This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk

Author:
Muselli, Simone
Title:
Models of curves and Newton polytopes

General rights

Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy

Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

[^0]Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Models of curves and Newton polytopes

By
Simone Muselli

School of Mathematics University of Bristol

A dissertation submitted to the University of Bristol in accordance with the requirements of the degree of Doctor of PHILOSOPHY in the Faculty of Science.

JULY 2022

Abstract

The purpose of this thesis is to construct explicit regular models of curves, both over fields and over discrete valuation rings. Given a perfect field k and a smooth plane curve C_{0} / k, we know there exists a unique non-singular projective curve $C \supseteq C_{0}$. The problem is to find C explicitly. Under certain conditions, a method called toric resolution describes such a curve from a certain elementary combinatorial object attached to C_{0}. Unfortunately, this approach does not always work. We extend this classical construction to any curve, preserving its computational and combinatorial nature.

Let K be the field of fraction of some discrete valuation ring O and C / K a hyperelliptic curve of genus g. A regular model of C over O is a regular proper flat 2-dimensional scheme $\mathcal{C} \rightarrow \mathrm{Spec} O$ with generic fibre isomorphic to C. A classical question in arithmetic geometry is how to construct such a model. An answer is known when $g \leq 2$, thanks to algorithms developed by Tate and Liu (in residue characteristic not 2). However, there was no general algorithm for an unbounded g. In this thesis, we explicitly construct a regular model of C over O with normal crossings for hyperelliptic curves of arbitrary genus, when the residue characteristic of K is not 2 (and some cases when it is 2). The description relies on a new notion we introduce: the MacLane cluster picture.

Dedication and Acknowledgements

This thesis would have not seen the light of day without the love and the support that I have received from many people over the past four years. Although only my name appears on the front cover, I truly hope that all of them feel part of this result.
I want to start thanking my supervisor, Prof Tim Dokchitser, for the countless meetings, all the time he devoted, and his general advice; he is not only a great mathematician but also a good man. For the time they will spend reading this dissertation, I am truly indebted with my VIVA examiners Prof Andrew Obus and Dr Céline Maistret. For his untiring effort to convince me not to give up, I express my gratitude to Prof Stefano Vigni, who has never missed the opportunity to let me know he believes in my capacities.

I would like to thank all my friends who have always been by my side. Unfortunately, I do not have enough space to mention them all. Please accept my apologies if your name is not explicitly reported. I express my thanks towards Giorgio, Nirvana and Pip, for their friendship and the concrete help they always gave me to face the challenges of my new life in Bristol. For the laughs, the games and the pub nights, I express my gratitude to "la gente da Ollivud", my group of Italian friends in Bristol. For walking the path of faith with me, I want to thank my parish group "TIGER". I am grateful of having two friends like Damiano and Valerio, whom I have always been able to count on.

God blessed me with a wonderful family. Mum, dad, grandma and grandpa, Claudio, if I could, I would dedicate to you much more than a paragraph. Every single word of this dissertation is the outcome of your hard work.

From the bottom of my heart I express my gratitude and love to my fiancee Valeria, my rock, my strength, the little star I brought in all dark moments I have gone through. The distance has fed the fire of our love; now I am looking forward to starting our next chapter together!

I conclude with the most important acknowledgement. I thank God with all my soul. When I felt lonely, He was there; when I was sick, He was there; when I felt that I would have never written a paper, He was there, ready to help me. Nothing would have been possible without Him.

AUTHOR's DECLARATION

Ideclare that the work in this dissertation was carried out in accordance with the requirements of the University's Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate's own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author.

TABLE of Contents

Page
1 Introduction 1
1.1 Models of curves over perfect fields 1
1.2 Models of hyperelliptic curves over discrete valuation rings 2
2 Models and integral differentials of hyperelliptic curves 5
2.1 Introduction 5
2.1.1 Main results 6
2.1.2 Rational cluster picture 10
2.1.3 Example 11
2.1.4 Related works of other authors 12
2.1.5 Strategy and outline of the chapter 12
2.1.6 Notation 13
2.2 Newton polygon 14
2.3 Rational clusters 17
2.4 Description of a regular model 30
2.5 Construction of the model 40
2.5.1 Charts 41
2.5.2 Open subschemes 43
2.5.3 Glueing 45
2.5.4 Generic fibre 46
2.5.5 Special fibre 47
2.5.6 Components 50
2.5.7 Regularity 53
2.5.8 Separatedness 54
2.5.9 Properness 56
2.5.10 Genus 57
2.5.11 Minimal regular NC model 58
2.5.12 Galois action 61
2.6 Integral differentials 64
3 A generalisation of the toric resolution of curves 73
3.1 Introduction 73
3.1.1 Overview 73
3.1.2 Models of curves over discrete valuation rings 75
3.1.3 Outer regular generalised Baker's model 76
3.1.4 Outline of the chapter and notation 79
3.2 Ambient toric varieties and charts 80
3.3 Baker's resolution 82
3.4 Construction of the sequence 83
3.4.1 Completion with respect to Newton polygon 83
3.4.2 Inductive construction of the curves 84
3.4.3 The role of Newton polygons 91
3.4.4 Inductive construction of the morphisms 92
3.4.5 Geometric properties 96
3.5 A generalised Baker's model 99
3.6 Simultaneous resolution of different charts 102
3.7 The case of non-algebraically closed base field 104
3.8 Superelliptic equations 111
3.9 Example 113
3.9.1 Construction of C_{1} 113
3.9.2 Construction of C_{2} 114
3.9.3 Construction of C_{3} 115
4 Regular models of hyperelliptic curves 117
4.1 Introduction 117
4.1.1 Overview 117
4.1.2 Main result 118
4.1.3 Example 121
4.1.4 Related works of other authors 121
4.2 MacLane valuations 122
4.3 MacLane chains invariants and residual polynomials 130
4.4 MacLane clusters 135
4.4.1 Newton polygons 139
4.4.2 Residual polynomials 142
4.5 Model construction 145
4.5.1 Matrices 149
4.5.2 Toroidal embedding 154
4.5.3 Charts 155
4.5.4 Special Fibre 156
4.5.5 Components 160
4.5.6 Regularity 162
4.5.7 Properness 163
4.6 Main result 164
A Rational cluster picture and base extensions 169
A. 1 Rational centres over tame extensions 169
A. 2 Dualising sheaf under base extensions 170
B Smooth completion and Baker's model 171
B. 1 Birational smooth hypersurface of a variety 171
B. 2 Existence of a Baker's model 173
C Pseudo-valuations and an explicit toroidal embedding 175
C. 1 Pseudo-valuations 175
C. 2 Explicit matrices 176
C. 3 MacLane clusters fan 177
Bibliography 181

INTRODUCTION

Curves are the main object of this dissertation. A curve C defined over a field K, denoted C / K, is a scheme $C \rightarrow$ Spec K of finite type, pure of dimension 1 . Let C be a smooth, projective curve defined over a field K. We are interested in constructing regular models of C. Let us explain what we mean by that. Let O be an integral domain of Dedekind dimension ≤ 1 with field of fractions K.

Definition A model of C over O is a proper flat scheme $\mathcal{C} \rightarrow \operatorname{Spec} O$ of relative dimension 1, with generic fibre isomorphic to C.

If $\operatorname{dim} O=0$, then $O=K$ and a model of C over O is a curve \mathcal{C} isomorphic to C. Note that in this case, every model is regular since C is smooth. If $\operatorname{dim} O=1$, then a model of C is a 2 -dimensional scheme and does not have to be regular. In the following sections we present our results: explicit constructions of models of curves over perfect fields and of regular models of hyperelliptic curves over discrete valuation rings. All our descriptions rely on applying toric resolution approaches over certain Newton polygons attached to the curve C.

Each subsequent chapter of this thesis consists of one of the author's papers, is self-contained and has its own introduction and notation. Chapter 2 is [Mus1], Chapter 3 is [Mus2] and Chapter 4 is [Mus3]. In particular, the reader is not required to read the full dissertation if they are interested in a specific result.

1.1 Models of curves over perfect fields

Every smooth, projective curve C / K is uniquely determined by any dense open subset. In fact, given any affine smooth curve C_{0} / K there exists a unique smooth, projective curve C / K whose C_{0} is a dense open subscheme. This theoretical existence and uniqueness raises a question: can we
find a model of C over K knowing C_{0} ? Indeed, describing a model of C over K would lead to the understanding of its geometry, e.g. the computation of the genus.

The problem presented above has a well-known solution, that consists of embedding C_{0} in a projective space, taking its closure, and applying repeated blowing-ups to resolve all singularities. However, this procedure is usually hard to handle in practice. For this reason, alternative approaches have been developed. Here we want to focus on one of them, called toric resolution.

First, since all smooth, projective curves have a dense open subscheme isomorphic to a smooth curve contained in the 2 -dimensional torus $\mathbb{G}_{m, K}^{2}$, we suppose that C_{0} is of this form. A simple combinatorial object, called Newton polygon, is associated with C_{0}, and a toric variety $\mathbb{T} \supset C_{0}$ can be defined explicitly from it. When the closure of C_{0} in \mathbb{T} is smooth, it is a model of C over K.

The construction above is easy and explicit but unfortunately it does not always give a model of C over K. What can we done when it fails? In Chapter 3 we present a new approach that extends the classical toric resolution if K is perfect. On one side, our method always leads to the description of a model of C over K, called generalised Baker's model. On the other side, it preserves the computational and combinatorial nature of toric resolutions, relying on an iterative construction of Newton polygons.

1.2 Models of hyperelliptic curves over discrete valuation rings

Suppose K is a complete discretely valued field of characteristic different from 2, with ring of integers O_{K} and residue field k. To study the arithmetic of a smooth, projective curve C / K, it is essential to understand regular models of C over O_{K}. However, this is a difficult problem, even when C is a hyperelliptic curve. Similarly to the case of models over fields, a repeated blowing-ups procedure is possible but often impractical. For this reason, the study of regular models has been a very active area in recent years.

Let C / K be a hyperelliptic curve. In Chapter 2, we explicitly construct the minimal regular model with normal crossings \mathcal{C} / O_{K} of C, under certain conditions on the curve. As an application, we also determine a basis of integral differentials of C, that is an O_{K}-basis for the global sections of the relative dualising sheaf $\omega_{\mathcal{C} / O_{K}}$. Note that this is possible due to the explicit description of \mathcal{C}. In some cases, the result presented in this chapter is able to produce a regular model even when the characteristic of k is 2 .

In Chapter 4 a regular model over O_{K} is constructed for any hyperelliptic curve C / K, if $\operatorname{char}(k) \neq 2$. The description of the model is given in a closed form, thanks to a new notion we introduce, the MacLane cluster picture. Being a bridge between some of the objects recently used in the study of regular models, the MacLane cluster picture has the potential to have an important role in understanding the local arithmetic of hyperelliptic curves.

The constructions in both chapters follow the same spirit. We first define a toric scheme $\mathbb{T} \rightarrow \operatorname{Spec} O_{K}$ in which a certain open subscheme C_{0} of C naturally embeds. The closure of C_{0}
in \mathbb{T} is a regular model \mathcal{C} of C over O_{K} (with strict normal crossings). It is important to point out that the construction of \mathbb{T}, and consequently of \mathcal{C}, is explicit, coming from certain Newton polygons attached to the hyperelliptic curve.

MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC

The purpose of this chapter is to construct regular models of hyperelliptic curves and to describe a basis of integral differentials attached to them. We will do it under certain conditions on the curve, mild when the residue characteristic is not 2 . The content of this chapter can be found in the author's paper Models and Integral Differentials of Hyperelliptic Curves [Mus1], currently submitted for publication.

2.1 Introduction

To describe the arithmetic of curves over global fields, for example in the study of the Birch \& Swinnerton-Dyer conjecture, it is essential to understand regular models and integral differentials over all primes, including those with very bad reduction. Constructing regular models of curves over discrete valuation rings is not an easy problem, even in the hyperelliptic curve case. In fact, there is no practical algorithm able to determine a model, unless the genus of the curve is 1 or we have some tameness or nondegeneracy hypothesis.

One possible approach to tackle this problem is giving a full classification of possible regular models in a fixed genus, as done by the Kodaira-Néron ([Kod], [Nér]) and Namikawa-Ueno ([NU], [Liu2]) classifications for curves of genera 1 and 2, respectively. However, this strategy seems impractical in general, since the number of models grows fast with the genus. Recently, new approaches based on clusters $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right.$], Newton polytopes [Dok], and MacLane valuations [OW], have been developed (see §2.1.4 for more detail).

On one side, clusters define nice and clear invariants from which one can extract information on the local arithmetic of hyperelliptic curves. Such invariants turn out to be particularly useful
from a Galois theoretical point of view. However, for describing regular models, restrictions on the reduction type of the curve and on the residue characteristic of its base field ($\left[\mathrm{D}^{2} \mathrm{M}^{2}\right],[\mathrm{FN}]$) need to be imposed. On the other side, Newton polytopes and MacLane valuations have a potential to solve the problem in general, but the respective constructions are more algorithmic and so do not give the result in closed form. Furthermore, they often depend on the chosen equation rather than on the curve itself.

In this chapter, we present a new approach that preserves both positive aspects from the above and provides a link between the two sides. We describe a model from simple invariants defined from what we call rational cluster picture (Definition 2.1.10). This object modifies the theory in $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right]$ and appears to be more suitable for our purpose (see §2.1.2). In fact, the rational cluster picture also carries intrinsic connections with the other presented approaches, as it is closely related to Newton polygons and to degree 1 MacLane valuations (see [FGMN]). When these valuations are enough to describe a regular model we say that the curve has an almost rational cluster picture (Definition 2.1.1; see also 2.3.29, 2.3.31). It turns out that the approach even works in residue characteristic 2 , under an extra assumption that the curve is y-regular (Definition 2.1.4). Our main result is:

Let K be a complete ${ }^{1}$ discretely valued field with $\operatorname{char}(K) \neq 2$, and let $K^{n r}$ be its maximal unramified extension. Let C / K be a hyperelliptic curve, having an almost rational cluster picture over $K^{n r}$. If the residue characteristic of K is 2 , assume that $C_{K^{n r}}$ is y-regular. Then via the rational cluster picture we determine:
(i) the minimal regular model with normal crossings $\mathcal{C}^{\text {min }}$,
(ii) a basis of integral differentials of C.

This result applies to a wide class of curves, covering wild cases and base fields with even residue characteristic. For example, if $g=2$, then 107 out of 120 Namikawa-Ueno types ([NU]) arise from hyperelliptic curves satisfying the conditions of our theorem.

In residue characteristic not 2 , Chapter 4 constructs a regular model with string normal crossings of any hyperelliptic curve C. The strategy used there generalises the one of this chapter.

2.1.1 Main results

We will now present (a simplified version of) the main results of this chapter. We will then illustrate them with an explicit example in §2.1.3.

Let K be a complete discretely valued field of residue characteristic p, with normalised discrete valuation v and ring of integers O_{K}. We require $\operatorname{char}(K)$ to be not 2 , but we allow $p=2$ and $p=0$. In this subsection we will assume for simplicity that $K=K^{n r}$. Extend the valuation v to an algebraic closure \bar{K} of K. Let C / K be a hyperelliptic curve, i.e. a geometrically connected

[^1]smooth projective curve, double cover of \mathbb{P}_{K}^{1}. Let g be the genus of C. Assume $g \geq 1$. Fix a Weierstrass equation
$$
C: y^{2}=f(x)
$$

Let \mathfrak{R} be the set of roots of f in \bar{K}. Thus

$$
f(x)=c_{f} \prod_{r \in \Re}(x-r) .
$$

For any $r, r^{\prime} \in \mathfrak{R}$, with $r \neq r^{\prime}$, denote by $\mathcal{D}_{r, r^{\prime}}$ the smallest v-adic disc containing r and r^{\prime}.
Definition 2.1.1 (Definition 2.3.26) We say that C has an almost rational cluster picture if for any roots $r, r^{\prime} \in \mathfrak{R}$ with $r \neq r^{\prime}$, either
(a) $\mathcal{D}_{r, r^{\prime}} \cap K \neq \varnothing$, or
(b) $p>0$ and $\left|\mathcal{D}_{r, r^{\prime}} \cap \Re\right| \leq|v(r-w)|_{p}$ for some $w \in K$,
where $|\cdot|_{p}$ denotes the canonical p-adic absolute value on \mathbb{Q}.
The intuition behind the definition above relies on certain objects, called MacLane clusters, which we introduce in Chapter 4 (Definitions 4.1.2, 4.1.3). Precisely, C has an almost rational cluster picture if and only if all proper MacLane clusters have degree 1.

Definition 2.1.2 A rational cluster is a non-empty subset $\mathfrak{s} \subset \mathfrak{R}$ of the form $\mathcal{D} \cap \mathfrak{R}$, where \mathcal{D} is a v-adic disc $\mathcal{D}=\{x \in \bar{K} \mid v(x-w) \geq \rho\}$ for some $w \in K$ and $\rho \in \mathbb{Q}$. We denote by Σ_{K} the set of rational clusters.

In the following definition we introduce most of the notation and quantities, associated with rational clusters, needed in order to state our main theorems.

Definition 2.1.3 For any $\mathfrak{s} \in \Sigma_{K}$ we say:

| \mathfrak{s} proper, \quad if $\|\mathfrak{s}\|>1$ |
| :--- | :--- |
| \mathfrak{s}^{\prime} is a child of \mathfrak{s}, if $\mathfrak{s}^{\prime} \in \Sigma_{K}$ and $\mathfrak{s}^{\prime} \subset \mathfrak{s}$ is a maximal subcluster |
| \mathfrak{s} minimal, \quad if \mathfrak{s} has no proper children |
| \mathfrak{s} übereven, \quad if $\mathfrak{s}=\bigcup_{\mathfrak{s}^{\prime}}$ child of \mathfrak{s}^{\prime} and $\left\|\mathfrak{s}^{\prime}\right\|$ even for all children \mathfrak{s}^{\prime} of \mathfrak{s} |

Moreover, we write $\mathfrak{s}^{\prime}<\mathfrak{s}$, or $\mathfrak{s}=P\left(\mathfrak{s}^{\prime}\right)$, for a child \mathfrak{s}^{\prime} of \mathfrak{s}, and $r \wedge \mathfrak{s}$ for the smallest rational cluster containing the root $r \in \mathfrak{R}$ and \mathfrak{s}.

Let $\stackrel{\circ}{\Sigma}_{K}$ be the set of proper rational clusters. For any $\mathfrak{s} \in \Sigma_{K}$, define its radius

$$
\rho_{\mathfrak{s}}=\max _{w \in K} \min _{r \in \mathfrak{s}} v(r-w)
$$

and the following quantities:

$$
\begin{aligned}
& b_{\mathfrak{s}}=d e n o m i n a t o r ~ o f ~ \\
& \rho_{\mathfrak{s}} \\
& \epsilon_{\mathfrak{s}}=v\left(c_{f}\right)+\sum_{r \in \mathfrak{R}} \rho_{r \wedge \mathfrak{s}} \\
& D_{\mathfrak{s}}=1 \text { if } b_{\mathfrak{s}} \epsilon_{\mathfrak{s}} \text { odd, } 2 \text { if } b_{\mathfrak{s}} \epsilon_{\mathfrak{s}} \text { even } \\
& m_{\mathfrak{s}}=\left(3-D_{\mathfrak{s})} b_{\mathfrak{s}}\right. \\
& p_{\mathfrak{s}}=1 \text { if }|\mathfrak{s}| \text { is odd, } 2 \text { if }|\mathfrak{s}| \text { is even } \\
& s_{\mathfrak{s}}=\frac{1}{2}\left(|\mathfrak{s}| \rho_{\mathfrak{s}}+p_{\mathfrak{s}} \rho_{\mathfrak{s}}-\epsilon_{\mathfrak{s}}\right) \\
& \gamma_{\mathfrak{s}}=2 \text { if }|\mathfrak{s}| \text { is even and } \epsilon_{\mathfrak{s}}-|\mathfrak{s}| \rho_{\mathfrak{s}} \text { is odd, } 1 \text { otherwise } \\
& p_{\mathfrak{s}}^{0}=1 \text { if } \mathfrak{s} \text { is minimal and } \mathfrak{s} \cap K \neq \varnothing, 2 \text { otherwise } \\
& s_{\mathfrak{s}}^{0}=-\epsilon_{\mathfrak{s}} / 2+\rho_{\mathfrak{s}} \\
& \gamma_{\mathfrak{s}}^{0}=2 \text { if } p_{\mathfrak{s}}^{0}=2 \text { and } \epsilon_{\mathfrak{s}} \text { is odd, } 1 \text { otherwise }
\end{aligned}
$$

Definition 2.1.4 (Definition 2.4.10) We say that the hyperelliptic curve C is y-regular if either $p \neq 2$ or $D_{\mathfrak{s}}=1$ for any $\mathfrak{s} \in \Sigma_{K}^{\circ}$.

Definition 2.1.5 Let $\mathfrak{s} \in \Sigma^{\circ}{ }_{K}$ and let $c \in\left\{0, \ldots, b_{\mathfrak{s}}-1\right\}$ such that $c \rho_{\mathfrak{s}}-\frac{1}{b_{\mathfrak{s}}} \in \mathbb{Z}$. Define

$$
\tilde{\mathfrak{s}}=\left\{\mathfrak{s}^{\prime} \in \Sigma_{K} \cup\{\varnothing\} \mid \mathfrak{s}^{\prime}<\mathfrak{s} \text { and } \frac{\left|\mathfrak{s}^{\prime}\right|}{b_{\mathfrak{s}}}-c \epsilon_{\mathfrak{s}} \notin 2 \mathbb{Z}\right\}
$$

where $\varnothing<\mathfrak{s}$ if \mathfrak{s} is minimal and $p_{\mathfrak{s}}^{0}=2$.
The genus $g(\mathfrak{s})$ of a rational cluster $\mathfrak{s} \in \Sigma_{K}^{\circ}$ is defined as follows:

- If $D_{\mathfrak{s}}=1$, then $g(\mathfrak{s})=0$.
- If $D_{\mathfrak{s}}=2$, then $2 g(\mathfrak{s})+1$ or $2 g(\mathfrak{s})+2$ equals $\frac{|\mathfrak{s}|-\sum_{\mathfrak{s}^{\prime}}<\mathfrak{s}\left|\mathfrak{s}^{\prime}\right|}{b_{\mathfrak{s}}}+|\tilde{\mathfrak{s}}|$.

Notation 2.1.6 (2.4.17) Let $\alpha \in \mathbb{Z}_{+}, a, b \in \mathbb{Q}$, with $a>b$, and fix $\frac{n_{i}}{d_{i}} \in \mathbb{Q}$ so that

$$
\alpha a=\frac{n_{0}}{d_{0}}>\frac{n_{1}}{d_{1}}>\ldots>\frac{n_{r}}{d_{r}}>\frac{n_{r+1}}{d_{r+1}}=\alpha b, \quad \text { with } \quad\left|\begin{array}{ll}
n_{i} & n_{i+1} \\
d_{i} & d_{i+1}
\end{array}\right|=1,
$$

and r minimal. We write $\mathbb{P}^{1}(\alpha, a, b)$ for a chain of $\mathbb{P}^{1} \mathrm{~S}$ (Notation 2.4.16) of length r and multiplicities $\alpha d_{1}, \ldots, \alpha d_{r}$. Denote by $\mathbb{P}^{1}(\alpha, a)$ the chain $\mathbb{P}^{1}(\alpha, a,\lfloor\alpha a-1\rfloor / \alpha)$.

The following theorem describes the special fibre of a regular model of C with strict normal crossings. ${ }^{2}$ It follows from a more general result constructing a proper flat model of C unconditionally (Theorem 2.4.18). For the special fibre $\mathcal{C}_{s}^{\min }$ of the minimal regular model with normal crossings, the reader can refer to Theorem 2.4.22, where we also describe a defining equation for all components of $\mathcal{C}_{s}^{\min }$ and discuss the Galois action (for general K). Finally, note that all these models are constructed in §2.5 by giving an explicit open affine cover (see §2.5.1-2.5.3).

Theorem 2.1.7 (Regular SNC model) Suppose C is y-regular and has almost rational cluster picture. Then we can explicitly construct a regular model with strict normal crossings \mathcal{C} / O_{K} of C (§2.5.1-2.5.3). Its special fibre \mathcal{C}_{s} / k is given as follows.

[^2](1) Every $\mathfrak{s} \in \stackrel{\circ}{\Sigma}_{K}$ gives a 1-dimensional closed subscheme $\Gamma_{\mathfrak{s}}$ of multiplicity $m_{\mathfrak{s}}$. If \mathfrak{s} is übereven and $\epsilon_{\mathfrak{s}}$ is even, then $\Gamma_{\mathfrak{s}}$ is the disjoint union of $\Gamma_{\mathfrak{s}}^{-} \simeq \mathbb{P}^{1}$ and $\Gamma_{\mathfrak{s}}^{+} \simeq \mathbb{P}^{1}$, otherwise $\Gamma_{\mathfrak{s}}$ is a smooth geometrically integral curve of genus $g(\mathfrak{s})\left(\right.$ write $\Gamma_{\mathfrak{s}}^{-}=\Gamma_{\mathfrak{s}}^{+}=\Gamma_{\mathfrak{s}}$ in this case).
(2) Every $\mathfrak{s} \in \Sigma_{K}^{\circ}$ with $D_{\mathfrak{s}}=1$ gives $\left(|\mathfrak{s}|-\sum_{\mathfrak{s}^{\prime} \in \Sigma_{K}, \mathfrak{s}^{\prime}<\mathfrak{s}}\left|\mathfrak{s}^{\prime}\right|+p_{\mathfrak{s}}^{0}-2\right) / b_{\mathfrak{s}}$ open-ended \mathbb{P}^{1} s of multiplicity $b_{\mathfrak{s}}$ from $\Gamma_{\mathfrak{s}}$.
(3) Finally, for any $\mathfrak{s} \in \Sigma_{K}^{\circ}$ draw the following chains of $\mathbb{P}^{1} s$:

Conditions	Chain	From	To
\mathfrak{s} minimal	$\mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}^{0},-s_{\mathfrak{s}}^{0}\right)$	$\Gamma_{\mathfrak{s}}^{-}$	open-ended
\mathfrak{s} minimal, $p_{\mathfrak{s}}^{0} / \gamma_{\mathfrak{s}}^{0}=2$	$\mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}^{0},-s_{\mathfrak{s}}^{0}\right)$	$\Gamma_{\mathfrak{s}}^{+}$	open-ended
$\mathfrak{s} \neq \mathfrak{R}$	$\mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}, s_{\mathfrak{s}}-p_{\mathfrak{s}} \frac{\rho_{\mathfrak{s}}-\rho_{P(\mathfrak{s})}}{2}\right)$	$\Gamma_{\mathfrak{s}}^{-}$	$\Gamma_{P(\mathfrak{s})}^{-}$
$\mathfrak{s} \neq \mathfrak{R}, p_{\mathfrak{s}} / \gamma_{\mathfrak{s}}=2$	$\mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}, s_{\mathfrak{s}}-p_{\mathfrak{s}} \frac{\left.\rho_{\mathfrak{s}}-\rho_{P(\mathfrak{s})}\right)}{2}\right)$	$\Gamma_{\mathfrak{s}}^{+}$	$\Gamma_{P(\mathfrak{s})}^{+}$
$\mathfrak{s}=\mathfrak{R}$	$\mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}\right)$	$\Gamma_{\mathfrak{s}}^{-}$	open-ended
$\mathfrak{s}=\mathfrak{R}, p_{\mathfrak{s}} / \gamma_{\mathfrak{s}}=2$	$\mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}\right)$	$\Gamma_{\mathfrak{s}}^{+}$	open-ended

When $p \neq 2$, Theorem 2.1.7 is generalised by Theorem 4.1.7, constructing a regular model with strict normal crossings for any hyperelliptic curve.

Definition 2.1.8 For any $\mathfrak{s} \in \stackrel{\circ}{\Sigma}_{K}$, an element $w_{\mathfrak{s}} \in K$ is called rational centre of \mathfrak{s} if $\min _{r \in \mathfrak{s}} v(r-$ $\left.w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s}}$.

If $\mathfrak{s}^{\prime}<\mathfrak{s}$ and $w_{\mathfrak{s}^{\prime}}$ is a rational centre of \mathfrak{s}^{\prime}, then $w_{\mathfrak{s}^{\prime}}$ is also a rational centre of \mathfrak{s}. For any minimal rational cluster \mathfrak{s}^{\prime} fix a rational centre $w_{\mathfrak{s}^{\prime}}$. For any $\mathfrak{s} \in \stackrel{\Sigma}{\Sigma}_{K}^{\circ}$ fix $w_{\mathfrak{s}}=w_{\mathfrak{s}^{\prime}}$ for some minimal rational cluster $\mathfrak{s}^{\prime} \subseteq \mathfrak{s}$.

The following result gives a basis of integral differentials when $K=K^{n r}$. In Theorem 2.6.4 we extend it to the case $K \neq K^{n r}$.

Theorem 2.1.9 (Theorem 2.6.3) Suppose C is y-regular and has almost rational cluster picture. For $i=0, \ldots, g-1$, inductively
(i) define $e_{i}:=\max _{\mathfrak{t} \in \grave{\Sigma}_{K}}\left\{\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{i-1} \rho_{\mathfrak{H}_{j} \wedge \mathfrak{t}}\right\}$;
(ii) choose clusters $\mathfrak{s}_{i} \in \stackrel{\Sigma}{\Sigma}_{K}$ so that $e_{i}=\frac{\epsilon_{\mathfrak{s}_{i}}}{2}-\sum_{j=0}^{i} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i}}$. If \mathfrak{s} and \mathfrak{s}^{\prime} are two possible choices for \mathfrak{s}_{i} satisfying $\mathfrak{s}^{\prime} \subsetneq \mathfrak{s}$, then choose $\mathfrak{s}_{i}=\mathfrak{s}$.

Then a basis of integral differentials is given by

$$
\mu_{i}=\pi^{\left\lfloor e_{i}\right\rfloor} \prod_{j=0}^{i-1}\left(x-w_{\mathfrak{s}_{j}}\right) \frac{d x}{2 y}, \quad i=0, \ldots, g-1
$$

Note that given e_{i} as in the previous theorem, the sum $\sum_{i=0}^{g-1}\left\lfloor e_{i}\right\rfloor$ is the quantity, often denoted by $v\left(\omega^{\circ} / \omega\right)$, appearing in the period in the Birch and Swinnerton-Dyer conjecture (for more details see $\left.\left[\mathrm{FLS}^{3} \mathrm{~W}\right],[\mathrm{vB}, \S 1.3]\right)$.

2.1.2 Rational cluster picture

In this subsection we define the rational cluster picture and compare it with the classical cluster picture defined in $\left[D^{2} \mathrm{M}^{2}\right]$. We will show, via a simple example, in which sense the new object we introduce appears to be more suitable for the study of regular models.

Definition 2.1.10 (Definition 2.3.9) Let K and C as before. The rational cluster picture of C is the collection of its rational clusters Σ_{K} together with their radii.

Example 2.1.11 Let p be any prime number and set $K=\mathbb{Q}_{p}^{n r}$. Let $E_{p} / \mathbb{Q}_{p}^{n r}$ given by $y^{2}=x^{3}-p$. Then E_{p} is an elliptic curve with Kodaira-Néron reduction type II. Therefore the minimal regular model (with normal crossings) of E_{p} does not depend on p. This is in accordance with the fact that the rational cluster picture of E_{p} is the same for all p. Indeed, the set of roots of the polynomial $x^{3}-p$ is $\mathfrak{R}=\left\{\sqrt[3]{p}, \zeta_{3} \sqrt[3]{p}, \zeta_{3}^{2} \sqrt[3]{p}\right\}$, where ζ_{3} is a primitive 3-rd of unity. Hence the rational cluster picture of E_{p} is

for any p,
where we denoted with bullet points the roots in \mathfrak{R}, with a surrounding oval the only rational cluster \mathfrak{R}, and with the subscript the radius $\rho_{\mathfrak{R}}$ of \Re.

A different behaviour is observed when we consider the cluster picture $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right.$, Definition 1.26] of E_{p}, collection of its clusters together with their depths. The cluster picture of E_{p} is

$p=2$	$p=3$	$p>3$
cluster picture not defined	\Re	\Re

where the subscripts represent the depth of the cluster \mathfrak{R}. It does depend on p and differs from the rational cluster picture when $p=3$ (if we do not consider non-proper clusters). Thus, although the cluster picture is particularly useful for Galois theoretical problems, the rational cluster picture appears to be a more suitable object for the study of regular models of the curve.

Finally, note that E_{p} has an almost rational cluster picture. For any two distinct roots $r, r^{\prime} \in \mathfrak{R}$, the smallest v-adic disc $D_{r, r^{\prime}}$ containing them also contains the whole \mathfrak{R}. The element $0 \in \mathbb{Q}_{p}^{n r}$ belongs to $D_{r, r^{\prime}}$ when $p \neq 3$, while $\left|D_{r, r^{\prime}} \cap \Re\right|=3=|v(r)|_{p}$, if $p=3$.

The advantages of the rational cluster picture discussed in this subsection can also be observed in the following example where we study a more complex family of hyperelliptic curves having almost rational cluster picture.

2.1.3 Example

In this subsection we are going to present an example of a family of hyperelliptic curves C_{p} satisfying the hypothesis of Theorems 2.1.7 and 2.1.9. Via those results we will then describe the special fibre of the minimal regular model and a basis of integral differentials of C_{p}. All the computations involved are explained in detail in Examples 2.3.32, 2.4.24 and 2.6.5.

For any prime number p, let $a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{p}^{\times}$such that the polynomial $x^{2}+a x+b$ is not a square modulo p. Let C_{p} / \mathbb{Q}_{p} be the hyperelliptic curve of genus 4 given by $y^{2}=f(x)$, where $f(x)=\left(x^{6}+a p^{4} x^{3}+b p^{8}\right)\left((x-p)^{3}-p^{11}\right)$. The curve $C_{p} / \mathbb{Q}_{p}^{n r}$ has an almost rational cluster picture and is y-regular when $p=2$. Its rational cluster picture is

where $\rho_{\mathfrak{t}_{3}}=\frac{4}{3}, \rho_{\mathfrak{t}_{4}}=\frac{11}{3}$, and $\rho_{\mathfrak{R}}=1$. From Theorem 2.1.7 we can construct a regular model with strict normal crossings of C_{p} with special fibre

over $\overline{\mathbb{F}}_{p}$. Computing the self-intersection of each irreducible component we easily see that this model coincides with the minimal regular model $\mathcal{C}^{\text {min }}$. Theorem 2.4.22 also describes the action of the Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$ on the special fibre $\mathcal{C}_{s}^{\min }$ of $\mathcal{C}^{\text {min }}$. If the roots of $x^{2}+a x+b \bmod p$ are in \mathbb{F}_{p} then the absolute Galois group acts trivially on each component, otherwise it swaps the 2 irreducible components of multiplicity 3 intersecting $\Gamma_{\mathfrak{t}_{3}}$.

From Theorem 2.1.9 it follows that, for any p, a basis of integral differentials of $C_{p} / \mathbb{Q}_{p}^{n r}$ is given by

$$
\mu_{0}=p^{4} \cdot \frac{d x}{2 y}, \quad \mu_{1}=p^{3}(x-p) \cdot \frac{d x}{2 y}, \quad \mu_{2}=p(x-p) x \cdot \frac{d x}{2 y}, \quad \mu_{3}=(x-p) x^{2} \cdot \frac{d x}{2 y} .
$$

In fact, this is also a basis of integral differentials of C_{p} / \mathbb{Q}_{p} since they are all defined over \mathbb{Q}_{p} (see Proposition A.2.2).

Below we will present related works of other authors concerning regular models and integral differentials of hyperelliptic curves. Note that the example presented here is not covered by [$\mathrm{D}^{2} \mathrm{M}^{2}$] and [Dok] since the curve C_{p} is not semistable and not Δ_{v}-regular. In fact, if $p=3$ the curve C_{p} does not even have tamely potential semistable reduction. The results in [FN] assume $p>2$ and C_{p} with tamely potential semistable reduction, hence they can not be used when $p=2,3$. Finally, there is no classification for genus 4 curves.

2.1.4 Related works of other authors

Let K be a discretely valued field with residue field k of characteristic p and let C / K be a hyperelliptic curve of genus g.

In genus 1 , when k is perfect, thanks to Tate's algorithm, one can describe the minimal regular model and the space of integral differentials of an elliptic curve C (see for example [Sil2, IV.8.2], [Liu4, Theorem 9.4.35]).

If $K=\mathbb{C}(t)$ and C has genus 2, then Namikawa and Ueno [NU] and Liu [Liu5] give a full classification of the possible configurations of the special fibre of the minimal regular model of C.

If $p \neq 2$, then Liu and Lorenzini show in [LL] that regular models of C can be seen as double cover of well-chosen regular models of \mathbb{P}_{K}^{1}. Since the latter can be found by using the MacLane valuations ([Mac]) approach in [OW], this argument gives a way to describe any regular model of a hyperelliptic curve. At the moment there is no known closed form description of a regular model based on this approach and it has not been generalised to the $p=2$ case.

If $p>2, k$ finite, and C is semistable, then in $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right]$ the authors explicitly construct a minimal regular model in terms of the cluster picture of C. Under the same assumptions, Kunzweiler [Kun] gives a basis of integral differentials rephrasing [Kau, Proposition 5.5] in terms of the cluster invariants introduced in $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right]$. These results can be recovered from Theorem 2.4.22 (see Corollary 2.4.26) and Theorem 2.6.3.

If $p>2$ and C is semistable over some tamely ramified extension L / K, then Faraggi and Nowell [FN] find the special fibre of the minimal regular model of C with strict normal crossings taking the quotient of the stable model of C_{L} and resolving the (tame) singularities. However, since they do not describe the charts of the model, their result does not immediately yield all arithmetic invariants, such as a basis of integral differentials.

The last work we want to recall represents an important ingredient of the strategy we will use in this chapter (described more precisely in the next subsection). T. Dokchitser in [Dok] shows that the toric resolution of C gives a regular model in case of Δ_{v}-regularity ([Dok, Definition 3.9]). This result, used also in [FN], holds for general curves and in any residue characteristic. In his paper, Dokchitser also describes a basis of integral differentials since his model is given as open cover of affine schemes. In Corollary 2.3.25 and Theorem 2.6.1, we will rephrase his results for hyperelliptic curves by using rational cluster picture invariants from §2.3.

2.1.5 Strategy and outline of the chapter

In [Dok], Dokchitser not only describes a regular model of C in case of Δ_{v}-regularity, but also constructs a proper flat model \mathcal{C}_{Δ} without any assumptions on C. Assume C is y-regular and has an almost rational cluster picture over $K^{n r}$ with rational centres $w_{1}, \ldots, w_{m} \in K^{n r}$. Our approach to construct the minimal regular model with normal crossings of C is composed by the following steps:

- Consider the x-translated hyperelliptic curves $C^{w_{h}} / K^{n r}: y^{2}=f\left(x+w_{h}\right)$, for $h=1, \ldots, m$. For each h, [Dok, Theorem 3.14] constructs a proper flat model $\mathcal{C}_{\Delta}^{w_{h}}$, possibly singular.
- We glue regular open subschemes of these models along common opens, and show that the result is a proper flat regular model \mathcal{C} of $C_{K^{n r}}$ with strict normal crossings.
- We give a complete description of what components of the special fibre of \mathcal{C} have to be blown down to obtain the minimal model with normal crossings $\mathcal{C}^{\min }$ of $C_{K^{n r}}$.
- Finally, we describe the action of the absolute Galois group G_{k} of k on the special fibre of $\mathcal{C}^{\text {min }}$ 。

We will explicitly describe both the models $\mathcal{C}_{\Delta}^{w_{h}}$ and \mathcal{C}. This allows us to study the global sections of its relative dualising sheaf $\omega_{\mathcal{C} / O_{K}}(\mathcal{C})$.

In §2.2, we present some results on Newton polygons used in the following sections. In §2.3, we recall the basic objects and notation of $\left[D^{2} \mathrm{M}^{2}\right]$ and define the rational cluster picture. Moreover, we relate it with the notions given in §2.2. This comparison allows us to rephrase the objects in [Dok] in terms of rational clusters invariants in §2.4. In the same section we also state the theorems which describe the special fibres of a proper flat model (Theorem 2.4.18) and of the minimal regular model with normal crossings (Theorem 2.4.22) of C. The construction of these models, from which the two theorems above follow, is presented in §2.5. Finally, in §2.6, Theorems 2.6.3 and 2.6.4 describe a basis of integral differentials of C, in terms of rational clusters invariants defined in §2.3.

2.1.6 Notation

The following is main notation for fields, hyperelliptic curves and Newton polytopes.

K, v	complete field with normalised discrete valuation v
O_{K}, π, k, p	ring of integers, uniformiser, residue field, char (k)
\bar{K}, \bar{k}	fixed algebraic closure of K, residue field of \bar{K}
$K^{\mathrm{s}}, K^{n r}$	separable closure, maximal unramified extension of K in \bar{K}
$O_{K^{n r}, k^{\mathrm{s}}}$	ring of integers of $K^{n r}$, residue field of $K^{n r}$
F	extension of K in \bar{K}, unramified in $\S 2.4$
G_{K}, G_{k}	absolute Galois groups $\operatorname{Gal}\left(K^{\mathrm{s}} / K\right), \operatorname{Gal}\left(k^{\mathrm{s} / k)}\right.$
$f(x)$	$=\sum a_{i} x^{i}$, polynomial in $K[x]$, separable from $\S 2.3$
$\mathrm{NP}(f)$	Newton polygon of f, lower convex hull of $\left\{\left(i, v\left(a_{i}\right)\right) \mid a_{i} \neq 0\right\}$
$\left.f\right\|_{L}, \overline{\left.f\right\|_{L}}$	restriction and reduction of f to an edge L of $\operatorname{NP}(f)(2.2 .5)$
$g(x, y)$	$=y^{2}-f(x)$, polynomial in $K[x, y]$ defining C
$f_{w}(x), f_{h}(x)$	$=f(x+w), f\left(x+w_{h}\right)$, for a given rational centre w_{h}
$g_{w}(x, y), g_{h}(x, y)$	$=y^{2}-f_{w}(x), y^{2}-f_{h}(x)$
C, C^{w}	hyperelliptic curve given by $g(x, y)=0, g_{w}(x, y)=0$
$\Delta^{w}, \Delta_{v}^{w}$	Newton polytopes attached to C^{w} as in $[$ Dok, $\S 1.1]$
$F_{\mathfrak{t}}^{w}, L_{\mathfrak{t}}^{w}, V_{\mathfrak{t}}^{w}, V_{0}^{w}$	v-faces and v-edges of $\Delta^{w}(2.4 .4)$

For a separable polynomial $f \in k[x]$ or a hyperelliptic curve $C / K: y^{2}=f(x)$ as above, the following is the main notation for clusters.

c_{f}, \mathfrak{R}	leading coefficient and set of roots of f
Σ_{f}, Σ_{C}	cluster picture, the set of clusters of f, C (2.3.2)
$\mathfrak{s} \in \Sigma_{C}$	cluster, $\mathfrak{s}=\mathcal{D} \cap \mathfrak{R}$, for a v-adic disc \mathcal{D} (2.3.1)
$G_{\mathfrak{s}}, K_{\mathfrak{s}}, k_{\mathfrak{s}}$	$G_{\mathfrak{s}}=\operatorname{Stab}_{G_{K}(\mathfrak{s}) ;} K_{\mathfrak{s}}=\left(K^{\mathrm{s}}\right)^{G_{\mathfrak{s}}} ; k_{\mathfrak{s}}$ residue field of $K_{\mathfrak{s}}$
d_{s}	$=\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right)$ is the depth of a cluster \mathfrak{s} (2.3.1)
$\mathfrak{s}^{\prime}<\mathfrak{s}=P\left(\mathfrak{s}^{\prime}\right)$	\mathfrak{s}^{\prime} is a child of \mathfrak{s} and \mathfrak{s} is the parent of \mathfrak{s}^{\prime} (2.3.3)
$\mathfrak{s} \wedge \mathrm{t}$	smallest cluster containing \mathfrak{s} and \mathfrak{t} (2.3.3)
ρ_{5}	$=\max _{w \in F} \min _{r \in \mathfrak{s}} v(r-w)$, radius of $\mathfrak{s} \in \Sigma_{C_{F}}(2.3 .8,2.4 .6)$
$b_{\mathfrak{s}}$	denominator of $\rho_{\mathfrak{s}}$ (2.4.6)
$w_{\mathfrak{s}}$	rational centre of \mathfrak{s} (2.3.8)
$\epsilon_{\mathfrak{5}}$	$=v\left(c_{f}\right)+\sum_{r \in \mathfrak{R}} \rho_{r \wedge \mathfrak{s}}(2.3 .19,2.4 .6)$
$\Sigma_{f}^{\mathrm{rat}}, \Sigma_{C}^{\mathrm{rat}}$	rational cluster picture (2.3.9)
$\mathfrak{s} \in \Sigma_{C}^{\mathrm{rat}}$	rational cluster (2.3.9)
Σ_{F}	$=\Sigma_{C_{F}}^{\text {rat }}$, for some extension F / K (2.4.6)
$\Sigma_{f}^{z}, \Sigma_{C}^{z}$	cluster picture centred at z (2.3.34)
$\mathfrak{s} \in \Sigma_{C}^{z}$	cluster centred at z (2.3.33)
$\rho_{\mathfrak{s}}^{z}, \epsilon_{\mathfrak{s}}^{z}$	$\rho_{\mathfrak{S}}^{z}=\min _{r \in \mathfrak{S}} v(r-z), \epsilon_{\mathfrak{s}}^{z}=v\left(c_{f}\right)+\sum_{r \in \mathfrak{R}} \rho_{r \wedge \mathfrak{s}}^{z}$ (2.3.35)
$\Sigma^{W},{ }^{\text { }}$	$\Sigma^{W}=\bigcup_{w \in W} \Sigma_{C}^{w}, \stackrel{\circ}{\Sigma} \subset \Sigma_{K^{n r}}$ non-removable clusters (2.4.19)
$w_{h l}$	$=w_{h}-w_{l}$ for fixed rational centres w_{h}, w_{l} (§2.5.1)
$u_{h l}, \rho_{h l}$	$u_{h l} \in O_{K}^{\times}, \rho_{h l} \in \mathbb{Z}$ such that $w_{h l}=u_{h l} \pi^{\rho_{h l}} ; u_{h h}=0$ (§2.5.1)
$D_{\mathfrak{s}}, m_{\mathfrak{s}}$	$D_{\mathfrak{s}}=1$ if $b_{\mathfrak{s}} \epsilon_{\mathfrak{s}}$ odd, 2 if $b_{\mathfrak{s}} \epsilon_{\mathfrak{s}}$ even; $m_{\mathfrak{s}}=\left(3-D_{\mathfrak{s}}\right) b_{\mathfrak{s}}$ (2.4.6)
$p_{\mathfrak{s}}$	$=1$ if $\|\mathfrak{s}\|$ is odd, 2 if $\|\mathfrak{s}\|$ is even (2.4.6)
$\gamma_{\text {s }}$	$=2$ if $\|\mathfrak{s}\|$ is even and $\epsilon_{\mathfrak{s}}-\|\mathfrak{s}\| \rho_{\mathfrak{s}}$ is odd, 1 otherwise (2.4.6)
$p_{\mathfrak{s}}^{0}$	$=1$ if \mathfrak{s} is minimal and $\mathfrak{s} \cap K_{\mathfrak{s}} \neq \varnothing, 2$ otherwise (2.4.6)
$\gamma_{\mathfrak{s}}^{0}$	$=2$ if $p_{5}^{0}=2$ and $\epsilon_{\mathfrak{s}}$ is odd, 1 otherwise (2.4.6)
$s_{\mathfrak{s}}, s_{\mathfrak{s}}^{0}$	$s_{\mathfrak{s}}=\frac{1}{2}\left(\|\mathfrak{s}\| \rho_{\mathfrak{s}}+p_{\mathfrak{s}} \rho_{\mathfrak{s}}-\epsilon_{\mathfrak{s}}\right), s_{\mathfrak{s}}^{0}=-\epsilon_{\mathfrak{s}} / 2+\rho_{\mathfrak{s}}$ (2.4.6)
$\overline{g_{\mathfrak{s}}}, \overline{g_{\mathfrak{s}}^{0}}, \overline{f_{\mathfrak{s}}^{W}}, \overline{f_{\mathfrak{s}}}, \tilde{f}_{\mathfrak{s}}$	polynomials in one variable over $k_{\mathfrak{s}}$ (2.4.14, 2.4.21)

2.2 Newton polygon

Let K be a complete field with a normalised valuation v, ring of integers O_{K}, uniformiser π, and residue field k of characteristic p. We fix \bar{K}, an algebraic closure of K, of residue field \bar{k}, and we denote by $K^{\text {s }}$ the separable closure of K in \bar{K}. Denote by $K^{n r}$ the maximal unramified extension of K in K^{s}, by $O_{K^{n r}}$ its ring of integers, and by k^{s} its residue field. Note that k^{s} is the separable closure of k in \bar{k}. Extend the valuation v to \bar{K}. Finally, write G_{K}, G_{k} for the Galois $\operatorname{groups} \operatorname{Gal}\left(K^{\mathrm{s}} / K\right), \operatorname{Gal}\left(k^{\mathrm{s}} / k\right)$, respectively.

Notation 2.2.1 Let $O_{\bar{K}}=\{a \in \bar{K} \mid v(a) \geq 0\}$. Throughout this thesis, given an element $a \in O_{\bar{K}}$, we will write $a \bmod \pi$ for the reduction of a in \bar{k}. Similarly, given a polynomial $h \in O_{\bar{K}}\left[x_{1}, \ldots, x_{n}\right]$,
namely $h=\sum a_{i_{1}, \ldots, i_{n}} \cdot x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$, we will write $h \bmod \pi$ for the polynomial $\sum\left(a_{i_{1}, \ldots, i_{n}} \bmod \pi\right)$. $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \in \bar{k}\left[x_{1}, \ldots, x_{n}\right]$.

Let $f \in K[x]$ be a non-zero polynomial of degree d, say

$$
f(x)=\sum_{i=0}^{d} a_{i} x^{i} .
$$

The Newton polygon of f, denoted $\operatorname{NP}(f)$, is

$$
\operatorname{NP}(f)=\text { lower convex hull }\left\{\left(i, v\left(a_{i}\right)\right) \mid i=0, \ldots, d, a_{i} \neq 0\right\} \subset \mathbb{R}^{2} .
$$

We recall the following well-known result (see for example [Neu, II.6.3,6.4]).
Theorem 2.2.2 Let $i_{0}<\ldots<i_{s}=d$ be the set of indices in $\{0, \ldots, d\}$ such that the points $\left(i_{0}, v\left(a_{i_{0}}\right)\right), \ldots,\left(i_{s}, v\left(a_{i_{s}}\right)\right)$ are the vertices of $\operatorname{NP}(f)$. For any $j=1, \ldots, s$, denote by ρ_{j} the slope of the edge of $\operatorname{NP}(f)$ which links the points $\left(i_{j-1}, v\left(a_{i_{j-1}}\right)\right)$ and $\left(i_{j}, v\left(a_{i_{j}}\right)\right.$. Then f has a unique factorisation over K as a product

$$
f=a_{d} \cdot g_{0} \cdot g_{1} \cdots g_{s}
$$

where $g_{0}=x^{i_{0}}$ and, for all $j=1, \ldots, s$,

- the polynomials $g_{j} \in K[x]$ are monic of degree $d_{j}=i_{j}-i_{j-1}$,
- all the roots of g_{j} have valuation $-\rho_{j}$ in \bar{K}.

In particular, $\mathrm{NP}\left(g_{j}\right)$ is a segment of slope $-\rho_{j}$.
Corollary 2.2.3 With the notation of Theorem 2.2.2, the polynomial f has exactly d_{j} roots of valuation $-\rho_{j}$ for all $j=1, \ldots, s$.

Corollary 2.2.4 If $f=\sum a_{i} x^{i}$ is irreducible of degree d and $a_{0} \neq 0$, then $\operatorname{NP}(f)$ is a segment linking the points $\left(0, v\left(a_{0}\right)\right)$ and $\left(d, v\left(a_{d}\right)\right)$.

Definition 2.2.5 (Restriction and reduction) Let $f=\sum_{i=0}^{d} a_{i} x^{i} \in K[x]$ and consider an edge L of its Newton polygon $\operatorname{NP}(f)$. Let $\left(i_{1}, v\left(a_{i_{1}}\right)\right),\left(i_{2}, v\left(a_{i_{2}}\right)\right), i_{1}<i_{2}$ be the two endpoints of L. Denote by ρ the slope of L and by n the denominator of ρ. Define the restriction of f to L as

$$
\left.f\right|_{L}:=\sum_{i=0}^{\left(i_{2}-i_{1}\right) / n} a_{n i+i_{1}} x^{i} \in K[x] .
$$

Moreover we define the reduction of f with respect to L to be the polynomial

$$
\overline{\left.f\right|_{L}}:=\left.\pi^{-c} f\right|_{L}\left(\pi^{-n \rho} x\right) \bmod \pi \in k[x],
$$

where $c=v\left(a_{i_{1}}\right)=v\left(a_{i_{2}}\right)+\left(i_{1}-i_{2}\right) \rho$.

Remark 2.2.6. These definitions coincide with the ones given in [Dok, Definitions 3.4, 3.5] when the number of variables is 1 (for suitable choices of basis of the lattices used in the definitions).

Until the end of the section let $f \in K[x]$, consider a factorisation $f=a_{d} \cdot g_{0} \cdot g_{1} \cdots g_{s}$ as in Theorem 2.2.2. Denote by L_{j} the edge of slope ρ_{j} of $\operatorname{NP}(f)$, for any $j=1 \ldots s$.
Remark 2.2.7. By the lower convexity of $\operatorname{NP}(f)$, for all $j=1, \ldots, s$, note that $\overline{\left.f\right|_{L_{j}}}=\bar{c}_{j} \cdot \overline{\left.g_{j}\right|_{\operatorname{NP}\left(g_{j}\right)}}$ for some $\bar{c}_{j} \in k^{\times}$. In particular they define the same k-scheme in $\mathbb{G}_{m, k}$. More precisely, for any $j=1, \ldots, s$, let

$$
u_{j}=a_{d} \cdot \prod_{i=j+1}^{s} g_{i}(0)
$$

Then $\bar{c}_{j}=u_{j} / \pi^{v\left(u_{j}\right)} \bmod \pi$.
Definition 2.2.8 We say that f is NP-regular if the k-scheme

$$
X_{L_{j}}:\left\{\overline{\left.f\right|_{L_{j}}}=0\right\} \subset \mathbb{G}_{m, k}
$$

is smooth for all $j=1, \ldots, s$.
Lemma 2.2.9 The polynomial $f=a_{d} \cdot g_{0} \cdot g_{1} \cdots g_{s}$ is NP-regular if and only if g_{j} is NP-regular for every $j=1, \ldots, s$.

Proof. The lemma follows from Remark 2.2.7.
We conclude this section with two examples.
Example 2.2.10 Let $f=x^{11}+9 x^{7}-3 x^{6}+9 x^{5}+81 x-27 \in \mathbb{Q}_{3}[x]$. Then the Newton polygon of f is

Corollary 2.2.3 implies that f has 6 roots of valuation $\frac{1}{3}$ and 5 roots of valuation $\frac{1}{5}$. Furthermore, the two polynomials g_{1} and g_{2} in the factorisation $f=g_{1} \cdot g_{2}$ of Theorem 2.2.2 turn out to be

$$
g_{1}=x^{6}+9, \quad g_{2}=x^{5}+9 x-3
$$

Finally,

$$
\left.f\right|_{L_{1}}=-3 x^{2}-27=-\left.3 \cdot g_{1}\right|_{\mathrm{NP}\left(g_{1}\right)},\left.\quad f\right|_{L_{2}}=x-3=\left.g_{2}\right|_{\mathrm{NP}\left(g_{2}\right)}
$$

and

$$
\overline{\left.f\right|_{L_{1}}}=-x^{2}-1=-\left(x^{2}+1\right)=-\overline{\left.g_{1}\right|_{\operatorname{NP}\left(g_{1}\right)}}, \quad \overline{\left.f\right|_{L_{2}}}=x-1=\overline{\left.g_{2}\right|_{\operatorname{NP}\left(g_{2}\right)}} \quad \text { in } \mathbb{F}_{3}[x] .
$$

Thus f is NP-regular.
Example 2.2.11 We now show an example of a polynomial that is not NP-regular. Let $f=$ $x^{9}+12 x^{6}+36 x^{3}+81 \in \mathbb{Q}_{3}[x]$. Then the Newton polygon of f is

Corollary 2.2.3 implies that f has 3 roots of valuation $\frac{2}{3}$ and 6 roots of valuation $\frac{1}{3}$. Furthermore, the two polynomials g_{1} and g_{2} in the factorisation $f=g_{1} \cdot g_{2}$ of Theorem 2.2.2 are

$$
g_{1}=x^{3}+9, \quad g_{2}=x^{6}+3 x^{3}+9 .
$$

Finally,

$$
\begin{array}{cl}
\left.f\right|_{L_{1}}=36 x+81 & \left.f\right|_{L_{2}}=x^{2}+12 x+36, \\
\left.g_{1}\right|_{\operatorname{NP}\left(g_{1}\right)}=x+9, & \left.g_{2}\right|_{\operatorname{NP}\left(g_{2}\right)}=x^{2}+3 x+9
\end{array}
$$

and

$$
\overline{\left.f\right|_{L_{1}}}=x+1=\overline{\left.g_{1}\right|_{\mathrm{NP}\left(g_{1}\right)}}, \quad \overline{\left.f\right|_{L_{2}}}=(x+2)^{2}=\overline{\left.g_{2}\right|_{\operatorname{NP}\left(g_{2}\right)}} \quad \text { in } \mathbb{F}_{3}[x] .
$$

Then f is not NP-regular. In fact, in accordance with Lemma 2.2.9, g_{2} is not NP-regular.

2.3 Rational clusters

From now on, let $f \in K[x]$ be a separable polynomial and denote by \mathfrak{R} the set of its roots in $K^{\text {s }}$ and by c_{f} its leading coefficient. Then

$$
f(x)=c_{f} \prod_{r \in \Re}(x-r) .
$$

Definition 2.3.1 ($\left[\mathrm{D}^{2} \mathrm{M}^{2}\right.$, Definition 1.1]) A cluster (for f) is a non-empty subset $\mathfrak{s} \subseteq \mathfrak{R}$ of the form $\mathcal{D} \cap \mathfrak{R}$, where \mathcal{D} is a v-adic disc $\mathcal{D}=\{x \in \bar{K} \mid v(x-z) \geq d\}$ for some $z \in \bar{K}$ and $d \in \mathbb{Q}$. If $|\mathfrak{s}|>1$ we say that \mathfrak{s} is proper and define its depth $d_{\mathfrak{s}}$ to be

$$
d_{\mathfrak{s}}=\min _{r, r^{\prime} \in \mathfrak{j}} v\left(r-r^{\prime}\right) .
$$

Note that every proper cluster is cut out by a disc of the form

$$
\mathcal{D}=\left\{x \in \bar{K} \mid v(x-r) \geq d_{\mathfrak{s}}\right\}
$$

for any $r \in \mathfrak{s}$.
Definition 2.3.2 ([$\mathrm{D}^{2} \mathrm{M}^{2}$, Definition 1.26]) The cluster picture of f is the collection of its clusters, together with their depths.

We denote by Σ_{f} the set of all clusters of f and by Σ_{f}° the subset of Σ_{f} of proper clusters.
Definition 2.3.3 ([$D^{2} \mathrm{M}^{2}$, Definition 1.3]) If $\mathfrak{s}^{\prime} \subsetneq \mathfrak{s}$ is maximal subcluster, then we say that \mathfrak{s}^{\prime} is a child of \mathfrak{s} and \mathfrak{s} is the parent of \mathfrak{s}^{\prime}, and we write $\mathfrak{s}^{\prime}<\mathfrak{s}$. Since every cluster $\mathfrak{s} \neq \mathfrak{R}$ has one and only one parent we write $P(\mathfrak{s})$ to refer to the unique parent of \mathfrak{s}.

We say that a proper cluster \mathfrak{s} is minimal if it does not have any proper child.
For two clusters (or roots) $\mathfrak{s}_{1}, \mathfrak{s}_{2}$, we write $\mathfrak{s}_{1} \wedge \mathfrak{s}_{2}$ for the smallest cluster that contains them.
Definition 2.3.4 ([D $D^{2} \mathrm{M}^{2}$, Definition 1.4]) A cluster \mathfrak{s} is odd/even if its size is odd/even. If $|\mathfrak{s}|=2$, then we say \mathfrak{s} is a twin. A cluster \mathfrak{s} is \ddot{u} bereven if it has only even children.

Definition 2.3.5 ([D $D^{2} \mathrm{M}^{2}$, Definition 1.9]) A centre $z_{\mathfrak{s}}$ of a proper cluster \mathfrak{s} is any element $z_{\mathfrak{s}} \in K^{\mathfrak{s}}$ such that $\mathfrak{s}=\mathcal{D} \cap \mathfrak{R}$, where

$$
\mathcal{D}=\left\{x \in \bar{K} \mid v\left(x-z_{\mathfrak{s}}\right) \geq d_{\mathfrak{s}}\right\} .
$$

Equivalently, $v\left(r-z_{\mathfrak{s}}\right) \geq d_{\mathfrak{s}}$ for all $r \in \mathfrak{s}$. The centre of a non-proper cluster $\mathfrak{s}=\{r\}$ is r.
Definition 2.3.6 ([$\mathrm{D}^{2} \mathrm{M}^{2}$, Definition 1.6]) For a proper cluster \mathfrak{s} set

$$
v_{\mathfrak{s}}:=v\left(c_{f}\right)+\sum_{r \in \mathfrak{R}} d_{r \wedge \mathfrak{s}} .
$$

Definition 2.3.7 We say that Σ_{f} is nested if one of the following equivalent conditions is satisfied:
(i) there exists $z \in K^{\mathrm{s}}$ such that z is a centre for all proper clusters $\mathfrak{s} \in \Sigma_{f}$;
(ii) there is only one minimal cluster in Σ_{f};
(iii) every non-minimal proper cluster has exactly one proper child.

Definition 2.3.8 A rational centre of a cluster \mathfrak{s} is any element $w_{\mathfrak{s}} \in K$ such that

$$
\min _{r \in \mathfrak{s}} v\left(r-w_{\mathfrak{s}}\right)=\max _{w \in K} \min _{r \in \mathfrak{s}} v(r-w) .
$$

If $\mathfrak{s}=\{r\}$, with $r \in K$, then $w_{\mathfrak{s}}=r$.
If $w_{\mathfrak{s}}$ is a rational centre of a proper cluster \mathfrak{s}, we define the radius of \mathfrak{s} to be

$$
\rho_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v\left(r-w_{\mathfrak{s}}\right) .
$$

Definition 2.3.9 A rational cluster is a cluster cut out by a v-adic disc of the form $\mathcal{D}=\{x \in \bar{K} \mid$ $v(x-w) \geq d\}$ with $w \in K$ and $d \in \mathbb{Q}$.

The rational cluster picture is the collection of all rational clusters of f together with their radii.

We denote by $\Sigma_{f}^{\mathrm{rat}} \subseteq \Sigma_{f}$ the set of rational clusters and by $\Sigma_{f}^{\mathrm{rat}}$ the subset of $\Sigma_{f}^{\mathrm{rat}}$ of proper rational clusters.

Lemma 2.3.10 Let \mathfrak{s} be a proper cluster. Then $d_{\mathfrak{s}} \geq \rho_{\mathfrak{s}}$.
Proof. First we want to show that

$$
\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right)=\max _{z \in K^{\mathfrak{s}}} \min _{r \in \mathfrak{s}} v(r-z)
$$

Clearly $\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right) \leq \max _{z \in K^{s}} \min _{r \in \mathfrak{s}} v(r-z)$. Let $z_{\mathfrak{s}} \in K^{\mathfrak{s}}$ such that

$$
\max _{z \in K^{\mathrm{s}}} \min _{r \in \mathfrak{s}} v(r-z)=\min _{r \in \mathfrak{F}} v\left(r-z_{\mathfrak{s}}\right) .
$$

Then, for any $r, r^{\prime} \in \mathfrak{s}$, one has

$$
v\left(r-r^{\prime}\right) \geq \min \left\{v\left(r-z_{\mathfrak{s}}\right), v\left(r^{\prime}-z_{\mathfrak{s}}\right)\right\} \geq \min _{r \in \mathfrak{s}} v\left(r-z_{\mathfrak{s}}\right)
$$

and so

$$
\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right) \geq \max _{z \in K^{\mathfrak{s}}} \min _{r \in \mathfrak{s}} v(r-z)
$$

as required. From

$$
d_{\mathfrak{s}}=\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right)=\max _{z \in K^{\mathfrak{s}}} \min _{r \in \mathfrak{s}} v(r-z) \geq \max _{w \in K} \min _{r \in \mathfrak{s}} v(r-w)=\rho_{\mathfrak{s}},
$$

the lemma follows.
Definition 2.3.11 Given a proper cluster $\mathfrak{s} \in \Sigma_{f}$, we define the rationalisation $\mathfrak{s}^{\text {rat }}$ of \mathfrak{s} to be the smallest rational cluster containing \mathfrak{s}. By definition

$$
\mathfrak{s}^{\mathrm{rat}}=\mathfrak{R} \cap\left\{x \in \bar{K} \mid v\left(x-w_{\mathfrak{s}}\right) \geq \rho_{\mathfrak{s}}\right\}
$$

where $w_{\mathfrak{s}}$ is a rational centre of \mathfrak{s} and $\rho_{\mathfrak{s}}$ is its radius.
Lemma 2.3.12 Let $\mathfrak{s} \in \Sigma_{f}^{\text {rat }}$ be a proper cluster with rational centre $w_{\mathfrak{s}}$. Let $\mathfrak{s}^{\prime} \in \Sigma_{f}^{\text {rat }}$ be the child of \mathfrak{s} with rational centre $w_{\mathfrak{s}}$ (let $\mathfrak{s}^{\prime}=\varnothing$ if it does not exist). Then $\left(|\mathfrak{s}|-\left|\mathfrak{s}^{\prime}\right|\right) \rho_{\mathfrak{s}} \in \mathbb{Z}$.

Proof. As $\mathfrak{s} \in \Sigma_{f}^{\text {rat }}$, one has $\mathfrak{s}=\mathfrak{s}^{\text {rat }}$. Let $b_{\mathfrak{s}}$ be the denominator of $\rho_{\mathfrak{s}}$. Then $b_{\mathfrak{s}}$ divides the degree of the minimal polynomial of r, for any $r \in \mathfrak{s}$ satisfying $v\left(w_{\mathfrak{s}}-r\right)=\rho_{\mathfrak{s}}$. Then $\left(|\mathfrak{s}|-\left|\mathfrak{s}^{\prime}\right|\right) \rho_{\mathfrak{s}} \in \mathbb{Z}$, where

$$
\mathfrak{s}^{\prime}=\mathfrak{R} \cap\left\{x \in \bar{K} \mid v\left(x-w_{\mathfrak{s}}\right)>\rho_{\mathfrak{s}}\right\}
$$

as required.

Remark 2.3.13. If a proper cluster $\mathfrak{s} \in \Sigma_{f}$ satisfies $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}$, then a rational centre $w_{\mathfrak{s}} \in K$ of its is also a centre. Hence \mathfrak{s} is a rational cluster and, in particular, is G_{K}-invariant. On the other hand, if a proper cluster $\mathfrak{s} \in \Sigma_{f}$ is G_{K}-invariant and $K(\mathfrak{s}) / K$ is tamely ramified, then \mathfrak{s} has a centre $z_{\mathfrak{s}} \in K$ by [$\mathrm{D}^{2} \mathrm{M}^{2}$, Lemma B.1]. Thus $\rho_{\mathfrak{s}}=d_{\mathfrak{s}}$ and $\mathfrak{s} \in \Sigma_{f}^{\mathrm{rat}}$.

Lemma 2.3.14 Let \mathfrak{s} be a proper cluster with rational centre $w_{\mathfrak{s}}$ and let $\mathfrak{t} \in \Sigma_{f}$ satisfying $\mathfrak{t} \supseteq \mathfrak{s}$. Then $w_{\mathfrak{s}}$ is a rational centre of \mathfrak{t} and $\rho_{\mathfrak{t}} \leq \rho_{\mathfrak{s}}$. Furthermore, if \mathfrak{s} is a rational cluster and $\mathfrak{t} \supsetneq \mathfrak{s}$, then $\rho_{\mathrm{t}}<\rho_{\mathrm{s}}$.

Proof. It suffices to prove the lemma for $\mathfrak{t}=P(\mathfrak{s})$. Hence we first want to show that $\min _{r \in P(\mathfrak{s})} v(r-$ $\left.w_{\mathfrak{s}}\right)=\rho_{P(\mathfrak{s})}$ and $\rho_{P(\mathfrak{s})} \leq \rho_{\mathfrak{s}}$. Note that

$$
\min _{r \in P(\mathfrak{s})} v\left(r-w_{\mathfrak{s})}\right) \leq \max _{w \in K} \min _{r \in P(\mathfrak{s})} v(r-w)=\rho_{P(\mathfrak{s})} .
$$

Moreover,

$$
\rho_{P(\mathfrak{s})}=\max _{w \in K} \min _{r \in P(\mathfrak{s})} v(r-w) \leq \max _{w \in K} \min _{r \in \mathfrak{s}} v(r-w)=\rho_{\mathfrak{s}} .
$$

If $r \in \mathfrak{s}$ then $v\left(w_{\mathfrak{s}}-r\right) \geq \rho_{\mathfrak{s}}$, by definition of $\rho_{\mathfrak{s}}$. On the other hand, if $r \in P(\mathfrak{s}) \backslash \mathfrak{s}$ then fixing $r^{\prime} \in \mathfrak{s}$ we have

$$
v\left(r-w_{\mathfrak{s}}\right)=v\left(r-r^{\prime}+r^{\prime}-w_{\mathfrak{s}}\right) \geq \min \left\{v\left(r-r^{\prime}\right), v\left(r^{\prime}-w_{\mathfrak{s}}\right)\right\} \geq \min \left\{d_{P(\mathfrak{s})}, \rho_{\mathfrak{s}}\right\} \geq \rho_{P(\mathfrak{s})}
$$

by the previous lemma. Thus $\min _{r \in P(\mathfrak{s})} v\left(r-w_{\mathfrak{s}}\right)=\rho_{P(\mathfrak{s})}$, as required.
Now suppose $\mathfrak{s} \in \sum_{f}^{\text {rat }}$ with $\mathfrak{t} \supsetneq \mathfrak{s}$. From Definition 2.3.8, it follows that

$$
\left\{x \in \bar{K} \mid v\left(x-w_{\mathfrak{s}}\right) \geq \rho_{\mathfrak{s}}\right\} \cap \mathfrak{R}=\mathfrak{s} \subsetneq \mathfrak{t} \subseteq\left\{x \in \bar{K} \mid v\left(x-w_{\mathfrak{s}}\right) \geq \rho_{\mathrm{t}}\right\} \cap \mathfrak{R},
$$

as $w_{\mathfrak{s}}$ is a rational centre of t . Thus $\rho_{\mathfrak{t}}<\rho_{\mathfrak{s}}$.
Lemma 2.3.15 Every cluster \mathfrak{s} with $\rho_{\mathfrak{s}}<d_{\mathfrak{s}}$ has no rational subcluster $\mathfrak{s}^{\prime} \subsetneq \mathfrak{s}$.
Proof. Suppose by contradiction there exists $\mathfrak{s}^{\prime} \in \Sigma_{C}^{\text {rat }}, \mathfrak{s}^{\prime} \subsetneq \mathfrak{s}$, and fix a rational centre $w_{\mathfrak{s}^{\prime}}$ of \mathfrak{s}^{\prime}. Then $w_{\mathfrak{s}^{\prime}}$ is a rational centre of \mathfrak{s} by the previous lemma. If $\left|\mathfrak{s}^{\prime}\right|=1$, then $w_{\mathfrak{s}^{\prime}}$ is also a centre of \mathfrak{s} and this contradicts $\rho_{\mathfrak{s}}<d_{\mathfrak{s}}$; so assume \mathfrak{s}^{\prime} proper. Let $r^{\prime} \in \mathfrak{s}^{\prime}$ such that $v\left(r^{\prime}-w_{\mathfrak{s}^{\prime}}\right)=\rho_{\mathfrak{s}^{\prime}}$ and $r \in \mathfrak{s}$ such that $v\left(r-w_{\mathfrak{s}^{\prime}}\right)=\rho_{\mathfrak{s}}$. But then $d_{\mathfrak{s}} \leq v\left(r-w_{\mathfrak{s}^{\prime}}+w_{\mathfrak{s}^{\prime}}-r^{\prime}\right)=\rho_{\mathfrak{s}}$ again by Lemma 2.3.14.

In particular, the lemma above shows that if $\mathfrak{s} \in \Sigma_{f}$ and $\mathfrak{s}^{\prime} \in \Sigma_{f}^{\text {rat }}$ is a maximal rational subcluster of \mathfrak{s}, with $\mathfrak{s}^{\prime} \subsetneq \mathfrak{s}$, then \mathfrak{s}^{\prime} is a child of \mathfrak{s}. Moreover, the parent of a rational cluster is rational.

Definition 2.3.16 We say that a proper rational cluster $\mathfrak{s} \in \Sigma_{f}^{\mathrm{rat}}$ is (rationally) minimal if it does not have any proper rational child.

Lemma 2.3.17 Let $\mathfrak{s , s} \mathfrak{s}^{\prime} \in \Sigma_{f}^{\text {rat }}$ such that $\mathfrak{s}^{\prime} \notin \mathfrak{s}$. If $w_{\mathfrak{s}}$ is a rational centre of \mathfrak{s} then

$$
\min _{r \in \mathfrak{s}^{\prime}} v\left(r-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}} .
$$

Proof. By Lemma 2.3.14 we have

$$
\min _{r \in \mathfrak{s} \wedge \mathfrak{s}^{\prime}} v\left(r-w_{\mathfrak{s})}\right)=\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}} .
$$

Therefore $\min _{r \in \mathfrak{g}^{\prime}} v\left(w_{\mathfrak{s}}-r\right) \geq \rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}$. Suppose by contradiction that

$$
\min _{r \in \mathfrak{s}^{\prime}}\left(r-w_{\mathfrak{s}}\right)=: \rho>\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}} .
$$

It follows from Lemma 2.3.14 that

$$
\min _{r \in \mathfrak{s}} v\left(r-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s}}>\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}
$$

as $\mathfrak{s}^{\prime} \nsubseteq \mathfrak{s}$. But then there exists $\tilde{r} \in\left(\mathfrak{s} \wedge \mathfrak{s}^{\prime}\right) \backslash\left(\mathfrak{s} \cup \mathfrak{s}^{\prime}\right)$ such that $v\left(\tilde{r}-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}$. Consider the rational cluster

$$
\mathfrak{t}:=\mathfrak{R} \cap\left\{x \in \bar{K} \mid v\left(x-w_{\mathfrak{s}}\right) \geq \min \left\{\rho, \rho_{\mathfrak{s}}\right\}\right\} \in \Sigma_{f}^{\mathrm{rat}} .
$$

Then $\mathfrak{s}, \mathfrak{s}^{\prime} \subseteq \mathfrak{t}$, but since $\tilde{r} \notin \mathfrak{t}$ we have $\mathfrak{s} \wedge \mathfrak{s}^{\prime} \nsubseteq \mathfrak{t}$ that contradicts the minimality of $\mathfrak{s} \wedge \mathfrak{s}^{\prime}$.
Lemma 2.3.18 Let $\mathfrak{t} \in \Sigma_{f}$ with at least two children in $\Sigma_{f}^{\text {rat. }}$. Then $d_{\mathfrak{t}}=\rho_{\mathfrak{t}} \in \mathbb{Z}$ and $\mathfrak{t} \in \Sigma_{f}^{\text {rat }}$. More precisely, if $\mathfrak{s , s} \mathfrak{s}^{\prime} \in \sum_{f}^{\text {rat }}$ such that $\mathfrak{s} \subsetneq \mathfrak{s} \wedge \mathfrak{s}^{\prime} \supsetneq \mathfrak{s}^{\prime}$, then

$$
\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}=v\left(w_{\mathfrak{s}}-w_{\mathfrak{s}^{\prime}}\right)=d_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}},
$$

where $w_{\mathfrak{s}}$ and $w_{\mathfrak{s}^{\prime}}$ are rational centres of \mathfrak{s} and \mathfrak{s}^{\prime} respectively.
Proof. Clearly it suffices to prove the second statement as $v\left(w_{\mathfrak{s}}-w_{\mathfrak{s}^{\prime}}\right) \in \mathbb{Z}$. For our assumptions $\mathfrak{s}^{\prime} \nsubseteq \mathfrak{s}$. Then by Lemma 2.3.17 there exists $r \in \mathfrak{s}^{\prime}$ so that $v\left(r-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}$. Thus,

$$
v\left(w_{\mathfrak{s}}-w_{\mathfrak{s}^{\prime}}\right)=\min \left\{v\left(w_{\mathfrak{s}}-r\right), v\left(r-w_{\mathfrak{s}^{\prime}}\right)\right\}=\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}},
$$

as $v\left(r-w_{\mathfrak{s}^{\prime}}\right) \geq \rho_{\mathfrak{s}^{\prime}}>\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}$ by Lemma 2.3.14. Finally, $d_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}=\rho_{\mathfrak{s} \wedge \mathfrak{s}^{\prime}}$ follows from Lemma 2.3.15.
Definition 2.3.19 For a proper cluster \mathfrak{s} set

$$
\epsilon_{\mathfrak{s}}:=v\left(c_{f}\right)+\sum_{r \in \mathcal{R}} \rho_{r \wedge \mathfrak{s}} .
$$

Example 2.3.20 Let $f=x^{11}-3 x^{6}+9 x^{5}-27 \in \mathbb{Q}_{3}[x]$. The set of roots of f is

$$
\mathfrak{R}=\left\{\sqrt[3]{3}, \zeta_{3} \sqrt[3]{3}, \zeta_{3}^{2} \sqrt[3]{3},-\sqrt[3]{3},-\zeta_{3} \sqrt[3]{3},-\zeta_{3}^{2} \sqrt[3]{3}, \sqrt[5]{3}, \zeta_{5} \sqrt[5]{3}, \zeta_{5}^{2} \sqrt[5]{3}, \zeta_{5}^{3} \sqrt[5]{3}, \zeta_{5}^{4} \sqrt[5]{3}\right\}
$$

where ζ_{q} is a primitive q-th root of unity for $q=3,5$. Then the proper clusters of f are

$$
\mathfrak{s}_{1}=\left\{\sqrt[3]{3}, \zeta_{3} \sqrt[3]{3}, \zeta_{3}^{2} \sqrt[3]{3}\right\}, \quad \mathfrak{s}_{2}=\left\{-\sqrt[3]{3},-\zeta_{3} \sqrt[3]{3},-\zeta_{3}^{2} \sqrt[3]{3}\right\}, \quad \mathfrak{s}_{3}=\mathfrak{s}_{1} \cup \mathfrak{s}_{2}, \quad \mathfrak{R}
$$

with $d_{\mathfrak{s}_{1}}=d_{\mathfrak{s}_{2}}=\frac{5}{6}, d_{\mathfrak{s}_{3}}=\frac{1}{3}$ and $d_{\mathfrak{R}}=\frac{1}{5}$. The graphic representation of the cluster picture of f is then

where the subscripts of clusters (represented as circles) are their depths.
Furthermore, note that 0 is a rational centre for all proper clusters and we have $\rho_{\mathfrak{s}_{1}}=\rho_{\mathfrak{S}_{2}}=$ $\rho_{\mathfrak{S}_{3}}=\frac{1}{3}$ and $\rho_{\mathfrak{R}}=\frac{1}{5}$.

Finally, for every cluster \mathfrak{s} we can also compute $v_{\mathfrak{s}}$ and $\epsilon_{\mathfrak{s}}$, that are

$$
v_{\mathfrak{S}_{1}}=v_{\mathfrak{S}_{2}}=\frac{9}{2}, \quad v_{\mathfrak{S}_{3}}=\epsilon_{\mathfrak{S}_{1}}=\epsilon_{\mathfrak{S}_{2}}=\epsilon_{\mathfrak{S}_{3}}=3, \quad v_{\mathfrak{R}}=\epsilon_{\mathfrak{R}}=\frac{11}{5}
$$

Example 2.3.21 Let $f=x^{9}+12 x^{6}+36 x^{3}+81 \in \mathbb{Q}_{3}[x]$ and fix an isomorphism $\overline{\mathbb{Q}}_{3} \simeq \mathbb{C}$. Then the set of roots of f is

$$
\mathfrak{R}=\left\{\sqrt[3]{3^{2}}, \zeta_{3} \sqrt[3]{3^{2}}, \zeta_{3}^{2} \sqrt[3]{3^{2}}, \zeta_{9} \sqrt[3]{3}, \zeta_{9}^{2} \sqrt[3]{3}, \zeta_{9}^{4} \sqrt[3]{3}, \zeta_{9}^{5} \sqrt[3]{3}, \zeta_{9}^{7} \sqrt[3]{3}, \zeta_{9}^{8} \sqrt[3]{3}\right\}
$$

where $\zeta_{q}=e^{2 \pi i / q}$ is a primitive q-th root of unity for $q=3,9$. Then the proper clusters of f are

$$
\begin{aligned}
& \mathfrak{s}_{1}=\left\{\sqrt[3]{3^{2}}, \zeta_{3} \sqrt[3]{3^{2}}, \zeta_{3}^{2} \sqrt[3]{3^{2}}\right\}, \quad \mathfrak{s}_{2}=\left\{\zeta_{9} \sqrt[3]{3}, \zeta_{9}^{4} \sqrt[3]{3}, \zeta_{9}^{7} \sqrt[3]{3}\right\}, \\
& \mathfrak{s}_{3}=\left\{\zeta_{9}^{2} \sqrt[3]{3}, \zeta_{9}^{5} \sqrt[3]{3}, \zeta_{9}^{8} \sqrt[3]{3}\right\}, \quad \mathfrak{s}_{4}=\mathfrak{s}_{2} \cup \mathfrak{s}_{3}, \quad \mathfrak{R}
\end{aligned}
$$

with $d_{\mathfrak{S}_{1}}=\frac{7}{6}, d_{\mathfrak{S}_{2}}=d_{\mathfrak{S}_{3}}=\frac{5}{6}, d_{\mathfrak{S}_{4}}=\frac{1}{2}$, and $d_{\mathfrak{R}}=\frac{1}{3}$. The cluster picture of f is then

It is easy to see that 0 is a rational centre for all proper clusters and that $\rho_{\mathfrak{s}_{1}}=\frac{2}{3}, \rho_{\mathfrak{s}_{2}}=\rho_{\mathfrak{S}_{3}}=\rho_{\mathfrak{s}_{4}}=$ $\rho_{\mathfrak{R}}=\frac{1}{3}$. Finally,

$$
v_{\mathfrak{s}_{1}}=\frac{11}{2}, \quad v_{\mathfrak{s}_{2}}=v_{\mathfrak{s}_{3}}=5, \quad v_{\mathfrak{s}_{4}}=4, \quad v_{\mathfrak{R}}=3 ; \quad \epsilon_{\mathfrak{s}_{1}}=4, \quad \epsilon_{\mathfrak{s}_{2}}=\epsilon_{\mathfrak{S}_{3}}=\epsilon_{\mathfrak{S}_{4}}=\epsilon_{\mathfrak{R}}=3
$$

The goal of this section is to describe the NP-regularity of $f \in K[x]$ in terms of conditions on its cluster picture.

Notation 2.3.22 If $p>0$, we denote by $|\cdot|_{p}$ the standard p-adic absolute value attached to \mathbb{Q}, i.e. $|a|_{p}=p^{-v_{p}(a)}$ for all $a \in \mathbb{Q}$. If $p=0$, then we write $|\cdot|_{p}$ for the function on \mathbb{Q} identically equal to 1 , i.e. $|a|_{p}=1$ for all $a \in \mathbb{Q}$.

Lemma 2.3.23 Suppose that $x \nmid f$ and that $\operatorname{NP}(f)$ is a segment L of slope $-\rho$. Let n be the denominator of ρ. Then f is NP-regular if and only if all proper clusters $\mathfrak{s} \in \Sigma_{f}$ with $|\mathfrak{s}|>|\rho|_{p}$ satisfy $d_{\mathfrak{s}}=\rho$.

More precisely:
(i) If $\mathfrak{s} \in \Sigma_{f}$ with $|\mathfrak{s}|>|\rho|_{p}$ but $d_{\mathfrak{s}}>\rho$, then $\overline{\left.f\right|_{L}}$ has a non-zero multiple root $\bar{u}=\frac{r^{n}}{\pi^{n \rho}} \bmod \pi$, for some (any) $r \in \mathfrak{s}$.
(ii) The multiplicity of a root $\bar{u} \in \bar{k}^{\times}$of $\overline{\left.f\right|_{L}}$ equals $\left|\mathfrak{s}^{0}\right| / n$, where

$$
\mathfrak{s}^{0}=\left\{r \in \mathfrak{R} \left\lvert\, \bar{u}=\frac{r^{n}}{\pi^{n \rho}} \quad \bmod \pi\right.\right\} .
$$

(iii) All multiple roots of $\overline{\left.f\right|_{L}}$ come from clusters \mathfrak{s} as described in (i).

Proof. Let q be the highest power of p dividing n (set $q=1$ if $p=0$). Let $m=n / q$ so that $p \nmid m$. Let $\mathfrak{R}=\left\{r_{i} \mid i=1, \ldots, D\right\}$ be the (multi-)set of roots of f, where $D:=\operatorname{deg} f$. Fix some choice of $\sqrt[n]{\pi}$ and define $\bar{u}_{i} \in \bar{k}^{\times}$as $\bar{u}_{i}=r_{i} / \pi^{\rho} \bmod \pi$, for all $i=1, \ldots, D$. Firstly, note that there exists a proper cluster \mathfrak{s} with $|\mathfrak{s}|>|\rho|_{p}$ and $d_{\mathfrak{s}}>\rho$ if and only if there exists a subset $I \subseteq\{1, \ldots, D\}$ of size $|I|>q$ such that $\bar{u}_{i_{1}}=\bar{u}_{i_{2}}$ for all $i_{1}, i_{2} \in I$. Indeed, given \mathfrak{s}, then $I=\left\{i \in\{1, \ldots, D\} \mid r_{i} \in \mathfrak{s}\right\}$, while given I, then $\mathfrak{s}=\left\{r_{i} \mid \bar{u}_{i}=\bar{u}_{i_{0}}\right.$, for any $\left.i_{0} \in I\right\}$. Secondly, recall that f is not NP-regular if and only if $\overline{\left.f\right|_{L}}$ has a multiple root in \bar{k}^{\times}. Therefore we will prove that $\overline{\left.f\right|_{L}}$ has a non-zero multiple root if and only if there exists a subset $I \subseteq\{1, \ldots, D\}$ with size $|I|>q$ and such that $\bar{u}_{i_{1}}=\bar{u}_{i_{2}}$ for all $i_{1}, i_{2} \in I$.

Note that for the lower convexity of $\operatorname{NP}(f)=L$, we have

$$
\overline{\left.f\right|_{L}}\left(x^{n}\right)=\pi^{-\left(v\left(c_{f}\right)+D \rho\right)} f\left(\pi^{\rho} x\right) \quad \bmod \pi
$$

Hence $\left\{\bar{u}_{i} \mid i=1, \ldots, D\right\}$ is the multiset of roots of $\overline{\left.f\right|_{L}}\left(x^{n}\right)$. Then there exists an n-to- 1 map

$$
\begin{gathered}
\bar{\phi}:\left\{\bar{u}_{i}\right\} \longrightarrow\left\{\bar{w}_{j}\right\} \\
\bar{u}_{i} \longmapsto \bar{u}_{i}^{m}
\end{gathered}
$$

where $\left\{\bar{w}_{j} \mid j=1, \ldots, D / n\right\}$ is the multiset of roots of $\overline{\left.f\right|_{L}}$. Note that $\bar{w}_{j} \neq 0$ for all $j=1, \ldots, D / n$, so all roots of $\overline{\left.f\right|_{L}}$ are non-zero.

Now, suppose that f is not NP-regular. We want to show that there exists a subset $I \subset\{1, \ldots, D\}$ with $|I|>q$ such that $\bar{u}_{i_{1}}=\bar{u}_{i_{2}}$ for all $i_{1}, i_{2} \in I$. Since f is not NP-regular, its reduction $\overline{\left.f\right|_{L}}$ has a (non-zero) multiple root. Then there exist $j_{1}, j_{2} \in\{1, \ldots, D / n\}$ so that $\bar{w}_{j_{1}}=\bar{w}_{j_{2}}=: \bar{w}$. Hence, by the definition of $\bar{\phi}$, for some (any) $\bar{u} \in \bar{\phi}^{-1}(\bar{w})$, there are at least $2 q \bar{u}_{i}$'s with $\bar{u}_{i}=\bar{u}$. Let I denote the set of their indices. Then $|I| \geq 2 q>q$ and $\bar{u}_{i_{1}}=\bar{u}_{i_{2}}$ for all $i_{1}, i_{2} \in I$, as required.

On the other hand, suppose that there exists a subset $I \subset\{1, \ldots, D\}$ with $|I|>q$ and such that $\bar{u}_{i_{1}}=\bar{u}_{i_{2}}$ for all $i_{1}, i_{2} \in I$. We want to show that $\overline{\left.f\right|_{L}}$ has a multiple root, that is there exist two indices $j_{1}, j_{2} \in\{1, \ldots, D / n\}$ such that $\bar{w}_{j_{1}}=\bar{w}_{j_{2}}$. Suppose not and let $j \in\{1, \ldots, D / n\}$ such that $\bar{w}_{j}=\bar{u}_{i}^{m}=\bar{\phi}\left(\bar{u}_{i}\right)$ for some (all) $i \in I$. Then the polynomial $x^{n}-\bar{w}_{j}=\left(x^{m}-\bar{w}_{j}\right)^{q} \in \bar{k}[x]$, factor of $\overline{\left.f\right|_{L}}\left(x^{n}\right)$, should have a root of order $|I|>q$. This would imply $x^{m}-\bar{w}_{j}$ is inseparable, a contradiction as $p \nmid m$.

The parts (i), (ii) and (iii) of the lemma follow from above:
(i) Given a proper cluster $\mathfrak{s} \in \Sigma_{f}$ with $|\mathfrak{s}|>|\rho|_{p}$ and $d_{\mathfrak{s}}>\rho$, we showed that $\overline{\left.f\right|_{L}}$ has a non-zero multiple root $\bar{w}_{j}=\bar{u}_{i}^{n}=r_{i}^{n} / \pi^{n \rho} \bmod \pi$, where r_{i} is any root in \mathfrak{s}.
(ii) By the definition of $\bar{\phi}$, given $\bar{w} \in \bar{k}$, the number of \bar{w}_{j} 's such that $\bar{w}_{j}=\bar{w}$ equals $\left|\mathfrak{s}^{0}\right| / n$, where $\mathfrak{s}^{0}=\left\{r_{i} \mid \bar{u}_{i}^{n}=\bar{w}\right\}$.
(iii) Given a (non-zero) multiple root \bar{w} of $\overline{\left.f\right|_{L}}$ we showed that there exists $I \subseteq\{1, \ldots, D\}$, with $|I|>q$ and $\bar{u}_{i_{1}}=\bar{u}_{i_{2}}$ for any $i_{1}, i_{2} \in I$, such that $\bar{u}_{i}^{n}=\bar{w}$ for all $i \in I$. The set $\mathfrak{s}=\left\{r_{i} \mid \bar{u}_{i}=\bar{u}_{i_{0}}\right.$, for any $\left.i_{0} \in I\right\}$ is a proper cluster as in (i).

Theorem 2.3.24 Let $w \in K$ and $f_{w}(x)=f(x+w)$. For all clusters $\mathfrak{s} \in \Sigma_{f}$ define $\lambda_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v(r-w)$, and let b be the denominator of $\lambda_{\mathfrak{s}}$. Then f_{w} is NP-regular if and only if all proper clusters $\mathfrak{s} \in \Sigma_{f}$ with $|\mathfrak{s}|>\left|\lambda_{\mathfrak{s}}\right|_{p}$ have $d_{\mathfrak{s}}=\lambda_{\mathfrak{s}}$.

More precisely:
(i) Let $\mathfrak{s} \in \stackrel{\circ}{\Sigma}_{f}$ with $|\mathfrak{s}|>\left|\lambda_{\mathfrak{s}}\right|_{p}$ but $d_{\mathfrak{s}}>\lambda_{\mathfrak{s}}$, and let $r \in \mathfrak{s}$ with $v(r-w)=\lambda_{\mathfrak{s}}$. Then $\overline{\left.f_{w}\right|_{L}}$ has a non-zero multiple root $\bar{u}=\frac{(r-w)^{b}}{\pi^{b \lambda_{\mathfrak{s}}}} \bmod \pi$, where L is the edge of $\operatorname{NP}\left(f_{w}\right)$ of slope $-\lambda_{\mathfrak{s}}$.
(ii) Let L be an edge of $\operatorname{NP}\left(f_{w}\right)$ of slope $-\lambda$. Let l be the denominator of λ. The multiplicity of a root $\bar{u} \in \bar{k}^{\times}$of $\overline{\left.f_{w}\right|_{L}}$ equals $\left|\mathfrak{s}^{0}\right| / l$, where

$$
\mathfrak{s}^{0}=\left\{r \in \mathfrak{R} \mid v(r-w)=\lambda \quad \text { and } \quad \bar{u}=\frac{(r-w)^{l}}{\pi^{l \lambda}} \quad \bmod \pi\right\} .
$$

(iii) For every edge L of $\operatorname{NP}\left(f_{w}\right)$, the multiple roots of $\overline{\left.f_{w}\right|_{L}}$ come from proper clusters \mathfrak{s} for f as described in (i).

Proof. Let \Re_{w} be the set of roots of f_{w}. Note that we have a natural bijection $\mathfrak{R} \rightarrow \mathfrak{R}_{w}, r \mapsto r-w$, which induces a bijective function $\psi: \Sigma_{f} \rightarrow \Sigma_{f_{w}}$, sending

$$
\mathfrak{s}=\mathfrak{R} \cap\{x \in \bar{K} \mid v(x-z)>d\} \quad \mapsto \quad \psi(\mathfrak{s})=\mathfrak{R}_{w} \cap\{x \in \bar{K} \mid v(x+w-z)>d\} .
$$

In particular, if $\mathfrak{s} \in \Sigma_{f},|\mathfrak{s}|=|\psi(\mathfrak{s})|, d_{\mathfrak{s}}=d_{\psi(\mathfrak{s})}$ and

$$
\lambda_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v(r-w)=\min _{r \in \psi(\mathfrak{s})} v(r)
$$

Hence it suffices to show the theorem for $w=0$.
Assume $w=0$. Let $f=c_{f} \cdot g_{0} \cdot g_{1} \ldots g_{t}$ be a factorisation of Theorem 2.2.2. Note that if $t=0$, then either $f \in K$ or $f \in K x$. In both cases, f is clearly NP-regular and has no proper clusters. Then assume $t>0$ and let $-\rho_{i}$ be the slope of $\operatorname{NP}\left(g_{i}\right)$ for any $i=1, \ldots, t$. Denote by \Re the set of roots of f and by \mathfrak{R}_{i} the set of roots of g_{i} for $i=0, \ldots, t$. Note that the \mathfrak{R}_{i} 's are pairwise disjoint. From Remark 2.2.7, for every edge L of $\operatorname{NP}(f)$ there exists i such that $\overline{\left.f\right|_{L}}=\bar{c}_{i} \cdot \overline{\left.g_{i}\right|_{\mathrm{NP}\left(g_{i}\right)}}$ for some $\bar{c}_{i} \in k^{\times}$. Hence, by Lemma 2.2.9 and Lemma 2.3.23, we need to prove that there exists a proper cluster $\mathfrak{s} \in \Sigma_{f}$ such that $|\mathfrak{s}|>\left|\lambda_{\mathfrak{s}}\right|_{p}$ and $d_{\mathfrak{s}}>\lambda_{\mathfrak{s}}$ if and only if for some $i=1, \ldots, t$ there exists a proper cluster $\mathfrak{s}_{i} \in \Sigma_{g_{i}}$ such that $\left|\mathfrak{s}_{i}\right|>\left|\lambda_{\mathfrak{s}_{i}}\right|_{p}=\left|\rho_{i}\right|_{p}$ and $d_{\mathfrak{s}_{i}}>\lambda_{\mathfrak{s}_{i}}=\rho_{i}$. We will show that one can choose $\mathfrak{s}=\mathfrak{s}_{i}$.

