ≫ 2j0 |Aj0 ||A|.

We now prove (4.2.13). The map

Ψ : (a, b, c) 7→ (a− b, ac, bc)

is manifestly injective when restricted to T . Similar to the proof of Theorem 4.2.2,

we upper bound |Ψ(T )| by

22j0 |A+A−A||AA|2

|Aj0 |2
.
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Since a satisfies (4.2.10) and b ∈ BA(a), Lemma 4.2.2 proves that there are

≪ 2j0 |A+A−A|
|Aj0

| possible values that a − b may take. The number of values that ac

may take is trivially upper-bounded by |AA|. Once ac is fixed, since bc lies in c·BA(a)

and (4.2.11) holds, there are ≪ 2j0 |AA|
|Aj0

| values that bc may take.

Putting this all together, we get

|T | ≪ 22j0 |A+A−A||AA|2

|Aj0 |2

whereupon using |Aj0 | ≫
|A|

log |A| , and rearranging, completes the proof.

Proof of Theorem 4.2.3. By Lemma 4.2.4 and Proposition 4.2.1, there exists a sep-

arable subset U ⊂ A of size at least

H :=
|A|4

q|A+A−A||AA|2(log |A|)3
.

Then using Lemma 4.2.3 and Plünnecke’s inequality (see [54] for a short proof), we

have for all positive integers k,

|A+A−A|k

|A|k−1
≫ |kA− kA| ≫ |kU − kU | ≫k H2k.

Taking kth roots we get

|A+A−A| ≫k H2|A|1−1/k ≳
|A|9−1/k

q2|A+A−A|2|AA|4
.

Rearranging yields the desired result for sufficiently large k.

Generalisation of a theorem of Jarník

In 1926, Jarník published a paper [38] giving sharp bounds for the number of points

of the integer lattice ΛN := [N ]× [N ] which can lie on a convex curve.

Theorem 4.2.4 (Jarník). If Γ is a convex curve, then

|Γ ∩ ΛN | ≪ N2/3. (4.2.17)
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Furthermore, this is sharp as evinced by the so called Jarník curve ΓJ . However,

if we write ΓJ := {(x, fJ(x)) : x ∈ U} for some open set U , then fJ is a C1(U) convex

function, but is not C2(U). It was conjectured that (4.2.17) could be improved if

Γ is known to be differentiable to some order. Indeed, Swinnerton-Dyer proved a

result in this direction [76], which was refined and improved by Schmidt [65].

Theorem 4.2.5 (Schmidt). If f is a twice differentiable convex function with f ′′

weakly monotone, then

|Γ ∩ ΛN | ≪ N (3/5)+o(1).

Schmidt further conjectured that the correct power is 1/2, which would be best

possible in light of the curve {(x, x1/2)}. This bears resemblance to our results stating

that higher convex functions permit less additive structure.

The number of lattice points lying on algebraic curves was also addressed by

Bombieri and Pila [7]. They proved that given an irreducible, algebraic curve Γ of

degree d in ΛN := N ×N we have

|Γ ∩ ΛN | ≪ N (1/d)+o(1).

Since many convex functions of interest are also algebraic curves, this result is of

great interest.

A different approach to generalising Jarník’s work is to replace the integer grid

ΛN with ΛA := A × A, where |A + A − A| = K|A| and K is assumed to be small.

The Equidistribution Lemma allows us to modify a proof of Theorem 4.2.4 to obtain

a result in this direction. It is worth mentioning that the approach of Bombieri and

Pila only applies for the strict grid ΛN , so this generalisation is genuinely novel.

Theorem 4.2.6. Let Γ be a convex curve and ΛA = A×A where |A+A−A| = K|A|.

Then we have

|Γ ∩ ΛA| ≪ K2/3|A|2/3.

Proof. Without loss of generality, assume Γ is increasing at an increasing rate, and

let P1, . . . Pr be all the points in Γ ∩ ΛA moving from left to right.

Let Pi = (ai, bi) for all i and notice that all the ai and bi lie in A. We will say
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that Pi is good if

|(A+A−A)∩(ai, ai+1]| ≤
4|A+A−A|

r
and |(A+A−A)∩(bi, bi+1]| ≤

4|A+A−A|
r

.

Let P be the set of all good points Pi. By the pigeonhole principle, |P| ≥ r/2. Notice

that by convexity, none of the Pi+1 − Pi are the same. It follows that

r ≪ |P| = |{(ai+1 − ai, bi+1 − bi) : Pi ∈ P}|.

When Pi ∈ P, by the Equidistribution Lemma 4.2.1, the differences ai+1 − ai and

bi+1 − bi are among the smallest 4|A + A − A|/r positive elements of A − A, and

hence

r ≪
(
|A+A−A|

r

)2

.

Rearranging yields the desired result.

4.3 Open Problems

• In the preparation of this chapter, the following question arose: is it true given

a finite real set A, that a positive proportion of A+A−A lies in [minA,maxA].

It is certainly true in mass; that is, a positive proportion of triples (a, b, c) ∈ A3

will have a+ b− c ∈ [minA,maxA], but is it also true in number of elements?

• Function fields appear to have more arithmetic structure than finite fields. It

stands to reason that improving the sum-product bound in Fp((t
−1)) to at least

numerically match the bound for finite fields is tractable.

• As mentioned, Bombieri and Pila provided strong bounds for the number of

intersections between an algebraic curve Γ and an integer grid ΛN . It would

be interesting to generalise to intersecting algebraic curves with ΛA := A×A,

where A has small additive doubling.