First, note that if \mathfrak{s} is a proper cluster, then $\mathfrak{s} \nsubseteq \mathfrak{R}_{0}$, as $\left|\mathfrak{R}_{0}\right| \leq 1$. Furthermore, if $\mathfrak{s} \in \Sigma_{f}$ contains roots of different valuations, that is $\mathfrak{s} \nsubseteq \mathfrak{R}_{i}$ for all i, then

$$
d_{\mathfrak{s}}=\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right)=\min _{r \in \mathfrak{s}} v(r)=\lambda_{\mathfrak{s}}=\min \left\{\rho_{i} \mid \mathfrak{R}_{i} \cap \mathfrak{s} \neq \varnothing\right\} .
$$

Now suppose there exists a proper cluster $\mathfrak{s} \in \Sigma_{f}$ such that $|\mathfrak{s}|>\left|\lambda_{\mathfrak{s}}\right|_{p}$ and $d_{\mathfrak{s}}>\lambda_{\mathfrak{s}}$. For the observation above, the inequality $d_{\mathfrak{s}}>\lambda_{\mathfrak{s}}$ implies that $\mathfrak{s} \subseteq \mathfrak{R}_{i}$ for some $i=1, \ldots, t$. Let \mathcal{D} be the v-adic disc such that $\mathfrak{s}=\mathcal{D} \cap \mathfrak{R}$. Since $\mathfrak{s} \subseteq \Re_{i}$, one has $\mathfrak{s}=\mathcal{D} \cap \Re_{i}$ which means that $\mathfrak{s} \in \Sigma_{g_{i}}$, as required.

Finally suppose that for some $i=1, \ldots, s$, there exists a proper cluster $\mathfrak{s}_{i} \in \Sigma_{g_{i}}$ such that $\left|\mathfrak{s}_{i}\right|>\left|\rho_{i}\right|_{p}$ and $d_{\mathfrak{s}_{i}}>\rho_{i}$. Let $r_{i} \in \mathfrak{s}_{i}$. Then

$$
\mathfrak{s}_{i}=\left\{x \in \bar{K} \mid v\left(x-r_{i}\right) \geq d_{\mathfrak{s}_{i}}\right\} \cap \Re_{i} .
$$

Consider the cluster $\mathfrak{s}:=\left\{x \in \bar{K} \mid v\left(x-r_{i}\right) \geq d_{\mathfrak{s}_{i}}\right\} \cap \mathfrak{R}$ of f. Clearly $\mathfrak{s}_{i} \subseteq \mathfrak{s}$. Therefore

$$
\lambda_{\mathfrak{s}_{i}}=\min _{r \in \mathfrak{s}_{i}} v(r) \geq \min _{r \in \mathfrak{s}} v(r)=\lambda_{\mathfrak{s}},
$$

which implies

$$
d_{\mathfrak{s}}=d_{\mathfrak{s}_{i}}>\rho_{i}=\lambda_{\mathfrak{s}_{i}} \geq \lambda_{\mathfrak{s}},
$$

where $d_{\mathfrak{s}}=d_{\mathfrak{s}_{i}}$ by construction. Again from the observation above the inequality $d_{\mathfrak{s}}>\lambda_{\mathfrak{s}}$ implies that \mathfrak{s} is contained in \mathfrak{R}_{j} for some j. As $\mathfrak{s} \cap \mathfrak{R}_{i} \supseteq \mathfrak{s}_{i} \cap \mathfrak{R}_{i}=\mathfrak{s}_{i}$, we must have $\mathfrak{s} \subseteq \mathfrak{R}_{i}$. Thus $\mathfrak{s}=\mathfrak{s}_{i}$, that concludes the proof.

Corollary 2.3.25 Let $f \in K[x]$ be a separable polynomial. Let $w \in K$ and $f_{w}(x)=f(x+w)$. Then f_{w} is NP-regular if and only if all proper clusters $\mathfrak{s} \in \Sigma_{f}$ have rational centre w and those with $|\mathfrak{s}|>\left|\rho_{\mathfrak{s}}\right|_{p}$ satisfy $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}$.

Proof. If f_{w} is NP-regular, then, from the previous theorem, all proper clusters $\mathfrak{s} \in \Sigma_{f}$ with $|\mathfrak{s}|>\left|\lambda_{\mathfrak{s}}\right|_{p}$ have $d_{\mathfrak{s}}=\lambda_{\mathfrak{s}}$, where $\lambda_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v(r-w)$. First let $\mathfrak{s} \in \Sigma_{f}$ proper and assume $|\mathfrak{s}|>\left|\lambda_{\mathfrak{s}}\right|_{p}$. Then

$$
d_{\mathfrak{s}}=\lambda_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v(r-w) \leq \max _{z \in K} \min _{r \in \mathfrak{s}} v(r-z)=\rho_{\mathfrak{s}} \leq d_{\mathfrak{s}},
$$

so $d_{\mathfrak{s}}=\lambda_{\mathfrak{s}}=\rho_{\mathfrak{s}}$, and w is a rational centre of \mathfrak{s}. Now assume $|\mathfrak{s}| \leq\left|\lambda_{\mathfrak{s}}\right|_{p}$. In particular, $p>0$ and $\lambda_{\mathfrak{s}} \notin \mathbb{Z}$, and so

$$
\min _{r \in \mathfrak{S}} v(r-w)=\lambda_{\mathfrak{s}} \neq v\left(w-w_{\mathfrak{s}}\right),
$$

where $w_{\mathfrak{s}}$ is a rational centre of \mathfrak{s}. Let $r \in \mathfrak{s}$ such that $v(r-w)=\lambda_{\mathfrak{s}}$. Then

$$
\rho_{\mathfrak{s}} \leq v\left(r-w+w-w_{\mathfrak{s}}\right)=\min \left\{\lambda_{\mathfrak{s}}, v\left(w-w_{\mathfrak{s}}\right)\right\} \leq \lambda_{\mathfrak{s}} .
$$

Clearly

$$
\rho_{\mathfrak{s}}=\max _{z \in K} \min _{r \in \mathfrak{s}} v(r-z) \geq \min _{r \in \mathfrak{S}} v(r-w)=\lambda_{\mathfrak{S}},
$$

that implies $\rho_{\mathfrak{s}}=\lambda_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v(r-w)$. Hence w is a rational centre of \mathfrak{s}.
On the other hand, suppose that all proper clusters $\mathfrak{s} \in \Sigma_{f}$ have rational centre $w \in K$ and those with $|\mathfrak{s}|>\left|\rho_{\mathfrak{s}}\right|_{p}$ satisfy $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}$. Then $\rho_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v(r-w)$ for any $\mathfrak{s} \in \Sigma_{f}$. Thus f_{w} is NP-regular again by Theorem 2.3.24.

Definition 2.3.26 We say that f has an almost rational cluster picture if all proper clusters $\mathfrak{s} \in \Sigma_{f}$ with $|\mathfrak{s}|>\left|\rho_{\mathfrak{s}}\right|_{p}$ have $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}$.

In the following we give different characterisations of the previous definition.
Corollary 2.3.27 Suppose that $K(\Re) / K$ is a tamely ramified extension. Then f has an almost rational cluster picture if and only if every proper cluster $\mathfrak{s} \in \Sigma_{f}$ is G_{K}-invariant.

Proof. Since $K(\Re) / K$ is tamely ramified, every cluster $\mathfrak{s} \in \Sigma_{f}$ has $\left|\rho_{\mathfrak{s}}\right|_{p} \leq 1$. Therefore the corollary follows from Remark 2.3.13.

Corollary 2.3.28 Suppose that $K(\Re) / K$ is a tamely ramified extension. Then f_{w} is NP-regular for some $w \in K$ if and only if Σ_{f} is nested.

Proof. First note that every cluster $\mathfrak{s} \in \Sigma_{f}$ has $\left|\rho_{\mathfrak{s}}\right|_{p} \leq 1$, as $K(\Re) / K$ is tamely ramified. Therefore from Corollary 2.3.25, we need to prove that Σ_{f} is nested if and only if all clusters $\mathfrak{s} \in \Sigma_{f}$ have $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}$ and rational centre w, for some $w \in K$. But this follows from Remark 2.3.13.

Corollary 2.3.29 The polynomial f has an almost rational cluster picture if and only if for every $r \in \mathfrak{R} \backslash K$, there exists $w \in K$ so that $r_{w}^{b}:=\frac{(r-w)^{b}}{\pi^{b \cdot v(r-w)}} \bmod \pi$ is a simple root of $\left.f_{w}\right|_{L}$, where b is the denominator of $v(r-w), f_{w}(x)=f(x+w)$ and L is the edge of $\operatorname{NP}\left(f_{w}\right)$ of slope $-v(r-w)$.

Proof. Fix $\tilde{r} \in \mathfrak{R} \backslash K$ and let \mathfrak{s} be the smallest proper cluster containing \tilde{r}. Let $w_{\mathfrak{s}}$ be a rational centre of \mathfrak{s}. Note that $v\left(\tilde{r}-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v\left(r-w_{\mathfrak{s}}\right)$, for the choice of \mathfrak{s}, as $\tilde{r} \notin K$. Moreover, for any proper cluster \mathfrak{t} containing \tilde{r}, we have $\mathfrak{s} \subseteq \mathfrak{t}$. In particular, $w_{\mathfrak{s}}$ is a rational centre of all such clusters. Let L be the edge of $\operatorname{NP}\left(f_{w_{\mathfrak{s}}}\right)$ of slope $-\rho_{\mathfrak{s}}$. Theorem 2.3 .24 shows that $\tilde{r}_{w_{\mathfrak{s}}}^{b_{\mathfrak{s}}}$ is a multiple root of $\left.f_{w_{\mathfrak{s}}}\right|_{L}$ if and only if there exists $\mathfrak{t} \in \Sigma_{f}$ such that $\tilde{r} \in \mathfrak{t},|\mathfrak{t}|>\left|\rho_{\mathfrak{t}}\right|_{p}$ and $d_{\mathfrak{t}}>\rho_{\mathfrak{t}}$. Therefore if f has an almost rational cluster picture, then $\tilde{r}_{w_{5}}^{b_{5}}$ is a simple root.

Suppose there exists $\mathfrak{t} \in \Sigma_{f}$ such that $|\mathfrak{t}|>\left|\rho_{\mathfrak{t}}\right|_{p}$ and $d_{\mathfrak{t}}>\rho_{\mathfrak{t}}$. Then $\mathfrak{t} \cap K=\varnothing$. By Theorem 2.3.24, it remains to show that for any $w \in K$, we have $|\mathfrak{t}|>\left|\lambda_{\mathfrak{t}}\right|_{p}$ and $d_{\mathfrak{t}}>\lambda_{\mathfrak{t}}$, where $\lambda_{\mathfrak{t}}=\min _{r \in \mathfrak{t}} v(r-w)$. First note $d_{\mathfrak{t}}>\rho_{\mathfrak{t}} \geq \lambda_{\mathfrak{t}}$. Moreover, in the proof of Corollary 2.3.25, we saw that $|\mathfrak{t}| \leq\left|\lambda_{\mathfrak{t}}\right|_{p}$ implies $\rho_{\mathfrak{t}}=\lambda_{\mathfrak{t}}$, which contradicts $|\mathfrak{t}|>\left|\rho_{\mathfrak{t}}\right|_{p}$.

Lemma 2.3.30 Suppose f has an almost rational cluster picture. Let $\mathfrak{s} \in \Sigma_{f}$ proper. If $d_{\mathfrak{s}}>\rho_{\mathfrak{s}}$, then $p>0$ and $|\mathfrak{s}|$ is a p-power. In particular, if $w_{\mathfrak{s}}$ is a rational centre of \mathfrak{s}, for any $r \in \mathfrak{s}$, the elements $r-w_{\mathfrak{s}}$ are all the roots of a monic polynomial with coefficients in K^{s}, and constant term c such that $|v(c)|_{p} \geq 1$.

Proof. Let $\mathfrak{s} \in \Sigma_{f}$ proper, with $d_{\mathfrak{s}}>\rho_{\mathfrak{s}}$. Since f has an almost rational cluster picture, we must have $|\mathfrak{s}| \leq\left|\rho_{\mathfrak{s}}\right|_{p}$. Since \mathfrak{s} is proper, $p>0$. Let $b_{\mathfrak{s}}$ be the denominator of $\rho_{\mathfrak{s}}$. Then $v_{p}\left(b_{\mathfrak{s}}\right)>1$. Fix a rational centre $w_{\mathfrak{s}}$ of \mathfrak{s} and a root $r \in \mathfrak{s}$ such that $v\left(r-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s}}$. Consider $\mathfrak{s}^{\prime}=\left\{x \in \mathfrak{R} \mid v(x-r)>\rho_{\mathfrak{s}}\right\}$. Then $\mathfrak{s} \subseteq \mathfrak{s}^{\prime} \leq \mathfrak{s}^{\text {rat }}$ and $\left|\mathfrak{s}^{\prime}\right| \leq\left|\rho_{\mathfrak{s}}\right|_{p}$ (as $d_{\mathfrak{s}^{\prime}}>\rho_{\mathfrak{s}}=\rho_{\mathfrak{s}^{\prime}}$. Let I_{w} be the wild inertia subgroup of G_{K}. As $v\left(r-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s}}$ there exist $\sigma_{1}=i d, \sigma_{2}, \ldots, \sigma_{\left|\rho_{\mathfrak{s}}\right|_{p}} \in I_{w}$ such that $\sigma_{i}(r) \neq \sigma_{j}(r)$ if $i \neq j$. Moreover, $v\left(\sigma_{i}(r)-r\right)>\rho_{\mathfrak{s}}$ from the definition of I_{w}. Therefore $\sigma_{i}(r) \in \mathfrak{s}^{\prime}$ for all i and so $\left|\rho_{\mathfrak{s}}\right| p \leq\left|\mathfrak{s}^{\prime}\right|$. Thus $\left|\mathfrak{s}^{\prime}\right|=\left|\rho_{\mathfrak{s}}\right|_{p}$ and $\mathfrak{s} \subseteq \mathfrak{s}^{\prime}=\left\{\sigma_{i}(r)\left|i=1, \ldots,\left|\rho_{\mathfrak{s}}\right|_{p}\right\}\right.$. Finally, as \mathfrak{s}^{\prime} contains only conjugates of $r \in \mathfrak{s}$, the cluster \mathfrak{s}^{\prime} is union of orbits of \mathfrak{s}. In particular, $|\mathfrak{s}|\left|\left|\mathfrak{s}^{\prime}\right|=\left|\rho_{\mathfrak{s}}\right| p\right.$, and so $| \mathfrak{s} \mid$ is a p-power. The rest of the lemma follows.

Proposition 2.3.31 The polynomial f has an almost rational cluster picture if and only if for every proper cluster $\mathfrak{s} \in \Sigma_{f}$ one of the following is satisfied:
(a) the smallest disc containing \mathfrak{s} also contains a rational point;
(b) $p>0$ and after a translation by an element of K, the elements in \mathfrak{s} are all the roots of a polynomial with coefficients in K^{s} of p-power degree and constant term c such that $|v(c)|_{p} \geq 1$.

Proof. First of all note that point (a) is equivalent to requiring $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}$. Therefore by Lemma 2.3.30 it only remains to show that if $d_{\mathfrak{s}}>\rho_{\mathfrak{s}}$ and (b) is satisfied, then $|\mathfrak{s}| \leq\left|\rho_{\mathfrak{s}}\right|_{p}$. Let $F \in K^{\mathfrak{s}[x]}$ be the polynomial in (b) and let $w \in K$ such that $r-w$, for $r \in \mathfrak{s}$, are all the roots of F. We have $\rho_{s} \geq \min _{r \in \mathfrak{s}} v(r-w)$. Fix $r \in \mathfrak{s}$ such that $\rho_{\mathfrak{s}} \geq v(r-w)=: \rho$. Since $d_{\mathfrak{s}}>\rho_{\mathfrak{s}} \geq v(r-w)$, we have $v\left(r^{\prime}-w\right)=v(r-w)=\rho$ for any $r^{\prime} \in \mathfrak{s}$. Then

$$
|\mathfrak{s}|=\operatorname{deg} F=|1 / \operatorname{deg} F|_{p} \leq|v(c) / \operatorname{deg} F|_{p}=|\rho|_{p} .
$$

Let $w_{\mathfrak{s}}$ be a rational centre of \mathfrak{s}. Suppose by contradiction that $\rho_{\mathfrak{s}}>\rho$. Let $r_{\mathfrak{s}} \in \mathfrak{s}$ such that $v\left(r_{\mathfrak{s}}-w_{\mathfrak{s}}\right)=\rho_{\mathfrak{s}}$. Hence

$$
v\left(w-w_{\mathfrak{s}}\right)=v\left(w-r_{\mathfrak{s}}+r_{\mathfrak{s}}-w_{\mathfrak{s}}\right)=\min \left\{\rho, \rho_{\mathfrak{s}}\right\}=\rho .
$$

But then $\rho \in \mathbb{Z}$, which contradicts $|\mathfrak{s}| \leq|\rho|_{p}$.
Example 2.3.32 Let p be a prime number and let $a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{p}^{\times}$such that the polynomial $x^{2}+a x+b$ is not a square modulo p. Let $f \in \mathbb{Q}_{p}[x]$ given by $f(x)=\left(x^{6}+a p^{4} x^{3}+b p^{8}\right)\left((x-p)^{3}-p^{11}\right)$. For any prime p the rational cluster picture of f is

where $\rho_{\mathrm{t}_{3}}=\frac{4}{3}, \rho_{\mathrm{t}_{4}}=\frac{11}{3}$, and $\rho_{\mathfrak{R}}=1$.
If $p \neq 3$, then the proper clusters of Σ_{f} coincide with the rational clusters above and $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}$ for any $\mathfrak{s}=\mathfrak{t}_{3}, \mathfrak{t}_{4}, \mathfrak{R}$. In particular, f has an almost rational cluster picture when $p \neq 3$.

Suppose $p=3$. Then the cluster picture of f is

where $d_{\mathfrak{t}_{1}}=d_{\mathfrak{t}_{2}}=\frac{11}{6}, d_{\mathfrak{t}_{3}}=\rho_{\mathfrak{t}_{1}}=\rho_{\mathfrak{t}_{2}}=\frac{4}{3}, d_{\mathfrak{t}_{4}}=\frac{25}{6}$ and $d_{\mathfrak{R}}=1$. Thus f has an almost rational cluster picture for all p.

We conclude this section by showing that the cluster picture centred at 0 completely determines the Newton polygon of f.

Definition 2.3.33 Let $z \in \bar{K}$. A cluster centred at z is a cluster cut out by a v-adic disc of the form $\mathcal{D}=\{x \in \bar{K} \mid v(x-z) \geq d\}$ for some $d \in \mathbb{Q}$.

Definition 2.3.34 Let $z \in \bar{K}$. Define Σ_{f}^{z} to be the set of all clusters centred at z. Write Σ_{f}^{z} for the set $\Sigma_{f}^{z} \backslash\{\{z\}\}$. Note that Σ_{f}^{z} is nested, i.e. every cluster $\mathfrak{s} \in \Sigma_{f}^{z}$ has at most one child in Σ_{f}^{z}.

$$
\rho_{\mathfrak{s}}^{z}=\min _{r \in \mathfrak{s}} v(r-z) .
$$

The cluster picture centred at z of f is the collection of all clusters in Σ_{f}^{z} together with their radii with respect to z. Finally set

$$
\epsilon_{\mathfrak{s}}^{z}:=v\left(c_{f}\right)+\sum_{r \in \mathfrak{R}} \rho_{r \wedge \mathfrak{s}}^{z} .
$$

Remark 2.3.36. From the definitions above, if \mathfrak{s} is a cluster centred at $z \in K^{\text {s }}$, then $\mathfrak{s}=\mathfrak{R} \cap\{x \in \bar{K} \mid$ $\left.v(x-z) \geq \rho_{\mathfrak{s}}^{z}\right\}$. But this does not mean z is a centre for \mathfrak{s}, that is false in general. For example, \mathfrak{R} is clearly a cluster centred at any $z \in K^{\mathrm{s}}$, but there are elements of K^{s} which are not centres of \Re, e.g. any $z \in K^{\mathrm{S}}$ with valuation $v(z)<\min _{r \in \mathfrak{R}} v(r)$.

Remark 2.3.37. Let $\mathfrak{s} \in \Sigma_{f}$ be a proper cluster with centre z and rational centre w. Then $\mathfrak{s} \in \Sigma_{f}^{z}$, $d_{\mathfrak{s}}=\rho_{\mathfrak{s}}^{z}, v_{\mathfrak{s}}=\epsilon_{\mathfrak{s}}^{z}, \rho_{\mathfrak{s}}=\rho_{\mathfrak{s}}^{w}$, and $\epsilon_{\mathfrak{s}}=\epsilon_{\mathfrak{s}}^{w}$. Furthermore, $\mathfrak{s} \in \Sigma_{f}^{\mathrm{rat}}$ if and only if $\mathfrak{s} \in \Sigma_{f}^{w}$.

Lemma 2.3.38 Let $w \in K$ and let $f_{w}(x)=f(x+w)$. Then there is a 1-to-1 correspondence between the clusters in Σ_{f}^{w} and the edges of $\operatorname{NP}\left(f_{w}\right)$. More explicitly, let $\mathfrak{s}_{1} \subset \cdots \subset \mathfrak{s}_{n}=\mathfrak{R}$ be the clusters in $\stackrel{\circ}{\Sigma}_{f}^{w}$ and let $\mathfrak{s}_{0}=\{w\}$ if $\{w\} \in \Sigma_{f}^{w}$ or $\mathfrak{s}_{0}=\varnothing$ otherwise. Then $\operatorname{NP}\left(f_{w}\right)$ has vertices $Q_{i}, i=0, \ldots, n$, where

- $Q_{n}=\left(|\mathfrak{R}|, \epsilon_{\mathfrak{R}}^{w}-|\mathfrak{R}| \rho_{\mathfrak{R}}^{w}\right)=\left(\operatorname{deg} f, v\left(c_{f}\right)\right)$,
- $Q_{i}=\left(\left|\mathfrak{s}_{i}\right|, \epsilon_{\mathfrak{s}_{i}}^{w}-\left|\mathfrak{s}_{i}\right| \rho_{\mathfrak{s}_{i}}^{w}\right)=\left(\left|\mathfrak{s}_{i}\right|, \epsilon_{\mathfrak{s}_{i+1}}^{w}-\left|\mathfrak{s}_{i}\right| \rho_{\mathfrak{s}_{i+1}}^{w}\right)$, for $i=1, \ldots, n-1$,
- $Q_{0}=\left(\left|\mathfrak{s}_{0}\right|, \epsilon_{\mathfrak{s}_{1}}^{w}-\left|\mathfrak{s}_{0}\right| \rho_{\mathfrak{s}_{1}}^{w}\right)$.
and edges $L_{i}, i=1, \ldots, n$, of slope $-\rho_{\mathfrak{s}_{i}}^{w}$ linking Q_{i-1} and Q_{i}.
Furthermore, for any $i=1, \ldots, n$ we have

$$
\overline{\left.f_{w}\right|_{L_{i}}}\left(x^{b_{i}}\right)=\frac{u}{\pi^{v(u)}} \prod_{r \in \mathfrak{s}_{i} \mathfrak{s}_{i-1}}\left(x+\frac{w-r}{\pi^{\rho_{i}}}\right) \quad \bmod \pi, \quad u=c_{f} \prod_{r \in \mathfrak{R i s}}(w-r),
$$

where $\rho_{i}=\rho_{\mathfrak{s}_{i}}^{w}$, and b_{i} is the denominator of ρ_{i}.

Proof. Without loss of generality we can assume $w=0$ so that $f_{w}=f$. First note that the coordinates of Q_{n} are trivial. Now consider a factorisation $f=c_{f} \cdot g_{0} \cdot g_{1} \cdots g_{s}$ of Theorem 2.2.2. Recall the polynomials g_{j} are monic and $g_{0} \mid x$. Let \Re_{j} be the set of roots of g_{j}. It follows from the definition of cluster centred at 0 that

$$
n=s, \quad \text { and } \quad \mathfrak{s}_{i}=\bigcup_{j=0}^{i} \Re_{j} \quad \text { for all } i=0, \ldots, n .
$$

Therefore $\mathfrak{s}_{0}=\mathfrak{R}_{0}$ and $\mathfrak{R}_{i}=\mathfrak{s}_{i} \backslash \mathfrak{s}_{i-1}$ for any $i=1, \ldots, n$.
Let $i=1, \ldots, n-1$. Then the x-coordinate of Q_{i} follows as

$$
\left|\mathfrak{s}_{i}\right|=\sum_{j=0}^{i}\left|\Re_{j}\right|=\sum_{j=0}^{i} \operatorname{deg} g_{j}=\operatorname{deg} \prod_{j=0}^{i} g_{j} .
$$

The y-coordinate of Q_{i} equals the sum of $v\left(c_{f}\right)$ and the valuation of the constant term of $\prod_{j=i+1}^{n} g_{j}$, so

$$
Q_{i}=\left(\left|\mathfrak{s}_{i}\right|, v\left(c_{f}\right)+\sum_{j=i+1}^{n}\left|\Re_{j}\right| v\left(r_{j}\right)\right),
$$

where r_{j} is any root in \mathfrak{R}_{j}. But since $\mathfrak{s}_{i}=\bigcup_{j=0}^{i} \mathfrak{R}_{j}$, we have $v\left(r_{j}\right)=\rho_{\mathfrak{s}_{j} \cdot}^{0}$. Therefore

$$
v\left(c_{f}\right)+\sum_{j=i+1}^{n}\left|\Re_{j}\right| v\left(r_{j}\right)=v\left(c_{f}\right)+\sum_{j=i+1}^{n}\left(\left|\mathfrak{s}_{j}\right|-\left|\mathfrak{s}_{j-1}\right|\right) \rho_{\mathfrak{s}_{j}}^{0}=\epsilon_{\mathfrak{s}_{i}}^{0}-\left|\mathfrak{s}_{i}\right| \rho_{\mathfrak{s}_{i}}^{0} .
$$

Moreover,

$$
\epsilon_{\mathfrak{s}_{i}}^{0}-\left|\mathfrak{s}_{i}\right| \rho_{\mathfrak{s}_{i}}^{0}=\epsilon_{\mathfrak{s}_{i+1}}^{0}-\left|\mathfrak{s}_{i}\right| \rho_{\mathfrak{s}_{i+1}}^{0}
$$

from the easy computation $\epsilon_{\mathfrak{s}_{i}}^{0}-\epsilon_{\mathfrak{s}_{i+1}}^{0}=\left|\mathfrak{s}_{\mathfrak{s}}\right|\left(\rho_{\mathfrak{s}_{i}}^{0}-\rho_{\mathfrak{s}_{i+1}}^{0}\right)$. Finally the x-coordinate of Q_{0} is trivial, while its y-coordinate equals

$$
v\left(c_{f}\right)+\sum_{j=1}^{n}\left|\Re_{j}\right| v\left(r_{j}\right)=v\left(c_{f}\right)+\sum_{j=1}^{n}\left(\left|\mathfrak{s}_{j}\right|-\left|\mathfrak{s}_{j-1}\right|\right) \rho_{\mathfrak{s}_{j}}^{0}=\epsilon_{\mathfrak{s}_{1}}^{0}-\left|\mathfrak{s}_{0}\right| \rho_{\mathfrak{s}_{1}}^{0},
$$

that concludes the first part of the proof as $\left|\mathfrak{s}_{0}\right|=\left|\Re_{0}\right|=\operatorname{deg} g_{0}$.
The computation of $\left.f\right|_{L_{i}}$ follows from Remark 2.2.7. Indeed, let $i=1, \ldots, n$, and define $\bar{c}_{i}=u / \pi^{v(u)} \bmod \pi$, where $u=c_{f} \prod_{j=i+1}^{n} g_{j}(0)$. Then $\overline{\left.f\right|_{L_{i}}}\left(x^{b_{i}}\right)=\bar{c}_{i} \cdot \overline{\left.g_{i}\right|_{\operatorname{NP}\left(g_{i}\right)}}\left(x^{b_{i}}\right)$, where b_{i} is the denominator of $\rho_{\mathrm{s}_{i}}^{0}$. But

$$
\overline{\left.g_{i}\right|_{\operatorname{NP}\left(g_{i}\right)}}\left(x^{b_{i}}\right)=g_{i}\left(\pi^{\rho_{s_{i}}^{0}} x\right) / \pi^{\rho_{s_{i}}^{0}} \operatorname{deg} g_{i} \quad \bmod \pi
$$

Thus the lemma follows as $\mathfrak{R}_{i}=\mathfrak{s}_{i} \backslash \mathfrak{s}_{i-1}$.
Notation 2.3.39 Let $\mathfrak{s} \in \Sigma_{f}^{w}$. Following the notation of Lemma 2.3.38, let $i \in\{1, \ldots, n\}$ be such that $\mathfrak{s}=\mathfrak{s}_{i}$. We will write $L_{\mathfrak{s}}^{w}$ for the edge L_{i}.

2.4 Description of a regular model

From now on, assume $\operatorname{char}(K) \neq 2$ and let C / K be a hyperelliptic curve, i.e. a geometrically connected, smooth, projective curve, equipped with a separable morphism $C \rightarrow \mathbb{P}_{K}^{1}$ of degree 2. Let $y^{2}=f(x)$ be a Weierstrass equation of C. Suppose $\operatorname{deg} f>1$. Let g be the genus of C. Accordingly with $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right]$ we define the cluster picture of C as the cluster picture of f. Analogously, all definitions and notations attached to f given in $\S 2.3$ (e.g. $\Sigma_{f}, \Sigma_{f}^{\text {rat }}, \Sigma_{f}^{z}$) are given for C in the same way (e.g. $\Sigma_{C}, \Sigma_{C}^{\mathrm{rat}}, \Sigma_{C}^{z}$). In particular, we will say that C has an almost rational cluster picture if f does (Definition 2.3.26).

In this section we present the main results that follow from the construction of a model of C we develop in $\S 2.5$. In particular, Theorem 2.4.22 describes the special fibre of the minimal regular model of C with normal crossings when C has an almost rational cluster picture and is y-regular (Definition 2.4.10).

For the following sections we will use the main definitions, notations and results of [Dok, §3]. In particular, we recall (without stating) the definitions of Newton polytopes Δ and Δ_{v} attached to a polynomial $g \in K[x, y], v$-vertices/edges/faces of Δ, the denominator δ_{λ} of a v-face/edge λ, the slopes $s_{1}^{\lambda}, s_{2}^{\lambda}$ of a v-edge λ.

Notation 2.4.1 We denote by Δ_{v}^{w} and Δ^{w} respectively the polytopes Δ_{v} and Δ attached to the polynomial $g_{w}(x, y)=y^{2}-f(x+w)$. The piecewise affine function $v: \Delta^{w} \rightarrow \mathbb{R}$ determining the bijection $\Delta^{w} \rightarrow \Delta_{v}^{w}, P \mapsto(P, v(P))$, will be denoted by v (with a little abuse of notation). For a v-face F of Δ^{w}, denote by $v_{F}: \Delta^{w} \rightarrow \mathbb{R}$ the linear function equal to v on F. Since the projection $\Delta_{v}^{w} \rightarrow \Delta^{w}$ is a bijection, given a vertex/edge/face λ of Δ_{v}^{w} we will denote by the same symbol λ the corresponding v-vertex/edge/face of Δ^{w}. Since they are mainly used for indexing, this will not cause confusion.

Notation 2.4.2 Given a v-edge λ of Δ^{w}, we will denote by r_{λ} the smallest non-negative integer such that we can fix $\frac{n_{i}}{d_{i}} \in \mathbb{Q}$, for $i=0, \ldots, r_{\lambda}+1$ so that

$$
s_{1}^{\lambda}=\frac{n_{0}}{d_{0}}>\frac{n_{1}}{d_{1}}>\ldots>\frac{n_{r_{\lambda}}}{d_{r_{\lambda}}}>\frac{n_{r_{\lambda}+1}}{d_{r_{\lambda}+1}}=s_{2}^{\lambda}, \quad \text { with } \quad\left|\begin{array}{cc}
n_{i} & n_{i+1} \\
d_{i} & d_{i+1}
\end{array}\right|=1 .
$$

Thanks to Lemma 2.3.38 we can explicitly relate the Newton polytope Δ_{v}^{w} of $g_{w}(x, y)$ and the cluster picture centred at w of C.

Lemma 2.4.3 Let $w \in K$. Then there is a 1 -to- 1 correspondence between the clusters in $\stackrel{\circ}{\Sigma}_{\Sigma_{C}^{w}}$ and the faces of the Newton polytope Δ_{v}^{w}. More explicitly, let $\mathfrak{s}_{1} \subset \cdots \subset \mathfrak{s}_{n}=\mathfrak{R}$ be the clusters in $\dot{\Sigma}_{C}^{w}$ and let $\mathfrak{s}_{0}=\{w\}$ if $\{w\} \in \Sigma_{C}^{w}$ or $\mathfrak{s}_{0}=\varnothing$ otherwise. Then Δ_{v}^{w} has vertices $T, Q_{i}, i=0, \ldots, n$, where

- $T=(0,2,0)$,
- $Q_{n}=\left(|\mathfrak{R}|, 0, v\left(c_{f}\right)\right)$,
- $Q_{i}=\left(\left|\mathfrak{s}_{i}\right|, 0, \epsilon_{\mathfrak{s}_{i+1}}^{w}-\left|\mathfrak{s}_{i}\right| \rho_{\mathfrak{s}_{i+1}}^{w}\right)$ for $i=0, \ldots, n-1$,
and edges $L_{i}(i=1, \ldots, n)$, linking Q_{i-1} and Q_{i}, and $V_{j}(j=0, \ldots, n)$, linking Q_{j} and T. Furthermore, (possible choices for) the slopes of the v-edges of Δ^{w} are:
-

$$
s_{1}^{V_{n}}=\delta_{V_{n}} \frac{-v\left(c_{f}\right)+(|\mathfrak{R}|-2 g) \rho_{\mathfrak{\Re}}^{u}}{2} \quad \text { and } \quad s_{2}^{V_{n}}=\left\lfloor s_{1}^{V_{n}}-1\right\rfloor ;
$$

-

$$
\begin{aligned}
& s_{1}^{V_{i}}=\delta_{V_{i}}\left(-\frac{\epsilon_{s_{i}}^{w}}{2}+\left(\left\lfloor\frac{\left|\mathfrak{s}_{i}\right|}{2}\right\rfloor+1\right) \rho_{s_{i}}^{w}\right), \\
& s_{2}^{V_{i}}=\delta_{V_{i}}\left(-\frac{\epsilon_{s_{i+1}}^{w}}{2}+\left(\left\lfloor\frac{\left|\mathfrak{s}_{i}\right|}{2}\right\rfloor+1\right) \rho_{s_{i+1}}^{w}\right) \\
& \quad s_{1}^{V_{0}}=\delta_{V_{0}}\left(\frac{e_{s_{1}}^{w}}{2}-\rho_{s_{1}}^{w}\right) \quad \text { and } \quad s_{2}^{V_{0}}=\left\lfloor s_{1}^{V_{0}}-1\right\rfloor ;
\end{aligned}
$$

-

$$
s_{1}^{L_{i}}=\delta_{L_{i}}\left(-\frac{\epsilon_{s_{i}}^{w}}{2}+\left(\left\lfloor\frac{\mathfrak{s}_{i} \mid}{2}\right\rfloor+1\right) \rho_{s_{i}}^{w}\right) \quad \text { and } \quad s_{2}^{L_{i}}=\left\lfloor s_{1}^{L_{i}}-1\right\rfloor,
$$

for all $i=1, \ldots, n$. In particular, as $\delta_{L_{i}}$ is the denominator of $\rho_{s_{i}}^{w}$,

$$
r_{L_{i}}= \begin{cases}1 & \text { if } \delta_{L_{i}} \epsilon_{\xi_{\xi_{i}}}^{w} \text { is odd }, \\ 0 & \text { if } \delta_{L_{i}} \epsilon_{\xi_{\xi_{i}}}^{w} \text { is even }\end{cases}
$$

Finally, for suitable choices of basis of the lattices in [Dok, 3.4, 3.5], we have

$$
\overline{g_{w} \mid L_{i}}\left(x^{b_{i}}\right)=-\frac{u}{\pi^{u(u)}} \Pi_{r \in s_{i} \backslash s_{i-1}}\left(x+\frac{w-r}{\pi^{\rho_{i}}}\right) \bmod \pi, \quad u=c_{f} \prod_{r \in \Re \mathfrak{R}_{i}}(w-r),
$$

for any $i=1, \ldots, n$, where $\rho_{i}=\rho_{s_{i}}^{w}$, and b_{i} is the denominator of ρ_{i};

$$
\overline{g_{w} \mid V_{j}}(y)=y^{\left|\bar{V}_{j}(\mathbb{Z})_{z}\right|-1}-\frac{u}{\pi^{v(u)}} \bmod \pi, \quad u=c_{f} \prod_{r \in \Re_{i s_{j}}}(w-r),
$$

for any $j=0, \ldots, n$, where $\left|\bar{V}_{j}(\mathbb{Z})_{\mathbb{Z}}\right|$ is the number of integer points P on the v-edge V_{j} with $v(P) \in \mathbb{Z}$, endpoints included.

Proof. The structure of Δ_{v}^{w} follows from Lemma 2.3.38. For the computation of the slopes, we only need to individuate, for all the v-edges, the two points P_{0} and P_{1} of [Dok, Definition 3.12]. It is easy to see that the followings are admissible choices.

- For V_{i} and $L_{i}(i=1, \ldots, n)$, choose $P_{0}=\left(\left|\mathfrak{s}_{i}\right|, 0\right)$ and $P_{1}=\left(\left\lfloor\frac{\mathfrak{s}_{i} \mid-1}{2}\right\rfloor, 1\right)$.
- For V_{0}, choose $P_{0}=(0,2)$ and $P_{1}=(1,1)$;

The second part of the lemma then follows from the first one. The computations of the reductions also follows from Lemma 2.3 .38 by choosing the lattices $Q_{i-1}+\left(b_{i}, 0\right) \mathbb{Z}$ for $g_{w} L_{L_{i}}$ and $Q_{i}+\left(-\left|\mathfrak{s}_{i}\right| / a, 2 / a\right) \mathbb{Z}$ for $g_{w} \mid V_{j}$, where $a=\left|\bar{V}_{j}(\mathbb{Z})_{\mathbb{Z}}\right|-1$.

Notation 2.4.4 Let C be as above and let $w \in K$. For every cluster $\mathfrak{s} \in \dot{\Sigma}_{C}^{w}$ denote by $F_{\mathfrak{s}}^{w}$ the v-face of the Newton polytope Δ^{w} of $g_{w}(x, y)=y^{2}-f(x+w)$ that corresponds to \mathfrak{s}.

Following the notation of Lemma 2.4.3, let $i \in\{1, \ldots, n\}$ be such that $\mathfrak{s}=\mathfrak{s}_{i}$. We will write $L_{\mathfrak{s}}^{w}$, $V_{\mathfrak{s}}^{w}, V_{0}^{w}$ for the v-edges L_{i}, V_{i}, V_{0}, respectively.

Example 2.4.5 Let C be the hyperelliptic curve over \mathbb{Q}_{3} given by the equation $y^{2}=f(x)$ where $f(x)=x^{11}-3 x^{6}+9 x^{5}-27$ is the polynomial of Example 2.3.20.

Its cluster picture centred at 0 is

where the subscripts represent the radii with respect to 0 . As we can see, Σ_{C}^{0} consists of two clusters: \mathfrak{s}_{1} of size 6 , radius $\frac{1}{3}$ and $\epsilon_{\mathfrak{s}_{1}}^{0}=3$, and $\mathfrak{s}_{2}=\mathfrak{R}$ of size 11 , radius $\frac{1}{5}$ and $\epsilon_{\mathfrak{s}_{2}}^{0}=\frac{11}{5}$. Therefore the picture of Δ^{0} broken into v-faces will be

where $T=(0,2), Q_{0}=(0,0), Q_{1}=(6,0)$, and $Q_{2}=(11,0)$. Denoting the values of v on vertices, the picture becomes

To state the theorems which describe the special fibre of the proper flat model \mathcal{C} of C we will construct in §2.5, we need some definitions.

Definition 2.4.6 Let F / K be an unramified extension and let $\Sigma_{F}=\Sigma_{C_{F}}^{\text {rat }}$ (i.e. set of clusters cut out by discs with centre in F). For any proper $\mathfrak{s} \in \Sigma_{F}$ let $G_{\mathfrak{s}}=\operatorname{Stab}_{G_{K}}(\mathfrak{s})$ and $K_{\mathfrak{s}}=\left(K^{\mathfrak{s}}\right)^{G_{\mathfrak{s}}}$. We define the following quantities:

$\mathfrak{s} \in \Sigma_{F}$, proper	
radius	$\rho_{\mathfrak{s}}=\max _{w \in F} \min _{r \in \mathfrak{s}} v(r-w)$
	$b_{\mathfrak{s}}=\operatorname{denominator~of~} \rho_{\mathfrak{s}}$
	$\epsilon_{\mathfrak{s}}=v\left(c_{f}\right)+\sum_{r \in \mathfrak{i}} \rho_{r \wedge \mathfrak{s}}$
	$D_{\mathfrak{s}}=1$ if $b_{\mathfrak{s}} \epsilon_{\mathfrak{s}}$ odd, 2 if $b_{\mathfrak{s}} \epsilon_{\mathfrak{s}}$ even
multiplicity	$m_{\mathfrak{s}}=\left(3-D_{\mathfrak{s}}\right) b_{\mathfrak{s}}$
parity	$p_{\mathfrak{s}}=1$ if $\|\mathfrak{s}\|$ is odd, 2 if $\|\mathfrak{s j}\|$ is even
slope	$s_{\mathfrak{s}}=\frac{1}{2}\left(\|\mathfrak{s}\| \rho_{\mathfrak{s}}+p_{\mathfrak{s}} \rho_{\mathfrak{s}}-\epsilon_{\mathfrak{s}}\right)$
	$\gamma_{\mathfrak{s}}=2$ if \mathfrak{s} is even and $\epsilon_{\mathfrak{s}}-\|\mathfrak{s}\| \rho_{\mathfrak{s}}$ is odd, 1 otherwise
	$p_{\mathfrak{s}}^{0}=1$ if \mathfrak{s} is minimal and $\mathfrak{s} \cap K_{\mathfrak{s}} \neq \varnothing, 2$ otherwise
	$s_{\mathfrak{s}}^{0}=-\epsilon_{\mathfrak{s}} / 2+\rho_{\mathfrak{s}}$
	$\gamma_{\mathfrak{s}}^{0}=2$ if $p_{\mathfrak{s}}^{0}=2$ and $\epsilon_{\mathfrak{s}}$ is odd, 1 otherwise

Lemma 2.4.7 Keep the notation of the previous definition and let $\mathfrak{s} \in \Sigma_{K}$. Then $\mathfrak{s} \in \Sigma_{F}$ but the quantities in Definition 2.4.6 do not depend on F.

Proof. A cluster $\mathfrak{s} \in \Sigma_{F}$ belongs to Σ_{K} if and only if $\sigma(\mathfrak{s})=\mathfrak{s}$ for any $\sigma \in G_{K}$. Then the result follows from Lemma A.1.1.

Remark 2.4.8. Lemma 2.4.3 shed some light on the quantities we defined in Definition 2.4.6. Let $\mathfrak{s} \in \Sigma_{F}$. Fix a rational centre $w_{\mathfrak{s}} \in F$ of \mathfrak{s} such that $w_{\mathfrak{s}} \in K_{\mathfrak{s}}$ if $p_{\mathfrak{s}}^{0}=1$. Denoting $V=V_{\mathfrak{s}}^{w_{\mathfrak{s}}}, L=L_{\mathfrak{s}}^{w_{\mathfrak{s}}}$, and $V_{0}=V_{0}^{w_{s}}$, we have:

- $b_{\mathfrak{s}}=\delta_{L}$ and $r_{L}=2-D_{\mathfrak{s}}$.
- $\gamma_{\mathfrak{s}}=\delta_{V}, p_{\mathfrak{s}} / \gamma_{\mathfrak{s}}=\bar{V}(\mathbb{Z})_{\mathbb{Z}}-1$ and $s_{1}^{V}=\gamma_{\mathfrak{s}} s_{\mathfrak{s}}$. If V is internal, that is $\mathfrak{s} \neq \mathfrak{R}$, then $s_{2}^{V}=\gamma_{\mathfrak{s}}\left(s_{\mathfrak{s}}-\right.$ $\left.p_{\mathfrak{s}} \frac{\rho_{\mathfrak{s}}-\rho_{P(s)}}{2}\right)$.
- If \mathfrak{s} is minimal and so V_{0} is an edge of $F_{\mathfrak{s}}^{w_{\mathfrak{s}}}$, then $\gamma_{\mathfrak{s}}^{0}=\delta_{V_{0}}, p_{\mathfrak{s}}^{0} / \gamma_{\mathfrak{s}}^{0}=\bar{V}_{0}(\mathbb{Z})_{\mathbb{Z}}-1$ and $s_{1}^{V_{0}}=-\gamma_{\mathfrak{s}}^{0} s_{\mathfrak{s}}^{0}$.

Lemma 2.4.9 Let $\mathfrak{s} \in \Sigma_{C}^{\text {rat }}$ with rational centre $w \in K$. Then $D_{\mathfrak{s}}=1$ if and only if $v_{F_{\mathfrak{s}}^{w}}((a, 1)) \notin \mathbb{Z}$, for every $a \in \mathbb{Z}$.

Proof. If $D_{\mathfrak{s}}=1$ then $r_{L_{\mathfrak{s}}^{w}}=1$ by Lemma 2.4.3, and so $v_{F_{\mathfrak{s}}^{w}}((a, 1)) \notin \mathbb{Z}$, for every $a \in \mathbb{Z}$. Now let $c, d \in \mathbb{Z}$ such that $\rho_{\mathfrak{s}} \cdot c+d=1 / b_{\mathfrak{s}}$. If $D_{\mathfrak{s}}=2$, then $b_{\mathfrak{s}} \epsilon_{\mathfrak{s}} \in 2 \mathbb{Z}$, so

$$
v_{F_{\mathfrak{s}}^{w}}\left(c b_{\mathfrak{s}} \epsilon_{\mathfrak{s}} / 2,1\right)=\frac{v_{F_{\mathfrak{s}}^{w}}^{w}\left(\left(c b_{\mathfrak{s}} \epsilon_{\mathfrak{s}}, 0\right)\right)}{2}=\frac{\epsilon_{\mathfrak{s}}-\left(c b_{\mathfrak{s}} \epsilon_{\mathfrak{s}}\right) \rho_{\mathfrak{s}}}{2}=\frac{d b_{\mathfrak{s}} \epsilon_{\mathfrak{s}}}{2} \in \mathbb{Z},
$$

as required.
Definition 2.4.10 We say that C is y-regular if $p \nmid D_{\mathfrak{s}}$ for every proper $\mathfrak{s} \in \Sigma_{C}^{\text {rat }}$, i.e. if either $p \neq 2$ or $D_{\mathfrak{s}}=1$ for any proper $\mathfrak{s} \in \Sigma_{C}^{\text {rat }}$.

Remark 2.4.11. Let F / K be an unramified extension. Then from Lemma 2.4.7, if C_{F} is y-regular then C is y-regular.

The next lemma gives a characterisation of the Δ_{v}-regularity for hyperelliptic curves. In fact, C is Δ_{v}-regular along the horizontal edges of $\Delta=\Delta^{0}$ if f is NP-regular, and is Δ_{v}-regular along the non-horizontal edges of Δ if C is y-regular.

Lemma 2.4.12 The hyperelliptic curve C is Δ_{v}-regular if and only if C is y-regular and f is NP-regular.

Proof. Let $g(x, y)=y^{2}-f(x)$. If C is y-regular and f is NP-regular, then C is Δ_{v}-regular by Lemma 2.4.3 and Lemma 2.4.9.

Conversely, if C is Δ_{v}-regular, then f is NP-regular, and all clusters have rational centre 0 by Corollary 2.3.25. It remains to show that if $p=2$ then $D_{\mathfrak{s}}=1$ for every proper $\mathfrak{s} \in \Sigma_{C}^{\mathrm{rat}}$. Suppose there exists $\mathfrak{s} \in \Sigma_{C}^{\text {rat }}$ such that $D_{\mathfrak{s}}=2$. Consider the variety $\bar{X}_{F_{s}^{0}}$ ([Dok, Definition 3.7]). By Lemma 2.4.9, the smoothness of $\bar{X}_{F_{\mathfrak{s}}^{0}}$ implies there exists $\mathfrak{s}^{\prime} \in \sum_{C}^{\text {rat }}$, such that $|\mathfrak{s}|-\left|\mathfrak{s}^{\prime}\right|=1$. Hence $\rho_{\mathfrak{s}} \in \mathbb{Z}$ from Lemma 2.3.12. Therefore $\bar{F}_{\mathfrak{s}}^{0}(\mathbb{Z})=\bar{F}_{\mathfrak{s}}^{0}(\mathbb{Z})_{\mathbb{Z}}$, by Lemma 2.4.9. But this gives a contradiction as it forces either $\overline{\left.g\right|_{V^{\prime}} ^{0}}$ or $\overline{\left.g\right|_{V_{s}^{0}}}$ to be a square.

Definition 2.4.13 Let $\mathfrak{s} \in \Sigma_{F}$ be a proper cluster and let $c \in\left\{0, \ldots, b_{\mathfrak{s}}-1\right\}$ such that $c \rho_{\mathfrak{s}}-\frac{1}{b_{\mathfrak{s}}} \in \mathbb{Z}$. Define

$$
\tilde{\mathfrak{s}}=\left\{\mathfrak{s}^{\prime} \in \Sigma_{F} \cup\{\varnothing\} \mid \mathfrak{s}^{\prime}<\mathfrak{s} \text { and } \frac{\left|\mathfrak{s}^{\prime}\right|}{b_{\mathfrak{s}}}-c \epsilon_{\mathfrak{s}} \notin 2 \mathbb{Z}\right\},
$$

where $\varnothing<\mathfrak{s}$ if \mathfrak{s} is minimal and $p_{\mathfrak{s}}^{0}=2$.
The genus $g(\mathfrak{s})$ of a rational cluster $\mathfrak{s} \in \Sigma_{F}$ is defined as follows:

- If $D_{\mathfrak{s}}=1$, then $g(\mathfrak{s})=0$.
- If $D_{\mathfrak{s}}=2$, then $2 g(\mathfrak{s})+1$ or $2 g(\mathfrak{s})+2$ equals

$$
\frac{|\mathfrak{s}|-\sum_{\mathfrak{s}^{\prime} \in \sum_{F}, \mathfrak{s}^{\prime}<\mathfrak{s}}\left|\mathfrak{s}^{\prime}\right|}{b_{\mathfrak{s}}}+|\tilde{\mathfrak{s}}| .
$$

Definition 2.4.14 Let $\Sigma_{C}^{\min }$ be the set of rationally minimal clusters of C and let $\Sigma \subseteq \Sigma_{C}^{\min }$. For each cluster $\mathfrak{s} \in \Sigma$, fix a rational centre $w_{\mathfrak{s}}$; if possible, choose $w_{\mathfrak{s}} \in \mathfrak{s}$. Let W be the set of these rational centres and define $\Sigma^{W}=\bigcup_{w \in W} \Sigma_{C}^{w}$. For any proper cluster $\mathfrak{s} \in \Sigma^{W}$ fix a rational centre $\underline{w_{\mathfrak{s}}} \in W$. Denote $r_{\mathfrak{s}}=\frac{w_{\mathfrak{s}}-r}{\pi^{\rho_{\mathfrak{s}}}}$ for $r \in \Re$. Define reductions $\overline{f_{\mathfrak{s}}^{W}}(x) \in k[x], \overline{g_{\mathfrak{s}}} \in k[y]$, and for $\mathfrak{s} \in \Sigma$ also $\overline{g_{5}^{0}} \in k[y]$ by

$$
\begin{aligned}
& \overline{f_{\mathfrak{s}}^{W}}\left(x^{b_{\mathfrak{s}}}\right)=\frac{u}{\pi^{v(u)}} \prod_{r \in \mathfrak{s} \backslash \bigcup_{\mathfrak{s}^{\prime}<\mathfrak{s}^{\mathfrak{s}^{\prime}}}}\left(x+r_{\mathfrak{s}}\right) \bmod \pi, \quad u=c_{f} \prod_{r \in \Re \Re_{\mathfrak{s}}} r_{\mathfrak{s}}, \\
& \overline{g_{s}}(y)=y^{p_{s} / \gamma_{\mathfrak{s}}}-\frac{u}{\pi^{(u)}} \bmod \pi, \quad u=c_{f} \prod_{r \in \mathcal{R}_{i s}} r_{\mathfrak{s}}, \\
& \overline{g_{s}^{0}}(y)=y^{p_{s}^{0} \gamma_{s}^{0}}-\frac{u}{\pi^{v(u)}} \bmod \pi, \quad u=c_{f} \prod_{\left.r \in \mathfrak{R} \backslash w_{s}\right\}} r_{\mathfrak{s}} .
\end{aligned}
$$

where the union runs through all $\mathfrak{s}^{\prime} \in \Sigma^{W}, \mathfrak{s}^{\prime}<\mathfrak{s}$. Finally define the k-schemes

1. $X_{\mathfrak{s}}^{W}:\left\{\overline{f_{\mathfrak{s}}^{W}}=0\right\} \subset \mathbb{G}_{m, k}$;
2. $X_{\mathfrak{s}}:\left\{\overline{g_{\mathfrak{s}}}=0\right\} \subset \mathbb{G}_{m, k}$;
3. $X_{\mathfrak{s}}^{0}:\left\{\overline{g_{\mathfrak{s}}^{0}}=0\right\} \subset \mathbb{G}_{m, k}$ if $\mathfrak{s} \in \Sigma$.

Notation 2.4.15 Given a scheme \mathcal{X} / O_{K} we will denote by \mathcal{X}_{η} its generic fibre $\mathcal{X} \times_{\text {Spec }} O_{K}$ Spec K, and by \mathcal{X}_{s} its special fibre $\mathcal{X} \times_{\text {Spec }} O_{K}$ Spec k.

Notation 2.4.16 If $C=C_{1} \cup \cdots \cup C_{r}$ is a chain of $\mathbb{P}_{k}^{1} \mathrm{~S}$ of length r and multiplicities $m_{i} \in \mathbb{Z}$ (meeting transversely), then $\infty \in C_{i}$ is identified with $0 \in C_{i+1}$, and $0, \infty \in C$ are respectively $0 \in C_{1}$ and $\infty \in C_{r}$. Finally, if $r=0$, then $C=\operatorname{Spec} k$ and $0=\infty$.

Notation 2.4.17 Let $\alpha \in \mathbb{Z}_{+}, a, b \in \mathbb{Q}$, with $a>b$, and fix $\frac{n_{i}}{d_{i}} \in \mathbb{Q}$ so that

$$
\alpha a=\frac{n_{0}}{d_{0}}>\frac{n_{1}}{d_{1}}>\ldots>\frac{n_{r}}{d_{r}}>\frac{n_{r+1}}{d_{r+1}}=\alpha b, \quad \text { with } \quad\left|\begin{array}{ll}
n_{i} & n_{i+1} \\
d_{i} & d_{i+1}
\end{array}\right|=1
$$

and r minimal. We write $\mathbb{P}^{1}(\alpha, a, b)$ for a chain of $\mathbb{P}_{k}^{1} \mathrm{~S}$ of length r and multiplicities $\alpha d_{1}, \ldots, \alpha d_{r}$. We denote by $\mathbb{P}^{1}(\alpha, a)$ the chain $\mathbb{P}^{1}(\alpha, a,\lfloor\alpha a-1\rfloor / \alpha)$. Moreover, we write $\overline{\mathbb{P}}^{1}(\alpha, a, b), \overline{\mathbb{P}}^{1}(\alpha, a)$ for $\mathbb{P}^{1}(\alpha, a, b) \times \operatorname{Spec} k \operatorname{Spec} k^{\mathrm{s}}, \mathbb{P}^{1}(\alpha, a) \times{ }_{\operatorname{Spec} k} \operatorname{Spec} k^{\mathrm{s}}$, respectively.

Theorem 2.4.18 and Theorem 2.4.22 will follow from §2.5.
Theorem 2.4.18 Let C / K be a hyperelliptic curve given by a Weierstrass equation $y^{2}=f(x)$. Suppose $\operatorname{deg} f>1$ and let Σ, W and Σ^{W} as in Definition 2.4.14. Then there exists a proper flat model \mathcal{C} / O_{K} (constructed in $\S 2.5$) of C such that its special fibre \mathcal{C}_{s} / k consists of 1-dimensional schemes given below in (1),(2),(3),(4),(5), glued along 0-dimensional transversal intersections:
(1) Every proper cluster $\mathfrak{s} \in \Sigma^{W}$ gives a 1-dimensional closed subscheme $\Gamma_{\mathfrak{s}}$ of multiplicity $m_{\mathfrak{s}}$. $\Gamma_{\mathfrak{s}}$ is not integral if and only if $D_{\mathfrak{s}}=2, \tilde{\mathfrak{s}} \cap\left(\Sigma^{W} \cup\{\varnothing\}\right)=\varnothing$ and $\overline{f_{\mathfrak{s}}^{W}}$ is a square. When this happens, if $p=2$ then $\Gamma_{\mathfrak{s}}$ is not reduced and $\left(\Gamma_{\mathfrak{s}}\right)_{\text {red }}$ is irreducible of multiplicity 2 in $\Gamma_{\mathfrak{s}}$, if $p \neq 2$ then $\Gamma_{\mathfrak{s}}$ is reducible, namely $\Gamma_{\mathfrak{s}}=\Gamma_{\mathfrak{s}}^{+} \cup \Gamma_{\mathfrak{s}}^{-}$, with $\Gamma_{\mathfrak{s}}^{ \pm}=\mathbb{P}_{k}^{1}$.
(2) Every proper cluster $\mathfrak{s} \in \Sigma^{W}$ with $D_{\mathfrak{s}}=1$ gives the closed subscheme $X_{\mathfrak{s}}^{W} \times \mathbb{P}_{k}^{1}$, of multiplicity $b_{\mathfrak{s}}$, where $X_{\mathfrak{s}}^{W} \times\{0\} \subset \Gamma_{\mathfrak{s}}$.
(3) Every proper cluster $\mathfrak{s} \in \Sigma^{W}$ such that $\mathfrak{s} \neq \mathfrak{R}$, gives the closed subscheme $X_{\mathfrak{s}} \times \mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}, s_{\mathfrak{s}}-\right.$ $p_{\mathfrak{s}} \cdot \frac{\rho_{\mathfrak{s}}-\rho_{P(\mathfrak{s})}}{2}$) where $X_{\mathfrak{s}} \times\{0\} \subset \Gamma_{\mathfrak{s}}$ and $X_{\mathfrak{s}} \times\{\infty\} \subset \Gamma_{P(\mathfrak{s})}$.
(4) Every cluster $\mathfrak{s} \in \Sigma$ gives the closed subscheme $X_{\mathfrak{s}}^{0} \times \mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}^{0},-s_{\mathfrak{s}}^{0}\right)$ where $X_{\mathfrak{s}}^{0} \times\{0\} \subset \Gamma_{\mathfrak{s}}$ (the chains are open-ended).
(5) Finally, the cluster \mathfrak{R} gives the closed subscheme $X_{\mathfrak{R}} \times \mathbb{P}^{1}\left(\gamma_{\mathfrak{R}}, s_{\mathfrak{R}}\right)$ where $X_{\mathfrak{R}} \times\{0\} \subset \Gamma_{\mathfrak{s}}$ (the chains are open-ended).

If $\Gamma_{\mathfrak{s}}$ is reducible, the two points in $X_{\mathfrak{s}} \times\{0\}$ (and $X_{\mathfrak{s}}^{0} \times\{0\}$ if $\mathfrak{s} \in \Sigma$) belong to different irreducible components of $\Gamma_{\mathfrak{s}}$. Similarly, if $\mathfrak{s} \neq \mathfrak{R}$ and $\Gamma_{P(\mathfrak{s})}$ is reducible, the two points of $X_{\mathfrak{s}} \times\{\infty\}$ belong to different irreducible components of $\Gamma_{P(\mathfrak{s})}$.

Furthermore, if C has an almost rational cluster picture and is y-regular, then, by choosing $\Sigma=\Sigma_{C}^{\min }$, the model \mathcal{C} is regular with strict normal crossings. In that case, if \mathfrak{s} is übereven and $\epsilon_{\mathfrak{s}}$ is even, then $\Gamma_{\mathfrak{s}} \simeq X_{\mathfrak{5}} \times \mathbb{P}_{k}^{1}$, otherwise $\Gamma_{\mathfrak{s}}$ is irreducible of genus $g(\mathfrak{s})$.

Theorem 2.4.18 can be compared with Theorem 4.6.3 that describes a regular (proper flat) model of C when $p \neq 2$.

Definition 2.4.19 Let $\mathfrak{s} \in \Sigma_{K^{n r}}$. We say that

- \mathfrak{s} is removable if either $|\mathfrak{s}|=1$, or \mathfrak{s} has a child $\mathfrak{s}^{\prime} \in \Sigma_{K^{n r}}$ of size $2 g+1(\mathfrak{s}=\mathfrak{R}$ in this case $)$.
- \mathfrak{s} is contractible if one of the following conditions holds:

1. $|\mathfrak{s}|=2$ and $\rho_{\mathfrak{s}} \notin \mathbb{Z}, \epsilon_{\mathfrak{s}}$ odd, $\rho_{P(\mathfrak{s})} \leq \rho_{\mathfrak{s}}-\frac{1}{2}$;
2. $\mathfrak{s}=\mathfrak{R}$ of size $2 g+2$, with a child $\mathfrak{s}^{\prime} \in \Sigma_{K^{n r}}$ of size $2 g$, and $\rho_{\mathfrak{s}} \notin \mathbb{Z}, v\left(c_{f}\right)$ odd, $\rho_{\mathfrak{s}^{\prime}} \geq \rho_{\mathfrak{s}}+\frac{1}{2}$;
3. $\mathfrak{s}=\mathfrak{R}$ of size $2 g+2$, union of its 2 odd proper children $\mathfrak{s}_{1}, \mathfrak{s}_{2} \in \Sigma_{K^{n r}}$, with $v\left(c_{f}\right)$ odd, $\rho_{\mathfrak{s}_{i}} \geq \rho_{\mathfrak{s}}+1$ for $i=1,2$.
Notation 2.4.20 Write $\stackrel{\circ}{\Sigma} \subseteq \Sigma_{K^{n r}}$ for the subset of non-removable clusters.
Definition 2.4.21 Choose rational centres $w_{\mathfrak{s}}$ for every $\mathfrak{s} \in \stackrel{\circ}{\Sigma}$, in such a way that $w_{\mathfrak{s}} \in \mathfrak{s}$ when $p_{\mathfrak{s}}^{0}=1$, and $\sigma\left(w_{\mathfrak{s}}\right)=w_{\sigma(\mathfrak{s})}$ for all $\sigma \in \operatorname{Gal}\left(K^{n r} / K\right)$. Denote $r_{\mathfrak{s}}=\frac{w_{\mathfrak{s}}-r}{\pi^{\rho \mathfrak{s}}}$ for $r \in \mathfrak{\Re}$ and define $\overline{\mathfrak{g}_{\mathfrak{s}}}, \overline{g_{\mathfrak{s}}^{0}} \in k^{\mathrm{s}}[y]$ as in Definition 2.4.14, and $\overline{f_{\mathfrak{s}}}(x) \in k^{\mathrm{s}}[x]$, by

$$
x^{2-p_{\mathfrak{s}}^{0}} \overline{f_{\mathfrak{s}}}\left(x^{b_{\mathfrak{s}}}\right)=\frac{u}{\pi^{(u(u)}} \prod_{r \in \mathfrak{s} \bigcup_{\mathfrak{s}^{\prime}<s s^{s^{\prime}}}}\left(x+r_{\mathfrak{s}}\right) \bmod \pi, \quad u=c_{f} \prod_{r \in \mathfrak{R} \mathfrak{s}} r_{\mathfrak{s}}
$$

where the union runs through all $\mathfrak{s}^{\prime} \in \stackrel{\circ}{\Sigma}, \mathfrak{s}^{\prime}<\mathfrak{s}$. Let $G_{\mathfrak{s}}=\operatorname{Stab}_{G_{K}}(\mathfrak{s}), K_{\mathfrak{s}}=\left(K^{\mathrm{s}}\right)^{G_{\mathfrak{s}}}$, and let $k_{\mathfrak{s}}$ be the residue field of K_{5}. Then $\overline{f_{5}} \in k_{\mathfrak{5}}[x], \overline{g_{5}} \in k_{\mathfrak{5}}[y]$, and for \mathfrak{s} minimal $\overline{g_{5}^{0}} \in k_{\mathfrak{5}}[y]$.

Let $\mathfrak{s}_{0} \in \tilde{\Sigma}$ be minimal and contained in \mathfrak{s}. Denote $\mathfrak{s}=\tilde{\mathfrak{s}} \backslash\left\{\{r\}<\mathfrak{s} \mid r \neq w_{\mathfrak{s}_{0}}\right\}$. Note that \mathfrak{s} does not depend on the choice of \mathfrak{s}_{0}. Define $\tilde{f}_{\mathfrak{s}} \in k_{\mathfrak{s}}[x]$ by

$$
\tilde{f}_{\mathfrak{s}}(x)=\prod_{\mathfrak{s}^{\prime} \in \dot{\mathfrak{s}}}\left(x-\overline{u_{\mathfrak{s}^{\prime}, \mathfrak{s}}}\right) \cdot \overline{f_{\mathfrak{s}}}(x),
$$

where $\overline{u_{\mathfrak{s}^{\prime}, \mathfrak{s}}}=\frac{w_{s^{\prime}}-w_{\mathfrak{s}}}{\pi^{\rho \mathfrak{s}}} \bmod \pi$ if $\mathfrak{s}^{\prime} \neq \varnothing$ and $\overline{u_{\mathfrak{s}^{\prime}, \mathfrak{s}}}=0$ otherwise.
In the next theorem we describe the special fibre of the minimal regular model of C with normal crossings. We use Definitions/Notations 2.3.1, 2.3.3, 2.3.4, 2.3.2, 2.3.8, 2.3.9, 2.3.26, 2.4.6, 2.4.10, 2.4.13, 2.4.17, 2.4.19, 2.4.20, 2.4.21 in the statement. Note that a full description of the model is developed in $\S 2.5$.

Theorem 2.4.22 (Minimal regular NC model) Let $C / K: y^{2}=f(x)$ be a hyperelliptic curve of genus ≥ 1. Suppose $C_{K^{n r}}$ has an almost rational cluster picture and is y-regular. Then the minimal regular model with normal crossings $\mathcal{C}^{\min } / O_{K^{n r}}$ of C has special fibre $\mathcal{C}_{s}^{\min } / k^{\mathrm{s}}$ described as follows:
(1) Every $\mathfrak{s} \in \Sigma^{\circ}$ gives a 1-dimensional subscheme $\Gamma_{\mathfrak{s}}$ of multiplicity $m_{\mathfrak{s}}$. If \mathfrak{s} is übereven and $\epsilon_{\mathfrak{s}}$ is even, then $\Gamma_{\mathfrak{s}}$ is the disjoint union of $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},-}} \simeq \mathbb{P}_{k^{\mathfrak{s}}}^{1}$ and $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},+}} \simeq \mathbb{P}_{k^{s}}^{1}$, otherwise $\Gamma_{\mathfrak{s}}$ is irreducible of genus $g(\mathfrak{s})$ (write $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},-}}=\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},+}}=\Gamma_{\mathfrak{s}}$ in this case). The indices $r_{\mathfrak{s},-}$ and $r_{\mathfrak{s},+}$ are the roots of $\overline{g_{\mathfrak{s}}}$ (where $r_{\mathfrak{s},-}=r_{\mathfrak{s},+}$ if $\operatorname{deg} \overline{g_{\mathfrak{s}}}=1$).
(2) Every $\mathfrak{s} \in \Sigma^{\circ}$ with $D_{\mathfrak{s}}=1$ gives open-ended $\mathbb{P}_{k^{s}}^{1} s$ of multiplicity $b_{\mathfrak{s}}$ from $\Gamma_{\mathfrak{s}}$ indexed by roots of $\overline{f_{\mathfrak{s}}}$.
(3) Every non-maximal element $\mathfrak{s} \in \sum^{\circ}$ gives chains $\overline{\mathbb{P}}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}, s_{\mathfrak{s}}-p_{\mathfrak{s}} \cdot \frac{\rho_{\mathfrak{s}}-\rho_{P(\mathfrak{s})}}{2}\right)$ from $\Gamma_{\mathfrak{s}}$ to $\Gamma_{P(\mathfrak{s})}$ indexed by roots of $\overline{g_{\mathfrak{s}}}$.
(4) Every minimal element $\mathfrak{s} \in \Sigma^{\circ}$ gives open-ended chains $\overline{\mathbb{P}}^{1}\left(\gamma_{\mathfrak{s}}^{0},-s_{\mathfrak{s}}^{0}\right)$ from $\Gamma_{\mathfrak{s}}$ indexed by roots of $\overline{g_{\mathfrak{s}}^{0}}$.
(5) The maximal element $\mathfrak{s} \in \sum^{\circ}$ gives open-ended chains $\overline{\mathbb{P}}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}\right)$ from $\Gamma_{\mathfrak{s}}$ indexed by roots of $\overline{g_{\mathfrak{s}}}$.
(6) Finally, blow down all $\Gamma_{\mathfrak{s}}$ where \mathfrak{s} is a contractible cluster.

In (3) and (5), a chain indexed by r goes from $\Gamma_{\mathfrak{s}}^{r}$. In (3) the chain indexed by $r_{\mathfrak{s},-}$ goes to $\Gamma_{P(\mathfrak{s})}^{r_{P(\mathfrak{s}),}}$ and the chain indexed by $r_{\mathfrak{s},+}$ goes to $\Gamma_{P(\mathfrak{s})}^{r_{P(\mathfrak{s})+}}$.

Before blowing down in (6), the components given in (1)-(5) describe the special fibre of a regular model of $C_{K^{n r}}$ with strict normal crossings.

The Galois group G_{k} acts naturally, i.e. for every $\sigma \in G_{k}, \sigma\left(\Gamma_{\mathfrak{s}}^{r}\right)=\Gamma_{\sigma(\mathfrak{s})}^{\sigma(r)}$, and similarly on the chains.

If $\Gamma_{\mathfrak{s}}$ is irreducible, then its function field is isomorphic to $k^{\mathrm{s}}(x)[y]$ with the relation $y^{D_{\mathfrak{s}}}=\tilde{f}_{\mathfrak{s}}(x)$.
Remark 2.4.23. Note that if $\Gamma_{\mathfrak{s}}$ or $\Gamma_{P(\mathfrak{s})}$ is reducible then $p_{\mathfrak{s}} / \gamma_{\mathfrak{s}}=2$.
Example 2.4.24 Let p be a prime number and let $a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{p}^{\times}$such that the polynomial $x^{2}+a x+b$ is not a square modulo p. Let C be the hyperelliptic curve over \mathbb{Q}_{p} of genus 4 given by the equation $y^{2}=f(x)$, where $f(x)=\left(x^{6}+a p^{4} x^{3}+b p^{8}\right)\left((x-p)^{3}-p^{11}\right)$. In Example 2.3.32, we described the rational cluster picture of C and proved that C has an almost rational cluster picture. Recall that $\Sigma_{C}^{\text {rat }}$ consists of 3 clusters $\mathfrak{t}_{3}, \mathfrak{t}_{4}, \mathfrak{R}$ of size $6,3,9$ respectively such that $\mathfrak{t}_{3}<\mathfrak{R}$ and $\mathfrak{t}_{4}<\mathfrak{R}$. In particular, note that $\Sigma_{\mathbb{Q}_{p}^{n r}}=\Sigma_{C}^{\text {rat }}$, and no cluster of $\Sigma_{\mathbb{Q}_{p}^{n r}}$ is removable, so $\Sigma^{\circ}=\Sigma_{C}^{\mathrm{rat}}$. The minimal elements of ${ }^{\circ}$ are then \mathfrak{t}_{3} and \mathfrak{t}_{4}.

We want to describe the special fibre of the minimal regular model with normal crossings $\mathcal{C}^{\text {min }}$ of C. Compute the quantities in Definitions 2.4.6 and 2.4.13, and the polynomials $\overline{f_{\mathfrak{s}}}, \overline{g_{\mathfrak{s}}}, \overline{g_{\mathfrak{s}}^{0}}$ of Definition 2.4.21, for any cluster in Σ° :

	$\rho_{\mathfrak{s}}$	$b_{\mathfrak{s}}$	$\epsilon_{\mathfrak{s}}$	$D_{\mathfrak{s}}$	$m_{\mathfrak{s}}$	$p_{\mathfrak{s}}$	$s_{\mathfrak{s}}$	$\gamma_{\mathfrak{s}}$	$p_{\mathfrak{s}}^{0}$	$s_{\mathfrak{s}}^{0}$	$\gamma_{\mathfrak{s}}^{0}$	$g(\mathfrak{s})$	$\overline{f_{\mathfrak{s}}}(x)$	$\overline{g_{\mathfrak{s}}}(y)$	$\overline{g_{\mathfrak{s}}^{0}}(y)$
\mathfrak{t}_{3}	$\frac{4}{3}$	3	11	1	6	2	$-\frac{1}{6}$	2	2	$-\frac{25}{6}$	2	0	$x^{2}+\bar{a} x+\bar{b}$	$y+1$	$y-1$
\mathfrak{t}_{4}	$\frac{11}{3}$	3	17	1	6	1	$-\frac{7}{6}$	1	2	$-\frac{29}{6}$	2	0	$x-1$	$y-1$	$y+1$
\mathfrak{R}	1	1	9	1	2	1	$\frac{1}{2}$	1	2			0	1	$y-1$	

where \bar{a}, \bar{b} are the reductions of a, b modulo p. Then C is also y-regular for any p. Following the steps of Theorem 2.4.22 the special fibre of $\mathcal{C}^{\min }$ over $\overline{\mathbb{F}}_{p}$ can be described as follows:
(1) The clusters $\mathfrak{t}_{3}, \mathfrak{t}_{4}, \mathfrak{R}$ give 3 irreducible components $\Gamma_{t_{3}}, \Gamma_{\mathfrak{t}_{4}}, \Gamma_{\mathfrak{R}}$ of genus 0 of multiplicities 6,6,2 respectively;
(2) The cluster \mathfrak{t}_{3} gives 2 open-ended \mathbb{P}^{1} S of multiplicity 3 from $\Gamma_{\mathfrak{t}_{3}}$, while \mathfrak{t}_{4} gives 1 open-ended \mathbb{P}^{1} of multiplicity 3 from $\Gamma_{\mathfrak{t}_{4}}$.
(3) From $\gamma_{\mathrm{t}_{3}} s_{\mathrm{t}_{3}}=-\frac{1}{3}>-\frac{1}{2}>-1=\gamma_{\mathrm{t}_{3}}\left(s_{\mathrm{t}_{3}}-p_{\mathrm{t}_{3}} \cdot \frac{\rho_{\mathrm{t}_{3}}-\rho_{\mathfrak{R}}}{2}\right)$, the cluster \mathfrak{t}_{3} gives $1 \mathbb{P}^{1}$ of multiplicity 4 from $\Gamma_{\mathfrak{t}_{3}}$ to $\Gamma_{\mathfrak{R}}$. From

$$
\gamma_{\mathfrak{t}_{4}} s_{\mathfrak{t}_{4}}=-\frac{7}{6}>-\frac{6}{5}>-\frac{5}{4}>-\frac{4}{3}>-\frac{3}{2}>-2>-\frac{5}{2}=\gamma_{\mathfrak{t}_{3}}\left(s_{\mathfrak{t}_{4}}-p_{\mathfrak{t}_{4}} \cdot \frac{\rho_{\mathfrak{t}_{4}}-\rho_{\mathfrak{\Re}}}{2}\right)
$$

the cluster \mathfrak{t}_{4} gives 1 chain of \mathbb{P}^{1} S of multiplicities $5,4,3,2,1$ from $\Gamma_{\mathfrak{t}_{4}}$ to $\Gamma_{\mathfrak{R}}$.
(4) From $-\gamma_{\mathfrak{t}_{3}}^{0} s_{\mathfrak{t}_{3}}^{0}=\frac{25}{3}>8>7$ the cluster \mathfrak{t}_{3} gives 1 open-ended \mathbb{P}^{1} of multiplicity 2 from $\Gamma_{\mathfrak{t}_{3}}$. From $-\gamma_{\mathfrak{t}_{4}}^{0} s_{\mathfrak{t}_{4}}^{0}=\frac{29}{3}>\frac{19}{2}>9>8$, the cluster \mathfrak{t}_{4} gives 1 open-ended chain of $\mathbb{P}^{1} \mathrm{~S}$ of multiplicities 4,2 from $\Gamma_{\mathfrak{t}_{4}}$.
(5) From $\gamma_{\mathfrak{R}} s_{\mathfrak{R}}=\frac{1}{2}>0>-1$, the cluster \mathfrak{R} gives 1 open-ended \mathbb{P}^{1} of multiplicity 1 from $\Gamma_{\mathfrak{R}}$.
(6) There is no contractible cluster, so the components we considered in the steps above describe the special fibre of $\mathcal{C}^{\text {min }}$ over $\overline{\mathbb{F}}_{p}$:

Finally, from the Galois action on the roots of the polynomials $\overline{f_{\mathfrak{s}}}, \overline{g_{\mathfrak{s}}}, \overline{g_{\mathfrak{s}}^{0}}$, for $\mathfrak{s} \in \stackrel{\circ}{\Sigma}$, we get that G_{k} acts trivially if $x^{2}+\bar{a} x+\bar{b}$ is reducible in \mathbb{F}_{p}, while it swaps the two components of multiplicity 3 intersecting $\Gamma_{\mathfrak{t}_{3}}$ (coming from (2)) otherwise.

As application of Theorem 2.4.22 we suppose k is finite of characteristic $p>2$ and C is semistable of genus $g \geq 2$. In this setting [$\mathrm{D}^{2} \mathrm{M}^{2}$, Theorem 8.5] describes the minimal regular model of C in terms of its cluster picture Σ_{C}. We compare that result with the one obtained from Theorem 2.4.22 (Corollary 2.4.26).

First note that $C_{K^{n r}}$ is y-regular as $p \neq 2$. From [$\mathrm{D}^{2} \mathrm{M}^{2}$, Definition 1.7], if C is semistable then

1. the extension $K(\Re) / K$ has ramification degree at most 2 ;
2. every proper cluster is $\operatorname{Gal}\left(K^{\mathrm{s}} / K^{n r}\right)$-invariant;
3. every principal cluster has $d_{\mathfrak{s}} \in \mathbb{Z}$ and $v_{\mathfrak{s}} \in 2 \mathbb{Z}$.

It follows from Corollary 2.3.27 that $C_{K^{n r}}$ has an almost rational cluster picture.
In fact, (1) and (2) imply $\rho_{\mathfrak{5}}=d_{\mathfrak{5}}$ and $\epsilon_{\mathfrak{5}}=v_{\mathfrak{5}}$ for any proper cluster \mathfrak{s} (Remark 2.3.13). In particular, $\Sigma_{C_{K^{n r}}}^{\mathrm{rat}}=\Sigma_{C}$. We will then say that $\mathfrak{s} \in \Sigma_{C}$ is non-removable if \mathfrak{s} is proper and nonremovable as rational cluster in $\Sigma_{K^{n r}}$.

Lemma 2.4.25 Suppose k finite and $p>2$. Assume C is semistable and let $\mathfrak{s} \in \Sigma_{C}$ be a nonremovable cluster. Then $d_{\mathfrak{s}} \in \frac{1}{2} \mathbb{Z}$ and $v_{\mathfrak{s}} \in \mathbb{Z}$. Moreover, \mathfrak{s} is contractible if and only if $d_{\mathfrak{s}} \notin \mathbb{Z}$ or $v_{\mathfrak{s}} \notin 2 \mathbb{Z}$.

Proof. Let $\mathfrak{s} \in \Sigma_{C}$ be a non-removable cluster. Since $K(\mathfrak{R}) / K$ has ramification degree at most 2 , then $d_{\mathfrak{s}} \in \frac{1}{2} \mathbb{Z}$.

By Theorem 2.4.22 the multiplicity of the 1-dimensional scheme $\Gamma_{\mathfrak{s}}$ is $m_{\mathfrak{s}}$. Furthermore, $\Gamma_{\mathfrak{s}}$ is an irreducible component of the special fibre of the minimal regular model of C if and only if \mathfrak{s} is not contractible. Therefore if \mathfrak{s} is not contractible, then $m_{\mathfrak{s}}=1$, i.e. $D_{\mathfrak{s}}=2$ and $b_{\mathfrak{s}}=1$. It follows that $v_{\mathfrak{s}} \in 2 \mathbb{Z}$ and $d_{\mathfrak{s}} \in \mathbb{Z}$. Suppose \mathfrak{s} contractible. Then either $d_{\mathfrak{s}} \notin \mathbb{Z}$ (and $v_{\mathfrak{s}} \in \mathbb{Z}$) or $\mathfrak{s}=\mathfrak{R}$ of size $2 g+2$, with 2 odd rational children and $v\left(c_{f}\right)$ odd. We want to show that in the latter case, $v_{\mathfrak{s}}$ is odd. By Lemma 2.3.18, $d_{\mathfrak{R}} \in \mathbb{Z}$. Then $v_{\mathfrak{R}}=v\left(c_{f}\right)+(2 g+2) d_{\mathfrak{R}}$ is odd.

Let $\mathfrak{s} \in \Sigma_{C}$ be a non-removable cluster. By Lemma 2.4 .25 , if \mathfrak{s} is not contractible, then $2 g(\mathfrak{s})+1$ or $2 g(\mathfrak{s})+2$ equals the number of odd children of \mathfrak{s}. In fact, this also holds when \mathfrak{s} is contractible since in that case $g(\mathfrak{s})=0$ and \mathfrak{s} has at most 2 odd children.

Corollary 2.4.26 (Minimal regular model (semistable reduction)) Suppose that k is finite and $p>2$. Let C / K be a semistable hyperelliptic curve of genus $g \geq 2$. The minimal regular model $\mathcal{C}^{\min } / O_{K^{n r}}$ of C has special fibre $\mathcal{C}_{s}^{\min } / k^{\mathrm{s}}$ described as follows:
(1) Every non-removable cluster $\mathfrak{s} \in \Sigma_{C}$ gives a 1-dimensional subscheme $\Gamma_{\mathfrak{s}}$. If \mathfrak{s} is übereven, then $\Gamma_{\mathfrak{s}}$ is the disjoint union of $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s}}} \simeq \mathbb{P}^{1}$ and $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},+}} \simeq \mathbb{P}^{1}$, otherwise $\Gamma_{\mathfrak{s}}$ is irreducible of genus $g(\mathfrak{s})$ (write $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s}},}=\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},+}}=\Gamma_{\mathfrak{s}}$ in this case). The indices $r_{\mathfrak{s},-}$ and $r_{\mathfrak{s},+}$ are the roots of $\overline{g_{\mathfrak{s}}}$.
(2) Every odd proper cluster $\mathfrak{s} \in \Sigma_{C}$ of size $|\mathfrak{s}| \leq 2 g$ gives a chain of \mathbb{P}^{1} s of length $\left\lfloor\frac{d_{\mathfrak{s}}-d_{P_{(\mathfrak{s})}-1}}{2}\right\rfloor$ from $\Gamma_{\mathfrak{s}}$ to $\Gamma_{P(\mathfrak{s})}$ indexed by the root of $\overline{g_{\mathfrak{s}}}$.
(3) Every even proper cluster $\mathfrak{s} \in \Sigma_{C}$ of size $|\mathfrak{s}| \leq 2 g$ gives a chain of \mathbb{P}^{1} s of length $\left\lfloor d_{\mathfrak{s}}-d_{P(\mathfrak{s})}-\frac{1}{2}\right\rfloor$ from $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},-}}$ to $\Gamma_{P(\mathfrak{s})}^{r_{P(\mathfrak{s}),}}$ indexed by $r_{\mathfrak{s},-}$ and a chain of \mathbb{P}^{1} s of same length from $\Gamma_{\mathfrak{s}}^{r_{\mathfrak{s},+}}$ to $\Gamma_{P(\mathfrak{s})}^{r_{P(\mathfrak{s}),}}$ indexed by $r_{\mathfrak{s},+}$.
(4) Finally, blow down all $\Gamma_{\mathfrak{s}}$ where \mathfrak{s} is a contractible cluster.

All components have multiplicity 1, and the absolute Galois group G_{k} acts naturally, as in Theorem 2.4.22.

Proof. Let $\mathfrak{s} \in \Sigma_{C}$ be a non-removable cluster. From Lemma 2.4.25, if \mathfrak{s} is not contractible, then $D_{\mathfrak{s}}=2, \gamma_{\mathfrak{s}} s_{\mathfrak{s}} \in \mathbb{Z}$ and $\gamma_{\mathfrak{s}}^{0} s_{\mathfrak{s}}^{0} \in \mathbb{Z}$. Suppose \mathfrak{s} contractible. If $|\mathfrak{s}|=2$ with $d_{\mathfrak{s}} \notin \mathbb{Z}$ (case (1) of Definition 2.4.19), then $\gamma_{\mathfrak{s}}^{0} s_{\mathfrak{s}}^{0} \in \mathbb{Z}$ and $\gamma_{\mathfrak{s}}=1, s_{\mathfrak{s}} \in \frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}$ and so $s_{\mathfrak{s}}-d_{\mathfrak{s}}+d_{P(\mathfrak{s})} \in \mathbb{Z}$, as $P(\mathfrak{s})$ can not be contractible. If $\mathfrak{s}=\mathfrak{R}$ (cases (2), (3) of Definition 2.4.19), then $v\left(c_{f}\right)$ is odd, and so $\gamma_{\mathfrak{s}}=2$ and $\gamma_{\mathfrak{s}} s_{\mathfrak{s}} \in \mathbb{Z}$. Therefore (2), (4) and (5) of Theorem 2.4.22 do not give any components.

Finally, as $\gamma_{\mathfrak{s}}=1$ and $p_{\mathfrak{s}} \frac{d_{\mathfrak{s}}-d_{P(\mathfrak{s})}}{2} \in \frac{1}{2} \mathbb{Z}$ for any proper \mathfrak{s} with size $|\mathfrak{s}| \leq 2 g$ (i.e. non-maximal), the length of $\mathbb{P}^{1}\left(\gamma_{\mathfrak{s}}, s_{\mathfrak{s}}, s_{\mathfrak{s}}-p_{\mathfrak{s}} \cdot \frac{d_{\mathfrak{s}}-d_{P(\mathfrak{s})}}{2}\right)$ is

$$
\left\lfloor\gamma_{\mathfrak{s}} s_{\mathfrak{s}}-\gamma_{\mathfrak{s}}\left(s_{\mathfrak{s}}-p_{\mathfrak{s}} \cdot \frac{d_{\mathfrak{s}}-d_{P(\mathfrak{s})}}{2}\right)-\frac{1}{2}\right\rfloor=\left\lfloor p_{\mathfrak{s}} \cdot \frac{d_{\mathfrak{s}}-d_{P(\mathfrak{s})}}{2}-\frac{1}{2}\right\rfloor .
$$

The corollary then follows from Theorem 2.4.22.

2.5 Construction of the model

We are going to construct a proper flat model \mathcal{C} / O_{K} of C by glueing models defined in [Dok, §4]. For this reason we will assume the reader has familiarity with the definitions and the results presented in that paper. Let us start this section by describing the strategy we will follow.

Let $\Sigma_{C}^{\min }$ be the set of rationally minimal clusters of C and let $\Sigma \subseteq \Sigma_{C}^{\min }$. For any cluster $\mathfrak{s} \in \Sigma$ fix a rational centre $w_{\mathfrak{s}}$ in such a way that $\Sigma_{C}^{w_{s}}$ consists of the proper clusters in $\Sigma_{C}^{w_{5}}$. This requirement can be satisfied by choosing $w_{\mathfrak{s}} \in \mathfrak{s}$ whenever possible. ${ }^{3}$ Let W be the set of all such rational centres and define $\Sigma^{W}:=\bigcup_{w \in W} \Sigma_{C}^{w}$. For every proper cluster $t \in \Sigma^{W}$ fix a rational centre $w_{\mathfrak{t}} \in W$ (Lemma 2.3.14). For every $w \in W$, consider the curve $C^{w}: y^{2}=f(x+w)$, isomorphic to C, and construct the (proper flat) model $\mathcal{C}_{\Delta}^{w} / O_{K}$ by [Dok, $\S 4$, Theorem 3.14]. We will define an open subscheme \mathcal{C}_{Δ}^{w} of \mathcal{C}_{Δ}^{w} and we will show that glueing the schemes \mathcal{C}_{Δ}^{w}, to varying of $w \in W$, along common opens, gives a proper flat model \mathcal{C} / O_{K} of C. Furthermore, if $\Sigma=\Sigma_{C}^{\min }$, and C is y-regular and has an almost rational cluster picture, then \mathcal{C}_{Δ}^{w} is an open regular subscheme of \mathcal{C}_{Δ}^{w} and therefore \mathcal{C} is also regular.

[^3]
2.5.1 Charts

In this subsection we explicitly describe the matrices defining the charts of the schemes C_{Δ}^{w}, $w \in W$, as presented in [Dok, §4].

Let $\Sigma=\left\{\mathfrak{s}_{1} \ldots, \mathfrak{s}_{m}\right\} \subseteq \Sigma_{C}^{\min }$ be a set of rationally minimal clusters and let $W=\left\{w_{1}, \ldots, w_{m}\right\}$ be a set of corresponding rational centres, such that $\Sigma_{C}^{w_{h}}$ consists of the proper clusters of $\Sigma_{C}^{w_{h}}$, for any $h=1, \ldots, m$. Define $\Sigma^{W}:=\bigcup_{h=1}^{m} \Sigma_{C}^{w_{h}}$. For any $h, l=1, \ldots, m, h \neq l$, define $w_{h l}:=w_{h}-w_{l}$, and write $w_{h l}=u_{h l} \pi^{\rho_{h l}}$, where $u_{h l} \in O_{K}^{\times}$and $\rho_{h l} \in \mathbb{Z}$. Note that $\rho_{h l}=\rho_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}=\rho_{l h}$, by Lemma 2.3.18. Set $u_{h h}:=0$. Finally, for any $h, l=1, \ldots, m$, denote by $\overline{u_{h l}} \in k$ the reduction of $u_{h l}$ modulo π.

Definition 2.5.1 Let $h=1, \ldots, m$ and let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. Recall the matrices and cones defined in [Dok, §4]. We say that a matrix M is associated to \mathfrak{t} if $M=M_{L_{\mathrm{t}}^{w_{h}, i}}$ or $M=M_{V_{\mathrm{t}}^{w_{h}}, j}$ (or $M=M_{V_{0}^{w_{h}, j}}$ if $\mathfrak{t}=\mathfrak{s} h$). For a matrix M associated to \mathfrak{t} we denote by δ_{M} and σ_{M} respectively

- the denominator $\delta_{L_{\mathrm{t}}^{w_{h}}}$ and the cone $\sigma_{L_{\mathrm{t}}^{w_{h}}, i, i+1}$ if $M=M_{L_{\mathrm{t}}^{w_{h}}, i}$,
- the denominator $\delta_{V_{\mathrm{t}}^{w_{h}}}$ and the cone $\sigma_{V_{\mathrm{t}}^{w_{h}}, j, j+1}$ if $M=M_{V_{\mathrm{t}}^{w_{h}}, j}$,
- the denominator $\delta_{V_{0}^{w_{h}}}$ and the cone $\sigma_{V_{0}^{w_{h}}, j, j+1}$ if $M=M_{V_{0}^{w_{h}}, j}$.

Finally, define $X_{M}=\operatorname{Spec} O_{K}\left[\sigma_{M}^{\vee} \cap \mathbb{Z}^{3}\right]$ and write

$$
X_{\Delta}^{h}=\bigcup_{M} X_{M}
$$

for the toric scheme defined in [Dok, §4.2].

The following lemma describes all possible matrices associated to \mathfrak{t}.
Lemma 2.5.2 Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. Consider the v-face $F_{\mathfrak{t}}^{w_{h}}$. Let $P_{0}, P_{1} \in \mathbb{Z}^{2}$ and $n_{i}, d_{i}, k_{i} \in \mathbb{Z}$ be as in [Dok, §4] and define

$$
\delta:=\delta_{M}, \quad \gamma_{i}:=\frac{n_{0} d_{i}-n_{i} d_{0}}{\delta d_{0}} \quad \text { and } \quad T_{i}:=\left(\begin{array}{ccc}
\frac{1}{\delta}-k_{i} & k_{i+1} \\
0 & \delta & 0 \\
0 & 0 & \delta
\end{array}\right)
$$

for each matrix M associated to \mathfrak{t}.

- Let c be the unique element of $\left\{0, \ldots, b_{\mathfrak{t}}-1\right\}$ such that $\frac{1}{b_{\mathfrak{t}}}-\rho_{\mathfrak{t}} \cdot c=d \in \mathbb{Z}$. For all $i=0, \ldots, r_{L_{\mathfrak{t}} w_{h}}$, choose $k_{i}=c n_{i}+d \delta d_{i}(\lfloor\mathfrak{t} / 2\rfloor+1)$; then
where $P_{0}=(|\mathfrak{t}|, 0), P_{1}=(\lfloor|\mathfrak{t}|-1 / 2\rfloor, 1)$ and $\delta=\delta_{L_{\mathfrak{t}}^{w_{h}}}=b_{\mathfrak{t}}$.
- If \mathfrak{t} is odd, then for all $j=0, \ldots, r_{V_{\mathfrak{t}}^{w_{h}}}$, we have

$$
M_{V_{\mathrm{t}}^{w_{h}}, j}=\left(\begin{array}{ccc}
-|\mathrm{t}| & -\frac{|\mathrm{t}|+1}{2} d_{j} & \frac{|\mathrm{t}|+1}{2} d_{j+1} \\
2 & d_{j} & -d_{j+1} \\
-\epsilon_{\mathrm{t}}+|\mathrm{t}| \rho_{\mathrm{t}} & n_{j} & -n_{j+1}
\end{array}\right), \quad M_{V_{\mathrm{t}}^{w_{h}}, j}^{-1}=T_{j} \cdot\left(\begin{array}{ccc}
1 & \frac{|\mathrm{t}|+1}{2} & 0 \\
d_{j+1} \rho_{\mathrm{t}}-2 \cdot \gamma_{j+1} & \frac{d_{j+1} \epsilon_{\mathrm{t}}}{2}-|\mathrm{t}| \cdot \gamma_{j+1} & d_{j+1} \\
d_{j} \rho_{\mathrm{t}}-2 \cdot \gamma_{j} & \frac{d_{j} \epsilon_{\mathrm{t}}}{2}-|\mathbf{t}| \cdot \gamma_{j} & d_{j}
\end{array}\right),
$$

where $P_{0}=(|\mathfrak{t}|, 0), P_{1}=(\lfloor|\mathfrak{t}|-1 / 2\rfloor, 1), \delta=\delta_{V_{\mathfrak{t}}^{w_{h}}}=1$ and $k_{j}=k_{j+1}=0$.