Chapter 5

Continuous Incidence Geometry

5.1 Introduction

Incidence geometry is concerned with counting incidences between various geometric

objects. For points and lines, I(P,L) counts the incidences between the point set P

and the line set L. Related are Lk(P ), the set of k-rich lines induced by point set P ,

and Pk(L), the set of k-rich points induced by line set L. The classical Szemerédi–

Trotter Theorem [78] bounds sharply all three quantities.

In their 2019 paper [32], Guth, Solomon and Wang proved an analogue of the

Szemerédi–Trotter Theorem akin to (1.3.3), for suitably well-spaced sets of tubes

of thickness δ in [0, 1]2. Furthermore, they proved a similar result in [0, 1]3 which

is an analogue of the seminal Guth–Katz bound [30]. Both bounds are essentially

sharp. Their work expands our understanding of the Kakeya problem which studies

intersections of thin tubes.

This chapter follows closely work of the author in [11]. As in [32], our objects of

interest will be small δ-atoms and thin δ-tubes.

Definition 5.1.1. A δ-atom is a closed ball in [0, 1]d of diameter δ. A δ-tube is the

set of all points in [0, 1]d which are within a distance δ/2 of some fixed line.1

Unlike the discrete setting of points and lines, we need to carefully define what

it means for two atoms or two tubes to be distinct. Two δ-atoms are distinct if they
1Throughout this chapter, distance will always refer to Euclidean distance.
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do not intersect each other. Two δ-tubes are distinct if either:

• They do not intersect each other, or;

• The angle between them is greater than δ.

In this thesis, we will say that these criteria describe a set A of atoms or a set T

of tubes which is δ-separated2 This is a nonstandard definition; in the literature, the

second criterion alone is required for a set of tubes to be δ-separated. More generally,

Definition 5.1.2. Given γ ≥ δ, we say a set of δ-atoms A (resp. δ-tubes T ) are

γ-separated if there is at most one atom of A (resp. tube of T ) in each γ-atom (resp.

γ-tube).

We say that an atom and a tube are incident with each other if they have a

non-empty intersection. If the number of atoms from A incident with a δ-tube lies

in [k, 2k), then we say it is a k-rich tube (induced by A). Let Tk(A) be the size of a

maximal set of unique k-rich δ-tubes induced by A. For brevity we will often simply

say the number of k-rich tubes induced by A. Owing to the above setup, a set of

atoms A must always be finite.

The problem we address is upper-bounding |Tk(A)|. In two dimensions, this

problem is dual to one of the aforementioned problems addressed in [32]. Bounding

the number of incidences between a set A of atoms and a set T of tubes is an

equivalent way of studying this problem.

An alternative setup involves counting approximate incidences between δ-separated

points and δ-separated lines. In this setting, we would say that a point p and a line l

are incident if p lies in a δ-neighbourhood of the line l. This is the setup used in [24].

Defining distinct atoms and distinct tubes in the above way is natural because it

avoids degenerate configurations of atoms and tubes. To give an example, let us allow

atoms to intersect. Let A be a large set of atoms which are all small perturbations

of a single atom, and let T be a large set of tubes arranged in a star shape and all

passing through the atoms of A. In this configuration, all atoms are incident with all

tubes, which ought not to be allowed in the setup of a continuous incidence problem.
2Technically 2δ-separated under the forthcoming definition.
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Indeed, the correct interpretation for two atoms which intersect each other is that

they are two copies of the same atom. We would say that this atom appears with

multiplicity two. In Section 5.2, we give an incidence result in which the atoms in A

may appear with multiplicity.

However, even with these assumptions, atoms and tubes are still not a perfect

model for points and lines. In discrete geometry, two points can lie on at most one

line and two lines can intersect in at most one point. However, this does not hold for

atoms and tubes, and constitutes one of the most important differences between the

two settings. In fact, if two δ-atoms in [0, 1]d are separated by a distance of x where

δ ≪ x < 1, then there exist ≈ x1−d distinct δ-tubes which are incident to both of

them.

The following example illustrates that without further assumptions on the dis-

tribution of atoms, bounds that match the Szemerédi–Trotter Theorem (1.3.2) are

unobtainable.

Example 5.1.1. Suppose A is the grid of k2 δ-atoms that fit inside some kδ × kδ

square in [0, 1]2. It is clear that |Tk(A)| = kδ−1 = δ−1 · |A|2
k3

. Since δ−1 can be

arbitrarily large, any upper bounds on |Tk(A)| will be very weak. Similar problematic

examples can also be constructed in higher dimensions.

The following incidence bound is the dual to a result established in [24].

Theorem 5.1.1 (Fässler, Orponen, Pinamonti). Let A be a set of W−1-separated

atoms in [0, 1]2 where 1 < W ≤ δ−1. Let Tk(A) be the set of k-rich tubes induced by

A. Then

|Tk(A)| ≪ W · |A|2

k3
.

In light of Example 5.1.1, Theorem 5.1.1 is sharp when W = δ−1. However,

whenever k ≤ δ|A|, this bound is worse than the trivial |Tk(A)| ≪ δ−2 and indeed

there exist sets A of atoms which attain this trivial bound.

For a set A of δ-atoms in [0, 1]d which is well-distributed in some sense, we will

prove a bound for |Tk(A)| which essentially depends only on |A| and k. In this

context, well-distributed means that the atoms almost form a well-spaced grid. It is

an analogue of the similar condition in [32] for tubes to be well-distributed.
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Theorem 5.1.2. [11] Let d ≥ 2 be an integer. Given 1 < W < δ−1, let A be a

W−1-separated family of δ-atoms in [0, 1]d where |A| ≈ W d. Let k ≥ 2. Then for

every ϵ > 0, there exist C1(ϵ, d) and C2(ϵ, d) such that if

k ≥ C1(ϵ, d)δ
−ϵ · δd−1|A|, (5.1.1)

then

|Tk(A)| ≤ C2(ϵ, d)δ
−ϵ · |A|2

k3
. (5.1.2)

The condition (5.1.1) on k is necessary and has a specific meaning. If the atoms in

A were randomly placed, then a simple calculation verifies that the expected richness

of any δ-tube is δd−1|A|. If k ≤ δd−1|A|, then probabilistic arguments prove that

there exist configurations of atoms A such that a positive proportion of all possible

δ-tubes are at least k-rich. Thus we need (5.1.1) in order to obtain nontrivial bounds

for |Tk(A)|.

Compared to Theorem 5.1.1, our Theorem 5.1.2 has the key added assumption

that |A| ≈ W d, which means that A is as big as a W−1-separated set could be. In

other words, A nearly forms a grid of atoms. In contrast, Theorem 5.1.1 applies to

much sparser sets of atoms which are still W−1-separated.

Given a general set T of tubes, I(A, T ) will be the number of incidences between

atoms from A and tubes from T . Concretely,

I(A, T ) := |{(a, t) ∈ A× T : a ∩ t ̸= ∅}|.

We can obtain an equivalent formulation of Theorem 5.1.2 in terms of incidences by

a standard argument (see the proof of Theorem 1.3.4).

Corollary 5.1.1. [11] Let d ≥ 2 be an integer. Given 1 < W < δ−1, let A be a

W−1-separated family of δ-atoms in [0, 1]d where |A| ≈ W d. Let T be an arbitrary

set of distinct δ-tubes. Then for every ϵ > 0, there exists C3(ϵ, d), such that

I(A, T ) ≤ C3(ϵ, d)δ
−ϵ(|A|2/3|T |2/3 + k0(A, δ)|T |), (5.1.3)

where k0(A, δ) := max{1, δd−1|A|}.
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The term k0(A, δ)|T | in (5.1.3) plays the same role as the |L| term in the Szemerédi–

Trotter bound (1.3.1), namely counting the incidences from lines incident to only one

point.

Let us now briefly clarify how our contribution fits in with the results from [32]

upon which our methods are inspired. The main result proved in [32] bounds the

number |Ak(T )| of k-rich atoms induced by a set T of well-distributed tubes:

Theorem 5.1.3 (Guth–Solomon–Wang). Let d = 2 or 3. Given 1 < W < δ−1, let

T be a W−1-separated family of δ-tubes in [0, 1]d where |T | ≈ W 2(d−1). Let k ≥ 2.

Then for every ϵ > 0 there exist C1(ϵ, d) and C2(ϵ, d) such that if

k ≥ C1(ϵ, d)δ
−ϵ · δd−1|T |,

then

|Ak(T )| ≤ C2(ϵ, d)δ
−ϵ · |T |

d
d−1

k
d+1
d−1

.

When d = 2, Theorem 5.1.3 is a δ-thickened version of the Szemerédi–Trotter

Theorem and for d = 3, it is a δ-thickened version of the Guth–Katz incidence bound

(Theorem 1.3.5).

We say a set A of atoms is well-distributed if it satisfies the conditions in Theorem

5.1.2. Similarly, we say a set T of tubes is well-distributed if it satisfies the conditions

in Theorem 5.1.3. In dimension d = 2, well-distributed atoms and tubes are dual

to each other. Lines in two dimensions are parametrised by two variables, so a set

of well-distributed δ-tubes becomes a set of well-distributed δ-atoms when viewed in

the parameter space. Thus, the d = 2 case of Theorem 5.1.2 follows immediately by

duality from Theorem 5.1.3. This result is essentially optimal.

However for all d ≥ 3, Theorem 5.1.2 is a new result. It cannot be obtained

by reparametrising Theorem 5.1.3 or any other existing result. When d ≥ 3, we

conjecture that the bound should have k3 replaced with kd+1 in the denominator

of (5.1.2), but any improvement towards this appears not to be amenable to the

method we use. The obstacles to obtaining stronger results for d ≥ 3 appear to be

related to the reasons that the method in [32] fails if d > 3. In both cases, proving

a suitable modification of Proposition 5.2.1 (and its analogue from [32]) would yield
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improvements.

A discrete version of Theorem 5.1.2 can be obtained in any dimension d ≥ 3 by

projecting generically onto a plane and applying the Szemerédi–Trotter Theorem.

However, this is not possible in the thickened setting because projecting into a plane

will not preserve the well-distributed property of the set of atoms in general.

Remark. It does not matter if we define our atoms to be δ-balls with respect to the

∥ · ∥2 norm or the ∥ · ∥∞ norm, that is, whether our atoms are d-dimensional balls or

cubes. It only matters that there exist constants C, c such that a δ-cube is always

contained in a Cδ-ball, and also contains a cδ-ball. The choice of shape then only

affects multiplicative constants in our bounds, which are of no consequence since we

are primarily interested in growth rate. During our proof, we will partition the space

[0, 1]d into “cells”, which is most natural if we view our cells as smaller d-dimensional

cubes. One important upshot is that all equalities in this chapter are implicitly up

to absolute constants. None of these constants are problematically large or small.