- If \mathfrak{t} is even, then for all $j=0, \ldots, r_{V_{\mathrm{t}} w_{h}}$, we have
where $P_{0}=(|\mathfrak{t}|, 0), P_{1}=(\lfloor|\mathrm{t}|-1 / 2\rfloor, 1)$ and $\delta=\delta_{V_{\mathfrak{t}}^{w_{h}}}$.
- If $f\left(w_{h}\right)=0$, then for all $j=0, \ldots, r_{V_{0}^{w_{h}}}$, we have

$$
M_{V_{0}^{w_{h}}, j}=\left(\begin{array}{ccc}
1 & d_{j} & -d_{j+1} \\
-2 & -d_{j} & d_{j+1} \\
\epsilon_{\mathfrak{s}_{h}}-\rho_{\mathfrak{s}_{h}} & n_{j} & -n_{j+1}
\end{array}\right), \quad M_{V_{0}^{w_{h}}, j}^{-1}=T_{j} \cdot\left(\begin{array}{ccc}
-1 & -1 & 0 \\
d_{j+1} \rho_{\mathfrak{s}_{h}}+2 \cdot \gamma_{j+1} & \frac{d_{j+1} \epsilon_{\mathfrak{s}_{h}}}{2}+\gamma_{j+1} & d_{j+1} \\
d_{j} \rho_{\mathfrak{s}_{h}}+2 \cdot \gamma_{j} & \frac{d_{j} \epsilon_{\mathfrak{s}_{h}}}{2}+\gamma_{j} & d_{j}
\end{array}\right),
$$

where $P_{0}=(0,2), P_{1}=(1,1), \delta=\delta_{V_{0}^{w_{h}}}=1$ and $k_{j}=k_{j+1}=0$.

- If $f\left(w_{h}\right) \neq 0$, then for all $j=0, \ldots, r_{V_{0}^{w_{h}}, \text { we have }}$
where $P_{0}=(0,2), P_{1}=(1,1)$ and $\delta=\delta_{V_{0}^{w_{h}}}$.
Proof. We follow the notation of [Dok, §4]. Choose $P_{0}, P_{1} \in \mathbb{Z}^{2}$ as in the proof of Lemma 2.4.3.
First consider the edge $L_{\mathfrak{t}}^{w_{h}}$ of $F_{\mathfrak{t}}^{w_{h}}$. From Lemma 2.4 .3 we have

$$
v=\left(1,0,-\rho_{t}\right) \quad \text { and } \quad\left(w_{x}, w_{y}\right)=(-\lfloor|\mathfrak{t}| / 2\rfloor-1,1) .
$$

Then $M_{L_{\mathrm{t}}^{w_{h}}, i}$ and $M_{L_{\mathrm{t}}^{w_{h}}, i}^{-1}$ follow from [Dok, §4.3] as $k_{i} \equiv n_{i}\left(\delta \rho_{\mathfrak{t}}\right)^{-1} \bmod \delta$ and

$$
\frac{n_{0}}{\delta d_{0}}=\frac{1}{\delta} s_{1}^{L_{\mathrm{t}}^{w_{h}}}=v_{F_{\mathrm{t}}^{w_{h}}}\left(P_{1}\right)-v_{F_{\mathrm{t}}^{w_{h}}}\left(P_{0}\right)=-\frac{\epsilon_{\mathfrak{t}}}{2}+(\lfloor|\mathfrak{t}| / 2\rfloor+1) \rho_{\mathrm{t}}
$$

Now assume \mathfrak{t} even and consider the edge $V_{\mathfrak{t}}^{w_{h}}$ of $F_{\mathfrak{t}}^{w_{h}}$. Since \mathfrak{t} is even,

$$
V_{\mathfrak{t}}^{w_{h}}(\mathbb{Z})=\left\{(|\mathfrak{t}|, 0),\left(\frac{|\mathfrak{t}|}{2}, 1\right),(0,2)\right\}, \quad v=\left(-\frac{|\mathfrak{t}|}{2}, 1,-\frac{\epsilon_{t}}{2}+\frac{|\mathfrak{t}|}{2} \rho_{\mathfrak{t}}\right)
$$

and $\left(w_{x}, w_{y}\right)=\left(-\frac{|t|}{2}-1,1\right)$ as above. Then $M_{V_{t}^{w_{h}}, j}$ and $M_{V_{t}^{w_{h}}, j}^{-1}$ follow again from [Dok, (4.3)] as

$$
\frac{n_{0}}{\delta d_{0}}=\frac{1}{\delta} s_{1}^{V_{\mathrm{t}}^{w_{h}}}=v_{F_{\mathrm{t}}^{w_{h}}}\left(P_{1}\right)-v_{F_{\mathrm{t}}^{w_{h}}}\left(P_{0}\right)=-\frac{\epsilon_{\mathrm{t}}}{2}+\left(\frac{|\mathrm{t}|}{2}+1\right) \rho_{\mathrm{t}} .
$$

Similar arguments and computations yield the remaining matrices.
Remark 2.5.3. From the lemma above one can explicitly construct the charts of the model $\mathcal{C}_{\Delta}^{w_{h}}$. The description of its special fibre $\mathcal{C}_{\Delta, s}^{w_{h}}$ which follows from [Dok, Theorem 3.14], matches the one given in Theorem 2.4.18 in the case $W=\left\{w_{h}\right\}$.

2.5.2 Open subschemes

In this subsection we explicitly describe the open subschemes $\dot{C}_{\Delta}^{w} \subseteq C_{\Delta}^{w}$, for $w \in W$.
Let $h=1, \ldots, m$ and let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. Let M be a matrix associated to \mathfrak{t}. Write

$$
M=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right) \quad \text { and } \quad M^{-1}=\left(\begin{array}{ccc}
\tilde{m}_{11} & \tilde{m}_{12} & \tilde{m}_{13} \\
\tilde{m}_{21} & \tilde{m}_{22} & \tilde{m}_{23} \\
\tilde{m}_{31} & \tilde{m}_{32} & \tilde{m}_{33}
\end{array}\right)
$$

Recall that $X_{M}=\operatorname{Spec} R$, where

$$
R=\frac{O_{K}\left[X^{ \pm 1}, Y, Z\right]}{\left(\pi-X^{\tilde{m}_{13}} Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}\right)} \hookrightarrow \frac{O_{K}\left[X^{ \pm 1}, Y^{ \pm 1}, Z^{ \pm 1}\right]}{\left(\pi-X^{\tilde{m}_{13}} Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}\right)} \stackrel{M}{\simeq} K\left[x^{ \pm 1}, y^{ \pm 1}\right]
$$

via the change of variable

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{l}
x^{m_{11}} y^{m_{21}} \pi^{m_{31}} \\
x^{m_{12}} y^{m_{22}} \pi^{m_{32}} \\
x^{m_{13}} y^{m_{23}} \pi^{m_{33}}
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot M, \quad\left(\begin{array}{l}
x \\
y \\
\pi
\end{array}\right)=\left(\begin{array}{l}
X^{\tilde{m}_{11}} Y^{\tilde{m}_{21}} Z^{\tilde{m}_{31}} \\
X^{m_{12}} Y^{m_{22}} Z^{\tilde{m}_{22}} Z^{m_{32}} \\
X^{\tilde{m}_{13}} Y^{\tilde{m}_{23}} Z^{m_{33}}
\end{array}\right)=\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \cdot M^{-1} .
$$

Let $l \neq h$. Set

$$
T_{M}^{h l}(X, Y, Z):= \begin{cases}1+u_{h l} X^{\rho_{h l} \tilde{m}_{13}-\tilde{m}_{11}} Y^{\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21}} Z^{\rho_{h l} \tilde{m}_{33}-\tilde{m}_{31}} & \text { if } \mathfrak{t} \supseteq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l} \\ u_{h l}^{-1} X^{\tilde{m}_{11}-\rho_{h l} \tilde{m}_{13}} Y^{\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23}} Z^{\tilde{m}_{31}-\rho_{h l} \tilde{m}_{33}}+1 & \text { if } \mathfrak{t} \nsupseteq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}\end{cases}
$$

element of $R\left[Y^{-1}, Z^{-1}\right]$. Note that

$$
\begin{aligned}
& \text { if } \mathfrak{t} \supseteq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l} \text { then } T_{M}^{h l}(X, Y, Z) \stackrel{M}{\longleftrightarrow} \frac{x+w_{h l}}{x}, \\
& \text { if } \mathfrak{t \nsupseteq \mathfrak { s } _ { h } \wedge \mathfrak { s } _ { l }} \text { then } T_{M}^{h l}(X, Y, Z) \stackrel{M}{\longleftrightarrow} \frac{x+w_{h l}}{w_{h l}} .
\end{aligned}
$$

The following two lemmas prove that $T_{M}^{h l}(X, Y, Z) \in R$. Therefore, up to units, $T_{M}^{h l}(X, Y, Z)$ can be seen as the polynomial in $O_{K}\left[X^{ \pm 1}, Y, Z\right]$ satisfying

$$
x-w_{h l} \stackrel{M}{=} X^{n_{X}} Y^{n_{Y}} Z^{n_{Z}} T_{M}^{h l}(X, Y, Z)
$$

with $n_{X}, n_{Y}, n_{Z} \in \mathbb{Z}$, such that $\operatorname{ord}_{Y}\left(T_{M}^{h l}\right)=\operatorname{ord}_{Z}\left(T_{M}^{h l}\right)=0$.
Lemma 2.5.4 Let $h, l=1, \ldots, m$, with $h \neq l$, let $t \in \Sigma_{C}^{w_{h}}$ be such that $\mathfrak{t} \supseteq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ and let M be a matrix associated to t . Then

$$
\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21} \geq \rho_{\mathrm{t}} \tilde{m}_{23}-\tilde{m}_{21} \geq 0 \quad \text { and } \quad \rho_{h l} \tilde{m}_{33}-\tilde{m}_{31} \geq \rho_{\mathrm{t}} \tilde{m}_{33}-\tilde{m}_{31} \geq 0 .
$$

Furthermore if $M=M_{L_{t}^{w_{h}}, i}$ then

- $\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21}=0$ if and only if $i=r_{L_{\mathfrak{t}}^{w_{h}}}$ or $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$,
- $\rho_{h l} \tilde{m}_{33}-\tilde{m}_{31}=0$ if and only if $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$;
if $M=M_{V_{\mathrm{t}}^{w_{h}, j}}$ then
- $\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21}>0$,
- $\rho_{h l} \tilde{m}_{33}-\tilde{m}_{31}=0$ if and only if $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ and $j=0$.

Proof. This result follows from Lemma 2.5.2, which gives a complete description of M and M^{-1}. We show it when \mathfrak{t} is even and $M=M_{V_{t}^{w_{h}}, j}$, and leave the other cases for the reader. First of all recall that $\rho_{h l}=\rho_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}$ by Lemma 2.3.18. Then

$$
\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21}=\delta\left(d_{j+1}\left(\rho_{h l}-\rho_{t}\right)+\gamma_{j+1}\right)>\delta d_{j+1}\left(\rho_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}-\rho_{\mathrm{t}}\right) \geq 0,
$$

where $\gamma_{j}=\frac{n_{0} d_{j}-n_{j} d_{0}}{\delta d_{0}}$ and $\delta=\delta_{M}$. Similarly,

$$
\rho_{h l} \tilde{m}_{33}-\tilde{m}_{31}=\delta\left(d_{j}\left(\rho_{h l}-\rho_{t}\right)+\gamma_{j}\right) \geq \delta d_{j}\left(\rho_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}-\rho_{\mathfrak{t}}\right) \geq 0
$$

In particular $\rho_{h l} \tilde{m}_{33}-\tilde{m}_{31}=0$ if and only if $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ and $j=0$.
 to t . Then

$$
\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23} \geq 0 \quad \text { and } \quad \tilde{m}_{31}-\rho_{h l} \tilde{m}_{33}>0 .
$$

Furthermore, $\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23}=0$ if and only if

- $M=M_{L_{\mathrm{t}}^{w_{h}}, i}$ and $i=r_{L_{\mathrm{t}}^{w_{h}}, \text { or }}$
- $\mathfrak{t}<\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}, M=M_{V_{\mathrm{t}}^{w_{h}}, j}$, and $j=r_{V_{\mathrm{t}}^{w_{h}}}$.

Proof. This result follows again from Lemma 2.5.2. As in the previous lemma, we show it when \mathfrak{t} is even and $M=M_{V_{t}^{w_{h}}, j}$, and leave the other cases for the reader.

Let $r=r_{V_{\mathrm{t}}^{w_{h}}}$. Note that $t \neq \mathfrak{R}$. Set $\delta=\delta_{M}$ and $\gamma_{j}=\frac{n_{0} d_{j}-n_{j} d_{0}}{\delta d_{0}}$. Then

$$
\tilde{m}_{31}-\rho_{h l} \tilde{m}_{33}=\delta\left(d_{j}\left(\rho_{t}-\rho_{h l}\right)-\gamma_{j}\right)>\delta d_{j}\left(\rho_{P(\mathrm{t})}-\rho_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}\right) \geq 0 .
$$

since $d_{j}>0$ and $\gamma_{j} / d_{j}<\gamma_{r+1} / d_{r+1}=\rho_{\mathrm{t}}-\rho_{P(\mathrm{t})}$. Similarly,

$$
\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23}=\delta\left(d_{j+1}\left(\rho_{t}-\rho_{h l}\right)-\gamma_{j+1}\right) \geq \delta d_{j+1}\left(\rho_{P(t)}-\rho_{\mathfrak{s}_{h} \wedge s_{l}}\right) \geq 0,
$$

In particular $\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23}=0$ if and only if $\mathfrak{t}<\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ and $j=r$.
Let

$$
T_{M}^{h}(X, Y, Z):=\prod_{l \neq h} T_{M}^{h l}(X, Y, Z),
$$

and define

$$
V_{M}^{h}:=\operatorname{Spec} R\left[T_{M}^{h}(X, Y, Z)^{-1}\right] \subset X_{M}, \quad \text { and } \quad \dot{X}_{\Delta}^{h}:=\bigcup_{\mathfrak{t}, M} V_{M}^{h} \subseteq X_{\Delta}^{h},
$$

where t runs through all proper clusters in $\Sigma_{C}^{w_{h}}$ and M runs through all matrices associated to t. We can then define the subscheme

$$
\dot{\mathcal{C}}_{\Delta}^{w_{h}}:=\mathcal{C}_{\Delta}^{w_{h}} \cap \dot{X}_{\Delta}^{h} \subset X_{\Delta}^{h},
$$

where $\mathcal{C}_{\Delta}^{w_{h}} / O_{K}$ is the model of the hyperelliptic curve $C^{w_{h}}: y^{2}=f\left(x+w_{h}\right)$ described in [Dok, Theorem 3.14] (see [Dok, §4] for the construction). Explicitly, let $g_{h}(x, y):=y^{2}-f\left(x+w_{h}\right)$ and define $\mathcal{F}_{M}^{h} \in O_{K}\left[X^{ \pm 1}, Y, Z\right]$ such that $\operatorname{ord}_{Y}\left(\mathcal{F}_{M}^{h}\right)=\operatorname{ord}_{Z}\left(\mathcal{F}_{M}^{h}\right)=0$, with all non-zero coefficients in O_{K}^{\times}, satisfying

$$
y^{2}-f\left(x+w_{h}\right) \stackrel{M}{=} Y^{n_{Y, h}} Z^{n_{Z, h}} \mathcal{F}_{M}^{h}(X, Y, Z),
$$

for unique $n_{Y, h}, n_{Z, h} \in \mathbb{Z}$. Consider the subscheme

$$
U_{M}^{h}:=\operatorname{Spec} \frac{R\left[T_{M}^{h}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z)\right)} \subset V_{M}^{h} .
$$

Then

$$
\mathcal{C}_{\Delta}^{w_{h}}=\bigcup_{\mathfrak{t}, M} U_{M}^{h} \subset \dot{X}_{\Delta}^{h},
$$

where \mathfrak{t} runs through all proper clusters in $\Sigma_{C}^{w_{h}}$ and M runs through all matrices associated to \mathfrak{t}, as before.

2.5.3 Glueing

In this subsection we show how to glue the schemes \dot{C}_{Δ}^{w}, for $w \in W$, to obtain a proper flat model \mathcal{C} of C (properness will be proved in §2.5.8-2.5.9).

Let $h, l=1, \ldots, m$, with $h \neq l$. Consider the isomorphism

$$
\begin{equation*}
\phi: K\left[x^{ \pm 1}, y^{ \pm 1}, \prod_{o \neq l}\left(x+w_{l o}\right)^{-1}\right] \xrightarrow{\simeq} K\left[x^{ \pm 1}, y^{ \pm 1}, \prod_{o \neq h}\left(x+w_{h o}\right)^{-1}\right] \tag{2.1}
\end{equation*}
$$

sending $x \mapsto x+w_{h l}, y \mapsto y$. If $\mathfrak{t} \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ and M is a matrix associated to \mathfrak{t}, then ϕ gives a map

$$
R\left[Y^{-1}, Z^{-1}, T_{M}^{l}(X, Y, Z)^{-1}\right] \xrightarrow{M^{-1} \circ \not \circ M} R\left[Y^{-1}, Z^{-1}, T_{M}^{h}(X, Y, Z)^{-1}\right],
$$

which sends

$$
F(X, Y, Z) \mapsto F\left(X \cdot T_{M}^{h l}(X, Y, Z)^{m_{11}}, Y \cdot T_{M}^{h l}(X, Y, Z)^{m_{12}}, Z \cdot T_{M}^{h l}(X, Y, Z)^{m_{13}}\right) .
$$

Hence it induces the isomorphisms

$$
\begin{equation*}
R\left[T_{M}^{l}(X, Y, Z)^{-1}\right] \stackrel{\simeq}{\Longrightarrow} R\left[T_{M}^{h}(X, Y, Z)^{-1}\right], \quad V_{M}^{h} \xrightarrow{\simeq} V_{M}^{l} . \tag{2.2}
\end{equation*}
$$

Via these maps we see that $g_{h}(x, y)=Y^{n_{Y, h}} Z^{n_{Z, h}} F_{M}^{h}(X, Y, Z)$ also equals

$$
Y^{n_{Y, l}} \cdot Z^{n_{Z, l}} \cdot\left(T_{M}^{h l}\right)^{n_{Y, l} m_{12}+n_{Z, l} m_{13}} \mathcal{F}_{M}^{l}\left(X \cdot\left(T_{M}^{h l}\right)^{m_{11}}, Y \cdot\left(T_{M}^{h l}\right)^{m_{12}}, Z \cdot\left(T_{M}^{h l}\right)^{m_{13}}\right),
$$

where $T_{M}^{h l}=T_{M}^{h l}(X, Y, Z)$. Since neither Y nor Z divide $T_{M}^{h l}(X, Y, Z)$, we have $n_{Y, h}=n_{Y, l}, n_{Z, h}=$ $n_{Z, l}$ and

$$
\mathcal{F}_{M}^{h}(X, Y, Z)=\left(T_{M}^{h l}\right)^{n_{Y, l} m_{12}+n_{Z, l} m_{13}} \mathcal{F}_{M}^{l}\left(X\left(T_{M}^{h l}\right)^{m_{11}}, Y\left(T_{M}^{h l}\right)^{m_{12}}, Z\left(T_{M}^{h l}\right)^{m_{13}}\right)
$$

Hence (2.2) induces the isomorphisms

$$
\begin{equation*}
\frac{R\left[T_{M}^{l}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{l}(X, Y, Z)\right)} \stackrel{\simeq}{\simeq} \frac{R\left[T_{M}^{h}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z)\right)}, \quad U_{M}^{h} \stackrel{\simeq}{\hookrightarrow} U_{M}^{l} \tag{2.3}
\end{equation*}
$$

Define the subschemes

$$
V^{h l}:=\bigcup_{\mathfrak{t}_{l}, M_{l}} V_{M_{l}}^{h} \subseteq \dot{X}_{\Delta}^{h}, \quad U^{h l}:=V^{h l} \cap \mathcal{C}_{\Delta}^{w_{h}} \subseteq \mathcal{C}_{\Delta}^{w_{h}}
$$

where \mathfrak{t}_{l} runs through all proper clusters in $\Sigma_{C}^{w_{h}} \cap \Sigma_{C}^{w_{l}}$ (i.e. $\mathfrak{t}_{l} \in \Sigma^{W}, \mathfrak{s}_{h} \wedge \mathfrak{s}_{l} \subseteq \mathfrak{t}_{l}$) and M_{l} runs through all matrices associated to \mathfrak{t}_{l}. From (2.1), (2.2) and (2.3) we have isomorphisms of schemes

$$
\begin{equation*}
V^{h l} \xrightarrow{\simeq} V^{l h}, \quad U^{h l} \xrightarrow{\simeq} U^{l h} . \tag{2.4}
\end{equation*}
$$

Now, $U^{h l} \subset V^{h l}$ are open subschemes respectively of $\mathcal{C}_{\Delta}^{w_{h}} \subset \dot{X}_{\Delta}^{h}$ for any $l \neq h$. Glueing the schemes $\mathcal{C}_{\Delta}^{w_{h}} \subset \dot{X}_{\Delta}^{h}$, to varying of $h=1, \ldots, m$, respectively along the opens $U^{h l} \subset V^{h l}$ via (2.4) gives the schemes $\mathcal{C} \subset \mathcal{X}$. We will show that \mathcal{C} / O_{K} is a proper flat ${ }^{4}$ model of C.

2.5.4 Generic fibre

We start studying the generic fibre \mathcal{C}_{η} of \mathcal{C}. Since it is the glueing of all $\mathcal{C}_{\Delta, \eta}^{w_{h}}$ through the glueing maps

$$
U_{\eta}^{h l} \longrightarrow U_{\eta}^{l h}
$$

induced by (2.4), we start focusing on $\mathcal{C}_{\Delta, \eta}^{w_{h}}$ for $h=1, \ldots, m$. In particular, as $\mathcal{C}_{\Delta}^{w_{h}}$ is an open subscheme of $\mathcal{C}_{\Delta}^{w_{h}}$, we study $\mathcal{C}_{\Delta, \eta}^{w_{h}} \backslash \mathcal{C}_{\Delta, \eta}^{w_{h}}=C^{w_{h}} \backslash \mathcal{C}_{\Delta, \eta}^{w_{h}}$.

Lemma 2.5.6 For any $h=1, \ldots, m$,

$$
C^{w_{h}} \backslash \stackrel{\mathcal{C}}{ }_{w_{h} w_{h}}=\operatorname{Spec} \frac{K[x, y]}{\left(g_{h}(x, y), \prod_{o \neq h}\left(x+w_{h o}\right)\right)}
$$

Proof. For every choice of a proper cluster $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$, and M associated to \mathfrak{t}, let

$$
P_{M}:=\left(\mathcal{C}_{\Delta, \eta}^{w_{h}} \backslash \mathcal{C}_{\Delta, \eta}^{w_{h}}\right) \cap X_{M}=\operatorname{Spec} \frac{R \otimes_{O_{K}} K}{\left(\mathcal{F}_{M}^{h}(X, Y, Z), T_{M}^{h}(X, Y, Z)\right)}
$$

To study P_{M} we are going to use Lemma 2.5.2 and the definition of $T_{M}^{h}(X, Y, Z)$.

[^4]Suppose first $\mathfrak{t} \neq \mathfrak{R}$ and $M=M_{V_{\mathfrak{t}}^{w_{h}}, j}$. Then $\tilde{m}_{23}, \tilde{m}_{33}>0$, so

$$
\begin{equation*}
P_{M}=\operatorname{Spec} \frac{R\left[Y^{-1}, Z^{-1}\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z), T_{M}^{h}(X, Y, Z)\right)} \stackrel{M}{=} \operatorname{Spec} \frac{K\left[x^{ \pm 1}, y^{ \pm 1}\right]}{\left(g_{h}(x, y), \prod_{o}\left(x+w_{h o}\right)\right)} \tag{2.5}
\end{equation*}
$$

where the product runs over all $o \neq h$. Now let $\mathfrak{t}=\Re$ and $M=M_{V_{\mathfrak{t}}^{w_{h}}, j}$. If $j \neq r_{V_{\mathfrak{R}} w_{h}}$, then P_{M} is as in the previous case (since $\tilde{m}_{23}, \tilde{m}_{33}>0$). If $j=r_{V_{h} w_{h}}$, then $\tilde{m}_{33}>0, \tilde{m}_{23}=0$, but $\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21}>0$ by Lemma 2.5.4. So from the definition of $T_{M}^{h l}(X, Y, Z)$ we have once more the equality (2.5). Similarly, if $\mathfrak{t}=\mathfrak{s}_{h}$ and $M=M_{V_{0}^{w_{h}, j}}$, then $\tilde{m}_{33}>0$, and $\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23}>0$ by Lemma 2.5.5. Hence we have (2.5) again.

It remains to study P_{M} when $M=M_{L_{\mathrm{t}}^{w_{h}}, i}$. If $i \neq r_{L_{\mathrm{t}}^{w_{h}}}$, then $\tilde{m}_{23}, \tilde{m}_{33}>0$ and so P_{M} is as in
 which also implies $m_{21}=m_{23}=0$. Therefore M defines an isomorphism $R\left[Z^{-1}\right] \simeq K\left[x^{ \pm 1}, y\right]$, which induces

$$
P_{M}=\operatorname{Spec} \frac{R\left[Z^{-1}\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z), T_{M}^{h}(X, Y, Z)\right)} \stackrel{M}{=} \operatorname{Spec} \frac{K\left[x^{ \pm 1}, y\right]}{\left(g_{h}(x, y), \prod_{o \neq h}\left(x+w_{h o}\right)\right)}
$$

This concludes the proof.

Regarding $\mathcal{C}_{\Delta}^{w_{h}}$ as a model of C via the natural isomorphism $C \xrightarrow{\sim} C^{w_{h}}$, we get

$$
C \backslash \dot{\mathcal{C}}_{\Delta, \eta}^{w_{h}}=\operatorname{Spec} \frac{K[x, y]}{\left(y^{2}-f(x), \prod_{o \neq h}\left(x-w_{o}\right)\right)}
$$

Thus the generic fibre of \mathcal{C} is isomorphic to C.

2.5.5 Special fibre

We now study the structure of the special fibre \mathcal{C}_{s} of \mathcal{C}. As for the generic fibre, we consider

$$
\mathcal{C}_{\Delta, s}^{w_{h}} \backslash \dot{\mathcal{C}}_{\Delta, s}^{w_{h}},
$$

for any $h=1, \ldots, m$. For every choice of a proper cluster $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$, and M associated to \mathfrak{t}, let

$$
S_{M}:=\left(\mathcal{C}_{\Delta, s}^{w_{h}} \backslash \dot{\mathcal{C}}_{\Delta, s}^{w_{h}}\right) \cap X_{M}=\operatorname{Spec} \frac{O_{K}\left[X^{ \pm 1}, Y, Z\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z), T_{M}^{h}(X, Y, Z), Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}, \pi\right)}
$$

Lemma 2.5.7 Let $M=M_{L, i}$ for $L=L_{\mathfrak{t}}^{w_{h}}$. Let $l \neq h$. If $\mathfrak{t}=\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$, then $T_{M}^{h l}(X, Y, Z)=X^{-1}\left(X+u_{h l}\right)$, otherwise
(i) $T_{M}^{h l}(X, Y, 0)=1$ for $i=0, \ldots, r_{L}$;
(ii) $T_{M}^{h l}(X, 0, Z)=1$ for $i=0, \ldots, r_{L}-1$.
 Moreover, if $\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23}=0$, then $i=r_{L}$. Therefore the equalities in (i) and (ii) follow directly from the definition of $T_{M}^{h l}$.

On the other hand, if $\mathfrak{t} \supsetneq \mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$, then by Lemma 2.5.4, we have $\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21} \geq 0$ and $\rho_{h l} \tilde{m}_{33}-\tilde{m}_{31}>0$. Moreover, if $\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21}=0$, then $i=r_{L}$. Therefore we have (i) and (ii) again.

Finally, assume $\mathfrak{t}=\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$. Since $\rho_{\mathfrak{t}}=\rho_{h l} \in \mathbb{Z}$, then $\rho_{h l} \tilde{m}_{13}-\tilde{m}_{11}=-1$. Hence

$$
T_{M}^{h l}(X, Y, Z)=1+u_{h l} X^{-1}=X^{-1}\left(X+u_{h l}\right),
$$

by Lemma 2.5.4.
Lemma 2.5.8 Suppose $M=M_{L_{\mathrm{t}}^{w_{h}}, i}$. Then

$$
S_{M}=\operatorname{Spec} \frac{O_{K}\left[X^{ \pm 1}, Y, Z\right]}{\left(F_{M}^{h}(X, Y, Z), \Pi_{l}\left(X+u_{h l}\right), Y^{\tilde{m}_{23}} Z^{\left.\tilde{m}_{33}, \pi\right)}\right.} \subset \mathcal{C}_{\Delta}^{w_{h}}
$$

where the product runs over all $l \neq h$ such that $\mathfrak{t}=\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$.
Proof. Lemma 2.5.2 shows that \tilde{m}_{33} is always different from 0 , while $\tilde{m}_{23}=0$ if and only if $i=r_{L_{\mathrm{t}}^{w_{h}}}$. Thus the result follows from Lemma 2.5.7.

Lemma 2.5.9 Let $f_{h}(x)=f\left(x+w_{h}\right)$ and $l \neq h$. Then $\overline{u_{l h}}$ is a multiple root of $\overline{\left.f_{h}\right|_{L}}$ of order $\left|\mathfrak{t}_{l}\right|$, where $L=L_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}^{w_{h}}$ and $\mathfrak{t}_{l} \in \Sigma_{C}^{w_{l}}, \mathfrak{t}_{l}<\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$.

Furthermore, if $\Sigma=\left\{\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{m}\right\}=\Sigma_{C}^{\min }$, C has an almost rational cluster picture and $\bar{\alpha} \in \bar{k}$ is a multiple root of $\overline{f_{h}{ }_{L}}$ for some edge L of $\operatorname{NP}\left(f_{h}\right)$, then $\bar{\alpha}=\overline{u_{l h}}$ and $L=L_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}^{w_{h}}$ for some $l \neq h$.

Proof. For any proper cluster $\mathfrak{s} \in \Sigma_{f}$, let $\lambda_{\mathfrak{s}}=\min _{r \in \mathfrak{s}} v\left(r-w_{h}\right)$. Let $\mathfrak{s} \in \Sigma_{C}^{w_{l}}$, with $\mathfrak{s}_{l} \subseteq \mathfrak{s} \subsetneq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$. Then w_{h} is not rational centre of \mathfrak{s}, and for every root $r \in \mathfrak{s}$, one has

$$
v\left(r-w_{h}\right)=v\left(r-w_{l}+w_{l}-w_{h}\right)=\min \left\{v\left(r-w_{l}\right), \rho_{h l}\right\}=\rho_{h l},
$$

as $v\left(r-w_{l}\right) \geq \rho_{\mathfrak{s}}>\rho_{h l}$. Therefore $\lambda_{\mathfrak{s}}=\rho_{h l} \in \mathbb{Z}$. In particular, $\left|\lambda_{\mathfrak{s}}\right|_{p} \leq 1$. Furthermore,

$$
d_{\mathfrak{s}} \geq \rho_{\mathfrak{s}}>\lambda_{\mathfrak{s}}=\rho_{h l} \quad \text { and } \quad \frac{r-w_{h}}{\pi^{\rho_{h l}}} \equiv \frac{w_{l h}}{\pi^{\rho} \rho_{h l}} \quad \bmod \pi,
$$

and so Theorem 2.3.24(i) implies that $\overline{u_{l h}}=\frac{w_{l h}}{\pi^{\rho_{h l}}} \bmod \pi$ is a multiple root of $\overline{\left.f_{h}\right|_{L}}$, where $L=L_{\mathfrak{s}_{h} \wedge \mathfrak{s l}_{l}}^{w_{h}}$.
Let $\mathfrak{t}_{l} \in \Sigma_{C}^{w_{l}}, \mathfrak{t}_{l}<\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$. Since $\mathfrak{s}_{l} \subseteq \mathfrak{t}_{l}<\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ we have

$$
\mathfrak{t}_{l}=\left\{r \in \mathfrak{R} \left\lvert\, \overline{u_{l h}}=\frac{r-w_{h}}{\pi^{P h l}} \quad \bmod \pi\right.\right\},
$$

as $v\left(r-w_{l}\right)>\rho_{h l}$ if and only if $\overline{u_{l h}}=\frac{r-w_{h}}{\pi^{P_{h l}}} \bmod \pi$. Thus the multiplicity of $\overline{u_{l h}}$ is $\left|\mathfrak{t}_{l}\right|$ by Theorem 2.3.24(ii).

Now let $\bar{\alpha}$ be a multiple root of $\overline{f_{h}{ }_{L}}$ for some edge L of $\operatorname{NP}\left(f_{h}\right)$ and let $\mathfrak{s} \in \Sigma_{f}$ associated to $\bar{\alpha}$ by Theorem 2.3.24(iii). We want to prove that if C has an almost rational cluster picture and
$\Sigma=\Sigma_{C}^{\min }$, then there exists $l \neq h$ so that $\bar{\alpha}=\overline{u_{l h}}$. Note first w_{h} is not a rational centre of \mathfrak{s}. Indeed, if w_{h} is a rational centre of \mathfrak{s}, then

$$
|\mathfrak{s}|>\left|\lambda_{\mathfrak{s}}\right|_{p}=\left|\rho_{\mathfrak{s}}\right|_{p}, \quad d_{\mathfrak{s}}>\lambda_{\mathfrak{s}}=\rho_{\mathfrak{s}}
$$

which contradicts the fact that C has an almost rational cluster picture. As $\left\{\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{m}\right\}=\Sigma_{C}^{\min }$, we must have that w_{l} is a rational centre of \mathfrak{s}, for some $l \neq h$. Then $\mathfrak{s}_{l} \subseteq \mathfrak{s} \subsetneq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$. Since $\bar{\alpha}=\frac{r-w_{h}}{\pi^{\lambda_{\mathfrak{s}}}}$ $\bmod \pi$ for any $r \in \mathfrak{s}$, from above we have $\bar{\alpha}=\overline{u_{l h}}$. Finally, L is the edge of $\operatorname{NP}\left(f_{h}\right)$ of slope $-\lambda_{\mathfrak{s}}=-\rho_{h l}$. Thus $L=L_{\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}}^{w_{h}}$.

It remains to compute S_{M} when $M=M_{V, j}$, where $V=V_{\mathfrak{t}}^{w_{h}}$ or $V=V_{0}^{w_{h}}$.
Lemma 2.5.10 Let $M=M_{V, j}$ for $V=V_{\mathfrak{t}}^{w_{h}}$, or $V=V_{0}^{w_{h}}$ if $\mathfrak{t}=\mathfrak{s}_{h}$. For any $l \neq h$ we have
(i) $T_{M}^{h l}(X, Y, 0)=1$ except when $\mathfrak{t}=\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ and $j=0$;
(ii) $T_{M}^{h l}(X, 0, Z)=1$ except when $\mathfrak{t}<\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ and $j=r_{V}$.

Proof. The lemma immediately follows from Lemmas 2.5.4 and 2.5.5.
Lemma 2.5.11 Let $M=M_{V, j}$ with $V=V_{\mathfrak{t}}^{w_{h}}$, or $V=V_{0}^{w_{h}}$ if $\mathfrak{t}=\mathfrak{s}_{h}$. Then $S_{M}=\varnothing$.
Proof. For any $l \neq h$, we want to prove that

$$
\begin{equation*}
S_{M}^{h l}:=\left\{T_{M}^{h l}(X, Y, Z)=Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}=0\right\}=\varnothing \tag{2.6}
\end{equation*}
$$

Lemma 2.5.2 shows that \tilde{m}_{33} is always different from 0 and that $\tilde{m}_{23}=0$ if and only if $j=r_{V}$, and $V=V_{\mathfrak{R}}^{w_{h}}$ or $V=V_{0}^{w_{h}}$. Assume that if $\mathfrak{t}=\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ then $j \neq 0$ and that if $\mathfrak{t}<\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ then $j \neq r_{V}$. Lemma 2.5.10 implies (2.6).

If $\mathfrak{t}=\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ and $j=0$, then $\rho_{h l} \tilde{m}_{33}-\tilde{m}_{31}=0$ but $\rho_{h l} \tilde{m}_{23}-\tilde{m}_{21}>0$. So

$$
S_{M}^{h l}=\left\{T_{M}^{h l}(X, Y, Z)=Z^{\tilde{m}_{33}}=0\right\} \subset \operatorname{Spec} R\left[Y^{-1}\right]
$$

Similarly, if $\mathfrak{t}<\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ and $j=r_{V}$, then $\tilde{m}_{21}-\rho_{h l} \tilde{m}_{23}=0$, however $\tilde{m}_{31}-\rho_{h l} \tilde{m}_{33}>0$. Then

$$
S_{M}^{h l}=\left\{T_{M}^{h l}(X, Y, Z)=Y^{\tilde{m}_{23}}=0\right\} \subset \operatorname{Spec} R\left[Z^{-1}\right]
$$

In both cases, $S_{M}^{h l} \subseteq X_{F}$ as sets, where $F=F_{\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}}^{w_{h}}$ ([Dok, Definition 3.7]). Let $L=L_{\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}}^{w_{h}}$, and let $f_{h}(x)=f\left(x+w_{h}\right)$ and $g_{h}(x, y)=y^{2}-f_{h}(x)$. By Lemmas 2.5.8 and 2.5.9, one has

$$
S_{M}^{h l} \subseteq X_{F} \cap S_{M_{L, 0}}=\varnothing
$$

as $\mathcal{F}_{M_{L, 0}}^{h}(X, Y, 0) \bmod \pi$ equals $Y^{b}-X^{a} \overline{\left.f_{h}\right|_{L}}(X)$, for some $a \in \mathbb{Z}, b=1,2$ (see Lemma 2.5.17 for more details, whose proof is independent of this result). Thus if $V=V_{t}^{w_{h}}$ and $M=M_{V, j}$, then $S_{M}=\varnothing$.

2.5.6 Components

Now that we have compared the special fibre of \mathcal{C} with those of the models $\mathcal{C}_{\Delta}^{w_{h}}$, let us describe closed subschemes that form it. We will first study closed subschemes forming $\mathcal{C}_{\Delta, s}^{\omega_{h}}$ and then how they glue in \mathcal{C}_{s}.

Let $f_{h}(x)=f\left(x+w_{h}\right)$ and $g_{h}(x, y)=y^{2}-f_{h}(x)$. According to [Dok, Theorem 3.14] the special fibre of $\mathcal{C}_{\Delta}^{w_{h}}$ is formed by:

- Chains of $\mathbb{P}_{k}^{1} \mathrm{~S}$ coming from v-edges of $\Delta^{w_{h}}$.
- 1-dimensional subschemes coming from v-faces of $\Delta^{w_{h}}$.

More precisely, each v-edge E gives a scheme $X_{E} \times \mathbb{P}_{E}$, where \mathbb{P}_{E} is a chain of \mathbb{P}_{k}^{1} s and $X_{E} \subset \mathbb{G}_{m, k}$ is given by $\overline{\left.g_{h}\right|_{E}}=0$. The multiplicities and and the length of \mathbb{P}_{E} can be completely described by the slopes of E. On the other hand, each v-face F gives a proper scheme \bar{X}_{F} containing an open subscheme $X_{F} \subseteq \mathbb{G}_{m, k}^{2}$ given by $\overline{\left.g_{h}\right|_{F}}=0$. How the previous schemes intersect to form $\mathcal{C}_{\Delta, s}^{w_{h}}$ is described by [Dok, Theorem 3.14]. The reader is pointed to [Dok] for more details.

Definition 2.5.12 Let $\mathfrak{t} \in \Sigma^{W}$ be a proper cluster. For any rational centre w of \mathfrak{t}, let $r_{\mathfrak{t}, w}=\frac{w-r}{\pi^{\rho_{\mathfrak{t}}}}$, $u_{\mathfrak{t}, w}=c_{f} \prod_{r \in \mathfrak{R} \backslash t} r_{\mathfrak{t}, w}$ and $u_{\mathfrak{s}_{h}, w_{h}}^{0}=c_{f} \prod_{r \in \mathfrak{R} \backslash\left\{w_{h}\right\}} r_{\mathfrak{s}_{h}, w_{h}}$. Define $\overline{f_{\mathfrak{t}, w}^{W}}, \overline{g_{\mathfrak{t}, w}} \in k[X]$, and $\overline{g_{\mathfrak{s}_{h}, w_{h}}^{0}} \in k[X]$ for any $h=1, \ldots, m$, as follows:
(1) Let $u=u_{\mathrm{t}, w}$. Define $\overline{f_{\mathrm{t}, w}^{W}}$ by

$$
\overline{f_{\mathfrak{t}, w}^{W}}\left(X^{b_{\mathfrak{t}}}\right)=\frac{u}{\pi^{v(u)}} \prod_{r \in \mathfrak{t} \backslash \cup_{\mathfrak{s}<\mathrm{t}} \mathfrak{s}}\left(X+r_{\mathfrak{t}, w}\right) \quad \bmod \pi,
$$

where the union runs through all children \mathfrak{s} of \mathfrak{t} in Σ^{W}. If $\Sigma=\Sigma_{C}^{\min }$ denote $\overline{f_{\mathfrak{t}, w}^{W}}$ by $\overline{f_{\mathfrak{t}, w}}$.
(2) Let $u=u_{\mathfrak{t}, w}$. Define $\overline{g_{\mathfrak{t}, w}}(X):=X^{p_{\mathrm{t}} / \gamma_{\mathrm{t}}}-\frac{u}{\pi^{v(u)}} \bmod \pi$.

Note that the polynomials defined in Definition 2.5.12 agree with the ones in Definition 2.4.14 when $w=w_{\mathfrak{t}}$.

Lemma 2.5.13 Let $\mathfrak{s}, \mathfrak{t} \in \Sigma_{C}^{\text {rat }}$, with $\mathfrak{s} \subsetneq \mathfrak{t}$. Let w^{\prime}, w be rational centres of \mathfrak{s} and \mathfrak{t} respectively, and define $\overline{u_{w^{\prime} w}}=\frac{w^{\prime}-w}{\pi^{\rho}{ }^{\mathrm{t}}} \bmod \pi$. Then $\overline{u_{w^{\prime} w}}$ does not depend on the choice of a rational centre w^{\prime} of \mathfrak{s}.

Proof. Suppose that w_{1}, w_{2} are two rational centres of \mathfrak{s}. Then $v\left(w_{1}-w_{2}\right) \geq \rho_{\mathfrak{s}}>\rho_{\mathfrak{t}}$, and so the lemma follows.

Remark 2.5.14. Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$. Let $l=1, \ldots, m, l \neq h$. Then $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ if and only if it has a child $\mathfrak{s} \in \Sigma_{C}^{w_{l}} \backslash \Sigma_{C}^{w_{h}}$. In particular, if this happens, Lemma 2.5.13 shows that $\overline{u_{l h}}=\frac{w-w_{h}}{\pi^{\rho_{\mathrm{t}}}} \bmod \pi$ for any rational centre w of \mathfrak{s}.

Definition 2.5.15 Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. Define $\hat{\mathfrak{t}}^{W}:=\left\{\mathfrak{s} \in \Sigma^{W} \cup\{\varnothing\} \mid \mathfrak{s}<\mathfrak{t}\right\}$, where $\varnothing<\mathfrak{t}$ only if \mathfrak{t} has no child in Σ^{W}. If $\varnothing<\mathfrak{t}$ then we will say that w_{h} is the rational centre of \varnothing.

Define $\mathbb{G}_{\mathfrak{t}, w_{h}}:=\mathbb{G}_{m, k} \backslash \bigcup_{l}\left\{\overline{u_{l h}}\right\}$, where the union runs through all $l \neq h$ such that $\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}=\mathfrak{t}$. Note that Remark 2.5.14 shows that $\mathbb{G}_{\mathfrak{t}, w_{h}}=\mathbb{A}_{k}^{1} \backslash \bigcup_{\mathfrak{s} \in \hat{\mathfrak{t}} W}\left\{\overline{u_{w_{\mathfrak{s}} w_{h}}}\right\}$, where $\overline{u_{w_{\mathfrak{s}} w_{h}}}=\frac{w_{\mathfrak{s}}-w_{h}}{\pi^{\rho_{\mathfrak{t}}}} \bmod \pi$, and $w_{\mathfrak{s}}$ is any rational centre of \mathfrak{s}.

Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. Let $V=V_{\mathfrak{t}}^{w_{h}}$ and $M=M_{V, j}$. In $\S 2.5 .5$ we showed the special fibre of U_{M}^{h} equals $X_{M} \cap \mathcal{C}_{\Delta, s}^{w_{h}}$. Therefore the components of $\mathcal{C}_{\Delta, s}^{w_{h}}$ coming from V are the same of those of $\mathcal{C}_{\Delta, s}^{w_{h}}$ given by the same v-edge. Therefore V gives a closed subscheme $X_{V} \times \mathbb{P}_{V}$ of $\stackrel{\mathcal{C}}{\Delta, s}_{w_{h}}^{w^{\prime}}$, where \mathbb{P}_{V} is a chain of $\mathbb{P}_{k}^{1} \mathrm{~s}$ and $X_{V}:\left\{\overline{\left.g_{h}\right|_{V}}=0\right\}$ over $\mathbb{G}_{m, k}$. Lemma 2.4.3 implies that $\overline{\left.g_{h}\right|_{V}}=\overline{g_{\mathfrak{t}, w_{h}}}$.

Let $V_{0}=V_{0}^{w_{h}}$ and $M=M_{V_{0}, j}$. Similarly to above, $X_{M} \cap \dot{\mathcal{C}}_{\Delta, s}^{w_{h}}=X_{M} \cap \mathcal{C}_{\Delta, s}^{w_{h}}$ and so V_{0} gives rise to a closed subscheme $X_{V_{0}} \times \mathbb{P}_{V_{0}}$ of $\mathcal{C}_{\Delta, s}^{w_{h}}$, where $\mathbb{P}_{V_{0}}$ is a chain of $\mathbb{P}_{k}^{1} \mathrm{~s}$ and $X_{V_{0}}:\left\{\overline{\left.g_{h}\right|_{V_{0}}}=0\right\}$ over $\mathbb{G}_{m, k}$. Note that $\overline{\left.g_{h}\right|_{V_{0}}}=\overline{g_{\mathfrak{s}_{h}, w_{h}}^{0}}$.

Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. Let $L=L_{\mathfrak{t}}^{w_{h}}$ and $M=M_{L, i}$. By Lemma 2.5.8, the v-edge L gives a subscheme $X_{L}^{W} \times \mathbb{P}_{L}$ of $\mathcal{C}_{\Delta, s}^{w_{h}}$, where \mathbb{P}_{L} is a chain of $\mathbb{P}_{k}^{1} \mathrm{~S}$ of length r_{L} and $X_{L}^{W}:\left\{\overline{\left.g_{h}\right|_{L}}=0\right\}$ in $\mathbb{G}_{\mathrm{t}, w_{h}}$. Note that $r_{L}=0$ or 1 by Lemma 2.4.3 and $r_{L}=1$ if and only if $D_{\mathfrak{t}}=1$. Let $\mathfrak{t}_{h} \in \Sigma_{C}^{w_{h}}$ be the unique child of \mathfrak{t} with rational centre w_{h} or set $\mathfrak{t}_{h}=\varnothing$ if \mathfrak{t} has no such child. We will show that

$$
\begin{equation*}
\overline{\left.g_{h}\right|_{L}}(X)=-\prod_{\mathfrak{s} \in \hat{\mathfrak{t}},}, \mathfrak{s f t \mathfrak { t } _ { h }}\left(X+\overline{u_{w_{\mathfrak{s}} w_{h}}}\right)^{|\mathfrak{s}|} \cdot \overline{f_{\mathfrak{t}, w_{h}}^{W}}(X) . \tag{2.7}
\end{equation*}
$$

where $\overline{u_{w_{\mathfrak{s}} w_{h}}}=\frac{w_{\mathfrak{s}}-w_{h}}{\pi^{\rho_{\mathfrak{t}}}} \bmod \pi$, and $w_{\mathfrak{s}}$ is any rational centre of \mathfrak{s}.
Suppose $\mathfrak{t} \neq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ for any $l \neq h$. Equivalently, all children of \mathfrak{t} in Σ^{W} (at most one) belong to $\Sigma_{C}^{w_{h}}$. Then Lemma 2.4.3 shows that $\overline{\left.g_{h}\right|_{L}}=-\overline{f_{\mathfrak{t}, w_{h}}^{W}}$. Suppose now that $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ for some $l \neq h$. In this case $b_{\mathfrak{t}}=1$. We have

$$
\frac{\overline{\left.g_{h}\right|_{L}}(X)}{\prod_{\mathfrak{s} \in \hat{\mathfrak{t}}^{W}, \mathfrak{s} \neq \mathfrak{t}_{h}}\left(X+\overline{u_{w_{\mathfrak{s}} w_{h}}}\right)^{|\mathfrak{s}|}}=\left(\frac{-\frac{u}{\pi^{v(u)}} \prod_{r \in \mathfrak{t} \mid \mathfrak{t}_{h}}\left(X+r_{\mathfrak{t}, w_{h}}\right)}{\prod_{\mathfrak{s} \in \hat{\mathfrak{t}}^{W}, \mathfrak{s} \neq \mathfrak{t}_{h}} \prod_{r \in \mathfrak{s}}\left(X+r_{\mathfrak{t}, w_{h}}\right)} \bmod \pi\right)=-\overline{f_{\mathfrak{t}, w_{h}}^{W}}(X),
$$

where $r_{\mathfrak{t}, w_{h}}$ and $u=u_{\mathfrak{t}, w_{h}}$ are as in Definition 2.5.12. Indeed, $\overline{u_{w_{\mathfrak{s}} w_{h}}}=r_{\mathfrak{t}, w_{h}} \bmod \pi$ for every $r \in \mathfrak{s}$ as $v\left(w_{\mathfrak{s}}-r\right) \geq \rho_{\mathfrak{s}}>\rho_{\mathfrak{t}}$, and since $b_{\mathfrak{t}}=1$, Lemma 2.4.3 implies that

$$
\overline{\left.g_{h}\right|_{L}}(x)=-\frac{u}{\pi^{v(u)}} \prod_{r \in \mathfrak{t | t}}^{h} \text { }\left(x+r_{\mathrm{t}, w_{h}}\right) \quad \bmod \pi
$$

In particular, Remark 2.5.13 and Lemma 2.5.9 shows that $\left(X+\overline{u_{h l}}\right) \nmid \overline{f_{\mathrm{t}, w_{h}}^{W}}(X)$, for any $l \neq h$ such that $\mathfrak{s}_{l} \wedge \mathfrak{s}_{h}=\mathfrak{t}$. Moreover, $X \nmid \overline{f_{\mathfrak{t}, w_{h}}^{W}}(X)$ by definition. Therefore the scheme X_{L}^{W} is equal to the closed subscheme $X_{\mathrm{t}, w_{h}}^{W} \subset A_{k}^{1}$ given by $\overline{f_{\mathrm{t}, w_{h}}^{W}}=0$.

Let $\mathfrak{t} \in \Sigma^{W}$ be a proper cluster. For any $h=1, \ldots, m$ such that $\mathfrak{s}_{h} \subseteq \mathfrak{t}$, let $\bar{X}_{F_{\mathrm{t}}^{w_{h}}}$ be the 1dimensional closed subscheme of $\mathcal{C}_{\Delta, s}^{w_{h}}$ given by $F_{t}^{w_{h}}$. Define

$$
\stackrel{\circ}{X}_{F_{\mathrm{t}}^{w_{h}}}:=\bar{X}_{F_{\mathrm{t}}^{w_{h}}} \cap \stackrel{\circ}{\mathcal{C}}_{\Delta}^{w_{h}}
$$

Denote by $\Gamma_{\mathfrak{t}}$ the 1-dimensional closed subscheme of \mathcal{C}_{s}, result of the glueing of the subschemes $\stackrel{\circ}{X}_{F_{\mathfrak{t}}^{w_{h}}}$ of $\mathcal{C}_{\Delta, s}^{w_{h}}$ to varying of h such that $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$.

Lemma 2.5.16 Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. The multiplicity of $\Gamma_{\mathfrak{t}}$ in \mathcal{C}_{s} is $m_{\mathfrak{t}}$.
Proof. Let $L=L_{\mathfrak{t}}^{w_{h}}, M=M_{L, 0}$, and let $F=F_{\mathfrak{t}}^{w_{h}}$. The multiplicity of $\bar{X}_{F_{\mathfrak{t}}^{w_{h}}}$, and so of $\stackrel{\circ}{X}_{F_{\mathfrak{t}}}^{w_{h}}$ and $\Gamma_{\mathfrak{t}}$, is δ_{F}. Hence we only need to show that $m_{\mathfrak{t}}=\delta_{F}$. Let $d_{0} \in \mathbb{Z}$ as in Lemma 2.5.2. Then $\delta_{F}=\delta_{L} d_{0}$. The result follows as $\delta_{L}=b_{\mathfrak{t}}$ and d_{0}, denominator of s_{1}^{L}, equals $3-D_{\mathfrak{t}}$ by Lemma 2.4.3.

Lemma 2.5.17 Let $L=L_{\mathfrak{t}}^{w_{h}}, F=F_{\mathfrak{t}}^{w_{h}}$ and $M=M_{L, 0}$. Let $c \in\left\{0, \ldots, b_{\mathfrak{t}}-1\right\}$ such that $1 / b_{\mathfrak{t}}-\rho_{\mathfrak{t}} \cdot c \in \mathbb{Z}$. Then $\mathcal{F}_{M}^{h}(X, Y, 0) \bmod \pi$ equals the polynomial

$$
\overline{\left.g_{h}\right|_{F}}(X, Y)=Y^{D_{\mathrm{t}}}-\prod_{\mathfrak{s} \in \hat{\mathrm{t}}^{W}}\left(X-\overline{u_{w_{\mathfrak{s}} w_{h}}}\right)^{\frac{\left\lvert\, \frac{s|s|}{}\right.}{b_{\mathrm{t}}}-c \epsilon_{\mathrm{t}}} \overline{f_{\mathrm{t}, w_{h}}^{W}}(X),
$$

where $\overline{u_{w_{\mathfrak{s}} w_{h}}}=\frac{w_{\mathfrak{s}}-w_{h}}{\pi^{\rho_{\mathfrak{t}}}} \bmod \pi$, and $w_{\mathfrak{s}}$ is any rational centre of \mathfrak{s}.
In particular, $\Gamma_{\mathfrak{t}}^{h} \subset \mathbb{G}_{\mathfrak{t}, w_{h}} \times \mathbb{A}_{k}^{1}$ given by $\overline{\left.g\right|_{F}}=0$ is the open subscheme $U_{M}^{h} \cap\{Z=0\}$ of \dot{X}_{F}, and the points in S_{M} belong to all irreducible components of \bar{X}_{F}.

Proof. From [Dok, §3.5] and the equation of $C^{w_{h}}$, the polynomial $\mathcal{F}_{M}^{h}(X, Y, 0)$ reduces modulo π to $X^{a_{1}} Y^{b}+X^{a_{2}} \overline{\left.g_{h}\right|_{L}}(X)$, for some $b=1,2$ and $a \in \mathbb{Z}$. Lemma 2.4.9 shows that $b=D_{\mathrm{t}}$. By Lemma 2.4.3, $a_{1}=2 \tilde{m}_{12}, a_{2}=\left|\mathfrak{t}_{h}\right| \tilde{m}_{11}+\left(\epsilon_{\mathfrak{t}}-\left|\mathfrak{t}_{h}\right| \rho_{\mathfrak{t}}\right) \tilde{m}_{13}$, where $\mathfrak{t}_{h} \in \Sigma_{C}^{w_{h}} \cup\{\varnothing\}, \mathfrak{t}_{h}<\mathfrak{t}$. Then $a_{1}=0$ and $a_{2}=\frac{\left|\mathfrak{t}_{h}\right|}{b_{\mathfrak{t}}}-c \epsilon_{\mathfrak{t}}$ by Lemma 2.5.2.

If \mathfrak{t} has one or no child, or $D_{\mathfrak{t}}=1$, then $\overline{\left.g_{h}\right|_{L}}=-\overline{f_{\mathfrak{t}, w_{h}}^{W}}$ by (2.7). On the other hand, if $D_{\mathfrak{t}}=2$ and \mathfrak{t} has two or more children in $\Sigma_{C}^{\mathrm{rat}}$, then $b_{\mathfrak{t}}=1$, and so $c=0$. Therefore the equality (2.7) concludes the proof of the first part of the statement also in this case. Finally, the last part of the lemma follows from Lemma 2.5.8.

Let c as in the previous lemma and define $\tilde{\mathfrak{t}}^{W}:=\left\{\mathfrak{s} \in \hat{\mathfrak{t}}^{W} \left\lvert\, \frac{|\mathfrak{s}|}{b_{\mathfrak{t}}}-c \epsilon_{\mathfrak{t}} \notin 2 \mathbb{Z}\right.\right\}$.
Proposition 2.5.18 Let $L=L_{\mathfrak{t}}^{w_{h}}$ and $M=M_{L, 0}$. The dense open subscheme $\Gamma_{\mathfrak{t}} \cap U_{M}^{h}$ of $\Gamma_{\mathfrak{t}}$ is isomorphic to the closed subscheme of $\mathbb{G}_{\mathfrak{t}, w_{h}} \times \mathbb{A}_{k}^{1}$ given by

$$
Y^{D_{\mathfrak{t}}}=\prod_{\mathfrak{s} \in \mathfrak{t}^{W}}\left(X-\overline{u_{w_{\mathfrak{s}} w_{h}}}\right) \cdot \overline{f_{\mathfrak{t}, w_{h}}^{W}}(X)
$$

where $\overline{u_{w_{\mathfrak{s}} w_{h}}}=\frac{w_{\mathfrak{s}}-w_{h}}{\pi^{\rho_{\mathfrak{t}}}} \bmod \pi$, and $w_{\mathfrak{s}}$ is any rational centre of \mathfrak{s}.
Proof. The proposition follows from Lemma 2.5.17 and the definition of $\mathbb{G}_{\mathfrak{t}, w_{h}}$.
We conclude this subsection describing how the glueing morphism (2.4) restricts to the special fibre. Suppose $\mathfrak{t} \supseteq \mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ for $l \neq h$ and let M be a matrix associated to t. Consider the glueing map $U_{M}^{h} \rightarrow U_{M}^{l}$ explicitly defined in §2.5.3.

Suppose first $M=M_{V, j}$ with $V=V_{\mathrm{t}}^{w_{l}}$. By Lemma 2.5.10 the glueing morphism restricts to the identity on $X_{V} \times \mathbb{P}_{V}$.

Suppose $M=M_{L, i}$ with $L=L_{\mathfrak{t}}^{w_{l}}$. Note that $\tilde{m}_{12}=0$ from Lemma 2.5.2. Recall the open subscheme $\Gamma_{\mathfrak{t}}^{h}$ of $\dot{X}_{F_{\mathrm{t}}}^{w_{h}}$ defined in Lemma 2.5.17. Then, Lemma 2.5.7 implies that the glueing map restricts to an isomorphism $\Gamma_{\mathfrak{t}}^{h} \mapsto \Gamma_{\mathfrak{t}}^{l}$ induced by the ring homomorphism sending $X \mapsto X+\overline{u_{w_{h} w_{l}}}$,
where $\overline{u_{w_{h} w_{l}}}=\frac{w_{h}-w_{l}}{\pi^{\rho_{\mathrm{t}}}} \bmod \pi$. Similarly, it restricts to an isomorphism $X_{L_{\mathrm{t}}^{w_{h}}}^{W} \times \mathbb{P}_{L_{\mathrm{t}}}^{w_{h}} \rightarrow X_{L_{\mathrm{t}}^{w_{l}}}^{W} \times \mathbb{P}_{L_{\mathrm{t}}}^{w_{l}}$, where $\mathbb{P}_{L_{\mathrm{t}}^{w_{h}}} \rightarrow \mathbb{P}_{L_{\mathrm{t}}^{w_{l}}}$ is the identity and $X_{L_{\mathrm{t}}^{w_{h}}}^{W} \rightarrow X_{L_{\mathrm{t}}^{w_{l}}}^{W}$ is induced by the ring homomorphism sending $X \mapsto X+\overline{u_{w_{h} w_{l}}}$.

2.5.7 Regularity

In this subsection we prove that if C has an almost rational cluster picture and is y-regular, then the scheme \mathcal{C} is regular.

Let $w_{h} \in W$. We want to show that if $\Sigma=\Sigma_{C}^{\min }$, and C has an almost rational cluster picture and is y-regular, then $\mathcal{C}_{\Delta}^{w_{h}}$ is a regular scheme.

Lemma 2.5.19 Consider the model $\mathcal{C}_{\Delta}^{w_{h}} / O_{K}$ and let $f_{h}(x)=f\left(x+w_{h}\right)$. Suppose $\Sigma=\left\{\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{m}\right\}=$ $\Sigma_{C}^{\min }$, and C has an almost rational cluster picture and is y-regular. If P is a singular point of $\mathcal{C}_{\Delta}^{w_{h}}$ then

$$
P \in \operatorname{Spec} \frac{O_{K}\left[X^{ \pm 1}, Y, Z\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z), X+u_{h l}, Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}, \pi\right)} \subset \mathcal{C}_{\Delta}^{w_{h}} \cap X_{M},
$$

for some $l \neq h$, where $M=M_{L_{s_{h} \wedge \xi_{l}}^{w_{h}}, i}$ for $i=0, \ldots, r_{L_{s_{h} \wedge s_{l}}^{w_{h}}}$.
Proof. Denote by $m_{\alpha}(X) \in O_{K}[X]$ a lift of the minimal polynomial in $k[X]$ of $\bar{\alpha} \in \bar{k}$. By Lemma 2.5.9, we only need to show that if $P \in \mathcal{C}_{\Delta}^{w_{h}}$ is a singular point then

$$
\begin{equation*}
P \in \operatorname{Spec} \frac{O_{K}\left[X^{ \pm 1}, Y, Z\right]}{\left(\mathcal{F}_{M_{L, i}}^{h}(X, Y, Z), m_{\alpha}(X), Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}, \pi\right)}, \tag{2.8}
\end{equation*}
$$

for some v-edge $L=L_{\mathrm{t}}^{w_{h}}$ of $\Delta^{w_{h}}$, and some multiple root $\bar{\alpha}$ of $\overline{f_{h} \mid L}$. For any v-edge E of $\Delta^{w_{h}}$ and any $i=0, \ldots, r_{E}$, we study the polynomial \mathcal{F}_{M}^{h} where $M=M_{E, i}$, using [Dok, §4.5]. Let $g_{h}(x, y)=$ $y^{2}-f_{h}(x)$. Let $L=L_{\mathrm{t}}^{w_{h}}$ and $M=M_{L, i}$. Note that $\overline{\left.g_{h}\right|_{L}}=-\overline{\left.f_{h}\right|_{L}}$. We have $\mathcal{F}_{M}^{h}(X, 0, Z)=\overline{\left.g_{h}\right|_{L}}(X)$ for any i. On the other hand, $\mathcal{F}_{M}^{h}(X, Y, 0)=\overline{\left.g_{h}\right|_{L}}(X)$ if $i>0$ and $\mathcal{F}_{M}^{h}(X, Y, 0)=\overline{\left.g_{h}\right|_{F}}(X, Y)$ if $i=0$. From the description given in Lemma 2.5.17, we conclude that for these matrices M the points in (2.8) are the only possibly singular points of $\mathcal{C}_{\Delta}^{w_{h}} \cap X_{M}$. In particular, this proves that for any v-face F of $\Delta^{w_{h}}$, the points in X_{F} are non-singular in $\mathcal{C}_{\Delta}^{w_{h}}$.

Let $V=V_{\mathrm{t}}^{w_{h}}$ or $V=V_{0}^{w_{h}}$ and $M=M_{V, j}$. Since C is y-regular, $p \nmid \operatorname{deg}\left(\overline{\left.g_{h}\right|_{V}}\right)$ by Lemma 2.4.9. By [Dok, §4.5] and the fact that the points in X_{F} are non-singular for all v-faces F, we conclude that $\mathcal{C}_{\Delta}^{w_{h}}$ has no singular point on X_{M} for these matrices M, as required.

Proposition 2.5.20 Suppose $\Sigma=\Sigma_{C}^{\min }$, and C has an almost rational cluster picture and is y-regular, then \mathcal{C} is a regular scheme.

Proof. Lemmas 2.5.19 and 2.5.8 show that $\mathcal{C}_{\Delta}^{\omega_{h}}$ is regular for every h. Thus their glueing \mathcal{C} is regular as well.

2.5.8 Separatedness

It remains to prove that \mathcal{C} is a proper scheme. In this subsection we show it is separated. Clearly it suffices to prove that \mathcal{X} / O_{K} is separated. Since the schemes X_{Δ}^{h} are separated, then the open subschemes \dot{X}_{Δ}^{h} are separated as well by [Liu4, Proposition 3.3.9]. Consider the open cover $\left\{V_{M}^{h}\right\}_{h, M}$ of \mathcal{X}. Let $h, l=1, \ldots, m$ and let M_{h} and M_{l} be matrices associated to proper clusters $\mathfrak{t}_{h} \in \Sigma_{C}^{w_{h}}$ and $\mathfrak{t}_{l} \in \Sigma_{C}^{w_{l}}$ respectively. By [Liu4, Proposition 3.3.6] we want to show
(i) $V_{M_{h}}^{h} \cap V_{M_{l}}^{l}$ is affine,
(ii) The canonical homomorphism

$$
O_{\mathcal{X}}\left(V_{M_{h}}^{h}\right) \otimes_{\mathbb{Z}} O_{\mathcal{X}}\left(V_{M_{l}}^{l}\right) \longrightarrow O_{\mathcal{X}}\left(V_{M_{h}}^{h} \cap V_{M_{l}}^{l}\right)
$$

is surjective.
The definition of the glueing map (2.4) implies (i). If $h=l$, or $\mathfrak{s}_{l} \subseteq \mathfrak{t}_{h}$, or $\mathfrak{s}_{h} \subseteq \mathfrak{t}_{l}$, then (ii) follows from the separatedness of \dot{X}_{Δ}^{h} and \dot{X}_{Δ}^{l}. So assume $l \neq h$, and $\mathfrak{t}_{h}, \mathfrak{t}_{l} \subsetneq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$. Consider the Moebius transformation

$$
\psi_{l}: \quad x \mapsto \frac{x}{x w_{h l}^{-1}+1}, \quad y \mapsto \frac{y}{\left(x w_{h l}^{-1}+1\right)^{g+1}}
$$

It sends the curve $C^{w_{l}}$ to the isomorphic hyperelliptic curve

$$
C_{l}^{h}: y^{2}=\left(x w_{h l}^{-1}+1\right)^{2 g+2} f\left(x\left(x w_{h l}^{-1}+1\right)^{-1}+w_{l}\right)
$$

As

$$
\begin{aligned}
f_{l}^{h}(x): & =\left(x w_{h l}^{-1}+1\right)^{2 g+2} f\left(x\left(x w_{h l}^{-1}+1\right)^{-1}+w_{l}\right) \\
& =c_{f} w_{h l}^{|\mathfrak{R}|}\left(x w_{h l}^{-1}+1\right)^{2 g+2-|\mathfrak{R}|} \prod_{r \in \mathfrak{R} \backslash\left\{w_{h}\right\}} \frac{r-w_{h}}{w_{l h}}\left(x w_{h l}^{-1}+\frac{r-w_{l}}{r-w_{h}}\right),
\end{aligned}
$$

every cluster $\mathfrak{s} \in \Sigma_{C}^{w_{l}}$ such that $\mathfrak{s} \subsetneq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$, corresponds to a unique cluster $\mathfrak{s}^{h} \in \Sigma_{C_{l}^{h}}^{0}$ of same size, same radius and rational centre 0 . Moreover,

$$
\epsilon_{\mathfrak{s}^{h}}=v\left(c_{f_{l}^{h}}\right)+\sum_{r^{\prime} \in \mathfrak{s}^{h}} \rho_{\mathfrak{s}^{h}}+\sum_{r^{\prime} \notin \mathfrak{s}^{h}} v\left(r^{\prime}\right)=\epsilon_{\mathfrak{s}} .
$$

Call \mathfrak{t}_{l}^{h} the cluster in $\Sigma_{C_{l}^{h}}^{0}$ corresponding to \mathfrak{t}_{l}. Let $\Delta^{l h}$ and $\Delta_{v}^{l h}$ be the Newton polytopes attached to $y^{2}-f_{l}^{h}(x)$ and let $X_{\Delta}^{l h}$ be the associated toric scheme (defined in [Dok, §4.2]). Since $\mathfrak{t}_{l} \subsetneq_{\mathfrak{s}_{h}} \wedge \mathfrak{s}_{l}$, the v-faces $F_{\mathfrak{t}_{l}}$ of $\Delta^{w_{l}}$ and $F_{\mathfrak{t}_{l}^{h}}$ of $\Delta^{l h}$ are identical by Lemma 2.4.3. Furthermore, note that if $\mathfrak{t}_{l}<\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$, then $\rho_{P\left(\mathfrak{t}_{l}^{h}\right)} \leq \rho_{h l}=\rho_{P\left(\mathfrak{t}_{l}\right)}$ and so $s_{2}^{V^{0}} \leq s_{2}^{V}$, where $V^{0}=V_{\mathfrak{t}_{l}^{h}}^{0}$ and $V=V_{\mathfrak{t}_{l}}^{w_{l}}$. Therefore the $\operatorname{matrix} M:=M_{l}$ is also associated to \mathfrak{t}_{l}^{h}.

For every $o=1, \ldots, m$, with $o \neq l$, define

$$
w_{h l o}= \begin{cases}\frac{w_{h l} w_{l o}}{w_{h o}} & \text { if } o \neq h \\ w_{h l} & \text { if } o=h\end{cases}
$$

and write $w_{h l o}=u_{h l o} \pi^{\rho_{h l o}}$, where $u_{h l o} \in O_{K}^{\times}$and $\rho_{h l o} \in \mathbb{Z}$, i.e.

$$
u_{h l o}=\left\{\begin{array}{ll}
\frac{u_{h l} u_{l o}}{u_{h o}} & \text { if } o \neq h, \\
u_{h l} & \text { if } o=h,
\end{array} \quad \text { and } \quad \rho_{h l o}= \begin{cases}\rho_{h l}+\rho_{l o}-\rho_{h o} & \text { if } o \neq h \\
\rho_{h l} & \text { if } o=h\end{cases}\right.
$$

Define

$$
\tilde{T}_{M}^{h l o}(X, Y, Z):= \begin{cases}1+u_{h l o} X^{\rho_{h l o} \tilde{m}_{13}-\tilde{m}_{11}} Y^{\rho_{h l o} \tilde{m}_{23}-\tilde{m}_{21}} Z^{\rho_{h l o} \tilde{m}_{33}-\tilde{m}_{31}} & \text { if } \mathfrak{t}_{l} \supseteq \mathfrak{s}_{o} \\ u_{h l o}^{-1} X^{\tilde{m}_{11}-\rho_{h l o} \tilde{m}_{13}} Y^{\tilde{m}_{21}-\rho_{h l o} \tilde{m}_{23}} Z^{\tilde{m}_{31}-\rho_{h l o} \tilde{m}_{33}}+1 & \text { if } \mathfrak{t}_{l} \nsupseteq \mathfrak{s}_{o}\end{cases}
$$

We want to show $\tilde{T}_{M}^{h l o}(X, Y, Z) \in R$. If $o=h$ then

$$
\tilde{T}_{M}^{h l o}(X, Y, Z)=T_{M}^{h l}(X, Y, Z) \in R .
$$

So assume $o \neq h$. If $\mathfrak{s}_{o} \subseteq \mathfrak{t}_{l}$, then it follows from Lemma 2.5.4 as $\mathfrak{s}_{l} \wedge \mathfrak{s}_{o} \subsetneq \mathfrak{s}_{l} \wedge \mathfrak{s}_{h}$ and so $\rho_{h l o}=\rho_{l o}$. On the other hand, if $\mathfrak{s}_{o} \nsubseteq \mathfrak{t}_{l}$, then it follows from Lemma 2.5.5 as $\tilde{m}_{23}, \tilde{m}_{33}>0$ and $\rho_{h l o} \leq$ $\max \left\{\rho_{h l}, \rho_{l o}\right\}$. Let

$$
\tilde{T}_{M}^{h l}(X, Y, Z):=\prod_{o \neq l} \tilde{T}_{M}^{h l o}(X, Y, Z)
$$

The Moebius transformation

$$
K\left[x^{ \pm 1}, y^{ \pm 1}, \prod_{o \neq l}\left(x+w_{l o}\right)^{-1}\right] \xrightarrow{\psi_{l}} K\left[x^{ \pm 1}, y^{ \pm 1}, \prod_{o \neq l}\left(x+w_{h l o}\right)^{-1}\right]
$$

considered above induces an isomorphism

$$
R\left[T_{M}^{l}(X, Y, Z)^{-1}\right] \xrightarrow{M^{-1} \circ \psi_{l} \circ M} R\left[\tilde{T}_{M}^{h l}(X, Y, Z)^{-1}\right]
$$

sending

$$
\begin{aligned}
& X \mapsto \cdot T_{M}^{h l}(X, Y, Z)^{-m_{11}-(g+1) m_{21}}, \\
& Y \mapsto \cdot T_{M}^{h l}(X, Y, Z)^{-m_{12}-(g+1) m_{22}}, \\
& Z \mapsto Z \cdot T_{M}^{h l}(X, Y, Z)^{-m_{13}-(g+1) m_{23}}
\end{aligned}
$$

Then

$$
\tilde{V}_{M}^{l h}:=\operatorname{Spec} R\left[\tilde{T}_{M}^{h l}(X, Y, Z)^{-1}\right]
$$

is an open subscheme of $X_{\Delta}^{l h}$, isomorphic to V_{M}^{l}. We can clearly carry out similar constructions for t_{h}, M_{h}.

By comparing the Newton polytopes $\Delta_{v}^{l h}$ and $\Delta_{v}^{h l}$, we see that the Moebius transformation $x \mapsto w_{h l} /\left(w_{l h}^{-1} x\right), y \mapsto y /\left(w_{l h}^{-1} x\right)^{g+1}$ gives an isomorphism

$$
\psi: K\left[x^{ \pm 1}, y^{ \pm 1}, \prod_{o \neq l}\left(x+w_{h l o}\right)^{-1}\right] \longrightarrow K\left[x^{ \pm 1}, y^{ \pm 1}, \prod_{o \neq h}\left(x+w_{l h o}\right)^{-1}\right]
$$

which induces a birational map $X_{\Delta}^{h l}{ }_{-\rightarrow} X_{\Delta}^{l h}$, defined on the open set $\tilde{V}_{M_{h}}^{h l}$ of $X_{\Delta}^{h l}$. In particular, there exists an open set $\tilde{V}_{M_{h}}^{l h}$ of $X_{\Delta}^{l h}$, isomorphic to $V_{M_{h}}^{h}$ via the map induced by $\psi_{h}^{-1} \circ \psi$.

Recall the definition of ϕ in (2.1), which induces the glueing map between $V_{M_{l}}^{l}$ and $V_{M_{h}}^{h}$. Since the following diagram

is commutative, then the surjectivity of

$$
O_{\mathcal{X}}\left(V_{M_{h}}^{h}\right) \otimes_{\mathbb{Z}} O_{\mathcal{X}}\left(V_{M_{l}}^{l}\right) \longrightarrow O_{\mathcal{X}}\left(V_{M_{h}}^{h} \cap V_{M_{l}}^{l}\right)
$$

follows from the separatedness of $X_{\Delta}^{l h}$.

2.5.9 Properness

In this subsection we prove that \mathcal{C} is proper. By [EGA, IV.15.7.10], it remains to show that \mathcal{C}_{s} is proper. From [Liu4, Exercise 3.3.11], we only need to prove that the 1-dimensional subscheme $\Gamma_{\mathfrak{t}}$ is proper for every $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$. Indeed every other component is entirely contained in a model $\mathcal{C}_{\Delta}^{w_{h}}$, which is proper (see §2.5.5). Let $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ for some $h, l=1, \ldots, m$, with $h \neq l$. For any $o=1, \ldots, m$ such that $\mathfrak{s}_{o} \subset \mathfrak{t}$, let \mathfrak{t}_{o} be the unique child of \mathfrak{t} with $\mathfrak{s}_{o} \subseteq \mathfrak{t}_{o}<\mathfrak{t}$. Then $\Gamma_{\mathfrak{t}}$ is equal to the glueing of the schemes

$$
\operatorname{Spec} \frac{R\left[T_{M}^{o}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{o}(X, Y, Z), Z, \pi\right)}, \quad M=M_{L_{\mathrm{t}}^{w_{o}}, 0}, M_{V_{\mathrm{t}}^{w_{o}}, 0}
$$

and

$$
\operatorname{Spec} \frac{R\left[T_{M}^{o}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{o}(X, Y, Z), Y, \pi\right)}, \quad M=M_{V_{t_{o}}^{w_{o}}, r_{V_{t_{o}}}^{w_{o}}}
$$

for all o such that $\mathfrak{s}_{o} \subset \mathfrak{t}$, through the isomorphism (2.4) and the glueing maps in the definition of $\mathcal{C}_{\Delta}^{w_{o}}$. In particular, for any o as above there exists a natural birational map $s_{o}: \Gamma_{\mathfrak{t}} \rightarrow \bar{X}_{F_{\mathfrak{t}}}^{w_{o}}$ which is defined as the identity morphism on the dense open $\dot{X}_{F_{\mathrm{t}}}^{w_{o}}=\Gamma_{\mathfrak{t}} \cap \mathcal{C}_{\Delta}^{w_{o}}$.

Let D / k be a normal curve, let $P \in D$ and let $D \backslash\{P\} \xrightarrow{g} \Gamma_{\mathfrak{t}}$ be a non-constant morphism of curves. We want to show that g extends to D. For every o as above, $\bar{X}_{F_{\mathrm{t}}}$ is proper, so the birational map

$$
g_{o}:=s_{o} \circ g: D \backslash\{P\}-\rightarrow \bar{X}_{F_{\mathrm{t}}^{w_{o}}}
$$

extends to a morphism $\bar{g}_{o}: D \longrightarrow \bar{X}_{F_{\mathrm{t}}^{w_{o}}}$. If

$$
P_{o}:=\bar{g}_{o}(P) \in\left(\bar{X}_{F_{\mathfrak{t}}^{w_{o}} \cap \mathcal{C}_{\Delta}^{w_{o}}}\right)=s_{o}\left(\Gamma_{\mathfrak{t}} \cap \mathcal{C}_{\Delta}^{w_{o}}\right)
$$

for some o such that $\mathfrak{s}_{o} \subset \mathfrak{t}$ (we will later show this is always the case), then there exists an open neighbourhood U of P_{o} such that $U \subseteq\left(\bar{X}_{F_{\mathrm{t}}^{w_{o}}} \cap \mathcal{C}_{\Delta}^{w_{o}}\right)$ and so $\left.s_{o}\right|_{s_{o}^{-1}(U)} ^{U}$ is an isomorphism. Since $P \in \bar{g}_{o}^{-1}(U)$, the map

$$
\bar{g}_{o}^{-1}(U) \xrightarrow{\left.\bar{g}_{o}\right|_{\tilde{g}_{o}^{-1}(U)} ^{U}} U \xrightarrow{\left(\left.s_{o}\right|_{s_{o}^{-1}(U)} ^{U}\right)^{-1}} s_{o}^{-1}(U) \hookrightarrow \Gamma_{\mathfrak{t}}
$$

induces an extension $D \longrightarrow \Gamma_{\mathfrak{t}}$ of g.
Suppose that $P_{o} \notin \bar{X}_{F_{\mathfrak{t}}^{w_{o}}} \cap \mathcal{C}_{\Delta}^{w_{o}}$ for any o such that $\mathfrak{s}_{o} \subset \mathfrak{t}$. From $\S 2.5 .5$ we have

$$
\begin{equation*}
P_{o} \in S_{M}=\operatorname{Spec} \frac{R}{\left(\mathcal{F}_{M}^{o}(X, Y, Z), \prod_{l}\left(X+u_{o l}\right), Z, \pi\right)}, \tag{2.9}
\end{equation*}
$$

where $M=M_{L_{\mathrm{t}}^{w_{o}}, 0}$, and the product runs over all $l \neq o$ such that $\mathfrak{t}=\mathfrak{s}_{o} \wedge \mathfrak{s}_{l}$. In particular P_{o} is a point of each irreducible component of $\bar{X}_{F_{\mathrm{t}}}$ by Lemma 2.5.17. Let $h \neq o$ such that $X+u_{o h}$ vanishes at P_{o}. Let ξ be the generic point of D and let $\xi_{o}=g_{o}(\xi), \xi_{h}=g_{h}(\xi)$ be generic points of $\bar{X}_{F_{\mathrm{t}}^{w_{o}}}$ and $\bar{X}_{F_{\mathrm{t}}^{w_{h}}}$ respectively. Then the birational maps s_{o} and s_{h} give

where we denote by $\phi_{g_{o}}$ and $\phi_{g_{h}}$ the homomorphisms between function fields induced by g_{o} and g_{h}. The vertical isomorphism is induced by the map

$$
\frac{R\left[T_{M}^{o}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{o}(X, Y, Z), Z\right)} \longrightarrow \frac{R\left[T_{M}^{h}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z), Z\right)}
$$

which sends (see §2.5.3 and Lemma 2.5.7)

$$
X+u_{o h} \mapsto X \cdot T_{M}^{h o}(X, Y, Z)^{m_{11}}+u_{o h}=X\left(1+u_{h o} X^{-1}\right)+u_{o h}=X
$$

But the rational function $X+u_{o h}$ vanishes at P_{o}, while X does not vanish at P_{h} by (2.9). This gives a contradiction, as $\bar{g}_{o}(P)=P_{o}$ and $\bar{g}_{h}(P)=P_{h}$.

2.5.10 Genus

Suppose $\Sigma=\left\{\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{m}\right\}=\Sigma_{C}^{\min }$, and C has an almost rational cluster picture and is y-regular. In the previous subsections we proved that \mathcal{C} / O_{K} is a proper regular model of C. Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster. In this subsection we want to describe the genus of the components $\Gamma_{\mathfrak{t}}$ of \mathcal{C}_{s} introduced in §2.5.6.

Proposition 2.5.21 Let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$. Then $\Gamma_{\mathfrak{t}}$ is isomorphic to the smooth projective 1-dimensional scheme given by

$$
Y^{D_{\mathfrak{t}}}=\prod_{\mathfrak{s} \in \mathfrak{t}^{W}}\left(X-\overline{u_{w_{\mathfrak{s}} w_{h}}}\right) \overline{f_{\mathfrak{t}, w_{h}}}(X)
$$

where $\overline{u_{w_{\mathfrak{s}} w_{h}}}=\frac{w_{\mathfrak{s}}-w_{h}}{\pi^{\rho_{\mathrm{t}}}} \bmod \pi$, and $w_{\mathfrak{s}}$ is any rational centre of \mathfrak{s}.
In particular,

1. if $D_{\mathfrak{t}}=1$, then $\Gamma_{\mathfrak{t}} \simeq \mathbb{P}_{k}^{1}$,
2. if $D_{\mathfrak{t}}=2$ and \mathfrak{t} is übereven, then $\Gamma_{\mathfrak{t}}$ is the disjoint union of two \mathbb{P}^{1} s over some quadratic extension of k;
3. in all other cases, $\Gamma_{\mathfrak{t}}$ is a hyperelliptic curve of genus $g(\mathfrak{t})$.

Proof. The first part of the proposition follows from Proposition 2.5.18.
For the second part of the statement note that if $D_{\mathfrak{t}}=1$ then the result follows. Suppose $D_{\mathfrak{t}}=2$. Then $p \neq 2$ as C is y-regular. Note that since $\Sigma=\Sigma_{C}^{\min }$, the proper clusters in Σ^{W} correspond to the proper clusters in $\Sigma_{C}^{r a t}$. Recall the definition of $\tilde{\mathfrak{t}}$ given in Definition 2.4.13. Let $h(X)=\prod_{\mathfrak{s} \in \tilde{\mathfrak{t}}^{W}}\left(X-\overline{u_{w_{\mathfrak{s}} w_{h}}}\right) \overline{f_{\mathrm{t}, w_{h}}}(X)$.

Suppose \mathfrak{t} is übereven. Then all its children are (proper) rational cluster by Lemma 2.3.30 since they are even and $p \neq 2$. In particular $b_{\mathfrak{t}}=1$ by Lemma 2.3.18 and so $\epsilon_{\mathfrak{t}} \in 2 \mathbb{Z}$ and $\tilde{\mathfrak{t}}=\tilde{\mathfrak{t}}^{W}=\varnothing$ since it equals the set of odd rational children. Moreover, $\mathfrak{t}=\bigcup_{\mathfrak{s}<\mathfrak{t}, \mathfrak{s} \text { proper }} \mathfrak{s}$, and so $\overline{f_{\mathfrak{t}, w_{h}} \in k \text {. Thus } \text {. }{ }^{\text {. }} \text {. }}$ $h(X) \in k$.

Now suppose $h(X) \in k$. Then $\tilde{\mathfrak{t}}^{W}=\varnothing$ and $\mathfrak{t}=\bigcup_{\mathfrak{s}<\mathfrak{t}} \mathfrak{s}$, where \mathfrak{s} runs through all children $\mathfrak{s} \in \Sigma^{W}$ of \mathfrak{t}. The non-proper clusters in Σ^{W} are of the form $\left\{w_{l}\right\}$ for some $l=1, \ldots, m$. If $\left\{w_{l}\right\}<\mathfrak{t}$, then $\mathfrak{t}=\mathfrak{s}_{l}$, but in that case \mathfrak{t} would not equal the union of its children in Σ^{W}. Hence \mathfrak{t} has no non-proper children. It follows that $\tilde{\mathfrak{t}}=\tilde{\mathfrak{t}}^{W}$ and \mathfrak{t} equals the union of its proper rational children. In particular, \mathfrak{t} has two or more children in $\Sigma_{C}^{\mathrm{rat}}$, so $b_{\mathfrak{t}}=1$, by Lemma 2.3.18. But then $\tilde{\mathfrak{t}}$ is the set of odd children of \mathfrak{t} as $\epsilon_{\mathfrak{t}} \in 2 \mathbb{Z}$, and so all rational children of \mathfrak{t} are even.

It only remains to prove that if $h(x) \notin k$, then the genus of $\Gamma_{\mathfrak{t}}$ is $g(\mathfrak{t})$. Since $h(X)$ is a separable polynomial, we need to show that

$$
\operatorname{deg} h=\frac{|\mathfrak{t}|-\sum_{\mathfrak{s} \in \sum_{C}^{\mathrm{rat}}, \mathfrak{s}<\mathfrak{t}}|\mathfrak{s}|}{b_{\mathfrak{t}}}+\tilde{\mathfrak{t}}
$$

It suffices to prove that if $\mathfrak{s} \in \Sigma_{C}^{\text {rat }}$ is a non-proper rational child of \mathfrak{t} different from $\left\{w_{h}\right\}$, then $b_{\mathfrak{t}}=1$ and $\mathfrak{s} \in \tilde{\mathfrak{t}}$. Suppose $\mathfrak{s}=\{r\}$ is such a rational cluster. Since $r \in \mathfrak{t}$, we have $v\left(r-w_{h}\right) \geq \rho_{\mathfrak{t}}$. Suppose $v\left(r-w_{h}\right)>\rho_{\mathfrak{t}}$. Then $\mathfrak{s} \in \Sigma_{C}^{w_{h}}$, as $\mathfrak{s}<\mathfrak{t}$ and $r \neq w_{h}$. But this contradicts our choice of W. Then $\rho_{\mathfrak{t}}=v\left(r-w_{h}\right) \in \mathbb{Z}$ and so $b_{\mathfrak{t}}=1$. It follows that $\tilde{\mathfrak{t}}$ is the set of odd children of \mathfrak{t}. Thus $\mathfrak{s} \in \tilde{\mathfrak{t}}$.

2.5.11 Minimal regular NC model

Suppose the base extended curve $C_{K^{n r}}$ is y-regular and has an almost rational cluster picture. Consider the model $\mathcal{C} / O_{K^{n r}}$ constructed before with $\Sigma=\Sigma_{C_{K^{n r}}}^{\min }$. In this subsection we study what components of \mathcal{C}_{s} have to be blown down to obtain the minimal regular model with normal crossings.

Recall [Dok, §5]. Let $\Sigma_{K^{n r}}=\Sigma_{C_{K} n r}^{\mathrm{rat}}$ and fix a proper cluster $\mathfrak{t} \in \Sigma_{C_{K^{n r}}}^{w_{h}}$. Suppose first $\mathfrak{t} \neq \mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$ for all $l=1, \ldots, m$ with $l \neq h$. Equivalently, \mathfrak{t} has at most one proper child in $\Sigma_{K^{n r}}$. Then $\Gamma_{\mathfrak{t}} \simeq \bar{X}_{F_{\mathfrak{t}}}^{w_{h}}$ and can be seen entirely in $\mathcal{C}_{\Delta}^{w_{h}}$. In particular, if $\Gamma_{\mathfrak{t}}$ can be blown down then $F_{t}^{w_{h}}$ is a removable or contractible v-face (see [Dok, Theorem 5.7]). By Lemma 2.4.3, we find

- $F_{\mathfrak{t}}^{w_{h}}$ is removable if and only if $\mathfrak{t}=\mathfrak{R}$ with a child in $\Sigma_{K^{n r}}$ of size $2 g+1$.
- $F_{\mathfrak{t}}^{w_{h}}$ is contractible if and only if either $|\mathfrak{t}|=2$ and $\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}} \in \mathbb{Z}$ or \mathfrak{t} has a proper rational child $\mathfrak{s} \in \Sigma_{K^{n r}}$, of size $2 g$, and $\frac{\epsilon_{\mathrm{t}}}{2}-g \rho_{\mathfrak{t}} \in \mathbb{Z}$.

Recall Definition 2.4.19. Note that $F_{t}^{w_{h}}$ is removable if and only if \mathfrak{t} is removable. In this case, $F_{\mathfrak{t}}^{w_{h}}$ can be ignored for the construction of $\mathcal{C}_{\Delta}^{w_{h}}$ (for any h since $\mathfrak{t}=\mathfrak{R}$), and so \mathfrak{t} can be ignored for the construction of \mathcal{C}.

Assume now $F_{t}^{w_{h}}$ contractible. We want to understand when Γ_{t} can be blown down. First consider the case $|\mathfrak{t}|=2$ and $\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}} \in \mathbb{Z}$. Then $\Gamma_{\mathfrak{t}}$ intersects other components of \mathcal{C}_{s} in 2 points (as $V_{\mathfrak{t}}^{w_{h}}$ gives two chains of $\mathbb{P}^{1} \mathrm{~S}$ and the v-edges $V_{0}^{w_{h}}$ and $L_{\mathfrak{t}}^{w_{h}}$ give no component in $\mathcal{C}_{\Delta, s}^{w_{h}}$). To have self-intersection $-1, \Gamma_{\mathfrak{t}}$ has to have multiplicity >1. It follows from Lemma 2.5.16 that $\rho_{\mathfrak{t}} \notin \mathbb{Z}$, as $\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}} \in \mathbb{Z}$. Moreover, by Lemma 2.3.12, one has $\rho_{\mathfrak{t}} \in \frac{1}{2} \mathbb{Z}$. Therefore $\epsilon_{\mathfrak{t}}$ is odd and the multiplicity of $\Gamma_{\mathfrak{t}}$ is 2. Let $r:=r_{V_{\mathfrak{t}}^{w_{h}}}$ and consider

$$
\gamma_{\mathfrak{t}} s_{\mathfrak{t}}=\frac{n_{0}}{d_{0}}>\frac{n_{1}}{d_{1}}>\cdots>\frac{n_{r}}{d_{r}}>\frac{n_{r+1}}{d_{r+1}}=\gamma_{\mathfrak{t}}\left(s_{\mathfrak{t}}-\rho_{\mathfrak{t}}+\rho_{P(\mathfrak{t})}\right)
$$

given by $V_{\mathfrak{t}}^{w_{h}}$. If $\Gamma_{\mathfrak{t}}$ can be blown down then $d_{1}=1$. Since $\gamma_{\mathfrak{t}} s_{\mathfrak{t}}=-\frac{\epsilon_{\mathfrak{t}}}{2}+2 \rho_{\mathfrak{t}}$, we have $d_{0}=2$. In particular $d_{1}=1$ if and only if $\rho_{\mathfrak{t}}-\rho_{P(\mathfrak{t})}=\frac{n_{0}}{d_{0}}-\frac{n_{r+1}}{d_{r+1}} \geq \frac{1}{2}$ (see also [Dok, Remark 3.15]). Thus if $|\mathfrak{t}|=2$, then $\Gamma_{\mathfrak{t}}$ can be blown down if and only if $\rho_{\mathfrak{t}} \notin \mathbb{Z}, \epsilon_{\mathfrak{t}}$ odd, $\rho_{P(\mathfrak{t})} \leq \rho_{\mathfrak{t}}-\frac{1}{2}$. Note that this is case (1) of Definition 2.4.19.

Second consider the case $|\mathfrak{t}|=2 g+2$ with a proper rational child \mathfrak{s} of size $2 g$ and $\frac{\epsilon_{\mathfrak{t}}}{2}-g \rho_{\mathfrak{t}} \in \mathbb{Z}$. The argument is very similar to the previous one. If $\Gamma_{\mathfrak{t}}$ can be blown down then it must have multiplicity >1 and this implies $\rho_{\mathfrak{t}} \notin \mathbb{Z}$ again by Lemma 2.5.16. From Lemma 2.3.12 it follows that $(|\mathfrak{t}|-|\mathfrak{s}|) \rho_{\mathfrak{t}} \in \mathbb{Z}$, so $\rho_{\mathfrak{t}} \in \frac{1}{2} \mathbb{Z}$. Then $m_{\mathfrak{t}}=2$ and

$$
\frac{v\left(c_{f}\right)}{2}=\frac{\epsilon_{\mathfrak{t}}}{2}-(g+1) \rho_{\mathfrak{t}} \in \frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}
$$

so $v\left(c_{f}\right)$ odd. Let $r:=r_{V_{\mathfrak{s}} w_{h}}$ and consider

$$
\gamma_{\mathfrak{s}} s_{\mathfrak{s}}=\frac{n_{0}}{d_{0}}>\frac{n_{1}}{d_{1}}>\cdots>\frac{n_{r}}{d_{r}}>\frac{n_{r+1}}{d_{r+1}}=\gamma_{\mathfrak{s}}\left(s_{\mathfrak{s}}-\rho_{\mathfrak{s}}+\rho_{\mathfrak{t}}\right)
$$

given by $V_{\mathfrak{s}}^{w_{h}}$. If $\Gamma_{\mathfrak{t}}$ can be blown down then $d_{r}=1$. Recall that $\epsilon_{\mathfrak{s}}-|\mathfrak{s}| \rho_{\mathfrak{s}}=\epsilon_{\mathfrak{t}}-|\mathfrak{s}| \rho_{\mathfrak{t}}$. Then $\gamma_{\mathfrak{s}}\left(s_{\mathfrak{s}}-\rho_{\mathfrak{s}}+\rho_{\mathfrak{t}}\right)=-\frac{\epsilon_{\mathfrak{t}}}{2}+(g+1) \rho_{\mathfrak{t}}$, so $d_{r+1}=2$. In particular $d_{r}=1$ if and only if $\rho_{\mathfrak{s}}-\rho_{\mathfrak{t}}=\frac{n_{0}}{d_{0}}-\frac{n_{r+1}}{d_{r+1}} \geq \frac{1}{2}$. Thus if \mathfrak{t} has size $2 g+2$ and has a unique proper rational child $\mathfrak{s} \in \Sigma_{K^{n r}}$, then $\Gamma_{\mathfrak{t}}$ can be blown down if and only if $|\mathfrak{s}|=2 g, \rho_{\mathfrak{t}} \notin \mathbb{Z}, v\left(c_{f}\right)$ odd, $\rho_{\mathfrak{s}} \geq \rho_{\mathfrak{t}}+\frac{1}{2}$. This is case (2) of Definition 2.4.19.