Several other recent atom–tube incidence bounds with different spacing condi-

tions are worth noting. Fu, Gan, and Ren [21] proved a generalisation of Theorem

5.1.3 with the following more permissive spacing assumption: for 1 ≤ W ≤ X ≤ δ−1,

T is a set of X−1-separated tubes with at most X/W tubes in each 1 ×W−1 rect-

angle. Indeed, their result recovers the d = 2 case of Theorem 5.1.3 when X = W .

Fu and Ren [22] also addressed incidence estimations where the set of atoms (resp.

tubes) behave locally like α-dimensional (resp. β-dimensional) sets for fixed α, β.

Our focus in this chapter is combinatorial, but it ought to be mentioned that

studying the intersections of atoms and tubes is relevant to other problems in real

analysis. A discretized version of the Erdős distinct distance problem is treated in [32]

and the related Falconer distance conjecture has admitted recent improvements in

the plane in [29].

Incidence geometry has been used for addressing sum-product type problems

since the groundbreaking paper of Elekes [18]. A δ-discretized sum-product theorem

was proved by Bourgain [8], and then reproved with explicit bounds by Guth, Katz

and Zahl [31]. In recent work by Gan and Harbuzova [25], Elekes’ incidence geometry

method was adapted to a version of the δ-discretized sum-product theorem with
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more restrictive assumptions on the set A. The more general discretized sum-product

theorem appears impervious to being improved using continuous incidence geometry.

The structure of this chapter is as follows: in Section 5.2, we prove a general

incidence result which will be needed in the proof of Theorem 5.1.2 in Section 5.3. In

Section 5.4, we give an application of Theorem 5.1.2, an analogue of Beck’s theorem

for atoms and tubes.

5.2 A general incidence result

To assist in our proofs, we will mostly be working with incidence counts rather than

directly with k-rich tubes. Furthermore, we allow for sets of weighted atoms and

tubes. Let A be a set of atoms where each a ∈ A has a positive integer weight w(a)

associated with it. This essentially means that when counting incidences, the atom

a appears w(a) times. Similarly define weighting for sets of tubes.

For a set of weighted atoms A with weight function w, and a set of weighted tubes

T with weight function ω, we define a more general incidence counting function

I(A, T ) :=
∑
a∈A

∑
t∈T

w(a)ω(t)1{a∩t̸=∅}.

The following incidence bound is a generalisation of [32, Proposition 2.1] and our

proof is a modification of theirs. Its uses for us are twofold. Firstly, our proof of

Theorem 5.1.2 requires an incidence result for a general set of atoms which may not

be well-distributed. Secondly, since it applies to weighted atoms, we can sidestep

some technical steps in proving the main result.

The substance of Proposition 5.2.1 below is how the incidence count I(A, T )

behaves when the atoms in A and the tubes in T are thickened by a factor of S (in all

directions except its axis). That is, each δ-atom becomes an Sδ-atom centred at the

same point, and each δ-tube becomes an Sδ-tube about the same line. Importantly,

after thickening, some atoms may intersect, in which case we consider them a single

atom with an associated weight. If the original atoms were already weighted, then

their weights sum if they intersect after thickening. Similarly, tubes may also become

weighted after thickening.
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Proposition 5.2.1. [11] Fix 0 < α < 1. Let k ≥ 1 and A be a set of distinct

weighted δ-atoms in [0, 1]d with weight function w. Let T be a set of distinct (not

weighted) δ-tubes. Let S be such that δ−α ≪ S ≪ δ−1. Then

I(A, T ) ≪α

(
Sδ−(d−1)|T |

∑
a∈A

w(a)2

)1/2

+ δ−αS1−dI(AS , TS), (5.2.1)

where AS and TS are respectively the weighted sets of atoms and tubes formed by

thickening A and T by a factor of S.

The proof of Proposition 5.2.1 uses some elementary Fourier analysis. We include

the following definition for completeness.

Definition 5.2.1. For an integrable function f : Rd → C, its Fourier transform is

defined

f̂(ξ) :=

∫
Rd

f(x)e−2πix·ξdx.

For two integrable functions f : Rd → C and g : Rd → C, their convolution is given

by

(f ∗ g)(x) :=
∫
Rd

f(y)g(x− y)dy.

Proof of Proposition 5.2.1. We scale the problem by δ−1, so that the δ-atoms are now

1-atoms and the δ-tubes are now 1-tubes in [0, δ−1]d. This will be more convenient

to work with.

For any a ∈ A and any t ∈ T , let χa(x) and χt(x) respectively be smooth bump

functions approximating the indicator functions for the atom a and the tube t. Now

let f(x) :=
∑

a∈Aw(a)χa(x) and g(x) :=
∑

t∈T χt(x). In this notation,

I(A, T ) ≈
∫
[0,δ−1]d

f(x)g(x)dx.

Since f and g are Lebesgue integrable functions, their Fourier transforms are

well-defined. Furthermore, since they are all bounded and supported on compact

sets, they are Lp functions for all p. It follows that Plancherel’s Theorem holds:∫
f(x)g(x)dx =

∫
f̂(ξ)ĝ(ξ)dξ. Decompose this expression into high and low fre-
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quency parts:

I(A, T ) ≈
∫

f̂ ĝ η +

∫
f̂ ĝ (1− η),

where η is a smooth function taking value 1 on the ball of radius ρ := δ−α/dS−1 and

supported on a ball of radius 2ρ.