Finally, if $|\mathfrak{t}|=2 g+1, \mathfrak{t}$ has a proper child $\mathfrak{s} \in \Sigma_{K^{n r}}$ of size $2 g$ and $\frac{\epsilon_{\mathfrak{t}}}{2}-g \rho_{\mathfrak{t}} \in \mathbb{Z}$, then $\rho_{\mathfrak{t}} \in \mathbb{Z}$, as $(|\mathfrak{t}|-|\mathfrak{s}|) \rho_{\mathfrak{t}} \in \mathbb{Z}$. It follows that $\epsilon_{\mathfrak{t}} \in \mathbb{Z}$ and so $m_{\mathfrak{t}}=1$. This implies the self-intersection of $\Gamma_{\mathfrak{t}}$ is not -1 , since it intersects the rest of $\mathcal{C}_{\mathfrak{t}}$ in at least two points as before. Hence in this case $\Gamma_{\mathfrak{t}}$ can never be blown down.

Now assume there exists $l \neq h$ such that $\mathfrak{t}=\mathfrak{s}_{h} \wedge \mathfrak{s}_{l}$. Then \mathfrak{t} is not minimal. Let $\mathfrak{t}_{h}, \mathfrak{t}_{l} \in \Sigma_{K^{n r}}$ be such that $\mathfrak{s}_{h} \subseteq \mathfrak{t}_{h}<\mathfrak{t}$ and $\mathfrak{s}_{l} \subseteq \mathfrak{t}_{l}<\mathfrak{t}$. Suppose $\Gamma_{\mathfrak{t}}$ irreducible. If $|\mathfrak{t}| \leq 2 g$ (or, equivalently, \mathfrak{t} is not
the largest non-removable cluster), then $\Gamma_{\mathfrak{t}}$ intersects at least other 3 components of \mathcal{C}_{s} (given by $\mathfrak{t}_{h}, \mathfrak{t}_{l}$, and $P(\mathfrak{t})$. So it cannot be contracted to obtain a model with normal crossings. A similar argument holds if there exists $o \neq l$ such that $\mathfrak{s}_{o} \wedge \mathfrak{s}_{h}=\mathfrak{t}$: at least 3 components (given by $\mathfrak{t}_{h}, \mathfrak{t}_{l}$ and \mathfrak{t}_{o}) intersect $\Gamma_{\mathfrak{t}}$, so blowing down $\Gamma_{\mathfrak{t}}$ would make the model lose normal crossings. Assume then $|\mathfrak{t}|>2 g$ and $\mathfrak{s}_{o} \wedge \mathfrak{s}_{h} \neq \mathfrak{t}$ for all $o \neq l$. Then $\Gamma_{\mathfrak{t}}$ intersects at least other 2 components of \mathcal{C}_{s} given by $V_{\mathfrak{t}_{h}}^{w_{h}}$ and $V_{\mathfrak{t}_{l}}^{w_{l}}$. Firstly, if $\Gamma_{\mathfrak{t}}$ can be blown down, then $m_{\mathfrak{t}}>1$. But $\rho_{\mathfrak{t}}=\rho_{h l} \in \mathbb{Z}$. Then $m_{\mathfrak{t}}$ is at most 2. If $m_{\mathfrak{t}}=2$ then $D_{\mathfrak{t}}=1$, that implies $\epsilon_{\mathfrak{t}}$ odd and $\Gamma_{\mathfrak{t}} \simeq \mathbb{P}^{1}$ by Proposition 2.5.21. It also follows $s_{\mathfrak{t}} \in \frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}$. If \mathfrak{t} is odd then this implies that $V_{\mathfrak{t}}^{w_{h}}$ gives a \mathbb{P}^{1} intersecting $\Gamma_{\mathfrak{t}}$. Since that would be a third component intersecting $\Gamma_{\mathfrak{t}}$, the cluster \mathfrak{t} has to be even. Hence $\mathfrak{t}=\mathfrak{R}$ and $|\mathfrak{t}|=2 g+2$. Then $\epsilon_{\mathfrak{t}}$ is odd if and only if $v\left(c_{f}\right)$ is odd, as $\rho_{\mathfrak{t}} \in \mathbb{Z}$. Now, $L_{\mathfrak{t}}^{w_{h}}$ gives some \mathbb{P}^{1} s intersecting $\bar{X}_{F_{\mathfrak{t}}}^{w_{h}} \subset \mathcal{C}_{\Delta, s}^{w_{h}}$. All these \mathbb{P}^{1} s are not in $\mathcal{C}_{\Delta, s}^{w_{h}}$ (and so in \mathcal{C}_{s}) if and only if $\mathfrak{t}_{h} \cup \mathfrak{t}_{l}=\mathfrak{t}$. In particular, \mathfrak{t}_{h} and \mathfrak{t}_{l} are either both even or both odd. If \mathfrak{t}_{h} is even, then $\gamma_{t_{h}}=2$, and so the component given by $V_{\mathfrak{t}_{h}}^{w_{h}}$ has multiplicity at least 2 . The self-intersection of $\Gamma_{\mathfrak{t}}$ could not be -1 in this case. Assume \mathfrak{t}_{h} is odd. Let $r:=r_{V_{\mathrm{t}_{h}}^{w_{h}}}$ and consider

$$
\gamma_{\mathfrak{t}_{h}} s_{\mathfrak{t}_{h}}=\frac{n_{0}}{d_{0}}>\frac{n_{1}}{d_{1}}>\cdots>\frac{n_{r}}{d_{r}}>\frac{n_{r+1}}{d_{r+1}}=\gamma_{\mathfrak{t}_{h}}\left(s_{\mathfrak{t}_{h}}-\frac{\rho_{\mathfrak{t}_{h}}-\rho_{\mathfrak{t}}}{2}\right)
$$

given by $V_{t_{h}}^{w_{h}}$. We want $d_{r}=1$. Since

$$
\gamma_{\mathfrak{t}_{h}}\left(s_{\mathfrak{t}_{h}}-\frac{\rho_{\mathfrak{t}_{h}}-\rho_{\mathfrak{t}}}{2}\right)=-\frac{\epsilon_{\mathfrak{t}}}{2}+\frac{\left|\mathfrak{t}_{h}\right|-1}{2} \rho_{\mathfrak{t}} \in \frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}
$$

we have $d_{r+1}=2$. As before $d_{r}=1$ if and only if $\frac{\rho_{t_{h}}-\rho_{\mathfrak{t}}}{2}=\frac{n_{0}}{d_{0}}-\frac{n_{r+1}}{d_{r+1}} \geq \frac{1}{2}$ and similarly for \mathfrak{t}_{l}. Thus if \mathfrak{t} has two or more rational children and $\Gamma_{\mathfrak{t}}$ is irreducible then it can be blown down if and only if $v\left(c_{f}\right)$ is odd and $\mathfrak{t}=\mathfrak{R}$ is union of its 2 odd rational children \mathfrak{t}_{h} and \mathfrak{t}_{l}, satisfying $\rho_{\mathfrak{t}_{h}} \geq \rho_{\mathfrak{t}}+1$, $\rho_{\mathfrak{t}_{l}} \geq \rho_{\mathfrak{t}}+1$. This is case (3) of Definition 2.4.19.

Suppose now $\Gamma_{\mathfrak{t}}$ reducible. By Proposition 2.5.21 the cluster \mathfrak{t} is übereven, $\epsilon_{\mathfrak{t}}$ is even and $\Gamma_{\mathfrak{t}}$ is the disjoint union of $\Gamma_{\mathfrak{t}}^{-} \simeq \mathbb{P}^{1}$ and $\Gamma_{\mathfrak{t}}^{+} \simeq \mathbb{P}^{1}$. As before, both $\Gamma_{\mathfrak{t}}^{-}$and $\Gamma_{\mathfrak{t}}^{+}$intersect at least other two components (given by the proper children of \mathfrak{t}). But then neither $\Gamma_{\mathfrak{t}}^{-}$nor $\Gamma_{\mathfrak{t}}^{+}$has self-intersection -1 , as $m_{\mathfrak{t}}=1$.

We have showed that, for a rational cluster $\mathfrak{t} \in \Sigma_{K^{n r}}$, an irreducible component of $\Gamma_{\mathfrak{t}}$ can be blown down if and only if \mathfrak{t} is contractible. Moreover, in this case, $\Gamma_{\mathfrak{t}}$ is irreducible. It remains to show that after blowing down all components $\Gamma_{\mathfrak{t}}$ where \mathfrak{t} is a contractible cluster, no other component can be blown down. First note that if \mathfrak{t} is a contractible cluster, then $m_{\mathfrak{t}}=2$ and $\Gamma_{\mathfrak{t}}$ intersects one or two other components of multiplicity 1 at two points in total. If it intersects only one component, then after the blowing down, the latter will have a node and will not be isomorphic to \mathbb{P}^{1}. If $\Gamma_{\mathfrak{t}}$ intersects two components and those intersect something else in \mathcal{C}_{s}, then they will not have self-intersection -1 also when $\Gamma_{\mathfrak{t}}$ is blown down. Therefore suppose that one of those two does not intersect any other component of \mathcal{C}_{s}. If we are in case (1) or case (2), it is easy to see that this never happens. Indeed, in those cases, $\Gamma_{\mathfrak{t}}$ intersects non-open-ended chains of $\mathbb{P}^{1} \mathrm{~s}$. Then without loss of generality assume to be in case (3) and that $\Gamma_{\mathfrak{t}_{h}}$ is the component that can
be blown down once $\Gamma_{\mathfrak{t}}$ has been contracted. This implies $\mathfrak{s}_{h}=\mathfrak{t}_{h}$ and $\rho_{\mathfrak{s}_{h}}=\rho_{\mathfrak{t}}+1$. Then $b_{\mathfrak{s}_{h}}=1$ and $\epsilon_{\mathfrak{s}_{h}}=\epsilon_{\mathfrak{t}}+\left|\mathfrak{s}_{h}\right|$. Since both $\epsilon_{\mathfrak{t}}$ and \mathfrak{s}_{h} are odd, we have $\epsilon_{\mathfrak{s}_{h}} \in 2 \mathbb{Z}$. So $D_{\mathfrak{s}_{h}}=2$ and $\tilde{\mathfrak{s}}_{h}$ is the set of rational children of \mathfrak{s}_{h}. Hence $g\left(\mathfrak{s}_{h}\right)=\left\lfloor\frac{\left|\mathfrak{s}_{h}\right|-1}{2}\right\rfloor \geq 1$ since $\left|\mathfrak{s}_{h}\right| \geq 3$. But then $\Gamma_{\mathfrak{s}_{h}}$ cannot be blown down.

2.5.12 Galois action

Consider the base extended hyperelliptic curve $C_{K^{n r}} / K^{n r}$. The rational clusters of $C_{K^{n r}}$ and their corresponding rational centres are then over $K^{n r}$. Denote $\Sigma_{K^{n r}}=\Sigma_{C_{K} n r}^{\text {rat }}$. For any proper cluster $\mathfrak{s} \in \Sigma_{K^{n r}}$, let $G_{\mathfrak{s}}=\operatorname{Stab}_{G_{K}}(\mathfrak{s}), K_{\mathfrak{s}}=\left(K^{\mathfrak{s}}\right)^{G_{\mathfrak{s}}}$ and $k_{\mathfrak{s}}$ be the residue field of $K_{\mathfrak{s}}$. Let $\Sigma_{C_{K n r}}^{\min }=\left\{\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{m}\right\}$ be the set of rationally minimal clusters of $C_{K^{n r}}$. Fix a set $W=\left\{w_{1}, \ldots, w_{m}\right\} \subset K^{n r}$ of corresponding rational centres. By Lemma A.1.1, we can assume this choice to be G_{K}-equivariant, i.e. for any $\sigma \in G_{K}$, one has $\sigma\left(w_{l}\right)=w_{h}$ if and only if $\sigma\left(\mathfrak{s}_{l}\right)=\mathfrak{s}_{h}$. We can also require that $w_{h} \in \mathfrak{s}_{h}$ if $\mathfrak{s}_{h} \cap K_{\mathfrak{s}_{h}} \neq \varnothing$. Similarly, for any proper cluster $\mathfrak{t} \in \Sigma_{K^{n r}} \backslash \sum_{C_{K^{n r}}}^{\min }$, fix a rational centre $w_{\mathfrak{t}}$ in such a way that $w_{\sigma(t)}=\sigma\left(w_{\mathfrak{t}}\right)$ for any $\sigma \in G_{K}$. Set $w_{\mathfrak{s}_{o}}:=w_{o}$ for any $o=1, \ldots, m$.

Lemma 2.5.22 With the choices above, for any $h=1, \ldots, m$, the set of proper clusters in $\Sigma_{C_{K} r r}^{w_{h}}$ coincides with $\stackrel{\circ}{\Sigma}_{C_{K} n r}^{w_{h}}$.

Proof. Suppose by contradiction that there exists a non-proper cluster $\{r\}=\mathfrak{s} \in \Sigma_{C_{K^{n n}}}^{w_{h}}$, with $r \neq w_{h}$. Note that $r \in \mathfrak{s}_{h}$ and so $\mathfrak{s}<\mathfrak{s}_{h}$. Recall that since \mathfrak{s} is a cluster centred at w_{h}, it is cut out by the disc $\mathcal{D}=\left\{x \in \bar{K} \mid v\left(x-w_{h}\right) \geq \rho_{\mathfrak{s}}^{w_{h}}\right\}$, with $\rho_{\mathfrak{s}}^{w_{h}}=v\left(r-w_{h}\right)>\rho_{\mathfrak{s}_{h}}$. This implies that $w_{h} \notin \Re$, otherwise $w_{h} \in \mathfrak{s}$ and $|\mathfrak{s}| \geq 2$. In particular, $w_{h} \notin \mathfrak{s}_{h}$. For our choice of w_{h}, it follows that $\mathfrak{s}_{h} \cap K_{\mathfrak{s}_{h}}=\varnothing$. Therefore $r \notin K_{\mathfrak{s}_{h}}$ and so there exists $\sigma \in G_{\mathfrak{s}_{h}}$ such that $\sigma(r) \neq r$. Since $w_{h} \in K_{\mathfrak{s}_{h}}$ we have

$$
v\left(\sigma(r)-w_{h}\right)=v\left(\sigma\left(r-w_{h}\right)\right)=v\left(r-w_{h}\right)=\rho_{\mathfrak{s}}^{w_{h}} .
$$

But then $\sigma(r) \in \mathfrak{s}$, and so $|\mathfrak{s}| \geq 2$, a contradiction.
Assume that $C_{K^{n r}}$ is y-regular and has an almost rational cluster picture. By the previous lemma, from the set of rational centres W we can construct the proper regular model $\mathcal{C} / O_{K^{n r}}$ of $C_{K^{n r}}$ as previously presented in this section. In this subsection we show how the Galois group
 special fibre $\mathcal{C}_{s} / k^{\mathrm{s}}$, and give defining equations for the principal components of \mathcal{C}_{s} compatibly with the action.

For any $l=1, \ldots, m$, recall the notation $f_{l}(x)=f\left(x+w_{l}\right) \in K^{n r}[x]$ and $C^{w_{l} / K^{n r}}: y^{2}=f_{l}(x)$. Fix $\sigma \in G_{K}$. Let $l, h=1, \ldots, m$ such that $\sigma\left(\mathfrak{s}_{l}\right)=\mathfrak{s}_{h}$. Then $\sigma\left(f_{l}\right)=f_{h}$. Now, let $\mathfrak{t} \in \Sigma_{C_{K n r}}^{w_{l}}$ be a proper cluster. Then $\sigma(\mathfrak{t}) \in \Sigma_{C_{K^{n r}}}^{w_{h}}$ and $\rho_{\mathfrak{t}}=\rho_{\sigma(\mathfrak{t})}$. It follows that most of the quantities attached to \mathfrak{t}, such as those of Definition 2.4.6, are the same for $\sigma(\mathfrak{t})$, e.g. $\epsilon_{\mathfrak{t}}=\epsilon_{\sigma(\mathfrak{t})}$. In particular, if M is a matrix associated to \mathfrak{t} then M is associated to $\sigma(\mathfrak{t})$ as well. So $\sigma\left(\mathcal{F}_{M}^{l}\right)=\mathcal{F}_{M}^{h}$. Finally, as $\sigma\left(\prod_{o \neq l}\left(x+w_{l o}\right)^{-1}\right)=\prod_{o \neq h}\left(x+w_{h o}\right)^{-1}$ we also have $\sigma\left(T_{M}^{l}\right)=T_{M}^{h}$.

Hence the natural $K^{n r}$-isomorphism $C^{w_{h}} \xrightarrow{\sigma} C^{w_{l}}$ induces $O_{K^{n r}}$-isomorphisms of schemes

$$
\begin{equation*}
\mathcal{C}_{\Delta}^{w_{h}} \xrightarrow{\sigma} \mathcal{C}_{\Delta}^{w_{l}}, \quad \mathcal{C}_{\Delta}^{w_{h}} \xrightarrow{\sigma} \mathcal{C}_{\Delta}^{w_{l}}, \quad U_{M}^{h} \xrightarrow{\sigma} U_{M}^{l} \tag{2.10}
\end{equation*}
$$

Via the glueing morphisms (2.4), these maps describe the action of G_{K} on \mathcal{C}.
We want to study the action of G_{k} on the special fibre of \mathcal{C} more in detail. Let $\sigma \in \operatorname{Gal}\left(K^{n r} / K\right)$ and let $\bar{\sigma} \in G_{k}$ corresponding to σ via the canonical isomorphism $\operatorname{Gal}\left(K^{n r} / K\right) \simeq G_{k}$. Let l, h and \mathfrak{t} as above. In §2.5.6 we described closed 1-dimensional subschemes composing $\mathcal{C}_{\Delta, s}^{w_{l}}$ and the morphisms induced by the glueing maps. Recall the polynomials introduced in Definition 2.5.12. From (2.10) we get

$$
\bar{\sigma}\left(\overline{g_{\mathfrak{s}_{l}, w_{l}}^{0}}\right)=\overline{g_{\mathfrak{s}_{h}, w_{h}}^{0}}, \quad \bar{\sigma}\left(\overline{g_{\mathfrak{t}, w_{l}}}\right)=\overline{g_{\sigma(\mathfrak{t}), w_{h}}}, \quad \bar{\sigma}\left(\overline{\left.g_{l}\right|_{L_{\mathrm{t}}^{w_{l}}}}\right)=\overline{\left.g_{h}\right|_{L_{\sigma(\mathfrak{t})}^{w_{h}}}} .
$$

From the equality (2.7) we obtain $\bar{\sigma}\left(f_{\mathrm{t}, w_{l}}\right)=f_{\sigma(\mathrm{t}), w_{h}}$. Note that the previous relations can also be recovered directly from the definitions.

Lemma 2.5.23 Let $w_{\mathfrak{t}}$ be the rational centre of \mathfrak{t} fixed above. Then
(i) $\overline{g_{\mathrm{t}, w_{\mathrm{t}}}}, \overline{f_{\mathrm{t}, w_{\mathrm{t}}}} \in k_{\mathrm{t}}[X]$;
(ii) $\overline{g_{\mathfrak{t}, w_{\mathrm{t}}}}=\overline{g_{\mathfrak{t}, w_{l}}}$ and $\overline{f_{\mathrm{t}, w_{\mathfrak{t}}}}(X)=\overline{f_{\mathrm{t}, w_{l}}}\left(X+\overline{u_{w_{\mathfrak{t}} w_{l}}}\right)$ where $\overline{u_{w_{\mathrm{t}} w_{l}}}=\frac{w_{\mathrm{t}}-w_{l}}{\pi^{\rho_{\mathrm{t}}}} \bmod \pi$;

Proof. For any rational centre w of \mathfrak{t}, let $u_{\mathfrak{t}, w}=c_{f} \prod_{r \in \mathfrak{R} \backslash \mathrm{t}}(w-r)$ as in Definition 2.5.12. Note that $u_{\mathfrak{t}, w} / \pi^{v\left(u_{\mathrm{t}, w}\right)}$ is independent of w since

$$
v\left(\left(w_{\mathfrak{t}}-r\right)-(w-r)\right)=v\left(w_{\mathfrak{t}}-w\right) \geq \rho_{\mathfrak{t}}>v\left(w_{\mathfrak{t}}-r\right)
$$

for any $r \in \mathfrak{R} \backslash \mathfrak{t}$. Then $\overline{g_{\mathfrak{t}, w_{\mathfrak{t}}}}=\overline{g_{\mathfrak{t}, w_{l}}}$. If $\bar{\sigma} \in \operatorname{Gal}\left(k^{\mathrm{s}} / k_{\mathfrak{t}}\right)$, i.e. $\sigma \in \operatorname{Gal}\left(K^{n r} / K_{\mathfrak{t}}\right)$, then

$$
\bar{\sigma}\left(\overline{g_{\mathfrak{t}, w_{\mathfrak{t}}}}\right)=\bar{\sigma}\left(\overline{g_{\mathfrak{t}, w_{l}}}\right)=\overline{g_{\mathrm{t}, w_{h}}}=\overline{g_{\mathfrak{t}, w_{\mathrm{t}}}} .
$$

Since $u_{\mathfrak{t}, w} / \pi^{v\left(u_{\mathfrak{t}, w}\right)}$ is independent of w we also have

$$
\overline{f_{\mathrm{t}, w_{\mathrm{t}}}}\left(X^{b_{\mathrm{t}}}\right)=\overline{f_{\mathrm{t}, w_{l}}}\left(\left(X+\overline{u_{w_{\mathrm{t}} w_{l}}}\right)^{b_{\mathrm{t}}}\right)
$$

Suppose $\rho_{\mathfrak{t}} \in \mathbb{Z}$. Then $b_{\mathfrak{t}}=1$ and so the equality above implies $\overline{f_{\mathrm{t}, w_{\mathfrak{t}}}}(X)=\overline{f_{\mathrm{t}, w_{l}}}\left(X+\overline{u_{w_{\mathfrak{t}} w_{l}}}\right)$. Suppose $\rho \notin \mathbb{Z}$. Then $v\left(w-w_{\mathfrak{t}}\right)>\rho_{\mathfrak{t}}$ for any rational centre w of \mathfrak{t} as $v\left(w-w_{\mathfrak{t}}\right) \in \mathbb{Z}$ and $v\left(w-w_{\mathfrak{t}}\right) \geq \rho_{\mathfrak{t}}$. Hence $\overline{u_{w_{\mathfrak{t}} w_{l}}}=0$. Thus $\overline{f_{\mathfrak{t}, w_{\mathfrak{t}}}}\left(X^{b_{\mathfrak{t}}}\right)=\overline{f_{\mathfrak{t}, w_{l}}}\left(X^{b_{\mathfrak{t}}}\right)$, which implies $\overline{f_{\mathfrak{t}, w_{\mathfrak{t}}}}(X)=\overline{f_{\mathrm{t}, w_{l}}}(X)=\overline{f_{\mathfrak{t}, w_{l}}}\left(X+\overline{u_{w_{\mathfrak{t}} w_{l}}}\right)$. If $\bar{\sigma} \in \operatorname{Gal}\left(k^{\mathrm{s}} / k_{\mathfrak{t}}\right)$, i.e. $\sigma \in \operatorname{Gal}\left(K^{n r} / K_{\mathfrak{t}}\right)$, then

$$
\bar{\sigma}\left(\overline{f_{\mathfrak{t}, w_{\mathfrak{t}}}}\right)(X)=\bar{\sigma}\left(\overline{f_{\mathfrak{t}, w_{l}}}\right)\left(X+\bar{\sigma}\left(\overline{u_{w_{\mathfrak{t}} w_{l}}}\right)\right)=\overline{f_{\mathfrak{t}, w_{h}}}\left(X+\overline{u_{w_{\mathfrak{t}} w_{h}}}\right)=\overline{f_{\mathfrak{t}, w_{\mathfrak{t}}}}(X),
$$

and so $\overline{f_{\mathrm{t}, w_{\mathrm{t}}}} \in k_{\mathrm{t}}[X]$.

Remark 2.5.24. Note that the polynomials $\overline{f_{\mathrm{t}, w_{\mathrm{t}}}}, \overline{g_{\mathrm{t}, w_{\mathrm{t}}}}$ and $\overline{g_{s_{h}, w_{h}}^{0}}$ equal the polynomials $\overline{f_{\mathrm{t}}}, \overline{g_{\mathrm{t}}}$ and $\overline{g_{s_{h}}^{0}}$ given in Definition 2.4.21.

Let $V=V_{\mathrm{t}}^{w_{l}}$ and consider the subscheme $X_{V} \times \mathbb{P}_{V}$ of \mathcal{C}_{s} given by V, where \mathbb{P}_{V} is a chain of $\mathbb{P}^{1}{ }_{\mathrm{s}}$ and $X_{V}:\left\{\overline{\mathcal{g}_{\mathrm{t}, w_{l}}}=0\right\}$ over $\mathbb{G}_{m, k^{\mathrm{s}}}$. If $\mathfrak{s}_{h} \subset \mathfrak{t}$, then the glueing map $U_{M}^{h} \rightarrow U_{M}^{l}$ induces the identity $\phi_{V}^{h l}: X_{V_{\mathrm{t}}^{w_{h}}} \stackrel{\Xi}{\rightrightarrows} X_{V_{\mathrm{t}}^{w_{l}}}$. Define $X_{\mathfrak{t}} \subseteq \mathbb{G}_{m, k^{s}}$ given by $g_{\mathrm{t}, w_{\mathrm{t}}}=0$. By Lemma 2.5.23, $\phi_{V}^{o}: X_{\mathfrak{t}} \xlongequal{\leftrightharpoons} X_{V_{\mathrm{t}}}^{w_{0}}$, for $o=h, l$, and this isomorphism is compatible with the Galois action and the glueing maps, i.e. $\sigma \circ \phi_{V}^{h}=\phi_{V}^{l} \circ \sigma$ and $\phi_{V}^{h l} \circ \phi_{V}^{h}=\phi_{V}^{l}$ as morphisms on X_{t}.

When $V_{0}=V_{0}^{w_{l}}$ we can consider the subscheme $X_{V_{0}} \times \mathbb{P}_{V_{0}}$ given by V_{0}, where $\mathbb{P}_{V_{0}}$ is a chain of \mathbb{P}^{1} s and $X_{V_{0}}:\left\{\mathscr{g}_{\mathfrak{s}_{l}, w_{l}}=0\right\}$ over $\mathbb{G}_{m, k^{s}}$. Since $X_{V_{0}} \times \mathbb{P}_{V_{0}}$ is never glued to any other component there is no need to choose a different model for it.

Let $L=L_{\mathrm{t}}^{w_{l}}$ and consider the subscheme $X_{L}^{W} \times \mathbb{P}_{L}$ given by L, where \mathbb{P}_{L} is a chain of $\mathbb{P}^{1} \mathrm{~s}$ and $X_{L}^{W}:\left\{\overline{f_{\mathfrak{t}, w_{l}}}=0\right\}$ over $\mathbb{A}_{k^{s}}^{1}$. If $\mathfrak{s}_{h} \subset \mathfrak{t}$, then the isomorphism $\phi_{L}^{h l}: X_{L_{\mathrm{t}}^{w_{h}}}^{W} \stackrel{\leftrightharpoons}{\leftrightharpoons} X_{L_{\mathrm{t}}}^{W}$ given by the glueing map $U_{M}^{h} \rightarrow U_{M}^{l}$ is induced by the ring isomorphism $k^{\mathrm{s}}[X] \rightarrow k^{\mathrm{s}}[X]$, sending $X \mapsto X+\overline{u_{w_{h} w_{l}}}$, where $\overline{u_{w_{h} w_{l}}}=\frac{w_{h}-w_{l}}{\pi^{\rho_{\mathrm{t}}}} \bmod \pi$. Define $X_{\mathrm{t}}^{W} \subseteq \mathrm{~A}_{k^{\mathrm{s}}}^{1}$ given by $\overline{f_{\mathrm{t}, w_{\mathrm{t}}}}=0$. By Lemma 2.5.23, the map $X \mapsto X+\overline{u_{w_{t} w_{l}}}$ induces an isomorphism $\phi_{L}^{o}: X_{\mathfrak{t}}^{W} \xrightarrow{\leftrightharpoons} X_{L_{\mathrm{t}}^{w_{o}}}^{W}$, for $o=h, l$, compatible with the Galois action and the glueing morphisms, i.e. $\sigma \circ \phi_{L}^{h}=\phi_{L}^{l} \circ \sigma$ and $\phi_{L}^{h l} \circ \phi_{L}^{h}=\phi_{L}^{l}$ as morphisms on X_{t}^{W}.

Recall the definitions of $\hat{\mathfrak{t}}^{W}$ and $\mathbb{G}_{t, w_{l}} \subseteq \mathbb{A}_{k^{s}}^{1}$ given in Definition 2.5.15 and the definition of $\mathfrak{\mathfrak { t }}$ given in Definition 2.4.21. Note that by Lemma 2.5.22,

$$
\hat{\mathfrak{t}}^{W}=\left\{\mathfrak{s} \in \Sigma_{K^{n r}} \cup\{\varnothing\} \mid \mathfrak{s}<\mathfrak{t}\right\} \backslash\left\{\{r\} \in \Sigma_{K^{n r}} \mid r \notin W\right\} .
$$

Fix $c=0, \ldots, b_{\mathfrak{t}}-1$ such that $1 / b_{\mathfrak{t}}-c \rho_{\mathfrak{t}} \in \mathbb{Z}$. For any rational centre $w \in K^{n r}$ of \mathfrak{t} define $\hat{f}_{\mathfrak{t}, w} \in k^{\mathrm{s}}[X, Y]$ by

$$
\hat{f}_{\mathrm{t}, w}(X)=\prod_{\mathfrak{s} \in \mathrm{t}}\left(X-\overline{u_{w_{\mathfrak{s}} w}}\right)^{\frac{|\mathfrak{s}|}{b_{\mathrm{t}}}-c \epsilon_{\mathrm{t}}} \overline{f_{\mathrm{t}, w}}(X)
$$

where $\overline{u_{w_{\mathfrak{s}} w}}=\frac{w_{\mathfrak{s}}-w}{\pi^{\rho_{t}}} \bmod \pi\left(w_{\mathfrak{s}}=w_{l}\right.$ if $\left.\mathfrak{s}=\varnothing\right)$. Let $L=L_{\mathfrak{t}}^{w_{l}}, F=F_{\mathfrak{t}}^{w_{l}}$ and $M=M_{L, 0}$. It follows from Lemma 2.5.17 that the scheme $\Gamma_{\mathfrak{t}}^{w_{l}}=\dot{X}_{F} \cap U_{M}^{l}$ is given by $Y^{D_{\mathfrak{t}}}=\hat{f}_{\mathrm{t}, w_{l}}(X)$ as a subscheme of $\mathbb{G}_{\mathrm{t}, w_{l}} \times \mathbb{A}_{k^{s}}^{1}$. We then obtain $\bar{\sigma}\left(\hat{f}_{\mathrm{t}, w_{l}}\right)=\hat{f}_{\sigma(\mathrm{t}), w_{h}}$ from the action (2.10) of σ on U_{M}^{l}.

Lemma 2.5.25 With the notation above,
(i) $\hat{f}_{\mathrm{t}, w_{\mathrm{t}}} \in k_{\mathrm{t}}[X]$;
(ii) $\hat{f}_{\mathrm{t}, w_{\mathrm{t}}}(X)=\hat{f}_{\mathrm{t}, w_{l}}\left(X+\overline{u_{w_{t} w_{l}}}\right)$ where $\overline{u_{w_{t} w_{l}}}=\frac{w_{\mathrm{t}}-w_{l}}{\pi^{\rho}} \bmod \pi$;

Proof. If $\mathfrak{s} \in \mathfrak{t}$, then $\sigma(\mathfrak{s}) \in(\sigma(\mathfrak{t}))$ and $\bar{\sigma}\left(\overline{u_{w_{\mathfrak{s}}}}\right)=\overline{u_{w_{\sigma(\mathfrak{s})} \sigma(w)}}$ for any rational centre w of \mathfrak{t}. Hence $\hat{f}_{\mathrm{t}, w_{\mathrm{t}}} \in k_{\mathrm{t}}[X]$ and $\bar{\sigma}\left(\hat{f}_{\mathrm{t}, w_{l}}\right)=\hat{f}_{\sigma(\mathrm{t}), w_{h}}$ by Lemma 2.5.23(i),(iii). Since $\overline{u_{w_{s} w_{\mathrm{t}}}}=\overline{u_{w_{s} w_{l}}}-\overline{u_{w_{t} w_{l}}}$, Lemma 2.5.23(ii) implies $\hat{f}_{t, w_{t}}(X)=\hat{f}_{t}, w_{l}\left(X+\overline{u_{w_{t} w_{l}}}\right)$.

Define $\Gamma_{\mathfrak{t}}^{w_{\mathfrak{t}}} \subset \mathbb{G}_{\mathfrak{t}, w_{\mathfrak{t}}} \times \mathbb{A}_{k^{s}}^{1}$ given by $Y^{D_{\mathfrak{t}}}=\hat{f}_{\mathrm{t}, w_{\mathfrak{t}}}$. Suppose $\mathfrak{s}_{h} \subset \mathfrak{t}$, and let $\phi_{\mathrm{t}}^{h l}: \Gamma_{\mathfrak{t}}^{w_{h}} \simeq \Gamma_{\mathfrak{t}}^{w_{l}}$ be the isomorphism coming from the glueing map $U_{M}^{h} \rightarrow U_{M}^{l}$ induced by the ring homomorphism
$X \mapsto X+\overline{u_{w_{h} w_{l}}}$. By Lemma 2.5.25, the map $X \mapsto X+\overline{u_{w_{\mathfrak{t}} w_{l}}}$ induces an isomorphism $\phi_{\mathfrak{t}}^{o}: \Gamma_{\mathfrak{t}}^{w_{\mathrm{t}}} \simeq \Gamma_{\mathfrak{t}}^{w_{o}}$, for $o=h, l$, which is compatible with the Galois action and the glueing maps, i.e. $\sigma \circ \phi_{\mathrm{t}}^{h}=\phi_{\mathrm{t}}^{l} \circ \sigma$ and $\phi_{\mathrm{t}}^{h l} \circ \phi_{\mathrm{t}}^{h}=\phi_{\mathrm{t}}^{l}$ as morphisms on $\Gamma_{\mathfrak{t}}^{w_{\mathrm{t}}}$. Therefore Γ_{t} is isomorphic to the smooth completion of $\Gamma_{\mathfrak{t}}^{w_{\mathfrak{t}}}$, and so it is given by $Y^{D_{\mathfrak{t}}}=\tilde{f}_{\mathfrak{t}}(X)$, where $\tilde{f}_{\mathfrak{t}}(X)=\prod_{\mathfrak{s} \in \mathfrak{t}}\left(X-\overline{u_{w_{\mathfrak{s}} w_{\mathfrak{t}}}}\right) \overline{f_{\mathfrak{t}}, w_{\mathfrak{t}}}(X)$ is the polynomial given in Definition 2.4.21.

2.6 Integral differentials

Let C be a hyperelliptic curve of genus $g \geq 1$ defined over K by a Weierstrass equation $y^{2}=f(x)$. It is well-known that the K-vector space of global sections of the sheaf of differentials of C, namely $H^{0}\left(C, \Omega_{C / K}^{1}\right)$, is spanned by the basis

$$
\underline{\omega}=\left\{\frac{d x}{2 y}, x \frac{d x}{2 y}, \ldots, x^{g-1} \frac{d x}{2 y}\right\} .
$$

Let \mathcal{C} be a regular model of C over O_{K} and consider its canonical (or dualising) sheaf $\omega_{\mathcal{C} / O_{K}}$. The free O_{K}-module of its global sections $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$ can be viewed as an O_{K}-lattice in $H^{0}\left(C, \Omega_{C / K}^{1}\right)$ (see [Liu4, Corollary 9.2.25(a)]). The aim of this section is to present a basis of $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$ as an O_{K}-linear combination of the elements in $\underline{\omega}$ under the assumptions of Theorem 2.4.22. Note that by [Liu4, Corollary 9.2.25(b)] the problem is independent of the choice of model \mathcal{C} but it does depend on the choice of the equation $y^{2}=f(x)$ since the basis $\underline{\omega}$ does. Throughout this section let C and \mathcal{C} / O_{K} be as above.

If C is Δ_{v}-regular, [Dok, Theorem 8.12] gives an O_{K}-basis of $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$, as required. We rephrase it in terms of rational cluster invariants, by using results of $\S 2.3$ and Lemma 2.4.12.

Theorem 2.6.1 Suppose C has an almost rational cluster picture and is y-regular, and all proper clusters $\mathfrak{s} \in \Sigma_{C}$ have same rational centre $w \in K$. Let $\mathfrak{s}_{1} \subset \cdots \subset \mathfrak{s}_{n}=\mathfrak{R}$ be the proper clusters in $\Sigma_{C}^{\mathrm{rat}}$. For every $j=0, \ldots, g-1$, define

$$
i_{j}:=\min \left\{i \in\{1, \ldots, n\}\left|2(j+1)<\left|\mathfrak{s}_{i}\right|\right\}\right.
$$

and

$$
e_{j}:=\frac{1}{2} \epsilon_{\mathfrak{s}_{i_{j}}}-(j+1) \rho_{\mathfrak{s}_{i_{j}}} .
$$

Then the differentials

$$
\mu_{j}=\pi^{\left\lfloor e_{j}\right\rfloor}(x-w)^{j} \frac{d x}{2 y} \quad j=0, \ldots, g-1,
$$

form an O_{K}-basis of $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$.
Proof. Let $C^{w}: y^{2}=f(x+w)$ be the hyperelliptic curve isomorphic to C through the change of variable $y \mapsto y, x \mapsto x+w$. By Corollary 2.3.25 and Lemma 2.4.12, the curve C^{w} is Δ_{v}-regular. Since Σ_{C}° rat consists of the proper clusters in Σ_{C}^{w}, Lemma 2.4.3 and [Dok, Theorem 8.12] implies that

$$
\mu_{j}=\pi^{\left\lfloor e_{j}\right\rfloor} x^{j} \frac{d x}{2 y} \quad j=0, \ldots, g-1,
$$

form an O_{K}-basis of $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$ as a lattice in $H^{0}\left(C^{w}, \Omega_{C^{w} / K}^{1}\right)$ (that is if \mathcal{C} is regarded as a model of C^{w}). Changing variables concludes the proof.

Suppose now C has an almost rational cluster picture and is y-regular. Let $\Sigma_{C}^{\min }$ be the set of rationally minimal clusters and let $W=\left\{w_{\mathfrak{s}} \mid \mathfrak{s} \in \Sigma_{C}^{\min }\right\}$ be a corresponding set of rational centres, such that all clusters in $\Sigma_{C}^{w_{s}}$ are proper. For every proper cluster $\mathfrak{t} \in \Sigma_{C}^{\text {rat }}$, choose a minimal cluster $\mathfrak{s} \subseteq \mathfrak{t}$ and set $w_{\mathfrak{t}}:=w_{\mathfrak{s}}$. Consider the regular model \mathcal{C} / O_{K} of C of Theorem 2.4.18, constructed in $\S 2.5$ by glueing the open subschemes \mathcal{C}_{Δ}^{w} of \mathcal{C}_{Δ}^{w} for $w \in W$. We want to describe the canonical morphism $C \rightarrow \mathcal{C}$. Write $W=\left\{w_{1}, \ldots, w_{m}\right\}$ as in $\S 2.5$. For any $h=1, \ldots, m$, let $\mathfrak{t} \in \Sigma_{C}^{w_{h}}$ be a proper cluster and let M be a matrix associated to t. Let $C^{w_{h}}: y^{2}=f\left(x+w_{h}\right)$ and

$$
y^{2}-f\left(x+w_{h}\right) \stackrel{M}{=} Y^{n_{Y}} Z^{n_{Z}} \mathcal{F}_{M}^{h}(X, Y, Z)
$$

Then, on the affine chart X_{M} the projection $C \rightarrow \mathcal{C}_{\Delta}^{w_{h}}$ is induced by

$$
\frac{R}{\left(\mathcal{F}_{M}^{h}(X, Y, Z)\right)} \stackrel{M}{\longrightarrow} \frac{K\left[\left(x^{\prime}\right)^{ \pm 1},\left(y^{\prime}\right)^{ \pm 1}\right]}{\left(\left(y^{\prime}\right)^{2}-f\left(x^{\prime}+w_{h}\right)\right)} \stackrel{\cong}{\Longrightarrow} \frac{K\left[x^{ \pm 1}, y^{ \pm 1}\right]}{\left(y^{2}-f(x)\right)},
$$

where $(X, Y, Z)=\left(x^{\prime}, y^{\prime}, \pi\right) \bullet M$ and $\left(x^{\prime}, y^{\prime}\right)=\left(x-w_{h}, y\right)$. In particular it follows that $(X, Y, Z)=$ $\left(x-w_{h}, y, z\right) \cdot M$ and so

$$
\left(\begin{array}{c}
x-w_{h} \\
y \\
\pi
\end{array}\right)=\left(\begin{array}{c}
X^{\tilde{m}_{11}} Y^{\tilde{m}_{21}} Z^{\tilde{m}_{31}} \\
X^{\tilde{m}_{12}} Y_{\tilde{m}_{22}}^{\tilde{m}_{32}} \\
X^{\tilde{m}_{13}} Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}
\end{array}\right)=\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \cdot M^{-1} .
$$

For a proper cluster $\mathfrak{t} \in \Sigma_{C}^{\text {rat }}$ recall the definitions of $\Gamma_{\mathfrak{t}}$ and $m_{\mathfrak{t}}$.
Proposition 2.6.2 Let $\mathfrak{t} \in \Sigma_{C}^{\text {rat }}$ be a proper cluster. Then ${ }^{5}$

$$
\begin{aligned}
& \operatorname{ord}_{\Gamma_{\mathfrak{t}}}\left(x-w_{\mathfrak{s}}\right)=m_{\mathfrak{t}} \rho_{\mathfrak{t}} \\
& \operatorname{ord}_{\Gamma_{\mathfrak{t}}} \frac{d x}{2 y}=-m_{\mathfrak{t}}\left(\frac{1}{2} \epsilon_{\mathfrak{t}}-\rho_{\mathfrak{t}}-1\right)-1 .
\end{aligned}
$$

for every proper cluster $\mathfrak{s} \in \Sigma_{C}^{\mathrm{rat}}, \mathfrak{s} \subseteq \mathfrak{t}$.
Proof. Let $g(x, y)=y^{2}-f(x)$. Let $W=\left\{w_{1}, \ldots, w_{m}\right\}$ as above. Let $h=1, \ldots, m$ such that $w_{h}=w_{\mathfrak{s}}$. Let $F=F_{\mathrm{t}}^{w_{h}}, V=V_{\mathrm{t}}^{w_{h}}, M=M_{V, 0}$ and let X, Y, Z be the transformed variables $(X, Y, Z)=(x-$ $\left.w_{\mathfrak{s}}, y, \pi\right) \bullet M$. Define $\mathcal{H}(X, Y, Z)=\pi-X^{\tilde{m}_{13}} Y^{\tilde{m}_{23}} Z^{\tilde{m}_{33}}$, and $\mathcal{G}(X, Y, Z)=g\left((X, Y, Z) \bullet M^{-1}\right)$. We have

$$
\mathcal{F}_{M}^{h}(X, Y, Z)=Y^{-n_{Y}} Z^{-n_{Z}} \mathcal{G}(X, Y, Z),
$$

where $n_{Z}=m_{\mathfrak{t}} \epsilon_{\mathfrak{t}}$, since $\operatorname{ord} \mathcal{Z}_{Z}\left(y^{2}\right)=m_{\mathfrak{t}} \epsilon_{\mathfrak{t}}$ for Lemma 2.5.2. Write $\mathcal{F}=\mathcal{F}_{M}^{h}$.

[^5]Note that $d\left(x-w_{\mathfrak{s}}\right)=d x$ and $\left(g_{w_{\mathfrak{s}}}\right)_{x}^{\prime}\left(x-w_{\mathfrak{s}}\right)=g_{x}^{\prime}(x)$, where $g_{w_{\mathfrak{s}}}(x, y)=g\left(x+w_{\mathfrak{s}}, y\right)$. Then, by [Dok, 8.7],

$$
\left\{\begin{array}{l}
\left(x-w_{\mathfrak{s}}\right) g_{x}^{\prime}=m_{11} X \mathcal{G}_{X}^{\prime}+m_{12} Y \mathcal{G}_{Y}^{\prime}+m_{13} Z \mathcal{G}_{Z}^{\prime} \\
y g_{y}^{\prime}=m_{21} X \mathcal{G}_{X}^{\prime}+m_{22} Y \mathcal{G}_{Y}^{\prime}+m_{23} Z \mathcal{G}_{Z}^{\prime}
\end{array}\right.
$$

from which it follows that

$$
\begin{aligned}
m_{11} y g_{y}^{\prime}-m_{21}\left(x-w_{\mathfrak{s}}\right) g_{x}^{\prime} & =\left(m_{11} m_{22}-m_{21} m_{12}\right) Y \mathcal{G}_{Y}^{\prime}-\left(m_{21} m_{13}-m_{11} m_{23}\right) Z \mathcal{G}_{Z}^{\prime} \\
& =\tilde{m}_{33} Y \mathcal{G}_{Y}^{\prime}-\tilde{m}_{23} Z \mathcal{G}_{Z}^{\prime}
\end{aligned}
$$

We will show later that this quantity is non-zero. Moreover,

$$
\tilde{m}_{33} Y \mathcal{G}_{Y}^{\prime}-\tilde{m}_{23} Z \mathcal{G}_{Z}^{\prime}=Y^{n_{Y}} Z^{n_{Z}}\left(\tilde{m}_{33} Y \mathcal{F}_{Y}^{\prime}-\tilde{m}_{23} Z \mathcal{F}_{Z}^{\prime}+\left(n_{Y}+n_{Z}\right) \mathcal{F}\right)
$$

Recall that $X=\left(x-w_{\mathfrak{s}}\right)^{m_{11}} y^{m_{21}} \pi^{m_{31}}$. Then $\frac{d X}{X}=m_{11} \frac{d x}{x-w_{\mathfrak{s}}}+m_{21} \frac{d y}{y}$. Furthermore, as $0=d g=$ $g_{x}^{\prime} d x+g_{y}^{\prime} d y$ in $\Omega_{C / K}$, we have

$$
\frac{d X}{X}=\left(\frac{m_{11}}{x-w_{\mathfrak{s}}}-\frac{m_{21}}{y} \frac{g_{x}^{\prime}}{g_{y}^{\prime}}\right) d x=\frac{d x}{\left(x-w_{\mathfrak{s}}\right) y g_{y}^{\prime}}\left(m_{11} y g_{y}^{\prime}-m_{21}\left(x-w_{\mathfrak{s}}\right) g_{x}^{\prime}\right)
$$

Therefore

$$
\begin{equation*}
\frac{d x}{2\left(x-w_{\mathfrak{s}}\right) y^{2}}=\frac{d X}{X Y^{n_{Y}} Z^{n_{Z}}\left(\tilde{m}_{33} Y \mathcal{F}_{Y}^{\prime}-\tilde{m}_{23} Z \mathcal{F}_{Z}^{\prime}+\left(n_{Y}+n_{Z}\right) \mathcal{F}\right)} \tag{2.11}
\end{equation*}
$$

Let $S=\operatorname{Spec} O_{K}$. Considering X^{-1} as an independent variable, the scheme

$$
U=\operatorname{Spec} \frac{O_{K}\left[Y, Z, X^{-1}, X\right]}{\left(\mathcal{F}, \mathcal{H}, X \cdot X^{-1}-1\right)}
$$

defines a complete intersection in \mathbb{A}_{S}^{4}. Furthermore, U is an open subscheme of $\mathcal{C}_{\Delta}^{w_{h}} \cap X_{M}$ that restricted to $\mathbb{A}_{S}^{4} \backslash\left\{T_{M}^{h}(X, Y, Z)=0\right\}$ equals U_{M}^{h}. In particular, U is integral. From $\S 2.5 .5$ it follows that $U_{\mathfrak{t}}=U \cap\{Z=0\}$ is a dense open subset of \dot{X}_{F}. Recall that $\dot{\circ}_{F}$ is an open subscheme of $\Gamma_{\mathfrak{t}}$. Hence it suffices to prove the proposition for $U_{\mathfrak{t}}$ instead of $\Gamma_{\mathfrak{t}}$ ([Liu4, Lemma 9.2.17(a)]). Since X and Y are units and Z vanishes to order 1 on $U_{\mathfrak{t}}$, Lemma 2.5.2 implies that

$$
\begin{equation*}
\operatorname{ord}_{U_{\mathfrak{t}}}\left(x-w_{\mathfrak{s}}\right)=\tilde{m}_{31}=m_{\mathfrak{t}} \rho_{\mathfrak{t}} \quad \text { and } \quad \operatorname{ord}_{U_{\mathfrak{t}}} y=\tilde{m}_{32}=m_{\mathfrak{t}} \frac{\epsilon_{\mathfrak{t}}}{2} \tag{2.12}
\end{equation*}
$$

Recall that U is integral and that U_{η} is isomorphic to an open subscheme of C. Then U_{η} is smooth. Hence, by [Liu4, Corollary 6.4.14(b)], the sheaf $\omega_{\mathcal{C} / O_{K}}$ is generated on U by $\mathcal{E}^{-1} d X$ where

$$
\mathcal{E}:=\left|\begin{array}{ccc}
\mathcal{F}_{Y}^{\prime} & \mathcal{F}_{Z}^{\prime} & \mathcal{F}_{X^{-1}}^{\prime} \\
H_{Y}^{\prime} & H_{Z}^{\prime} & \mathcal{F}_{X^{-1}}^{\prime} \\
0 & 0 & X
\end{array}\right|=-\pi X Y^{-1} Z^{-1}\left(\tilde{m}_{33} Y \mathcal{F}_{Y}^{\prime}-\tilde{m}_{23} Z \mathcal{F}_{Z}^{\prime}\right)
$$

if \mathcal{E} is non-zero. Suppose it is; we are going to prove it later. Thus, as $\mathcal{F}=0$ on U, from (2.11) and (2.12) we have

$$
\operatorname{ord}_{U_{\mathfrak{t}}} \frac{d x}{2 y}=m_{\mathfrak{t}}\left(\frac{1}{2} \epsilon_{\mathfrak{t}}+\rho_{\mathfrak{t}}\right)+\tilde{m}_{33}-n_{Z}-1=m_{\mathfrak{t}}\left(-\frac{1}{2} \epsilon_{\mathfrak{t}}+\rho_{\mathfrak{t}}+1\right)-1
$$

It remains to show that \mathcal{E} does not equal 0 on U. Suppose it does. Then from the computations above, it follows that $m_{11} y g_{y}^{\prime}-m_{21}\left(x-w_{\mathfrak{s}}\right) g_{x}^{\prime}=0$ in $K(C)$. Since m_{21} equals either 1 or 2 by Lemma 2.5.2, it follows that there exists a non-zero $c \in K$, such that

$$
m_{11} y g_{y}^{\prime}-m_{21}\left(x-w_{\mathfrak{s}}\right) g_{x}^{\prime}+c g=0
$$

($c \in K$ from degree analysis). Then $c f(x)=m_{21}\left(x-w_{\mathfrak{s}}\right) f^{\prime}(x)$. Note that m_{21} is non-zero as char $(K) \neq$ 2. But then a contradiction follows since f is a separable polynomial of degree ≥ 3.

In the following two theorems we describe a basis of integral differentials of C. We use Definitions/Notations 2.3.1, 2.3.3, 2.3.2, 2.3.8, 2.3.9, 2.3.26, 2.4.6, 2.4.10 in the statements.

Theorem 2.6.3 Let C / K be a hyperelliptic curve of genus $g \geq 1$ defined by the Weierstrass equation $y^{2}=f(x)$ and let \mathcal{C} / O_{K} be a regular model of C. Suppose C has an almost rational cluster picture and is y-regular. For $i=0, \ldots, g-1$ choose inductively proper clusters $\mathfrak{s}_{i} \in \sum_{C}^{\mathrm{rat}}$ so that

$$
e_{i}:=\frac{\epsilon_{\mathfrak{s}_{i}}}{2}-\sum_{j=0}^{i} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i}}=\max _{\mathfrak{t} \in \Sigma_{C}^{\text {rat }}}\left\{\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}\right\}
$$

where if \mathfrak{s} and \mathfrak{s}^{\prime} are two possible choices for \mathfrak{s}_{i} satisfying $\mathfrak{s}^{\prime} \subset \mathfrak{s}$, then choose $\mathfrak{s}_{i}=\mathfrak{s}$. Then the differentials

$$
\mu_{i}=\pi^{\left\lfloor e_{i}\right\rfloor} \prod_{j=0}^{i-1}\left(x-w_{\mathfrak{s}_{j}}\right) \frac{d x}{2 y}, \quad i=0, \ldots, g-1
$$

form an O_{K}-basis of $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$.
Proof. Since $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$ is independent of the choice of regular model, we consider \mathcal{C} to be the model described in Theorem 2.4.18 and constructed in §2.5.

We first show that the differentials μ_{i} are global sections of $\omega_{\mathcal{C} / O_{K}}$. It suffices to prove they are regular along all components $\Gamma_{\mathfrak{t}}$, where $\mathfrak{t} \in \Sigma_{C}^{\text {rat }}$ proper. Indeed for the construction of \mathcal{C} and the definition of the e_{i} 's, the differentials μ_{i} are regular along all other components of \mathcal{C}_{s} by Theorem 2.6.1. Fix $i=1, \ldots, g-1$ and let $j=0, \ldots, i-1$. Let $\mathfrak{t} \in \Sigma_{C}^{\text {rat }}$ be a proper cluster. If $\mathfrak{s}_{j} \subseteq \mathfrak{t}$ then

$$
\operatorname{ord}_{\Gamma_{\mathfrak{t}}}\left(x-w_{\mathfrak{s}_{j}}\right)=m_{\mathfrak{t}} \rho_{\mathfrak{t}}=m_{\mathfrak{t}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}},
$$

by Proposition 2.6.2. If $\mathfrak{t} \subsetneq \mathfrak{s}_{j}$ then $w_{\mathfrak{t}}$ is a rational centre of \mathfrak{s}_{j}. Hence

$$
v\left(w_{\mathfrak{t}}-w_{\mathfrak{s}_{j}}\right) \geq \min _{r \in \mathfrak{t}} \min \left\{v\left(r-w_{\mathfrak{t}}\right), v\left(r-w_{\mathfrak{s}_{j}}\right)\right\} \geq \min \left\{\rho_{\mathfrak{t}}, \rho_{\mathfrak{s}_{j}}\right\}=\rho_{\mathfrak{s}_{j}}=\rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}
$$

Therefore Proposition 2.6.2 implies

$$
\begin{aligned}
\operatorname{ord}_{\Gamma_{\mathfrak{t}}}\left(x-w_{\mathfrak{s}_{j}}\right) & \geq \min \left\{\operatorname{ord}_{\Gamma_{\mathfrak{t}}}\left(x-w_{\mathfrak{t}}\right), \operatorname{ord}_{\Gamma_{\mathfrak{t}}}\left(w_{\mathfrak{t}}-w_{\mathfrak{s}_{j}}\right)\right\} \\
& \geq \min \left\{m_{\mathfrak{t}} \rho_{\mathfrak{t}}, m_{\mathfrak{t}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}\right\}=m_{\mathfrak{t}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}
\end{aligned}
$$

If $\mathfrak{s}_{j} \nsubseteq \mathfrak{t}$ and $\mathfrak{t} \nsubseteq \mathfrak{s}_{j}$ then from Lemma 2.3.18 it follows that

$$
\operatorname{ord}_{\Gamma_{\mathfrak{t}}}\left(x-w_{\mathfrak{s}_{j}}\right)=\min \left\{m_{\mathfrak{t}} \rho_{\mathfrak{t}}, m_{\mathfrak{t}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}\right\}=m_{\mathfrak{t}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}
$$

as $\rho_{\mathrm{t}}>\rho_{\mathfrak{s}_{j} \wedge \mathrm{t}}$. Thus we have proved that

$$
\begin{equation*}
\operatorname{ord}_{\Gamma_{\mathfrak{t}}}\left(x-w_{\mathfrak{s}_{j}}\right) \geq m_{\mathfrak{t}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}, \quad \text { where the equality holds if } \mathfrak{t} \not \subset \mathfrak{s}_{j} \tag{2.13}
\end{equation*}
$$

Hence it follows from Proposition 2.6.2 that

$$
\operatorname{ord}_{\Gamma_{\mathfrak{t}}} \mu_{i} \geq m_{\mathfrak{t}}\left(\left\lfloor e_{i}\right\rfloor+\sum_{j=0}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}-\frac{\epsilon_{\mathfrak{t}}}{2}+\rho_{t}+1\right)-1
$$

But

$$
\left\lfloor e_{i}\right\rfloor \geq\left\lfloor\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}\right\rfloor>\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}-1
$$

then $\operatorname{ord}_{\Gamma_{t}} \mu_{i}>-1$, that implies $\operatorname{ord}_{\Gamma_{t}} \mu_{i} \geq 0$, as required.
Now we need to show that the differentials μ_{i} span $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$, i.e. the lattice they span is saturated in the global sections of $\omega_{\mathcal{C} / O_{K}}$. Suppose not. Then there exist $I \subseteq\{0, \ldots, g-1\}$ and $u_{i} \in O_{K}^{\times}$for $i \in I$ such that the differential $\frac{1}{\pi} \sum_{i \in I} u_{i} \mu_{i}$ is regular along $\Gamma_{\mathfrak{t}}$, for every proper cluster $\mathfrak{t} \in \Sigma_{C}^{\mathrm{rat}}$. First we want to show that for any $i_{1}, i_{2}=0, \ldots, g-1$ with $i_{1}<i_{2}$, one has $\mathfrak{s}_{i_{2}} \not \subset \mathfrak{s}_{i_{1}}$. Suppose by contradiction that $\mathfrak{s}_{i_{2}} \subsetneq \mathfrak{s}_{i_{1}}$. Then

$$
\begin{aligned}
e_{i_{2}} & \geq \frac{\epsilon_{\mathfrak{s}_{i_{1}}}}{2}-\rho_{\mathfrak{s}_{i_{1}}}-\sum_{j=0}^{i_{2}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{1}}}=e_{i_{1}}-\rho_{\mathfrak{s}_{i_{1}}}-\sum_{j=i_{1}+1}^{i_{2}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{1}}} \geq e_{i_{1}}-\rho_{\mathfrak{s}_{i_{1}}}-\sum_{j=i_{1}+1}^{i_{2}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{2}}} \\
& \geq \frac{\epsilon_{\mathfrak{s}_{i_{2}}}}{2}-\rho_{\mathfrak{s}_{i_{2}}}-\sum_{j=0}^{i_{1}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{2}}}-\rho_{\mathfrak{s}_{i_{1}}}-\sum_{j=i_{1}+1}^{i_{2}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{2}}}=\frac{\epsilon_{\mathfrak{s}_{i_{2}}}}{2}-\sum_{j=0}^{i_{2}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{2}}}=e_{i_{2}}
\end{aligned}
$$

Therefore

$$
\max _{\mathfrak{t} \in \Sigma_{C}^{\mathrm{rat}}}\left\{\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{i_{2}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}\right\}=e_{i_{2}}=\frac{\epsilon_{\mathfrak{s}_{i_{1}}}}{2}-\rho_{\mathfrak{s}_{i_{1}}}-\sum_{j=0}^{i_{2}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{1}}}
$$

and this means that $\mathfrak{s}_{i_{1}}$ is a possible choice for the i_{2}-th cluster $\mathfrak{s}_{i_{2}}$. But $\mathfrak{s}_{i_{2}} \subsetneq \mathfrak{s}_{i_{1}}$, so the i_{2}-th cluster should have been $\mathfrak{s}_{i_{1}}$, a contradiction.

Let $I_{0} \subseteq I$ be the set of indices i such that $\gamma_{i}:=e_{i}-\left\lfloor e_{i}\right\rfloor$ is maximal. Let $i_{0}=\min I_{0}$ and let $\Gamma_{0}=\Gamma_{\mathfrak{s}_{i_{0}}}$. Since $\mathfrak{s}_{i_{0}} \not \subset \mathfrak{s}_{j}$, for all $j=0, \ldots, i_{0}-1$, from (2.13) it follows that

$$
\begin{aligned}
m:=\operatorname{ord}_{\Gamma_{0}} \frac{1}{\pi} \mu_{i_{0}} & =-m_{\mathfrak{s}_{i_{0}}} \gamma_{i_{0}}+m_{\mathfrak{s}_{i_{0}}}\left(e_{i_{0}}-\frac{\epsilon_{\mathfrak{s}_{i_{0}}}}{2}+\rho_{\mathfrak{s}_{i_{0}}}+\sum_{j=0}^{i_{0}-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{0}}}\right)-1 \\
& =-m_{\mathfrak{s}_{i_{0}}} \gamma_{i_{0}}-1<0
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\operatorname{ord}_{\Gamma_{0}} \frac{1}{\pi} \mu_{i} & \geq-m_{\mathfrak{s}_{i_{0}}} \gamma_{i}+m_{\mathfrak{s}_{i_{0}}}\left(e_{i}-\frac{\epsilon_{\mathfrak{s}_{i_{0}}}}{2}+\rho_{\mathfrak{s}_{i_{0}}}+\sum_{j=0}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{0}}}\right)-1 \\
& \geq-m_{\mathfrak{s}_{i_{0}}} \gamma_{i}-1 \geq-m_{\mathfrak{s}_{i_{0}}} \gamma_{i_{0}}-1=m
\end{aligned}
$$

for all $i \in I$. Let $J:=\left\{i \in I \left\lvert\, \operatorname{ord}_{\Gamma_{0}} \frac{1}{\pi} \mu_{i}=m\right.\right\}$. Then $J \neq \varnothing$ since $i_{0} \in J$. The order of the differential $\frac{1}{\pi} \sum_{i \in J} u_{i} \mu_{i}$ along Γ_{0} must be $>m$. Let $i \in I$. From the computations above $i \in J$ if and only if
(i) $\operatorname{ord}_{\Gamma_{0}}\left(x-w_{\mathfrak{s}_{j}}\right)=m_{\mathfrak{s}_{i_{0}}} \rho_{\mathfrak{s}_{i_{0}} \wedge \mathfrak{s}_{j}}$ for all $j=0, \ldots, i-1$. Equivalently, if $\mathfrak{s}_{j} \supsetneq \mathfrak{s}_{i_{0}}$ for some $j<i$, then $v\left(w_{\mathfrak{s}_{i_{0}}}-w_{\mathfrak{S}_{j}}\right)=\rho_{\mathfrak{s}_{i_{0}} \wedge \mathfrak{s}_{j}}$.
(ii) $e_{i}=\frac{\epsilon_{\mathfrak{s}_{i_{0}}}}{2}-\rho_{\mathfrak{s}_{i_{0}}}-\sum_{j=0}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{0}}}$. In particular, if $\mathfrak{s}_{i} \subseteq \mathfrak{s}_{i_{0}}$, then $\mathfrak{s}_{i}=\mathfrak{s}_{i_{0}}$.
(iii) $\gamma_{i}=\gamma_{i_{0}}$. Equivalently, $i \in I_{0}$.

Therefore $J \subseteq I_{0}, i_{0}=\min J$ and

$$
\left\lfloor e_{i}\right\rfloor-\left\lfloor e_{i_{0}}\right\rfloor=e_{i}-\gamma_{i}-e_{i_{0}}+\gamma_{i_{0}}=e_{i}-e_{i_{0}}=-\sum_{j=i_{0}}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{0}}},
$$

for all $i \in J$. Hence

$$
\frac{1}{\pi} \sum_{i \in J} u_{i} \mu_{i}=\frac{1}{\pi} \mu_{i_{0}}\left(\sum_{i \in J} \frac{u_{i}}{\pi^{\sum_{j=i_{0}}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i}}}} \prod_{j=i_{0}}^{i-1}\left(x-w_{\mathfrak{s}_{j}}\right)\right)
$$

and since $\operatorname{ord}_{\Gamma_{0}} \frac{1}{\pi} \mu_{i_{0}}=m<0$ we must have

$$
\begin{equation*}
\operatorname{ord}_{\Gamma_{0}}\left(\sum_{i \in J} \frac{u_{i}}{\pi^{\sum_{j=i_{0}}^{i-1} \rho_{\mathfrak{s}_{j} \wedge s_{i}}}} \prod_{j=i_{0}}^{i-1}\left(x-w_{\mathfrak{s}_{j}}\right)\right)>0 \tag{2.14}
\end{equation*}
$$

For any $j<i \in J$, with $i_{0} \leq j$ we have $\mathfrak{s}_{j} \not \subset \mathfrak{s}_{i_{0}}$. Therefore either $\mathfrak{s}_{j}=\mathfrak{s}_{i_{0}}$ or $\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{0}} \supsetneq \mathfrak{s}_{i_{0}}$. In the latter case,

$$
\operatorname{ord}_{\Gamma_{0}}\left(x-w_{\mathfrak{s}_{i_{0}}}\right)=m_{\mathfrak{s}_{i_{0}}} \rho_{\mathfrak{s}_{i_{0}}}>m_{\mathfrak{s}_{i_{0}}} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i_{0}}}=\operatorname{ord}_{\Gamma_{0}}\left(x-w_{\mathfrak{s}_{j}}\right) .
$$

It follows from (2.14) that

$$
\operatorname{ord}_{\Gamma_{0}}\left(\sum_{i \in J} v_{i} \frac{\left(x-w_{\mathfrak{s}_{i_{0}}}\right)^{\beta_{i}}}{\pi^{\beta_{i} \rho_{\mathfrak{s}_{i_{0}}}}}\right)>0
$$

where $J_{i}=\left\{j \in I \mid i_{0} \leq j<i\right.$ and $\left.\mathfrak{s}_{j} \neq \mathfrak{s}_{i_{0}}\right\}, v_{i}=u_{i} \prod_{j \in J_{i}} \frac{w_{\mathfrak{s}_{i_{0}}}-w_{\mathfrak{s}_{j}}}{\pi^{\rho_{\mathfrak{s}_{j}} \wedge_{\mathcal{s}_{0}}}} \in O_{K}^{\times}$, and $\beta_{i}=\left|\left\{i_{0}, \ldots, i-1\right\} \backslash J_{i}\right|$.
To find a contradiction, we will use the explicit description of a dense open affine subset of Γ_{0}. Let $W=\left\{w_{1}, \ldots, w_{m}\right\}$ be the set of rational centres of the rationally minimal clusters for C fixed at the beginning of the section. Let $w_{h} \in W$ such that $w_{h}=w_{\mathfrak{s}_{i_{0}}}$, and let $L=L_{\mathfrak{s}_{i_{0}}}^{w_{h}}, M=M_{L, 0}$, and consider

$$
U_{M}^{h} \cap\{Z=0\}=\operatorname{Spec} \frac{R\left[T_{M}^{h}(X, Y, Z)^{-1}\right]}{\left(\mathcal{F}_{M}^{h}(X, Y, Z), Z\right)} \subset \Gamma_{\mathfrak{t}}
$$

dense open subscheme of $\Gamma_{\mathfrak{t}}$. From Lemma 2.5.2,

$$
\sum_{i \in J} v_{i} \frac{\left(x-w_{h}\right)^{\beta_{i}}}{\pi^{\beta_{i} \rho_{s_{s_{i}}}}}=\sum_{i \in J} v_{i} X^{\beta_{i} / b_{\mathfrak{s}_{i_{0}}}},
$$

which is a unit since the polynomial $\mathcal{F}_{M}^{h}(X, Y, Z)$ in $\{Z=0\}$ is of the form $Y^{2}-G(X)$ or $Y-G(X)$ for some non-constant $G(X) \in K[X]$ (for more details see Lemma 2.5.17). This gives a contradiction and concludes the proof.

Assume now $C_{K^{n r}}$ has an almost rational cluster picture and is y-regular as in Theorem 2.4.22. Since $\left|\Sigma_{C}\right|$ is finite, there exists a finite unramified extension F / K such that C_{F} has an almost rational cluster picture and is y-regular. Denote by O_{F} the ring of integers of F. Let $\Sigma_{F}=\Sigma_{C_{F}}^{\mathrm{rat}}$. Fix a rational centre $w_{\mathfrak{s}} \in F$ for every rationally minimal cluster $\mathfrak{s} \in \Sigma_{F}$. For all non-minimal proper clusters $\mathfrak{t} \in \Sigma_{F}$ choose a rational centre $w_{\mathfrak{t}}=w_{\mathfrak{s}}$ for some rationally minimal cluster $\mathfrak{s} \subseteq \mathfrak{t}$. In this setting the next theorem gives a basis of integral differentials of C.

Theorem 2.6.4 Let C / K be a hyperelliptic curve of genus $g \geq 1$ defined by the Weierstrass equation $y^{2}=f(x)$ and let \mathcal{C} / O_{K} be a regular model of C. Suppose there exists a finite unramified extension F / K such that C_{F} has an almost rational cluster picture and is y-regular. For $i=0, \ldots, g-1$ choose inductively proper clusters $\mathfrak{s}_{i} \in \Sigma_{F}$ so that

$$
e_{i}:=\frac{\epsilon_{\mathfrak{s}_{i}}}{2}-\sum_{j=0}^{i} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{s}_{i}}=\max _{\mathfrak{t} \in \Sigma_{F}}\left\{\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{i-1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}\right\}
$$

where if \mathfrak{s} and \mathfrak{s}^{\prime} are two possible choices for \mathfrak{s}_{i} satisfying $\mathfrak{s}^{\prime} \subset \mathfrak{s}$, then choose $\mathfrak{s}_{i}=\mathfrak{s}$. Let $\beta \in O_{F}^{\times}$such that $\operatorname{Tr}_{F / K}(\beta) \in O_{K}^{\times}$. Then the differentials

$$
\mu_{i}=\pi^{\left\lfloor e_{i}\right\rfloor} \cdot \operatorname{Tr}_{F / K}\left(\beta \prod_{j=0}^{i-1}\left(x-w_{\mathfrak{s}_{j}}\right)\right) \frac{d x}{2 y}, \quad i=0, \ldots, g-1
$$

form an O_{K}-basis of $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right)$.
Proof. First note that without loss of generality we can suppose F / K Galois. Moreover, since F / K is unramified, $\operatorname{Gal}(F / K) \simeq \operatorname{Gal}(\mathfrak{f} / k)$, where \mathfrak{f} is the residue field of F, and so the existence of β is guaranteed by the surjectivity of $\operatorname{Tr}_{f / k}$. Let \mathcal{C} be the minimal regular model of C over O_{K}. By [Liu4, Proposition 10.1.17], the base extended scheme $\mathcal{C}_{O_{F}}$ is the minimal regular model of C_{F} over O_{F}. Let $\mu_{0}^{F}, \ldots, \mu_{g-1}^{F}$ be the basis of integral differentials of C_{F} given by Theorem 2.6.3.

Suppose $\mu_{0}^{\prime}, \ldots, \mu_{g-1}^{\prime}$ is a basis of integral differentials of C_{F} that, for any $\sigma \in \operatorname{Gal}(F / K)$ and any $j=0, \ldots, g-1$, satisfies

$$
\begin{equation*}
\sigma\left(\mu_{j}^{\prime}\right)=\mu_{j}^{\prime}+\sum_{0 \leq i<j} \lambda_{i j} \mu_{i}^{\prime} \tag{2.15}
\end{equation*}
$$

for some $\lambda_{i j} \in O_{F}$ (depending on σ). Note that $\mu_{0}^{F}, \ldots, \mu_{g-1}^{F}$ is in fact such a basis. We want to prove that, for any $j=0, \ldots, g-1$, the differentials

$$
\begin{equation*}
\mu_{0}^{\prime}, \ldots, \mu_{j-1}^{\prime}, \operatorname{Tr}_{F / K}\left(\beta \mu_{j}^{\prime}\right), \mu_{j+1}^{\prime}, \ldots, \mu_{g-1}^{\prime} \tag{2.16}
\end{equation*}
$$

still form a basis of $H^{0}\left(\mathcal{C}_{F}, \omega_{\mathcal{C}_{F} / O_{F}}\right)$ satisfying condition (2.15). From equation (2.15) it follows that

$$
\operatorname{Tr}_{F / K}\left(\beta \mu_{j}^{\prime}\right)=\sum_{\sigma \in \operatorname{Gal}(F / K)} \sigma(\beta) \sigma\left(\mu_{j}^{\prime}\right)=\operatorname{Tr}_{F / K}(\beta) \mu_{j}^{\prime}+\sum_{i<j} \lambda_{i j}^{\prime} \mu_{i}^{\prime},
$$

for some $\lambda_{i j}^{\prime} \in O_{F}$. Since $\operatorname{Tr}_{F / K}(\beta) \in O_{K}^{\times}$, the differentials in (2.16) form a basis of $H^{0}\left(\mathcal{C}_{F}, \omega_{\mathcal{C}_{F} / O_{F}}\right)$ satisfying condition (2.15).

Since $\mu_{0}^{F}, \ldots, \mu_{g-1}^{F}$ satisfies (2.15), by induction it follows that

$$
\operatorname{Tr}_{F / K}\left(\beta \mu_{0}^{F}\right), \ldots, \operatorname{Tr}_{F / K}\left(\beta \mu_{g-1}^{F}\right)
$$

is a basis of $H^{0}\left(\mathcal{C}_{F}, \omega_{\mathcal{C}_{F} / O_{F}}\right)$. Proposition A.2.2 concludes the proof.
We conclude this section with an application of Theorem 2.6.3.
Example 2.6.5 Let p be a prime number and let $a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{p}^{\times}$such that the polynomial $x^{2}+a x+b$ is not a square modulo p. Let C be the hyperelliptic curve over \mathbb{Q}_{p} of genus 4 described by the equation $y^{2}=f(x)$, where $f(x)=\left(x^{6}+a p^{4} x^{3}+b p^{8}\right)\left((x-p)^{3}-p^{11}\right)$. We have already shown in Examples 2.3.32 and 2.4.24 that C satisfies the hypothesis of Theorem 2.6.3 and has rational cluster picture

We choose rational centres for the minimal clusters \mathfrak{t}_{3} and $\mathfrak{t}_{4}: w_{\mathfrak{t}_{3}}=0$ and $w_{\mathfrak{t}_{4}}=p$. Since $\mathfrak{R}=\mathfrak{t}_{3} \wedge \mathfrak{t}_{4}$, we can set either $w_{\mathfrak{R}}=w_{\mathfrak{t}_{3}}$ or $w_{\mathfrak{R}}=w_{\mathfrak{t}_{4}}$. Let us fix $w_{\mathfrak{R}}=w_{\mathfrak{t}_{3}}=0$. Then to choose $\mathfrak{s}_{0}, \mathfrak{s}_{1}, \mathfrak{s}_{2}, \mathfrak{s}_{3}$ as in Theorem 2.6.3 we draw the following table:

	$\rho_{\mathfrak{t}}$	$\epsilon_{\mathfrak{t}}$	$\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}$	$\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\rho_{\mathfrak{s}_{0} \wedge \mathfrak{t}}$	$\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{1} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}$	$\frac{\epsilon_{\mathfrak{t}}}{2}-\rho_{\mathfrak{t}}-\sum_{j=0}^{2} \rho_{\mathfrak{s}_{j} \wedge \mathfrak{t}}$
\mathfrak{t}_{3}	$\frac{4}{3}$	11	$\frac{25}{6}$	$\frac{19}{6}$	$\frac{11}{6}$	$\frac{1}{2}$
\mathfrak{t}_{4}	$\frac{11}{3}$	17	$\frac{29}{6}$	$\frac{7}{6}$	$\frac{1}{6}$	$-\frac{5}{6}$
\Re	1	9	$\frac{7}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{1}{2}$

The numbers in red indicate that $\mathfrak{s}_{0}=\mathfrak{t}_{4}, \mathfrak{s}_{1}=\mathfrak{s}_{2}=\mathfrak{t}_{3}$ and $\mathfrak{s}_{3}=\mathfrak{R}$. Thus the differentials

$$
\mu_{0}=p^{4} \cdot \frac{d x}{2 y}, \quad \mu_{1}=p^{3} \cdot(x-p) \frac{d x}{2 y}, \quad \mu_{2}=p \cdot(x-p) x \frac{d x}{2 y}, \quad \mu_{3}=(x-p) x^{2} \frac{d x}{2 y}
$$

form a \mathbb{Z}_{p}-basis of $H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / \mathbb{Z}_{p}}\right)$, for any regular model $\mathcal{C} / \mathbb{Z}_{p}$ of C.

A generalisation of THE TORIC RESOLUTION OF CURVES

Let k be a perfect field and let C_{0} be a smooth curve in the torus $\mathbb{G}_{m, k}^{2}$. Extending the toric resolution of C_{0} with respect to its Newton polygon, we explicitly construct an explicit model over k of the smooth completion of C_{0}. Such a model exists for any smooth projective curve and can be described via a combinatorial algorithm using an iterative construction of Newton polygons. The content of this chapter can be found in the paper A generalisation of the toric resolution of curves [Mus2], submitted for publication.

3.1 Introduction

Let U be any smooth affine curve defined over a perfect field k. Up to isomorphism there exists a unique smooth projective curve C / k birational to U, called the smooth completion of U. In this chapter we study the problem of finding explicit models of C over k, i.e curves \tilde{C} isomorphic to C over k. More precisely, we present an algorithm to construct a model over k of smooth projective curves which are birational to a smooth curve $C_{0} \subset \mathbb{G}_{m, k}^{2}$. In fact, every smooth projective curve is the smooth completion of a curve C_{0} as above (Corollary B.1.4). Note that a curve is not required to be connected in this work (see conventions and notations in §3.1.4).

3.1.1 Overview

When it exists, a Baker's model of a smooth projective curve C / k is an explicit model of C over k. It is constructed via a toric resolution of a smooth curve $C_{0} \subset \mathbb{G}_{m, k}^{2}$, birational to C. A Baker's model helps in studying the geometry of C. For example, it gives combinatorial interpretations of the genus, the gonality, the Clifford index and the Clifford degree [CC]. Let us give a brief description of this model.

For any C and C_{0} as above, let $f=\sum_{(i, j) \in \mathbb{Z}^{2}} c_{i j} x^{i} y^{j} \in k\left[x^{ \pm 1}, y^{ \pm 1}\right]$ be a Laurent polynomial defining $C_{0}: f=0$ in the torus $\mathbb{G}_{m, k}^{2}$. Let Δ be the Newton polygon of f. A classical construction associates a 2-dimensional toric variety \mathbb{T}_{Δ} to the integral polytope Δ. The Zariski closure C_{1} of C_{0} in \mathbb{T}_{Δ} is called the completion of C_{0} with respect to its Newton polygon. It is an easy-to-describe projective curve, whose C_{0} is a dense open. The construction of C_{1} from C_{0} is said toric resolution on \mathbb{T}_{Δ}. If C_{1} is regular, it is isomorphic to C and is said a Baker's model of C. A smooth projective curve does not always admit a Baker's model (see Appendix B.2). Its existence is closely related to another interesting property: the nondegeneracy.

For any face λ of Δ (of any dimension) let $f_{\lambda}=\sum_{(i, j) \in \mathbb{Z}^{2} \cap \lambda} c_{i j} x^{i} y^{j}$. The Laurent polynomial f is nondegenerate if for every face λ of Δ the system of equations $f_{\lambda}=x \frac{\partial f_{\lambda}}{\partial x}=y \frac{\partial f_{\lambda}}{\partial y}=0$ has no solutions in $\left(\bar{k}^{\times}\right)^{2}$. The nondegeneracy of f has a geometric interpretation in terms of C_{1}. From the explicit description of C_{1}, there is a canonical way to endow the subset $C_{1} \backslash C_{0}$ with a structure of closed subscheme. We say C_{1} is outer regular if $C_{1} \backslash C_{0}$ is smooth. One can prove that f is nondegenerate if and only if C_{1} is outer regular. This is a sufficient condition for the regularity of C_{1}.

A smooth projective curve C is said nondegenerate if it admits an outer regular Baker's model. Nondegenerate curves have several applications. They have turned out to be useful in singular theory [Kou] and in the theory of sparse resultants [GKZ], as well as for studying specific classes of curves [Mik],[BP],[KWZ]. Over finite fields, nondegenerate curves have also been used in p-adic cohomology theory [AS], in the computation of zeta-functions [CDV] and in the study of the torsion subgroup of their own Jacobians [CST]. Unfortunately, nondegenerate curves are rare, especially for high genera [CV1]. In fact, recall that even a Baker's model may not exist.

Let C / k be any smooth projective curve. In this chapter we construct an explicit model C_{n} of C over k, called generalised Baker's model (Definition 3.7.1), extending the classical toric resolution without losing the connection with Newton polygons. Every smooth projective curve C has a generalised Baker's model and it can be constructed from any smooth curve $C_{0} \subset \mathbb{G}_{m, k}^{2}$ birational to C. Similarly to the classical case, the subset $C_{n} \backslash C_{0}$ will naturally be equipped with a structure of closed subscheme. We say that C_{n} is outer regular if the subscheme $C_{n} \backslash C_{0}$ is smooth. Although not all smooth projective curves are nondegenerate, they always have an outer regular generalised Baker's model (Corollary 3.7.8). Let us describe our approach briefly.

For any smooth curve $C_{0} \subset \mathbb{G}_{m, k}^{2}$, we construct a sequence of proper birational morphisms of curves

$$
\begin{equation*}
\ldots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1} \tag{3.1}
\end{equation*}
$$

where C_{1} is the completion of C_{0} with respect to its Newton polygon. The curves C_{n} are birational to C_{0} and explicitly constructed over an algebraic closure \bar{k} / k via an iterative construction of Newton polygons. We also describe the action of the absolute Galois group $\operatorname{Gal}(\bar{k} / k)$ on $C_{n} \times{ }_{k} \bar{k}$. Note that since C_{1} is projective, the curves C_{n} will be projective as well. If C_{n} is regular, for some
n, then it is a model over k of C. Such C_{n} is what we call a generalised Baker's model of C. Thus the following theorem is a key result of the current chapter.

Theorem 3.1.1 (Theorems 3.5.10, 3.7.7) For a sufficiently large n, the curve C_{n} is outer regular.

From the explicit construction of an outer regular generalised Baker's model one can also describe the set $C(\bar{k}) \backslash C_{0}(\bar{k})$. The result that is obtained extends the known one for nondegenerate curves. We will state them in §3.1.3, in the case of geometrically connected curves. In the next subsection we discuss one of the main motivations of this work: the study of regular models of curves over discrete valuation rings.

3.1.2 Models of curves over discrete valuation rings

Let K be a complete discretely valued field with ring of integers O_{K} and residue field k. Let C / K be a projective curve. A model of C over O_{K} is a proper flat scheme $\mathcal{C} \rightarrow$ Spec O_{K} of dimension 2 such that its generic fibre $\mathcal{C}_{\eta}=\mathcal{C} \times{ }_{O_{K}} K$ is a model of C over K. The study of regular models over O_{K} of geometrically connected smooth projective curves C is of great interest in Arithmetic Geometry. The understanding of such models is essential for describing the arithmetic of C and leads to the computation of important objects, such as Tamagawa numbers and integral differentials.

Let $C_{0} \subset \mathbb{G}_{m, K}^{2}$ be an affine curve given by $f(x, y)=0$ and let C_{1} be the completion of C_{0} with respect to its Newton polygon Δ. Via a toric resolution approach, [Dok] constructs a model of C_{1} over O_{K}, denoted \mathcal{C}_{Δ}. This is an innovative result, able to construct regular models of curves over discrete valuation rings in cases that were previously hard to tackle (such as the case of curves with wildly potential semistable reduction). However, this approach has two major limits. First, it can construct a model of a smooth projective curve C only if C admits a Baker's model. Second, although we are mainly interested in regular models, \mathcal{C}_{Δ} may be singular. Let us discuss more in detail this second aspect.

The scheme \mathcal{C}_{Δ} is given as the Zariski closure of C_{0} in a toric scheme X_{Σ}. The ambient space X_{Σ} is constructed from Δ, taking into account also the valuations of the coefficients of f. The connection of \mathcal{C}_{Δ} with toric resolution of curves goes beyond its generic fibre. Let $\mathcal{C}_{\Delta, s}^{\text {red }}$ be the reduced closed subscheme with the same underlying topological space of the special fibre $\mathcal{C}_{\Delta, s}$ of \mathcal{C}_{Δ}. Then $\mathcal{C}_{\Delta, s}^{\text {red }}$ can be decomposed in principal components \bar{X}_{F} and chains of $\mathbb{P}^{1} \mathrm{~s}$. The components \bar{X}_{F} are the completions of curves $X_{F} \subset \mathbb{G}_{m, k}^{2}$ with respect to their Newton polygons. One can see that if all \bar{X}_{F} are outer regular, then \mathcal{C}_{Δ} is regular. Thus the fact that not every projective curve has an outer regular Baker's model is the main obstruction for the regularity of \mathcal{C}_{Δ}.

Therefore the existence of outer regular generalised Baker's models, subject of this chapter, has the potential to extend Dokchitser's result to construct regular models of all smooth projective curves. Although such an extension is highly non-trivial, in [Mus1] we can already see an implicit application of generalised Baker's model towards that goal. Let us spend a few lines explaining
why. In [Mus1] the author constructs a regular model \mathcal{C} over O_{K} for a wide class of hyperelliptic curves C / K as follows. Let $C: y^{2}=h(x)$ be a hyperelliptic curve in this class. One considers smooth curves $C_{0}^{w} \subset \mathbb{G}_{m, K}^{2}$, for $w \in W \subseteq K$, given by $y^{2}=h(x+w)$ and so birational to C. For each $w \in W$, let $\mathcal{C}_{\Delta^{w}}$ be the model of C constructed from C_{0}^{w} by [Dok]. The regular model \mathcal{C} is then obtained by glueing regular open subschemes ${\stackrel{\mathcal{C}}{\Delta^{w}}}^{0}$ of $\mathcal{C}_{\Delta^{w}}$, containing all points of codimension 1. In particular, for any principal component \bar{X}_{F} of $\mathcal{C}_{\Delta^{w}, s}^{\text {red }}$ there exists a closed subscheme $\Gamma_{\mathfrak{t}}$ of $\mathcal{C}_{s}=\mathcal{C} \times{ }_{O_{K}} k$, birational to \bar{X}_{F}. The regularity of \mathcal{C} follows from the fact that $\Gamma_{\mathfrak{t}}$ is an outer regular generalised Baker's model of the smooth completion of X_{F} (this can be checked by comparing the description of Γ_{t} in [Mus1, §5] and the construction in $\S 3.8$ of an outer regular generalised Baker's model for curves given by superelliptic equations).

3.1.3 Outer regular generalised Baker's model

Let k be a perfect field with algebraic closure \bar{k}. Let $f \in k\left[x^{ \pm 1}, y^{ \pm 1}\right]$ such that $C_{0}: f=0$ is a geometrically connected smooth curve over $\mathbb{G}_{m, k}^{2}$, and let Δ be the Newton polygon of f. If f is nondegenerate, then the completion C_{1} of C_{0} with respect to Δ is outer regular. In particular, C_{1} is a Baker's model of the smooth completion C of C_{0}. From C_{1} we can describe the points in $C \backslash C_{0}$ in an elementary way as follows.

Definition 3.1.2 For any edge ℓ of an integral 2-dimensional polytope \mathcal{P}, consider the unique surjective affine function $\ell^{*}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ given by $\left.\ell^{*}\right|_{\ell}=0,\left.\ell^{*}\right|_{\mathcal{P}} \geq 0$. Write $\ell^{*}(i, j)=a i+b j+c$, for some $a, b, c \in \mathbb{Z}$. Then the primitive vector $(a, b) \in \mathbb{Z}^{2}$ will be called the normal vector of ℓ.

We also extend this definition to segments \mathcal{P}, considered as integral 2-dimensional polytopes of zero volume. In this case \mathcal{P} has two edges, equal to \mathcal{P} itself, with opposite normal vectors.

Notation 3.1.3 For any primitive vector $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}^{2}$ fix $\delta_{\beta}=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}^{2}$ such that $\delta_{1} \beta_{2}-$ $\delta_{2} \beta_{1}=1$. Note that δ_{β} can be freely chosen, and depends (only) on β.

For any edge ℓ of Δ :
(1) Consider its normal vector $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}^{2}$ and $\delta_{\beta}=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}^{2}$.
(2) Via the change of variables $x=X^{\delta_{1}} Y^{\beta_{1}}, y=X^{\delta_{2}} Y^{\beta_{2}}$, let $f_{\ell} \in k[X, Y]$ such that $X \nmid f_{\ell}, Y \nmid f_{\ell}$, and

$$
f(x, y)=X^{n_{X}} Y^{n_{Y}} \cdot f_{\ell}(X, Y)
$$

for some $n_{X}, n_{Y} \in \mathbb{Z}$.
Define the curve $C_{\ell}: f_{\ell}(X, Y)=0$ in $\mathbb{G}_{m, k} \times \mathbb{A}_{k}^{1}=\operatorname{Spec} k\left[X^{ \pm 1}, Y\right]$. Note that $C_{\ell} \cap \mathbb{G}_{m, k}^{2}=C_{0}$. The completion of C_{0} with respect to Δ is

$$
C_{1}=\bigcup_{\ell \subset \partial \Delta} C_{\ell}
$$

where the curves C_{ℓ} are glued along their common open subscheme C_{0}.

Let $P_{1}=\bigsqcup_{\ell \subset \partial \Delta}\left\{f_{\ell}\right\}$, where ℓ runs through all edges of Δ. For any $f_{\ell} \in P_{1}$ define $\left.f\right|_{\ell} \in k[X]$ by $\left.f\right|_{\ell}(X)=f_{\ell}(X, 0)$. It is easy to see that f is nondegenerate if and only if $\left.f\right|_{\ell}$ has no multiple roots in \bar{k}^{\times}for any edge ℓ of Δ. Then from the description of C_{1} we have the following result.

Theorem 3.1.4 ([Dok, Theorem 2.2(3)]) Suppose f nondegenerate. There is a natural bijection that preserves $\operatorname{Gal}(\bar{k} / k)$-action,

$$
C(\bar{k}) \backslash C_{0}(\bar{k}) \stackrel{1: 1}{\longleftrightarrow} \bigsqcup_{f_{\ell} \in P_{1}}\left\{(\text { simple }) \text { roots of }\left.f\right|_{\ell} \text { in } \bar{k}^{\times}\right\} .
$$

If f is not nondegenerate, or, equivalently, if C_{1} is not outer regular, we can construct from C_{1} an outer regular generalised Baker's model C_{n} of C, that always exists. Then the explicit description of C_{n} can be used to obtain a more general version of Theorem 3.1.4 capable to describe the points in $C \backslash C_{0}$ unconditionally.

First we are going to define finite indexed sets P_{n} of polynomials in $\bar{k}[X, Y]$, for all $n \in \mathbb{Z}_{+}$. A polynomial in P_{n} will be denoted by f_{ℓ} for an edge ℓ of some 2-dimensional polytope. However, if $n \geq 2$ then $f_{\ell} \in P_{n}$ will be indexed not only by ℓ but also by a polynomial of P_{n-1} and a non-zero element of \bar{k}. For any $f_{\ell} \in P_{n}$, define $\left.f\right|_{\ell} \in \bar{k}[X]$ by $\left.f\right|_{\ell}(X)=f_{\ell}(X, 0)$. Let P_{1} be as above. For $n \in \mathbb{Z}_{+}$, we recursively construct the set P_{n+1} from P_{n} via the following algorithm.

Algorithm 3.1.5 For any $f_{\ell} \in P_{n}$ and any multiple root $a \in \bar{k}^{\times}$of $\left.f\right|_{\ell}$ do:
(1) Rename the variables of f_{ℓ} from X, Y to x, y.
(2) Let $f_{\ell, a} \in \bar{k}[x, y]$ given by $f_{\ell, a}(x, y)=f_{\ell}(x+a, y)$.
(3) Draw the Newton polygon $\Delta_{\ell, a}$ of $f_{\ell, a}$.
(4) For any edge ℓ^{\prime} of $\Delta_{\ell, a}$ with normal vector $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}_{+}^{2}$, consider $\delta_{\beta}=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}^{2}$, previously fixed.
(5) Through the change of variables $x=X^{\delta_{1}} Y^{\beta_{1}}, y=X^{\delta_{2}} Y^{\beta_{2}}$, let $f_{\ell^{\prime}}=\left(f_{\ell, a}\right)_{\ell^{\prime}} \in \bar{k}[X, Y]$ such that $X \nmid f_{\ell^{\prime}}, Y \nmid f_{\ell^{\prime}}$, and

$$
f_{\ell, a}(x, y)=X^{n_{X}} Y^{n_{Y}} \cdot f_{\ell^{\prime}}(X, Y)
$$

for some $n_{X}, n_{Y} \in \mathbb{Z}$.
(6) Define $P_{\ell, a}=\bigsqcup_{\ell^{\prime} \subset \partial \Delta_{\ell, a}}\left\{f_{\ell^{\prime}}\right\}$, where ℓ^{\prime} runs through all edges of $\Delta_{\ell, a}$ with normal vector in \mathbb{Z}_{+}^{2}.

Then

$$
P_{n+1}:=\bigsqcup_{f_{\ell}, a} P_{\ell, a}
$$

where f_{ℓ} runs through all polynomials in P_{n} and a runs through all multiple roots of $\left.f\right|_{\ell}$ in \bar{k}^{\times}.

For every $n \in \mathbb{Z}_{+}$, one can inductively define an action of $\operatorname{Gal}(\bar{k} / k)$ on P_{n} with the following property: for any $\sigma \in \operatorname{Gal}(\bar{k} / k)$ and $f_{\ell} \in P_{n}$ the polynomials $\sigma \cdot f_{\ell}$ and f_{ℓ}^{σ} are equal. Note that this property is not enough to describe the action since P_{n} is an indexed set.

Let $\sigma \in \operatorname{Gal}(\bar{k} / k)$. If $f_{\ell} \in P_{1}$, then define $\sigma \cdot f_{\ell}=f_{\ell}$. Let $f_{\ell^{\prime}} \in P_{n+1}$ for $n \in \mathbb{Z}_{+}$. From Algorithm 3.1.5 it follows that $f_{\ell^{\prime}}=\left(f_{\ell, a}\right)_{\ell^{\prime}}$ for some $f_{\ell} \in P_{n}$ and some multiple root $a \in \bar{k}^{\times}$of $\left.f\right|_{\ell}$. By inductive hypothesis $\sigma \cdot f_{\ell}$ is an element $f_{\sigma(\ell)}$ of P_{n}, and $\sigma(a)$ is a multiple root of $\left.f\right|_{\sigma(\ell)}$. Moreover, $f_{\sigma(\ell), \sigma(a)}=f_{\ell, a}^{\sigma}$. Hence the Newton polygon $\Delta_{\sigma(\ell), \sigma(a)}$ coincides with $\Delta_{\ell, a}$. In particular, it has an edge $\sigma\left(\ell^{\prime}\right)$ with normal vector equal to the one of ℓ^{\prime}. Then define

$$
\sigma \cdot f_{\ell^{\prime}}:=f_{\sigma\left(\ell^{\prime}\right)}=\left(f_{\sigma(\ell), \sigma(a)}\right)_{\sigma\left(\ell^{\prime}\right)} \in P_{n+1}
$$

Iterate Algorithm 3.1.5 until $P_{n+1}=\varnothing$, i.e. for all $f_{\ell} \in P_{n}$, the polynomials $\left.f\right|_{\ell}$ have no multiple roots in \bar{k}^{\times}. The procedure terminates. Define

$$
P=P_{1} \sqcup \cdots \sqcup P_{n}
$$

Note that the Galois action on P_{i} for all $1 \leq i \leq n$ induces an action on P. For any $\sigma \in \operatorname{Gal}(\bar{k} / k)$ and $f_{\ell} \in P$, let $f_{\sigma(\ell)} \in P$ be the element $\sigma \cdot f_{\ell}$. We can now generalise Theorem 3.1.4.

Theorem 3.1.6 There is a natural bijection

$$
C(\bar{k}) \backslash C_{0}(\bar{k}) \stackrel{1: 1}{\longleftrightarrow} \bigsqcup_{f_{\ell} \in P}\left\{\text { simple roots of }\left.f\right|_{\ell} \text { in } \bar{k}^{\times}\right\},
$$

that preserves $\operatorname{Gal}(\bar{k} / k)$-action, where $\sigma \in \operatorname{Gal}(\bar{k} / k)$ takes a simple root $r \in \bar{k}^{\times}$of $\left.f\right|_{\ell}$ to the simple root $\sigma(r) \in \bar{k}^{\times}$of $\left.f\right|_{\sigma(\ell)}$.

Theorem 3.1.6 is proved at the end of §3.7.
Example 3.1.7 Let $f=\left(x^{2}+1\right)^{2}+y-y^{3} \in \mathbb{F}_{3}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ and let $C_{0}: f=0$ in $\mathbb{G}_{m, \mathbb{F}_{3}}^{2}$. Note that C_{0} is regular. By [CV2, Proposition 3.2], the smooth completion C of C_{0} is not nondegenerate. Hence Theorem 3.1.4 cannot be used. We want to describe the points in $C \backslash C_{0}$ via Theorem 3.1.6. First compute the set P via Algorithm 3.1.5. One has $P=P_{1} \sqcup P_{2}$, where

- P_{1} consists of 3 polynomials $f_{\ell_{1}}, f \ell_{\ell_{2}}, f \ell_{\ell_{3}}$, where $\left.f\right|_{\ell_{1}}=\left(X^{2}+1\right)^{2},\left.f\right|_{\ell_{2}}=X^{3}+X^{2}-1,\left.f\right|_{\ell_{3}}=$ $-X+1$, up to some power of X;
- P_{2} consists of 2 polynomials $f_{\ell_{4}}, f_{\ell_{5}}$, satisfying $f_{\ell_{5}}=f_{\sigma\left(\ell_{4}\right)}$, where σ is the Frobenius automorphism; furthermore, $\left.f\right|_{\ell_{4}}=\left.f\right|_{\ell_{5}}=-X+1$, up to some power of X.

Thus Theorem 3.1.6 shows that $C \backslash C_{0}$ consists of one point coming from ℓ_{4}, ℓ_{5} with residue field \mathbb{F}_{9}, one point coming from ℓ_{2} with residue field \mathbb{F}_{27} and one \mathbb{F}_{3}-rational point coming from ℓ_{3}.

3.1.4 Outline of the chapter and notation

For the most part of the chapter we will assume $k=\bar{k}$. In $\S 3.2$ we define toric varieties \mathbb{T}_{v} attached to primitive integer-valued vectors v. The charts of the curves C_{n} in the sequence (3.1) will be the Zariski closures of dense opens of C_{0} inside \mathbb{T}_{v}. In $\S 3.4$ we show how to construct the sequence (3.1) recursively and explain its connection with Newton polygons. We also prove the properties of the curves and the morphisms in (3.1) previously listed in §3.3. Section 3.5 gives the definition of generalised Baker's model and outer regularity over algebraically closed base fields. We prove some crucial results and present interesting consequences. In $\S 3.6$ we see the construction developed in previous sections from a more general point of view. This will be useful to tackle the case of non-algebraically closed base fields, treated in §3.7. Finally, $\S 3.8$ and $\S 3.9$ consist of applications of our construction. In $\S 3.8$ we discuss the case of superelliptic equations. In $\S 3.9$ we show an explicit and non-trivial example of a generalised Baker's model.

Conventions and notations

- Throughout, k will be a perfect field, algebraically closed in §3.2-3.6.
- An algebraic variety X over k, denoted X / k, is a scheme of finite type over Spec k. Let \mathcal{K}_{X} be the sheaf of stalks of meromorphic functions on X ([Liu4, Definition 7.1.13]). We denote by $k(X)$ the set of global sections of \mathcal{K}_{X}, i.e. $k(X)=H^{0}\left(X, \mathcal{K}_{X}\right)$. It will be called the ring of rational functions or function ring of X. It extends the notions of field of rational functions or function field of integral varieties.
- Let X / k be an algebraic variety. Since k is perfect, X is smooth if and only if it is regular. In this context we will then use the words smooth, regular, non-singular interchangeably. We will denote by $\operatorname{Reg}(X)$ the open subset of regular points of X and by $\operatorname{Sing}(X)$ the closed subset of singular points of X.
- A morphism $X \rightarrow Y$ between two algebraic varieties X, Y defined over k will always be a morphism of k-schemes, unless otherwise specified.
- A birational map $f: X-->Y$ between algebraic varieties X, Y over k is a k-rational map ([EGA, I.7.1.2]) that comes from an isomorphism from a dense open $U \subseteq X$ onto a dense open $V \subseteq Y$. If such a map exists, we say that X is birational to Y. A birational morphism is a morphism which is (a representative of) a birational map ([Liu4, Definition 7.5.3]).
- A curve is an equidimensional algebraic variety of dimension 1 . We will denote by \mathbb{G}_{m} the affine algebraic group $\mathbb{G}_{m, k}=\operatorname{Spec} k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ whenever k is algebraically closed.
- Given a ring A and an ideal I of A we identify the ideals of A / I with the ideals of A containing I. Furthermore, sometimes we refer to an element $a \in A$ as an element of A / I omitting the class symbol.
- Finally, the set of natural numbers will contain 0 , i.e. $\mathbb{N}=\mathbb{Z}_{\geq 0}$.

3.2 Ambient toric varieties and charts

Let k be an algebraically closed field, $n \in \mathbb{Z}_{+}, A=k\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y^{ \pm 1}\right]$ and $\mathbb{G}_{m}^{n+1}=\operatorname{Spec} A$. Let $v=\left(v_{1}, \ldots, v_{n}, v_{n+1}\right) \in \mathbb{Z}^{n+1}$ be a primitive vector. Define the affine function $\phi_{v}: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}$ given by

$$
\phi_{v}\left(i_{1}, \ldots, i_{n}, j\right)=v_{1} i_{1}+\cdots+v_{n} i_{n}+v_{n+1} j
$$

For any $i=\left(i_{1}, \ldots, i_{n}, j\right) \in \mathbb{Z}^{n+1}$, denote by \mathbf{x}^{i} the monomial $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} y^{j}$ of $k\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y^{ \pm 1}\right]$. For any monomial \mathbf{x}^{i} define $\operatorname{ord}_{v}\left(\mathbf{x}^{i}\right)=\phi_{v}(i)$. For $f \in A$, with $f \neq 0$, expand

$$
f=\sum_{i} c_{i} \mathbf{x}^{i}, \quad c_{i} \in k^{\times}
$$

and set $\operatorname{ord}_{v}(f)=\min _{i} \operatorname{ord}_{v}\left(\mathbf{x}^{i}\right)$. We have just defined a map $\operatorname{ord}_{v}: A^{\times} \rightarrow \mathbb{Z}$, which naturally extends to a valuation $\operatorname{ord}_{v}: \operatorname{Frac}(A)^{\times} \rightarrow \mathbb{Z}$.

Definition 3.2.1 Given a primitive vector $w \in \mathbb{Z}^{n+1}$, we say that a matrix $M \in \mathrm{SL}_{n+1}(\mathbb{Z})$ is attached to w if its last row is w.

Fix a matrix $M=\left(a_{i j}\right)$ attached to v. It gives the change of variables

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}, y\right) & =\left(X_{1}^{a_{11}} \cdots X_{n}^{a_{n 1}} Y^{v_{1}}, \ldots, X_{1}^{a_{1(n+1)}} \cdots X_{m}^{a_{n(n+1)}} Y^{v_{n+1}}\right) \\
& =\left(X_{1}, \ldots, X_{n}, Y\right) \cdot M \\
\left(X_{1}, \ldots, X_{n}, Y\right) & =\left(x_{1}, \ldots, x_{n}, y\right) \cdot M^{-1}
\end{aligned}
$$

For any $f \in A^{\times}$, denoting by $\mathcal{F} \in k\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y^{ \pm 1}\right]^{\times}$the Laurent polynomial given by

$$
\mathcal{F}\left(X_{1}, \ldots, X_{n}, Y\right)=f\left(\left(X_{1}, \ldots, X_{n}, Y\right) \bullet M\right)
$$

note that $\operatorname{ord}_{v}(f)=\operatorname{ord}_{Y}(\mathcal{F})$. We get an embedding

$$
A \stackrel{M}{=} k\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y^{ \pm 1}\right] \hookleftarrow k\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y\right]=: R
$$

from which we define the affine toric variety $\mathbb{T}_{v}=\operatorname{Spec} R \hookleftarrow \mathbb{G}_{m}^{n+1}$. Since v is the last row of M, the toric variety \mathbb{T}_{v} only depends on v up to isomorphisms that restricted to \mathbb{G}_{m}^{n+1} equal the identity. Furthermore, up to isomorphism, the closed subvariety $\overline{\mathbb{T}}_{v}=\operatorname{Spec} R /(Y) \simeq \mathbb{G}_{m}^{n}$ of \mathbb{T}_{v} only depends on v as well.

Now let I be an ideal of A defining a curve $C_{0, I}=\operatorname{Spec} A / I$ in \mathbb{G}_{m}^{n+1}. We denote by $C_{v, I}$ the Zariski closure of $C_{0, I}$ in \mathbb{T}_{v}. Then $C_{v, I}$ is determined by v and I, up to isomorphisms that preserve $C_{0, I}$. Recall that $C_{v, I}=\operatorname{Spec} R / \mathcal{I}$, where \mathcal{I} is the inverse image of I under the embedding $R \hookrightarrow A$ above. Suppose $\mathcal{J} \subset R$ is an ideal such that $A / I \simeq R\left[Y^{-1}\right] / \mathcal{J} R\left[Y^{-1}\right]$ via M. Then \mathcal{J} defines $C_{v, I}$
if and only if it equals its saturation with respect to Y, i.e. $\mathcal{J}=Y^{\infty}: \mathcal{J}$, or, equivalently, if the image of Y in R / \mathcal{J} is a regular element.

Finally, let $f=f_{1} \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ defining a smooth curve $C_{0}: f=0$ in $\mathbb{G}_{m}^{2}=\operatorname{Spec} k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$. For all $i=2, \ldots, n$, let $g_{i} \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ and denote $f_{i}=x_{i}-g_{i}$. Then

$$
\frac{k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]_{g_{2} \cdots g_{n}}}{(f)} \simeq \frac{k\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y^{ \pm 1}\right]}{\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Let T be the tuple $\left(g_{2}, \ldots, g_{n}\right)$ and I the ideal $\left(f_{1}, \ldots, f_{n}\right)$. Define $C_{0, T}=\operatorname{Spec} \frac{k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]_{g_{2} \cdots g_{n}}}{(f)}$, an affine open of C_{0}. Then T gives an open immersion $C_{0, T} \hookrightarrow \mathbb{G}_{m}^{n+1}$ with image $C_{0, I}$. Let $v \in \mathbb{Z}^{n+1}$ be a primitive vector. Denote by $C_{v, T}$ the curve $C_{v, I}$ (closure of $C_{0, I}$ inside \mathbb{T}_{v}). We will often identify $C_{0, T}$ with the dense open image of the immersion $C_{0, T} \simeq C_{0, I} \hookrightarrow C_{v, T}$.

Let C_{0} as above. For any $m \in \mathbb{Z}_{+}$define

$$
\Omega_{m}=\left\{(v, T) \mid v \in \mathbb{Z}^{m+1} \text { is a primitive vector and } T \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]^{m-1}\right\}
$$

If $\alpha=(v, T) \in \Omega_{m}$ for some $m \in \mathbb{Z}_{+}$, denote by $C_{0, \alpha}, C_{\alpha}$, respectively the curves $C_{0, T}, C_{v, T}$ introduced in the previous section. Furthermore, we set $C_{\alpha}=C_{0, \alpha}=C_{0}$ when $\alpha=0$. Define

$$
\Omega=\left\{\alpha \in \bigsqcup_{m \in \mathbb{Z}_{+}} \Omega_{m} \mid C_{0, \alpha} \text { is dense in } C_{0}\right\} .
$$

If $\alpha=(v, T) \in \Omega$, denote by \bar{C}_{α} the scheme-theoretic intersection of C_{α} and $\overline{\mathbb{T}}_{v}$ in \mathbb{T}_{v}. Note that, up to isomorphism, \bar{C}_{α} only depends on α.

From the open immersions with dense images $C_{0, \alpha} \hookrightarrow C_{\alpha}, C_{0, \alpha} \hookrightarrow C_{0}$, we have natural birational maps $s_{\alpha \alpha^{\prime}}: C_{\alpha^{--}} C_{\alpha^{\prime}}$, for all $\alpha, \alpha^{\prime} \in \Omega \sqcup\{0\}$. Denote by $U_{\alpha \alpha^{\prime}}$ the largest (dense) open of C_{α} such that $s_{\alpha \alpha^{\prime}}$ comes from an open immersion $U_{\alpha \alpha^{\prime}} \hookrightarrow C_{\alpha^{\prime}}$. Note that $C_{0, \alpha} \cap C_{0, \alpha^{\prime}}$ embeds in $U_{\alpha \alpha^{\prime}}$ via the canonical open immersion $C_{0, \alpha} \hookrightarrow C_{\alpha}$.

Definition 3.2.2 Let $m \in \mathbb{Z}_{+}$and $c \in \mathbb{Z}$. Let $v=\left(v_{1}, \ldots, v_{m}, v_{m+1}\right) \in \mathbb{Z}^{m+1}$ and $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}^{2}$ be primitive vectors. Define the primitive vector

$$
\beta \circ_{c} v=\left(v_{1} \beta_{2}, v_{2} \beta_{2}, \cdots, v_{m} \beta_{2}, \beta_{1}+c \beta_{2}, v_{m+1} \beta_{2}\right) \in \mathbb{Z}^{m+2}
$$

If $g \in k\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}, y^{ \pm 1}\right]$, define $\beta \circ_{g} v=\beta \circ_{\operatorname{ord}_{v}(g)} v$.
Definition 3.2.3 Let $m \in \mathbb{Z}_{+}$and $\alpha \in \Omega_{m}$. Write $\alpha=(v, T)$ where $T=\left(g_{2}, \ldots, g_{m}\right)$. Fix $g \in$ $k\left[x_{1}, \ldots, x_{m}, y\right]$ and let $g_{m+1} \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ be the unique Laurent polynomial such that $g_{m+1} \equiv g$ $\bmod \left(f_{2}, \ldots, f_{m}\right)$, where $f_{i}=x_{i}-g_{i}$. For any primitive vector $\beta \in \mathbb{N} \times \mathbb{Z}_{+}$, define

$$
\beta \circ_{g} \alpha=\left(\beta \circ_{g} v,\left(g_{2}, \ldots, g_{m}, g_{m+1}\right)\right) \in \Omega_{m+1}
$$

Note that for any $\alpha, \alpha^{\prime} \in \Omega_{m}$, polynomials $g, g^{\prime} \in k\left[x_{1}, \ldots, x_{m}, y\right]$, and primitive vectors $\beta, \beta^{\prime} \in$ $\mathbb{N} \times \mathbb{Z}_{+}$, if $\beta \circ_{g} \alpha=\beta^{\prime} \circ_{g^{\prime}} \alpha^{\prime}$, then $\alpha=\alpha^{\prime}$.

Definition 3.2.4 Let $m \in \mathbb{Z}_{+}$. Given $\alpha \in \Omega_{m}$ and $\gamma \in \Omega_{m+1}$, we will write $\alpha<\gamma$ if there exists a polynomial $g \in k\left[x_{1}, \ldots, x_{m}, y\right]$ and a primitive vector $\beta \in \mathbb{N} \times \mathbb{Z}_{+}$such that $\gamma=\beta \circ_{g} \alpha$. Endow Ω with a structure of partially ordered set by extending $<$ by transitivity.

3.3 Baker's resolution

Let k be an algebraically closed field and let $f \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ be a Laurent polynomial defining a smooth curve $C_{0}: f=0$ over \mathbb{G}_{m}^{2}. We will construct a sequence

$$
\ldots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1}
$$

of proper birational morphisms of projective curves over k, birational to C_{0}. Such a sequence will be called a Baker's resolution of C_{0} (Definition 3.6.2). Each curve C_{n} will be explicitly described and inductively constructed via Newton polygons. In particular, the curve C_{1} is the completion of C_{0} with respect to the Newton polygon Δ of f. In $\S 3.5$ we will show how to use Baker's resolution to desingularise C_{1}, by finding a regular curve C_{n}, model over k of the smooth completion of C_{0}.

For any $n \in \mathbb{Z}_{+}$, we aim to construct the projective curve C_{n} as follows:

Construction 3.3.1 We will define a finite subset $\Sigma_{n} \subset \Omega$. Then

$$
C_{n}:=\bigcup_{\alpha \in \Sigma_{n}} C_{\alpha} \cup C_{0},
$$

where the glueing morphisms are given by the birational maps $s_{\alpha \alpha^{\prime}}$, for $\alpha, \alpha^{\prime} \in \Sigma_{n} \sqcup\{0\}$. More precisely, the chart C_{α} is glued with $C_{\alpha^{\prime}}$ along $U_{\alpha \alpha^{\prime}}$ via the isomorphism $U_{\alpha \alpha^{\prime}} \stackrel{\sim}{\rightarrow} U_{\alpha^{\prime} \alpha}$ induced by $s_{\alpha \alpha^{\prime}}$. In fact, for our choice of Σ_{n} the opens $U_{\alpha \alpha^{\prime}}$ will be as small as possible, i.e. $C_{\alpha} \cap C_{\alpha^{\prime}}=$ $C_{0, \alpha} \cap C_{0, \alpha^{\prime}}$, for any $\alpha, \alpha^{\prime} \in \Sigma_{n} \sqcup\{0\}, \alpha \neq \alpha^{\prime}$

Furthermore, for any $\alpha=(v, T) \in \Sigma_{n}$, we construct:
(a) An ideal $\mathfrak{a}_{\alpha}=\left(\mathcal{F}_{2}, \ldots \mathcal{F}_{m}\right) \subset k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, Y\right]$, and a matrix $M_{\alpha} \in \mathrm{SL}_{m+1}(\mathbb{Z})$ attached to v defining an isomorphism

$$
\frac{k\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}, y^{ \pm 1}\right]}{\left(f_{2}, \ldots, f_{m}\right)} \stackrel{M_{\alpha}}{=} \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, Y^{ \pm 1}\right]}{\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m}\right)}
$$

where $f_{i}=x_{i}-g_{i}$ and $T=\left(g_{2}, \ldots, g_{m}\right)$.
(b) A positive integer $j_{\alpha} \leq m$ such that there is an embedding

$$
R_{\alpha}:=\frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m}\right)} \hookrightarrow k\left(X_{j_{\alpha}}, Y\right)
$$

taking $X_{j_{\alpha}} \mapsto X_{j_{\alpha}}$ and $Y \mapsto Y$. Moreover, Y is not invertible in R_{α}.
(c) A polynomial $\mathcal{F}_{\alpha} \in k\left[X_{j_{\alpha}}, Y\right]$, not divisible by Y, such that

$$
C_{\alpha}=\operatorname{Spec} \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{\alpha}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{m}\right)}
$$

The ideal \mathfrak{a}_{α} equals its saturation with respect to Y by (b). Therefore (a) implies that \mathfrak{a}_{α} is uniquely determined by M_{α}.

The homomorphism in (b) induces an injective ring homomorphism

$$
\frac{R_{\alpha}}{(Y)}=\frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m}, Y\right)} \hookrightarrow k\left(X_{j_{\alpha}}\right)
$$

taking $X_{j_{\alpha}} \mapsto X_{j_{\alpha}}$. Let D_{α} be its image. Then D_{α} is a localisation of $k\left[X_{j_{\alpha}}\right]$, isomorphic to $R_{\alpha} /(Y)$. More precisely, if t_{1}, \ldots, t_{m} are the images of X_{1}, \ldots, X_{m} in $k\left(X_{j_{\alpha}}\right)$, then $D_{\alpha}=k\left[X_{j_{\alpha}}, t_{1}^{ \pm 1}, \ldots, t_{m-1}^{ \pm 1}\right]$.

Then, from (c), there exists a non-zero polynomial $\left.f\right|_{\alpha} \in k\left[X_{j_{\alpha}}\right]$, given by $\left.f\right|_{\alpha}\left(X_{j_{\alpha}}\right)=\mathcal{F}_{\alpha}\left(X_{j_{\alpha}}, 0\right)$, such that

$$
\frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{\alpha}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{m}, Y\right)} \simeq \frac{D_{\alpha}}{\left(\left.f\right|_{\alpha}\right)}
$$

The closed subscheme \bar{C}_{α} of C_{α} will be identified with Spec $D_{\alpha} /\left(\left.f\right|_{\alpha}\right)$. As a set, it is finite and equals $C_{\alpha} \backslash C_{0, \alpha}$.

Finally, note that the injective homomorphism in (b) and the description of C_{α} in (c) give an open immersion $C_{\alpha} \hookrightarrow \operatorname{Spec} k\left[X_{j_{\alpha}}, Y\right] /\left(\mathcal{F}_{\alpha}\right)$.

3.4 Construction of the sequence

Let k be an algebraically closed field and let $f \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ be a Laurent polynomial defining a smooth curve $C_{0}: f=0$ over \mathbb{G}_{m}^{2}.

3.4.1 Completion with respect to Newton polygon

In this subsection we give a description of the curve C_{1}, completion of C_{0} with respect to its Newton polygon, with the properties of 3.3.1. We will show that $C_{\alpha} \simeq C_{0}$ for all but finitely many $\alpha \in \Omega_{1} \subset \Omega$. Defining $\Sigma_{1} \subseteq \Omega_{1}$ as the subset of those exceptional elements, the curve C_{1} will be the glueing of $C_{\alpha}, \alpha \in \Sigma_{1}$, along the common open C_{0}.

Let $v=(a, b) \in \mathbb{Z}^{2}$ be any primitive vector and $\alpha=(v,()) \in \Omega_{1}$. Fix a matrix $M_{\alpha}=\left(\begin{array}{ll}c & d \\ a & b\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ attached to v and define $\phi_{v}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $\phi_{v}(i, j)=a i+b j-\operatorname{ord}_{v}(f)$. Via the change of variables given by M_{α} we get

$$
f\left(\left(X_{1}, Y\right) \bullet M_{\alpha}\right)=X_{1}^{*} Y^{\operatorname{ord}_{v}(f)} \mathcal{F}_{\alpha}\left(X_{1}, Y\right), \quad \text { where } \mathcal{F}_{\alpha} \in k\left[X_{1}, Y\right]
$$

Then $\operatorname{ord}_{Y}\left(\mathcal{F}_{\alpha}\right)=0$ and so $C_{\alpha}=\operatorname{Spec} k\left[X_{1}^{ \pm 1}, Y\right] /\left(\mathcal{F}_{\alpha}\right)$.
Note that $C_{0, \alpha}=C_{0}$. Let $\left.f\right|_{\alpha} \in k\left[X_{1}\right]$ given by $\left.f\right|_{\alpha}\left(X_{1}\right)=\mathcal{F}_{\alpha}\left(X_{1}, 0\right)$. Recall that the scheme $\bar{C}_{\alpha}=\operatorname{Spec} k\left[X_{1}^{ \pm 1}\right] /\left(\left.f\right|_{\alpha}\right)$ equals $C_{\alpha} \backslash C_{0, \alpha}$ as a set. Therefore $C_{\alpha} \simeq C_{0}$ if and only if $\left.f\right|_{\alpha}$ is invertible in $k\left[X_{1}^{ \pm 1}\right]$. Expand $f=\sum_{i, j} c_{i j} x_{1}^{i} y^{j}$. Let Δ be the Newton polygon of f. It follows that

$$
\left.f\right|_{\alpha}=X_{1}^{*} \cdot \sum_{(i, j) \in \phi_{v}^{-1}(0)} c_{i j} X_{1}^{c i+d j}
$$

Hence $\left.f\right|_{\alpha}$ is not invertible in $k\left[X_{1}^{ \pm 1}\right]$ if and only if $\phi_{v}^{-1}(0) \cap \Delta=$ edge.
Then we can explicitly construct Σ_{1} as follows. For every edge ℓ of Δ consider its normal vector $v_{\ell} \in \mathbb{Z}^{2}$ (see Definition 3.1.2). Define $\Sigma_{1}=\left\{\left(v_{\ell},()\right) \in \Omega_{1} \mid \ell\right.$ edge of $\left.\Delta\right\}$. The next result follows from the computations above.

Proposition 3.4.1 Let v be the normal vector of an edge ℓ of Δ and let $\alpha=(v,()) \in \Sigma_{1}$. Let $\left(i_{0}, j_{0}\right), \ldots,\left(i_{l}, j_{l}\right)$ be the points of $\ell \cap \mathbb{Z}^{2}$, ordered along ℓ counterclockwise with respect to Δ. Then

$$
\left.f\right|_{\alpha}=X_{1}^{d} \cdot \sum_{r=0}^{l} c_{i_{r} j_{r}} X_{1}^{r}, \quad \text { for some } d \in \mathbb{N}
$$

Glueing C_{α} for any $\alpha \in \Sigma_{1}$ gives the curve C_{1}. Note that C_{1} is the Zariski closure of C_{0} in $\bigcup_{(v,()) \in \Sigma_{1}} \mathbb{T}_{v}$ (where the toric varieties \mathbb{T}_{v} are glued along their common open \mathbb{G}_{m}^{2}).

Remark 3.4.2. Consider the toric surface \mathbb{T}_{Δ} of Δ. It is a complete algebraic variety. Then $\bigcup_{(v,()) \in \Sigma_{1}} \mathbb{T}_{v}$ is a (non-proper) subscheme of \mathbb{T}_{Δ}. Nevertheless the curve C_{1} is also the Zariski closure of C_{0} in \mathbb{T}_{Δ} (see [Dok, Remark 2.6]). Thus it is projective.

Remark 3.4.3. Note that for any $\alpha \in \Sigma_{1}$, the points on $C_{\alpha} \backslash C_{0}$ are not visible on any other chart of C_{1}. Indeed for any $\alpha, \alpha^{\prime} \in \Sigma_{1}$, where $\alpha \neq \alpha^{\prime}$, consider the birational map

$$
s_{\alpha \alpha^{\prime}}: C_{\alpha}=\operatorname{Spec} k\left[X_{1}^{ \pm 1}, Y\right] /\left(\mathcal{F}_{\alpha}\right)-->\operatorname{Spec} k\left[X_{1}^{ \pm 1}, Y\right] /\left(\mathcal{F}_{\alpha^{\prime}}\right)=C_{\alpha^{\prime}}
$$

given by the matrix $M_{\alpha \alpha^{\prime}}=M_{\alpha} M_{\alpha^{\prime}}^{-1}$. Since the lower left entry of $M_{\alpha \alpha^{\prime}}$ is non-zero, the largest open $U_{\alpha \alpha^{\prime}}$ of C_{α} for which $s_{\alpha \alpha^{\prime}}$ comes from an open immersion $U_{\alpha \alpha^{\prime}} \hookrightarrow C_{\alpha^{\prime}}$ is $U_{\alpha \alpha^{\prime}}=D(Y) \subset C_{\alpha}$, i.e. the image of C_{0} in C_{α}. Thus $C_{\alpha} \cap C_{\alpha^{\prime}}=C_{0}$ for any $\alpha, \alpha^{\prime} \in \Sigma_{1} \sqcup\{0\}, \alpha \neq \alpha^{\prime}$.

3.4.2 Inductive construction of the curves

Until the end of the section let $n \in \mathbb{Z}_{+}$and suppose we constructed a finite subset $\Sigma_{n} \subset \Omega$ and a projective curve C_{n} as in 3.3.1. In particular, $C_{n}=\cup_{\alpha \in \Sigma_{n}} C_{\alpha} \cup C_{0}$.

Remark 3.4.4. Let $\alpha \in \Sigma_{n}$. Recall $C_{0, \alpha}$ is smooth as so is C_{0}. Therefore $\operatorname{Sing}\left(C_{\alpha}\right) \subseteq C_{\alpha} \backslash C_{0, \alpha}$. Then, as an easy consequence of the Jacobian criterion, any singular point of C_{α} is the image of a singular point of \bar{C}_{α} under the closed immersion $\bar{C}_{\alpha} \hookrightarrow C_{\alpha}$. This fact can be observed by comparing the Jacobian matrices of C_{α}, defined in 3.3.1(c), and $\bar{C}_{\alpha}=C_{\alpha} \cap\{Y=0\}$, at points of $C_{\alpha} \backslash C_{0, \alpha}=\bar{C}_{\alpha}$. In particular, if C_{n} is singular then \bar{C}_{α} is singular for some $\alpha \in \Sigma_{n}$.

Let $\alpha \in \Sigma_{n}$ and fix $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Via the immersion $\bar{C}_{\alpha} \hookrightarrow C_{n}$ given by the closed immersion $\bar{C}_{\alpha} \hookrightarrow C_{\alpha}$ and the inclusion $C_{\alpha} \subseteq C_{n}$, the points in S_{n} will be identified with their images in C_{n}. In this subsection we will construct a finite subset $\Sigma_{n+1} \subset \Omega$ defining a curve C_{n+1} as indicated in 3.3.1. Then, in $\S 3.4 .4$ we will define a proper birational morphism $s_{n}: C_{n+1} \rightarrow C_{n}$ with exceptional locus $s_{n}^{-1}\left(S_{n} \cap \operatorname{Sing}\left(C_{n}\right)\right)$.

Let $m \in \mathbb{Z}_{+}$such that $\alpha \in \Omega_{m}$. Write $\alpha=(v, T)$, where $v \in \mathbb{Z}^{m+1}$ and $T \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]^{m-1}$. Let $M_{\alpha} \in \mathrm{SL}_{m+1}(\mathbb{Z})$ be the matrix attached to v fixed by 3.3.1(a), defining a change of variables

$$
\left(x_{1}, \ldots, x_{m}, y\right)=\left(X_{1}, \ldots, X_{m}, \tilde{Y}\right) \bullet M_{\alpha}
$$

Note that we have changed the notation for the variable Y to \tilde{Y} for avoiding confusion later. Let $\mathfrak{a}_{\alpha}=\left(\tilde{\mathcal{F}}_{2}, \ldots, \tilde{\mathcal{F}}_{m}\right) \subset k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, \tilde{Y}\right]$ be the ideal in 3.3.1(a) and $\mathcal{F}_{\alpha} \in k\left[X_{j_{\alpha}}, \tilde{Y}\right]$ be the polynomial in 3.3.1(c) so that

$$
C_{\alpha}=\operatorname{Spec} \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha}, \tilde{\mathcal{F}}_{2} \ldots, \tilde{\mathcal{F}}_{m}\right)}
$$

Denote $A_{m}=k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}\right]$.
Fix a point $p \in S_{n}$. Recall $\bar{C}_{\alpha}=\operatorname{Spec} D_{\alpha} /\left(\left.f\right|_{\alpha}\right)$, where D_{α} is a (non-trivial) localisation of $k\left[X_{j_{\alpha}}\right]$ and $\left.f\right|_{\alpha} \in k\left[X_{j_{\alpha}}\right]$ is non-zero. There exists some irreducible $\overline{\mathcal{G}}_{p} \in D_{\alpha}$ such that ($\overline{\mathcal{G}}_{p}$) is the maximal ideal of $\mathcal{O}_{\bar{C}_{\alpha}, p}$. Then $\left.f\right|_{\alpha} \in\left(\overline{\mathcal{G}}_{p}\right)^{2}$. We choose $\overline{\mathcal{G}}_{p} \in k\left[X_{j_{\alpha}}\right]$ monic of degree 1 . Consider p as a point of C_{n}. Then $p \in C_{\alpha} \backslash C_{0, \alpha}$. In particular, $p \notin C_{0}$, since $C_{0} \cap C_{\alpha}=C_{0, \alpha}$. For any $\tilde{\mathcal{G}}_{p} \in k\left[X_{j_{\alpha}}, \tilde{Y}\right]$ such that $\tilde{\mathcal{G}}_{p} \equiv \overline{\mathcal{G}}_{p} \bmod \tilde{Y}$, the ideal $(\tilde{\mathcal{G}}, \tilde{Y})+\mathfrak{a}_{\alpha}$ is the maximal ideal of $\mathcal{O}_{C_{\alpha}, p}$. We fix a choice of $\tilde{\mathcal{G}}_{p}$ such that $\tilde{\mathcal{G}}_{p}-\overline{\mathcal{G}}_{p} \in \tilde{Y} k[\tilde{Y}]$ and $\tilde{\mathcal{G}}_{p} \nmid \mathcal{F}_{\alpha}$.

Remark 3.4.5. Note that such a choice of $\tilde{\mathcal{G}}_{p}$ is always possible. Indeed, if $\operatorname{deg}_{\tilde{Y}}\left(\mathcal{F}_{\alpha}\right)$ is the degree of \mathcal{F}_{α} with respect to \tilde{Y}, it suffices to define

$$
\tilde{\mathcal{G}}_{p}=\overline{\mathcal{G}}_{p}+\tilde{Y}^{\operatorname{deg}_{\tilde{Y}}\left(\mathcal{F}_{\alpha}\right)+1}
$$

On the other hand, $\tilde{\mathcal{G}}_{p}=\overline{\mathcal{G}}_{p}$ is often admissible and better for computations. For instance, if C_{0} is connected, then we can always choose $\tilde{\mathcal{G}_{p}}=\overline{\mathcal{G}}_{p}$.

Lemma 3.4.6 Consider the principal open set $U_{p}=D\left(\tilde{\mathcal{G}}_{p}\right)$ of C_{α}. Then U_{p} is dense in C_{α}.
Proof. As a consequence of 3.3 .1 , we saw that there is a natural open immersion

$$
C_{\alpha} \hookrightarrow \operatorname{Spec} k\left[X_{j_{\alpha}}, \tilde{Y}\right] /\left(\mathcal{F}_{\alpha}\right)
$$

Since $\tilde{\mathcal{G}}_{p} \in k\left[X_{j_{\alpha}}, \tilde{Y}\right]$, the image of U_{p} is the open subset $V_{p}=D\left(\tilde{\mathcal{G}}_{p}\right)$ of $\operatorname{Spec} k\left[X_{j_{\alpha}}, \tilde{Y}\right] /\left(\mathcal{F}_{\alpha}\right)$. Note that if V_{p} is dense, then U_{p} is dense in C_{α}. In fact, V_{p} is dense in Spec $k\left[X_{j_{\alpha}}, \tilde{Y}\right] /\left(\mathcal{F}_{\alpha}\right)$ since $\tilde{\mathcal{G}}_{p} \nmid \mathcal{F}_{\alpha}$.

Write $T=\left(g_{2}, \ldots, g_{m}\right)$. From 3.3.1(a) recall the isomorphism

$$
\frac{k\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}, y^{ \pm 1}\right]}{\left(f_{2}, \ldots, f_{m}\right)} \stackrel{M_{\alpha}}{=} \frac{A_{m}\left[\tilde{Y}^{ \pm 1}\right]}{\mathfrak{a}_{\alpha}}
$$

where $f_{i}=x_{i}-g_{i}$ for all $i=2, \ldots, m$. Let $g_{p} \in k\left[x_{1}, \ldots, x_{m}, y\right]$ such that

$$
x_{1}^{*} \cdots x_{m}^{*} y^{*} \cdot g_{p}\left(x_{1}, \ldots, x_{m}, y\right)=\tilde{\mathcal{G}}_{p}\left(\left(x_{1}, \ldots, x_{m}, y\right) \cdot M_{\alpha}^{-1}\right)
$$

We fix a canonical choice of g_{p} by requiring $\operatorname{ord}_{y} g_{p}=0$, and $\operatorname{ord}_{x_{i}}\left(g_{p}\right)=0$ for all $i=1, \ldots, m$.

Definition 3.4.7 We say that $g_{p} \in k\left[x_{1}, \ldots, x_{m}, y\right]$ is related to $\tilde{\mathcal{G}}_{p}$ by M_{α} if it is defined as above. Note that it is uniquely determined by $\tilde{\mathcal{G}}_{p}$ and M_{α}.

Define $\alpha_{p}=(0,1) \circ_{g_{p}} \alpha \in \Omega_{m+1}$ (Definition 3.2.3). Fix a choice of a matrix $M_{\alpha_{p}} \in \mathrm{SL}_{m+2}(\mathbb{Z})$ attached to $(0,1) \circ_{g_{p}} v$ such that the change of variables

$$
\left(x_{1}, \ldots, x_{m}, x_{m+1}, y\right)=\left(X_{1}, \ldots, X_{m}, \tilde{X}_{m+1}, \tilde{Y}\right) \bullet M_{\alpha_{p}}
$$

restricts to the change of variables given by the matrix M_{α} on the subring $k\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}, y^{ \pm 1}\right]$ of $k\left[x_{1}^{ \pm 1}, \ldots, x_{m+1}^{ \pm 1}, y^{ \pm 1}\right]$ and gives the equality

$$
\begin{equation*}
x_{m+1}-g_{p}=X_{1}^{n_{1}} \cdots X_{m}^{n_{m}} \tilde{Y}^{\operatorname{ord}_{v}\left(g_{p}\right)}\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right) \tag{3.2}
\end{equation*}
$$

for some $n_{1}, \ldots, n_{m} \in \mathbb{Z}$. In particular,

$$
\begin{equation*}
\frac{k\left[x_{1}^{ \pm 1}, \ldots, x_{m+1}^{ \pm 1}, y^{ \pm 1}\right]}{\left(f_{2}, \ldots, f_{m}, x_{m+1}-g_{m+1}\right)} \stackrel{M_{\alpha_{p}}}{\sim} \frac{A_{m}\left[\tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}^{ \pm 1}\right]}{\mathfrak{a}_{\alpha}+\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)} \hookrightarrow k\left(X_{j_{\alpha}}, \tilde{Y}\right) . \tag{3.3}
\end{equation*}
$$

where $g_{m+1} \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ is the unique polynomial so that $g_{m+1} \equiv g_{p} \bmod \left(f_{2}, \ldots, f_{m}\right)$.
Remark 3.4.8. Such $M_{\alpha_{p}}$ is constructed as follows. Via M_{α} write

$$
g_{p}=X_{1}^{n_{1}} \cdots X_{m}^{n_{m}} Y^{\operatorname{ord}_{v}\left(g_{p}\right)} \cdot \tilde{\mathcal{G}}_{p}
$$

for some $n_{1}, \ldots, n_{m} \in \mathbb{Z}$. Then

- The $(m+1)$-th row of $M_{\alpha_{p}}$ is the vector $(0, \ldots, 0,1,0)$;
- The $(m+1)$-th column of $M_{\alpha_{p}}$ is the vector $\left(n_{1}, \ldots, n_{m}, 1, \operatorname{ord}_{v}\left(g_{p}\right)\right)$;
- The submatrix of $M_{\alpha_{p}}$ obtained by removing the $(m+1)$-th row and the $(m+1)$-th column equals M_{α}.

This construction is unique. Indeed, the ($m+1$)-th column is fixed by the equality (3.2), while all other columns are fixed by the fact that $M_{\alpha_{p}}$ defines the same change of variables of M_{α} on $k\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}, y^{ \pm 1}\right]$.

Lemma 3.4.9 With the notation above

$$
C_{\alpha_{p}}=\operatorname{Spec} \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, \tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha}, \tilde{\mathcal{F}}_{2}, \ldots, \tilde{\mathcal{F}}_{m}, \tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)}
$$

Furthermore, $C_{0, \alpha_{p}}$ is dense in C_{0}, i.e. $\alpha_{p} \in \Omega$, and the birational map $s_{\alpha_{p} \alpha}$ comes from an open immersion $s_{\alpha_{p} \alpha}: C_{\alpha_{p}} \hookrightarrow C_{\alpha}$ with image $D\left(\tilde{\mathcal{G}}_{p}\right) \subset C_{\alpha}$. Finally, $s_{\alpha_{p} \alpha}$ induces $\bar{C}_{\alpha_{p}} \simeq \bar{C}_{\alpha} \backslash\{p\}$.

Proof. First note that $C_{0, \alpha_{p}} \subset C_{0, \alpha}$. Considering $C_{0, \alpha}$ as an open subscheme of C_{α}, then $C_{0, \alpha_{p}}$ equals $D\left(\tilde{\mathcal{G}}_{p}\right) \cap C_{0, \alpha} \subset C_{\alpha}$. Then $C_{0, \alpha_{p}}$ is dense in $C_{0, \alpha}$ by Lemma 3.4.6. It follows that $C_{0, \alpha_{p}}$ is dense in C_{0} since so is $C_{0, \alpha}$. In other words, $\alpha_{p} \in \Omega$. The ring homomorphism

$$
A_{\alpha}:=\frac{A_{m}[\tilde{Y}]}{\left(F_{\alpha}\right)+a_{\alpha}} \rightarrow \frac{A_{m}\left[\tilde{X} \tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha}, \hat{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)+\mathfrak{a}_{\alpha}}=: A_{\alpha_{p}}
$$

is injective by Lemma 3.4.6 and induces the birational map $s_{\alpha_{p} \alpha}$ if $C_{\alpha_{p}}=\operatorname{Spec} A_{\alpha_{p}}$ from (3.3). The injectivity implies that \tilde{Y} is a regular element of $A_{\alpha_{p}}$ since \tilde{Y} is a regular element of A_{α} by definition of C_{α}. This concludes the proof by definition of $C_{\alpha_{p}}$.

Now consider the lexicographic monomial order $X_{j_{\alpha}}>\tilde{X}_{m+1}>\tilde{Y}$ on $k\left[X_{j_{\alpha}}, \tilde{X}_{m+1}, \tilde{Y}\right]$ and compute the normal form $\mathcal{F}_{\alpha, p}$ of \mathcal{F}_{α} by $\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}$ with respect to $>$. In other words, the polynomial $\mathcal{F}_{\alpha, p}$ is the remainder of the complete multivariate division of \mathcal{F}_{α} by $\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}$. Note that $\mathcal{F}_{\alpha, p} \in k\left[\tilde{X}_{m+1}, \tilde{Y}\right]$, as $\tilde{\mathcal{G}}_{p}-\overline{\mathcal{G}}_{p} \in \tilde{Y} k[\tilde{Y}]$ and $\overline{\mathcal{G}}_{p} \in k\left[X_{j_{\alpha}}\right]$ of degree 1 .

Let $\beta \in \mathbb{Z}_{+}^{2}$ be any primitive vector. Fix a matrix $M_{\beta} \in \mathrm{SL}_{2}(\mathbb{Z})$ attached to β. Then M_{β} gives an isomorphism between $k\left[\tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}^{ \pm 1}\right]$ and $k\left[X_{m+1}^{ \pm 1}, Y^{ \pm 1}\right]$ through the change of variables $\left(\tilde{X}_{m+1}, \tilde{Y}\right)=\left(X_{m+1}, Y\right) \bullet M_{\beta}$. This transformation lifts to

$$
\begin{equation*}
A_{m}\left[\tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}^{ \pm 1}\right] \stackrel{I_{m} \oplus M_{\beta}}{\sim} A_{m}\left[X_{m+1}^{ \pm 1}, Y^{ \pm 1}\right], \tag{3.4}
\end{equation*}
$$

where $I_{m} \in \mathrm{SL}_{m}(\mathbb{Z})$ is the identity matrix of size m. Since $\beta \in \mathbb{Z}_{+}^{2}$, the isomorphism (3.4) restricts to a homomorphism

$$
A_{m}\left[\tilde{X}_{m+1}, \tilde{Y}\right] \xrightarrow{I_{m} \oplus M_{\beta}} A_{m}\left[X_{m+1}^{ \pm 1}, Y\right]
$$

Let $\beta=\left(\beta_{1}, \beta_{2}\right)$ and let (δ_{1}, δ_{2}) be the first row of M_{β}, so $\delta_{1} \beta_{2}-\delta_{2} \beta_{1}=1$. Set $A_{m+1}=A_{m}\left[X_{m+1}^{ \pm 1}\right]$. Denote by $\mathcal{F}_{2}, \ldots, \mathcal{F}_{m}, \mathcal{G}_{p} \in A_{m+1}[Y]$ the images of $\tilde{\mathcal{F}}_{2}, \ldots, \tilde{\mathcal{F}}_{m}, \tilde{\mathcal{G}}_{p}$ under $I_{m} \oplus M_{\beta}$, respectively. Let $\mathcal{F}_{m+1}=X_{m+1}^{\delta_{1}} Y^{\beta_{1}}-\mathcal{G}_{p}$, image of $\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}$. Then we get the homomorphism

$$
\begin{equation*}
\frac{A_{m}[\tilde{Y}]}{\mathfrak{a}_{\alpha}} \simeq \frac{A_{m}\left[\tilde{X}_{m+1}, \tilde{Y}\right]}{\mathfrak{a}_{\alpha}+\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)} \stackrel{I_{m} \oplus M_{\beta}}{ } \frac{A_{m+1}[Y]}{\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m+1}\right)} . \tag{3.5}
\end{equation*}
$$

Note that since $\beta_{2}>0$ then

$$
\mathcal{G}_{p} \equiv \overline{\mathcal{G}}_{p} \quad \bmod Y, \quad \text { and } \quad \mathcal{F}_{i} \equiv \overline{\mathcal{F}}_{i} \quad \bmod Y \quad \text { for any } i=2, \ldots, m,
$$

where $\overline{\mathcal{F}}_{i}$ is the unique polynomial in A_{m} such that $\tilde{\mathcal{F}}_{i} \equiv \overline{\mathcal{F}}_{i} \bmod \tilde{Y}$.
Let $\gamma=\beta \circ_{g_{p}} \alpha \in \Omega_{m+1}$. By definition, $C_{0, \gamma}=C_{0, \alpha_{p}}$. Therefore $\gamma \in \Omega$ by Lemma 3.4.9. Let \mathfrak{a}_{γ} be the ideal of $A_{m+1}[Y]$ generated by $\mathcal{F}_{2}, \ldots, \mathcal{F}_{m+1}$ and set $M_{\gamma}=\left(I_{m} \oplus M_{\beta}\right) \cdot M_{\alpha_{p}} \in \mathrm{SL}_{m+2}(\mathbb{Z})$. Note that the matrix M_{γ} is attached to $\beta \circ_{g_{p}} v$. Let $\mathcal{F}_{\gamma} \in k\left[X_{m+1}, Y\right]$, with $\operatorname{ord}_{Y}\left(\mathcal{F}_{\gamma}\right)=0$, satisfying

$$
\mathcal{F}_{\alpha, p}\left(\left(X_{m+1}, Y\right) \bullet M_{\beta}\right)=X_{m+1}^{n_{X}} Y^{n_{Y}} \cdot \mathcal{F}_{\gamma}\left(X_{m+1}, Y\right),
$$

for some $n_{X}, n_{Y} \in \mathbb{Z}$. Note that
where $f_{m+1}=x_{m+1}-g_{m+1}$. In particular, the ideal \mathfrak{a}_{γ} and the matrix M_{γ} satisfy 3.3.1(a) for γ. With $j_{\gamma}=m+1$ we are now going to show 3.3.1(b) for γ.

Recall from 3.3.1(b) there is an injective homomorphism $R_{\alpha} \hookrightarrow k\left(X_{j_{\alpha}}, \tilde{Y}\right)$ taking $X_{j_{\alpha}} \mapsto X_{j_{\alpha}}$ and $\tilde{Y} \mapsto \tilde{Y}$. Since $\tilde{\mathcal{G}}_{p}-\overline{\mathcal{G}}_{p} \in \tilde{Y} k[\tilde{Y}]$ and $\overline{\mathcal{G}}_{p} \in k\left[X_{j_{\alpha}}\right]$ monic of degree 1, we have

$$
\frac{A_{m}\left[\tilde{X}_{m+1}, \tilde{Y}\right]}{\mathfrak{a}_{\alpha}+\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)} \hookrightarrow \frac{k\left(X_{j_{\alpha}}, \tilde{Y}\right)\left[\tilde{X}_{m+1}\right]}{\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)} \simeq k\left(\tilde{X}_{m+1}, \tilde{Y}\right) .
$$

Then we can construct the following commutative diagram

$$
\begin{align*}
& \frac{A_{m+1}\left[Y^{ \pm 1}\right]}{\mathfrak{a}_{\gamma}}=\frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m+1}^{ \pm 1}, Y^{ \pm 1}\right]}{\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m}, \mathcal{F}_{m+1}\right)} \xrightarrow{\iota_{\gamma}} k\left(X_{m+1}, Y\right) \\
& I_{m} \oplus M_{\beta} \uparrow \text { 个 } M_{\beta} \tag{3.7}\\
& \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, \tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}^{ \pm 1}\right]}{\left(\tilde{\mathcal{F}}_{2}, \ldots, \tilde{\mathcal{F}}_{m}, \tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)} \longleftrightarrow k\left(\tilde{X}_{m+1}, \tilde{Y}\right)
\end{align*}
$$

given by the matrix M_{β}. Therefore the homomorphism ι_{γ} is injective and takes $X_{m+1} \mapsto X_{m+1}$ and $Y \mapsto Y$.

Lemma 3.4.10 With the notation above, there is an isomorphism

$$
\frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m+1}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m+1}, Y\right)} \simeq k\left[X_{m+1}^{ \pm 1}\right]
$$

taking $X_{m+1} \mapsto X_{m+1}$. The images of X_{1}, \ldots, X_{m} in $k\left[X_{m+1}^{ \pm 1}\right]$ lies in k.
Proof. Recall that for every $i=2, \ldots, m$ there exists a (unique) Laurent polynomial $\overline{\mathcal{F}}_{i} \in A_{m}$ such that $\tilde{\mathcal{F}}_{i} \equiv \overline{\mathcal{F}}_{i} \bmod \tilde{Y}$. Since $\mathcal{F}_{m+1} \equiv \overline{\mathcal{G}}_{p} \bmod Y$ and $\mathcal{F}_{i} \equiv \overline{\mathcal{F}}_{i} \bmod Y$ for any $i=2, \ldots, m$, we have

$$
\frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m+1}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m+1}, Y\right)} \simeq \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m+1}^{ \pm 1}, \tilde{Y}\right]}{\left(\tilde{\mathcal{F}}_{2}, \ldots, \tilde{\mathcal{F}}_{m}, \overline{\mathcal{G}}_{p}, \tilde{Y}\right)} \simeq \frac{D_{\alpha}}{\left(\overline{\mathcal{G}}_{p}\right)}\left[X_{m+1}^{ \pm 1}\right] \simeq k\left[X_{m+1}^{ \pm 1}\right]
$$

and the isomorphisms take $X_{m+1} \mapsto X_{m+1}$, as required.
Proposition 3.4.11 With the notation above, there is an injective homomorphism

$$
R_{\gamma}:=\frac{A_{m+1}[Y]}{\mathfrak{a}_{\gamma}} \hookrightarrow k\left(X_{m+1}, Y\right)
$$

taking $X_{m+1} \mapsto X_{m+1}$ and $Y \mapsto Y$. Furthermore, $Y R_{\gamma}$ is prime ideal.
Proof. Lemma 3.4 .10 shows $Y R_{\gamma}$ is a prime ideal as $R_{\gamma} /(Y) \simeq k\left[X_{m+1}^{ \pm 1}\right]$ is an integral domain. From (3.7) we have

$$
\frac{A_{m+1}[Y]}{\mathfrak{a}_{\gamma}} \rightarrow \frac{A_{m+1}\left[Y^{ \pm 1}\right]}{\mathfrak{a}_{\gamma}} \hookrightarrow k\left(X_{m+1}, Y\right)
$$

taking $X_{m+1} \mapsto X_{m+1}$ and $Y \mapsto Y$. Therefore it suffices to show that the ideal \mathfrak{a}_{γ} of $A_{m+1}[Y]$ equals its saturation $\mathfrak{a}_{\gamma}: Y^{\infty}$ with respect to Y. Suppose not. Consider the primary decomposition of \mathfrak{a}_{γ},

$$
\mathfrak{a}_{\gamma}=\mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{s}, \quad \mathfrak{p}_{i}=\sqrt{\mathfrak{q}_{i}} .
$$

Recall that the primary decomposition of $\mathfrak{a}_{\gamma}: Y^{\infty}$ consists of all the \mathfrak{q}_{i} 's which do not contain any power of Y. Hence there exists some $i=1, \ldots, s$ such that $\mathfrak{p}_{i} \supseteq(Y)+\mathfrak{a}_{\gamma}$. Moreover, we can choose i such that \mathfrak{p}_{i} is a minimal prime ideal over \mathfrak{a}_{γ}, i.e. $\mathfrak{p}_{i} \in \operatorname{Min}\left(\mathfrak{a}_{\gamma}\right)$. Then, by Krull's height theorem, the height of \mathfrak{p}_{i} is at most m (the number of generators of \mathfrak{a}_{γ}), and so ht $\left((Y)+\mathfrak{a}_{\gamma}\right) \leq m$. But

$$
\operatorname{dim} \frac{A_{m+1}[Y]}{(Y)+\mathfrak{a}_{\gamma}}=1
$$

by Lemma 3.4.10. This gives a contradiction, since

$$
\operatorname{ht}\left((Y)+\mathfrak{a}_{\gamma}\right)+\operatorname{dim} \frac{A_{m+1}[Y]}{(Y)+\mathfrak{a}_{\gamma}}=\operatorname{dim} A_{m+1}[Y]=m+2,
$$

from the regularity of $A_{m+1}[Y]$.

Proposition 3.4.12 Let $\beta \in \mathbb{Z}_{+}^{2}$ and $\gamma=\beta \circ_{g_{p}} \alpha$ as above. Then

$$
C_{\gamma}=\operatorname{Spec} \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m+1}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{\gamma}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{m+1}\right)}
$$

Proof. The isomorphism in (3.6) implies that $C_{0, \gamma} \simeq \operatorname{Spec} \frac{A_{m+1}\left[Y^{ \pm 1}\right]}{\left(\mathcal{F}_{\gamma}\right)+\mathfrak{a}_{\gamma}}$ via M_{γ}. Then from the definition of C_{γ}, it suffices to show that Y is a regular element of $R_{\gamma} /\left(\mathcal{F}_{\gamma}\right)$, where $R_{\gamma}=A_{m+1}[Y] / a_{\gamma}$. From Proposition 3.4.11 there is an injective homomorphism $R_{\gamma} \hookrightarrow k\left(X_{m+1}, Y\right)$, taking $X_{m+1} \mapsto X_{m+1}$ and $Y \mapsto Y$. Moreover, $Y R_{\gamma}$ is a prime ideal. Therefore if Y is a zero-divisor of $R_{\gamma} /\left(\mathcal{F}_{\gamma}\right)$ then $\mathcal{F}_{\gamma} \in Y R_{\gamma}$, as R_{γ} is an integral domain. But this is not possible as Y is not invertible in R_{γ} and we chose \mathcal{F}_{γ} such that $\operatorname{ord}_{Y}\left(\mathcal{F}_{\gamma}\right)=0$. Thus Y is a regular element of $R_{\gamma} /\left(\mathcal{F}_{\gamma}\right)$.

Notation 3.4.13 Let $\gamma=\beta \circ_{g_{p}} \alpha$, with $\beta \in \mathbb{Z}_{+}^{2}$ primitive. We have defined:

- $\mathfrak{a}_{\gamma}=\left(\mathcal{F}_{2}, \ldots, \mathcal{F}_{m+1}\right)$ and $M_{\gamma}=\left(M_{\beta} \oplus I_{m}\right) \cdot M_{\alpha_{p}}$ for some matrix M_{β} attached to β;
- $j_{\gamma}=m+1, R_{\gamma}=k\left[X_{1}^{ \pm 1}, \ldots, X_{m+1}^{ \pm 1}, Y\right] / \mathfrak{a}_{\gamma} ;$
- $\mathcal{F}_{\gamma} \in k\left[X_{m+1}, Y\right]$, with $Y \nmid \mathcal{F}_{\gamma}$, satisfying $\mathcal{F}_{\alpha, p} \stackrel{M_{\beta}}{=} X_{m+1}^{*} Y^{*} \cdot \mathcal{F}_{\gamma}$, and $\left.f\right|_{\gamma} \in k\left[X_{m+1}\right]$ given by $\left.f\right|_{\gamma}\left(X_{m+1}\right)=\mathcal{F}_{\gamma}\left(X_{m+1}, 0\right)$.

With the notation above, γ satisfies the properties (a), (b), (c) of 3.3 .1 by (3.6) and Propositions 3.4.11, 3.4.12.

Define $\overline{\mathcal{G}}_{S_{n}} \in k\left[X_{j_{\alpha}}\right], \tilde{\mathcal{G}_{S_{n}}} \in k\left[X_{j_{\alpha}}, \tilde{Y}\right]$ and $g_{S_{n}} \in k\left[x_{1}, \ldots, x_{m}, y\right]$ by

$$
\overline{\mathcal{G}}_{S_{n}}=\prod_{p \in S_{n}} \overline{\mathcal{G}}_{p}, \quad \tilde{\mathcal{G}}_{S_{n}}=\prod_{p \in S_{n}} \tilde{\mathcal{G}}_{p}, \quad g_{S_{n}}=\prod_{p \in S_{n}} g_{p}
$$

Then $\tilde{\mathcal{G}}_{S_{n}} \equiv \overline{\mathcal{G}}_{S_{n}} \bmod \tilde{Y}$ and $g_{S_{n}}$ is related to $\tilde{\mathcal{G}}_{S_{n}}$ by M_{α}, i.e. $x_{1}^{*} \cdots x_{m}^{*} y^{*} \cdot g_{S_{n}}=\tilde{\mathcal{G}}_{S_{n}}$ via M_{α}. Define $\tilde{\alpha}=(0,1) \circ_{g_{S_{n}}} \alpha$. Analogously to what we did for α_{p} in Remark 3.4.8, we can uniquely construct a
matrix $M_{\tilde{\alpha}} \in \mathrm{SL}_{m+2}(\mathbb{Z})$ attached to $(0,1) \circ_{g_{S_{n}}} v$ in such a way that the change of variables given by $M_{\tilde{\alpha}}$ restricts to the change of variables given by M_{α} on $\left(x_{1}, \ldots, x_{m}, y\right)$ and

$$
x_{m+1}-g_{S_{n}}=X_{1}^{*} \cdots X_{m}^{*} \tilde{Y}^{\operatorname{ord}_{v}\left(g_{S_{n}}\right)}\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{S_{n}}\right) \quad \text { via } M_{\tilde{\alpha}}
$$

In particular, denoting by $g_{m+1} \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ the unique polynomial such that $g_{m+1} \equiv g_{S_{n}}$ $\bmod \left(f_{2}, \ldots, f_{m}\right)$ one has

$$
\begin{equation*}
\frac{k\left[x_{1}^{ \pm 1}, \ldots, x_{m+1}^{ \pm 1}, y^{ \pm 1}\right]}{\left(f_{2}, \ldots, f_{m}, x_{m+1}-g_{m+1}\right)} \stackrel{M_{\tilde{\alpha}}}{=} \frac{A_{m}\left[X_{m+1}^{ \pm 1}, \tilde{Y}^{ \pm 1}\right]}{\mathfrak{a}_{\alpha}+\left(X_{m+1}-\tilde{\mathcal{G}}_{S_{n}}\right)} \hookrightarrow k\left(X_{j_{\alpha}}, \tilde{Y}\right) . \tag{3.8}
\end{equation*}
$$

Remark 3.4.14. The construction of $M_{\tilde{\alpha}}$ is given by Remark 3.4 .8 by replacing $M_{\alpha_{p}}$ with $M_{\tilde{\alpha}}, g_{p}$ with $g_{S_{n}}$, and $\tilde{\mathcal{G}}_{p}$ with $\tilde{\mathcal{G}}_{S_{n}}$.

Lemma 3.4.15 With the notation above

$$
C_{\tilde{\alpha}}=\operatorname{Spec} \frac{k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, X_{m+1}^{ \pm 1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha}, \tilde{\mathcal{F}}_{2}, \ldots, \tilde{\mathcal{F}}_{m}, X_{m+1}-\tilde{\mathcal{G}}_{S_{n}}\right)}
$$

Moreover, $C_{0, \tilde{\alpha}}$ is dense in C_{0}, i.e. $\tilde{\alpha} \in \Omega$, and for any $p \in S_{n}$ the birational maps $s_{\tilde{\alpha} \alpha}, s_{\tilde{\alpha} \alpha_{p}}, s_{\alpha_{p} \alpha}$ induce a commutative diagram of open immersions

where $s_{\tilde{\alpha} \alpha}$ has image $D\left(\tilde{\mathcal{G}}_{S_{n}}\right) \subset C_{\alpha}$. Finally, $s_{\tilde{\alpha} \alpha}$ induces $\bar{C}_{\tilde{\alpha}} \simeq \bar{C}_{\alpha} \backslash S_{n}$.
Proof. First note that $C_{0, \tilde{\alpha}}=\bigcap_{p \in S_{n}} C_{0, \alpha_{p}}$. Then $C_{0, \tilde{\alpha}}$ is a dense open of C_{0} by Lemma 3.4.9. The ring homomorphism

$$
A_{\alpha_{p}}:=\frac{A_{m}\left[\tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha}, \tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)+\mathfrak{a}_{\alpha}} \simeq \frac{R_{\alpha}\left[\tilde{\mathcal{G}}_{p}^{-1}\right]}{\left(\mathcal{F}_{\alpha}\right)} \rightarrow \frac{R_{\alpha}\left[\tilde{\mathcal{G}}_{\mathcal{S}_{n}}^{-1}\right]}{\left(\mathcal{F}_{\alpha}\right)} \simeq \frac{A_{m}\left[X_{m+1}^{ \pm 1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha}, X_{m+1}-\tilde{\mathcal{G}}_{S_{n}}\right)+\mathfrak{a}_{\alpha}}=: A_{\tilde{\alpha}}
$$

is injective by Lemma 3.4.6 and induces the birational map $s_{\tilde{\alpha} \alpha_{p}}$ if $\operatorname{Spec} A_{\tilde{\alpha}}=C_{\tilde{\alpha}}$ from (3.3) and (3.8). Since \tilde{Y} is a regular element of $A_{\alpha_{p}}$ by Lemma 3.4.9, then \tilde{Y} is a regular element of $A_{\tilde{\alpha}}$. This proves $C_{\tilde{\alpha}}=\operatorname{Spec} A_{\tilde{\alpha}}$ by definition of $C_{\tilde{\alpha}}$ and gives the required commutative diagram again by Lemma 3.4.9.

Notation 3.4.16 Define

- $\mathfrak{a}_{\tilde{\alpha}}=\mathfrak{a}_{\alpha}+\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{S_{n}}\right) \subset k\left[X_{1}^{ \pm 1}, \ldots, X_{m}^{ \pm 1}, \tilde{X}_{m+1}^{ \pm 1}, \tilde{Y}\right]$ and $M_{\tilde{\alpha}}$ as described in Remark 3.4.14;
- $j_{\tilde{\alpha}}=j_{\alpha}, R_{\tilde{\alpha}}=R_{\alpha}\left[\tilde{X}_{m+1}^{ \pm 1}\right] /\left(\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{S_{n}}\right)$ and $D_{\tilde{\alpha}}=D_{\alpha}\left[\overline{\mathcal{G}}_{S_{n}}^{-1}\right]$;
- $\mathcal{F}_{\tilde{\alpha}}=\mathcal{F}_{\alpha}$ and $\left.f\right|_{\tilde{\alpha}}=\left.f\right|_{\alpha}$.

With the notation above, $\tilde{\alpha}$ satisfies the properties (a), (b), (c) of 3.3.1.

Definition 3.4.17 For any $p \in S_{n}$ let

$$
\Sigma_{p}=\left\{\gamma=\beta \circ_{g_{p}} \alpha \mid \beta \in \mathbb{Z}_{+}^{2} \text { primitive, and } C_{0, \gamma} \subsetneq C_{\gamma}\right\} \subset \Omega
$$

and $\Sigma_{S_{n}}=\bigcup_{p \in S_{n}} \Sigma_{p}$. Define

$$
\hat{\Sigma}_{n}=\Sigma_{n} \backslash\{\alpha\}, \quad \tilde{\Sigma}_{n}=\hat{\Sigma}_{n} \cup\{\tilde{\alpha}\}, \quad \Sigma_{n+1}=\Sigma_{S_{n}} \cup \tilde{\Sigma}_{n}
$$

Recall that for any $\gamma, \gamma^{\prime} \in \Omega \sqcup\{0\}$ we have a canonical way to glue the curves $C_{\gamma}, C_{\gamma^{\prime}}$ through the birational maps $s_{\gamma \gamma^{\prime}}$. Then

$$
C_{n+1}=\bigcup_{\gamma \in \Sigma_{n+1}} C_{\gamma} \cup C_{0}
$$

We also define the following curves.

Definition 3.4.18 For any $p \in S_{n}$ define

$$
C_{p}:=\bigcup_{\gamma \in \Sigma_{p}} C_{\gamma}, \quad \hat{C}_{n}:=\bigcup_{\alpha^{\prime} \in \hat{\Sigma}_{n}} C_{\alpha^{\prime}}
$$

Then $C_{n+1}=\bigcup_{p \in S_{n}} C_{p} \cup C_{\tilde{\alpha}} \cup \hat{C}_{n} \cup C_{0}$.

3.4.3 The role of Newton polygons

Let $p \in S_{n}$. In this subsection we show that Newton polygons can be used to obtain an explicit description of the set Σ_{p}. We want to find all primitive vectors $\beta \in \mathbb{Z}_{+}^{2}$ such that $C_{0, \gamma} \subsetneq C_{\gamma}$, where $\gamma=\beta \circ_{g_{p}} \alpha$.

Let $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}_{+}^{2}$ be a primitive vector and let $\gamma=\beta \circ{ }_{g_{p}} \alpha$. Recall that $\left.f\right|_{\gamma}\left(X_{m+1}\right)=$ $\mathcal{F}_{\gamma}\left(X_{m+1}, 0\right)$. Hence $\left.f\right|_{\gamma} \neq 0$ since $Y \nmid \mathcal{F}_{\gamma}$. Note that $D_{\gamma}=k\left[X_{m+1}^{ \pm 1}\right]$ by Lemma 3.4.10. Therefore $C_{\gamma}=C_{0, \gamma}$ if and only if $\left.f\right|_{\gamma}$ is invertible in $k\left[X_{m+1}^{ \pm 1}\right]$. Since through the change of variables given by M_{β}

$$
\mathcal{F}_{\alpha, p}=X_{m+1}^{*} Y^{\operatorname{ord}_{\beta}\left(\mathcal{F}_{\alpha, p}\right)} \cdot \mathcal{F}_{\gamma}
$$

from the Newton polygon $\Delta_{\alpha, p}$ of $\mathcal{F}_{\alpha, p}$ one can see whether $\left.f\right|_{\gamma}$ is invertible in $k\left[X_{m+1}^{ \pm 1}\right]$ or not. Let $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ be the affine function defined by

$$
\phi(i, j)=\beta_{1} i+\beta_{2} j-\operatorname{ord}_{\beta}\left(\mathcal{F}_{\alpha, p}\right)
$$

Then $\left.f\right|_{\gamma}$ is not invertible in $k\left[X_{m+1}^{ \pm 1}\right]$ if and only if $\phi^{-1}(0) \cap \Delta_{\alpha, p}=$ edge. Thus Σ_{p} consists of all elements $\beta \circ_{g_{p}} \alpha$ such that $\beta \in \mathbb{Z}_{+}^{2}$ is the normal vector of some edge of $\Delta_{\alpha, p}$. All these elements are distinct as immediate consequence of Definition 3.2.3. Furthermore, note that this description shows that Σ_{p} is finite and non-empty as $\tilde{X}_{m+1} \mid \mathcal{F}_{\alpha, p}\left(\tilde{X}_{m+1}, 0\right)$ but $\tilde{X}_{m+1} \nmid \mathcal{F}_{\alpha, p}$.

Proposition 3.4.19 Let $\beta \in \mathbb{Z}_{+}^{2}$ be the normal vector of an edge ℓ of the Newton polygon $\Delta_{\alpha, p}$ of $\mathcal{F}_{\alpha, p}$. Let $\gamma=\beta \circ_{g_{p}} \alpha$. Expand $\mathcal{F}_{\alpha, p}=\sum_{i, j} c_{i j} \tilde{X}_{m+1}^{i} \tilde{Y}^{j}$, where $c_{i j} \in k$. Let $\left(i_{0}, j_{0}\right), \ldots,\left(i_{l}, j_{l}\right)$ be the points of $\ell \cap \mathbb{Z}^{2}$, ordered along ℓ counterclockwise with respect to $\Delta_{\alpha, p}$. Then

$$
\left.f\right|_{\gamma}=X_{m+1}^{d} \sum_{r=0}^{l} c_{i_{r} j_{r}} X_{m+1}^{r}
$$

for some $d \in \mathbb{N}$.

Proof. Let $\left(\delta_{1}, \delta_{2}\right)$ be the first row of M_{β}. It is easy to see that

$$
\left.f\right|_{\gamma}=\sum_{(i, j) \in \ell} c_{i j} X_{m+1}^{\delta_{1} i+\delta_{2} j+d^{\prime}} \quad \text { for some } d^{\prime} \in \mathbb{Z}
$$

with $\delta_{1} i+\delta_{2} j+d^{\prime} \geq 0$. Note that $\left(i_{r}, j_{r}\right)=\left(i_{0}, j_{0}\right)+r\left(\beta_{2},-\beta_{1}\right)$. Therefore, for $d=d^{\prime}+\left(\delta_{1} i_{0}+\delta_{2} j_{0}\right)$, the proposition follows since $\delta_{1} \beta_{2}-\delta_{2} \beta_{1}=1$.

3.4.4 Inductive construction of the morphisms

In this subsection we want to construct a birational morphism $s_{n}: C_{n+1} \rightarrow C_{n}$. In $\S 3.4 .5$ we will prove that s_{n} is proper with the exceptional locus $s_{n}^{-1}\left(S_{n} \cap \operatorname{Sing}\left(C_{n}\right)\right)$.

Remark 3.4.20. Let $p \in S_{n}$. Similarly to the classical case (Remark 3.4.3), for any $\gamma, \gamma^{\prime} \in \Sigma_{p}, \gamma \neq \gamma^{\prime}$, one has $C_{\gamma} \cap C_{\gamma^{\prime}}=C_{0, \gamma}$. More precisely, the birational map $s_{\gamma \gamma^{\prime}}: C_{\gamma^{--}} C_{\gamma^{\prime}}$ has domain of definition $C_{0, \gamma}$ giving an isomorphism $C_{0, \gamma} \rightarrow C_{0, \gamma^{\prime}}$.

Remark 3.4.21. Let $p \in S_{n}$. For any primitive vector $\beta \in \mathbb{Z}_{+}^{2}$, if $\gamma=\beta \circ_{g_{p}} \alpha$ then from (3.5) we obtain the homomorphism of rings

$$
\begin{equation*}
\frac{A_{m}[\tilde{Y}]}{\left(\mathcal{F}_{\alpha}\right)+\mathfrak{a}_{\alpha}} \simeq \frac{A_{m}\left[\tilde{X}_{m+1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha}, \tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p}\right)+\mathfrak{a}_{\alpha}} \xrightarrow{I_{m} \oplus M_{\beta}} \frac{A_{m+1}[Y]}{\left(\mathcal{F}_{\gamma}\right)+\mathfrak{a}_{\gamma}} \tag{3.9}
\end{equation*}
$$

that induces a birational morphism $C_{\gamma} \rightarrow C_{\alpha}$. In fact, from the definition of M_{γ} we see that it agrees with $s_{\gamma \alpha}: C_{\gamma^{--}} C_{\alpha}$ as rational map.

Lemma 3.4.22 Let $p \in S_{n}$ and $\gamma=\beta \circ_{g_{p}} \alpha$ for some primitive $\beta \in \mathbb{Z}_{+}^{2}$. Then $s_{\gamma \alpha}: C_{\gamma} \rightarrow C_{\alpha}$ restricts to an isomorphism $C_{0, \gamma} \stackrel{\sim}{\longrightarrow} D\left(\tilde{\mathcal{G}}_{p}\right) \cap C_{0, \alpha} \subset C_{\alpha}$ and $s_{\gamma \alpha}\left(C_{\gamma} \backslash C_{0, \gamma}\right) \subseteq\{p\}$.

Proof. Let $\gamma=\beta \circ_{g_{p}} \alpha$ for some $\beta \in \mathbb{Z}_{+}^{2}$. The first part of the lemma follows from Remark 3.4.21 and (3.4). The morphism $s_{\gamma \alpha}$ is induced by the ring homomorphism taking $\tilde{Y} \mapsto X_{m+1}^{\delta_{2}} Y^{\beta_{2}}$, with $M_{\beta}=\left(\begin{array}{ll}\delta_{1} & \delta_{2} \\ \beta_{1} & \beta_{2}\end{array}\right)$. Recall

$$
C_{\gamma} \backslash C_{0, \gamma}=\bar{C}_{\gamma}=\{Y=0\} \subset C_{\gamma} .
$$

Since $\overline{\mathcal{G}}_{p} \equiv \mathcal{F}_{m+1} \bmod Y$, the morphism $s_{\gamma \alpha}$ takes \bar{C}_{γ} into the closed subscheme $\left\{\overline{\mathcal{G}}_{p}=0\right\}$ of \bar{C}_{α}. This concludes the proof as $\left\{\overline{\mathcal{G}}_{p}=0\right\}=\{p\}$.

Let $p \in S_{n}$. Considering p as a point of C_{α}, denote by $U_{\alpha, p}$ the open subscheme $D\left(\tilde{\mathcal{G}}_{p}\right) \cap C_{0, \alpha}$ of C_{α}. Recall that $C_{0, \alpha}$ is dense in C_{α} by definition. Hence Lemma 3.4.6 implies that $U_{\alpha, p}$ is dense. Let $C_{\alpha, p}=U_{\alpha, p} \cup\{p\}$ as subset of C_{α}. We want to show that $C_{\alpha, p}$ is dense and open in C_{α}. From the density of $U_{\alpha, p}$ it follows that $C_{\alpha, p}$ is dense and that $V_{p}:=C_{\alpha} \backslash U_{\alpha, p}$ is a finite set of closed points of C_{α}. Thus $C_{\alpha, p}$, complement of $V_{p} \backslash\{p\}$, is open in C_{α}.

Definition 3.4.23 For any $p \in S_{n}$ we define $C_{\alpha, p}$ to be the dense open subset $U_{\alpha, p} \cup\{p\}$ of C_{α}, equipped with the canonical structure of open subscheme.

Let $p \in S_{n}$. By Remark 3.4.20 and Lemma 3.4.22, the maps $s_{\gamma \alpha}: C_{\gamma} \rightarrow C_{\alpha}$, for $\gamma \in \Sigma_{p}$, glue to a $\operatorname{morphism} C_{p} \rightarrow C_{\alpha, p}$.

Definition 3.4.24 For any $p \in S_{n}$, define $s_{p}: C_{p} \rightarrow C_{\alpha, p}$ as the glueing of the morphisms $s_{\gamma \alpha}: C_{\gamma} \rightarrow C_{\alpha}$, for all $\gamma \in \Sigma_{p}$.

Lemma 3.4.25 The morphism $s_{p}: C_{p} \rightarrow C_{\alpha, p}$ is separated.
Proof. Consider the open immersion $\iota_{p}: C_{\alpha, p} \rightarrow C_{\alpha}$. By [Liu4, Proposition 3.3.9(e)] it suffices to prove that $\iota_{p} \circ s_{p}$ is separated. Since C_{α} is affine, we only have to show that C_{p} is separated over Spec k by [Liu4, Exercise 3.3.2]. Let $\Delta_{\alpha, p}$ be the Newton polygon of $\mathcal{F}_{\alpha, p}$. Recall from $\S 3.4 .3$ that

$$
C_{p}=\bigcup_{\beta} C_{\beta \circ_{g_{p}} \alpha} \quad \text { with } \quad C_{\gamma}=\operatorname{Spec} \frac{A_{m}\left[X_{m+1}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{\gamma}\right)+\mathfrak{a}_{\gamma}}, \quad \gamma=\beta \circ_{g_{p}} \alpha
$$

where β runs through all normal vectors in \mathbb{Z}_{+}^{2} of edges of $\Delta_{\alpha, p}$ and the curves $C_{\beta \circ_{g_{p}} \alpha}$ are glued along their common open $C_{0, \alpha_{p}}=C_{0, \beta \circ_{g_{p}} \alpha}$. To avoid confusion, if $\gamma=\beta \circ_{g_{p}} \alpha$, rename the variables X_{m+1}, Y of $\mathcal{O}_{C_{\gamma}}\left(C_{\gamma}\right)$ to X_{β}, Y_{β}. Since closed immersions are separated and separated morphisms are stable under base changes it suffices to prove that the toric variety $\cup_{\beta} \operatorname{Spec} k\left[X_{\beta}^{ \pm 1}, Y_{\beta}\right] \subset \mathbb{T}_{\Delta_{\alpha, p}}$ is separated. This follows from the classical theory on toric varieties.

Lemma 3.4.26 The morphism s_{p} induces an isomorphism $s_{p}^{-1}\left(U_{\alpha, p}\right) \rightarrow U_{\alpha, p}$. In particular, s_{p} is birational.

Proof. This result immediately follows from Lemma 3.4.22 as $\Sigma_{p} \neq \varnothing$.
Lemma 3.4.27 The morphism $s_{p}: C_{p} \rightarrow C_{\alpha, p}$ is proper.
Proof. By Lemma 3.4.25, the morpshism s_{p} is separated. We will then prove the lemma via the valuative criterion for properness. Let R be a discrete valuation ring with field of fractions K. We want to prove that any commutative diagram

can be filled in as shown. Let π be a uniformiser of R and let $\omega=(\pi)$ be the closed point of Spec R. Since $C_{\alpha, p}=U_{\alpha, p} \cup\{p\}$ and $s_{p}^{-1}\left(U_{\alpha, p}\right) \rightarrow U_{\alpha, p}$ is an isomorphism by Lemma 3.4.26, we can assume $p=t_{\alpha}(\omega)$. Indeed, if not, then s_{p}^{-1} is defined on the open dense neighbourhood $U_{\alpha, p}$ of $t_{\alpha}(\omega)$, that therefore contains the image of t_{α}. Moreover, t_{α} can be supposed not constant, otherwise Spec $R \rightarrow C_{p}$ can be defined as the constant morphism of image $t_{p}((0))$.

Recall that the injective homomorphism $R_{\alpha} \hookrightarrow k\left(X_{j_{\alpha}}, \tilde{Y}\right)$, given by 3.3.1(b), induces an open immersion $C_{\alpha} \hookrightarrow \operatorname{Spec}\left(k\left[X_{j \alpha}, \tilde{Y} Y_{\left(\mathcal{F}_{\alpha}\right)}\right)\right.$. In particular, the local ring $\mathcal{O}_{C_{\alpha}, p}$, equal to $\mathcal{O}_{C_{\alpha, p}, p}$, is naturally isomorphic to the localisation of $k\left[X_{j_{\alpha}}, \tilde{Y}\right] /\left(\mathcal{F}_{\alpha}\right)$ at the prime ideal $\left(\tilde{\mathcal{G}}_{p}, \tilde{Y}\right)=\left(\overline{\mathcal{G}}_{p}, \tilde{Y}\right)$. From the local homomorphism

$$
\tau: \frac{k\left[X_{j \alpha}, \tilde{Y}_{\left(\tilde{\mathcal{G}}_{p}, \tilde{Y}\right)}\right.}{\left(\mathcal{F}_{\alpha}\right)} \simeq \mathcal{O}_{C_{\alpha, p}, p} \xrightarrow{t_{\alpha, \omega}^{t}} R
$$

we observe that $\operatorname{ord}_{\pi}\left(\tilde{\mathcal{G}}_{p}\right)>0, \operatorname{ord}_{\pi}(\tilde{Y})>0$. We want to show that neither \tilde{Y} nor $\tilde{\mathcal{G}}_{p}$ are taken to 0 by τ. Note that $\operatorname{ker}(\tau) \subsetneq\left(\tilde{\mathcal{G}}_{p}, \tilde{Y}\right)$, since t_{α} is not constant. Hence it suffices to prove that $\tau(\tilde{Y})=0$ if and only if $\tau\left(\tilde{\mathcal{G}}_{p}\right)=0$.

Suppose $\tau(\tilde{Y})=0$. Then $\tau\left(\left.f\right|_{\alpha}\right)=0$ and $\tau\left(\tilde{\mathcal{G}}_{p}\right)=\tau\left(\overline{\mathcal{G}}_{p}\right)$. Recall that $\overline{\mathcal{G}}_{p}$ is a factor of $\left.f\right|_{\alpha}$. Let $h_{p} \in k\left[X_{j_{\alpha}}\right]$ with $\overline{\mathcal{G}}_{p} \nmid h_{p}$ such that $\left.f\right|_{\alpha}=h_{p} \cdot\left(\overline{\mathcal{G}}_{p}\right)^{m_{p}}$, for some $m_{p} \in \mathbb{Z}_{+}$. Note that $\tau\left(h_{p}\right)$ is invertible as $h_{p} \notin\left(\tilde{\mathcal{G}}_{p}, \tilde{Y}\right)$. Since $\tau\left(\left.f\right|_{\alpha}\right)=0$ and R is reduced, it follows that $\tau\left(\tilde{\mathcal{G}}_{p}\right)=0$.

Suppose $\tau\left(\tilde{\mathcal{G}}_{p}\right)=0$. Let $\mathcal{H}_{p} \in k[\tilde{Y}]$ be the normal form of \mathcal{F}_{α} by $\tilde{\mathcal{G}}_{p}$ with respect to the lexicographic order on $k\left[X_{j_{\alpha}}, \tilde{Y}\right]$ given by $X_{j_{\alpha}}>\tilde{Y}$. Note that $\tau\left(\mathcal{H}_{p}\right)=0$ as $\tau\left(\mathcal{F}_{\alpha}\right)=0$, but $\mathcal{H}_{p} \neq 0$ as $\tilde{\mathcal{G}}_{p} \nmid \mathcal{F}_{\alpha}$. Recall that $\tilde{\mathcal{G}}_{p}-\overline{\mathcal{G}}_{p} \in \tilde{Y} k[\tilde{Y}]$. Since $\overline{\mathcal{G}}_{p}$ is a degree 1 factor of $\left.f\right|_{\alpha}$ and $\mathcal{F}_{\alpha}-\left.f\right|_{\alpha} \in(\tilde{Y})$, one has $\mathcal{H}_{p} \in \tilde{Y} k[\tilde{Y}]$. Write $\mathcal{H}_{p}=\tilde{Y}^{t} \cdot \mathcal{H}$, for $t \in \mathbb{Z}_{+}$and $\mathcal{H} \notin \tilde{Y} k[\tilde{Y}]$. Note that $\tau(\mathcal{H})$ is invertible as $\mathcal{H} \notin\left(\tilde{\mathcal{G}}_{p}, \tilde{Y}\right)$. It follows that $\tau(\tilde{Y})=0$ since R is reduced and $\tau\left(\mathcal{H}_{p}\right)=0$.

Hence $\operatorname{ord}_{\pi}\left(\tilde{\mathcal{G}}_{p}\right), \operatorname{ord}_{\pi}(\tilde{Y}) \in \mathbb{Z}_{+}$and so the affine function

$$
\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}, \quad(i, j) \mapsto \operatorname{ord}_{\pi} \tilde{\mathcal{G}}_{p}^{i} \tilde{Y}^{j}
$$

is a non-trivial linear map with a rank 1 kernel spanned by some primitive vector $\left(\beta_{2},-\beta_{1}\right) \in$ $\mathbb{Z}_{+} \times \mathbb{Z}_{-} . \operatorname{Set} \beta=\left(\beta_{1}, \beta_{2}\right)$ and $\gamma=\beta \circ \circ_{g_{p}} \alpha$. Then

$$
C_{\gamma}=\operatorname{Spec} \frac{A_{m+1}[Y]}{\left(\mathcal{F}_{\gamma}\right)+\mathfrak{a}_{\gamma}}
$$

and $C_{\gamma} \subset C_{p}$ from the definition of C_{p} (also when $\gamma \notin \Sigma_{p}$). Hence

where the ring homomorphism on the right, inducing the map

$$
s_{\gamma \alpha}: C_{\gamma} \xrightarrow{s_{p}} C_{\alpha, p} \hookrightarrow C_{\alpha},
$$

is given by $\tilde{Y} \mapsto X_{m+1}^{\delta_{2}} Y^{\beta_{2}}$ for $M_{\beta}=\binom{\delta_{1} \delta_{2}}{\beta_{1} \beta_{2}} \in \mathrm{SL}_{2}(\mathbb{Z})$. To conclude the proof it suffices to show that the commutative diagram (3.10) can be filled in as shown. Recall

$$
\mathcal{F}_{m+1}=X_{m+1}^{\delta_{1}} Y^{\beta_{1}}-\mathcal{G}_{p} \in \mathfrak{a}_{\gamma}
$$

Then

$$
\operatorname{ord}_{\pi}\left(X_{m+1}\right)=\operatorname{ord}_{\pi}\left(\tilde{\mathcal{G}}_{p}^{\beta_{2}} \tilde{Y}^{-\beta_{1}}\right)=\phi\left(\left(\beta_{2},-\beta_{1}\right)\right)=0
$$

and so $\operatorname{ord}_{\pi}(Y)>0$ as $\beta \in \mathbb{Z}_{+}^{2}$. Thus (3.10) can be filled in as shown.
Lemma 3.4.28 If $p \in S_{n}$ is a regular point of C_{n}, then s_{p} is an isomorphism.
Proof. As p is a regular point of codimension 1, the ring $\mathcal{O}_{C_{\alpha, p}, p}$ is normal. Therefore there exists a normal integral open subscheme $U \subseteq C_{\alpha, p}$ containing p. Since s_{p} is proper birational by Lemma 3.4.27, then so is $s_{U}: s_{p}^{-1}(U) \rightarrow U$. In particular, $s_{p}^{-1}(U)$ is integral. It follows from [Liu4, Corollary 4.4.3]) that s_{U} is an isomorphism. Thus s_{p} is an isomorphism, since $s_{p}^{-1}\left(U_{\alpha, p}\right) \rightarrow U_{\alpha, p}$ is an isomorphism by Lemma 3.4.26.

Proposition 3.4.29 For any $\gamma \in \Sigma_{n+1}$, the curve $C_{0, \gamma}$ is dense in C_{n+1}.
Proof. For any $\gamma \in \Sigma_{n+1}$ recall that $C_{0, \gamma}$ is dense in its closure C_{γ}. Therefore $C_{0}=\bigcup_{\gamma \in \Sigma_{n+1}} C_{0, \gamma} \cup C_{0}$ is dense in $C_{n+1}=\bigcup_{\gamma \in \Sigma_{n+1}} C_{\gamma} \cup C_{0}$. Fix $\gamma \in \Sigma_{n+1}$. It suffices to show that $C_{0, \gamma}$ is dense C_{0}. But this holds as $\gamma \in \Omega$.

Definition 3.4.30 Define a surjective function $\psi_{n}: \Sigma_{n+1} \sqcup\{0\} \rightarrow \Sigma_{n} \sqcup\{0\}$ by $\psi_{n}(0)=0,\left.\psi_{n}\right|_{\hat{\Sigma}_{n}}=$ $i d_{\hat{\Sigma}_{n}}, \psi_{n}\left(\Sigma_{n+1} \backslash \hat{\Sigma}_{n}\right)=\{\alpha\}$.

Let $\gamma \in \Sigma_{n+1} \sqcup\{0\}$ and denote $\alpha_{\gamma}=\psi_{n}(\gamma)$. Then the birational map $s_{\gamma \alpha_{\gamma}}$ has domain of definition C_{γ}. Indeed, it is trivial when $\gamma=0$ or $\gamma \in \hat{\Sigma}_{n}$ while it follows from Remark 3.4.21 if $\gamma \in \Sigma_{S_{n}}$ and from Lemma 3.4.15 if $\gamma=\tilde{\alpha}$.

Theorem 3.4.31 There exists a unique morphism $s_{n}: C_{n+1} \rightarrow C_{n}$ extending the birational maps $s_{\gamma^{\prime} \alpha^{\prime}}: C_{\gamma^{\prime}--\rightarrow} C_{\alpha^{\prime}}$ for $\gamma^{\prime} \in \Sigma_{n+1} \sqcup\{0\}, \alpha^{\prime} \in \Sigma_{n} \sqcup\{0\}$. In particular,

$$
\left.s_{n}\right|_{C_{0}}: C_{0} \xrightarrow{i d} C_{0} \subseteq C_{n},\left.\quad s_{n}\right|_{\hat{C}_{n}}: \hat{C}_{n} \xrightarrow{i d} \hat{C}_{n} \subseteq C_{n}
$$

and $\left.s_{n}\right|_{C_{p}}: C_{p} \xrightarrow{s_{p}} C_{\alpha, p} \subseteq C_{n}$, for any $p \in S_{n}$.
Proof. For any $\gamma \in \Sigma_{n+1} \sqcup\{0\}$ let $\alpha_{\gamma}=\psi_{n}(\gamma)$. We observed that the birational maps $s_{\gamma \alpha_{\gamma}}$ have domain of definition C_{γ}, and so define morphisms

$$
s_{\gamma}: C_{\gamma} \xrightarrow{s_{\gamma \alpha_{\gamma}}} C_{\alpha_{\gamma}} \subseteq C_{n} .
$$

Note that $\left.s_{\gamma}\right|_{C_{0, \gamma}}$ is an open immersion. This fact is trivial when $\gamma \in \hat{\Sigma}_{n} \sqcup\{0\}$ and follows from Lemmas 3.4.15 and 3.4.22 otherwise.

Recall the definition of the dense open $U_{\gamma \gamma^{\prime}}$ of C_{γ} for any $\gamma, \gamma^{\prime} \in \Omega \sqcup\{0\}$. We want to show that for any $\gamma, \gamma^{\prime} \in \Sigma_{n+1} \sqcup\{0\}$ and any $\alpha^{\prime} \in \Sigma_{n} \sqcup\{0\}$ the maps s_{γ} and $s_{\gamma^{\prime} \alpha^{\prime}}: C_{\gamma^{\prime}-\rightarrow} C_{\alpha^{\prime}} \subseteq C_{n}$ agree on the intersection of their domains of definition. Let D be the domain of definition of $s_{\gamma^{\prime} \alpha^{\prime}}$. Then $D \supseteq U_{\gamma^{\prime} \alpha^{\prime}}$. Let $U=D \cap C_{\gamma} \subseteq C_{n+1}$ and $U_{0}=C_{0, \gamma} \cap C_{0, \gamma^{\prime}} \cap C_{0, \alpha^{\prime}}$. Since $C_{0, \gamma^{\prime}} \cap C_{0, \alpha^{\prime}} \subseteq U_{\gamma^{\prime} \alpha^{\prime}}$, one has $U_{0} \subseteq D$. Hence U_{0} is an open of U, dense by Proposition 3.4.29. Now, U is reduced, C_{n} is separated and $\left.s_{\gamma}\right|_{U_{0}}=\left.s_{\gamma^{\prime} \alpha^{\prime}}\right|_{U_{0}}$ by definition. Therefore [Liu4, Proposition 3.3.11] implies the two maps coincide on U, as required.

Thus the morphisms s_{γ} glue to a morphism $s_{n}: C_{n+1} \rightarrow C_{n}$ and s_{n} extends the birational maps $s_{\gamma^{\prime} \alpha^{\prime}}: C_{\gamma^{--}} C_{\alpha^{\prime}}$ for $\gamma^{\prime} \in \Sigma_{n+1} \sqcup\{0\}, \alpha^{\prime} \in \Sigma_{n} \sqcup\{0\}$. Then the uniqueness follows.

Definition 3.4.32 Define $s_{n}: C_{n+1} \rightarrow C_{n}$ to be the birational morphism of k-schemes of Theorem 3.4.31. We call s_{n} the morphism resolving S_{n} (although $s_{n}^{-1}\left(S_{n}\right)$ is not necessarily non-singular).

Remark 3.4.33. Let $\gamma, \gamma^{\prime} \in \Sigma_{n+1} \sqcup\{0\}$ and $\alpha^{\prime} \in \Sigma_{n} \sqcup\{0\}$. Suppose there exist open subschemes $V_{\alpha^{\prime}} \subseteq C_{\alpha^{\prime}}, U_{\gamma} \subseteq C_{\gamma}, U_{\gamma^{\prime}} \subseteq C_{\gamma^{\prime}}$ such that s_{n} restricts to isomorphisms $U_{\gamma} \rightarrow V_{\alpha^{\prime}}, U_{\gamma^{\prime}} \rightarrow V_{\alpha^{\prime}}$. Since s_{n} extends the rational maps $s_{\gamma \alpha^{\prime}}, s_{\gamma^{\prime} \alpha^{\prime}}$, the map $s_{\gamma \gamma^{\prime}}$ is defined on U_{γ} and induces an isomorphism $U_{\gamma} \rightarrow U_{\gamma^{\prime}}$. This implies that the opens $U_{\gamma}, U_{\gamma^{\prime}}$ are glued, and so are equal in C_{n+1}.

It follows that if U_{1}, U_{2} are opens of C_{n+1} such that $\left.s_{n}\right|_{U_{1}}$ and $\left.s_{n}\right|_{U_{2}}$ are open immersions, then $\left.s_{n}\right|_{U_{1} \cup U_{2}}$ is an open immersion.

3.4.5 Geometric properties

In this subsection we will show that Σ_{n+1} and C_{n+1} satisfy all remaining properties of 3.3.1, i.e. C_{n} is a projective curve and $C_{\gamma} \cap C_{\gamma^{\prime}}=C_{0, \gamma} \cap C_{0, \gamma^{\prime}}$ for any $\gamma, \gamma \in \Sigma_{n+1} \sqcup\{0\}, \gamma \neq \gamma^{\prime}$. Furthermore, we will prove that the morphism s_{n} defined in Theorem 3.4.31, is a proper birational morphism with exceptional locus $s_{n}^{-1}\left(S_{n} \cap \operatorname{Sing}\left(C_{n}\right)\right)$.

Consider the principal open $D\left(\tilde{\mathcal{G}}_{S_{n}}\right) \subset C_{\alpha}$. Note that

$$
\begin{equation*}
\mathcal{U}=\left\{C_{\alpha^{\prime}} \mid \alpha^{\prime} \in \hat{\Sigma}_{n}\right\} \cup\left\{C_{0}\right\} \cup\left\{C_{\alpha, p} \mid p \in S_{n}\right\} \cup\left\{D\left(\tilde{\mathcal{G}}_{S_{n}}\right)\right\} \tag{3.11}
\end{equation*}
$$

is an open cover of C_{n}.
Lemma 3.4.34 The morphism $s_{n}: C_{n+1} \rightarrow C_{n}$ is surjective.
Proof. We want to show that every open in the cover (3.11) is contained in the image of s_{n}. Recall $s_{\tilde{\alpha} \alpha}\left(C_{\tilde{\alpha}}\right)=D\left(\tilde{\mathcal{G}}_{S_{n}}\right)$ by Lemma 3.4.15. Moreover, the morphism $s_{p}: C_{p} \rightarrow C_{\alpha, p}$ is surjective by Lemma 3.4.22 as $\Sigma_{p} \neq \varnothing$. Then the lemma follows from Theorem 3.4.31.