Low frequency case: Assume I(A, T ) ≪
∫
f̂ ĝ η. By Plancherel (and using

that η2 and η are essentially equal), we get

I(A, T ) ≪
∫
(f ∗ h)(g ∗ h),

where ĥ = η. Roughly speaking, convolution with h thickens atoms and tubes by a

factor of ρ−1. For each atom a ∈ A, the function χa ∗ h is approximately w(a)ρd on

the thickened ρ−1-atom around a. Similarly, for each tube t ∈ T , the function χt ∗ h

is approximately ρd−1 on the thickened ρ−1-tube around t.

Outside of these ρ−1-atoms and ρ−1-tubes, the functions f ∗h and g∗h are rapidly

decaying. Since S = δ−α/dρ−1, the tails of both functions are negligible outside the

S-atoms AS and S-tubes TS . It follows that

I(A, T ) ≪
∫
(f ∗ h)(g ∗ h) ≪ ρd−1I(AS , TS) ≪α δ−αS1−dI(AS , TS).

High frequency case: Assume that I(A, T ) ≪
∫
f̂ ĝ (1−η). Using the Cauchy–

Schwarz inequality, we get

∫
f̂(ξ)ĝ(ξ)(1− η(ξ))dξ ≤

(∫
|f̂(ξ)|2dξ

)1/2(∫
|ĝ(ξ)|2(1− η(ξ))2dξ

)1/2

. (5.2.2)

By Parseval’s identity, the first term on the right-hand side can be evaluated as

(∫
|f̂(ξ)|2dξ

)1/2

=

(∫
|f(x)|2dx

)1/2

≈

(∑
a∈A

w(a)2

)1/2

.

We now estimate the second term on the right hand side of (5.2.2). Cover the

d-dimensional unit sphere with small (d−1)-dimensional δ-balls. These will be called

δ-caps and are used to sort tubes in T by direction. Let Tθ be the set of all tubes
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from T in the direction of δ-cap θ, and let gθ =
∑

t∈Tθ
χt. Then we need to estimate

∫
|ĝ(ξ)|2(1− η(ξ))2dξ =

∫
|
∑
θ

ĝθ(ξ)|2(1− η(ξ))2dξ.

We will apply Cauchy–Schwarz to the sum over θ. The advantage is that for fixed

ξ, there are not many values of θ for which ĝθ(ξ) is non-zero.

For each t ∈ Tθ, we have that χ̂t is mostly supported on a 1 × · · · × 1 × δ slab

through 0 orthogonal to θ and decays quickly outside. We call this slab θ⊥. Due to

the rapidly decaying tails, the contribution of ĝθ outside the dilated slab δ−α/dθ⊥ is

of the order δB for some positive B, and is therefore negligible.

Thus, the term ĝθ(ξ) is only nonzero if ξ belongs to δ−α/dθ⊥. We may assume that

|ξ| ≥ ρ, as 1−η(ξ) is otherwise zero. For such a large ξ, simple geometric arguments

show that ξ belongs to δ−α/dθ⊥ for at most ≪ δ−α/dρ−1δ−(d−2) = Sδ−(d−2) different

θ values. Then Cauchy–Schwarz yields

(1− η(ξ))2|
∑
θ

ĝθ(ξ)|2 ≪α Sδ−(d−2)
∑
θ

|ĝθ(ξ)|2.

Again using Parseval’s identity, it follows that

∫
|ĝ(ξ)|2(1− η(ξ))2dξ ≪α Sδ−(d−2)

∑
θ

∫
|ĝθ(ξ)|2dξ

= Sδ−(d−2)
∑
θ

∫
|gθ(x)|2dx

= Sδ−(d−1)|T |.

Substituting into (5.2.2) yields

I(A, T ) ≪

(
Sδ−(d−1)|T |

∑
a∈A

w(a)2

)1/2

.

The dominant term in (5.2.1) is determined based on whether the incidence count

increases disproportionately after thickening by S. The following two examples give

configurations of atoms and tubes which attain both bounds in Proposition 5.2.1,

demonstrating that it is sharp up to a small factors involving S and δ−α. For the
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purpose of these examples, A will not be a weighted set of atoms.

Example 5.2.1. If A ⊂ [0, 1]d consists of all the δ-atoms in a d-dimensional box

with side length kδ, then |A| = kd. If T is the set of induced k-rich δ-tubes, it can

be shown that |T | = δ−(d−1)kd−1. Further calculations show that

(Sδ−(d−1)|A||T |)1/2 = S1/2δ−(d−1)kd−
1
2 and δ−αS1−dI(AS , TS) = δ−(d−1+α)kd.

Also since all tubes in T are k-rich, we have

I(A, T ) = δ−(d−1)kd,

so the second term in (5.2.1) is attained up to a δ−α factor (for sufficiently small S).

Example 5.2.2. If A ⊂ [0, 1]d consists of a (d − 1)-dimensional slice of the above

configuration of δ-atoms, then we have |A| = kd−1. Again let T be the set of induced

k-rich δ-tubes, so |T | = δ−(d−1)kd−3. In this case

(Sδ−(d−1)|A||T |)1/2 = S1/2δ−(d−1)kd−2 and δ−αS1−dI(AS , TS) = S−1δ−(d−1+α)kd−2.

Again, since all tubes in T are k-rich, we have

I(A, T ) = δ−(d−1)kd−2,

so the first term in (5.2.1) is the attained bound up to an S1/2 factor.

5.3 The Main Result

The proof of Theorem 5.1.2 combines induction with a cell partitioning argument.

Often in proofs of incidence results it is useful to partition the space into smaller

cells and estimate the contribution of incidences in each cell individually. We have

already seen such a proof of the Szemerédi–Trotter Theorem. Before commencing

our proof, we present a higher-dimensional generalisation of the Szemerédi–Trotter

Theorem in the special case that the point set is a cartesian product. The prototype

for this method can be found in [72] and uses a “lucky pairs” argument.
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Theorem 5.3.1. Let P ∈ Rd be a d-fold cartesian product P := P (1) × · · · × P (d)

with |P (i)| = n for all i, and let k ≥ 2. Then

Lk(P ) ≪d
|P |2

kd+1
.

Our set of well-distributed atoms looks like a perturbation of a Cartesian prod-

uct. In fact, the proof of Theorem 5.3.1 works equally well for a perturbation of a

Cartesian product as it does for a true Cartesian product. This equips us with a

good heuristic that the true best possible bound for a set of well-distributed atoms

A in [0, 1]d is in fact

|Tk(A)| ≪ϵ,δ δ
−ϵ |A|2

kd+1
.

Furthermore, the cell partitioning is reminiscent of what we use in the proof of

Theorem 5.1.2, where the cells are essentially d-dimensional rectangles in a lattice.

Proof of Theorem 5.3.1. Partition each P (i) into k
2d intervals each containing the

same number of elements. This in turn partitions P into ( k
2d)

d cells. Let Lk be the

set of k-rich lines induced by P and say that a pair of points p, p′ is lucky if they

lie together on a line in Lk and also together in the same cell. We now proceed to

upper and lower-bound the number of lucky pairs.

Notice that any line l ∈ Lk may pass through at most k/2 cells. Since l must

pass through at least k points from P , it must induce at least k/2 lucky pairs by

the pigeonhole principle. Furthermore, each lucky pair arises exactly once in this

way. So there are at least |Lk| · k
2 lucky pairs in total. We upper-bound the number

of lucky pairs trivially by the number of pairs which lie together in the same cell

(ignoring whether they also lie together on a line from Lk), which is

(
2dn

k

)2d

·
(

k

2d

)d

=
(2d)d|P |2

kd
.

Combining the upper and lower bounds and rearranging yields the desired

Lk(P ) ≪d
|P |2

kd+1
.
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In R2, a polynomial of degree k can induce the above partitioning into ≈ k2 cells.

In other words, for a cartesian product, the cell partitioning described in Theorem

1.3.3 can give rise to a grid-like cell decomposition.

Our strategy for proving Theorem 5.1.2 is the following: We partition [0, 1]d into

cells of side length D−1 for some parameter D to be chosen. Proposition 5.2.1 with

some thickening parameter S allows us to relate the number of k-rich tubes to an

incidence count, specifically the L2-norm of the weights of shortened tubes in all

cells. This is bounded by applying the induction hypothesis in each cell.

For the proof to work, we need S to be much smaller than D, and D to be much

smaller than δ−ϵ. We also want S and D to be much bigger than constants. This is

the motivation for the uniform choices of these parameters given in the proof.

The method is inspired by [32], but is different in several key ways. Firstly, we

work with incidences to give a new exposition of this kind of proof. Secondly, by

using Proposition 5.2.1 which works for weighted atoms, we sidestep several dyadic

pigeonholing steps which are needed in [32]. Finally, our problem admits an addi-

tional simplification. There is a simple expression for the number of 2-rich tubes

induced by A which applies in any dimension d ≥ 2. This allows us to resolve both

the “narrow” and “broad” case for small k which appear in [32], in a single simplified

case.

Proof of Theorem 5.1.2. We treat ϵ and d as constants, so in what follows ≪ is

written to mean ≪ϵ,d. We fix W and proceed by induction on δ. Namely we have

to prove the statement for all δ ∈ (0,W−1). There are two base cases because when

we apply the induction hypothesis it will be for a smaller value of both W and δ−1.

The first base case will be when δ is very close to W−1, namely when δ−(1−c1ϵ) ≤

W for some small fixed c1 (we choose c1 < 1/(d − 1) which assists in the following

calculation). Assuming δ−(1−c1ϵ) ≤ W , (5.1.1) gives

k ≥ C1(ϵ, d)W
d− d−1−ϵ

1−c1ϵ > C1(ϵ, d)W.

Since the distribution of atoms permits |Tk(A)| to be non-zero only if k ≪ W , we

can choose C1(ϵ, d) large enough so that |Tk(A)| = 0, and (5.1.2) holds trivially.
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The other base case is when W is very small, say smaller than some constant c2.

In this case, |Tk(A)| ≤ c2d2 trivially, so (5.1.2) holds for a suitable choice of C2(ϵ, d).

We move on to the induction step. Assume the result holds for all δ′ > Kδ and

W ′−1 > KW−1, where K is sufficiently small (K = 2 will work). Assume (5.1.1)

holds.

Firstly, we split up [0, 1]d into Dd identical sub-cubes or cells in a d-dimensional

grid, where D = δ−c21ϵ
2 . Let a tubelet be the intersection of a k-rich δ-tube with one

of these cells. (A tubelet looks like a section of a δ-tube of length D−1.) To each

tubelet t we associate a weight w(t) which is the number of atoms from A intersecting

t, and a multiplicity m(t) which is the number of k-rich tubes containing the tubelet

t. (A tubelet is “contained” in a tube if all the atoms on the tubelet also intersect

the tube. A tubelet may lie on up to Dd−1 of the k-rich tubes.) From here on, we

will often abbreviate Tk = Tk(A). With this notation, it is evident that

k|Tk| = I(A, Tk) =
∑

tubelets t

w(t)m(t).