Lemma 3.4.35 For any $p \in S_{n}$, we have

$$
s_{n}^{-1}(p)=C_{p} \backslash C_{0, \alpha_{p}}, \quad \text { and } \quad s_{n}^{-1}\left(C_{\alpha, p}\right)=C_{p}
$$

Furthermore, the morphism $s_{n}^{-1}\left(C_{n} \backslash S_{n}\right) \rightarrow C_{n} \backslash S_{n}$ induced by s_{n} is an isomorphism.

Proof. Let $p \in S_{n}$. Lemma 3.4 .22 shows that

$$
s_{p}^{-1}(p)=\bigcup_{\gamma \in \Sigma_{p}}\left(C_{\gamma} \backslash C_{0, \gamma}\right)=C_{p} \backslash C_{0, \alpha_{p}},
$$

where the last equality holds as $C_{0, \gamma}=C_{0, \alpha_{p}}$ for all $\gamma \in \Sigma_{p}$. Moreover, $p \notin s_{n}\left(C_{q}\right)$ for any $q \in S_{n}$, $q \neq p$, and also $p \notin s_{n}\left(C_{\tilde{\alpha}}\right)$ by Lemma 3.4.15. Recall $p \notin C_{0}$. In particular, $p \notin C_{\alpha^{\prime}}$ for any $\alpha^{\prime} \in \hat{\Sigma}_{n}$, since $C_{\alpha} \cap C_{\alpha^{\prime}} \subseteq C_{0}$ (from our assumptions on C_{n}). Then $s_{n}^{-1}(p)=s_{p}^{-1}(p)$ by Theorem 3.4.31.

Let $U_{S_{n}}=C_{n} \backslash S_{n}$. We want to show that $s_{n}^{-1}\left(U_{S_{n}}\right) \rightarrow U_{S_{n}}$ is an isomorphism. From above

$$
s_{n}^{-1}\left(U_{S_{n}}\right)=\hat{C}_{n} \cup C_{0} \cup C_{\tilde{\alpha}},
$$

as $C_{0, \gamma} \subseteq C_{0}$ for any $\gamma \in \Sigma_{S_{n}}$. Note that $s_{n}\left|\hat{C}_{n}, s_{n}\right| C_{0}$ and $s_{n} \mid C_{\tilde{\alpha}}$ are open immersions by Theorem 3.4.31. Thus $s_{n}^{-1}\left(U_{S_{n}}\right) \rightarrow U_{S_{n}}$ is an isomorphism from Remark 3.4.33 and Lemma 3.4.34.

Recall that $C_{\alpha, p} \backslash\{p\}=U_{\alpha, p} \subseteq U_{S_{n}}$ and $s_{p}^{-1}\left(U_{\alpha, p}\right)=C_{0, \alpha_{p}}$ by Lemma 3.4.22. Moreover, s_{p} induces an isomorphism $C_{0, \alpha_{p}} \rightarrow U_{\alpha, p}$ by Lemma 3.4.26. Since $s_{n}^{-1}\left(U_{S_{n}}\right) \rightarrow U_{S_{n}}$ is an isomorphism, $s_{n}^{-1}\left(C_{\alpha, p}\right)=s_{p}^{-1}\left(C_{\alpha, p}\right)=C_{p}$.

Theorem 3.4.36 The morphism $s_{n}: C_{n+1} \rightarrow C_{n}$ resolving $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$ is a surjective proper birational morphism with exceptional locus contained in $s_{n}^{-1}\left(S_{n}\right)$. In particular, the curve C_{n+1} is projective.

Proof. First recall s_{n} is surjective by Lemma 3.4.34. Consider the open cover \mathcal{U} of C_{n} introduced in (3.11). As properness is a local property on the codomain, if $s_{n}^{-1}(U) \rightarrow U$ is proper for any $U \in \mathcal{U}$, then s_{n} is proper. Lemma 3.4.35 implies that $s_{n}^{-1}(U) \rightarrow U$ is an isomorphism except when $U=C_{\alpha, p}$ for some $p \in S_{n}$. But $s_{n}^{-1}\left(C_{\alpha, p}\right)=C_{p}$ for any $p \in S_{n}$ again by Lemma 3.4.35. Hence Lemma 3.4.27 implies that s_{n} is proper. It follows that the curve C_{n+1} is complete, and then projective, since so is C_{n}.

Proposition 3.4.29 implies that C_{0} is dense in C_{n+1}. Let $U_{S_{n}}=C_{n} \backslash S_{n}$, dense in C_{n}. Since $C_{0} \subseteq s_{n}^{-1}\left(U_{S_{n}}\right)$, the isomorphism $s_{n}^{-1}\left(U_{S_{n}}\right) \rightarrow U_{S_{n}}$ implies that s_{n} is birational with exceptional locus contained in $s_{n}^{-1}\left(S_{n}\right)$.

Lemma 3.4.37 Let $s_{n}: C_{n+1} \rightarrow C_{n}$ be the morphism resolving $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Let $p \in S_{n}$. Then $p \in \operatorname{Reg}\left(C_{n}\right)$ if and only if the exceptional locus of s_{n} is contained in $s_{n}^{-1}\left(S_{n} \backslash\{p\}\right)$. In that case, \bar{C}_{γ} is regular for all $\gamma \in \Sigma_{p}$.

Proof. If $p \in \operatorname{Reg}\left(C_{n}\right)$ then $s_{p}: C_{p} \rightarrow C_{\alpha, p}$ is an isomorphism by Lemma 3.4.28. Then the exceptional locus of s_{n} is contained in $s_{n}^{-1}\left(S_{n} \backslash\{p\}\right)$ by Lemma 3.4.35 and Theorem 3.4.31.

Suppose the exceptional locus of s_{n} is contained in $s_{n}^{-1}\left(S_{n} \backslash\{p\}\right)$. In particular, there exists an open neighbourhood U of p such that $s_{n}^{-1}(U) \rightarrow U$ is an isomorphism. This implies that $s_{p}: C_{p} \rightarrow C_{\alpha, p}$ is an isomorphism by Theorem 3.4.31 and Lemma 3.4.35. Recall $\Sigma_{p} \neq \varnothing$. Let $\gamma \in \Sigma_{p}$ so that $\gamma=\beta \circ \circ_{g_{p}} \alpha$ with $\beta \in \mathbb{Z}_{+}^{2}$. As in §3.4.2, write

$$
C_{\alpha}=\operatorname{Spec} \frac{A_{m}[\tilde{Y}]}{\left(\mathcal{F}_{\alpha}\right)+\mathfrak{a}_{\alpha}}, \quad C_{\gamma}=\operatorname{Spec} \frac{A_{m}\left[X_{m+1}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{\gamma}\right)+\mathfrak{a}_{\gamma}}
$$

Consider the morphism $s_{\gamma \alpha}: C_{\gamma} \rightarrow C_{\alpha}$ induced by the ring homomorphism taking $\tilde{Y} \mapsto X_{m+1}^{\delta_{2}} Y^{\beta_{2}}$, where $\beta=\left(\beta_{1}, \beta_{2}\right)$ and $\delta_{1}, \delta_{2} \in \mathbb{Z}$ such that $\delta_{1} \beta_{2}-\delta_{2} \beta_{1}=1$. Recall that $s_{\gamma \alpha}\left(C_{\gamma} \backslash C_{0, \gamma}\right)=\{p\}$ by Lemma 3.4.22. As s_{p} is an isomorphism, $s_{\gamma \alpha}$ is an open immersion. In particular,

$$
\begin{equation*}
s_{\gamma \alpha}^{\#}\left(U_{\alpha \gamma}\right): \mathcal{O}_{C_{\alpha}}\left(U_{\alpha \gamma}\right) \rightarrow \mathcal{O}_{C_{\gamma}}\left(C_{\gamma}\right) \tag{3.12}
\end{equation*}
$$

is an isomorphism, where $U_{\alpha \gamma}=s_{\gamma \alpha}\left(C_{\gamma}\right)$. In fact, $U_{\alpha \gamma}=C_{\alpha, p}$. Then $p \in U_{\alpha \gamma}$ and $\mathfrak{m}_{p}=\left(\tilde{\mathcal{G}_{p}}, \tilde{Y}\right)+\mathfrak{a}_{\alpha}$ is the maximal ideal of $\mathcal{O}_{C_{\alpha}}\left(U_{\alpha \gamma}\right)$ corresponding to p. Recall $\mathcal{F}_{m+1}=X_{m+1}^{\delta_{1}} Y^{\beta_{1}}-\mathcal{G}_{p} \in \mathfrak{a}_{\gamma}$. Then $\mathfrak{m}_{p} \mathcal{O}_{C_{\gamma}}\left(C_{\gamma}\right) \subseteq\left(\mathcal{F}_{\gamma}, Y\right)+\mathfrak{a}_{\gamma}$, which implies the equality, since $\mathfrak{m}_{p} \mathcal{O}_{C_{\gamma}}\left(C_{\gamma}\right)$ has to be maximal. It follows that the ring isomorphism (3.12) induces

$$
k \simeq \frac{D_{\alpha}}{\left(\overline{\mathcal{G}}_{p}\right)} \simeq \frac{A_{m}[\tilde{Y}]_{\left(\tilde{\mathcal{G}}_{p}, \tilde{Y}\right)+\mathfrak{a}_{\alpha}}}{\sim} \underset{\left(\tilde{\mathcal{G}}_{p}, \tilde{Y}\right)+\mathfrak{a}_{\alpha}}{\sim} \frac{A_{m}\left[X_{m+1}^{ \pm 1}, Y\right]_{\left(\mathcal{F}_{\gamma}, Y\right)+\mathfrak{a}_{\gamma}}}{\left(\mathcal{F}_{\gamma}, Y\right)+\mathfrak{a}_{\gamma}} \simeq \frac{D_{\gamma}}{\left(\left.f\right|_{\gamma}\right)} .
$$

Therefore $\bar{C}_{\gamma}=\operatorname{Spec} D_{\gamma} /\left(\left.f\right|_{\gamma}\right) \simeq \operatorname{Spec} k$, and so is regular. In particular, the point $w=s_{n}^{-1}(p)$ is a non-singular point of C_{n+1} (Remark 3.4.4). Thus C_{n} is regular at p, as w is not in the exceptional locus of s_{n}.

Proposition 3.4.38 Let $s_{n}: C_{n+1} \rightarrow C_{n}$ be the morphism resolving S_{n}. Then $S_{n} \subset \operatorname{Reg}\left(C_{n}\right)$ if and only if s_{n} is an isomorphism. In that case, \bar{C}_{γ} is regular for all $\gamma \in \Sigma_{S_{n}}$.

Proof. The proposition follows from Lemma 3.4.37.
Recall from 3.3.1 that $C_{\gamma} \cap C_{\gamma^{\prime}}=C_{0, \gamma} \cap C_{0, \gamma^{\prime}}$ for any $\gamma, \gamma^{\prime} \in \Sigma_{n} \sqcup\{0\}, \gamma \neq \gamma^{\prime}$. We now want to show this fact is true for Σ_{n+1} as well.

Proposition 3.4.39 For any $\gamma, \gamma^{\prime} \in \Sigma_{n+1} \sqcup\{0\}$, if $\gamma \neq \gamma^{\prime}$, then

$$
C_{\gamma} \cap C_{\gamma^{\prime}}=C_{0, \gamma} \cap C_{0, \gamma^{\prime}} .
$$

Proof. Let $\gamma, \gamma^{\prime} \in \Sigma_{n+1} \sqcup\{0\}, \gamma \neq \gamma^{\prime}$. Recall $s_{n}^{-1}\left(C_{0}\right)=C_{0}$ and that s_{n} restricts to the identity $C_{0} \rightarrow C_{0}$. Hence it suffices to show that

$$
s_{n}\left(C_{\gamma}\right) \cap s_{n}\left(C_{\gamma^{\prime}}\right)=s_{n}\left(C_{0, \gamma}\right) \cap s_{n}\left(C_{0, \gamma^{\prime}}\right)
$$

Consider the open $D\left(\tilde{\mathcal{G}}_{S_{n}}\right) \subseteq C_{\alpha}$ and let $U_{\alpha, S_{n}}=D\left(\tilde{\mathcal{G}}_{S_{n}}\right) \cap C_{0, \alpha}$. If both γ and γ^{\prime} belong to $\tilde{\Sigma}_{n} \sqcup\{0\}$, we can conclude by the hypothesis on C_{n} (see 3.3.1), since $s_{n}\left(C_{\tilde{\alpha}}\right)=D\left(\tilde{\mathcal{G}}_{S_{n}}\right)$ and $s_{n}\left(C_{0, \tilde{\alpha}}\right)=U_{\alpha, S_{n}}$ by Lemma 3.4.15. Then assume $\gamma \in \Sigma_{p}$ for some $p \in S_{n}$. Lemma 3.4.22 shows that $s_{n}\left(C_{\gamma}\right)=C_{\alpha, p}$ and $s_{n}\left(C_{0, \gamma}\right)=U_{\alpha, p}$. If $\gamma^{\prime} \in \Sigma_{p}$ as well, then $C_{0, \gamma}=C_{\gamma} \cap C_{\gamma^{\prime}}=C_{0, \gamma^{\prime}}$ from Remark 3.4.20. If $\gamma^{\prime} \in \Sigma_{q}$ for some $q \in S_{n}, q \neq p$, then

$$
s_{n}\left(C_{\gamma}\right) \cap s_{n}\left(C_{\gamma^{\prime}}\right)=C_{\alpha, p} \cap C_{\alpha, q}=U_{\alpha, p} \cap U_{\alpha, q}=s_{n}\left(C_{0, \gamma}\right) \cap s_{n}\left(C_{0, \gamma^{\prime}}\right)
$$

If $\gamma^{\prime}=\tilde{\alpha}$, then

$$
s_{n}\left(C_{\gamma}\right) \cap s_{n}\left(C_{\tilde{\alpha}}\right)=C_{\alpha, p} \cap D\left(\tilde{\mathcal{G}}_{S_{n}}\right)=U_{\alpha, p} \cap U_{\alpha, S_{n}}=s_{n}\left(C_{0, \gamma}\right) \cap s_{n}\left(C_{0, \tilde{\alpha}}\right)
$$

Finally, suppose $\gamma^{\prime} \in \hat{\Sigma}_{n} \sqcup\{0\}$. Note that $U_{\alpha, p}=C_{\alpha, p} \cap C_{0, \alpha}$. Then

$$
s_{n}\left(C_{\gamma}\right) \cap s_{n}\left(C_{\gamma^{\prime}}\right)=C_{\alpha, p} \cap C_{\gamma^{\prime}}=U_{\alpha, p} \cap C_{0, \gamma^{\prime}}=s_{n}\left(C_{0, \gamma}\right) \cap s_{n}\left(C_{0, \gamma^{\prime}}\right),
$$

as $C_{\alpha} \cap C_{\gamma^{\prime}}=C_{0, \alpha} \cap C_{0, \gamma^{\prime}}$ from the inductive hypothesis on C_{n}.

3.5 A generalised Baker's model

Let k be an algebraically closed field. Let $f \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ be a Laurent polynomial defining a smooth curve $C_{0}: f=0$ over \mathbb{G}_{m}^{2}. Let Δ be the Newton polygon of f and let C_{1} be the completion of C_{0} with respect to Δ.

Definition 3.5.1 Let C_{0} and C_{1} as above. A simple Baker's resolution of C_{0} is a sequence of proper birational morphisms of k-schemes

$$
\begin{equation*}
\cdots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \cdots \xrightarrow{s_{1}} C_{1} \tag{3.13}
\end{equation*}
$$

where the curves C_{n} / k are constructed from subsets $\Sigma_{n} \subset \Omega$ as described in 3.3.1 and the maps s_{n} are the morphisms resolving sets $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$, for some $\alpha \in \Sigma_{n}$.

We have showed how to construct simple Baker's resolutions of C_{0} recursively for any choice of sets $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right), \alpha \in \Sigma_{n}$. We want to prove that for any simple Baker's resolution of C_{0}, the sets S_{n} are eventually empty. Thus simple Baker's resolutions can be used to desingularise C_{1}.

Definition 3.5.2 Recall k is supposed algebraically closed. Let C / k be a smooth projective curve. A smooth curve \tilde{C} / k is a generalised Baker's model of C if there exist a smooth curve $\tilde{C}_{0} \subset \mathbb{G}_{m}^{2}$, birational to C, and a simple Baker's resolution

$$
\cdots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \cdots \xrightarrow{s_{1}} C_{1}
$$

of \tilde{C}_{0} so that $\tilde{C}=C_{n}$ for some $n \in \mathbb{Z}_{+}$. In this case we say that \tilde{C} is a generalised Baker's model of C with respect to \tilde{C}_{0}. Note that \tilde{C} is a model of C over k, i.e. $\tilde{C} \simeq C$, by Lemma B.1.3.

For the remainder of the section we fix a simple Baker's resolution of C_{0}

$$
\cdots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \cdots \xrightarrow{s_{1}} C_{1}
$$

where the maps s_{n} are the morphisms resolving $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right), \alpha \in \Sigma_{n}$.
Theorem 3.5.3 There exists $h \in \mathbb{Z}_{+}$such that $S_{n} \subset \operatorname{Reg}\left(C_{n}\right)$ for all $n \geq h$.
Proof. Let $n \in \mathbb{Z}_{+}$and consider $s_{n}: C_{n+1} \rightarrow C_{n}$ resolving S_{n}. As birational morphism between projective curves, s_{n} is finite ([Liu4, Lemma 7.3.10]). By Theorem 3.4.36 we have an exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{C_{n}} \rightarrow s_{n}^{*} \mathcal{O}_{C_{n+1}} \rightarrow \mathcal{S}_{n} \rightarrow 0
$$

where \mathcal{S}_{n} is a skyscraper sheaf with support contained in S_{n}. Denote the arithmetic genus of a curve X / k by $p_{a}(X)$. Then we get

$$
\begin{equation*}
p_{a}\left(C_{n+1}\right)=p_{a}\left(C_{n}\right)-\operatorname{dim}_{k} H^{0}\left(C_{n}, \mathcal{S}_{n}\right) \tag{3.14}
\end{equation*}
$$

Let r be the number of irreducible components of C_{0}. For any n, recall there is a natural open immersion $C_{0} \hookrightarrow C_{n}$ with dense image. Therefore the curve C_{n} is reduced and has r irreducible components X_{1}, \ldots, X_{r}. Let $i=1, \ldots, r$ and let X_{i}^{\prime} be the normalisation of X_{i}. Then $H^{0}\left(X_{i}^{\prime}, \mathcal{O}_{X_{i}^{\prime}}\right)=k$ as k is algebraically closed ([Liu4, Corollary 3.3.21]). Hence $p_{a}\left(X_{i}^{\prime}\right) \geq 0$. Therefore $p_{a}\left(C_{n}\right) \geq 1-r$ by [Liu4, Proposition 7.5.4]. It follows from (3.14) that $\left(p_{a}\left(C_{n}\right)\right)_{n \in \mathbb{Z}_{+}}$is a decreasing sequence in \mathbb{Z} bounded below by $1-r$. Hence it is eventually constant, i.e. there exists $h \in \mathbb{Z}_{+}$such that $p_{a}\left(C_{n+1}\right)=p_{a}\left(C_{n}\right)$ for all $n \geq h$. From (3.14), we have $H^{0}\left(C_{n}, \mathcal{S}_{n}\right)=0$, that implies $\mathcal{S}_{n}=0$, as it is a skyscraper sheaf. Hence $\mathcal{O}_{C_{n}} \simeq s_{n}^{*} \mathcal{O}_{C_{n+1}}$. It follows that s_{n} is an isomorphism since it is affine. Thus Lemma 3.4.38 shows that $S_{n} \subset \operatorname{Reg}\left(C_{n}\right)$ for any $n \geq h$.

Remark 3.5.4. Let $n \in \mathbb{Z}_{+}$. In Remark 3.4.4 we noticed that any singular point of C_{n} is the image of a point in $\operatorname{Sing}\left(\bar{C}_{\alpha}\right)$ under the immersion $\bar{C}_{\alpha} \hookrightarrow C_{n}$, for some $\alpha \in \Sigma_{n}$. Therefore if C_{n} is singular, we can choose $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right), \alpha \in \Sigma_{n}$, such that $S_{n} \cap \operatorname{Sing}\left(C_{n}\right) \neq \varnothing$.

Theorem 3.5.5 Let $N=\left\{n \in \mathbb{Z}_{+} \mid C_{n}\right.$ is singular $\}$. Suppose $S_{n} \cap \operatorname{Sing}\left(C_{n}\right) \neq \varnothing$ for all $n \in N$. Then N is finite. In other words, there exists $h \in \mathbb{Z}_{+}$so that C_{n} is regular for all $n \geq h$. In particular, for any $n \geq h$, the curve C_{n} is a generalised Baker's model of the smooth completion of C_{0}.

Proof. The result follows from Theorem 3.5.3.

Remark 3.5.6. The arithmetic genus of the curve C_{1} is $p_{a}\left(C_{1}\right)=|\Delta(\mathbb{Z})|$, where $|\Delta(\mathbb{Z})|$ is the number of internal integer points of the Newton polygon of C_{0} ([Dok, Remark 2.6(d)]). Therefore it can be explicitly computed. Equation (3.14) gives a recursive way to calculate the arithmetic genus of the following curves C_{n}.

By choosing the sets S_{n} as in Theorem 3.5.5, we would eventually compute the genus g of the smooth completion of C_{0}. Furthermore, if $h \in \mathbb{Z}_{+}$is as in Theorem 3.5.5 then $g \leq|\Delta(\mathbb{Z})|-h$. Hence the number of steps needed to desingularise C_{1} via a simple Baker's resolution is $\leq|\Delta(\mathbb{Z})|$.

Lemma 3.5.7 For any $n \in \mathbb{Z}_{+}$,

$$
C_{n} \backslash C_{0}=\bigsqcup_{\gamma \in \Sigma_{n}} C_{\gamma} \backslash C_{0, \gamma}=\bigsqcup_{\gamma \in \Sigma_{n}} \bar{C}_{\gamma}
$$

Proof. From 3.3.1, for any $\gamma, \gamma^{\prime} \in \Sigma_{n} \sqcup\{0\}$, one has $C_{\gamma} \cap C_{\gamma^{\prime}}=C_{0, \gamma} \cap C_{0, \gamma^{\prime}}$. This implies that if $\gamma \in \Sigma_{n}$ then $C_{\gamma} \cap C_{0}=C_{0, \gamma}$ and $C_{\gamma} \cap C_{\gamma^{\prime}} \subseteq C_{0}$ for every $\gamma^{\prime} \in \Sigma_{n}, \gamma^{\prime} \neq \gamma$. The lemma follows.

Theorem 3.5.8 There exists $h \in \mathbb{Z}_{+}$such that $S_{n}=\varnothing$ for all $n \geq h$.

Proof. By Theorem 3.5.3 there exists $h^{\prime} \in \mathbb{Z}_{+}$such that $S_{n} \subset \operatorname{Reg}\left(C_{n}\right)$ for all $n \geq h^{\prime}$. Let $n \geq h^{\prime}$. For any $\Gamma \subseteq \Sigma_{n}$ let $N(\Gamma)$ be the number of points of $C_{n} \backslash C_{0}$ which are singular on \bar{C}_{γ} for some $\gamma \in \Gamma$. Note that by Lemma 3.5.7, one has $N(\Gamma)=\sum_{\gamma \in \Gamma} N(\{\gamma\})$.

Let $\alpha \in \Sigma_{n}$ such that $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Since $C_{\tilde{\alpha}}$ embeds in C_{α} via s_{n} and $S_{n}=\bar{C}_{\alpha} \backslash s_{n}\left(\bar{C}_{\tilde{\alpha}}\right)$ by Lemma 3.4.15, we have $N\left(\tilde{\Sigma}_{n}\right)=N\left(\Sigma_{n}\right)-\left|S_{n}\right|$. On the other hand, $N\left(\Sigma_{S_{n}}\right)=0$ by Proposition 3.4.38, as $S_{n} \subset \operatorname{Reg}\left(C_{n}\right)$. Hence

$$
N\left(\Sigma_{n+1}\right)=N\left(\Sigma_{S_{n}}\right)+N\left(\tilde{\Sigma}_{n}\right)=N\left(\Sigma_{n}\right)-\left|S_{n}\right| \leq N\left(\Sigma_{n}\right) .
$$

Then $N\left(\Sigma_{n}\right)_{n \geq h^{\prime}}$ forms a decreasing sequence bounded below by 0 . Thus it is eventually constant, i.e. there exists $h \in \mathbb{Z}_{+}$such that $N\left(\Sigma_{n+1}\right)=N\left(\Sigma_{n}\right)$ for all $n \geq h$. But we saw above that this happens only if $S_{n}=\varnothing$.

Definition 3.5.9 For any $n \in \mathbb{Z}_{+}$, the curve C_{n} is said outer regular if \bar{C}_{γ} is regular for any $\gamma \in \Sigma_{n}$. In other words, C_{n} is outer regular if the closed subset $C_{n} \backslash C_{0}$ of C_{n}, equipped with the structure of closed subscheme coming from Lemma 3.5.7, is regular.

Note that from Remark 3.4.4, if C_{n} is outer regular, then it is regular.
Theorem 3.5.10 Suppose $S_{n} \neq \varnothing$ for all $n \in \mathbb{Z}_{+}$such that C_{n} is not outer regular. Then there exists $h \in \mathbb{Z}_{+}$so that for all $n \geq h$ the closed subschemes \bar{C}_{γ} are regular for all $\gamma \in \Sigma_{n}$. In particular, the curve C_{h} is an outer regular generalised Baker's model of the smooth completion of C_{0}.

Proof. The result follows from Theorem 3.5.8.
Corollary 3.5.11 Every smooth projective curve defined over an algebraically closed field k admits an outer regular generalised Baker's model.

Proof. By Corollary B.1.4, for any smooth projective curve C there exists a smooth curve $C_{0} \subset \mathbb{G}_{m}^{2}$ birational to C. Construct a simple Baker's resolution (3.13) of C_{0} recursively by choosing $S_{n} \neq \varnothing$ whenever C_{n} is not outer regular. Theorem 3.5.10 concludes the proof.

Lemma 3.5.12 Let $n \in \mathbb{Z}_{+}$. For any $\gamma \in \Sigma_{n}$ we have a natural bijection

$$
\operatorname{Reg}\left(\bar{C}_{\gamma}\right) \stackrel{1: 1}{\longleftrightarrow}\left\{\text { simple roots of }\left.f\right|_{\gamma} \text { in } k^{\times}\right\} .
$$

Proof. For any $\gamma \in \Sigma_{n}$, we have

$$
\operatorname{Reg}\left(\operatorname{Spec} \frac{k\left[X_{j_{\gamma}}^{ \pm 1}\right]}{\left(\left.f\right|_{\gamma}\right)}\right) \stackrel{1: 1}{\longleftrightarrow}\left\{\text { simple roots of }\left.f\right|_{\gamma} \text { in } k^{\times}\right\} .
$$

We will prove by induction on n that $\operatorname{Reg}\left(\bar{C}_{\gamma}\right)=\operatorname{Reg}\left(\operatorname{Spec} k\left[X_{j_{\gamma}}^{ \pm 1}\right] /\left(\left.f\right|_{\gamma}\right)\right)$. If $n=1$, the statement follows since $D_{\gamma}=k\left[X_{j_{\gamma}}^{ \pm 1}\right]$ for all $\gamma \in \Sigma_{1}$. Suppose $n>0$ and $\gamma \in \Sigma_{n+1}$. Let $s_{n}: C_{n+1} \rightarrow C_{n}$ be the morphism resolving $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$, for $\alpha \in \Sigma_{n}$. By Definition 3.4.17 the result follows from the inductive hypothesis except when either $\gamma=\tilde{\alpha}$ or $\gamma \in \Sigma_{S_{n}}$. If $\gamma \in \Sigma_{S_{n}}$, then $D_{\gamma}=k\left[X_{j_{\gamma}}^{ \pm 1}\right]$ by Lemma 3.4.10, so $\bar{C}_{\gamma}=\operatorname{Spec} k\left[X_{j_{\gamma}}^{ \pm 1}\right] /\left(\left.f\right|_{\gamma}\right)$. If $\gamma=\tilde{\alpha}$, then $\bar{C}_{\gamma}=\bar{C}_{\alpha} \backslash S_{n}$ by Lemma 3.4.15. Then $\operatorname{Reg}\left(\bar{C}_{\gamma}\right)=\operatorname{Reg}\left(\bar{C}_{\alpha}\right)$. Thus $\operatorname{Reg}\left(\bar{C}_{\gamma}\right)=\operatorname{Reg}\left(\operatorname{Spec} k\left[X_{j_{\gamma}}^{ \pm 1}\right] /\left(\left.f\right|_{\gamma}\right)\right)$ since $j_{\tilde{\alpha}}=j_{\alpha}$ and $\left.f\right|_{\tilde{\alpha}}=\left.f\right|_{\alpha}$.

Theorem 3.5.13 Let $n \in \mathbb{Z}_{+}$. Suppose C_{n} is outer regular. Then we have a natural bijection

$$
C_{n}(k) \backslash C_{0}(k) \stackrel{1: 1}{\longleftrightarrow} \bigsqcup_{\gamma \in \Sigma_{n}}\left\{\text { simple roots of }\left.f\right|_{\gamma} \text { in } k^{\times}\right\} .
$$

Proof. Lemma 3.5.7 shows that $C_{n} \backslash C_{0}=\bigsqcup_{\gamma \in \Sigma_{n}} \bar{C}_{\gamma}$. Thus Lemma 3.5.12 concludes the proof.

We conclude the section with the following two lemmas, proving that for any $n \in \mathbb{Z}_{+}$the unions in Definition 3.4.17 are all disjoint. This fact is particularly useful in applications: together with Proposition 3.4.39 it implies the points in $C_{\gamma} \backslash C_{0, \gamma}$ for $\gamma \in \Sigma_{S_{n}} \cup\{\tilde{\alpha}\}$ are not visible on \hat{C}_{n}.

Recall the partial order $<$ on Ω given in Definition 3.2.4.

Lemma 3.5.14 Let $n \in \mathbb{Z}_{+}$. For any $\gamma, \gamma^{\prime} \in \Sigma_{n}$, neither $\gamma<\gamma^{\prime}$ nor $\gamma^{\prime}>\gamma$.

Proof. We are going to prove the lemma by induction on n. If $n=1$ the result is trivial. Suppose $n>0$ and let $\alpha \in \Sigma_{n}$ such that $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Suppose by contradiction there exist $\gamma, \gamma^{\prime} \in \Sigma_{n+1}$ such that $\gamma<\gamma^{\prime}$. By definition $\Sigma_{n+1}=\tilde{\Sigma}_{S_{n}} \cup \hat{\Sigma}_{n}$, where $\tilde{\Sigma}_{S_{n}}=\Sigma_{S_{n}} \cup\{\tilde{\alpha}\}$. Let $m \in \mathbb{Z}_{+}$such that $\alpha \in \Omega_{m}$. Then $\alpha^{\prime} \in \Omega_{m+1}$ for any $\alpha^{\prime} \in \tilde{\Sigma}_{S_{n}}$. In particular, γ and γ^{\prime} cannot be both in $\tilde{\Sigma}_{S_{n}}$. In fact, by inductive hypothesis, either $\gamma \in \tilde{\Sigma}_{S_{n}}$ and $\gamma^{\prime} \in \hat{\Sigma}_{n}$ or viceversa. Suppose $\gamma \in \tilde{\Sigma}_{S_{n}}$. Then $\alpha<\gamma<\gamma^{\prime}$. But this gives a contradiction since $\alpha, \gamma^{\prime} \in \Sigma_{n}$. Suppose $\gamma^{\prime} \in \tilde{\Sigma}_{S_{n}}$. Then α is the unique element of Ω_{m} such that $\alpha<\gamma^{\prime}$. In particular, $\gamma \leq \alpha$. But $\gamma \neq \alpha$ since $\gamma \in \hat{\Sigma}_{n}$. Thus $\gamma<\alpha$, contradicting the inductive hypothesis on Σ_{n}.

Lemma 3.5.15 Let $n \in \mathbb{Z}_{+}$and let $\alpha \in \Sigma_{n}$ such that $S_{n} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Then the sets $\hat{\Sigma}_{n}$, $\{\tilde{\alpha}\}$, and Σ_{p}, for $p \in S_{n}$, are pairwise disjoint.

Proof. Let $p \in S_{n}$. First note that for every $\gamma \in \Sigma_{p}$ and $\gamma^{\prime} \in \cup_{\left.q \in S_{n} \backslash p\right\}} \Sigma_{q} \cup\{\tilde{\alpha}\}$, the images of C_{γ} and $C_{\gamma^{\prime}}$ under s_{n} are different. Then $\gamma \neq \gamma^{\prime}$. It remains to show that if $\gamma \in \Sigma_{p} \cup\{\tilde{\alpha}\}$ and $\alpha^{\prime} \in \hat{\Sigma}_{n}$, then $\gamma \neq \alpha^{\prime}$. Note that $\gamma>\alpha$. Therefore if $\gamma=\alpha^{\prime}$ then $\alpha^{\prime}>\alpha$, where both α and α^{\prime} are elements of Σ_{n}. But this is not possible by Lemma 3.5.14.

3.6 Simultaneous resolution of different charts

Let k be an algebraically closed field and let $f \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ be a Laurent polynomial defining a smooth curve $C_{0}: f=0$ over \mathbb{G}_{m}^{2}. Let C_{1} be the completion of C_{0} with respect to its Newton polygon. In the previous sections we showed that we can construct a sequence of proper birational morphisms

$$
\ldots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1},
$$

where the curves C_{n} / k are constructed from sets $\Sigma_{n} \subseteq \Omega$ as described in 3.3.1 and the maps s_{n} are the morphisms resolving $S_{n} \subset \operatorname{Sing}\left(\bar{C}_{\alpha_{n}}\right)$ for $\alpha_{n} \in \Sigma_{n}$.

Let $n \in \mathbb{Z}_{+}$. Note that, once we have chosen the polynomials $\tilde{\mathcal{G}}_{p}$ for any $p \in S_{n}$, the construction of $\Sigma_{n+1} \backslash \hat{\Sigma}_{n}$ only depends on α_{n} and S_{n} by Lemma 3.5.15. Suppose $\alpha_{n+1} \in \hat{\Sigma}_{n}$. Then

$$
\Sigma_{n+2}=\Sigma_{S_{n}} \cup \Sigma_{S_{n+1}} \cup\left\{\tilde{\alpha}_{n}, \tilde{\alpha}_{n+1}\right\} \cup\left(\Sigma_{n} \backslash\left\{\alpha_{n}, \alpha_{n+1}\right\}\right) .
$$

Thus Σ_{n+2} would have been defined in the same way if, instead of resolving S_{n} first and then S_{n+1}, we had resolved S_{n+1} first and then S_{n}. In other words, the construction of Σ_{n+2}, and so of C_{n+2}, from Σ_{n} does not depend on the order of resolution of S_{n} and S_{n+1}.

In this section we will show that from our construction we can resolve points coming from different charts simultaneously. More precisely, we will explain how to construct a sequence as in $\S 3.3$ where the morphisms s_{n} resolve finite sets of points $S_{n} \subseteq \bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Note that by Lemma 3.5 .7 we can identify the points in S_{n} with points of C_{n} via the immersions $\bar{C}_{\alpha} \hookrightarrow C_{n}$.

Suppose that, for some $n \in \mathbb{Z}_{+}$, we have constructed $\Sigma_{n} \subset \Omega$ and C_{n} as in 3.3.1. Let $S_{n} \subseteq$ $\bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Denote $S_{n, \alpha}=S_{n} \cap \bar{C}_{\alpha}$ for any $\alpha \in \Sigma_{n}$. Consider the subset $\Sigma_{n, S_{n}}:=\left\{\alpha \in \Sigma_{n} \mid S_{n, \alpha} \neq\right.$ $\varnothing\}$ of Σ_{n} and order its elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}$. For each $i=0, \ldots, h$ we can recursively construct the morphism $s_{n+i}: C_{n+i+1} \rightarrow C_{n+i}$ resolving $S_{n, \alpha_{i}} \subseteq \operatorname{Sing}\left(\bar{C}_{\alpha_{i}}\right)$ as described in §3.4. Indeed $\alpha_{0} \in \Sigma_{n}$ and $\alpha_{i} \in \Sigma_{n+i}$ since

$$
\alpha_{i} \in \Sigma_{n} \backslash\left\{\alpha_{0}, \ldots, \alpha_{i-1}\right\} \subseteq \hat{\Sigma}_{n+i-1} \quad \text { for any } i \geq 1
$$

Therefore from the observation made at the beginning of the section

$$
\begin{aligned}
\Sigma_{n+h+1} & =\bigcup_{i=0}^{h} \Sigma_{S_{n, \alpha_{i}}} \cup\left\{\tilde{\alpha}_{0}, \ldots, \tilde{\alpha}_{h}\right\} \cup\left(\Sigma_{n} \backslash\left\{\alpha_{0}, \ldots, \alpha_{h}\right\}\right) \\
& =\bigcup_{\alpha \in \Sigma_{n, S_{n}}}\left(\Sigma_{S_{n, \alpha}} \cup\{\tilde{\alpha}\}\right) \cup\left(\Sigma_{n} \backslash \Sigma_{n, S_{n}}\right) .
\end{aligned}
$$

In particular, Σ_{n+h+1} is independent of the order chosen for the elements in $\Sigma_{n, S_{n}}$. This approach eventually constructs a complete curve C_{n+h+1} and a surjective birational morphism

$$
C_{n+h+1} \xrightarrow{s_{n+h} \circ s_{n+h-1} \circ \cdots \circ s_{n}} C_{n}
$$

with exceptional locus equal to the inverse image of $S_{n} \cap \operatorname{Sing}\left(C_{n}\right)$. This morphism does not depend on the order chosen for the elements α_{i} of $\Sigma_{n, S_{n}}$. Indeed by Theorem 3.4.31 it is the unique morphism extending the birational maps $s_{\gamma \alpha}: C_{\gamma}-\rightarrow C_{\alpha}$ for $\gamma \in \Sigma_{n+h+1} \sqcup\{0\}$ and $\alpha \in \Sigma_{n} \sqcup\{0\}$.

Definition 3.6.1 We will say that $s_{n+h} \circ \cdots \circ s_{n}$ is the morphism resolving the finite set $S_{n} \subseteq$ $\bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$.

We can then redefine $\Sigma_{n+1}:=\Sigma_{n+h+1}$ and $C_{n+1}:=C_{n+h+1}$ to see that we can construct finite subsets $\Sigma_{n} \subset \Omega$ and projective curves C_{n} / k as described in 3.3.1 and a sequence of proper birational morphisms

$$
\ldots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1},
$$

where the maps $s_{n}: C_{n+1} \rightarrow C_{n}$ are the morphisms resolving freely chosen $S_{n} \subseteq \bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$.

Definition 3.6.2 Let C_{0} and C_{1} as above. A Baker's resolution of C_{0} is a sequence of proper birational morphisms of k-schemes

$$
\cdots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1}
$$

where the curves C_{n} / k are constructed from subsets $\Sigma_{n} \subset \Omega$ as indicated in 3.3.1 and the maps s_{n} are the morphisms resolving sets $S_{n} \subseteq \bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$.

Simple Baker's resolutions are Baker's resolution. In fact, from what discussed in this section, Baker's resolutions of C_{0} are just contraptions of simple Baker's resolutions. Hence the results in §3.5 extends to Baker's resolutions. Let us explicitly restate Theorem 3.5.8 in light of the terminology introduced in the current section as an example.

Theorem 3.6.3 For any Baker's resolution of C_{0} given as in Definition 3.6.2, there exists $h \in \mathbb{Z}_{+}$ such that $S_{n}=\varnothing$ for any $n \geq h$.

Baker's resolutions are not really a new concept, but rather a more general point of view which will be useful in the next section, where we tackle the case of a non-algebraically closed base field.

3.7 The case of non-algebraically closed base field

In this section let k be a perfect field with algebraic closure \bar{k}. Denote by G_{k} the absolute Galois group $\operatorname{Gal}(\bar{k} / k)$. Let $f \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ such that $C_{0, k}: f=0$ is a smooth curve defined over $\mathbb{G}_{m, k}^{2}$. Set $C_{0}=C_{0, k} \times_{k} \bar{k}$. In the previous section we showed how to construct a sequence of proper birational morphisms of \bar{k}-schemes

$$
\ldots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1}
$$

called Baker's resolution of C_{0}, where the curves C_{n} / \bar{k} are equipped with canonical open immersions $\iota_{n}: C_{0} \hookrightarrow C_{n}$ such that $s_{n} \circ \iota_{n+1}=\iota_{n}$. Suppose that for any $n \in \mathbb{Z}_{+}$one has $G_{k} \subseteq \operatorname{Aut}\left(C_{n}\right)$ and $s_{n} \circ \sigma=\sigma \circ s_{n}$ for all $\sigma \in G_{k}$. Then, from the universal property of quotient schemes, one has an induced sequence of proper birational morphisms of k-schemes

$$
\ldots \xrightarrow{s_{n+1, k}} C_{n+1, k} \xrightarrow{s_{n, k}} C_{n, k} \xrightarrow{s_{n-1, k}} \ldots \xrightarrow{s_{1, k}} C_{1, k}
$$

where the curves $C_{n, k}:=C_{n} / G_{k}$ are defined over k. Furthermore, the morphisms ι_{n} induce open immersions $\iota_{n, k}: C_{0, k} \hookrightarrow C_{n, k}$ such that $s_{n, k} \circ \iota_{n+1, k}=\iota_{n, k}$. In fact, $C_{n} \simeq C_{n, k} \times{ }_{k} \bar{k}$ and the quotient morphism $C_{n} \rightarrow C_{n, k}$ is the canonical projection. Then C_{n} is smooth if and only if so is $C_{n, k}$.

The argument above motivates the subject of this section, which is constructing a Baker's resolution of C_{0} such that $G_{k} \subseteq \operatorname{Aut}\left(C_{n}\right)$ and s_{n} is Galois-invariant for any $n \in \mathbb{Z}_{+}$. The following definition extends Definitions 3.5.2, 3.5.9 to the case of general perfect fields.

Definition 3.7.1 Let C / k be a smooth projective curve. A curve \tilde{C} / k is a generalised Baker's model of C if $\tilde{C} \simeq C$ and there exists a smooth curve $\tilde{C}_{0, k} / k$ such that the base extended curve $\tilde{C} \times_{k} \bar{k}$ is a generalised Baker's model of $C \times{ }_{k} \bar{k}$ with respect to $\tilde{C}_{0, k} \times_{k} \bar{k}$. Furthermore, a generalised Baker's model \tilde{C} of C is outer regular if $\tilde{C} \times_{k} \bar{k}$ is outer regular.

Let us first describe a group action of G_{k} on Ω. Let $\alpha=(v, T) \in \Omega$ and $\sigma \in G_{k}$. Let $m \in \mathbb{Z}_{+}$ such that $\alpha \in \Omega_{m}$ and write $T=\left(g_{2}, \ldots, g_{m}\right)$ for Laurent polynomials $g_{i} \in \bar{k}\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$. Set $T^{\sigma}=$ $\left(g_{2}^{\sigma}, \ldots, g_{m}^{\sigma}\right)$ and define $(v, T)^{\sigma}=\left(v, T^{\sigma}\right)$. Recall

$$
C_{0, \alpha}=\operatorname{Spec} \frac{\bar{k}\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}, y^{ \pm 1}\right]}{\left(f_{1}, f_{2}, \ldots, f_{m}\right)}
$$

with $f_{1}=f \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ and $f_{i}=x_{i}-g_{i} \in \bar{k}\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ for $i \geq 2$. Hence $C_{0, \alpha^{\sigma}}=C_{0, \alpha}^{\sigma}$. Then $C_{0, \alpha^{\sigma}}$ is dense in C_{0} and so $\alpha^{\sigma} \in \Omega$. Thus the element α^{σ} is set as the image of α under the action of σ. The next lemma follows.

Lemma 3.7.2 Let $\sigma \in G_{k}$ and $\alpha \in \Omega$. Let $m \in \mathbb{Z}_{+}$such that $\alpha \in \Omega_{m}$. If $\gamma=\beta \circ_{g} \alpha$, for some primitive vector $\beta \in \mathbb{N} \times \mathbb{Z}_{+}$and $g \in \bar{k}\left[x_{1}, \ldots, x_{m}, y\right]$ then $\gamma^{\sigma}=\beta \circ_{g^{\sigma}} \alpha^{\sigma}$.

We will show that if the morphisms s_{n} resolve Galois-invariant sets of points for any $n \in \mathbb{Z}_{+}$, the curves C_{n} can be constructed from subsets $\Sigma_{n} \subset \Omega$ with the properties of 3.3.1 and the following additional one:
(d) The action of G_{k} on Ω restricts to Σ_{n}. Furthermore, for any $\sigma \in G_{k}$ and any $\alpha \in \Sigma_{n}$, we have $M_{\alpha^{\sigma}}=M_{\alpha}, j_{\alpha^{\sigma}}=j_{\alpha}, \mathcal{F}_{\alpha^{\sigma}}=\mathcal{F}_{\alpha}^{\sigma}$.

In particular, if (d) holds for $n \in \mathbb{Z}_{+}$, then $G_{k} \subseteq \operatorname{Aut}\left(C_{n}\right)$.
Suppose the set Σ_{n} defining C_{n} satisfies the additional property (d). Let $\alpha \in \Sigma_{n}$ and let $m \in \mathbb{Z}_{+}$ such that $\alpha \in \Omega_{m}$. Let $\sigma \in G_{k}$. From (d) it follows that $\alpha^{\sigma} \in \Sigma_{n}$ and $\mathfrak{a}_{\alpha}^{\sigma}=\mathfrak{a}_{\alpha^{\sigma}}, R_{\alpha^{\sigma}}=R_{\alpha}^{\sigma}, C_{\alpha^{\sigma}}=C_{\alpha}^{\sigma}$, $\left.f\right|_{\alpha^{\sigma}}=\left.f\right|_{\alpha} ^{\sigma}$. Hence $D_{\alpha^{\sigma}}=D_{\alpha}^{\sigma}$ and so $\bar{C}_{\alpha^{\sigma}}=\bar{C}_{\alpha}^{\sigma}$.

Let $p \in \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Recall $\overline{\mathcal{G}}_{p} \in \bar{k}\left[X_{j_{\alpha}}\right]$ is monic of degree 1 generating the maximal ideal of $\mathcal{O}_{\bar{C}_{\alpha}, p}$. Since $\bar{C}_{\alpha}^{\sigma}=\bar{C}_{\alpha^{\sigma}}$, the ideal $\left(\overline{\mathcal{G}}_{p}^{\sigma}\right)$ is the maximal ideal of $\mathcal{O}_{\bar{C}_{\alpha}^{\sigma}, p^{\sigma}}$. Therefore $\overline{\mathcal{G}}_{p^{\sigma}}=\overline{\mathcal{G}}_{p}^{\sigma}$ as $\overline{\mathcal{G}}_{p}^{\sigma} \in \bar{k}\left[X_{j_{\alpha^{\sigma}}}\right]$ is linear and monic. Finally, the equality $\mathcal{F}_{\alpha^{\sigma}}=\mathcal{F}_{\alpha}^{\sigma}$ implies that we can choose $\tilde{\mathcal{G}}_{p^{\sigma}}=\tilde{\mathcal{G}}_{p}^{\sigma}$. Let $g_{p} \in \bar{k}\left[x_{1}, \ldots, x_{m}, y\right]$ related to $\tilde{\mathcal{G}}_{p}$ by M_{α}. If $\tilde{\mathcal{G}}_{p^{\sigma}}=\tilde{\mathcal{G}}_{p}^{\sigma}$, then g_{p}^{σ} is the polynomial related to $\tilde{\mathcal{G}}_{p^{\sigma}}$ by $M_{\alpha^{\sigma}}=M_{\alpha}$; hence $g_{p^{\sigma}}=g_{p}^{\sigma}$.

Now let $S_{n} \subseteq \bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$ be a G_{k}-invariant set. Consider the morphism $s_{n}: C_{n+1} \rightarrow C_{n}$ resolving S_{n}. We want to show that we can construct the collection Σ_{n+1} defining C_{n+1} in such a way that it satisfies (d). Define $S_{n, \alpha}=S_{n} \cap \bar{C}_{\alpha}$ for any $\alpha \in \Sigma_{n}$ and $\Sigma_{n, S_{n}}=\left\{\alpha \in \Sigma_{n} \mid S_{n, \alpha} \neq \varnothing\right\}$. Note that since S_{n} is G_{k}-invariant, so is $\Sigma_{n, S_{n}}$. Moreover,

$$
S_{n, \alpha}^{\sigma}=\left\{p^{\sigma} \mid p \in S_{n, \alpha}\right\}=S_{n, \alpha^{\sigma}}
$$

for any $\alpha \in \Sigma_{n}$ and $\sigma \in G_{k}$.

Let $\gamma \in \Sigma_{n+1}$ and $\sigma \in G_{k}$. Assume $\tilde{\mathcal{G}}_{p^{\sigma}}=\tilde{\mathcal{G}}_{p}^{\sigma}$ for any $p \in S_{n}$. If $\gamma \notin \Sigma_{n}$, then for some $\alpha \in \Sigma_{n, S_{n}}$ either $\gamma=\tilde{\alpha}$ or $\gamma=\beta \circ_{g_{p}} \alpha$, for some $p \in S_{n, \alpha}$, and $\beta \in \mathbb{Z}_{+}^{2}$ primitive. It follows from Lemma 3.7.2 that γ^{σ} equals either $\widetilde{\alpha^{\sigma}}$ or $\beta \circ_{g_{p^{\sigma}}} \alpha^{\sigma}$. In particular, the matrix $M_{\gamma^{\sigma}}$, the positive integer $j_{\gamma^{\sigma}}$ and the polynomial $\mathcal{F}_{\gamma^{\sigma}}$ have been defined in $\S 3.4 .2$ even when $\gamma^{\sigma} \notin \Sigma_{n+1}$ (see Notation 3.4.13, 3.4.16). This allows us to state the following result.

Theorem 3.7.3 Consider the morphism $s_{n}: C_{n+1} \rightarrow C_{n}$ resolving the G_{k}-invariant set $S_{n} \subseteq$ $\bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Suppose Σ_{n} satisfies the additional property (d). Then Σ_{n+1} satisfies (d) if for all $\sigma \in G_{k}$, one has
(1) $\tilde{\mathcal{G}}_{p^{\sigma}}=\tilde{\mathcal{G}}_{p}^{\sigma}$ for all $p \in S_{n}$;
(2) $M_{\gamma}=M_{\gamma^{\sigma}}$ for any $\gamma \in \Sigma_{n+1}$;
(3) $\operatorname{ord}_{X_{j_{\gamma}}}\left(\mathcal{F}_{\gamma}\right)=\operatorname{ord}_{X_{j_{\gamma^{\sigma}}}}\left(\mathcal{F}_{\gamma^{\sigma}}\right)$ for any $\gamma \in \Sigma_{n+1}$.

Furthermore, if $\alpha_{1}, \ldots, \alpha_{h} \in \Sigma_{n, S_{n}}$ so that $\Sigma_{n, S_{n}}=\bigsqcup_{i=1}^{h} G_{k} \alpha_{i}$, then

$$
\Sigma_{n+1}=G_{k} \cdot \bigcup_{i=1}^{h}\left(\Sigma_{S_{n, \alpha_{i}}} \cup\left\{\tilde{\alpha}_{i}\right\}\right) \cup\left(\Sigma_{n} \backslash \Sigma_{n, S_{n}}\right)
$$

Proof. Assume (1), (2) and (3) and let $\sigma \in G_{k}$. Let $\gamma \in \Sigma_{n+1} \backslash \Sigma_{n}$. Then there exists $\alpha \in \Sigma_{n, S_{n}}$ such that $\gamma=\tilde{\alpha}$ or $\gamma \in \Sigma_{S_{n, \alpha}}$.

Suppose $\gamma=\tilde{\alpha}$ for some $\alpha \in \Sigma_{n, S_{n}}$. Then $\gamma^{\sigma}=\widetilde{\alpha^{\sigma}}$ by Lemma 3.7.2 and so $\gamma^{\sigma} \in \Sigma_{n+1}$. Note that $j_{\gamma}=j_{\gamma^{\sigma}}$ and $\mathcal{F}_{\gamma}=\mathcal{F}_{\gamma^{\sigma}}$. Indeed, $j_{\tilde{\alpha}}=j_{\alpha}, \mathcal{F}_{\tilde{\alpha}}=\mathcal{F}_{\alpha}$ by construction, and $j_{\gamma^{\sigma}}=j_{\alpha^{\sigma}}=j_{\alpha}$ and $\mathcal{F}_{\gamma^{\sigma}}=\mathcal{F}_{\alpha^{\sigma}}=\mathcal{F}_{\alpha}^{\sigma}$, where the last equalities follow from the fact that Σ_{n} satisfies (d).

Suppose now that $\gamma \in \Sigma_{S_{n, \alpha}}$. Then $\gamma=\beta \circ_{g_{p}} \alpha$ for some $p \in S_{n, \alpha}$ and some primitive vector $\beta \in \mathbb{Z}_{+}^{2}$. Lemma 3.7.2 implies that $\gamma^{\sigma}=\beta \circ_{g_{p^{\sigma}}} \alpha^{\sigma}$. Let $m \in \mathbb{Z}_{+}$such that $\alpha \in \Omega_{m}$. Note that $j_{\gamma}=j_{\gamma^{\sigma}}$. Indeed $j_{\gamma}=m+1$ by construction, and similarly $j_{\gamma^{\sigma}}=m+1$ since $\alpha^{\sigma} \in \Omega_{m}$.

Now we want to show that $\mathcal{F}_{\gamma}^{\sigma}=\mathcal{F}_{\gamma^{\sigma}}$. Let $\alpha_{p}=(0,1) \circ_{g_{p}} \alpha$, as in §3.4.2. Then $\left(\alpha_{p}\right)^{\sigma}=(0,1) \circ_{g_{p^{\sigma}}}$ $\alpha^{\sigma}=\left(\alpha^{\sigma}\right)_{p^{\sigma}}$ by Lemma 3.7.2. Since $g_{p}^{\sigma}=g_{p^{\sigma}}$ and $M_{\alpha}=M_{\alpha^{\sigma}}$, Remark 3.4.8 shows that $M_{\alpha_{p}}=$ $M_{\left(\alpha^{\sigma}\right)_{p^{\sigma}}}$. Recall that the matrix M_{γ} is obtained as the product $\left(I_{m} \oplus M_{\beta}\right) \cdot M_{\alpha_{p}}$, for some matrix M_{β} attached to β. Similarly, $M_{\gamma^{\sigma}}=\left(I_{m} \oplus M_{\beta}^{\prime}\right) \cdot M_{\left(\alpha^{\sigma}\right)_{p^{\sigma}}}$ for some matrix M_{β}^{\prime} attached to β. It follows that $M_{\beta}=M_{\beta}^{\prime}$ as we are assuming $M_{\gamma}=M_{\gamma^{\sigma}}$.

We recall \mathcal{F}_{γ} and $\mathcal{F}_{\gamma^{\sigma}}$ are constructed from $\mathcal{F}_{\alpha, p}$ and $\mathcal{F}_{\alpha^{\sigma}, p^{\sigma}}$ respectively, via the change of variables given by M_{β}. Explicitly,

$$
\mathcal{F}_{\alpha, p} \stackrel{M_{\beta}}{=} X_{m+1}^{n_{1}} Y^{n_{2}} \cdot \mathcal{F}_{\gamma}, \quad \mathcal{F}_{\alpha^{\sigma}, p^{\sigma}} \stackrel{M_{\beta}}{=} X_{m+1}^{n_{3}} Y^{n_{4}} \cdot \mathcal{F}_{\gamma^{\sigma}}
$$

for some $n_{1}, n_{2}, n_{3}, n_{4} \in \mathbb{Z}$. Note that $\mathcal{F}_{\alpha, p}^{\sigma}=\mathcal{F}_{\alpha^{\sigma}, p^{\sigma}}$ since $\tilde{\mathcal{G}}_{p}^{\sigma}=\tilde{\mathcal{G}}_{p^{\sigma}}$ and $\mathcal{F}_{\alpha}^{\sigma}=\mathcal{F}_{\alpha^{\sigma}}$. Therefore $\mathcal{F}_{\gamma}^{\sigma}=$ $\mathcal{F}_{\gamma^{\sigma}}$ as $\operatorname{ord}_{X_{m+1}}\left(\mathcal{F}_{\gamma}\right)=\operatorname{ord}_{X_{m+1}}\left(\mathcal{F}_{\gamma^{\sigma}}\right)$ by assumption and $\operatorname{ord}_{Y}\left(\mathcal{F}_{\gamma}\right)=\operatorname{ord}_{Y}\left(\mathcal{F}_{\gamma^{\sigma}}\right)=0$ by construction.

To conclude the proof it only remains to show that $\bar{C}_{\gamma^{\sigma}} \neq \varnothing$ since this would imply $\gamma^{\sigma} \in \Sigma_{S_{n, \alpha^{\sigma}}}$. We showed $j_{\gamma^{\sigma}}=j_{\gamma}, M_{\gamma^{\sigma}}=M_{\gamma}$ and $\mathcal{F}_{\gamma^{\sigma}}=\mathcal{F}_{\gamma}^{\sigma}$, and so $\bar{C}_{\gamma^{\sigma}}=\bar{C}_{\gamma}^{\sigma}$. But $\bar{C}_{\gamma} \neq \varnothing$ since $\gamma \in \Sigma_{S_{n, \alpha}}$. Thus $\bar{C}_{\gamma^{\sigma}} \neq \varnothing$.

Remark 3.7.4. Suppose Σ_{n} satisfies (d). In this remark we show that conditions (1),(2),(3) of Theorem 3.7.3 can always be obtained.

Let $\sigma \in G_{k}$. We have already observed that we can choose the polynomials $\tilde{\mathcal{G}}_{p}$, for $p \in S_{n}$, satisfying (1). Let $\gamma \in \Sigma_{n+1}$. If $\gamma \in \Sigma_{n}$, then the equalities $M_{\gamma}=M_{\gamma^{\sigma}}$ and $\operatorname{ord}_{X_{j_{\gamma}}}\left(\mathcal{F}_{\gamma}\right)=\operatorname{ord}_{X_{j_{\gamma} \sigma}}\left(\mathcal{F}_{\gamma^{\sigma}}\right)$ follow from the fact that Σ_{n} satisfies (d). Suppose $\gamma=\tilde{\alpha}$ for some $\alpha \in \Sigma_{n, S_{n}}$. Assuming (1), the equality $M_{\gamma}=M_{\gamma^{\sigma}}$ follows from Lemma 3.7.2 and Remark 3.4.14. Furthermore, $j_{\gamma}=j_{\gamma^{\sigma}}$ and $\mathcal{F}_{\gamma}^{\sigma}=\mathcal{F}_{\gamma^{\sigma}}$ as $j_{\alpha}=j_{\gamma^{\alpha}}$ and $\mathcal{F}_{\alpha}^{\sigma}=\mathcal{F}_{\alpha^{\sigma}}$. Suppose $\gamma \in \Sigma_{S_{n, \alpha}}$ for some $\alpha \in \Sigma_{n, S_{n}}$. Then $\gamma=\beta \circ_{g_{p}} \alpha$ for some primitive $\beta \in \mathbb{Z}_{+}^{2}$ and some $p \in S_{n, \alpha}$. Let $m \in \mathbb{Z}_{+}$such that $\alpha \in \Omega_{m}$. In the proof of Theorem 3.7.3 we showed that $M_{\gamma}=\left(I_{m} \oplus M_{\beta}\right) \cdot M_{\alpha_{p}}$ and $M_{\gamma^{\sigma}}=\left(I_{m} \oplus M_{\beta}^{\prime}\right) \cdot M_{\alpha_{p}}$, for some matrices $M_{\beta}, M_{\beta}^{\prime}$ attached to β that can be freely chosen. Therefore it suffices to choose $M_{\beta}=M_{\beta}^{\prime}$ to have $M_{\gamma}=M_{\gamma^{\sigma}}$. Finally, the polynomial \mathcal{F}_{γ} is fixed up to a power of $X_{j_{\gamma}}$, so we can easily require $\operatorname{ord}_{X_{j_{\gamma}}}\left(\mathcal{F}_{\gamma}\right)=\operatorname{ord}_{X_{j_{\gamma^{\sigma}}}}\left(\mathcal{F}_{\gamma^{\sigma}}\right)$. Remark 3.7.5. The conditions of Theorem 3.7.3 are satisfied if
(1) $\tilde{\mathcal{G}}_{p}=\overline{\mathcal{G}}_{p}$ for any $p \in S_{n}$;
(2) for any primitive $\beta \in \mathbb{Z}_{+}^{2}$, a fixed matrix $M_{\beta} \in \mathrm{SL}_{2}(\mathbb{Z})$ attached to β is chosen whenever choosing a matrix attached to β is required;
(3) there exists $a \in \mathbb{N}$ such that $\operatorname{ord}_{X_{j_{\gamma}}}\left(\mathcal{F}_{\gamma}\right)=a$ for any $\gamma \in \Sigma_{n+1}$.

Note that point (2) implies that if $\gamma=\beta \circ_{g_{p}} \alpha$, for some $\alpha \in \Sigma_{n}, p \in S_{n, \alpha}$, and some primitive vector $\beta \in \mathbb{Z}_{+}^{2}$, then we use the fixed matrix M_{β} to construct $M_{\gamma}=\left(I_{m} \oplus M_{\beta}\right) \cdot M_{\alpha_{p}}$.

Let C_{1} be the completion of C_{0} with respect to its Newton polygon. From §3.4.1 we easily see that $\gamma^{\sigma}=\gamma$ and $\mathcal{F}_{\gamma}^{\sigma}=\mathcal{F}_{\gamma}$ for any $\gamma \in \Sigma_{1}$ and any $\sigma \in G_{k}$. Hence the set $\Sigma_{1} \subset \Omega$, defining C_{1}, satisfies (d). Theorem 3.7.3 and Remark 3.7.4 show that we can construct Baker's resolutions of C_{0}

$$
\ldots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1},
$$

such that for all $n \in \mathbb{Z}_{+}$the sets Σ_{n} satisfy the additional property (d). In particular, $G_{k} \subseteq \operatorname{Aut}\left(C_{n}\right)$ and Σ_{n} is G_{k}-invariant. The Galois-invariance of Σ_{n} makes the action on C_{n} easy to describe. Fix such a Baker's resolution.

Lemma 3.7.6 Let $n \in \mathbb{Z}_{+}$. Then $\sigma \circ s_{n}=s_{n} \circ \sigma$, for any $\sigma \in G_{k}$.
Proof. Recall that s_{n} restricts to the identity on C_{0}. Then the two morphisms of k-schemes $\sigma \circ s_{n}$ and $s_{n} \circ \sigma$ agree on C_{0}. But C_{0} is a dense open of C_{n+1}, thus $\sigma \circ s_{n}=s_{n} \circ \sigma$ by [Liu4, Proposition 3.3.11].

Let $n \in \mathbb{Z}_{+}$. Recall that for any $\sigma \in G_{k}$ and $\gamma \in \Sigma_{n}$, we have $\left.f\right|_{\gamma^{\sigma}}=\left.f\right|_{\gamma} ^{\sigma}$, as Σ_{n} satisfies (d). Therefore there is a natural action of G_{k} on the set

$$
\sqcup_{\gamma \in \Sigma_{n}}\left\{\text { simple roots of }\left.f\right|_{\gamma} \text { in } \bar{k}^{\star}\right\},
$$

where the simple root $r \in \bar{k}^{\times}$of $\left.f\right|_{\gamma}$ is taken to the simple root $\sigma(r)$ of $\left.f\right|_{\gamma^{\sigma}}$.

Theorem 3.7.7 Let $f \in k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ be a Laurent polynomial defining a smooth curve $C_{0, k}: f=0$ over $\mathbb{G}_{m, k}^{2}$. Denote $C_{0}=C_{0, k} \times_{k} \bar{k}$. We can recursively construct a Baker's resolution of C_{0}

$$
\cdots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \cdots \xrightarrow{s_{1}} C_{1}
$$

where the maps s_{n} are the birational morphisms resolving G_{k}-invariant sets $S_{n} \subseteq \bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$ (chosen arbitrarily) and the sets Σ_{n}, defining the curves C_{n} / \bar{k}, satisfy the additional property (d). For any such sequence:
(i) There exists $h \in \mathbb{Z}_{+}$such that $S_{n}=\varnothing$ for any $n \geq h$.
(ii) If $\operatorname{Sing}\left(\bar{C}_{\alpha}\right) \subseteq \operatorname{Reg}\left(C_{n}\right)$ for all $\alpha \in \Sigma_{n}$, then the scheme-theoretical quotient C_{n} / G_{k} is a generalised Baker's model of the smooth completion C of $C_{0, k}$.
(iii) If C_{n} is outer regular, then there is a natural bijection

$$
C(\bar{k}) \backslash C_{0, k}(\bar{k}) \stackrel{1: 1}{\longrightarrow} \bigsqcup_{\gamma \in \Sigma_{n}}\left\{\text { simple roots of }\left.f\right|_{\gamma} \text { in } \bar{k}^{\times}\right\},
$$

preserving the action of the Galois group G_{k}.
Proof. Theorem 3.7.3 and Remark 3.7.4 show that the sequence can be constructed recursively, for any choice of Galois-invariant $S_{n} \subseteq \bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Part (i) follows from Theorem 3.6.3. Part (ii) is implied by Remark 3.4.4, Lemma 3.7.6 and the argument presented at the beginning of the current section. Now assume C_{n} is outer regular, i.e. \bar{C}_{α} is regular for all $\alpha \in \Sigma_{n}$. Therefore Lemma 3.5.12 shows that, for every $\gamma \in \Sigma_{n}$, from the definition $\bar{C}_{\gamma}=\operatorname{Spec} \frac{D_{\gamma}}{\left(\left.f\right|_{\gamma}\right)}$ we obtain a natural bijective map

$$
\bar{C}_{\gamma} \stackrel{1: 1}{\rightleftarrows}\left\{\text { simple roots of }\left.f\right|_{\gamma} \text { in } \bar{k}^{\times}\right\} .
$$

By part (ii), the smooth completion C of $C_{0, k}$ is isomorphic to the quotient C_{n} / G_{k}. Therefore $C \times_{k} \bar{k} \simeq C_{n}$ and so $C(\bar{k}) \simeq C_{n}(\bar{k})$. Since $C_{0, k}(\bar{k}) \simeq C_{0}(\bar{k})$ by definition, Lemma 3.5.7 implies part (iii).

Corollary 3.7.8 Any smooth projective curve C defined over a perfect field k has an outer regular generalised Baker's model.

Proof. By Corollary B.1.4, for any projective smooth curve C / k there exists a curve $C_{0, k} / k$ as in Theorem 3.7.7, birational to C. By Theorem 3.7.7 we can construct a Baker's resolution of $C_{0, k} \times{ }_{k} \bar{k}$

$$
\cdots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \cdots \xrightarrow{s_{1}} C_{1}
$$

where s_{n} are the birational morphisms resolving the Galois-invariant sets $S_{n}=\bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$ and the sets Σ_{n} satisfy the additional property (d). Furthermore, by Theorem 3.7.7(i) there exists $n \in \mathbb{Z}_{+}$such that $S_{n}=\varnothing$. It follows that \bar{C}_{γ} is regular for all $\gamma \in \Sigma_{n}$, i.e. C_{n} is outer regular. Let $\tilde{C}=C_{n} / G_{k}$. Thus \tilde{C} is an outer regular generalised Baker's model of C.

In the next proof we will show how Algorithm 3.1.5 and Theorem 3.1.6 follow from previous results.

Proof of Theorem 3.1.6. Suppose $C_{0, k}$ is geometrically connected. We recursively construct a Baker's resolution of $C_{0}=C_{0, k} \times{ }_{k} \bar{k}$

$$
\ldots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \ldots \xrightarrow{s_{1}} C_{1}
$$

where the morphisms s_{n} resolve the sets $S_{n}=\bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. In the construction, for any $n \in \mathbb{Z}_{+}$, we make the following choices:
(1) For any point $p \in S_{n}$ choose $\tilde{\mathcal{G}}_{p}=\overline{\mathcal{G}}_{p}$. This is always possible, since C_{0} is connected (see Remark 3.4.5).
(2) Every time we need to choose a matrix $M_{\beta} \in \mathrm{SL}_{2}(\mathbb{Z})$ attached to some primitive vector $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}_{+}^{2}$, choose $M_{\beta}=\binom{\delta_{1} \delta_{2}}{\beta_{1} \beta_{2}}$, where $\left(\delta_{1}, \delta_{2}\right)=\delta_{\beta}$ (Notation 3.1.3).
(3) For any $\gamma \in \Sigma_{n+1} \backslash \Sigma_{n}$, choose \mathcal{F}_{γ} with $\operatorname{ord}_{X_{j_{\gamma}}}\left(\mathcal{F}_{\gamma}\right)=0$.

With the choices above, by Theorem 3.7.3 and Remark 3.7.5, the sets Σ_{n} satisfy the additional property (d) and the sets S_{n} are Galois-invariant. Theorem 3.7.7(i) implies that there exists $n \in \mathbb{Z}_{+}$such that \bar{C}_{α} is regular for all $\alpha \in \Sigma_{n}$. In other words, C_{n} is outer regular. Let n be as small as possible, i.e. such that C_{h} is not outer regular for every $h<n$. By Theorem 3.7.7(iii) there is a natural bijection preserving the action of the Galois group G_{k},

$$
C(\bar{k}) \backslash C_{0, k}(\bar{k}) \stackrel{1: 1}{\longleftrightarrow} \bigsqcup_{\gamma \in \Sigma_{n}}\left\{\text { simple roots of }\left.f\right|_{\gamma} \text { in } \bar{k}^{\times}\right\},
$$

where C is the smooth completion of $C_{0, k}$.
For any $h<n$ recall $S_{h, \alpha}=S_{h} \cap \bar{C}_{\alpha}$ for any $\alpha \in \Sigma_{h}$, and note that

$$
\Sigma_{h, S_{h}}=\left\{\alpha \in \Sigma_{h} \mid S_{h, \alpha} \neq \varnothing\right\}=\left\{\alpha \in \Sigma_{h} \mid \bar{C}_{\alpha} \text { is singular }\right\}
$$

as $S_{h, \alpha}=\operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Define

$$
\tilde{\Sigma}_{h}=\left\{\tilde{\alpha} \mid \alpha \in \Sigma_{h, S_{h}}\right\} \cup\left(\Sigma_{h} \backslash \Sigma_{h, S_{h}}\right), \quad \text { and } \quad \Sigma_{h+1}^{+}=\bigcup_{\alpha \in \Sigma_{h, S_{h}}} \Sigma_{S_{h, \alpha}}
$$

so that $\Sigma_{h+1}=\Sigma_{h+1}^{+} \cup \tilde{\Sigma}_{h}$. We are going to show that \bar{C}_{γ} is regular for any $\gamma \in \tilde{\Sigma}_{h}$. From the choice of S_{h}, we have \bar{C}_{γ} regular for any $\gamma \in \Sigma_{h} \backslash \Sigma_{h, S_{h}}$. Now let $\alpha \in \Sigma_{h, S_{h}}$. Lemma 3.4.15 shows that $\bar{C}_{\tilde{\alpha}}$ is isomorphic to $\bar{C}_{\alpha} \backslash S_{h, \alpha}$. This is a regular scheme since $S_{h, \alpha}=\operatorname{Sing}\left(\bar{C}_{\alpha}\right)$.

Now we want to describe the set S_{h} for any $h<n$. Define $\Sigma_{1}^{+}=\Sigma_{1}$. If $h>1$, then \bar{C}_{γ} is regular when $\gamma \in \tilde{\Sigma}_{h-1}$. Therefore $\Sigma_{h, S_{h}} \subseteq \Sigma_{h}^{+}$for all $h<n$. Now $D_{\gamma}=k\left[X_{j_{\gamma}}^{ \pm 1}\right]$ for all $\gamma \in \Sigma_{h}^{+}$from §3.4.1 (case $h=1$) and Lemma 3.4.10 (case $h>1$). Hence the points in S_{h} bijectively corresponds to non-zero multiple roots of $\left.f\right|_{\gamma}, \gamma \in \Sigma_{h}^{+}$. Furthermore, given $\gamma \in \Sigma_{h}^{+}$, for any multiple root $r \in \bar{k}^{\times}$of $\left.f\right|_{\gamma}$ we have $\overline{\mathcal{G}}_{p_{r}}=X_{j_{\gamma}}-r$, where p_{r} is the point of S_{h} corresponding to r.

Let P_{h}, P be the indexed sets of polynomials in $\bar{k}[X, Y]$ constructed in §3.1.3 via Algorithm 3.1.5. We are going to prove the following facts:
(i) $P_{h}=\bigsqcup_{\gamma \in \Sigma_{h}^{+}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\}$ for any $h \leq n$;
(ii) $\bigsqcup_{i=1}^{h} P_{i}=\bigsqcup_{\gamma \in \Sigma_{h}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\}$ for any $h \leq n$;
(iii) $P=\bigsqcup_{\gamma \in \Sigma_{n}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\}$;
where $\mathcal{F}_{\gamma}(X, Y)$ denotes the image of \mathcal{F}_{γ} under the isomorphism

$$
\bar{k}\left[X_{j_{\gamma}}, Y\right] \rightarrow \bar{k}[X, Y], \quad X_{j_{\gamma}} \mapsto X, Y \mapsto Y
$$

Note that (iii) concludes the proof of Theorem 3.1.6.
We prove (i) by induction on h. If $h=1$, then $\Sigma_{1}^{+}=\Sigma_{1}$, and so the equality follows from §3.4.1. Suppose $h \geq 1$. We want to show that

$$
P_{h+1}=\bigsqcup_{\gamma \in \Sigma_{h+1}^{+}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\} .
$$

Let us recall the steps that have to be done to construct the polynomials \mathcal{F}_{γ}, for $\gamma \in \Sigma_{h+1}^{+}$. We observed that the points in S_{h} correspond to non-zero multiple roots of $\left.f\right|_{\alpha}$ for $\alpha \in \Sigma_{h}^{+}$. For any $\alpha \in \Sigma_{h}^{+}$and any multiple root $a \in \bar{k}^{\times}$of $\left.f\right|_{\alpha}$ do:
(1) Replace Y with \tilde{Y} in \mathcal{F}_{α} so that $\mathcal{F}_{\alpha} \in \bar{k}\left[X_{j_{\alpha}}, \tilde{Y}\right]$.
(2) Denote by p_{a} the point of S_{h} corresponding to a. We noted that $\overline{\mathcal{G}}_{p_{a}}=X_{j_{\alpha}}-a$. Since we chose $\tilde{\mathcal{G}}_{p_{a}}=\overline{\mathcal{G}}_{p_{a}}$, the normal form $\mathcal{F}_{\alpha, p_{a}}$ of \mathcal{F}_{α} by $\tilde{X}_{m+1}-\tilde{\mathcal{G}}_{p_{a}}$ with respect to the lexicographic order given by $X_{j_{\alpha}}>\tilde{X}_{m+1}>\tilde{Y}$ is

$$
\mathcal{F}_{\alpha, p_{a}}\left(\tilde{X}_{m+1}, \tilde{Y}\right)=\mathcal{F}_{\alpha}\left(\tilde{X}_{m+1}+a, \tilde{Y}\right)
$$

(here $m \in \mathbb{Z}_{+}$such that $\alpha \in \Omega_{m}$).
(3) Draw the Newton polygon $\Delta_{\alpha, p_{a}}$ of $\mathcal{F}_{\alpha, p_{a}}$.
(4) Let $\gamma=\beta \circ_{g_{p a}} \alpha$ for the normal vector $\beta \in \mathbb{Z}_{+}^{2}$ of some edge of $\Delta_{\alpha, p_{a}}$. From §3.4.3, we have $\gamma \in \Sigma_{p_{a}}$.
(5) The fixed matrix $M_{\beta}=\binom{\delta_{1} \delta_{2}}{\beta_{1} \beta_{2}}$ gives the change of variables

$$
\left(\tilde{X}_{m+1}, \tilde{Y}\right)=\left(X_{m+1}, Y\right) \cdot M_{\beta}=\left(X_{m+1}^{\delta_{1}} Y^{\beta_{1}}, X_{m+1}^{\delta_{2}} Y^{\beta_{2}}\right)
$$

Via this transformation we define \mathcal{F}_{γ} to be the unique polynomial in $\bar{k}\left[X_{m+1}, Y\right]$ such that $\operatorname{ord}_{X_{m+1}} \mathcal{F}_{\gamma}=\operatorname{ord}_{Y} \mathcal{F}_{\gamma}=0$, satisfying

$$
\mathcal{F}_{\alpha, p_{a}}\left(\tilde{X}_{m+1}, \tilde{Y}\right) \stackrel{M_{\beta}}{=} X_{m+1}^{n_{X}} Y^{n_{Y}} \cdot \mathcal{F}_{\gamma}\left(X_{m+1}, Y\right)
$$

for some $n_{X}, n_{Y} \in \mathbb{Z}$.
(6) In fact, all elements $\gamma \in \Sigma_{p_{a}}$ equals $\beta \circ_{g_{p_{a}}} \alpha$ with $\beta \in \mathbb{Z}_{+}^{2}$ normal vector of some edge of $\Delta_{\alpha, p_{a}}$.

The procedure presented here describes how to construct the polynomials \mathcal{F}_{γ} for all $\gamma \in \Sigma_{h+1}^{+}$ knowing the polynomials \mathcal{F}_{α}, for all $\alpha \in \Sigma_{h, S_{n}} \subseteq \Sigma_{h}^{+}$. Comparing it with Algorithm 3.1.5 we see that $P_{h+1}=\bigsqcup_{\gamma \in \Sigma_{h+1}^{+}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\}$ since $\bigsqcup_{\alpha \in \Sigma_{h}^{+}}\left\{\mathcal{F}_{\alpha}(X, Y)\right\}=P_{h}$ by inductive hypothesis.

We now prove (ii) by induction on h. If $h=1$, then (ii) follows from (i) as $\Sigma_{1}=\Sigma_{1}^{+}$by definition. Suppose then $h \geq 1$. We want to show that $\bigsqcup_{i=1}^{h+1} P_{i}=\bigsqcup_{\gamma \in \Sigma_{h+1}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\}$. But $\Sigma_{h+1}=\Sigma_{h+1}^{+} \sqcup \tilde{\Sigma}_{h}$, so, by (i) and inductive hypothesis, it suffices to show that

$$
\bigsqcup_{\gamma \in \tilde{\Sigma}_{h}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\}=\bigsqcup_{\gamma \in \Sigma_{h}}\left\{\mathcal{F}_{\gamma}(X, Y)\right\}
$$

But this easily follows from the definition of $\tilde{\Sigma}_{h}$ since $\mathcal{F}_{\tilde{\alpha}}=\mathcal{F}_{\alpha}$ for any $\alpha \in \Sigma_{S_{h}, h}$ (Notation 3.4.16).
To prove (iii), first note that from (i), for any $h \leq n$ the indexed set P_{h} is non-empty. Then (iii) is implied by (ii) if for any $f_{\ell} \in P_{n}$, the polynomial $f_{\ell}(X)=f_{\ell}(X, 0)$ has no non-zero multiple roots. But this follows from (i) since \bar{C}_{α} is regular for any $\alpha \in \Sigma_{n}$, and so $\left.f\right|_{\gamma}$ has no multiple roots in \bar{k}^{\times} for any $\gamma \in \Sigma_{h}^{+}$as $D_{\gamma}=k\left[X_{j_{\gamma}}^{ \pm 1}\right]$ in this case (Lemma 3.4.10). As already observed, this concludes the proof of Theorem 3.1.6.

3.8 Superelliptic equations

Let k be a perfect field and let \bar{k} be an algebraic closure of k. Denote by G_{k} the absolute Galois group of k. As application of the construction presented in the previous sections, we consider a curve $C_{0, k}$ in $\mathbb{G}_{m, k}^{2}$ defined by an equation

$$
y^{s}=h(x)
$$

for some polynomial $h \in k[x]$ and some $s \in \mathbb{Z}_{+}$not divisible by char(k). By convention the polynomial $f(x, y)$ defining $C_{0, k}$ will be $y^{s}-h(x)$. Denote by C_{0} the curve $C_{0, k} \times_{k} \bar{k}$. Note that C_{0} is smooth, but may be not connected, e.g. when $h(x)$ is an s-th power. Expand

$$
h(x)=\sum_{i=m_{0}}^{d} c_{i} x^{i}, \quad c_{i} \in k
$$

where $c_{m_{0}}$ and c_{d} are non-zero. We want to study a Baker's resolution of C_{0}

$$
\cdots \xrightarrow{s_{n+1}} C_{n+1} \xrightarrow{s_{n}} C_{n} \xrightarrow{s_{n-1}} \cdots \xrightarrow{s_{1}} C_{1}
$$

as in Theorem 3.7.7, where the Galois-invariant sets S_{n} which the birational morphisms s_{n} resolve are as large as possible, i.e. $S_{n}=\bigsqcup_{\alpha \in \Sigma_{n}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. For the purpose of the construction of the Baker's resolution $x_{1}=x$.

The Newton polygon Δ of f always has at least two edges: ℓ_{1} with endpoints ($\left.m_{0}, 0\right),(0, s)$ and normal vector $\operatorname{gcd}\left(m_{0}, s\right)^{-1}\left(s, m_{0}\right)$, and ℓ_{2} with endpoints $(d, 0),(0, s)$ and normal vector
$\operatorname{gcd}(d, s)^{-1}(-s,-d)$. If h is a monomial then Δ is a segment, otherwise Δ is a triangle. In the latter case, the third edge ℓ has endpoints $\left(m_{0}, 0\right),(d, 0)$ and normal vector $(0,1)$. Construct the completion C_{1} of C_{0} with respect to Δ, as described in §3.4.1. For any $i=1,2$ let $v_{i} \neq(0,1)$ be the normal vector of ℓ_{i} and set $\alpha_{i}=\left(v_{i},()\right) \in \Sigma_{1}$. From Proposition 3.4.1 it follows that

$$
\left.f\right|_{\alpha_{i}}=X_{1}^{*} \cdot\left(a_{l} X_{1}^{l}+a_{0}\right), \quad l \in \mathbb{Z}_{+}, a_{0}, a_{l} \in k^{\times}
$$

where $\operatorname{char}(k) \nmid l$. In fact, if $i=1$ then $l=\operatorname{gcd}\left(m_{0}, s\right), a_{l}=-c_{m_{0}}, a_{0}=1$, while if $i=2$ then $l=\operatorname{gcd}(d, s), a_{l}=1, a_{0}=-c_{d}$. In particular, $\left.f\right|_{\alpha_{i}}$ has no multiple roots in \bar{k}^{\times}.

Suppose now that h is not a monomial. Let $v=(0,1)$ be the normal vector of ℓ and let $\alpha=(v,())$ be the corresponding element of Σ_{1}. Consider $\mathcal{F}_{\alpha} \in \bar{k}\left[X_{1}, Y\right]$. Note that since $v=(0,1)$, we can choose $M_{\alpha}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and so $\mathcal{F}_{\alpha}=f\left(X_{1}, Y\right)$. In particular, $\left.f\right|_{\alpha}=f\left(X_{1}, 0\right)=-h\left(X_{1}\right)$. Since $D_{\alpha}=\bar{k}\left[X_{1}^{ \pm 1}\right]$, the singular points of \bar{C}_{α} correspond to the non-zero multiple roots of $\left.f\right|_{\alpha}$, or, equivalently, to the non-zero multiple roots of h. Hence S_{1} is the set of those points. If $S_{1}=\varnothing$, then C_{1} is (outer) regular. We deduce the following lemma.

Lemma 3.8.1 If h has no multiple root in \bar{k}^{\times}, then C_{1} is an outer regular (generalised) Baker's model of the smooth completion of C_{0}.

Suppose $S_{1} \neq \varnothing$. Construct the morphism $s_{1}: C_{2} \rightarrow C_{1}$ resolving S_{1}. Let v and α as above. Rename the variable Y of \mathcal{F}_{α} to \tilde{Y}, so that $\mathcal{F}_{\alpha} \in \bar{k}\left[X_{1}, \tilde{Y}\right]$. Let $p \in S_{1}$ and let $r \in \bar{k}^{\times}$be the multiple root of h corresponding to p. One has $\overline{\mathcal{G}}_{p}=X_{1}-r$. Note that $\overline{\mathcal{G}}_{p}$ does not divide \mathcal{F}_{α}, so choose $\tilde{\mathcal{G}}_{p}=\overline{\mathcal{G}}_{p}$. Then

$$
\mathcal{F}_{\alpha, p}\left(\tilde{X}_{2}, \tilde{Y}\right)=\mathcal{F}_{\alpha}\left(\tilde{X}_{2}+r, \tilde{Y}\right)=f\left(\tilde{X}_{2}+r, \tilde{Y}\right)=\tilde{Y}^{s}-h\left(\tilde{X}_{2}+r\right)
$$

It follows that the Newton polygon $\Delta_{\alpha, p}$ of $\mathcal{F}_{\alpha, p}$ has a unique edge ℓ_{r} with normal vector in \mathbb{Z}_{+}^{2}. Denoting by m_{r} the multiplicity of the root r of h, the endpoints of ℓ_{r} are ($m_{r}, 0$), ($0, s$) and $\beta_{r}=\operatorname{gcd}\left(m_{r}, s\right)^{-1}\left(s, m_{r}\right)$ is its normal vector. Let $\gamma_{r}=\beta_{r} \circ_{g_{p}} \alpha$, where g_{p} is the polynomial related to $\tilde{\mathcal{G}_{p}}$ by M_{α}. Define $h_{r}(x)=h(x) /(x-r)^{m_{r}} \in \bar{k}[x]$. Then Proposition 3.4.19 implies

$$
\left.f\right|_{\gamma_{r}}\left(X_{2}\right)=X_{2}^{*} \cdot\left(-a_{r} X_{2}^{\operatorname{gcd}\left(m_{r}, s\right)}+1\right)
$$

where $a_{r}=h_{r}(r)$. In particular, since $\operatorname{char}(k) \nmid s$, the polynomial $\left.f\right|_{\gamma_{r}}$ has no multiple root in \bar{k}^{\times}. Therefore $\bar{C}_{\gamma_{r}}$ is regular for any non-zero multiple root r of h. Moreover, $\bar{C}_{\tilde{\alpha}}$ is also regular as $\bar{C}_{\tilde{\alpha}} \simeq \bar{C}_{\alpha} \backslash S_{1}$. Recall the notation $\tilde{\Sigma}_{1}=\hat{\Sigma}_{1} \cup\{\tilde{\alpha}\}$, where $\hat{\Sigma}_{1}=\Sigma_{1} \backslash\{\alpha\}$. Since

$$
\Sigma_{2}=\left\{\gamma_{r} \mid r \text { multiple root of } h\right\} \cup \tilde{\Sigma}_{1}
$$

the schemes \bar{C}_{γ} are regular for all $\gamma \in \Sigma_{2}$. We obtain the following result.
Lemma 3.8.2 If h has multiple roots in \bar{k}^{\times}, then C_{1} is singular, but C_{2} is an outer regular generalised Baker's model of the smooth completion of C_{0}.

Remark 3.8.3. Note that $C_{2}=\bigcup_{\gamma \in \Sigma_{2}} C_{\gamma}$ since $C_{0} \subseteq C_{\gamma}$ for any $\gamma \in \Sigma_{2}$.

We want to give an explicit description of the curve $C_{2, k}=C_{2} / G_{k}$, when h has multiple roots in \bar{k}^{\times}. First note that for any $\gamma \in \tilde{\Sigma}_{1}$ the polynomials defining the curves C_{γ} have coefficients in k. Therefore $G_{k} \subseteq \operatorname{Aut}\left(C_{\gamma}\right)$ for all $\gamma \in \tilde{\Sigma}_{1}$ and the charts C_{γ} / G_{k} of $C_{2, k}$ easily follows. It remains to describe the curve $\left(\cup_{\sigma \in G_{k}} C_{\gamma_{\sigma(r)}}\right) / G_{k}$ for any non-zero multiple root r of h.

Let $g \in k[x]$ be the minimal polynomial of a multiple root $r \in \bar{k}^{\times}$of h. Let $m_{r}, h_{r}, \beta_{r}, \gamma_{r}$ as above. Set $s_{r}=\operatorname{gcd}\left(m_{r}, s\right)$. Note that $\operatorname{ord}_{g}(h)=m_{r}$. If $\binom{\delta_{1} \delta_{2}}{\beta_{1} \beta_{2}}$ is the matrix attached to β_{r} used for the construction of $C_{\gamma_{r}}$ then

$$
\mathcal{O}_{C_{\gamma_{r}}}\left(C_{\gamma_{r}}\right)=\frac{\bar{k}\left[X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, Y\right]}{\left(1-X_{2}^{s_{r}} \cdot h_{r}\left(X_{1}\right), X_{2}^{\delta_{1}} Y^{\beta_{1}}-X_{1}+r\right)}
$$

Define $g_{r}, h_{g} \in \bar{k}[x]$ by $g_{r}(x)=g(x) /(x-r), h_{g}(x)=h(x) / g(x)^{m_{r}}$. Note that $g_{r}\left(X_{1}\right)$ is invertible in $\mathcal{O}_{C_{\gamma_{r}}}\left(C_{\gamma_{r}}\right)$. Consider the homomorphism

$$
\phi_{r}: \frac{\bar{k}\left[X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, Y\right]}{\left(1-X_{2}^{s_{r}} \cdot h_{g}\left(X_{1}\right), X_{2}^{\delta_{1}} Y^{\beta_{1}}-g\left(X_{1}\right)\right)} \longrightarrow \frac{\bar{k}\left[X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, Y\right]}{\left(1-X_{2}^{s_{r}} \cdot h_{r}\left(X_{1}\right), X_{2}^{\delta_{1}} Y^{\beta_{1}}-X_{1}+r\right)}
$$

taking $X_{1} \mapsto X_{1}, X_{2} \mapsto X_{2} \cdot g_{r}\left(X_{1}\right)^{\beta_{2}}, Y \mapsto Y \cdot g_{r}\left(X_{1}\right)^{-\delta_{2}}$. Let $A_{g}:=\operatorname{Dom}\left(\phi_{r}\right)$. Note that $\operatorname{Spec} A_{g}=$ $C_{\gamma_{g}}$, where $\gamma_{g}=\beta_{r} \circ_{g} \alpha \in \Omega$. Then ϕ_{r} induces an open immersion $\iota_{r}: C_{\gamma_{r}} \hookrightarrow C_{\gamma_{g}}$. The glueing of the open immersions $l_{\sigma(r)}$, for $\sigma \in G_{k}$, gives an isomorphism

$$
\left(\bigcup_{\sigma \in G_{k}} C_{\gamma_{\sigma(r)}}\right) \simeq C_{\gamma_{g}}
$$

commuting with the Galois action. Since $C_{\gamma_{g}}$ is defined by polynomials with coefficients in k, the quotient $C_{\gamma_{g}} / G_{k}$ is easy to describe, as required.

3.9 Example

Let $C_{0 . \mathbb{F}_{2}}: f=0 \subset \mathbb{G}_{m, \mathbb{F}_{2}}^{2}$ with $f=x_{1}^{4}+1+y^{2}+y^{3}$. Note that $C_{0, \mathbb{F}_{2}}$ is smooth. Write $C_{0}=C_{0, \mathbb{F}_{2}} \times{ }_{\mathbb{F}_{2}} \overline{\mathbb{F}}_{2}$, where $\overline{\mathbb{F}}_{2}$ is an algebraic closure of \mathbb{F}_{2}.

3.9.1 Construction of C_{1}

The Newton polygon Δ of f is

We want to construct the completion C_{1} of C_{0} with respect to Δ as explained in §3.4.1. For any edge ℓ_{i} of Δ let β_{i} be the normal vector of ℓ_{i}. Then $\beta_{1}=(1,0), \beta_{2}=(-3,-4), \beta_{3}=(0,1)$. Let $\alpha_{i}=\left(\beta_{i},()\right) \in \Sigma_{1}$ for $i=1,2,3$. Then $\Sigma_{1}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and

$$
C_{1}=C_{\alpha_{1}} \cup C_{\alpha_{2}} \cup C_{\alpha_{3}}
$$

where we omitted C_{0} as $C_{0} \subset C_{\alpha}$ for every $\alpha \in \Sigma_{1}$. From Proposition 3.4.1 the polynomials $\left.f\right|_{\alpha_{1}}$ and $\left.f\right|_{\alpha_{2}}$ are separable (up to a power of X_{1}) and so the corresponding curves $C_{\alpha_{1}}$ and $C_{\alpha_{2}}$ are regular. On the other hand, $1 \in \mathbb{F}_{2}$ is a non-zero multiple root of $\left.f\right|_{\alpha_{3}}$, so $C_{\alpha_{3}}$ may be singular. Let us compute the defining polynomial $\mathcal{F}_{\alpha_{3}}$. The identity matrix $I \in \mathrm{SL}_{2}(\mathbb{Z})$ is attached to β_{3}, so we fix $M_{\alpha_{3}}=I$. Via I we get

$$
\mathcal{F}_{\alpha_{3}}=X_{1}^{4}+1+Y^{2}+Y^{3}
$$

Then $C_{\alpha_{3}}=\operatorname{Spec} \overline{\mathbb{F}}_{2}\left[X_{1}^{ \pm 1}, Y\right] /\left(\mathcal{F}_{\alpha_{3}}\right)$ is singular. Thus C_{1} is not smooth, having 1 singular point, visible on $C_{\alpha_{3}}$.

3.9.2 Construction of C_{2}

Rename the variable Y of $C_{\alpha_{3}}$ to \tilde{Y}. Let p be the singular point of $C_{\alpha_{3}}$. Then $\overline{\mathcal{G}}_{p}=X_{1}+1$. Choose $\tilde{\mathcal{G}}_{p}=\overline{\mathcal{G}}_{p}$. We will construct the morphism $s_{1}: C_{2} \rightarrow C_{1}$ resolving the set $S_{1}=\{p\}$. Note that $S_{1}=\bigsqcup_{\alpha \in \Sigma_{1}} \operatorname{Sing}\left(\bar{C}_{\alpha}\right)$. Let $\alpha=\alpha_{3}$ and $\beta=\beta_{3}$. Then

$$
\tilde{\mathcal{G}}_{p}\left(\left(x_{1}, y\right) \cdot M_{\alpha}^{-1}\right)=x_{1}+1
$$

so $g_{p}=x_{1}+1 \in \mathbb{F}_{2}\left[x_{1}, y\right]$ is the polynomial related to $\tilde{\mathcal{G}}_{p}$ by M_{α}. Define $g_{2}=g_{p}$ and $f_{2}=x_{2}-g_{2}$. Note that since S_{1} consists of a single point, we have $\tilde{\mathcal{G}}_{S_{1}}=\tilde{\mathcal{G}}_{p}$ and $g_{S_{1}}=g_{p}$. Then $\alpha_{p}=\tilde{\alpha}$. Compute $\operatorname{ord}_{\beta}\left(g_{p}\right)=0$ and $\tilde{\alpha}=\alpha_{p}=(0,1) \circ_{g_{S_{1}}} \alpha=\left((0,0,1),\left(g_{2}\right)\right)$. Then

$$
C_{\tilde{\alpha}}=C_{\alpha_{p}}=\operatorname{Spec} \frac{\overline{\mathbb{F}}_{2}\left[X_{1}^{ \pm 1}, \tilde{X}_{2}^{ \pm 1}, \tilde{Y}\right]}{\left(\mathcal{F}_{\alpha_{3}}, \tilde{X}_{2}+X_{1}+1\right)}
$$

The normal form of $\mathcal{F}_{\alpha_{3}}$ by $\tilde{X}_{2}-\mathcal{G}$ with respect to the lexicographic order given by $X_{1}>\tilde{X}_{2}>\tilde{Y}$ is

$$
\mathcal{F}_{\alpha, p}=\mathcal{F}_{\alpha}\left(\tilde{X}_{2}+1, \tilde{Y}\right)=\tilde{X}_{2}^{4}+\tilde{Y}^{2}+\tilde{Y}^{3}
$$

The Newton polygon of $\mathcal{F}_{\alpha, p}$ is

There is only 1 edge, denoted ℓ_{4}, with normal vector in \mathbb{Z}_{+}^{2}. The normal vector of ℓ_{4} is $\beta_{4}=(1,2)$. It follows that $v_{4}=\beta_{4} \circ_{g_{p}} \beta=(0,1,2)$. Hence $\gamma_{4}=\beta_{4} \circ_{g_{p}} \alpha=\left(v_{4},\left(g_{2}\right)\right)$ is the corresponding element of Σ_{p}. Then $\Sigma_{2}=\left\{\alpha_{1}, \alpha_{2}, \tilde{\alpha}_{3}, \gamma_{4}\right\}$.