It is also clear that ∑
tubelets t

m(t) = D|Tk|,

so by the pigeonhole principle, a positive proportion of the incidences come from

tubelets t with w(t) ≫ k/D (with an appropriate subsumed constant). We will

henceforth assume that the weights of all tubelets are at least k/D.

Now we treat separately two cases: k ≪ D and k ≫ D. The reason is that we will

later apply the induction hypothesis to estimate the number of k/D-rich tubelets,

and the induction hypothesis only holds if k/D is greater than some constant.

Case 1: k ≪ D. Since D = δ−c21ϵ
2 , it follows that δ−ϵk−3 ≫ 1. Now let’s

count the tubes which are at least 2-rich. For each pair of atoms a, a′ ∈ A, there are

dist(a, a′)−(d−1) tubes passing through both (where dist(a, a′) is the distance between

the centres of atoms a and a′). It follows that

|Tk(A)| ≤ |T≥2(A)| ≤
∑

a,a′∈A
a̸=a′

dist(a, a′)−(d−1).
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By the grid-like configuration, we may assume that the atoms are exactly arranged

in a d-dimensional integer grid (scaled down by a factor of W ). At worst, this affects

the above sum by a small multiplicative constant. We also lose no generality by

considering only the case where a′ is the atom with centre at the origin. Thus, it

follows that

∑
a,a′∈A
a̸=a′

dist(a, a′)−(d−1) ≈ |A|W d−1 ·
∑

n∈(Z∩[0,W ])d

n̸=0

∥n∥−(d−1).

Given x ∈ [0,W ], we have ∥n∥ ∈ [x, 2x) for ≈d xd values of n. Incorporating this

into a dyadic sum, one obtains the desired

|Tk(A)| ≪d |A|W d−1 ·
W∑

x dyadic

x ≪ δ−ϵ |A|2

k3
.

Case 2: k ≫ D. We want to apply Proposition 5.2.1, but to do so globally is

wasteful of the strong spacing assumptions on A, so the bound will be prohibitively

weak.

If we consider any maximal set of distinct Dδ-tubes in [0, 1]d, then each δ-tube

is contained in one of these Dδ-tubes. Indeed, this partitions the set of all δ-tubes

into the Dδ-tubes which contain them. The rationale for this partitioning is that in

each Dδ-tube, the tubelets behave like weighted atoms. There are (Dδ)−2(d−1) such

Dδ-tubes.

Given one of these Dδ-tubes τ , we “stretch” it in all non-axis directions by a factor

of D−1δ−1, so it becomes [0, 1]d. Each tubelet in τ which runs parallel to τ becomes

a D−1-atom, and each k-rich δ-tube in τ becomes a D−1-tube. Furthermore, each

new atom a has a weight ωτ (a), which is the same as the weight of the corresponding

tubelet. Call this set of new weighted D−1-atoms Aτ and the set of new D−1-tubes

Tτ . For the case d = 2, this procedure is indicated in Figure 5.1.

For each Dδ-tube τ , we count the incidences arising from tubelets which lie on,

and are parallel to, τ . By the stretching procedure above (see Figure 5.1), this is
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Figure 5.1: After “stretching”, the incidences between tubelets and δ-tubes inside a
Dδ-tube become incidences between weighted D−1-atoms and D−1-tubes.

equal to I(Aτ ,Tτ ). It follows that

I(A, Tk) =
∑
τ

I(Aτ ,Tτ ).

Applying Proposition 5.2.1 in each Dδ-tube τ using a thickening factor S = δ−c31ϵ
3

and δ−α = Sϵ, and then applying Cauchy–Schwarz, we get

k|Tk| ≤ I(A, Tk) =
∑
τ

I(Aτ ,Tτ )

≪
∑
τ

(
SDd−1|Tτ |

∑
a∈Aτ

ωτ (a)
2

)1/2

+ S1−d+ϵ
∑
τ

I(AS
τ ,TS

τ )

≤ (SDd−1)1/2

(∑
τ

|Tτ |

)1/2(∑
τ

∑
a∈Aτ

ωτ (a)
2

)1/2

+ S1−d+ϵ I(AS , TS
k )

= (SDd−1)1/2|Tk|1/2
(∑

τ

∑
a∈Aτ

ωτ (a)
2

)1/2

+ S1−d+ϵ I(AS , TS
k ).

(5.3.1)

We will now have two cases based on which term in (5.3.1) dominates. 3

Firstly suppose the second term dominates. Since there is at most one atom in
3Note that TS

k is always the set of k-rich δ-tubes which are then thickened by S, not the set of
k-rich Sδ-tubes.
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each W−1-cell, all thickened Sδ-atoms in AS have weight one, and hence |AS | = |A|.

Also, the weights of tubes in TS
k are trivially bounded above by S2(d−1), the maximum

number of δ-tubes contained in an Sδ-tube. If T̃S
k is the underlying set of unweighted

tubes, then

I(AS , TS
k ) ≪ S2(d−1)I(AS , T̃S

k ). (5.3.2)

In order to have k|Tk| ≪ S1−dI(AS , TS
k ), a positive proportion of these incidences

must be supported on Sδ-tubes which are at least Sd−1k-rich in atoms from AS .