To check whether $C_{\gamma_{4}}$ is regular, compute $\mathcal{F}_{\gamma_{4}}$. The matrix $M_{\beta_{4}}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, attached to β_{4}, defines the change of variables $\tilde{X}_{2}=X_{2} Y, \tilde{Y}=X_{2} Y^{2}$, from which we get

$$
\begin{array}{ll}
\mathcal{F}_{\alpha, p}=X_{2}^{2} Y^{4} \mathcal{F}_{\gamma_{4}}, & \mathcal{F}_{\gamma_{4}}=X_{2}^{2}+1+X_{2} Y^{2} \\
\tilde{X}_{2}-\tilde{\mathcal{G}}_{p}=\mathcal{F}_{2}, & \mathcal{F}_{2}=X_{2} Y+X_{1}+1
\end{array}
$$

where \mathcal{F}_{2} is the generator of the ideal $\mathfrak{a}_{\gamma_{4}}$. Therefore the curve

$$
C_{\gamma_{4}}=\operatorname{Spec} \frac{\overline{\mathbb{F}}_{2}\left[X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{\gamma_{4}}\right)+\mathfrak{a}_{\gamma_{4}}}
$$

is singular, and so is the projective curve $C_{2}=C_{\alpha_{1}} \cup C_{\alpha_{2}} \cup C_{\tilde{\alpha}_{3}} \cup C_{\gamma_{4}}$. In the union we omitted C_{0}, as $C_{0} \subset C_{\alpha_{1}}$.

3.9.3 Construction of C_{3}

Let q be the singular point of $C_{\gamma_{4}}$. We now construct the morphism $s_{2}: C_{3} \rightarrow C_{2}$ resolving $S_{2}=\{q\}$. Let $\gamma=\gamma_{4}$. Rename the variable Y of C_{γ} to \tilde{Y}. Choose $\tilde{\mathcal{G}}_{q}=\overline{\mathcal{G}}_{q}=X_{2}+1$. By definition

$$
M_{\gamma}=\left((1) \oplus M_{\beta_{4}}\right) \cdot M_{\alpha_{p}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right), \quad M_{\gamma}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 1
\end{array}\right) .
$$

Then $g_{q}=x_{2}^{2}+y \in \mathbb{F}_{2}\left[x_{1}, x_{2}, y\right]$ is the polynomial related to $\tilde{\mathcal{G}}_{q}$ by M_{γ}, as

$$
\tilde{\mathcal{G}}_{q}\left(\left(x_{1}, x_{2}, y\right) \bullet M_{\gamma}^{-1}\right)=x_{2}^{2} y^{-1}+1 .
$$

Let $g_{3}=\left(x_{1}+1\right)^{2}+y$ be the Laurent polynomial in $k\left[x_{1}^{ \pm 1}, y^{ \pm 1}\right]$ congruent to g_{q} modulo f_{2}. Compute $\operatorname{ord}_{v_{4}}\left(g_{q}\right)=2$. Then

$$
\tilde{\gamma}=\gamma_{q}=(0,1) \circ_{g_{q}} \gamma=\left((0,1,2,2),\left(g_{2}, g_{3}\right)\right) .
$$

The normal form of \mathcal{F}_{γ} by $\tilde{X}_{3}-\tilde{\mathcal{G}}_{q}$ with respect to the lexicographic order given by $X_{2}>\tilde{X}_{3}>\tilde{Y}$ is

$$
\mathcal{F}_{\gamma, q}=\tilde{X}_{3}^{2}+\left(\tilde{X}_{3}+1\right) \tilde{Y}^{2} .
$$

The Newton polygon of $\mathcal{F}_{\gamma, q}$ is

There is only 1 edge, denoted ℓ_{5}, with normal vector in \mathbb{Z}_{+}^{2}. The normal vector of ℓ_{5} is $\beta_{5}=(1,1)$ and so the corresponding element of Σ_{q} is

$$
\gamma_{5}=\beta_{5} \circ g_{q} \gamma=\left((0,1,3,2),\left(g_{2}, g_{3}\right)\right) .
$$

Hence $\Sigma_{3}=\left\{\alpha_{1}, \alpha_{2}, \tilde{\alpha}_{3}, \tilde{\gamma}_{4}, \gamma_{5}\right\}$.
The matrix $M_{\beta_{5}}=\left(\begin{array}{l}10 \\ 1\end{array} 1\right)$, attached to β_{5}, defines the change of variables $\tilde{X}_{3}=X_{3} Y, \tilde{Y}=Y$ from which we get

$$
\begin{array}{ll}
\mathcal{F}_{\gamma, q}=Y^{2} \mathcal{F}_{\gamma_{5}} & \mathcal{F}_{\gamma_{5}}=X_{3}^{2}+X_{3} Y+1, \\
\tilde{X}_{3}-\tilde{\mathcal{G}}_{q}=\mathcal{F}_{3} & \mathcal{F}_{3}=X_{3} Y+X_{2}+1,
\end{array}
$$

and $\mathcal{F}_{2}=X_{2} Y+X_{1}+1$ is the image of the generator of \mathfrak{a}_{γ} under $M_{\beta_{5}}$. Then $\mathfrak{a}_{\gamma_{5}}=\left(\mathcal{F}_{2}, \mathcal{F}_{3}\right)$ and

$$
C_{\gamma_{5}}=\operatorname{Spec} \frac{\bar{F}_{2}\left[X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, X_{3}^{ \pm 1}, Y\right]}{\left(\mathcal{F}_{\gamma_{5}}\right)+\mathfrak{a}_{\gamma_{5}}}
$$

is regular (even if $\left.f\right|_{\gamma_{5}}$ is not separable). Therefore the curve

$$
C_{3}=C_{\alpha_{1}} \cup C_{\alpha_{2}} \cup C_{\tilde{\alpha}_{3}} \cup C_{\tilde{\gamma}_{4}} \cup C_{\gamma_{5}}
$$

is regular as well, and is a generalised Baker's model of the smooth completion of C_{0}. It is not outer regular, since $\bar{C}_{\gamma_{5}}$ has a singular point. One more step is therefore necessary (and sufficient by Proposition 3.4.38) to construct an outer regular generalised Baker's model. Note that in the description of C_{3} we omitted C_{0}, as $C_{0} \subset C_{\alpha_{1}}$. Finally, the polynomials defining the charts C_{γ}, $\gamma \in \Sigma_{3}$ have coefficients in \mathbb{F}_{2}, so the construction of the generalised Baker's model $C_{3} / G_{\mathbb{F}_{2}}$ of the smooth completion of $C_{0, \mathbb{F}_{2}}$ easily follows.

REGULAR MODELS OF HYPERELLIPTIC CURVES

This chapter is based on the paper Regular models of hyperelliptic curves [Mus3], submitted for publication. Let K be a complete discretely valued field of odd residue characteristic and O_{K} its ring of integers. We explicitly construct a regular model \mathcal{C} over O_{K} with strict normal crossings of any hyperelliptic curve $C / K: y^{2}=f(x)$. For this purpose, we introduce the new notion of MacLane cluster picture, that aims to be a link between clusters and MacLane valuations.

The description of the special fibre of \mathcal{C}, presented in Theorem 4.1.7, is being implemented in MAGMA by T. Dokchitser.

4.1 Introduction

In this paper we construct regular models of hyperelliptic curves over discrete valuation rings with residue characteristic different from 2. The understanding of regular models is essential to describe the arithmetic of curves and for example finds application in the study of the Birch \& Swinnerton-Dyer conjecture over global fields.

4.1.1 Overview

Let K be a complete discretely valued field, with ring of integers O_{K}. Given a connected smooth projective curve C / K, a regular model of C over O_{K} is an integral regular proper flat scheme $\mathcal{C} \rightarrow O_{K}$ of dimension 2 with generic fibre isomorphic to C. The main result of this work can be presented as follows:

Suppose that the residue characteristic of K is not 2 . Let $C / K: y^{2}=f(x)$ be a hyperelliptic curve. From the MacLane clusters for f we determine a regular model of C over O_{K} with strict
normal crossings.
The MacLane clusters for a separable polynomial $f \in K[x]$ are a new notion we introduce in this paper (see $\S 4.1 .2$ for more details). It has connections with other objects used for the study of regular models: clusters [$\mathrm{D}^{2} \mathrm{M}^{2}$], rational clusters [Mus1], Newton polytopes [Dok], and MacLane valuations [OW]. Like (rational) clusters, MacLane clusters define nice and clear invariants from which one can give a result in a closed form. In fact, one can see that rational clusters are MacLane clusters of degree 1 . On the other side, the construction of our model can be implemented from the algorithmic nature of the approaches based on Newton polytopes and MacLane valuations.

The construction of the model presented in $\S 4.5$ generalises the one showed in Chapter 2. For this reason, the author believes the approach developed in this chapter could be used to tackle some even residue characteristic cases, as we did in Chapter 2.

4.1.2 Main result

Let K be a complete discretely valued field, with normalised discrete valuation v_{K}, ring of integers O_{K}, and residue field k. Let \bar{K} be an algebraic closure of K, extend v_{K} to \bar{K}. Assume $\operatorname{char}(k) \neq 2$. Let C / K be a hyperelliptic curve, i.e. a geometrically connected smooth projective curve of genus ≥ 1, double cover of \mathbb{P}_{K}^{1}. We can fix a Weierstrass equation $C: y^{2}=f(x)$ where

$$
f(x)=c_{f} \prod_{r \in \mathfrak{R}}(x-r) \in K[x], \quad c_{f} \in K
$$

such that $v_{K}(r)>0$ for all $r \in \mathfrak{R}$.
Definition 4.1.1 Let $\hat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$. Given a monic irreducible polynomial $g \in K[x]$ and an element $\lambda \in \hat{\mathbb{Q}}$, the discoid $D(g, \lambda)$ is the set

$$
D=D(g, \lambda)=\left\{\alpha \in \bar{K} \mid v_{K}(g(\alpha)) \geq \lambda\right\} \subset \bar{K} .
$$

For any $r \in \Re$, denote by $D \wedge r$ the smallest discoid containing D and r.
Define $\operatorname{deg} D=\min \left\{d \in \mathbb{Z}_{+} \mid D=D(g, \lambda), \operatorname{deg} g=d\right\}$.
To each discoid we can associate a pseudo-valuation (Appendix C.1) $v_{D}: K[x] \rightarrow \hat{\mathbb{Q}}$ defined by

$$
v_{D}(f)=\inf _{\alpha \in D} v_{K}(f(\alpha)) .
$$

The map $D \mapsto v_{D}$ is injective. Therefore if $v=v_{D}$ denote $D_{v}=D$ and $d_{v}=\operatorname{deg} D$.
Definition 4.1.2 A MacLane cluster is a pair (\mathfrak{s}, v) where $\mathfrak{s} \subseteq \mathfrak{R}$, and $v=v_{D}$ for some discoid D, such that

1. $\mathfrak{s}=D \cap \Re \neq \varnothing$;
2. if $\mathfrak{s}=D^{\prime} \cap \mathfrak{R}$ for a discoid $D^{\prime} \subsetneq D$ then $\operatorname{deg} D^{\prime}>\operatorname{deg} D$.

The degree of (\mathfrak{s}, v) is the quantity d_{v}.
Definition 4.1.3 For any MacLane clusters $(\mathfrak{s}, v),(\mathfrak{t}, w)$ we say:

(\mathfrak{s}, v) proper,	if $\|\mathfrak{s}\|>d_{v}$
$(\mathfrak{t}, w) \subseteq(\mathfrak{s}, v)$,	if $D_{w} \subseteq D_{v}$
(\mathfrak{t}, w) is a child of (\mathfrak{s}, v),	if $(\mathfrak{t}, w) \subsetneq(\mathfrak{s}, v)$ is a maximal subcluster
(\mathfrak{s}, v) degree-minimal,	if (\mathfrak{s}, v) has no proper children of degree d_{v}

We write $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ for a child (\mathfrak{t}, w) of (\mathfrak{s}, v).
For the remainder of this subsection we also assume k algebraically closed. This additional condition is not necessary for the construction of the model but it simplifies the statement of Theorem 4.1.7.

Let Σ be the set of proper MacLane clusters.
Notation 4.1.4 Let $\mathcal{P} \subset K[x]$ be the subset of monic irreducible polynomials. For any $d \in \mathbb{Z}_{+}$, denote $\mathcal{P}_{\leq d}=\{g \in \mathcal{P} \mid \operatorname{deg} g \leq d\}$.

Definition 4.1.5 (4.6.1) Let $(\mathfrak{s}, v) \in \Sigma$. Define the following quantities:

$$
\begin{aligned}
& \lambda_{v}=\max _{g \in \mathcal{P}_{\leq d_{v}}} \min _{r \in \mathfrak{s}} v_{K}(g(r)), \text { called radius } \\
& b_{v}=\operatorname{denominator~of~} \lambda_{v} d_{v} \\
& e_{v}=b_{v} d_{v} \\
& v_{v}=v_{K}\left(c_{f}\right)+\sum_{r \in \mathfrak{R}}\left(\lambda_{v_{D_{v} \wedge r}} / d_{v_{D_{v} \wedge r}}\right) \\
& n_{v}=1 \text { if } e_{v} v_{v} \text { odd, } 2 \text { if } e_{v} v_{v} \text { even } \\
& m_{v}=2 e_{v} / n_{v} \\
& t_{v}=\mid \mathfrak{s l} / d_{v} \\
& p_{v}=1 \text { if } t_{v} \text { is odd, } 2 \text { if } t_{v} \text { is even } \\
& s_{v}=\frac{1}{2}\left(t_{v} \lambda_{v}+p_{v} \lambda_{v}-v_{v}\right) \\
& \gamma_{v}=2 \text { if } t_{v} \text { is even and } v_{v} d_{v}-|\mathfrak{s}| \lambda_{v} \text { is odd, } 1 \text { otherwise } \\
& \delta_{v}=1 \text { if }(\mathfrak{s}, v) \text { is degree-minimal, } 0 \text { otherwise } \\
& p_{v}^{0}=1 \text { if } \delta_{v}=1 \text { and } d_{v}=\min _{r \in \mathfrak{s}}[K(r): K], 2 \text { otherwise } \\
& s_{v}^{0}=-v_{v} / 2+\lambda_{v} \\
& \gamma_{v}^{0}=2 \text { if } p_{v}^{0}=2 \text { and } v_{v} d_{v} \text { is an odd integer, } 1 \text { otherwise }
\end{aligned}
$$

Let $\ell_{v} \in \mathbb{Z}, 0 \leq \ell_{v}<b_{v}$ such that $\ell_{v} \lambda_{v} d_{v}-\frac{1}{b_{v}} \in \mathbb{Z}$. Define

$$
\tilde{v}=\left\{(\mathfrak{t}, w) \in \Sigma \mid(\mathfrak{t}, w)<(\mathfrak{s}, v) \text { and } \frac{|\mathfrak{t}|}{e_{v}}-\ell_{v} v_{v} d_{w} \notin 2 \mathbb{Z}\right\} .
$$

Let $c_{v}^{0}=1$ if $\frac{2-p_{v}^{0}}{b_{v}}-\ell_{v} v_{v} d_{v} \notin 2 \mathbb{Z}$, and $c_{v}^{0}=0$ otherwise. Define

$$
u_{v}=\frac{|\mathfrak{F}|-\sum_{(\mathbf{t}, w)<(\mathfrak{s}, v)}|\mathfrak{t}|-d_{v}\left(2-p_{v}^{0}\right)}{e_{v}}+|\tilde{v}|+\delta_{v} c_{v}^{0}
$$

where the sum runs through the proper children (\mathfrak{t}, w) of (\mathfrak{s}, v). The genus $g(v)$ of a MacLane cluster $(\mathfrak{s}, v) \in \Sigma$ is defined as follows:

- If $n_{v}=1$, then $g(v)=0$.
- If $n_{v}=2$, then $g(v)=\max \left\{\left\lfloor\left(u_{v}-1\right) / 2\right\rfloor, 0\right\}$.

We recall the following notation from Chapter 2.
Notation 4.1.6 (2.4.17) Let $\alpha \in \mathbb{Z}_{+}, a, b \in \mathbb{Q}$, with $a>b$, and fix $\frac{n_{i}}{d_{i}} \in \mathbb{Q}$ so that

$$
\alpha a=\frac{n_{0}}{d_{0}}>\frac{n_{1}}{d_{1}}>\ldots>\frac{n_{r}}{d_{r}}>\frac{n_{r+1}}{d_{r+1}}=\alpha b, \quad \text { with } \quad\left|\begin{array}{ll}
n_{i} & n_{i+1} \\
d_{i} & d_{i+1}
\end{array}\right|=1
$$

and r minimal. We write $\mathbb{P}^{1}(\alpha, a, b)$ for a chain of $\mathbb{P}_{k}^{1} \mathrm{~S}$ of length r and multiplicities $\alpha d_{1}, \ldots, \alpha d_{r}$. Denote by $\mathbb{P}^{1}(\alpha, a)$ the chain $\mathbb{P}^{1}(\alpha, a,\lfloor\alpha a-1\rfloor / \alpha)$.

The following theorem describes the special fibre of the regular model of a hyperelliptic curve C / K with strict normal crossings we construct in $\S 4.5$, when k algebraically closed and char $(k) \neq 2$. See Definition 4.6.1 and Theorem 4.6.3 for a more general statement which does not require k algebraically closed.

Theorem 4.1.7 (Regular SNC model) Assume char $(k) \neq 2$. Suppose k algebraically closed. Let C / K be a hyperelliptic curve. Then we can explicitly construct a regular model with strict normal crossings \mathcal{C} / O_{K} of C (§4.5). Its special fibre \mathcal{C}_{s} / k is given as follows. ${ }^{1}$
(1) Every $(\mathfrak{s}, v) \in \Sigma$ gives a 1-dimensional closed subscheme Γ_{v} of multiplicity m_{v}. If $n_{v}=2$ and $u_{v}=0$, then Γ_{v} is the disjoint union of $\Gamma_{v}^{-} \simeq \mathbb{P}_{k}^{1}$ and $\Gamma_{v}^{+} \simeq \mathbb{P}_{k}^{1}$, otherwise Γ_{v} is a smooth integral curve of genus $g(v)$ (write $\Gamma_{v}^{-}=\Gamma_{v}^{+}=\Gamma_{v}$ in this case).
(2) Every $(\mathfrak{s}, v) \in \Sigma$ with $n_{v}=1$ gives

$$
\frac{1}{e_{v}}\left(|\mathfrak{s}|-\sum_{\substack{(\mathfrak{t}, w)<(\mathfrak{s}, v)}}|\mathfrak{t}|+d_{v}\left(p_{v}^{0}-2\right)\right)
$$

open-ended \mathbb{P}_{k}^{1} s of multiplicity e_{v} from Γ_{v}.
(3) Finally, for any $(\mathfrak{s}, v) \in \sum$ draw the following chains of $\mathbb{P}_{k}^{1} s$:

Conditions	Chain	From	To
$\delta_{v}=1$	$\mathbb{P}^{1}\left(d_{v} \gamma_{v}^{0},-s_{v}^{0}\right)$	Γ_{v}^{-}	open-ended
$\delta_{v}=1, p_{v}^{0} / \gamma_{v}^{0}=2$	$\mathbb{P}^{1}\left(d_{v} \gamma_{v}^{0},-s_{v}^{0}\right)$	Γ_{v}^{+}	open-ended
$(\mathfrak{s}, v)<(\mathfrak{t}, w)$	$\mathbb{P}^{1}\left(d_{v} \gamma_{v}, s_{v}, s_{v}-\frac{p_{v}}{2}\left(\lambda_{v}-\frac{d_{v}}{d_{w}} \lambda_{w}\right)\right)$	Γ_{v}^{-}	Γ_{w}^{-}
$(\mathfrak{s}, v)<(\mathfrak{t}, w), p_{v} / \gamma_{v}=2$	$\mathbb{P}^{1}\left(d_{v} \gamma_{v}, s_{v}, s_{v}-\frac{p_{v}}{2}\left(\lambda_{v}-\frac{d_{v}}{d_{w}} \lambda_{w}\right)\right)$	Γ_{v}^{+}	Γ_{w}^{+}
(\mathfrak{s}, v) maximal	$\mathbb{P}^{1}\left(d_{v} \gamma_{v}, s_{v}\right)$	Γ_{v}^{-}	open-ended
(\mathfrak{s}, v) maximal, $p_{v} / \gamma_{v}=2$	$\mathbb{P}^{1}\left(d_{v} \gamma_{v}, s_{v}\right)$	Γ_{v}^{+}	open-ended

As we pointed out in $\S 2.1$, Theorem 4.1.7 is a generalisation of Theorem 2.1.7.

[^6]
4.1.3 Example

Let $p \neq 2$ be a prime number and let $\mathbb{Q}_{p}^{n r}$ be the maximal unramified extension of \mathbb{Q}_{p} in $\overline{\mathbb{Q}}_{p}$. Let $f=\left(x^{2}-p\right)^{3}-p^{5} \in \mathbb{Q}_{p}[x]$ and $C / \mathbb{Q}_{p}^{n r}: y^{2}=f(x)$ a genus 2 hyperelliptic curve. We can represent the set of MacLane clusters as

where the bullet points denote the roots of f, the circles are the proper MacLane clusters and the superscripts and the subscripts are respectively the degree and the radius of the corresponding cluster. In fact, there are two proper MacLane clusters:
(i) ($\left.\Re, v_{1}\right)$, where $D_{v_{1}}=D(x, 1 / 2)$;
(ii) ($\left.\mathfrak{R}, v_{2}\right)$, where $D_{v_{2}}=D\left(x^{2}-p, 5 / 3\right)$.

Note that $\min _{r \in \mathfrak{R}}[K(r): K]=6$ since f is irreducible. We have

	b_{v}	e_{v}	v_{v}	n_{v}	m_{v}	t_{v}	p_{v}	s_{v}	γ_{v}	δ_{v}	p_{v}^{0}	s_{v}^{0}	γ_{v}^{0}	$g(v)$
v_{1}	2	2	3	2	2	6	2	$1 / 2$	1	1	2	-1	2	0
v_{2}	3	6	10	2	6	3	1	$-5 / 3$	1	1	2	$-10 / 3$	1	0

By Theorem 4.1.7, the special fibre of the regular model \mathcal{C} we construct is

where all irreducible components have genus 0 . In fact, by computing the self-intersections of all irreducible components, we see that \mathcal{C} is the minimal regular model of C ([Liu4, Theorem 9.3.8]).

4.1.4 Related works of other authors

Let K be a discretely valued field of odd residue characteristic and let C / K be a hyperelliptic curve. In this subsection we want to present previous works studying regular models of C, possibly under some extra conditions. Note that some of the results cited below may apply to more general curves and fields.

In genus 1 there is a complete characterisation of (minimal) regular models of C (see for example [Sil2, IV.8.2] when the residue field of K is perfect). A description of all special fibre configurations is also given by Namikawa and Ueno [NU] and Liu [Liu5] for genus 2 curves, when $K=\mathbb{C}(t)$.

If C is semistable over some tamely ramified extension L / K, then [FN] describes the special fibre of the minimal regular model of C with strict normal crossings. If, in addition, $L=K$ is a local field, in $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right]$ we can also see an explicit construction of the model itself.
T. Dokchitser in [Dok] shows that a certain toric resolution of C gives a regular model in case of Δ_{v}-regularity ([Dok, Definition 3.9]). This condition is rephrased in terms of clusters in [Mus1, Corollary 3.25].

Finally, [Mus1] constructs the minimal regular model with normal crossings if C has almost rational cluster picture. One can see that the latter condition is equivalent of requiring that all MacLane clusters have degree 1.

4.2 MacLane valuations

In this section we summarise definitions and results on MacLane valuations. Our main references are [KW], [Mac], [OS1] and [Rüt].

Let K be a complete discretely valued field, with normalised discrete valuation v_{K}, ring of integers O_{K} and residue field k. Let \bar{K} be an algebraic closure of K and let K^{s} be the separable closure of K in \bar{K}. Let $G_{K}=\operatorname{Gal}\left(K^{s} / K\right)$ be the absolute Galois group of K.

Let $\hat{\mathbb{V}}$ denote the set of the discrete pseudo-valuation ${ }^{2} v: K[x] \rightarrow \hat{\mathbb{Q}}$ extending v_{K} and satisfying $v(x) \geq 0$. Let \mathbb{V} be the set of valuations in $\hat{\mathbb{V}}$. In other words, \mathbb{V} consists of those pseudo-valuations $v \in \hat{\mathbb{V}}$ satisfying $v^{-1}(\infty)=0$. We can equip $\hat{\mathbb{V}}$ with a natural partial order:

$$
v \geq w \quad \text { if and only if } \quad v(g) \geq w(g) \text { for all } g \in K[x]
$$

The partially ordered set $\hat{\mathbb{V}}$ has a least element v_{0}, called Gauss valuation, defined by

$$
v_{0}\left(a_{m} x^{m}+\cdots+a_{1} x+a_{0}\right)=\min _{i} v_{K}\left(a_{i}\right) \quad\left(a_{i} \in K\right)
$$

Note that v_{0} is a valuation, i.e. $v_{0} \in \mathbb{V}$.
Every $v \in \mathbb{V}$ can be extended to a valuation $K(x) \rightarrow \hat{\mathbb{Q}}$, that will also be denoted by v.
Definition 4.2.1 For every $v \in \mathbb{V}$ define

Γ_{v}	the valuation group of v
e_{v}	the index $\left[\Gamma_{v}: \mathbb{Z}\right]$
A_{v}	the residue ring of v
\mathbb{F}_{v}	the residue field of v

Definition 4.2.2 Let $v \in \mathbb{V}$. For any $g, h \in K(x)$ we say that

- g is v-equivalent to h, denoted $g \sim_{v} h$, if $v(g-h)>v(g)$.
- g is v-divisible by h, denoted $\left.h\right|_{v} g$, if there exists $q \in K[x]$ such that $g \sim_{v} q h$.

[^7]Let $v \in \mathbb{V}$. For any $\alpha \in \Gamma_{v}$, define

$$
O_{v}(\alpha)=\{g \in K[x] \mid v(g) \geq \alpha\}, \quad O_{v}^{+}(\alpha)=\{g \in K[x] \mid v(g)>\alpha\} .
$$

The graded algebra of v is the integral domain

$$
\operatorname{Gr}(v):=\bigoplus_{\alpha \in \Gamma_{v}} A_{v}(\alpha), \quad \text { where } A_{v}(\alpha)=O_{v}(\alpha) / O_{v}^{+}(\alpha) .
$$

The canonical homomoprhism $k \rightarrow A_{v}$ equips A_{v} and $G r(v)$ with a k-algebra structure. There is a natural map $H_{v}: K[x] \rightarrow G r(v)$ given by $H_{v}(0)=0$ and

$$
H_{v}(g)=g+O_{v}^{+}(v(g)) \in A_{v}(v(g)),
$$

when $g \neq 0$. The map H_{v} satisfies the following properties

1. $f \sim_{v} g$ if and only if $H_{v}(f)=H_{v}(g)$,
2. $H_{v}(f g)=H_{v}(f) H_{v}(g)$,
for $f, g \in K[x]$. Let $U_{v} \subseteq K[x]^{*}$ be the multiplicative set

$$
U_{v}=\left\{g \in K[x] \mid H_{v}(g) \text { is a unit in } G r(v)\right\}
$$

and let $P_{v} \subseteq K(x)$ be the localisation of $K[x]$ by U_{v}. We extend H_{v} to a map $P_{v} \rightarrow G r(v)$ by taking $g / u \mapsto H_{v}(g) H_{v}(u)^{-1} \in A_{v}(v(g / u))$, for any $g \in K[x], u \in U_{v}$. With a little abuse of notation we denote the extended map again by H_{v}. The properties (1), (2) of H_{v} hold for all $f, g \in P_{v}$.

Definition 4.2.3 We call $H_{v}: P_{v} \rightarrow G r(v)$ the residue map of v.
For any $\alpha \in \Gamma_{v}$, let

$$
P_{v}(\alpha)=\left\{g \in P_{v} \mid v(g) \geq \alpha\right\}, \quad P_{v}^{+}(\alpha)=\left\{g \in P_{v} \mid v(g)>\alpha\right\} .
$$

Note that H_{v} induces a birational map $P_{v}(\alpha) / P_{v}^{+}(\alpha) \rightarrow A_{v}(\alpha)$.
Definition 4.2.4 Let $v \in \mathbb{V}$. A monic polynomial $\phi \in K[x]$ is a key polynomial over v if
(1) ϕ is v-irreducible, i.e. if $\left.\phi\right|_{v} a b$ then $\left.\phi\right|_{v} a$ or $\left.\phi\right|_{v} b$, for all $a, b \in K[x]$;
(2) ϕ is v-minimal, i.e. if $\left.\phi\right|_{v} a$ then $\operatorname{deg} a \geq \operatorname{deg} \phi$, for all $a \in K[x]$.

Denote by $\operatorname{KP}(v)$ the set of key polynomials over v.
Remark 4.2.5. Let $v \in \mathbb{V}$. Then $\mathrm{KP}(v) \subseteq O_{K}[x]$ ([FGMN, Corollary 1.10]).

Definition 4.2.6 ([Mac, Theorem 4.2]) Let $v \in \mathbb{V}$. Let $\phi \in \operatorname{KP}(v)$ and $\lambda \in \hat{\mathbb{Q}}, \lambda>v(\phi)$. Define a pseudo-valuation $w \in \hat{\mathbb{V}}$, denoted $w=[v, v(\phi)=\lambda]$, by

$$
w\left(a_{m} \phi^{m}+\cdots+a_{1} \phi+a_{0}\right)=\min _{i}\left(v\left(a_{i}\right)+i \lambda\right) \quad a_{i} \in K[x], \operatorname{deg} a_{i}<\operatorname{deg} \phi .
$$

We call w the augmentation of v with respect to (ϕ, λ).
Remark 4.2.7. Let $w=[v, v(\phi)=\lambda]$ be an augmentation of v. Then
(i) $w>v$ by [FGMN, Propositions 1.7, 1.9].
(ii) λ and $\operatorname{deg} \phi$ are uniquely determined by w, but not the key polynomial ϕ itself in general (see [KW, Remark 2.7]).

Definition 4.2.8 A pseudo-valuation $v \in \hat{\mathbb{V}}$ is MacLane if it can be attained after a finite number of augmentations starting with v_{0}. Write

$$
v=\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right], \quad m \in \mathbb{N},
$$

where $v_{i}=\left[v_{i-1}, v_{i}\left(\phi_{i}\right)=\lambda_{i}\right]$ is an augmentation of v_{i-1} for any $i=1, \ldots, m$, and $v_{m}=v$. We will call ϕ_{m} a centre of v and λ_{m} the radius of $v .^{3}$

Let $\hat{\mathbb{V}}_{M} \subset \hat{\mathbb{V}}$ denote the set of MacLane pseudo-valuations and let $\mathbb{V}_{M} \subset \mathbb{V}$ denote the set of MacLane valuations.

Remark 4.2.9. There are different equivalent characterisations for the sets \mathbb{V}_{M} and $\hat{\mathbb{V}}_{M}$ (see $[\mathrm{KW}$, §2]). In fact,
(i) \mathbb{V}_{M} consists of those valuations $v \in \mathbb{V}$ with residue field \mathbb{F}_{v} of transcendence degree 1 over k;
(ii) all infinite pseudo-valuations $v \in \hat{\mathbb{V}}$ are Maclane.

Notation 4.2.10 Let $v \in \hat{\mathbb{V}}_{M}$. Remark 4.2.7(ii) implies that the radius of v is uniquely determined by v. We will denote it by λ_{v}.

Definition 4.2.11 Let $v \in \hat{\mathbb{V}}_{M}$. An augmentation chain (of length m) for v is a tuple

$$
\begin{equation*}
\left(\left(\phi_{1}, \lambda_{1}\right), \ldots,\left(\phi_{m}, \lambda_{m}\right)\right), \tag{4.1}
\end{equation*}
$$

where $v=\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]$. We say that (4.1) is

1. a MacLane chain if $\phi_{i+1} \not \downarrow_{v_{i}} \phi_{i}$ for any $i=1, \ldots, m-1$.
2. minimal if $\operatorname{deg} \phi_{i+1}>\operatorname{deg} \phi_{i}$ for any $i=1, \ldots, m-1$.
[^8]For any augmentation chain (4.1) we have

$$
\operatorname{deg} \phi_{1}\left|\operatorname{deg} \phi_{2}\right| \cdots \mid \operatorname{deg} \phi_{m}
$$

by [FGMN, Lemma 2.10]. If it is a MacLane chain, then $v\left(\phi_{i}\right)=\lambda_{i}$ for any $i=1, \ldots, m$. In particular, $\Gamma_{v}=\lambda_{1} \mathbb{Z}+\cdots+\lambda_{m} \mathbb{Z}$.

Remark 4.2.12. Let $v \in \hat{\mathbb{V}}_{M}$.

1. A minimal augmentation chain is a Maclane chain.
2. From any MacLane chain $\left(\left(\phi_{1}, \lambda_{1}\right), \ldots,\left(\phi_{m}, \lambda_{m}\right)\right)$ for v, we can find a minimal augmentation chain for v by removing the pairs (ϕ_{i}, λ_{i}) with $\operatorname{deg} \phi_{i}=\operatorname{deg} \phi_{i+1}$, for $i=1, \ldots, m-1$ ([Mac, Lemma 15.1], [FGMN, Lemma 3.4]).

Notation 4.2.13 We will denote an augmentation chain (4.1) by

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right],
$$

where $v_{i}=\left[v_{i-1}, v_{i}\left(\phi_{i}\right)=\lambda_{i}\right]$ for all $i=1, \ldots, m$.
Definition 4.2.14 Let $v \in \hat{\mathbb{V}}_{M}$ given by a MacLane chain

$$
\begin{equation*}
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right] . \tag{4.2}
\end{equation*}
$$

(a) The degree of $v, \operatorname{denoted} \operatorname{deg} v$, is the positive integer $\operatorname{deg} \phi_{m}$.
(b) If (4.2) is minimal, then m is said the depth of v.

The degree and the depth of v are independent of the chosen MacLane chain (4.2) by [FGMN, Proposition 3.6].

Note that if $v \in \mathbb{V}_{M}$ then $\operatorname{deg} v \mid \operatorname{deg} \phi$ for any $\phi \in \operatorname{KP}(v)$.
Definition 4.2.15 Let $v \in \mathbb{V}_{M}$. A key polynomial $\phi \in \operatorname{KP}(v)$ is said

1. proper if v has a centre $\phi_{v} \not{ }_{v} \phi$.
2. strong if $v=v_{0}$ or $\operatorname{deg} \phi>\operatorname{deg} v$.

Lemma 4.2.16 Let $w \in \hat{\mathbb{V}}_{M}$. A polynomial $\phi \in K[x]$ is a centre of w if and only if $\phi \in \operatorname{KP}(w)$ and $\operatorname{deg} w=\operatorname{deg} \phi$. Furthermore, if $w=[v, w(\phi)=\lambda]$, then any two centres of w are v-equivalent.

Proof. Let $v \in \mathbb{V}_{M}$ such that $w=\left[v, w\left(\phi_{w}\right)=\lambda_{w}\right]$. If $\phi \in K[x]$ is a centre of w then $\phi \in \operatorname{KP}(w)$ by [FGMN, Proposition 1.7(4)] and $\operatorname{deg} w=\operatorname{deg} \phi$ from Remark 4.2.7(ii). Conversely, suppose $\phi \in \operatorname{KP}(w)$ and $\operatorname{deg} \phi=\operatorname{deg} w$. From the w-minimality of ϕ and ϕ_{w}, one has $w(\phi)=\lambda_{w}$. Hence

$$
v\left(\phi-\phi_{w}\right)=w\left(\phi-\phi_{w}\right) \geq \lambda_{w}>v\left(\phi_{w}\right) .
$$

Therefore $\phi \sim_{v} \phi_{w}$. In particular, $\phi \in \operatorname{KP}(v)$ as $\operatorname{deg} \phi=\operatorname{deg} \phi_{w}$, and so $w=\left[v, w(\phi)=\lambda_{w}\right]$. Thus ϕ is a centre of w.

Definition 4.2.17 Given a monic irreducible polynomial $\phi \in K[x]$ and an element $\lambda \in \hat{\mathbb{Q}}$, the discoid of centre ϕ and radius λ is the set

$$
D=D(\phi, \lambda)=\left\{\alpha \in \bar{K} \mid v_{K}(\phi(\alpha)) \geq \lambda\right\} \subset \bar{K} .
$$

Let \mathcal{D}_{K} denote the set of discoids.
Remark 4.2.18. Let $D=D(\phi, \lambda)$ be a discoid.

1. D is finite if $\lambda=\infty$, while equals the union of the Galois orbits of a disc centred at a root of ϕ if $\lambda<\infty$ ([Rüt, Lemma 4.43]).
2. For any $D^{\prime} \in \mathcal{D}_{K}$ such that $D \cap D^{\prime} \neq \varnothing$ either $D \subseteq D^{\prime}$ or $D \subseteq D^{\prime}$ ([Rüt, Lemma 4.44]).

Definition 4.2.19 Given a MacLane pseudo-valuation v, define

$$
D_{v}=\left\{\alpha \in \bar{K} \mid v_{K}(g(\alpha)) \geq v(g) \quad \text { for all } g \in K[x]\right\} .
$$

It is a discoid by the following lemma.
Lemma 4.2.20 If $v=\left[v_{0}, v_{1}\left(\phi_{1}\right), \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]$ is a MacLane pseudovaluation, then $D_{v}=D\left(\phi_{m}, \lambda_{m}\right)$.

Proof. If $v \in \mathbb{V}_{M}$, then the lemma follows from [Rüt, Lemma 4.55]. Suppose v is an infinite MacLane pseudo-valuation. Then $\lambda_{m}=\infty$. Clearly $D_{v} \subseteq D\left(\phi_{m}, \lambda_{m}\right)$. Let $r \in D\left(\phi_{m}, \lambda_{m}\right)$, i.e. r is a root of ϕ_{m}. Let $g \in K[x]$. We want to show that $v_{K}(g(r)) \geq v(g)$. If $\phi_{m} \mid g$, then $g(r)=0$ and $v(g)=\infty$, so $v_{K}(g(r))=v(g)$. If $\phi_{m} \nmid g$, then there is a sufficiently large $\lambda \in \mathbb{Q}$ such that $w(g)=v(g)$, with $w=\left[v_{m-1}, w\left(\phi_{m}\right)=\lambda\right]$. Since $w \in \mathbb{V}_{M}$, we have $D\left(\phi_{m}, \lambda\right)=D_{w}$. But $r \in D\left(\phi_{m}, \lambda\right)$, and so $v_{K}(g(r)) \geq w(g)=v(g)$.

Theorem 4.2.21 The map $\hat{\mathbb{}}_{M} \rightarrow \mathcal{D}_{K}$ taking $v \mapsto D_{v}$ is well-defined, bijective, and inverts partial orders, i.e. for any $v, w \in \hat{\mathbb{V}}_{M}$ we have

$$
w \geq v \text { if an only if } D_{w} \subseteq D_{v} .
$$

Given a discoid D, then $D=D_{v}$, where v is the MacLane pseudo-valuation given by $v(g)=$ $\inf _{r \in D} v_{K}(g(r))$ for all $g \in K[x]$.

Proof. The result follows from [Rüt, Theorem 4.56], [KW, Remark 2.3].

Lemma 4.2.22 Let $v \in \hat{\mathbb{V}}_{M}$ and $D_{v}=D(g, \lambda)$ the associated discoid. Then $\operatorname{deg} v \leq \operatorname{deg} g$ and $v(g) \geq \lambda$.

Proof. Theorem 4.2.21 implies that $\inf _{r \in D_{v}} v_{K}(g(r))=v(g)$. Then $v(g) \geq \lambda$. It follows that

$$
D_{v} \subseteq D(g, v(g)) \subseteq D(g, \lambda)=D_{v}
$$

Then $D_{v}=D(g, v(g))$. Suppose $\operatorname{deg} v>\operatorname{deg} g$ and let

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]
$$

be a MacLane chain for v. Then $v_{m-1}<v$ but $v_{m-1}(g)=v(g)$. Therefore $D_{v} \subsetneq D_{v_{m-1}} \subseteq D(g, v(g))$, a contradiction.

Remark 4.2.23. Lemma 4.2 .22 shows that $\operatorname{deg} v$ is the lowest positive integer such that $D_{v}=$ $D(g, \lambda)$ for some monic irreducible polynomial $g \in K[x]$ of degree $\operatorname{deg} g=\operatorname{deg} v$ and some $\lambda \in \hat{\mathbb{Q}}$.

Proposition 4.2.24 Let $v, w \in \hat{\mathbb{V}}_{M}$, with $v_{0}<w \leq v$. Let

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{n}\left(\phi_{n}\right)=\lambda_{n}\right]
$$

be a minimal MacLane chain for v. Then there exists $m \leq n$ such that $w=\left[v_{m-1}, w\left(\phi_{m}\right)=\lambda\right]$, for some $v_{m-1}\left(\phi_{m}\right)<\lambda \leq \lambda_{m}$.

Proof. Let $\left[v_{0}, w_{1}\left(\psi_{1}\right)=\mu_{1}, \ldots, w_{m}\left(\psi_{m}\right)=\mu_{m}\right]$ be a minimal MacLane chain for w. Then $n \geq m$ by [Rüt, Proposition 4.35] and $v_{m-1}=w_{m-1}$ by [Rüt, Corollary 4.37]. Then $w=\left[v_{m-1}, w\left(\psi_{m}\right)=\mu_{m}\right.$]. Since $v_{m} \leq v \geq w$, either $v_{m}<w$ or $w \leq v_{m}$ from Remark 4.2.18(2). Suppose by contradiction that $v_{m}<w$. Then $m<n$. Furthermore, $v_{m}=\left[v_{m-1}, v_{m}\left(\psi_{m}\right)=\lambda_{m}\right]$ and $\lambda_{m}<\mu_{m}$ by [FGMN, Lemma 7.6]. Let r be a root of ϕ_{n}. Then $r \in D_{v}$. Since $m<n$, one has $\operatorname{deg} \psi_{m}=\operatorname{deg} v_{m}<\operatorname{deg} v$. Therefore $v_{K}\left(\psi_{m}(r)\right)=v\left(\psi_{m}\right)=\lambda_{m}$ by [OS2, Corollary 2.8], giving a contradiction to $w \leq v$. Hence $w \leq v_{m}$. Thus [FGMN, Lemma 7.6] implies $w=\left[v_{m-1}, w\left(\phi_{m}\right)=\mu_{m}\right]$ and $\mu_{m} \leq \lambda_{m}$, as required.

Lemma 4.2.25 Let $v, w \in \hat{\mathbb{V}}_{M}$. Suppose $w<v$. Then $\lambda_{w}<\lambda_{v}$ and $\operatorname{deg} w \leq \operatorname{deg} v$. Moreover, if $\operatorname{deg} w=\operatorname{deg} v$, any centre ϕ of v is also a centre of w.

Proof. The statement is trivial when $w=v_{0}$. Suppose $w>v_{0}$. Let ϕ be a centre of v. Consider a minimal augmentation chain $\left[v_{0}, \ldots, v_{n}\left(\phi_{n}\right)=\lambda_{n}\right]$ for v, with $\phi_{n}=\phi$. By Proposition 4.2.24 there exist $m \leq n$ and $\mu_{m}<\lambda_{m}$ such that $w=\left[v_{m-1}, w\left(\phi_{m}\right)=\mu_{m}\right]$. Then $\operatorname{deg} w \leq \operatorname{deg} v$ and $\lambda_{w}<\lambda_{v}$ by [Rüt, Lemma 4.21]. Furthermore, if $\operatorname{deg} w=\operatorname{deg} v$ then $n=m$, since the key polynomials ϕ_{i} have strictly increasing degrees. This concludes the proof as $\phi_{m}=\phi_{n}=\phi$ could be any centre of v.

Lemma 4.2.26 Let $v \in \mathbb{V}_{M}$. For any monic non-constant $g \in K[x]$ of degree $\operatorname{deg} g \leq \operatorname{deg} v$ we have $v(g) \leq \lambda_{v}$, with $v(g)=\lambda_{v}$ only if $\operatorname{deg} g=\operatorname{deg} v$.

Proof. We prove the lemma by induction on deg v. Let

$$
\left[v_{0}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]
$$

be a minimal MacLane chain for v. Recall $\lambda_{v}=\lambda_{m}$. If $\operatorname{deg} v=1$, then $\operatorname{deg} g=\operatorname{deg} v$. By definition $v(g)=\min \left\{v\left(\phi_{m}\right), v\left(g-\phi_{m}\right)\right\} \leq \lambda_{v}$. Suppose $\operatorname{deg} v>1$. If $\operatorname{deg} g=\operatorname{deg} v$ then $v(g) \leq \lambda_{v}$ as above. If $\operatorname{deg} g<\operatorname{deg} v$ then $v(g)=v_{m-1}(g) \leq \lambda_{m-1}<\lambda_{m}$.

Recall the following result from [FGMN].
Theorem 4.2.27 ([FGMN, Theorem 3.10]) Let $v \in \mathbb{V}_{M}$. For any monic non-constant $g \in K[x]$ one has

$$
\frac{v(g)}{\operatorname{deg} g} \leq \frac{\lambda_{v}}{\operatorname{deg} v}
$$

and the equality holds if and only if g is v-minimal.
Lemma 4.2.28 Let $g_{1}, g_{2} \in K[x]$ monic and non-constant. Then $g_{1} \cdot g_{2}$ is v-minimal if and only if both g_{1} and g_{2} are v-minimal.

Proof. Suppose g_{1} is not v-minimal. Then there exists $a \in K[x], \operatorname{deg} a<\operatorname{deg} g_{1}$ such that $\left.g_{1}\right|_{v} a$. Hence $\left.g_{1} g_{2}\right|_{v} a g_{2}$ and $\operatorname{deg}\left(a g_{2}\right)<\operatorname{deg}\left(g_{1} g_{2}\right)$. So $g_{1} \cdot g_{2}$ is not v-minimal. Similarly for g_{2}. Suppose both g_{1} and g_{2} are v-minimal. Theorem 4.2.27 implies that

$$
v\left(g_{1} \cdot g_{2}\right) \operatorname{deg} v=\left(v\left(g_{1}\right)+v\left(g_{2}\right)\right) \operatorname{deg} v=\lambda_{v}\left(\operatorname{deg} g_{1}+\operatorname{deg} g_{2}\right)=\lambda_{v} \operatorname{deg}\left(g_{1} \cdot g_{2}\right),
$$

and so $g_{1} \cdot g_{2}$ is v-minimal.
Lemma 4.2.29 Let $v, w \in \mathbb{V}_{M}$ satisfying $w \geq v$. Let $g \in O_{K}[x]$ monic and non-constant. Suppose g is w-minimal. Then g is v-minimal.

Proof. By [Rüt, Remark 4.36] we can write

$$
w=\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}, \ldots, v_{n}\left(\phi_{n}\right)=\lambda_{n}\right],
$$

with $v=v_{m}$. Let $i=m, \ldots, n-1$. By recursion it suffices to show that g is v_{i}-minimal if it is $v_{i+1}{ }^{-}$ minimal. We can suppose g irreducible by Lemma 4.2.28. Since ϕ_{i+1} is v_{i}-minimal, by Theorem 4.2.27 we have

$$
\frac{v_{i}(g)}{\operatorname{deg} g} \leq \frac{\lambda_{i}}{\operatorname{deg} \phi_{i}}=\frac{v_{i}\left(\phi_{i+1}\right)}{\operatorname{deg} \phi_{i+1}}<\frac{\lambda_{i+1}}{\operatorname{deg} \phi_{i+1}}=\frac{v_{i+1}(g)}{\operatorname{deg} g} .
$$

Therefore $v_{i+1}(g)>v_{i}(g)$ that is equivalent to $\phi_{i+1} \mid v_{i} g$ by [Rüt, Lemma 4.13]. [FGMN, Theorem 6.2] implies that $v_{i}(g)=\operatorname{deg} g \cdot \frac{v_{i}\left(\phi_{i+1}\right)}{\operatorname{deg} \phi_{i+1}}$. But then Theorem 4.2 .27 shows that g is v_{i}-minimal.

Lemma 4.2.30 Let $v \in \mathbb{V}_{M}$ and let ϕ be a centre of v. Let $g \in K[x]$ monic, non-constant and v-minimal. Then
(i) $\operatorname{deg} v \mid \operatorname{deg} g$.
(ii) $g \sim_{w} \phi^{\operatorname{deg} g / \operatorname{deg} v}$ for any $w \in \mathbb{V}_{M}, w<v$.

Proof. (i) follows from [FGMN, Lemma 2.10]. For proving (ii) we can suppose without loss of generality that $\phi \in \operatorname{KP}(w)$ by Proposition 4.2.24 and Lemma 4.2.29. Equivalently, $v=[w, v(\phi)=\lambda]$ for some $\lambda \in \mathbb{Q}, \lambda>w(\phi)$. Let $d=\operatorname{deg} g / \operatorname{deg} \phi$ and expand

$$
g=\sum_{j=0}^{d} a_{j} \phi^{j}, \quad \text { where } a_{j} \in K[x], \operatorname{deg} a_{j}<\operatorname{deg} \phi,
$$

and $v\left(a_{d}\right)=w\left(a_{d}\right)=0$. Note that $v(g)=v\left(\phi^{d}\right)$ by Theorem 4.2.27. Therefore

$$
\begin{aligned}
w\left(\phi^{d}\right) & =v(g)-d(\lambda-w(\phi)) \leq v\left(a_{j} \phi^{j}\right)-d(\lambda-w(\phi)) \\
& <v\left(a_{j} \phi^{j}\right)-j(\lambda-w(\phi))=w\left(a_{j} \phi^{j}\right)
\end{aligned}
$$

for all $j<d$. Thus $g \sim_{w} \phi^{d}$ as required.
The following two results come from [OS2].
Proposition 4.2.31 ([OS2, Proposition 2.5]) Let $\phi \in O_{K}[x]$ be a monic irreducible polynomial. There exists a unique MacLane valuation v_{ϕ} over which ϕ is a strong key polynomial.

Proposition 4.2.32 ([OS2, Proposition 2.7]) Let $v \in \mathbb{V}_{M}$ and ϕ a proper key polynomial over v. Let $w=[v, w(\phi)=\lambda]$, for some $\lambda>v(\phi)$ and let $r \in D_{w}$. For any $g \in K[x]$ such that $v(g)=w(g)$, we have $v_{K}(g(r))=v(g)$.

Lemma 4.2.33 Let $v \in \hat{\mathbb{V}}_{M}$ given by a MacLane chain

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right] .
$$

Suppose $m>0$. The ramification index $e_{v_{m-1}}$ equals $\left[\Gamma_{\phi_{m}}(v): \mathbb{Z}\right]$, where

$$
\Gamma_{\phi_{m}}(v)=\left\{v(a) \mid a \in K[x], a \neq 0, \operatorname{deg} a<\operatorname{deg} \phi_{m}\right\} .
$$

In particular, it is independent of the chosen MacLane chain.
Proof. First note that if we restrict to minimal MacLane chains, the result is trivial. By Remark 4.2.12(2) it suffices to prove that if $m>1$ and $\operatorname{deg} \phi_{m-1}=\operatorname{deg} \phi_{m}$, then $e_{v_{m-2}}=e_{v_{m-1}}$. We have

$$
v_{m-1}\left(\phi_{m}-\phi_{m-1}\right)=\lambda_{m-1} .
$$

since $\phi_{m-1} \not \not_{v_{m-1}} \phi_{m}$. But $\operatorname{deg}\left(\phi_{m}-\phi_{m-1}\right)<\operatorname{deg} \phi_{m-1}$, so

$$
\lambda_{m-1}=v_{m-1}\left(\phi_{m}-\phi_{m-1}\right)=v_{m-2}\left(\phi_{m}-\phi_{m-1}\right) \in \Gamma_{v_{m-2}} .
$$

Thus $\Gamma_{v_{m-2}}=\Gamma_{v_{m-1}}$, as required.
Definition 4.2.34 Let $v \in \hat{\mathbb{V}}_{M}$ given by a MacLane chain

$$
\left[v_{0}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right] .
$$

Define $\epsilon_{v}=e_{v_{m-1}}$ if $m>0$, and $\epsilon_{v}=1$ otherwise.

For any monic irreducible polynomial $\phi \in K[x]$, define $K_{\phi}=K[x] /(\phi)$, finite extension of K. Let O_{ϕ} be the ring of integers of K_{ϕ} and k_{ϕ} the residue field. Recall $\operatorname{deg} \phi=e_{\phi} f_{\phi}$, where e_{ϕ} and f_{ϕ} are respectively the ramification index and the residual degree of the extension K_{ϕ} / K.

Let $v \in \hat{\mathbb{V}}_{M}$ with centre ϕ. Then [FGMN, Proposition 1.9(2)] shows that $e_{\phi}=\left[\Gamma_{\phi}(v): \mathbb{Z}\right]$, and so $e_{\phi}=\epsilon_{v}$ by Lemma 4.2.33. It follows that $f_{\phi}=\operatorname{deg} v / e_{\phi}$ is independent of the choice of the centre ϕ.

Notation 4.2.35 Given $v \in \hat{\mathbb{V}}_{M}$ with centre ϕ, denote $f_{v}=f_{\phi}$.

Let $f \in K[x], v \in \mathbb{V}_{M}$ and $\phi \in \operatorname{KP}(v)$. Write

$$
f=\sum_{t=0}^{d} a_{t} \phi^{t}, \quad \text { where } \operatorname{deg} a_{t}<\operatorname{deg} \phi
$$

The Newton polygon, $N_{v, \phi}(f)$ of f is

$$
N_{v, \phi}(f)=\text { lower convex hull }\left(\left\{\left(t, v\left(a_{t}\right)\right) \mid a_{t} \neq 0\right\}\right) \subset \mathbb{R}^{2}
$$

Notation 4.2.36 Let $\lambda \in \mathbb{Q}, \lambda>v(\phi)$ and $w=[v, w(\phi)=\lambda]$. We denote by $L_{w}(f)$ the intersection of $N_{v, \phi}(f)$ with the line of slope $-\lambda$ which first touches it from below:

$$
L_{w}(f):=\left\{(t, u) \in N_{v, \phi}(f) \mid u+\lambda t \text { is minimal }\right\} .
$$

Therefore if $N_{v, \phi}(f)$ has an edge L of slope $-\lambda$ then $L_{w}(f)=L$, otherwise $L_{w}(f)$ is one of the vertices of $N_{v, \phi}(f)$.

Notation 4.2.37 Let $\lambda \in \hat{\mathbb{Q}}, \lambda>v(\phi)$ and $w=[v, w(\phi)=\lambda]$. If $\lambda<\infty$ denote by $\left(t_{w}^{0}, u_{w}^{0}\right),\left(t_{w}, u_{w}\right)$ the two endpoints of $L_{w}(f)$ (equal if $L_{w}(f)$ is a vertex), where $t_{w}^{0} \leq t_{w}$. If $\lambda=\infty$, set $t_{w}^{0}=0, u_{w}^{0}=\infty$, and denote by $\left(t_{w}, u_{w}\right)$ the left-most vertex of $N_{v, \phi}(f)$.

4.3 MacLane chains invariants and residual polynomials

Let $f \in K[x]$ and let $-\lambda$ be the slope of an edge L of the Newton polygon of f. From $\S 2.2$, given the 1-dimensional MacLane valuation $v=\left[v_{0}, v(x)=\lambda\right]$, there is a natural way to define a reduction $\left.f\right|_{v}$ as $\left.f\right|_{L}$. Our purpose is to extend this definition to compute reductions of polynomials with respect to any MacLane valuation. Part of the current section can be found in [FGMN, §3].

Let $v \in \mathbb{V}_{M}$ given by a MacLane chain

$$
\begin{equation*}
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{n}\left(\phi_{n}\right)=\lambda_{n}\right] \tag{4.3}
\end{equation*}
$$

Note that most of the objects and quantities we define in this section are attached to the MacLane chain (4.3) rather than v itself, starting from the following data.

Definition 4.3.1 Set $v_{-1}=v_{0}, \pi_{-1}=\pi, \phi_{0}=x, \lambda_{0}=0$ and for all $0 \leq i \leq n$ define

$$
e_{i}=e_{v_{i}} / e_{v_{i-1}}, \quad h_{i}=e_{v_{i}} \lambda_{i}, \quad f_{i-1}=f_{v_{i}} / f_{v_{i-1}}
$$

Fix $\ell_{i}, \ell_{i}^{\prime}$, such that $\ell_{i} h_{i}+\ell_{i}^{\prime} e_{i}=1$, with $0 \leq \ell_{i}<e_{i}$. Then inductively define

$$
\gamma_{i}=\phi_{i}^{e_{i}} \pi_{i-1}^{-h_{i}}, \quad \pi_{i}=\phi_{i}^{\ell_{i}} \pi_{i-1}^{\ell_{i}^{\prime}}
$$

Remark 4.3.2. Let $0 \leq i<n$. Then $\operatorname{deg} v_{i+1}=e_{i} f_{i} \operatorname{deg} v_{i}$ and $v_{i}\left(\phi_{n}\right) \in \Gamma_{v_{i-1}}$.
Lemma 4.3.3 For any $1 \leq i \leq n$ and any $j>i$, we have

- $v_{j}\left(\gamma_{i}\right)=v_{i}\left(\gamma_{i}\right)=0$;
- $v_{j}\left(\pi_{i}\right)=v_{i}\left(\pi_{i}\right)=\frac{1}{e_{v_{i}}}$. So π_{i} is a uniformiser for v_{i}.

Proof. The lemma follows by induction and the equality $v_{j}\left(\phi_{i}\right)=v_{i}\left(\phi_{i}\right)$.
Notation 4.3.4 We will denote by $b_{v}, h_{v}, \ell_{v}, \ell_{v}^{\prime}$ the quantities $e_{n}, h_{n}, \ell_{n}, \ell_{n}^{\prime}$ respectively. They are independent of the chosen MacLane chain for v.

Lemma 4.3.5 For any $0 \leq i \leq n-1$ there exists a polynomial $S_{i} \in K[x]$ such that $S_{i} \sim_{v_{i}} \pi_{i}$. Furthermore, there exists a polynomial $S_{i}^{\prime} \in K[x]$ such that $v_{i}\left(S_{i}^{\prime}\right)=-v_{i}\left(\pi_{i}\right)$ and $\left(S_{i}^{\prime}\right)^{-1} \sim_{v_{i+1}} \pi_{i}$.

Proof. First note that if S_{i} exists, then $S_{i} \sim_{v_{i+1}} \pi_{i}$ as $v_{i}\left(\pi_{i}\right)=v_{i+1}\left(\pi_{i}\right)$ by Lemma 4.3.3. Now we prove the lemma by induction on i. When $i=0$, we can choose $S_{i}=\pi=\pi_{i}$ and $S_{i}^{\prime}=\pi^{-1}$. Suppose $i>0$. Define $S_{i} \in K[x]$ by

$$
S_{i}= \begin{cases}\phi_{i}^{\ell_{i}} S_{i-1}^{\ell_{i}^{\prime}} & \text { if } \ell_{i}^{\prime} \geq 0 \\ \phi_{i}^{\ell_{i}}\left(S_{i-1}^{\prime}\right)^{-\ell_{i}^{\prime}} & \text { if } \ell_{i}^{\prime}<0\end{cases}
$$

By inductive hypothesis, $S_{i-1} \sim_{v_{i}} \pi_{i-1}$ and $\left(S_{i-1}^{\prime}\right)^{-1} \sim_{v_{i}} \pi_{i-1}$. Therefore $S_{i} \sim_{v_{i}} \pi_{i}$. Finally, [Rüt, Lemma 4.24] shows the existence of S_{i}^{\prime}.

Lemma 4.3.6 For any $0 \leq i \leq n$, we have $\phi_{i}=\gamma_{i}^{\ell_{i}^{\prime}} \pi_{i}^{h_{i}}$ and $\pi_{i-1}=\gamma_{i}^{-\ell_{i}} \pi_{i}^{e_{i}}$.
Proof. The lemma follows from direct computation.
Lemma 4.3.7 For any $0 \leq i \leq n$, we have

$$
\pi_{i}=\phi_{i}^{m_{i}^{\prime}} \cdots \phi_{1}^{m_{1}^{\prime}} \cdot \pi^{m_{0}^{\prime}} \quad \text { and } \quad \pi_{i}^{e_{v_{i}}}=\gamma_{i}^{m_{i}} \cdots \gamma_{1}^{m_{1}} \cdot \pi^{m_{0}}
$$

where

$$
m_{j}^{\prime}=\left\{\begin{array}{ll}
\ell_{1}^{\prime} \cdot \ell_{i}^{\prime} & \text { if } j=0, \\
\ell_{j} \ell_{j+1}^{\prime} \cdots \ell_{i}^{\prime} & \text { if } j>0
\end{array} \quad \text { and } \quad m_{j}= \begin{cases}1 & \text { if } j=0 \\
e_{1} \cdots e_{j-1} \ell_{j} & \text { if } j>0\end{cases}\right.
$$

Note that

$$
\gamma_{i}=\phi_{i}^{e_{i}} \cdot \phi_{i-1}^{-h_{i} m_{i-1}^{\prime}} \cdots \phi_{1}^{-h_{i} m_{1}^{\prime}} \pi^{-h_{i} m_{0}^{\prime}}, \quad \phi_{i}^{e_{V_{i}}}=\gamma_{i}^{e_{v_{i-1}}} \cdot \gamma_{i-1}^{h_{i} m_{i-1}} \cdots \gamma_{1}^{h_{i} m_{1}} \pi^{h_{i}}
$$

Proof. The proof follows by mathematical induction and Lemma 4.3.6.
Let $i=0, \ldots, n$. Recall the definition of the residue map $H_{v_{i}}$ of v_{i}. From [FGMN, Lemma 2.9] a polynomial $f \in K[x]$ belongs to $U_{v_{i}}$ if $v_{i-1}(f)=v_{i}(f)$. Therefore $\phi_{j}, \pi_{j}, \gamma_{j}$ are units of $P_{v_{i}}$, for all $j=0, \ldots, i-1$. It follows that $\phi_{i}, \pi_{i}, \gamma_{i} \in P_{v_{i}}$, domain of $H_{v_{i}}$. Denote

$$
x_{i}=H_{v_{i}}\left(\phi_{i}\right), \quad p_{i}=H_{v_{i}}\left(\pi_{i-1}\right), \quad y_{i}=H_{v_{i}}\left(\gamma_{i}\right)
$$

Note that by [FGMN, Lemma 2.9] the set of units $A_{v_{i}}^{\times}$of $A_{v_{i}}$ coincides with the image of the canonical homomorphism $A_{v_{i-1}} \rightarrow A_{v_{i}}$.

We recall the following from [Rüt, §4.1.3] and [FGMN, §3.4]. There exist a sequence of simple field extensions

$$
k=k_{0} \subseteq k_{1} \subseteq k_{2} \subseteq \cdots \subseteq k_{n}
$$

with $k_{i} \simeq k_{\phi_{i}}$, such that for all $i=0, \ldots, n$ there are isomorphisms of k-algebras $\bar{H}_{i}: A_{v_{i}} \rightarrow k_{i}\left[X_{i}\right]$. One can see that \bar{H}_{i} is the unique homomorphism satisfying:
(i) $\bar{H}_{i}\left(y_{i}\right)=X_{i}$;
(ii) $\bar{H}_{i}(u)=\bar{H}_{i-1}(u)$ when $i>0$ and $u \in A_{v_{i-1}}$, where we canonically see $u \in A_{v_{i}}$ via $A_{v_{i-1}} \rightarrow A_{v_{i}}$ and $\bar{H}_{i-1}(u) \in k_{i}$ via the natural map $k_{i-1}\left[X_{i-1}\right] \rightarrow k_{i}$ taking X_{i-1} to the generator of k_{i} over k_{i-1}.

By [FGMN, Proposition 3.9], the canonical embedding $A_{v_{i}} \hookrightarrow \mathbb{F}_{v_{i}}$ induces an isomorphism between the field of fractions of $A_{v_{i}}$ and $\mathbb{F}_{v_{i}}$. Therefore we can consider the largest subring $F_{v_{i}} \subset K(x)$ such that the isomorphism \bar{H}_{i} lifts to a surjective homomorphism

$$
H_{i}: F_{v_{i}} \rightarrow k_{i}\left[X_{i}^{ \pm 1}\right]
$$

satisfying $H_{i}(f)=H_{i}(g)$ if $f \sim_{v_{i}} g$. In particular, $P_{v_{i}}(0) \subseteq F_{v_{i}}$ and $H_{i}=\bar{H}_{i} \circ H_{v_{i}}$ on $P_{v_{i}}(0)$. Furthermore, note that $\gamma_{i}^{-1} \in F_{v_{i}}$ from (i).

Definition 4.3.8 Let $\alpha \in \Gamma_{v_{i}}$. Define
(i) $F_{v_{i}}(\alpha)=F_{v_{i}} \cdot P_{v_{i}}(\alpha) \subset K(x)$.
(ii) $H_{i, \alpha}: F_{v_{i}}(\alpha) \rightarrow k_{i}\left[X_{i}^{ \pm 1}\right]$ given by $H_{i, \alpha}(f)=H_{i}\left(f / \pi_{i}^{e_{v_{i}} \alpha}\right)$.

The map $H_{i, \alpha}$ in (ii) is well-defined since $\pi_{i}^{-1} \in F_{v_{i}}(-\alpha)$.
Definition 4.3.9 For $0 \leq i \leq n$ and $\alpha \in \Gamma_{v_{i}}$, let $t_{i}(\alpha), u_{i}(\alpha) \in \mathbb{Z}$ such that $u_{i}(\alpha) e_{i}+t_{i}(\alpha) h_{i}=e_{v_{i}} \alpha$, with $0 \leq t_{i}(\alpha)<e_{i}$. Define
(i) $\varphi_{i}(\alpha)=x_{i}^{t_{i}(\alpha)} p_{i}^{u_{i}(\alpha)} \in A_{v_{i}}(\alpha)$;
(ii) $c_{i}(\alpha)=\ell_{i}^{\prime} t_{i}(\alpha)-\ell_{i} u_{i}(\alpha) \in \mathbb{Z}$.

Let $\alpha \in \Gamma_{v_{i}}$. Let $R_{i, \alpha}: O_{v_{i}}(\alpha) \rightarrow k_{i}\left[X_{i}\right]$ be the map defined in [FGMN, Definition 3.13], where we replaced the variable y with X_{i}. By [FGMN, Theorem 4.1], we have $A_{v_{i}}(\alpha)=\varphi_{i}(\alpha) A_{v_{i}}$ and $R_{i, \alpha}$ is the lift of the map

$$
\bar{R}_{i, \alpha}: A_{v_{i}}(\alpha) \rightarrow k_{i}\left[X_{i}\right]
$$

given by $\bar{R}_{i, \alpha}\left(\varphi_{i}(\alpha) \cdot a\right)=\bar{H}_{i}(\alpha)$. Since $e_{v_{i}} \alpha=u_{i}(\alpha) e_{i}+t_{i}(\alpha) h_{i}$, by Lemma 4.3.6, we have

$$
\pi_{i}^{e_{v_{i}} \alpha} \gamma_{i}^{c_{i}(\alpha)}=\phi_{i}^{t_{i}(\alpha)} \pi_{i-1}^{u_{i}(\alpha)}
$$

Therefore for any $f \in A_{v_{i}}(\alpha)$ we have

$$
\begin{equation*}
H_{i, \alpha}(f)=X_{i}^{c_{i}(\alpha)} \cdot R_{i, \alpha}(f) \tag{4.4}
\end{equation*}
$$

We extend $R_{i, \alpha}$ through (4.4).
Definition 4.3.10 Let $\alpha \in \Gamma_{v_{i}}$. The residual polynomial operator $R_{i, \alpha}$ is the map $F_{v_{i}}(\alpha) \rightarrow k_{i}\left[X_{i}^{ \pm 1}\right]$ given by $R_{i, \alpha}(f)=X_{i}^{-c_{i}(\alpha)} \cdot H_{i, \alpha}(f)$.

Remark 4.3.11. Let $0 \leq i<n$ and $\alpha_{i}=v_{i}\left(\phi_{i+1}\right)=f_{i} e_{i} \lambda_{i}$. By [FGMN, Corollary 5.5(2)] the field k_{i+1} is isomorphic to $k_{i}\left[X_{i}\right] /\left(R_{i, \alpha_{i}}\left(\phi_{i+1}\right)\right)$. Furthermore, $k_{i+1} \simeq k_{i}\left[X_{i}^{ \pm 1}\right] /\left(H_{i, \alpha_{i}}\left(\phi_{i+1}\right)\right)$ by definition.

Notation 4.3.12 We denote by k_{v} the field k_{n}. In fact, it does not depend on the radius of v.
Definition 4.3.13 Let $\alpha \in \Gamma_{v}$. For any $f \in F_{v}(\alpha)$, define $\left.f\right|_{v, \alpha} \in k_{v}[X]$ by $\left.f\right|_{v, \alpha}(X)=R_{n, \alpha}(f)(X)$.
Let $f \in K[x]$. Let $\alpha=v(f)$. Denote by $N_{n}(f)$ the Newton polygon $N_{v_{n-1}, \phi_{n}}$. If $n>0$, consider the edge $L_{v}(f)$ of $N_{n}(f)$. Let $\left(t_{v}^{0}, u_{v}^{0}\right),\left(t_{v}, u_{v}\right)$ be the two endpoints of $L_{v}(f)$, with $t_{v}^{0} \leq t_{v}$. Note that $t_{v}^{0}-t_{n}(\alpha)=e_{n} \cdot\left\lfloor t_{v}^{0} / e_{n}\right\rfloor$.

Definition 4.3.14 ([FGMN, Definition 3.15]) The reduction of f with respect to v is

$$
\left.f\right|_{v}= \begin{cases}\left.f\right|_{v, \alpha} & \text { if } n=0 \\ \left.f\right|_{v, \alpha} / X^{\left\lfloor t_{v}^{0} / e_{n}\right\rfloor} & \text { if } n>0\end{cases}
$$

Remark 4.3.15. Note that $\left.f\right|_{v, \alpha}$ and $\left.f\right|_{v}$ do depend on the chosen MacLane chain for v.
Note that

$$
\begin{equation*}
H_{n, \alpha}(f)(X)=\left.X^{\left\lfloor t_{v}^{0} / e_{n}\right\rfloor+c(\alpha)} f\right|_{v}=\left.X^{t_{v}^{0} / e_{n}-\ell_{n} e_{v_{n-1}} \alpha} f\right|_{v} \tag{4.5}
\end{equation*}
$$

Lemma 4.3.16 Expand $f=\sum_{t} a_{t} \phi_{n}^{t}, \operatorname{deg} a_{t}<\operatorname{deg} \phi_{n}$. If $n>0$, then

$$
\left.f\right|_{v}=\sum_{j \geq 0} H_{n-1, \alpha_{j}}\left(a_{t_{j}}\right) X^{j}
$$

where $t_{j}=t_{v}^{0}+j e_{n}$ and $\alpha_{j}=\alpha-t_{j} \lambda_{n}$.

Proof. There exists $f^{\prime} \in K[x]$ such that $f \sim_{v} f^{\prime}$ and $f^{\prime}=\sum_{t} a_{t}^{\prime} \phi_{n}^{t}$, where either $a_{t}^{\prime}=0$ or $a_{t}^{\prime}=a_{t}$ and $v\left(a_{t}^{\prime}\right)=\alpha-t \lambda_{n}$. If $a_{t}^{\prime} \neq 0$, then $\left(t, v\left(a_{t}\right)\right) \in L_{v}(f)$. Since

$$
L_{v}(f) \cap\left(\mathbb{Z} \times \frac{1}{e_{v_{n-1}}} \mathbb{Z}\right)=\left(t_{v}^{0}, \alpha-t_{v}^{0} \lambda_{n}\right)+\left(e_{n},-\lambda_{n}\right) \mathbb{Z},
$$

we have $f^{\prime}=\sum_{j \geq 0} a_{t_{j}}^{\prime} \phi_{n}^{t_{j}}$. It follows that

$$
f^{\prime}=\phi_{n}^{t_{n}(\alpha)} \pi_{n-1}^{u_{n}(\alpha)} \gamma_{n}^{\left\lfloor t_{v}^{0} / e_{n}\right\rfloor} \sum_{j \geq 0} \frac{a_{t_{j}}^{\prime}}{\pi_{n-1}^{e_{v_{n}-1}} \alpha_{j}} \gamma_{n}^{j} .
$$

Therefore

$$
\begin{equation*}
\left.f\right|_{v, \alpha}=\left.f^{\prime}\right|_{v, \alpha}=X^{\left\lfloor t_{v}^{0} / e_{n}\right\rfloor} \sum_{j \geq 0} H_{n-1, \alpha_{j}}\left(a_{t_{j}}^{\prime}\right) X^{j} . \tag{4.6}
\end{equation*}
$$

Finally, note that $a_{t_{j}}^{\prime}=0$ if and only if $v\left(a_{t_{j}}\right)>e_{v_{n-1}} \alpha_{j}$. Thus in (4.6) we can replace $H_{n-1, \alpha_{j}}\left(a_{t_{j}}^{\prime}\right)$ with $H_{n-1, \alpha_{j}}\left(a_{t_{j}}\right)$.

Example 4.3.17 Let $f=\left(x^{3}-2 p\right)^{2}-p x^{2}\left(x^{3}-2 p\right) \in \mathbb{Q}_{p}[x](p \neq 2)$ and

$$
v=v_{2}=\left[v_{0}, v_{1}(x)=1 / 3, v_{2}\left(x^{3}-2 p\right)=5 / 3\right]
$$

The Newton polygon $N_{2}(f)$ is

Then $\pi_{0}=p, \pi_{1}=x, \pi_{2}=x, \gamma_{1}=x^{3} p^{-1}$ and $k_{1}=k_{0}=\mathbb{F}_{p}$. Since $x^{3}-2 p=p^{-1}\left(\gamma_{1}-2\right)$, then $R_{1,1}\left(x^{3}-\right.$ $2 p)=X_{1}-2$. It follows that $k_{2}=\mathbb{F}_{p}\left[X_{1}\right] /\left(X_{1}-2\right) \simeq \mathbb{F}_{p}$. Via Lemma 4.3 .16 compute

$$
\left.f\right|_{v}=X+H_{1,5 / 3}\left(-p x^{2}\right)=X+H_{1}\left(\frac{-p x^{2}}{x^{5}}\right)=X+\bar{H}_{1}\left(-y_{1}^{-1}\right)=X-2^{-1} .
$$

Proposition 4.3.18 ([FGMN, Corollary 4.9, Corollary 4.11]) Suppose $n>0$. Following the notation above, we have:
(i) the j-th coefficient of $\left.f\right|_{v, \alpha}$ is non-zero if and only if $v_{n-1}\left(a_{t_{j}}\right)=\alpha_{j}$;
(ii) $\left.\operatorname{deg} f\right|_{v, \alpha}=\left\lfloor t_{v} / b_{v}\right\rfloor$ and $\operatorname{ord}_{X}\left(\left.f\right|_{v, \alpha}\right)=\left\lfloor t_{v}^{0} / b_{v}\right\rfloor$;
(iii) $\left.\operatorname{deg} f\right|_{v}=\left(t_{v}-t_{v}^{0}\right) / b_{v}$ and $\left.f\right|_{v}(0) \neq 0$;
(iv) $\left.f h\right|_{v}=\left.\left.f\right|_{v} h\right|_{v}$ for all $h \in K[x]$.

Proposition 4.3.19 ([FGMN, Corollary 4.10]) For non-zero $f, h \in K[x]$, the following conditions are equivalent:
(i) $f \sim{ }_{v} h$,
(ii) $v(f)=v(h)$ and $\left.f\right|_{v}=\left.h\right|_{v}$,
(iii) $L_{v}(f)=L_{v}(h)$ and $\left.f\right|_{v}=\left.h\right|_{v}$.

Lemma 4.3.20 ([FGMN, Lemma 5.1]) A polynomial $f \in K[x]$ is v-irreducible if and only if either

- $t_{v}^{0}=t_{v}=1$ or
- $t_{v}^{0}=0$ and $\left.f\right|_{v}$ is irreducible in $k_{n}[X]$.

Lemma 4.3.21 ([FGMN, Lemma 5.2]) Suppose $n>0$. A monic $f \in K[x]$ is a key polynomial over v if and only if one of the two following conditions is satisfied:
(1) $\operatorname{deg} f=\operatorname{deg} v$ and $f \sim_{v} \phi_{n}$;
(2) $t_{v}^{0}=0, \operatorname{deg} f=t_{v} \operatorname{deg} v$ and $\left.f\right|_{v}$ is irreducible.

In case (2), $\operatorname{deg} f=\left.b_{v} \operatorname{deg} v \cdot \operatorname{deg} f\right|_{v}, N_{n}(f)=L_{v}(f)$ and $\left.f\right|_{v}$ is monic.

4.4 MacLane clusters

Let $f \in K[x]$ be a separable polynomial and let $c_{f} \in K$ be its leading term. Assume $f / c_{f} \in O_{K}[x]$ and write \mathfrak{R} for the sets of roots of f in \bar{K}. If C / K is a hyperelliptic curve, it is always given by an equation $y^{2}=f(x)$, where $f \in K[x]$ is as above.

Definition 4.4.1 A MacLane cluster (for f) is a pair (\mathfrak{s}, v) where $\mathfrak{s} \subseteq \mathfrak{R}$, and v is a MacLane pseudo-valuation such that

1. $\mathfrak{s}=D_{v} \cap \mathfrak{R} \neq \varnothing$;
2. if $\mathfrak{s}=D_{w} \cap \mathfrak{R}$ for a MacLane valuation $w>v$ then $\operatorname{deg} w>\operatorname{deg} v$.

If v is a MacLane valuation then (\mathfrak{s}, v) is said proper MacLane cluster. The degree of (\mathfrak{s}, v) is deg v. The degree, a centre and the radius of a MacLane cluster (\mathfrak{s}, v) are the degree, a centre and the radius of v, respectively.

Remark 4.4.2. Let (\mathfrak{s}, v) be a MacLane cluster. Note that by definition
(i) \mathfrak{s} is G_{K}-invariant,
(ii) v determines \mathfrak{s}.

Definition 4.4.3 The MacLane cluster picture of f is the combinatorial data consisting of the collection of all MacLane clusters for f together with their radii. We will denote by Σ_{f}^{M} the set of all MacLane clusters for f.

Definition 4.4.4 We say that a MacLane pseudo-valuation $v \in \hat{\mathbb{V}}_{M}$ defines a MacLane cluster $(\mathfrak{s}, w) \in \Sigma_{f}^{M}$, if $w=v$ (and $\left.\mathfrak{s}=D_{v} \cap \mathfrak{R}\right)$.

Definition 4.4.5 We write $(\mathfrak{t}, w) \subseteq(\mathfrak{s}, v)$ if $w \geq v$. If $(\mathfrak{t}, w) \subsetneq(\mathfrak{s}, v)$ is maximal, we write $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ and $v=P(w)$, and refer to (\mathfrak{t}, w) as a child of (\mathfrak{s}, v), and to (\mathfrak{s}, v) as the parent of (\mathfrak{t}, w). A proper MacLane cluster (\mathfrak{s}, v) with no proper child of degree $\operatorname{deg} v$ is said degree-minimal.

Lemma 4.4.6 Let $(\mathfrak{s}, v),(\mathfrak{t}, w) \in \Sigma_{f}^{M}$ such that $\mathfrak{s} \subsetneq \mathfrak{t}$. Then $(\mathfrak{s}, v) \subsetneq(\mathfrak{t}, w)$.
Proof. Since $\mathfrak{s} \subseteq D_{v} \cap D_{w}$ either $D_{v} \subsetneq D_{w}$ or $D_{w} \subseteq D_{v}$. But

$$
D_{v} \cap \mathfrak{R}=\mathfrak{s} \subsetneq \mathfrak{t}=D_{w} \cap \mathfrak{R},
$$

so $D_{v} \subsetneq D_{w}$. Thus $w>v$.
[KW, Proposition 2.26] shows that the meet of any two MacLane pseudo-valuations v and w exists; it will be denoted by $v \wedge w$. Hence $v \wedge w$ is the maximal MacLane pseudo-valuation $\leq v$ and $\leq w$. In other words, $\hat{\mathbb{V}}_{M}$ with \leq forms a meet-semilattice.

Lemma 4.4.7 Let (\mathfrak{s}, v), $(\mathfrak{t}, w) \in \Sigma_{f}^{M}$, and $\mathfrak{s} \wedge \mathfrak{t}=D_{v \wedge w} \cap \mathfrak{R}$. Then $(\mathfrak{s} \wedge \mathfrak{t}, v \wedge w)$ is the smallest MacLane cluster containing (\mathfrak{s}, v) and (\mathfrak{t}, w).

Proof. We only need to show that $(\mathfrak{s} \wedge \mathfrak{t}, v \wedge w)$ is a MacLane cluster. Suppose not. Then there exists a MacLane valuation $v^{\prime}>v \wedge w$, with $\mathfrak{s} \wedge \mathfrak{t}=D_{v^{\prime}} \cap \Re$ and $\operatorname{deg} v^{\prime} \leq \operatorname{deg}(v \wedge w)$. Then $v^{\prime} \nsubseteq v$ or $v^{\prime} \nsubseteq w$, from the definition of $v \wedge w$. Without loss of generality we can assume that $v^{\prime} \nsubseteq v$.

If $v \nless v^{\prime}$, then $D_{v^{\prime}} \not \subset D_{v}$ and $D_{v} \nsubseteq D_{v^{\prime}}$ so $D_{v^{\prime}} \cap D_{v}=\varnothing$ by Remark 4.2.18(2). But this contradicts

$$
D_{v} \cap \mathfrak{R}=\mathfrak{s} \subseteq \mathfrak{s} \wedge \mathfrak{t}=D_{v^{\prime}} \cap \mathfrak{R} .
$$

If $v<v^{\prime}$, then

$$
\mathfrak{s} \subseteq \mathfrak{s} \cup \mathfrak{t} \subseteq \mathfrak{s} \wedge \mathfrak{t}=D_{v^{\prime}} \cap \mathfrak{R} \subseteq D_{v} \cap \mathfrak{R}=\mathfrak{s}
$$

But then $\mathfrak{s}=D_{v^{\prime}} \cap \Re, v^{\prime}>v$ and $\operatorname{deg} v^{\prime} \leq \operatorname{deg}(v \wedge w) \leq \operatorname{deg} v$ by Lemma 4.2.25, which contradicts the definition of MacLane cluster for (\mathfrak{s}, v).

Let $F \in K[x]$ be a monic irreducible factor of f. Let v_{F} be the MacLane pseudo-valuation with $D_{v_{F}}=D(F, \infty)$ (Theorem 4.2.21). We also denote v_{F} by v_{r} where $r \in \mathfrak{R}$ is any root of F. For any non-empty G_{K}-invariant subset $\mathfrak{s} \subseteq \mathfrak{R}$, define $g_{\mathfrak{s}}=\prod_{r \in \mathfrak{s}}(x-r) \in K[x]$. Then $g_{\mathfrak{s}} \mid f$. Let F_{1}, \ldots, F_{m} be the irreducible monic factors of $g_{\mathfrak{s}}$. Define $v_{\mathfrak{s}} \in \hat{\mathbb{V}}_{M}$ by

$$
v_{\mathfrak{s}}=v_{F_{1}} \wedge \cdots \wedge v_{F_{m}} .
$$

Lemma 4.4.8 Let $v \in \hat{\mathbb{V}}_{M}$ and let $\mathfrak{s}=D_{v} \cap \mathfrak{R} \neq \varnothing$. Then $v \leq v_{\mathfrak{s} .}$. In particular, $\left(\mathfrak{s}, v_{\mathfrak{s}}\right)$ is a MacLane cluster.

Proof. The set \mathfrak{s} is G_{K}-invariant, as so are D_{v} and \mathfrak{R}. Let F_{1}, \ldots, F_{m} be the irreducible factors of $g_{\mathfrak{s}}$ as above. Let \mathfrak{s}_{i} be the set of roots of F_{i}. Note that $D_{v_{F_{i}}}=\mathfrak{s}_{i}$ for all i. Then $D_{v_{\mathfrak{s}}} \supseteq \cup_{i=1}^{m} D_{v_{F_{i}}}=\mathfrak{s}$. Suppose $w \in \hat{\mathbb{V}}_{M}$ with $\mathfrak{s}=D_{w} \cap \mathfrak{R}$. Then $D_{v_{F_{i}}} \subseteq D_{w}$, so $w \leq v_{F_{i}}$ for all i. By definition of $v_{\mathfrak{s}}$ we have $w \leq v_{\mathfrak{s}}$. Since $w \leq v_{\mathfrak{s}}$ for any w with $\mathfrak{s}=D_{w} \cap \mathfrak{R}$, it only remains to show that $\mathfrak{s}=D_{v_{\mathfrak{s}}} \cap \mathfrak{R}$. Since $v \leq v_{5}$ from above, we have

$$
\mathfrak{s} \subseteq D_{v_{s}} \cap \mathfrak{R} \subseteq D_{v} \cap \mathfrak{R}=\mathfrak{s},
$$

that implies $D_{v_{\mathfrak{s}}} \cap \mathfrak{R}=\mathfrak{s}$. Thus $\left(\mathfrak{s}, v_{\mathfrak{s}}\right)$ is a MacLane cluster.
Lemma 4.4.9 Let $\mathfrak{s}=D_{v} \cap \mathfrak{R} \neq \varnothing$, for some $v \in \hat{\mathbb{V}}_{M}$. Let

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{n}\left(\phi_{n}\right)=\lambda_{n}\right]
$$

be a minimal MacLane chain for $v_{\mathfrak{s} .}$. Then there exists $i=0, \ldots, n$ such that $v \leq v_{i}, \operatorname{deg} v=\operatorname{deg} v_{i}$ and $\left(\mathfrak{s}, v_{i}\right)$ is a cluster. In particular, if (\mathfrak{s}, v) is a MacLane cluster, then $v=v_{i}$.

Proof. Let $w \in \hat{\mathbb{V}}_{M}$ such that $D_{w} \cap \mathfrak{R}=\mathfrak{s}$. Then $w \leq v_{\mathfrak{s}}$ by Lemma 4.4.8. Proposition 4.2.24 implies that $w \leq v_{i}, \operatorname{deg} w=\operatorname{deg} v_{i}$ for some $i=0, \ldots, n$.

The argument above holds in particular when $w=v$. It only remains to show that $\mathfrak{s}=D_{v_{i}} \cap \mathfrak{R}$. We have

$$
\mathfrak{s}=D_{v_{\mathfrak{s}}} \cap \mathfrak{R} \subseteq D_{v_{i}} \cap \mathfrak{R} \subseteq D_{v} \cap \mathfrak{R}=\mathfrak{s},
$$

that implies $\mathfrak{s}=D_{v_{i}} \cap \mathfrak{R}$, as required.
Proposition 4.4.10 The set Σ_{f}^{M} under the partial order \supseteq forms a rooted tree.
Proof. Let $V_{f}^{M}=\left\{v \in \hat{\mathbb{V}}_{M} \mid\left(D_{v} \cap \mathfrak{R}, v\right) \in \Sigma_{f}^{M}\right\}$. By Remark 4.4.2(ii) there is a natural bijection from V_{f}^{M} to \sum_{f}^{M} taking $v \mapsto\left(D_{v} \cap \Re, v\right)$ inverting partial orders by definition. Hence it suffices to show that V_{f}^{M} is a rooted tree. First note that $V_{f}^{M} \neq \varnothing$ since $v_{F} \in V_{f}^{M}$ for any monic irreducible factor F of f. Then V_{f}^{M} is a rooted tree by [KW, Corollary 2.8] and Lemma 4.4.7.

Lemma 4.4.11 Let (\mathfrak{s}, v) be a MacLane cluster. Then $|\mathfrak{s}| \geq \operatorname{deg} v$. Furthermore, $|\mathfrak{s}|>\operatorname{deg} v$ if and only if (\mathfrak{s}, v) is proper.

Proof. First note that $v \leq v_{\mathfrak{s}}$ by Lemma 4.4.8. Then Lemma 4.2.25 implies

$$
\operatorname{deg} v \leq \operatorname{deg} v_{\mathfrak{s}} \leq \min _{r \in \mathfrak{s}} \operatorname{deg} v_{r}=\min _{r \in \mathfrak{S}}\left|G_{K} \cdot r\right| \leq|\mathfrak{F}| .
$$

If $|\mathfrak{s}|=\operatorname{deg} v$, then $\mathfrak{s}=G_{K} \cdot r$ for some (any) $r \in \mathfrak{s}$, and $\operatorname{deg} v=\operatorname{deg} v_{\mathfrak{s}}$. It follows from Lemma 4.4.9 that $v=v_{\mathfrak{s}}=v_{r}$. Hence (\mathfrak{s}, v) is not proper.

If (\mathfrak{s}, v) is not proper, that is $v \notin \mathbb{V}_{M}$, then $v=v_{\mathfrak{s}}=v_{r}$ for some (any) $r \in \mathfrak{s}$. In particular, $\mathfrak{s}=\operatorname{deg} v_{r}=\operatorname{deg} v$.

Remark 4.4.12 (Alternative definition for MacLane clusters). Let Σ be the set of pairs (\mathfrak{s}, n), where $n \in \mathbb{Z}_{+}$and $\mathfrak{s}=D_{v} \cap \mathfrak{R} \neq \varnothing$ for some MacLane pseudo-valuation v of degree n. It follows from Remark 4.2.18(2) and Theorem 4.2.21 that the map $\Sigma_{f}^{M} \rightarrow \Sigma$, taking $(\mathfrak{s}, v) \mapsto(\mathfrak{s}, \operatorname{deg} v)$ is bijective.

Lemma 4.4.13 Let (\mathfrak{s}, v) be a MacLane cluster. Then $\lambda_{v}=\min _{r \in \mathfrak{s}} v_{K}(\phi(r))$ for any centre ϕ of v.
Proof. Let $\lambda=\min _{r \in \mathfrak{s}} v_{K}(\phi(r))$. Since $\mathfrak{s} \subset D_{v}=D\left(\phi, \lambda_{v}\right)$, we have $\lambda \geq \lambda_{v}$. Suppose $\lambda>\lambda_{v}$. Let $w=[v, w(\phi)=\lambda]$. Then $w>v$ and $\operatorname{deg} w=\operatorname{deg} \phi=\operatorname{deg} v$. But $\mathfrak{s}=\mathfrak{R} \cap D_{w}$ for our choice of λ. This contradicts the fact that (\mathfrak{s}, v) is a MacLane cluster (Definition 4.4.12).

Notation 4.4.14 Let $\mathcal{P} \subset K[x]$ to be the subset of monic irreducible polynomials. For any $d \in \mathbb{Z}$, denote by $\mathcal{P}_{\leq d}$ the set $\{g \in \mathcal{P} \mid \operatorname{deg} g \leq d\}$.

Lemma 4.4.15 Let (\mathfrak{s}, v) be a proper MacLane cluster. Then

$$
\lambda_{v}=\max _{g \in \mathcal{P}_{\leq \operatorname{deg} v}} \min _{r \in \mathfrak{s}} v_{K}(g(r))
$$

Proof. Let $d=\operatorname{deg} v$. By Lemma 4.4.13 we only need to show that $\lambda_{v} \geq \max _{g \in \mathcal{P}_{\leq d}} \min _{r \in \mathfrak{s}} v_{K}(g(r))$. Suppose not. Then there exists a polynomial $g \in \mathcal{P}_{\leq d}$ such that $\lambda:=\min _{r \in \mathfrak{s}} v_{K}(g(r))>\lambda_{v}$. Let $w \in \hat{\mathbb{V}}_{M}$ such that $D_{w}=D(g, \lambda)$ (Theorem 4.2.21). Then $\mathfrak{s} \subseteq D_{w} \cap \Re$. By Lemma 4.2.22 we have $\operatorname{deg} w \leq \operatorname{deg} g \leq \operatorname{deg} v$ and $w(g) \geq \lambda$. Since $\mathfrak{s} \subset D_{w} \cap D_{v}$, either $D_{v} \subseteq D_{w}$ or $D_{w} \subsetneq D_{v}$ by Remark 4.2.18(2). If $D_{w} \subsetneq D_{v}$, then $w>v$ and $\mathfrak{s}=D_{w} \cap \mathfrak{R}$, a contradiction, since (\mathfrak{s}, v) is a MacLane cluster. So $D_{v} \subseteq D_{w}$, that is $v \geq w$. Hence $v(g) \geq w(g) \geq \lambda>\lambda_{v}$. This gives a contradiction since $v(g) \leq \lambda_{v}$ by Lemma 4.2.26.

Lemma 4.4.16 Let $v \in \hat{\mathbb{V}}_{M}$ and $\mathfrak{s}=D_{v} \cap \mathfrak{R}$. Then $(\mathfrak{s}, v) \in \Sigma_{f}^{M}$ if and only if

$$
\lambda_{v}=\max _{g \in \mathcal{P}_{\leq \operatorname{deg} v}} \min _{r \in \mathfrak{s}} v_{K}(g(r))
$$

Proof. One implication follows from Lemma 4.4.15. Suppose

$$
\lambda_{v}=\max _{g \in \mathcal{P}_{\leq \operatorname{deg} v}} \min _{r \in \mathfrak{s}} v_{K}(g(r))
$$

By Lemma 4.4.9, there exists a MacLane pseudo-valuation $w \geq v$ with $\operatorname{deg} w=\operatorname{deg} v$ such that $(\mathfrak{s}, w) \in \Sigma_{f}^{M}$. Let λ_{w} be the radius of w. Then Lemma 4.4.15 implies $\lambda_{w}=\lambda_{v}$. But this is possible only if $w=v$, by Lemma 4.2.25.

Lemma 4.4.17 Let $v \neq v_{0}$ be a MacLane valuation, ϕ a strong key polynomial over v and $\lambda \in \hat{\mathbb{Q}}$, $\lambda>v(\phi)$. Set $w=[v, w(\phi)=\lambda], \mathfrak{s}=D_{v} \cap \Re, \mathfrak{t}=D_{w} \cap \Re$. If $\mathfrak{t} \neq \varnothing$, then (\mathfrak{s}, v) is a MacLane cluster.

Proof. First note that $\mathfrak{t} \subseteq \mathfrak{s}$. Let $g \in K[x]$ be any monic irreducible polynomial of degree $\operatorname{deg} g \leq$ $\operatorname{deg} v$. Then $\operatorname{deg} g<\operatorname{deg} \phi$ and so $w(g)=v(g)$. Hence Proposition 4.2.32 implies that

$$
v(g)=w(g)=\min _{r \in \mathfrak{t}} v_{K}(g(r)) \geq \min _{r \in \mathfrak{s}} v_{K}(g(r)) \geq v(g)
$$

As g was arbitrary, (\mathfrak{s}, v) is a MacLane cluster by Lemmas 4.2.26 and 4.4.16.

Lemma 4.4.18 Let (\mathfrak{s}, v) be a MacLane cluster and let (\mathfrak{t}, w) be its parent. Then $v=\left[w, v(\phi)=\lambda_{v}\right]$ for any centre ϕ of v.