Furthermore, (5.1.1) implies that

Sd−1k ≥ Sd−1C1(ϵ, d)δ
d−1−ϵ|A| ≥ C1(ϵ, d)(Sδ)

d−1−ϵ|AS | · Sϵ,

so we can apply the induction hypothesis for any richness k′ ≥ Sd−1k. Standard

dyadic summing of the induction hypothesis implies that

I(AS , T̃S
k ) ≪ C2(ϵ, d)(Sδ)

−ϵ |A|2

(Sd−1k)2
. (5.3.3)

Then combining (5.3.1), (5.3.2) and (5.3.3) yields

k|Tk| ≪ S1−dC2(ϵ, d)δ
−ϵ |A|2

k2
,

and rearranging closes the induction, as the S1−d term subsumes the multiplicative

constants.

Now assume the first term in (5.3.1) dominates. After rearranging, this implies

that

|Tk| ≪
SDd−1

(∑
τ

∑
a∈Aτ

ωτ (a)
2
)

k2
. (5.3.4)

Notice that the bracketed term in the numerator is a sum over all tubelets. A suitable

bound on this quantity will complete the proof.

Having already partitioned [0, 1]d into Dd cells, we now estimate the contribution

from tubelets in each cell. For any of these cells C, let AC be the set of atoms from

A which lie in C and let TC be the set of tubelets in C.

If we enlarge each cell C to [0, 1]d, then the δ-atoms become Dδ-atoms which
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satisfy the spacing conditions for applying the induction hypothesis.4 Each tubelet t

is now a Dδ-tube, and the richness of this tube, denoted by r(t), is the weight of the

correponding tubelet. Recall that these weights all exceed k/D. For any m > k/D,

using (5.1.1) we get

m > C1(ϵ, d)δ
d−1−ϵ|A|D−1

> C1(ϵ, d)(δD)d−1−ϵ(D−d|A|)

= C1(ϵ, d)(δD)d−1−ϵ|AC |,

so the induction hypothesis (5.1.2) can be used in any cell C to bound |Tm(AC)|. We

get

∑
τ

∑
a∈Aτ

ωτ (a)
2 =

∑
C

∑
t∈TC

r(t)2

=
∑
C

k∑
m dyadic
m=k/D

m2|Tm(AC)|

≤
∑
C

k∑
m dyadic
m=k/D

C2(ϵ, d)(Dδ)−ϵ(|A|D−d)2m−1

≪ Dd · C2(ϵ, d)(Dδ)−ϵ(|A|D−d)2 · (D/k).

Substituting this into (5.3.4), and recalling that S = δ−c31ϵ
3 and D = δ−c21ϵ

2 , we get

|Tk(A)| ≤ C2(ϵ, d)δ
−ϵ|A|2k−3,

closing the induction and completing the proof.

Remark. There is a small omission in the above proof: In Case 2, it is essential that

each cell contains approximately the same number of atoms from A and that they

are well-distributed. This follows immediately if D < W . But if D ≥ W , then δ is

so ridiculously small that the δ−ϵ factor in (5.1.2) is enormous, and trivial bounds

give the desired result. Concretely, if W ≤ D = δ−c21ϵ
2 , then since no pair of atoms

4This technically assumes that D < W ; the reverse case is simple and discussed at the end of
the proof.
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can lie on more than W d−1 tubes,

|Tk(A)| ≤ W d−1|A|2 ≤ W d+2 · |A|2

k3
≤ δ−(d+2)c21ϵ

2 · |A|
2

k3
≤ δ−ϵ · |A|2

k3
.

5.4 An Application

Beck’s Theorem [5] is an important result in discrete geometry, and is a standard

corollary of the Szemerédi–Trotter Theorem. It states that given n points in the

plane with at most n− k on any line, the number of lines containing at least two of

the points is ≫ nk. Theorem 5.1.2 allows us to prove a version of Beck’s Theorem

for a set of well-spaced atoms in any dimension d ≥ 2. We use the same method that

can be used to derive Beck’s Theorem from the Szemerédi–Trotter Theorem.

Theorem 5.4.1. [11] Let A be a set of δ-atoms in [0, 1]d satisfying the spacing

conditions of Theorem 5.1.2, and such that |A| ≤ δ1−d. Then for every ϵ > 0,

|T≥2(A)| ≫ϵ,d δϵ|A|2.

Proof. Since |A| ≤ δ1−d, Theorem 5.1.2 can be applied and

|Tk(A)| ≤ C2(ϵ/2, d)δ
−ϵ/2 · |A|2

k3

holds for all k. The number of pairs of atoms both of which lie on a tube that is at

least k0-rich is given by

∑
k dyadic
k≥k0

k2|Tk(A)| ≤ 2C2(ϵ/2, d)δ
−ϵ/2 |A|2

k0
.

Choosing k0 = 10C2(ϵ/2, d)δ
−ϵ/2, it follows that ≫ϵ,d |A|2 pairs of atoms lie together

only on tubes that are less than k0-rich. A δ-tube can have at most k20 of these

pairs lying on it so there are ≫ϵ,d |A|2/k20 ≈ δϵ|A|2 tubes which are at least 2-rich,

completing the proof.
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5.5 Open Problems

• Our heuristics indicate that the number of k-rich tubes induced by well-spaced

atoms A in [0, 1]d is expected to be ≪ δ−ϵ |A|2
kd+1 . Improving the denominator in

(5.1.2) to k3+ϵ or better still, k3+ϵ(d) where ϵ(d) increases with d, would be a

wonderful result.

Proving this using the current method would involve a corresponding improve-

ment to Proposition 5.2.1. There are heuristics for why such an improvement

may be possible when d = 3.

• With access to an atoms and tubes version of Szemerédi–Trotter as well as

Guth–Katz (in [32]), we may be able to emulate discrete arguments (see [48])

which address the δ-discretised pinned distance problem.
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