Proof. The lemma follows from Proposition 4.2.24 and Lemma 4.4.17.
Proposition 4.4.19 Let $F \in O_{K}[x]$ monic and irreducible. Let $v, w \in \hat{\mathbb{V}}_{M}$ such that $v \leq v_{F}$, e.g. when $v \in \mathbb{V}_{M}$ and $F \in \operatorname{KP}(v)$. Then

$$
(v \wedge w)(F)=\min \{v(F), w(F)\}
$$

In particular, if $v \nless w$, then $w(F)=(v \wedge w)(F)$.
Proof. The first part of the statement follows from the proof of [KW, Proposition 2.26], defining $w \wedge v$. Suppose $v \nless w$. If $v=w$, then $(v \wedge w)(F)=w(F)$. If $v \not \approx w$, then $v \wedge w<v \leq v_{F}$. This implies $v(F)>(v \wedge w)(F)$ by $[\mathrm{KW}$, Lemma 2.22]. Thus $(v \wedge w)(F)=w(F)$.

Lemma 4.4.20 Let $v \in \hat{\mathbb{V}}_{M}$. Then

$$
v(f)=v_{K}\left(c_{f}\right)+\sum_{F \in \mathcal{P}, F \mid f} \operatorname{deg} F \cdot \frac{\lambda_{v \wedge v_{F}}}{\operatorname{deg}\left(v \wedge v_{F}\right)}=v_{K}\left(c_{f}\right)+\sum_{r \in \Re} \frac{\lambda_{v \wedge v_{r}}}{\operatorname{deg}\left(v \wedge v_{r}\right)} .
$$

Proof. Recall $f / c_{f} \in O_{K}[x]$. Then $f=c_{f} \cdot \prod_{F \in \mathcal{P}, F \mid f} F$ and the factors F in the product belong to $O_{K}[x]$. It suffices to show that $v(F)=\operatorname{deg} F \cdot \frac{\lambda_{v \wedge \nu_{F}}}{\operatorname{deg}\left(v \wedge v_{F}\right)}$ for all $F \in \mathcal{P} \cap O_{K}[x]$. Let $F \in \mathcal{P} \cap O_{K}[x]$. By Lemma 4.2.29, the polynomial F is w-minimal, for any MacLane valuation $w<v_{F}$. In particular, F is $\left(v \wedge v_{F}\right)$-minimal. Hence

$$
\frac{\left(v \wedge v_{F}\right)(F)}{\operatorname{deg} F}=\frac{\lambda_{v \wedge v_{F}}}{\operatorname{deg}\left(v \wedge v_{F}\right)} .
$$

by Theorem 4.2.27. Since $v_{F} \nless v$, Proposition 4.4.19 shows $v(F)=\left(v \wedge v_{F}\right)(F)$ and so concludes the proof.

4.4.1 Newton polygons

Let v be a MacLane valuation and $\phi \in \operatorname{KP}(v)$. Recall the definition of the Newton polygon $N_{v, \phi}(f)$.
Definition 4.4.21 The principal Newton polygon $N_{v, \phi}^{-}(f)$ is formed by the edges of $N_{v, \phi}(f)$ with slope $<-v(\phi)$.

For any edge L of $N_{v, \phi}^{-}(f)$ with slope $-\lambda$, define the MacLane valuation $v_{L}=\left[v, v_{L}(\phi)=\lambda\right]$. Then $L=L_{v_{L}}(f)$ (Notation 4.2.36). Denote by λ_{L} the radius of v_{L}.

The aim of this subsection is proving the following result, that gives a correspondence between MacLane clusters and edges of certain Newton polygons attached to f. It can be viewed as a generalisation of Lemma 2.3.38. Since the statement of the theorem may be not easy to digest, let us briefly present its main consequence. Let (\mathfrak{s}, μ) be a degree-minimal MacLane cluster with centre ϕ. Suppose that $v=v_{0}$ or that v defines a MacLane cluster (e.g. ϕ is a strong key polynomial over v). Then there is a 1 -to- 1 correspondence between the proper MacLane clusters
(\mathfrak{t}, w) of degree $\operatorname{deg} \mu$ satisfying $v<w \leq \mu$ and the edges of the principal Newton polygon $N_{v, \phi}^{-}(f)$. Moreover, the radii of the MacLane clusters are the opposites of the slopes of the edges.

The generality of Theorem 4.4.22 allows us to use it as one of the key results to construct proper MacLane clusters algorithmically from f (see Remark 4.4.31).

Theorem 4.4.22 Let $v \in \mathbb{V}_{M}$ and $\phi \in \operatorname{KP}(v)$.
(i) If $\left(\mathfrak{t}, w^{\prime}\right)$ is a MacLane cluster with centre $\phi^{\prime} \sim_{v} \phi$ satisfying $w^{\prime}(\phi)<\infty$, then $N_{v, \phi}^{-}(f)$ has an edge L of slope $-w^{\prime}(\phi)$ and $t_{v_{L}}=|\mathfrak{t}| / \operatorname{deg} \phi$.
(ii) Conversely, for every edge L of $N_{v, \phi}^{-}(f)$ there is a MacLane cluster $\left(\mathfrak{t}, w_{L}\right)$ with $w_{L} \geq v_{L}$, $\operatorname{deg} w_{L}=\operatorname{deg} \phi, w_{L}(\phi)=\lambda_{L}$ and $|\mathfrak{t}|=t_{v_{L}} \operatorname{deg} \phi$.

In case (ii), if there exists a proper $(\mathfrak{s}, w) \in \Sigma_{f}^{M}$ with $w=[v, w(\phi)=\lambda], \lambda \geq \lambda_{L}$, then $w_{L}=v_{L}$.
We first recall the following result from [FGMN].
Theorem 4.4.23 ([FGMN, Theorem 6.2]) Let $F \in O_{K}[x]$ be a monic irreducible polynomial and $r \in \bar{K}$ a root of F. Then $\left.\phi\right|_{v} F$ if and only if $v_{K}(\phi(r))>v(\phi)$. Moreover, if this condition holds, one also has:

1. Either $F=\phi$, or $N_{v, \phi}(F)$ consists of one edge of slope $-v_{K}(\phi(r))$.
2. $d:=\operatorname{deg} F / \operatorname{deg} \phi \in \mathbb{Z}_{+}$and $F \sim_{v} \phi^{d}$.

Lemma 4.4.24 Let $w=[v, w(\phi)=\lambda]$ be an augmentation of v. Let \mathfrak{s}_{λ} be the set of roots r of f satisfying $v_{K}(\phi(r))=\lambda$. Then $\left|\mathfrak{s}_{\lambda}\right| / \operatorname{deg} \phi=t_{w}-t_{w}^{0}$.

Proof. Without loss of generality we can suppose f monic. If $\lambda=\infty$, then $\left|\mathfrak{s}_{\lambda}\right|=\operatorname{ord}_{\phi}(f)$ and the equality $\left|\mathfrak{s}_{\lambda}\right| / \operatorname{deg} \phi=t_{w}-t_{w}^{0}$ follows from the definition of t_{w}^{0}, t_{w}. Hence suppose $\lambda<\infty$.

We first show the statement for $f=F$ irreducible. In this case either $\mathfrak{s}_{\lambda}=\varnothing$ or $\mathfrak{s}_{\lambda}=\mathfrak{R}$. Suppose $\mathfrak{s}_{\lambda}=\mathfrak{R}$, which means $v_{K}(\phi(r))=\lambda>v(\phi)$ for any (some) $r \in \mathfrak{R}$. Since $F \neq \phi$ (otherwise $\phi(r)=0$), Theorem 4.4.23 implies that $L_{w}(F)=N_{v, \phi}(F), t_{w}^{0}=0$ and $t_{w}=\operatorname{deg} F / \operatorname{deg} \phi=\left|\mathfrak{s}_{\lambda}\right| / \operatorname{deg} \phi$. Now suppose that $L_{w}(F)$ is an edge of $N_{v, \phi}(F)$. So $t_{w} \geq 1$. We want to show $\mathfrak{s}_{\lambda} \neq \varnothing$. Let $t=t_{w}$. Expand

$$
F=\sum_{j=0}^{d} a_{j} \phi^{j}, \quad a_{j} \in K[x], \operatorname{deg} a_{j}<\operatorname{deg} \phi, a_{d} \neq 0
$$

By definition of $L_{w}(f)$ we have $w\left(a_{j} \phi^{j}\right) \geq w\left(a_{t} \phi^{t}\right)$ for all j. Therefore

$$
v\left(a_{t} \phi^{t}\right)=w\left(a_{t} \phi^{t}\right)-t(\lambda-v(\phi))<w\left(a_{j} \phi^{j}\right)-j(\lambda-v(\phi))=v\left(a_{j} \phi^{j}\right)
$$

for all $j<t$. In particular, $v\left(a_{0}\right)>v(F)$, so $\left.\phi\right|_{v} F$. Theorem 4.4.23 then implies that $-\lambda=-v_{K}(\phi(r))$ for any $r \in \mathfrak{R}$. Therefore $\mathfrak{s}_{\lambda} \neq \varnothing$.

Let $f \in O_{K}[x]$ be any monic separable polynomial. Write $f=F_{0} \cdots F_{t}$, with $F_{j} \in O_{K}[x]$ monic irreducible. Denote by \mathfrak{R}_{j} the set of roots of F_{j} and by $\mathfrak{s}_{\lambda, j}$ the elements $r \in \mathfrak{R}_{j}$ satisfying $v_{K}(\phi(r))=\lambda$. Clearly $\mathfrak{s}_{\lambda}=\bigsqcup_{j} \mathfrak{s}_{\lambda, j}$. Moreover, from [FGMN, Corollary 2.7], we have

$$
L_{w}(f)=L_{w}\left(F_{0}\right)+\cdots+L_{w}\left(F_{t}\right)
$$

(see before [FGMN, Corollary 2.7] for a definition of +). The lemma then follows from the first part of the proof.

Proposition 4.4.25 Let $w=[v, w(\phi)=\lambda]$ be an augmentation of v and let $\mathfrak{s}=D_{w} \cap \mathfrak{R}$. Then $t_{w}=|\mathfrak{s}| / \operatorname{deg} \phi$.

Proof. By definition $t_{w}=\sum_{\lambda^{\prime} \geq \lambda}\left(t_{w^{\prime}}-t_{w^{\prime}}^{0}\right)$, where $w^{\prime}=\left[v, w^{\prime}(\phi)=\lambda^{\prime}\right]$. Lemma 4.4.24 implies

$$
t_{w} \operatorname{deg} \phi=\sum_{\lambda^{\prime} \geq \lambda}\left|\mathfrak{s}_{\lambda^{\prime}}\right|=\left|\bigcup_{\lambda^{\prime} \geq \lambda} \mathfrak{s}_{\lambda^{\prime}}\right|=|\mathfrak{s}|
$$

where $\mathfrak{s}_{\lambda^{\prime}} \subseteq \mathfrak{R}$ is the set of roots r of f satisfying $v_{K}(\phi(r))=\lambda^{\prime}$.
Now we are ready to prove Theorem 4.4.22.
Proof of Theorem 4.4.22. (i). Let (\mathfrak{t}, w) be a cluster with centre $\phi^{\prime} \sim_{v} \phi$ and $w(\phi)<\infty$. In particular, $\operatorname{deg} \phi=\operatorname{deg} \phi^{\prime}$. Let $\lambda_{\mathfrak{t}}=\min _{r \in \mathfrak{t}} v_{K}(\phi(r)) \geq w(\phi)$. Consider the MacLane valuation $w_{\mathfrak{t}}=\left[v, w_{\mathfrak{t}}(\phi)=\right.$ $\left.\lambda_{\mathfrak{t}}\right]$. Then $\mathfrak{t} \subseteq D_{w_{\mathfrak{t}}} \cap \Re$. By Remark 4.2.18(2) and Theorem 4.2.21, either $w_{\mathfrak{t}}>w$ or $w_{\mathfrak{t}} \leq w$. By definition of MacLane cluster we have $w_{\mathfrak{t}} \leq w$. But then $\lambda_{\mathfrak{t}} \leq w(\phi)$. Thus $\lambda_{\mathfrak{t}}=w(\phi)$. Furthermore,

$$
\mathfrak{t} \subseteq D_{w_{\mathfrak{t}}} \cap \mathfrak{R} \subseteq D_{w} \cap \mathfrak{R}=\mathfrak{t}
$$

and so $\mathfrak{t}=D_{w_{\mathfrak{t}}} \cap \mathfrak{R}$. Then Lemma 4.4.24 implies that $L_{w_{\mathfrak{t}}}(f)$ is an edge of $N_{v, \phi}(f)$. The equality $t_{w_{\mathfrak{t}}} \operatorname{deg} \phi=|\mathfrak{t}|$ follows from Proposition 4.4.25.
(ii). Let L be an edge of $N_{v, \phi}^{-}(f)$. Let $\mathfrak{t}=D_{v_{L}} \cap \Re$. From Lemma 4.4.24 and Proposition 4.4.25 it follows that

$$
|\mathfrak{t}|=t_{v_{L}} \cdot \operatorname{deg} \phi \quad \text { and } \quad \min _{r \in \mathfrak{t}} v_{K}(\phi(r))=\lambda_{L}
$$

By Lemma 4.4.9 there exists a unique MacLane pseudo-valuation $w_{L} \geq v_{L}$ such that $\operatorname{deg} w_{L}=$ $\operatorname{deg} v_{L}=\operatorname{deg} \phi$ and $\left(\mathfrak{t}, w_{L}\right)$ is a cluster. In particular, $w_{L}(\phi)=\lambda_{L}$ as

$$
\lambda_{L}=v_{L}(\phi) \leq w_{L}(\phi) \leq \min _{r \in \mathfrak{t}} v_{K}(\phi(r))=\lambda_{L}
$$

there exists a proper MacLane cluster (s,w) with $w=[v, w(\phi)=\lambda], \lambda \geq \lambda_{L}$. Then $w \geq v_{L}$ and so $\mathfrak{s} \subseteq \mathfrak{t}$. Furthermore, $\operatorname{deg} w_{L}=\operatorname{deg} v_{L}=\operatorname{deg} w$; hence, by definition of cluster, if $\mathfrak{s}=\mathfrak{t}$ then $w=v_{L}=w_{L}$. So suppose $\mathfrak{s} \subsetneq \mathfrak{t}$. It follows from Lemma 4.4.6 that $(\mathfrak{s}, w) \subsetneq\left(\mathfrak{t}, w_{L}\right)$. Since ϕ is centre of w, Lemma 4.2.25 implies that ϕ is also a centre of w_{L}. But we have already showed $w_{L}(\phi)=\lambda_{L}$, so $w_{L}=v_{L}$ as required.

4.4.2 Residual polynomials

In this subsection we will see that there is a close relationship between certain children $(\mathfrak{t}, w)<$ (\mathfrak{s}, v) and multiple irreducible factors of $\left.f\right|_{v}$. We will need the following result.

Theorem 4.4.26 ([FGMN, Theorem 6.4]) Let $v \in \mathbb{V}_{M}$ and let $\phi \in K[x]$ be a proper key polynomial over v. Every monic $g \in O_{K}[x]$ factorises into a product of monic polynomials in $O_{K}[x]$

$$
g=g_{0} \cdot \phi^{\operatorname{ord}_{\phi}(g)} \prod_{\lambda, h} g_{\lambda, h}
$$

where $-\lambda$ runs on the slopes of $N_{v, \phi}^{-}(g)$ and $h \in k_{w_{\lambda}}[X]$ runs on the monic irreducible factors of $\left.g\right|_{w_{\lambda}}$, where $w_{\lambda}=\left[v, w_{\lambda}(\phi)=\lambda\right]$. Let $g=F_{1}, \ldots, F_{s}$ be the factorisation of g in monic irreducible polynomials $F_{j} \in O_{K}[x]$. Then g_{0} is the product of all F_{j} such that $\phi \not_{v} F_{j}$, while $g_{\lambda, h}$ is the product of all F_{j} with $N_{v, \phi}\left(F_{j}\right)$ one-sided of slope $-\lambda$ and $\left.F_{j}\right|_{w_{\lambda}}=h^{l}$ for some l. In particular,

$$
\operatorname{deg} g_{0}=\operatorname{deg} g-l\left(N_{v, \phi}^{-}(g)\right) \operatorname{deg} \phi, \quad \operatorname{deg} g_{\lambda, h}=b_{w_{\lambda}} \cdot \operatorname{ord}_{h}\left(\left.g\right|_{w_{\lambda}}\right) \cdot \operatorname{deg} h \cdot \operatorname{deg} \phi
$$

where $b_{w_{\lambda}}$ (Notation 4.3.4) equals the denominator of $e_{v} \lambda$.
Consider a MacLane valuation v. Assume $v \neq v_{0}$. Let ϕ_{v} be a centre of v. By Proposition 4.2.31 there exists a unique MacLane valuation v^{\prime} over which ϕ_{v} is a strong key polynomial. Then $v=\left[v^{\prime}, v\left(\phi_{v}\right)=\lambda_{v}\right]$. Let $\mathfrak{s}=D_{v} \cap \mathfrak{R}$. We decompose

$$
\begin{equation*}
f / c_{f}=f_{0} \phi_{v}^{\operatorname{ord}_{\phi_{v}}(f)} \prod_{\lambda, h} f_{\lambda, h}, \tag{4.7}
\end{equation*}
$$

as in Theorem 4.4.26 with respect to the principal Newton polygon $N_{v^{\prime}, \phi_{v}}^{-}(f)$. Recall $\epsilon_{v}=e_{v^{\prime}}$ and b_{v} equals the denominator of $\epsilon_{v} \lambda_{v}$.

Lemma 4.4.27 If $\phi \in \operatorname{KP}(v)$ such that $\left.\phi\right|_{v}$ is a multiple irreducible factor of $\left.f\right|_{v}$, then $N_{v, \phi}^{-}(f)$ has an edge.

Proof. By Theorem 4.4.26 it suffices to show that f has a monic irreducible factor $F \neq \phi$ that v-divisible by ϕ. Let $h=\left.\phi\right|_{v}$. Since $\left.f_{\lambda_{v}, h}\right|_{v}=h^{\operatorname{ord}_{h}\left(\left.f\right|_{v}\right)}$, one has $f_{\lambda_{v}, h} \neq \phi$. As f is separable, there exists a monic irreducible factor F of $f_{\lambda_{v}, h}$ different from ϕ. Thus $\left.\phi\right|_{v} F$ by [FGMN, Theorem 5.3].

Lemma 4.4.28 Let $w=[v, w(\phi)=\lambda]$ be an augmentation of v. Suppose (\mathfrak{t}, w) is a proper MacLane cluster. If $\left.\phi\right|_{v}$ is irreducible ${ }^{4}$, then $\operatorname{ord}_{\left.\phi\right|_{v}}\left(\left.f\right|_{v}\right)>1$.

Proof. Let $h=\left.\phi\right|_{v}$. Lemma 4.3.21 implies $\phi \not \chi_{v} \phi_{v}$ and

$$
\begin{equation*}
\operatorname{deg} \phi=b_{v} \operatorname{deg} h \operatorname{deg} \phi_{v} \tag{4.8}
\end{equation*}
$$

[^9]Then by Theorem 4.4.26 it suffices to show that $\operatorname{deg} f_{\lambda_{v}, h}>\operatorname{deg} \phi$. Since $\phi \not \chi_{v} \phi_{v}$ one has $w\left(\phi_{v}\right)=\lambda_{v}$ by [Rüt, Lemmas 4.13,4.14]. Let $r \in \mathfrak{t}$ and let $F \in O_{K}[x]$ be the minimal polynomial of r. Then

$$
v_{K}\left(\phi_{v}(r)\right)=w\left(\phi_{v}\right)=v\left(\phi_{v}\right)=\lambda_{v}>v^{\prime}\left(\phi_{v}\right)
$$

where the first equality follows from Proposition 4.2.32. Then either $F=\phi_{v}$ or $N_{v^{\prime}, \phi_{v}}(F)$ consists of one edge of slope $-\lambda_{v}$ by Theorem 4.4.23. On the other hand

$$
v_{K}(\phi(r)) \geq w(\phi)=\lambda>v(\phi)
$$

Again by Theorem 4.4.23 we have $F \sim_{v} \phi^{l}$, for some $l \in \mathbb{Z}_{+}$. In particular, $F \neq \phi_{v}$ and $\left.F\right|_{v}=h^{l}$ by Propositions 4.3.19 and 4.3.18(iv). It follows from Theorem 4.4.26 that $F \mid f_{\lambda_{v}, h}$. Thus $|\mathfrak{t}| \leq \operatorname{deg} f_{\lambda_{v}, h}$. Then Lemma 4.4.11 concludes the proof.

Theorem 4.4.29 Suppose (\mathfrak{s}, v) is a proper MacLane cluster with $v \neq v_{0}$.
(i) Let $h \in k_{v}[X]$ monic and irreducible such that $\operatorname{ord}_{h}\left(\left.f\right|_{v}\right)>1$. There exists a proper child $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ with centre ϕ such that $\left.\phi\right|_{v}=h$.
(ii) Conversely, for any proper child $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ with centre ϕ such that $\left.\phi\right|_{v}$ is irreducible, one $h a s \operatorname{ord}_{\left.\phi\right|_{v}}\left(\left.f\right|_{v}\right)>1$.

In either case, $f_{\lambda_{v},\left.\phi\right|_{v}}=\prod_{r \in \mathfrak{t}}(x-r)$ and $\operatorname{ord}_{\left.\phi\right|_{v}}\left(\left.f\right|_{v}\right)=|\mathfrak{t}| / \operatorname{deg} w$.
Proof. Without loss of generality assume f monic. Let $v^{\prime} \in \mathbb{V}_{M}$ and $\phi_{v} \in \operatorname{KP}(v)$ as above and consider the factorisation (4.7) of f.
(i). Suppose that the monic irreducible polynomial $h \in k_{v}[X]$ is a multiple factor of $\left.f\right|_{v}$. Then

$$
\left.f_{\lambda_{v}, h}\right|_{v}=h^{\operatorname{ord}_{h}\left(\left.f\right|_{v}\right)} \quad \text { where } \operatorname{ord}_{h}\left(\left.f\right|_{v}\right)>1
$$

By [FGMN, Theorem 5.7] there exists $\phi \in \operatorname{KP}(v)$ such that $\left.\phi\right|_{v}=h$. Let \mathfrak{R}_{h} be the set of roots of $f_{\lambda_{v}, h}$ and set

$$
\lambda=\min _{r \in \mathfrak{R}_{h}} v_{K}(\phi(r)) .
$$

Now ϕ is a proper key polynomial over v since $\left.\phi\right|_{v}$ is irreducible. Then [FGMN, Theorem 5.13] implies that $\left.\phi\right|_{v} F$ for any irreducible monic factor F of $f_{\lambda_{v}, h}$. Hence $\lambda>v(\phi)$ by Theorem 4.4.23. Therefore $w=[v, w(\phi)=\lambda]$ is an augmentation of v. Let $\mathfrak{t}=D_{w} \cap \Re$. From the definition of λ we have $\Re_{h} \subseteq \mathfrak{t}$. The pair (\mathfrak{t}, w) may not be a MacLane cluster. However, by Lemma 4.4.9, we can find a MacLane pseudo-valuation $w^{\prime} \geq w$ with $\operatorname{deg} w^{\prime}=\operatorname{deg} w$ such that $\left(\mathfrak{t}, w^{\prime}\right)$ is an MacLane cluster. Let ψ be a centre of w^{\prime}. Then ψ is a centre of w by Lemma 4.2.25. It follows from Lemma 4.2.16 that $\psi \in \operatorname{KP}(v)$ and $\psi \sim_{v} \phi$. Hence $\left.\psi\right|_{v}=\left.\phi\right|_{v}=h$ by Proposition 4.3.19. Therefore, by replacing ϕ with ψ and w with w^{\prime} if necessary, we can assume (\mathfrak{t}, w) is a MacLane cluster. Furthermore,

$$
|\mathfrak{t}| \geq\left|\Re_{h}\right|=\operatorname{deg} f_{\lambda_{v}, h}>b_{v} \operatorname{deg} h \operatorname{deg} v=\operatorname{deg} \phi
$$

by Theorem 4.4.26 and Lemma 4.3.21. Lemma 4.4.11 implies that (\mathfrak{t}, w) is proper.
The MacLane cluster (\mathfrak{t}, w) may not be a child of (\mathfrak{s}, v). Suppose there exists a (proper) MacLane cluster $\left(\mathfrak{t}^{\prime}, w^{\prime}\right)$ such that $(\mathfrak{t}, w) \subsetneq\left(\mathfrak{t}^{\prime}, w^{\prime}\right) \subsetneq(\mathfrak{s}, v)$. We want to show that ϕ is a centre of w^{\prime}. Suppose $\operatorname{deg} w>\operatorname{deg} w^{\prime}$. Then for any centre ϕ^{\prime} of $w^{\prime}, \operatorname{deg} \phi^{\prime}<\operatorname{deg} \phi$ and so $w\left(\phi^{\prime}\right)=v\left(\phi^{\prime}\right)$. On the other hand, $w^{\prime}>w$ and $w^{\prime}\left(\phi^{\prime}\right)>v\left(\phi^{\prime}\right)$, so $w\left(\phi^{\prime}\right) \geq w^{\prime}\left(\phi^{\prime}\right)>v\left(\phi^{\prime}\right)$, which gives a contradiction. Hence Lemma 4.2.25 implies that ϕ is also a centre of $\left(\mathfrak{t}^{\prime}, w^{\prime}\right)$.
(ii). Let $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ proper with centre ϕ such that $\left.\phi\right|_{v}$ is irreducible. Then $w>v$. Proposition 4.2.24 and Lemma 4.4.17 implies that $w=[v, w(\phi)=\lambda]$ for some $\lambda>v(\phi)$, since (\mathfrak{t}, w) is a child of (\mathfrak{s}, v). Lemma 4.4.28 concludes the proof of (ii).

In the proof of Lemma 4.4.28 we showed that $|\mathfrak{t}| \leq \operatorname{deg} f_{\lambda_{v},\left.\phi\right|_{v}}$. Then $\mathfrak{t}=\mathfrak{R}_{h}$ from above. Finally, $\operatorname{ord}_{\left.\phi\right|_{v}}\left(\left.f\right|_{v}\right)=|t| / \operatorname{deg} w$ by Theorem 4.4.26 and (4.8).

Proposition 4.4.30 Suppose $-\lambda_{v}$ is the minimum slope of $N_{v^{\prime}, \phi_{v}}^{-}(f)$. Then (\mathfrak{s}, v) is not a degreeminimal MacLane cluster if and only if $b_{v}=1$ and $\left.f\right|_{v}$ has a multiple factor $h \in k_{v}[X]$ of degree 1.

Proof. Suppose (\mathfrak{s}, v) is a degree-minimal MacLane cluster. Suppose that $b_{v}=1$ and that $\left.f\right|_{v}$ has a multiple irreducible factor $h \in k_{v}[X]$. Theorem 4.4.29 implies that there exists a proper child $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ with centre ϕ such that $\left.\phi\right|_{v}=h$. Then $\operatorname{deg} \phi>\operatorname{deg} v$. Hence $\operatorname{deg} h>1$ by Lemma 4.3.21.

Now suppose (\mathfrak{s}, v) is not a degree-minimal MacLane cluster. Then there exists $w>v$ with $\operatorname{deg} v=\operatorname{deg} w$ such that (\mathfrak{t}, w) is a proper MacLane cluster, for some $\mathfrak{t} \subseteq \mathfrak{R}$. Proposition 4.2.24 implies that $w=[v, w(\phi)=\lambda]$ for some $\phi \in \operatorname{KP}(v)$ and $\lambda>v(\phi)$. In particular, w is also an augmentation of v^{\prime}. If $\phi \sim{ }_{v} \phi_{v}$, then

$$
w\left(\phi_{v}\right)=\min \left\{\lambda, v\left(\phi_{v}-\phi\right)\right\}>\lambda_{v} .
$$

Hence $N_{v^{\prime}, \phi_{v}}^{-}(f)$ would have a slope $-w\left(\phi_{v}\right)$ smaller than $-\lambda_{v}$ by Theorem 4.4.22(i), contradicting our assumptions. Hence $\phi \not{ }_{v} \phi_{v}$. It follows that

$$
\lambda_{v}=v\left(\phi_{v}\right)=v\left(\phi-\phi_{v}\right)=v^{\prime}\left(\phi-\phi_{v}\right) \in \Gamma_{v^{\prime}},
$$

and so $b_{v}=1$. By Lemma 4.3.21 the polynomial $\left.\phi\right|_{v}$ is irreducible and $\left.\operatorname{deg} \phi\right|_{v}=1$. Therefore $\operatorname{ord}_{\left.\phi\right|_{v}}\left(\left.f\right|_{v}\right)>1$ by Lemma 4.4.28.

Remark 4.4.31. In $\S 4.3$ we showed how to compute the reduction $\left.f\right|_{v}$ algorithmically for any $v \in \mathbb{V}_{M}$, knowing a MacLane chain for v (see also [FGMN, §3]). Assume $v_{K}(r)>0$ for any $r \in \mathfrak{R}$ (in the next section we will see that we can always require this condition for our purpose). Suppose we know how to factorise polynomials in $k[X]$, e.g. k is finite. Then we can algorithmically find MacLane chains for all MacLane valuations defining MacLane clusters, starting from the Newton polygon $N_{v_{0}, x}(f)$ and using the results 4.4.22, 4.4.27, 4.4.28, 4.4.30, 4.4.29.

4.5 Model construction

Suppose $\operatorname{char}(k) \neq 2$. Let C / K be a hyperelliptic curve of genus $g \geq 1$. We can find a separable polynomial $f=c_{f} \prod_{r \in \mathfrak{R}}(x-r) \in K[x]$, where $v_{K}(r)>0$ for any $r \in \mathfrak{R}$, such that $C / K: y^{2}=f(x)$. Given any proper MacLane cluster $(\mathfrak{s}, v) \in \Sigma_{f}^{M}$ we want to fix a canonical choice of a MacLane chain for v. It will be called cluster chain and defined in Definition 4.5.1. But first, let us fix a centre for each proper MacLane cluster.

Let $\left(\mathfrak{s}_{1}, \mu_{1}\right), \ldots,\left(\mathfrak{s}_{n}, \mu_{n}\right)$ be all degree-minimal MacLane clusters for f. Note that if $r \in \mathfrak{s}_{i}$ has minimal polynomial $F \in K[x]$ of degree $\operatorname{deg} \mu_{i}$, then F is a centre of μ_{i} by Lemma 4.2.25, as $v_{F} \geq \mu_{i}$. Choose centres $\psi_{1}, \ldots, \psi_{n}$ of μ_{1}, \ldots, μ_{n} respectively, with the following property:

If possible, choose ψ_{i} equal to the minimal polynomial of some root $r \in \mathfrak{s}_{i}$ of K-degree $\operatorname{deg} \mu_{i}$.

Thanks to Lemma 4.2.25, for any proper MacLane cluster $(\mathfrak{s}, v) \in \Sigma_{f}^{M}$ we inductively choose a centre ϕ_{v} as follows:
(i) If (\mathfrak{s}, v) is degree-minimal, that is $(\mathfrak{s}, v)=\left(\mathfrak{s}_{i}, \mu_{i}\right)$ for some $1 \leq i \leq n$, fix $\phi_{v}=\psi_{i}$.
(ii) If (\mathfrak{s}, v) has children of degree $\operatorname{deg} v$, choose one of them, say (\mathfrak{t}, w), and fix $\phi_{v}=\phi_{w}$.

Definition 4.5.1 Let (\mathfrak{s}, v) be a proper MacLane cluster. A cluster chain for v is MacLane chain

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]
$$

for v, where $\left\{\phi_{w} \mid(\mathfrak{t}, w) \supseteq(\mathfrak{s}, v)\right\}=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$.
The next results show that every MacLane valuation defining a MacLane cluster has a unique cluster chain (Lemma 4.5.2).

Lemma 4.5.2 Let $(\mathfrak{s}, v) \in \Sigma_{f}^{M}$ proper and let $\left[v_{0}, \ldots, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]$ be a cluster chain for v. Consider the chain of proper MacLane clusters

$$
\left(\mathfrak{t}_{1}, w_{1}\right) \supsetneq\left(\mathfrak{t}_{2}, w_{2}\right) \supsetneq \cdots \supsetneq\left(\mathfrak{t}_{s}, w_{s}\right)=(\mathfrak{s}, v)
$$

satisfying:
(a) $\left(\mathfrak{t}_{1}, w_{1}\right) \supseteq(\mathfrak{t}, w)$ for any proper MacLane cluster $(\mathfrak{t}, w) \supseteq(\mathfrak{s}, v)$.
(b) $\phi_{w_{i}} \neq \phi_{w_{i+1}}$ for all $1 \leq i<s$.
(c) For any $1 \leq i<s$, the MacLane cluster $\left(\mathfrak{t}_{i}, w_{i}\right)$ is the smallest MacLane cluster containing $\left.\mathbf{(t}_{i+1}, w_{i+1}\right)$ and satisfying (b).

Then $m=s, \phi_{i}=\phi_{w_{i}}$ and $v_{i}=w_{i}$.

Proof. Clearly $\left\{\phi_{w} \mid(\mathfrak{t}, w) \supseteq(\mathfrak{s}, v)\right\}=\left\{\phi_{w_{1}}, \ldots, \phi_{w_{s}}\right\}$, with the centres $\phi_{w_{i}}$ all distinct. By definition of cluster chain $m \geq s$. However, if $m>s$, then $\phi_{i}=\phi_{j}$ for some $i<j$. This is not possible, as $v\left(\phi_{i}\right)=\lambda_{i}<\lambda_{j}=v\left(\phi_{j}\right)$ by [Rüt, Lemmas 4.21,4.22]. Hence $m=s$.

Clearly $v_{m}=w_{m}$. Suppose there exists $i<m$ such that $\phi_{i}=\phi_{v}$. It follows that

$$
\lambda_{i}=v_{i}\left(\phi_{i}\right)=v\left(\phi_{i}\right)=\lambda_{v}=\lambda_{m},
$$

a contradiction by [Rüt, Lemma 4.21]. Therefore $\phi_{m}=\phi_{w_{m}}$. Let $\sigma \in S_{m-1}$ be the permutation such that $\phi_{w_{i}}=\phi_{\sigma(i)}$. For any $i=1, \ldots, m-1$, either $\left(\mathfrak{t}_{i}, w_{i}\right)$ is degree-minimal or there exists a child $\left(\mathfrak{s}^{\prime}, v^{\prime}\right)<\left(\mathfrak{t}_{i}, w_{i}\right)$ not containing $\left(\mathfrak{t}_{i+1}, w_{i+1}\right)$ such that $\phi_{w_{i}}=\phi_{v^{\prime}}$ by (c).

Suppose (\mathfrak{t}_{i}, w_{i}) is degree-minimal. Let

$$
j_{i}=\max \left\{j=1, \ldots, m \mid \operatorname{deg} \phi_{j}=\operatorname{deg} \phi_{w_{i}}\right\} .
$$

Lemma 4.4.17 implies that $v_{j_{i}}$ defines a proper MacLane cluster of degree $\operatorname{deg} w_{i}$ and so $v_{j_{i}}=w_{i}$. In fact, $\phi_{j_{i}}$ must equal $\phi_{w_{i}}$ since $\left(\mathfrak{t}_{i}, w_{i}\right)$ is degree-minimal, for our choice of centres. Therefore $\sigma(i)=j_{i}$ and so $w_{i}=v_{\sigma(i)}$.

Suppose $\left(\mathfrak{t}_{i}, w_{i}\right)$ is not degree-minimal and let $\left(\mathfrak{s}^{\prime}, v^{\prime}\right)<\left(\mathfrak{t}_{i}, w_{i}\right)$ as above. Note that $\left(\mathfrak{s}^{\prime}, v^{\prime}\right)$ does not contain in (\mathfrak{s}, v) and $\left(\mathfrak{s}^{\prime} \wedge \mathfrak{s}, v^{\prime} \wedge v\right)=\left(\mathfrak{t}_{i}, w_{i}\right)$. Hence $w_{i}\left(\phi_{w_{i}}\right)=v\left(\phi_{\sigma(i)}\right)=\lambda_{\sigma(i)}$ by Proposition 4.4.19. It follows that

$$
D_{w_{i}}=D\left(\phi_{w_{i}}, w_{i}\left(\phi_{w_{i}}\right)\right)=D\left(\phi_{\sigma(i)}, \lambda_{\sigma(i)}\right)=D_{v_{\sigma(i)}},
$$

and so $w_{i}=v_{\sigma(i)}$ from Theorem 4.2.21.
We showed that $w_{i}=v_{\sigma(i)}$ for any $i=1, \ldots, m-1$. Since $v_{1}<\cdots<v_{m}$ and $w_{1}<\cdots<w_{m}$ the permutation σ must be the identity.

Notation 4.5.3 Let $\left(\mathfrak{R}, w_{\mathfrak{R}}\right)$ denote the root of $\left(\Sigma_{f}^{M}, \supseteq\right)$ (Proposition 4.4.10).
Lemma 4.5.4 The pseudo-valuation $w_{\mathfrak{R}}$ is a degree 1 MacLane valuation. Furthermore, $w_{\mathfrak{R}}>v_{0}$.
Proof. Let w be the maximal element of

$$
\left\{w^{\prime} \in \hat{\mathbb{V}}_{M} \mid D_{w^{\prime}} \cap \mathfrak{R}=\mathfrak{R}, \operatorname{deg} w^{\prime}=1\right\} .
$$

Note that the set is non-empty as v_{0} belongs to it. If w is not a valuation, then $|\mathfrak{R}| \leq 1$ by Lemma 4.4.11, a contradiction. Hence (\mathfrak{R}, w) is a proper MacLane cluster and so $w_{\mathfrak{R}} \leq w$. But then $w=w_{\mathfrak{R}}$ by definition of MacLane cluster since $\operatorname{deg} w=1$. Finally,

$$
\lambda_{w_{\Re}} \geq \min _{r \in \mathfrak{R}} v_{K}(r)>0,
$$

by Lemma 4.4.16, and so $w_{\mathfrak{R}}>v_{0}$.
Lemma 4.5.5 Let (\mathfrak{s}, v) be a proper MacLane cluster. There exists a unique cluster chain for v. Furthermore, $v>v_{0}$.

Proof. The uniqueness follows by Lemma 4.5.2. Moreover, $v>v_{0}$ by Lemma 4.5.4. We construct a cluster chain of v recursively to prove the existence. First let $\left(\mathfrak{R}, w_{\mathfrak{R}}\right)$ as above. Then $w_{\mathfrak{R}}=$ $\left[v_{0}, w_{\mathfrak{R}}\left(\phi_{\mathfrak{R}}\right)=\lambda_{\mathfrak{R}}\right]$ is a cluster chain for $\left(\mathfrak{R}, w_{\mathfrak{R}}\right)$. Now let (\mathfrak{s}, v) be any MacLane cluster different from $\left(\Re, w_{\mathfrak{R}}\right)$ and consider its parent (\mathfrak{t}, w). By recursion we can assume that w is equipped with a cluster chain

$$
\left[v_{0}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]
$$

So $\phi_{m}=\phi_{w}$ from Lemma 4.5.2. If $\phi_{w}=\phi_{v}$, then

$$
\left[v_{0}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v\left(\phi_{m}\right)=\lambda_{v}\right]
$$

is a cluster chain for v. If $\phi_{w} \neq \phi_{v}$, Lemma 4.4.18 implies that

$$
\left[v_{0}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}, v\left(\phi_{v}\right)=\lambda_{v}\right]
$$

is an augmentation chain for v. Proving it is a MacLane chain would conclude the proof. Suppose by contradiction that $\phi_{v} \sim_{w} \phi_{w}$. Then $\operatorname{deg} \phi_{v}=\operatorname{deg} \phi_{w}$. In particular, (\mathfrak{t}, w) is not degree-minimal. As $\phi_{v} \neq \phi_{w}$, there exists a child $\left(\mathfrak{s}^{\prime}, v^{\prime}\right)<(\mathfrak{t}, w)$ such that $\phi_{w}=\phi_{v^{\prime}}$. Hence $\left(\mathfrak{s} \wedge \mathfrak{s}^{\prime}, v \wedge v^{\prime}\right)=(\mathfrak{t}, w)$. Set

$$
w^{\prime}=\left[w, w^{\prime}\left(\phi_{w}\right)=\min \left\{\lambda_{v^{\prime}}, \lambda_{v}, w\left(\phi_{v}-\phi_{w}\right)\right\}\right] .
$$

Therefore $w<w^{\prime} \leq v^{\prime}$. Moreover $v\left(\phi_{w}\right)=\min \left\{\lambda_{v}, w\left(\phi_{w}-\phi_{v}\right)\right\}$, and so $v \geq w^{\prime}$. But then $w<w^{\prime} \leq v \wedge v^{\prime}$ which gives a contradiction.

Thanks to cluster chains, the Newton polytopes needed for the construction of the model can be defined without ambiguity. Let $h=1, \ldots, n$ and consider the MacLane valuation μ_{h} of the degree-minimal cluster ($\mathfrak{s}_{h}, \mu_{h}$). Let

$$
\begin{equation*}
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right] \tag{4.10}
\end{equation*}
$$

be a cluster chain for μ_{h}. Then $\phi_{m}=\psi_{h}$. Denote $\phi=\psi_{h}$ and $v=v_{m-1}$. Denote by ϵ_{h} the ramification index $e_{v}=\epsilon_{\mu_{h}}$. Let $g(x, y)=y^{2}-f(x)$ and expand

$$
g=\sum_{i, j} a_{i j} \phi^{i} y^{j}, \quad a_{i j} \in K[x], \operatorname{deg} a_{i, j}<\operatorname{deg} \phi
$$

Define the Newton polytopes

$$
\begin{aligned}
& \Delta_{h}=\text { convex hull }\left(\left\{(i, j): a_{i j} \neq 0\right\}\right) \subset \mathbb{R}^{2}, \\
& \tilde{\Delta}_{h}=\text { lower convex hull }\left(\left\{\left(i, j, v\left(a_{i j}\right)\right): a_{i j} \neq 0\right\}\right) \subset \mathbb{R}^{3} .
\end{aligned}
$$

Consider the homeomorphic projection $s_{h}: \tilde{\Delta}_{h} \rightarrow \Delta_{h}$. Above every point $P \in \Delta_{h}$ there is a unique point $\left(P, \tilde{\mu}_{h}(P)\right) \in \tilde{\Delta}_{h}$. This defines a piecewise affine function $\tilde{\mu}_{h}: \Delta_{h} \rightarrow \mathbb{R}$, and the pair ($\Delta_{h}, \tilde{\mu}_{h}$) determines $\tilde{\Delta}_{h}$. Let \tilde{F} be any 2 -dimensional (open) face of $\tilde{\Delta}_{h}$ and let $F=s_{h}(\tilde{F})$. Define $\tilde{v}_{F, h}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to be the unique affine function coinciding with $\tilde{\mu}_{h}$ on F. Let $\lambda_{F}=\tilde{v}_{F, h}(0,0)-\tilde{v}_{F, h}(1,0)$. Define
$\tilde{\Delta}_{h}^{-} \subseteq \tilde{\Delta}_{h}$ as the sub-polytope consisting of (the closure of) all 2-dimensional faces \tilde{F} of $\tilde{\Delta}_{h}$ with $\lambda_{F}>v(\phi)$. Clearly

$$
\tilde{\Delta}_{h}^{-}=\text {lower convex hull }\left(\left\{(i, 0, u):(i, u) \in N_{v, \phi}^{-}(f)\right\} \cup\{(0,2,0)\}\right) \subset \mathbb{R}^{3}
$$

where $N_{v, \phi}^{-}(f)$ is the principal Newton polygon of f with respect to v, ϕ. The image of $\tilde{\Delta}_{h}^{-}$under s_{h} will be denoted by Δ_{h}^{-}. The images of the 0 -, 1- and 2 -dimensional (open) faces of the polytope $\tilde{\Delta}_{h}^{-}$under s_{h} are called h-vertices, h-edges and h-faces. Finally, a $*$-vertex, $*$-edge, $*$-face is respectively an h-vertex, h-edge, h-face for some $h=1, \ldots, n$.

Definition 4.5.6 Let G be a h-vertex, h-edge or h-face.
(a) Denote by \tilde{G} the inverse image of G under s_{h}.
(b) Denote by \bar{G} the closure of G in \mathbb{R}^{2}.
(c) Denote by $G_{\mathbb{Z}}$ the set of points P of G with $\epsilon_{h} \tilde{\mu}_{h}(P) \in \mathbb{Z}$.
(d) Denote by $G_{\mathbb{Z}}(\mathbb{Z})$ the intersection $G_{\mathbb{Z}} \cap \mathbb{Z}$.

Finally, define the denominator of G, denoted δ_{G}, as the common denominator of $\epsilon_{h} \tilde{\mu}_{h}(P)$ for every $P \in \bar{G}(\mathbb{Z})$.

Let (\mathfrak{s}, w) be a proper MacLane cluster centre $\phi_{w}=\psi_{h}$. Lemma 4.5.2 implies that the cluster chain for w is

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, w\left(\psi_{h}\right)=\lambda_{w}\right]
$$

where $v_{i}, \phi_{i}, \lambda_{i}$ are as in (4.10). Theorem 4.4.22 implies that there is a 1-to- 1 correspondence between proper MacLane clusters and $*$-faces. Given a proper MacLane cluster (\mathfrak{s}, w) we will denote by F_{w} the corresponding $*$-face. If $\phi_{w}=\psi_{h}$, then F_{w} is an h-face. Then F_{w} has 3 edges:
(1) An h-edge, denoted L_{w}, linking the points $\left(t_{w}^{0}, 0\right)$ and $\left(t_{w}, 0\right)$.
(2) An h-edge, denoted V_{w}, linking the points $\left(t_{w}, 0\right)$ and $(0,2)$.
(3) An h-edge, denoted V_{w}^{0}, linking the points $\left(t_{w}^{0}, 0\right)$ and $(0,2)$.

Definition 4.5.7 For any proper MacLane cluster (\mathfrak{s}, w) and any $l=1, \ldots, n$, define $\tilde{w}_{l}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\tilde{w}_{l}(x, y)=-w\left(\psi_{l}\right) x-\frac{w(f)}{2} y+w(f)
$$

and $\tilde{w}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ by

$$
\tilde{w}\left(x_{1}, \ldots, x_{n}, y\right)=-\left(w\left(\psi_{1}\right) x_{1}+\cdots+w\left(\psi_{n}\right) x_{n}\right)-\frac{w(f)}{2} y+w(f)
$$

Finally define $e_{\tilde{w}}=\left(\tilde{\Gamma}_{w}: \mathbb{Z}\right)$, where $\tilde{\Gamma}_{w}=\tilde{w}\left(\mathbb{Z}^{n+1}\right)$.

Let (\mathfrak{s}, w) be a proper MacLane cluster with centre $\phi_{w}=\psi_{h}$. Then $\tilde{w}_{h}=\tilde{v}_{F_{w}, h}$. We will denote $\left(\mathfrak{s}_{F_{w}}, v_{F_{w}}\right)=(\mathfrak{s}, w)$.

Definition 4.5.8 Let E be an h-edge. We say E is inner if $E=V_{w}$ for some proper MacLane cluster $(\mathfrak{s}, w) \neq\left(\mathfrak{R}, w_{\mathfrak{R}}\right)$. In this case we say that E bounds F_{w} and $F_{P(w)}$. In all other cases E is said outer and bounds only the h-face whose it is an edge.

4.5.1 Matrices

Let (\mathfrak{s}, v) be a proper cluster with centre $\phi_{v}=\psi_{h}$. Let

$$
\begin{equation*}
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right] \tag{4.11}
\end{equation*}
$$

be the unique cluster chain for v. Construct the invariants and the rational functions attached to (4.11) in §4.3. Denote $v_{-}=v_{m-1}$. Recall $e_{v_{-}}=\epsilon_{h}$.

Let E be either L_{v} or V_{v} or V_{v}^{0} if (\mathfrak{s}, v) is degree-minimal. Let $v_{E}=\left[v_{-}, v_{E}\left(\psi_{h}\right)=\infty\right]$ if $E=V_{v}^{0}$, and $v_{E}=v$ otherwise.

Definition 4.5.9 Let $o=1, \ldots, n, o \neq h$. Define $\gamma_{o, E}=\gamma_{j}$ if $\psi_{o}=\phi_{j}$, while

$$
\gamma_{o, E}= \begin{cases}\psi_{o} \cdot \psi_{h}^{-\operatorname{deg} \psi_{o} / \operatorname{deg} \psi_{h}} & \text { if } \mu_{o} \geq v_{E} \\ \psi_{o} \cdot \pi_{m-1}^{-e_{v_{m-1}} v\left(\psi_{o}\right)} & \text { otherwise }\end{cases}
$$

if $\psi_{o} \neq \phi_{j}$, for all $j=1, \ldots, m$.
Lemma 4.5.10 Let $o=1, \ldots, n, o \neq h$. Then $\gamma_{o, E}$ is a well-defined element of $K(x)$ satisfying $v_{F}\left(\gamma_{o, E}\right)=0$ for any $*$-face F bounded by E.

Proof. Let F be any $*$-face bounded by E. Then $(\mathfrak{s}, v) \leq\left(\mathfrak{s}_{F}, v_{F}\right)$. Lemma 4.5.2 implies that $v_{F}\left(\phi_{j}\right)=$ $v\left(\phi_{j}\right)$ for all $j<m$. So the statement is trivial if $\psi_{o}=\phi_{j}$, for some $j<m$. Suppose $\psi_{o} \neq \phi_{j}$, for all $j<m$. Then $\mu_{o} \not \leq v$. In particular, $\mu_{o} \nless v_{F}$ and so $v_{F}\left(\phi_{o}\right)=\left(v_{F} \wedge \mu_{o}\right)\left(\phi_{o}\right)$ by Proposition 4.4.19.

Suppose $v_{E} \leq \mu_{o}$. Then $v_{F} \leq \mu_{o}$ and so ψ_{o} is v_{F}-minimal by Lemma 4.2.29. It follows that $\operatorname{deg} v \mid \operatorname{deg} \psi_{o}$ by Lemma 4.2.30. Theorem 4.2.27 implies that

$$
\frac{v\left(\psi_{o}\right)}{\operatorname{deg} \psi_{o}}=\frac{\lambda_{v}}{\operatorname{deg} v} \quad \text { and } \quad \frac{v_{F}\left(\psi_{o}\right)}{\operatorname{deg} \psi_{o}}=\frac{v_{F}\left(\psi_{h}\right)}{\operatorname{deg} v}
$$

since $v_{F}=v$ when $F=F_{v}$. Therefore $v_{F}\left(\gamma_{o, L}\right)=0$.
Suppose $v_{E} \not \leq \mu_{0}$. First we want to show that

$$
\begin{equation*}
v_{E} \wedge \mu_{o}=v_{F} \wedge \mu_{o} . \tag{4.12}
\end{equation*}
$$

Note that either $v_{E} \wedge \mu_{0} \leq v_{F}$ or $v_{E} \wedge \mu_{0}>v_{F}$ since $v_{E} \geq v_{F}$. If $E=V_{v}^{0}$ (and so v is degreeminimal), then $v_{F}=v$. If $v_{E} \wedge \mu_{o} \leq v$, then (4.12) follows. Suppose $v_{E} \wedge \mu_{o}>v$. Then $\mu_{o}>v$ and so
$\mu_{o}\left(\psi_{h}\right)=v\left(\psi_{h}\right)$ by Lemma 4.5.2. Furthermore, ψ_{h} is a centre of $v_{E} \wedge \mu_{o} \leq v_{E}$. But then Lemma 4.2.25 and Proposition 4.4.19 imply that

$$
\mu_{o}\left(\psi_{h}\right)=\left(v_{E} \wedge \mu_{o}\right)\left(\psi_{h}\right)=\lambda_{v_{E} \wedge \mu_{o}}>\lambda_{v}=v\left(\psi_{h}\right)=\mu_{o}\left(\psi_{h}\right),
$$

a contradiction. If $E \neq V_{v}^{0}$, then $v_{E}=v$. Since $v \wedge \mu_{o}<v$ defines a MacLane cluster by Lemma 4.4.7, we have $v \wedge \mu_{o} \leq v_{F}$. Hence (4.12).

It follows from (4.12) and Proposition 4.4.19 that

$$
\begin{equation*}
v_{E}\left(\psi_{o}\right)=\left(v_{E} \wedge \mu_{o}\right)\left(\psi_{o}\right)=\left(v_{F} \wedge \mu_{o}\right)\left(\psi_{o}\right)=v_{F}\left(\psi_{o}\right) . \tag{4.13}
\end{equation*}
$$

Hence it suffices to show that $v\left(\psi_{o}\right) \in \Gamma_{v_{m-1}}$. By Proposition 4.2.24 write

$$
v \wedge \mu_{o}=\left[v_{a-1},\left(v \wedge \mu_{o}\right)\left(\phi_{a}\right)=\lambda_{a}^{\prime}\right]
$$

for some $a \leq m$ and $\lambda_{a}^{\prime} \leq \lambda_{a}$.
If $v \leq \mu_{o}$, then v is degree-minimal. It follows that $v \wedge \mu_{o}$ appears in the cluster chain for μ_{o} by Lemma 4.5.2. Therefore $v\left(\psi_{o}\right) \in \Gamma_{v_{a-1}} \subseteq \Gamma_{v_{m-1}}$ by Remark 4.3.2.

If $v \not \equiv \mu_{o}$, then $v \wedge \mu_{o}<v$. By Lemma 4.4.7, the valuation $v \wedge \mu_{o}$ defines a proper MacLane cluster $\left(\mathfrak{s}^{\prime}, v \wedge \mu_{o}\right) \supsetneq(\mathfrak{s}, v)$. Let $(\mathfrak{t}, w) \in \Sigma_{f}^{M}$ such that

$$
(\mathfrak{s}, v) \subseteq(\mathfrak{t}, w)<\left(\mathfrak{s}^{\prime}, v \wedge \mu_{o}\right) .
$$

Since $\mu_{o} \nexists w$, if $\psi_{w}=\psi_{v \wedge \mu_{o}}$, then $v \wedge \mu_{o}$ appears in the cluster chain for μ_{o} by Lemma 4.5.2. Therefore $v\left(\psi_{o}\right) \in \Gamma_{v_{m-1}}$ as above. Finally, if $\psi_{w} \neq \psi_{v \wedge \mu_{o}}$, then $v \wedge \mu_{o}$ appears in the cluster chain for v again by Lemma 4.5.2. Since $v \wedge \mu_{o}<v$, one has $\left(v \wedge \mu_{o}\right)(g) \in \Gamma_{v_{m-1}}$ for any $g \in K[x]$. In particular, $v\left(\psi_{o}\right) \in \Gamma_{v_{m-1}}$ from (4.13).

Let E_{v}^{*} be the unique affine function $\mathbb{Z}^{2} \rightarrow \mathbb{Z}$ with $E_{v}^{*} \mid E=0$ and $E_{v}^{*} \mid F_{v} \geq 0$. Choose $P_{0}, P_{1} \in \mathbb{Z}^{2}$ such that $E_{v}^{*}\left(P_{0}\right)=0$ and $E_{v}^{*}\left(P_{1}\right)=1$.

Definition 4.5.11 Define the slopes $\left[s_{1}^{E}, s_{2}^{E}\right]$, at E to be

$$
\begin{gathered}
s_{1}^{E}=\delta_{E} \epsilon_{h}\left(\tilde{v}_{h}\left(P_{1}\right)-\tilde{v}_{h}\left(P_{0}\right)\right), \\
s_{2}^{E}= \begin{cases}\delta_{E} \epsilon_{h}\left(\tilde{w}_{h}\left(P_{1}\right)-\tilde{w}_{h}\left(P_{0}\right)\right) & \text { if E inner, with }(\mathfrak{s}, v)<(\mathfrak{t}, w), \\
\left\lfloor s_{1}^{E}-1\right\rfloor & \text { if E outer. }\end{cases}
\end{gathered}
$$

Let $\delta=\delta_{E}$. Pick fractions $\frac{n_{i}}{d_{i}} \in \mathbb{Q}$ such that

$$
s_{1}^{E}=\frac{n_{0}}{d_{0}}>\cdots>\frac{n_{r_{E}+1}}{d_{r_{E}+1}}=s_{2}^{E}, \quad \text { with } \quad\left|\begin{array}{cc}
n_{i} & n_{i+1} \\
d_{i} & d_{i+1}
\end{array}\right|=1
$$

Let $r=r_{E}$. Redefine $n_{r+1}=-1, d_{r+1}=0$ if E is outer.

Write $\tilde{E}=\tilde{P}_{0}+v \mathbb{R}$, with $\delta v=\left(\delta a_{x}, \delta a_{y}, \delta a_{z}\right) \in \mathbb{Z}^{2} \times \frac{1}{\epsilon_{h}} \mathbb{Z}$ primitive and such that (a_{x}, a_{y}) goes counterclockwise along ∂F_{v}. Let $o \neq h$. By Definition 4.5.9 and Lemma 4.3.7, we can uniquely write

$$
\gamma_{o, E}=\psi_{1}^{m_{1 o}} \cdots \psi_{n}^{m_{n o}} \cdot \pi^{m_{(n+2) o}}
$$

Define $v_{o} \in \mathbb{R}^{n+2}$ by $v_{o}=\left(m_{1 o}, \ldots, m_{n o}, 0, m_{(n+2)_{o}}\right)$.
Now consider the embedding $\iota_{h}: \mathbb{R}^{3} \hookrightarrow \mathbb{R}^{n+2}$ given by

$$
\left(x_{h}, y, z\right) \mapsto\left(0, \ldots, 0, x_{h}, 0, \ldots, 0, y, z\right)
$$

where x_{h} is the h-th coordinate in \mathbb{R}^{n+2}. Define $v_{h}^{\mathbb{R}}=\iota_{h}(\delta v)$. Write $P_{1}-P_{0}=\left(b_{x}, b_{y}\right)$ and define $\omega_{i}^{\mathbb{R}}=\iota_{h}\left(d_{i} b_{x}, d_{i} b_{y}, \frac{n_{i}}{\delta \epsilon_{h}}\right) \in \mathbb{R}^{n+2}$ for any $i=0, \ldots, r+1$. The vectors above define hyperplanes in \mathbb{R}^{n+2},

$$
\mathcal{P}_{E, i}=v_{1} \mathbb{R}+\cdots+v_{n} \mathbb{R}+\omega_{i} \mathbb{R} \quad i=0, \ldots, r+1 .
$$

Let $M_{E, i}^{\mathbb{R}} \in M_{n+2}(\mathbb{R})$ be the matrix given by

$$
M_{E, i}^{\mathbb{R}}=\left(v_{1}, \ldots, v_{h-1}, v_{h}^{\mathbb{R}}, v_{h+1}, \ldots, v_{n}, \omega_{i}^{\mathbb{R}},-\omega_{i+1}^{\mathbb{R}}\right)
$$

where the vectors represent the columns of $M_{E, i}^{\mathbb{R}}$. Then ${ }^{5}$

$$
\operatorname{det} M_{E, i}^{\mathbb{R}}=\prod_{o=1}^{m-1} e_{o} \cdot \frac{1}{e_{v_{m-1}}}=1 .
$$

Moreover, all entries of $M_{E, i}^{\mathbb{R}}$ are integers except possibly $\delta a_{z} \in \frac{1}{\epsilon_{h}} \mathbb{Z}$, and $\frac{n_{i}}{\delta \epsilon_{h}},-\frac{n_{i+1}}{\delta \epsilon_{h}}$, rational numbers in $\frac{1}{\delta \epsilon_{h}} \mathbb{Z}$. Pick k_{i} with

$$
k_{i} \equiv-n_{i}\left(\delta \epsilon_{h} a_{z}\right)^{-1} \bmod \delta
$$

This is possible as δv is primitive in $\mathbb{Z}^{2} \times \frac{1}{\epsilon_{h}} \mathbb{Z}$. Let $\tau \in S_{n+2}$ be a permutation such that $\phi_{o}=\psi_{\tau(o)}$ for all $o=1, \ldots, m$ and $\tau(n+1)=n+1, \tau(n+2)=n+2$. Define the vectors

$$
v_{h}=v_{h}^{\mathbb{R}}+\sum_{o=1}^{m-1} c_{o} v_{\tau(o)} \delta a_{z}, \quad \omega_{i}=\omega_{i}^{\mathbb{R}}+k_{i} \frac{v_{h}^{\mathbb{R}}}{\delta}+\sum_{o=1}^{m-1} c_{o} v_{\tau(o)}\left(\frac{n_{i}}{\delta \epsilon_{h}}+k_{i} a_{z}\right),
$$

where $c_{o}=e_{v_{o-1}} \ell_{o}$. The next lemma shows that they belong to \mathbb{Z}^{n+2}.
Lemma 4.5.12 Write $\sum_{o=1}^{m-1} c_{o} v_{\tau(o)}=\left(a_{1}, \ldots, a_{n+2}\right)$. Then

$$
a_{\tau(j)}= \begin{cases}\epsilon_{h} \ell_{j} \ell_{j+1}^{\prime} \cdots \ell_{m-1}^{\prime} & \text { if } j<m \\ 0 & \text { if } m \leq j \leq n+1 \\ \epsilon_{h} \ell_{1}^{\prime} \cdots \ell_{m-1}^{\prime}-1 & \text { if } j=n+2\end{cases}
$$

In particular, $v_{h}, \omega_{i} \in \mathbb{Z}^{n+2}$.

[^10]Proof. Recall $\gamma_{E, \tau(o)}=\gamma_{o}$ for any $o=1, \ldots, m$. If $j<m$ Lemma 4.3.7 implies

$$
\begin{aligned}
a_{\tau(j)} & =c_{j} e_{j}-\sum_{o=j+1}^{m-1} c_{o} h_{o} \ell_{j} \ell_{j+1}^{\prime} \cdots \ell_{o-1}^{\prime} \\
& =e_{v_{j}} \ell_{j}-\sum_{o=j+1}^{m-1} e_{v_{o-1}}\left(\ell_{o} h_{o}\right) \ell_{j} \ell_{j+1}^{\prime} \cdots \ell_{o-1}^{\prime} \\
& =\ell_{j}\left(e_{v_{j}}+\sum_{o=j+1}^{m-1} e_{v_{o}} \ell_{j+1}^{\prime} \cdots \ell_{o}^{\prime}-\sum_{o=j+1}^{m-1} e_{v_{o-1}} \ell_{j+1}^{\prime} \cdots \ell_{o-1}^{\prime}\right) \\
& =\ell_{j}\left(e_{v_{j}}+e_{v_{m-1}} \ell_{j+1}^{\prime} \cdots \ell_{m-1}^{\prime}-e_{v_{j}}\right)=e_{v_{m-1}} \ell_{j} \ell_{j+1}^{\prime} \cdots \ell_{m-1}^{\prime},
\end{aligned}
$$

where we used $\ell_{o} h_{o}+\ell_{o}^{\prime} e_{o}=1$. If $m \leq j \leq n+1$, then the $\tau(j)$-th coordinate of $v_{\tau(o)}$ is 0 for all $o=1, \ldots, m-1$; so $a_{\tau(j)}=0$. Finally

$$
\begin{aligned}
a_{n+2} & =-\sum_{o=1}^{m-1} c_{o} h_{o} \ell_{1}^{\prime} \cdots \ell_{o-1}^{\prime}=\sum_{o=1}^{m-1} e_{v_{o}} \ell_{1}^{\prime} \cdots \ell_{o}^{\prime}-\sum_{o=1}^{m-1} e_{v_{o-1}} \ell_{1}^{\prime} \cdots \ell_{o-1}^{\prime} \\
& =e_{v_{m-1}} \ell_{1}^{\prime} \cdots \ell_{m-1}^{\prime}-1
\end{aligned}
$$

as required.
Define $M_{E, i}=\left(v_{1}, \ldots, v_{n}, \omega_{i},-\omega_{i+1}\right) \in M_{(n+2)}(\mathbb{Z})$, where the vectors represent the columns of $M_{E, i}$. Note that $\operatorname{det} M_{E, i}=\operatorname{det} M_{E, i}^{\mathbb{R}}=1$. Let us describe $M_{E, i}$ as product of simpler matrices. Let $\varepsilon_{1}, \ldots, \varepsilon_{n+2} \in \mathbb{R}^{n+2}$ be the standard basis of \mathbb{R}^{n+2}. Define $\kappa_{i}=\frac{k_{i}}{\delta} \varepsilon_{h}$ and $\xi=\sum_{o=1}^{m-1} c_{o} \varepsilon_{\tau(o)}$. Define

$$
\begin{aligned}
& T_{h}=\left(\varepsilon_{1}, \ldots, \varepsilon_{h-1}, \varepsilon_{h}+\delta a_{z} \cdot \xi, \varepsilon_{h+1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}+\frac{n_{i}}{\delta \epsilon_{h}} \xi, \varepsilon_{n+2}-\frac{n_{i+1}}{\delta \epsilon_{h}} \xi\right), \\
& T=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}+\kappa_{i}, \varepsilon_{n+2}-\kappa_{i+1}\right) .
\end{aligned}
$$

Then $M_{E, i}=M_{E, i}^{\mathbb{R}} \cdot T_{h} \cdot T$. Now we want to describe $M_{E, i}^{-1}$. It follows from before that $M_{E, i}^{-1}=$ $T^{-1} \cdot T_{h}^{-1} \cdot\left(M_{E, i}^{\mathbb{R}}\right)^{-1}$, where

$$
\begin{aligned}
& T_{h}^{-1}=\left(\varepsilon_{1}, \ldots, \varepsilon_{h-1}, \varepsilon_{h}-\delta a_{z} \cdot \xi, \varepsilon_{h+1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}-\frac{n_{i}}{\delta \epsilon_{h}} \xi, \varepsilon_{n+2}+\frac{n_{i+1}}{\delta \epsilon_{h}} \xi\right), \\
& T^{-1}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}-\kappa_{i}, \varepsilon_{n+2}+\kappa_{i+1}\right),
\end{aligned}
$$

It remains to describe $\left(M_{E, i}^{\mathbb{R}}\right)^{-1}$. First note that the h-th, $(n+1)$-th and ($n+2$)-th columns of $\left(M_{E, i}^{\mathbb{R}}\right)^{-1}$ are respectively

$$
\begin{aligned}
& \iota_{h}\left(\left(b_{y} / \delta, n_{i+1} a_{y}-\delta \epsilon_{h} d_{i+1} a_{z} b_{y}, n_{i} a_{y}-\delta \epsilon_{h} d_{i} a_{z} b_{y}\right)\right) \\
& \iota_{h}\left(\left(-b_{x} / \delta,-n_{i+1} a_{x}+\delta \epsilon_{h} d_{i+1} a_{z} b_{x},-n_{i} a_{x}+\delta \epsilon_{h} d_{i} a_{z} b_{x}\right)\right) \\
& \iota_{h}\left(\left(0, \delta \epsilon_{h} d_{i+1}, \delta \epsilon_{h} d_{i}\right)\right)
\end{aligned}
$$

Let $o=1, \ldots, n$. Lemma 4.3.7 and Definition 4.5.9 imply that we can write

$$
\begin{equation*}
\psi_{o}^{\varepsilon_{h}}=\gamma_{1, E}^{\alpha_{1 o}} \cdots \gamma_{h-1, E}^{\alpha_{(h-1)}} \cdot \psi_{h}^{\alpha_{h o}} \cdot \gamma_{h+1, E}^{\alpha_{(h+1)}} \cdots \gamma_{n, E}^{\alpha_{n o}} \cdot \pi^{\alpha_{\pi o}}, \tag{4.14}
\end{equation*}
$$

for some unique $\alpha_{1 o}, \ldots, \alpha_{n o}, \alpha_{\pi o} \in \mathbb{Z}$. Let $\tilde{\alpha}_{o j}=\alpha_{o j} / \epsilon_{h}$. Define

$$
\tilde{v}_{o}= \begin{cases}\left(\tilde{\alpha}_{o 1}, \ldots, \tilde{\alpha}_{o n}, 0,0\right), & \text { if } o \neq h \\ \frac{1}{\delta}\left(\tilde{\alpha}_{h 1} b_{y}, \ldots, \tilde{\alpha}_{h n} b_{y}, b_{x}, 0\right) & \text { if } o=h\end{cases}
$$

Finally, define

$$
\begin{align*}
& \tilde{\omega}_{i}=\delta \epsilon_{h} d_{i}\left(\left(\frac{n_{i}}{\delta \epsilon_{h} d_{i}} a_{y}-a_{z} b_{y}\right) \tilde{\alpha}_{h 1}+\tilde{\alpha}_{\pi 1}, \ldots\right. \tag{4.15}\\
& \left.\quad \ldots,\left(\frac{n_{i}}{\delta \epsilon_{h} d_{i}} a_{y}-a_{z} b_{y}\right) \tilde{\alpha}_{h n}+\tilde{\alpha}_{\pi n},-\frac{n_{i}}{\delta \epsilon_{h} d_{i}} a_{x}+a_{z} b_{x}, 1\right) .
\end{align*}
$$

From the definition of $M_{E, i}^{\mathbb{R}}$ it follows that

$$
\left(M_{E, i}^{\mathbb{R}}\right)^{-1}=\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{n} \\
\tilde{\omega}_{i+1} \\
\tilde{\omega}_{i}
\end{array}\right),
$$

where the vectors are the rows of the matrix. Lemma 4.3 .7 gives an explicit of $\left(M_{E, i}^{\mathbb{R}}\right)^{-1}$. Note also that for the structure of T^{-1} and T_{h}^{-1} the $\tau(o)$-th row of $M_{E, i}^{-1}$ coincides with the $\tau(o)$-th row of $\left(M_{E, i}^{\mathbb{R}}\right)^{-1}$, when $o>m$. Define

$$
\mathcal{P}_{E, i}^{\perp+}=\tilde{\omega}_{i} \mathbb{R}_{+}
$$

ray perpendicular to the hyperplane $\mathcal{P}_{E, i}$.
Remark 4.5.13. Note that $\tilde{v}_{\tau(o)}=\varepsilon_{\tau(o)}$ for $m<o \leq n$.

Lemma 4.5.14 Suppose E is inner, with $(\mathfrak{s}, v)<(\mathfrak{t}, w)$. Then $\left.\tilde{v}_{h}\right|_{E}=\left.\tilde{w}_{h}\right|_{E}$.
Proof. Recall that $E=V_{v}$. If F_{w} is an h-face, the result trivially follows, as $E=V_{w}^{0}$.
Suppose F_{w} is not an h-face. By definition of cluster chain we have $w=v_{-}$. The polynomial ψ_{h} is w-minimal, hence $\frac{\lambda_{w}}{\operatorname{deg} w}=\frac{w\left(\psi_{h}\right)}{\operatorname{deg} v}$ by Theorem 4.2.27. From Lemma 4.4.20 and Proposition 4.4.25 it follows that

$$
\tilde{v}_{h}\left(t_{v}, 0\right)=v(f)-\frac{|\mathfrak{s}|}{\operatorname{deg} v} \cdot \lambda_{v}=w(f)-\frac{|\mathfrak{s}|}{\operatorname{deg} w} \cdot \lambda_{w}=w(f)-\frac{|\mathfrak{s}|}{\operatorname{deg} v} \cdot w\left(\psi_{h}\right)=\tilde{w}_{h}\left(t_{v}, 0\right) .
$$

This concludes the proof since $\tilde{v}_{h}(0,2)=0=\tilde{w}_{h}(0,2)$.
Lemma 4.5.15 We have

$$
\tilde{\omega}_{0}=e_{\tilde{v}}\left(v\left(\psi_{1}\right), \ldots, v\left(\psi_{n}\right), \frac{v(f)}{2}, 1\right)
$$

Let $r=r_{E}$. Then

$$
\tilde{\omega}_{r+1}= \begin{cases}e_{\tilde{w}}\left(w\left(\psi_{1}\right), \ldots, w\left(\psi_{n}\right), \frac{w(f)}{2}, 1\right) & \text { if } E \text { inner, with }(\mathfrak{s}, v)<(\mathfrak{t}, w) \\ \left(-a_{y} \tilde{\alpha}_{h 1}, \ldots,-a_{y} \tilde{\alpha}_{h n}, a_{x}, 0\right) & \text { if } E \text { outer. }\end{cases}
$$

Proof. Note that $\delta_{F_{v}}=\delta_{E} d_{0}$ and $\delta_{F_{v}} \epsilon_{h}=e_{\tilde{v}}$. Recall $\tilde{v}_{F_{v}, h}=\tilde{v}_{h}$ and

$$
\tilde{v}_{h}(x, y)=-\lambda_{v} x-\frac{v(f)}{2} y+v(f) .
$$

Then since v and $\left(b_{x}, b_{y}, \frac{n_{0}}{\delta \epsilon_{h} d_{0}}\right)$ generate \tilde{F}_{v} (face of $\left.\tilde{\Delta}_{h}\right)$, we have

$$
\begin{equation*}
\frac{n_{0}}{\delta \epsilon_{h} d_{0}} a_{y}-a_{z} b_{y}=\lambda_{v} \quad \text { and } \quad-\frac{n_{0}}{\delta \epsilon_{h} d_{0}} a_{x}+a_{z} b_{x}=\frac{v(f)}{2} . \tag{4.16}
\end{equation*}
$$

By (4.14) and Lemmas 4.3.3 and 4.5.10, we have $v\left(\psi_{o}\right)=\lambda_{v} \tilde{\alpha}_{h o}+\tilde{\alpha}_{\pi o}$ for any $o=1, \ldots, n$. Hence the description of $\tilde{\omega}_{0}$ follows from (4.16).

Suppose that E is inner, with $(\mathfrak{s}, v)<(\mathfrak{t}, w)$. Then either $w=v_{-}$or $w=\left[v_{-}, w\left(\psi_{h}\right)=\lambda_{w}\right]$. In either case, $\delta_{E} d_{r+1} \epsilon_{h}=e_{\tilde{w}}$. We have

$$
\tilde{w}_{h}(x, y)=-w\left(\psi_{h}\right) x-\frac{w(f)}{2} y+w(f)
$$

Since $\left.\tilde{w}_{h}\right|_{E}=\left.\tilde{v}_{h}\right|_{E}$ by Lemma 4.5.14 and $\frac{n_{r+1}}{\delta \epsilon_{h} d_{r+1}}=\tilde{w}_{h}\left(P_{1}\right)-\tilde{w}_{h}\left(P_{0}\right)$, the vectors v and $\left(b_{x}, b_{y}, \frac{n_{r+1}}{\delta \epsilon_{h} d_{r+1}}\right)$ generate the plane $z=\tilde{w}_{h}(x, y)$ in \mathbb{R}^{3}. Hence

$$
\frac{n_{r+1}}{\delta \epsilon_{h} d_{r+1}} a_{y}-a_{z} b_{y}=v_{F}\left(\psi_{h}\right) \quad \text { and } \quad \frac{n_{r+1}}{\delta \epsilon_{h} d_{r+1}} a_{x}-a_{z} b_{x}=\frac{v_{F}(f)}{2}
$$

Similarly to before, by (4.14) and Lemmas 4.3 .3 and 4.5.10, we have $v_{F}\left(\psi_{o}\right)=v_{F}\left(\psi_{h}\right) \tilde{\alpha}_{h o}+\tilde{\alpha}_{\pi o}$ for any $o=1, \ldots, n$. The description of $\tilde{\omega}_{r+1}$ follows, for E inner.

Finally, suppose that E is outer. Then $n_{r+1}=-1$ and $d_{r+1}=0$. The description of $\tilde{\omega}_{r+1}$ follows directly from the definition.

4.5.2 Toroidal embedding

Let us start this subsection with the following notation.
Notation 4.5.16 Let A be a ring and let $a_{1}, \ldots, a_{n} \in A^{\times}$, for some $n \in \mathbb{Z}_{+}$. For any matrix $M=\left(m_{i j}\right) \in \mathrm{SL}_{n}(\mathbb{Z})$ denote by $\left(a_{1}, \ldots, a_{n}\right) \cdot M$ the vector

$$
\left(a_{1}^{m_{11}} \cdots a_{n}^{m_{n 1}}, \ldots, a_{1}^{m_{1 n}} \cdots a_{n}^{m_{n n}}\right) .
$$

Denote by $m_{* *}$ and $\tilde{m}_{* *}$ the entries of $M_{E, i}$ and $M_{E, i}^{-1}$ respectively. Note that $\tilde{m}_{(n+1)(n+2)} \geq 0$ and $\tilde{m}_{(n+2)(n+2)} \geq 0$. Then the coordinate transformation

$$
\begin{aligned}
\left(X_{1}, \ldots, X_{n}, Y, Z\right) & =\left(x_{1}, \ldots, x_{n}, y, \pi\right) \bullet M_{E, i} \\
\left(x_{1}, \ldots, x_{n}, y, \pi\right) & =\left(X_{1}, \ldots, X_{n}, Y, Z\right) \bullet M_{E, i}^{-1}
\end{aligned}
$$

gives the ring isomorphism

$$
K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y^{ \pm 1}\right] \stackrel{M_{E, i}}{=} \frac{O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y^{ \pm 1}, Z^{ \pm 1}\right]}{\left(\pi-X_{1}^{\tilde{m}_{1(n+2)}} \cdots X_{n}^{\tilde{m}_{n(n+2)}} Y^{\tilde{m}_{(n+1)(n+2)}} Z^{\left.\tilde{m}_{(n+2)(n+2)}\right)}\right.}
$$

Define

$$
R=\frac{O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right]}{\left(\pi-X_{1}^{\tilde{m}_{1(n+2)}} \cdots X_{n}^{\tilde{m}_{n(n+2)}} Y^{\tilde{m}_{(n+1)(n+2)}} Z^{\left.\tilde{m}_{(n+2)(n+2)}\right)}\right.}
$$

For any h-edge E, define cones in $\mathbb{R}^{n+1} \times \mathbb{R}_{+}$
0 -dimensional cone $\quad \sigma_{0}=\{0\}$,
1-dimensional cones $\quad \sigma_{E, i}=\mathcal{P}_{E, i}^{\perp+} \quad(0 \leq i \leq r+1)$,
2-dimensional cones $\quad \sigma_{E, i, i+1}=\mathcal{P}_{E, i}^{\perp+}+\mathcal{P}_{E, i+1}^{\perp+} \quad(0 \leq i \leq r)$.

The set of all such cones from all E is a fan Σ from Appendix C.3. Recall

$$
\begin{gathered}
\mathcal{P}_{E, i}=v_{1} \mathbb{R}+\cdots+v_{n} \mathbb{R}+\omega_{i} \mathbb{R}=m_{* 1} \mathbb{R}+\cdots+m_{* n} \mathbb{R}+m_{*(n+1)} \mathbb{R}, \\
\mathcal{P}_{E, i+1}=v_{1} \mathbb{R}+\cdots+v_{n} \mathbb{R}+\omega_{i+1} \mathbb{R}=m_{* 1} \mathbb{R}+\cdots+m_{* n} \mathbb{R}+m_{*(n+2)} \mathbb{R}, \\
\mathcal{P}_{E, i} \cap \mathcal{P}_{E, i+1}=v_{1} \mathbb{R}+\cdots+v_{n} \mathbb{R}=m_{* 1} \mathbb{R}+\cdots+m_{* n} \mathbb{R}, \\
\sigma_{E, i}=\tilde{m}_{(n+2) *} \mathbb{R}_{+}, \quad \sigma_{E, i+1}=\tilde{m}_{(n+1) *} \mathbb{R}_{+}, \\
\sigma_{E, i, i+1}=\tilde{m}_{(n+1) *} \mathbb{R}_{+}+\tilde{m}_{(n+2) *} \mathbb{R}_{+} .
\end{gathered}
$$

The monomial exponents from the dual cone are

$$
\begin{aligned}
\sigma_{E, i}^{\vee} \cap \mathbb{Z}^{n+2} & =m_{* 1} \mathbb{Z}+\cdots+m_{* n} \mathbb{Z}+m_{*(n+1)} \mathbb{Z}+m_{*(n+2)} \mathbb{Z}_{+}, \\
\sigma_{E, i+1}^{\vee} \cap \mathbb{Z}^{n+2} & =m_{* 1} \mathbb{Z}+\cdots+m_{* n} \mathbb{Z}+m_{*(n+1)} \mathbb{Z}_{+}+m_{*(n+2)} \mathbb{Z}, \\
\sigma_{E, i, i+1}^{\vee} \cap \mathbb{Z}^{n+2} & =m_{* 1} \mathbb{Z}+\cdots+m_{* n} \mathbb{Z}+m_{*(n+1)} \mathbb{Z}_{+}+m_{*(n+2)} \mathbb{Z}_{+} .
\end{aligned}
$$

The toric scheme

$$
T_{\Sigma}=\bigcup_{\sigma \in \Sigma} T_{\sigma}, \quad T_{\sigma}=\operatorname{Spec} O_{K}\left[\sigma^{\vee} \cap \mathbb{Z}^{n+2}\right]
$$

associated with $\Sigma\left(\left[\mathrm{K}^{2} \mathrm{MS}\right]\right)$ is then obtained by glueing $T_{\sigma_{E, i, i+1}}=\operatorname{Spec} R$ for varying E and i, along their common opens. Note that

$$
T_{\sigma_{0}}=\operatorname{Spec} R\left[Y^{-1}, Z^{-1}\right], \quad T_{\sigma_{E, i}}=\operatorname{Spec} R\left[Y^{-1}\right], \quad T_{\sigma_{E, i+1}}=\operatorname{Spec} R\left[Z^{-1}\right]
$$

Note that $\operatorname{deg} \psi_{\tau(1)}=1$ by Lemmas 4.5.4 and 4.5.2. Let

$$
C_{0}=\operatorname{Spec} \frac{K[x]\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y^{ \pm 1}\right]}{\left(y^{2}-f(x), x_{1}-\psi_{1}(x), \ldots, x_{n}-\psi_{n}(x)\right)}
$$

Then $C_{0} \subseteq C$. Furthermore it canonically embeds in $T_{\sigma_{0}}$ via the isomorphism given by $M_{E, i}$ and the isomorphism given by

$$
\frac{K[x]\left[x_{\tau(1)}^{ \pm 1}\right]}{\left(x_{\tau(1)}-\psi_{\tau(1)}(x)\right)} \simeq K\left[x_{\tau(1)}^{ \pm 1}\right]
$$

We define \mathcal{C} as the closure of C_{0} in T_{Σ}. Then \mathcal{C} is integral and also separated since so is T_{Σ}. Furthermore, \mathcal{C} is flat by [Liu4, Corollary 3.10]. We will explicitly describe \mathcal{C} and show it is a proper regular model of C with strict normal crossing.

4.5.3 Charts

Keep the notation of $\S 4.5 .1$. From now on we suppose without loss of generality that the permutation τ is the identity.

Let $1 \leq o \leq h$. By [Mac, Theorem 16.1] every polynomial $g \in K[x]$ can be uniquely written as a sum

$$
g=\sum_{s} a_{s} \cdot \psi_{1}^{n_{1 s}} \cdots \psi_{o}^{n_{o s}}
$$

where $a_{s} \in K$ and $n_{j s}<\operatorname{deg} \psi_{j+1} / \operatorname{deg} \psi_{j}$ for any $j<o$. Let $u_{s} \in O_{K}^{\times}$such that $a_{s}=u_{s} \cdot \pi^{v_{K}\left(a_{s}\right)}$. Then we denote by $g^{(o)}$, the polynomial

$$
g^{(o)}=\sum_{s} u_{s} \cdot \pi^{v_{K}\left(a_{s}\right)} \cdot x_{1}^{n_{1 s}} \cdots x_{o}^{n_{o s}} \in K\left[x_{1}, \ldots, x_{o}\right] .
$$

Consider $M_{E, i}$. Recall $\tilde{m}_{(n+1)(n+2)}, \tilde{m}_{(n+2)(n+2)} \geq 0$. Define

$$
\Pi\left(X_{1}, \ldots, X_{n}, Y, Z\right)=\pi-X_{1}^{\tilde{m}_{1(n+2)}} \ldots X_{n}^{\tilde{m}_{n(n+2)}} Y^{\tilde{m}_{(n+1)(n+2)}} Z^{\tilde{m}_{(n+2)(n+2)}}
$$

Via $M_{E, i}$ we have the following isomorphism

$$
\frac{K[x]\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y^{ \pm 1}\right]}{\left(y^{2}-f(x), x_{1}-\psi_{1}(x), \ldots, x_{n}-\psi_{n}(x)\right)} \stackrel{M_{E, i}}{=} \frac{O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y^{ \pm 1}, Z^{ \pm 1}\right]}{\left(\Pi, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)}
$$

where $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \in O_{K}^{\times}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right]$ satisfying $Y \nmid \mathcal{F}_{j}, Z \nmid \mathcal{F}_{j}$, and

$$
\begin{gathered}
y^{2}-f^{(h)}\left(x_{1}, \ldots, x_{h}\right) \stackrel{M_{E, i}}{=} Y^{n_{Y, 1}} Z^{n_{Z, 1}} \mathcal{F}_{1}\left(X_{1}, \ldots, X_{n}, Y, Z\right), \\
x_{j}-\psi_{j}^{(j-1)}\left(x_{1}, \ldots, x_{j-1}\right) \stackrel{M_{E, i}}{=} Y^{n_{Y, j}} Z^{n_{Z, j}} \mathcal{F}_{j}\left(X_{1}, \ldots, X_{n}, Y, Z\right) \quad \text { for } 2 \leq j \leq h, \\
x_{j}-\psi_{j}^{(h)}\left(x_{1}, \ldots, x_{h}\right) \stackrel{M_{E, i}}{=} Y^{n_{Y, j}} Z^{n_{Z, j}} \mathcal{F}_{j}\left(X_{1}, \ldots, X_{n}, Y, Z\right) \quad \text { for } h<j \leq n,
\end{gathered}
$$

for some $n_{Y, j}, n_{Z, j} \in \mathbb{Z}$. Then we define the affine O_{K}-scheme

$$
U_{E, i}=\operatorname{Spec} \frac{O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right]}{\left(\Pi, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)}
$$

In the next lemma we will describe the special fibre of $U_{E, i}$. In particular, we will show that it has dimension 1. Then the next lemma implies that $U_{E, i}=\mathcal{C} \cap T_{\sigma_{E, i, i+1}}$.

Lemma 4.5.17 If the special fibre of $U_{E, i}$ is of dimension ≤ 1, then $U_{E, i}=\mathcal{C} \cap T_{\sigma_{E, i, i+1}}$.
Proof. By construction the generic fibre of $U_{E, i}$ is isomorphic to $C_{\eta} \cap T_{\sigma_{E, i, i+1}}$. Then it suffices to show that $U_{E, i}$ is the closure of its generic fibre in $T_{\sigma_{E, i, i+1}}$. Suppose not. Then $U_{E, i}$ has an irreducible component U entirely contained in its special fibre. Since $O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right]$ is regular, $\operatorname{dim} U \geq 2$ by Krull's height theorem.

4.5.4 Special Fibre

In this section we want to study the special fibre of $U_{E, i}$. Now, $U_{E, i} \subset T_{\sigma_{E, i, i+1}}$ and the special fibre of the latter has underlying reduced subscheme $Z=0$ if E is outer and $i=r$, or $Y Z=0$ otherwise.

Notation 4.5.18 Let $g \in K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y^{ \pm 1}\right]$. Let $\mathcal{G} \in O_{K}^{\times}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y^{ \pm 1}, Z^{ \pm 1}\right]$ given by

$$
g\left(\left(X_{1}, \ldots, X_{n}, Y, Z\right) \bullet M_{E, i}^{-1}\right)=\mathcal{G}\left(X_{1}, \ldots, X_{n}, Y, Z\right)
$$

Denote by $\operatorname{ord}_{Z}(g)\left[\right.$ resp. $\left.\operatorname{ord}_{Y}(g)\right]$ the integer $\operatorname{ord}_{Z}(\mathcal{G})\left[\operatorname{resp} . \operatorname{ord}_{Y}(\mathcal{G})\right]$.

We want to study $U_{E, i} \cap\{Z=0\}$. Let $w_{E, i}: K[x] \rightarrow \hat{\mathbb{Q}}$ be the valuation given in (C.1). Then $\operatorname{ord}_{Z}\left(x_{j}\right)=w_{E, i}\left(\psi_{j}\right) \operatorname{ord}_{Z}(\pi)$ for all $1 \leq j \leq n$. Let $w_{j}=v_{j}$ for all $j<h$ and $w_{h}=w_{E, i}$.

Lemma 4.5.19 Let $g \in K[x]$. For all $1 \leq j \leq h$,

$$
\operatorname{ord}_{Z}\left(g^{(j)}\right)=w_{j}(g) \operatorname{ord}_{Z}(\pi)
$$

Proof. If $w_{E, i}$ is MacLane then the equality follows from [Mac, Theorem 16.1]. Suppose $w_{E, i}$ is not MacLane. Then (\mathfrak{s}, v) is maximal, $E=V_{v}$ and $1 \leq i \leq r$. But then $h=1$ and $\operatorname{deg} \psi_{1}=1$. Expand $g=\sum_{t} a_{t} \psi_{1}^{t}$, where $a_{t} \in K$. Then $g^{(1)}=\sum_{t} a_{t} x_{1}^{t}$. It follows that

$$
\operatorname{ord}_{Z}\left(g^{(1)}\right)=\min _{t}\left(v_{K}\left(a_{t}\right) \operatorname{ord}_{Z}(\pi)+t \cdot \operatorname{ord}_{Z}\left(x_{1}\right)\right)=w_{E, i}(g) \operatorname{ord}_{Z}(\pi)
$$

$\operatorname{as~ord}_{Z}\left(x_{1}\right)=w_{E, i}\left(\psi_{1}\right) \operatorname{ord}_{Z}(\pi)$.
Notation 4.5.20 For any $\mathcal{G} \in O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right]$ denote

$$
\overline{\mathcal{G}}_{Y}=\mathcal{G}\left(X_{1}, \ldots, X_{n}, 0, Z\right), \quad \overline{\mathcal{G}}_{Z}=\mathcal{G}\left(X_{1}, \ldots, X_{n}, Y, 0\right)
$$

and $\overline{\mathcal{G}}=\mathcal{G}\left(X_{1}, \ldots, X_{n}, 0,0\right)$.
Definition 4.5.21 Define $p_{0}=\pi \in O_{K}$. Let $1 \leq j \leq h$ and recursively define $p_{j} \in K\left[x_{1}^{ \pm 1}, \ldots, x_{j}^{ \pm 1}\right]$ by $p_{j}=x_{j}^{\ell_{j}} p_{j-1}^{\ell_{j}^{\prime}}$. Then $p_{j}\left(\psi_{1}, \ldots, \psi_{j}\right)=\pi_{j}$.

Define $\Pi_{j} \in O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]$ by

$$
Y^{*} Z^{*} \cdot \Pi_{j} \stackrel{M_{E, i}}{=} p_{j}
$$

Note that

$$
\begin{equation*}
\left(\psi_{1}, \ldots, \psi_{n}, y, \pi\right) \cdot M_{E, i}=\left(\gamma_{1}, \ldots, \gamma_{h-1}, \psi_{h}^{\delta a_{x}} y^{\delta a_{y}} \pi_{h-1}^{\delta a_{z}}, \ldots\right) \tag{4.17}
\end{equation*}
$$

and that $\tilde{\alpha}_{h j}=0, \tilde{\alpha}_{\pi j}=\lambda_{j}$ for any $j<h$.
Lemma 4.5.22 Let $1 \leq j \leq h$. Then $X_{j} \stackrel{M_{E, i}}{=} x_{j}^{e_{j}} p_{j-1}^{-h_{j}}$ if $j<h$ or $E=L_{v}$.
Proof. When $j<h$, then $X_{j}=x_{j}^{e_{j}} p_{j-1}^{-h_{j}}$ from (4.17). If $j=h$, then $X_{j}=x_{j}^{\delta a_{x}} y^{\delta a_{y}} p_{j-1}^{\delta a_{z}}$. If $E=L_{v}$, then $w_{E, i}=v$. Since L_{v} corresponds to the edge $L_{v}(f)$ of $N_{v_{-}, \psi_{h}}^{-}(f)$, one has $\delta=e_{h}, a_{x}=1, a_{y}=0$, $a_{z}=-\lambda_{h}$. It follows that $X_{j}=x_{j}^{e_{j}} p_{j-1}^{-h_{j}}$, as required.

Lemma 4.5.23 Let $1 \leq j \leq h$. Then $\Pi_{j} \in O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{h}^{ \pm 1}\right]$.
Proof. If $o>h$ then $\tilde{m}_{j o}=0$ for $j \neq o$. The lemma follows.
Recall the definition of the fields $k_{j}, j=1, \ldots, h$, given in $\S 4.3$. Note that $k_{1}=k_{0}$ since $\operatorname{deg} \psi_{1}=1$ (Remark 4.3.11). The ring homomorphisms $k_{o}\left[X_{o}^{ \pm 1}\right] \rightarrow k_{o+1}, 1 \leq o<j$, taking X_{o} to the generator of k_{o+1} over k_{o}, induce a surjective homomorphism

$$
\mathcal{R}_{j}: O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right] \rightarrow k_{j}\left[X_{j}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right]
$$

Lemma 4.5.24 Let $1 \leq j \leq h$ and let $g \in K[x]$. Fix a polynomial $\mathcal{G} \in O_{K}^{\times}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}, Y, Z\right], Y \nmid \mathcal{G}$, $Z \nmid \mathcal{G}$, such that

$$
g^{(j)}\left(x_{1}, \ldots, x_{j}\right) \stackrel{M_{E, i}}{=} Y^{n_{Y}} Z^{n_{Z}} \mathcal{G}\left(X_{1}, \ldots, X_{n}, Y, Z\right),
$$

for some $n_{Y}, n_{Z} \in \mathbb{Z}$. If either $E=L_{v}$ or $j<h$, then

$$
\mathcal{R}_{j}\left(\overline{\mathcal{G}}_{Z}\right)=Y^{*} \cdot \mathcal{R}_{j}\left(\Pi_{j}\right)^{e_{v_{j}} \alpha} \cdot H_{j, \alpha}(g)\left(X_{j}\right)
$$

where $\alpha=v_{j}(g)$.
Proof. We prove the lemma by induction on j. Suppose either $E=L_{v}$ or $j<h$, so that $w_{j}=v_{j}$. Let $j=1$. Expand $g=\sum_{s} a_{s} \phi_{1}^{j}$, where $a_{s} \in K$. Then $g^{(1)}\left(x_{1}\right)=\sum_{s} a_{s} x_{1}^{s}$. Lemma 4.5.19 implies that $\operatorname{ord}_{Z}\left(a_{s} x_{1}^{s}\right)=n_{Z}$ if and only if $\left(s, v_{K}\left(a_{s}\right)\right.$) is a point of the edge $L_{v_{1}}(g)$ of the Newton polygon $N_{v_{0}, \psi_{1}}(g)$. Therefore we can assume $g^{(1)}\left(x_{1}\right)=\sum_{s \geq 0} a_{t_{1}+s e_{1}} x_{1}^{t_{1}+s e_{1}}$, where $t_{1}=t_{1}\left(\alpha_{1}\right)$ and $\alpha_{1}=v_{1}(g)$. Then

$$
\frac{g^{(1)}}{p_{1}^{e_{v_{1}} \alpha_{1}}}=\sum_{s \geq 0}\left(\frac{a_{t_{1}+s e_{1}}}{\pi^{u_{1}-s h_{1}}}\right)\left(x_{1}^{e_{1}} \pi^{-h_{1}}\right)^{s+c_{1}\left(\alpha_{1}\right)}
$$

where $u_{1}=u_{1}\left(\alpha_{1}\right)$. Then we obtain the required equality by Lemma 4.5.22.
Now suppose $j>1$. Expand

$$
g=\sum_{s \geq 0} a_{s} \psi_{j}^{s}, \quad \text { where } \operatorname{deg} a_{s}<\operatorname{deg} \psi_{j} .
$$

Note that $g^{(j)}=\sum_{s} a_{s}^{(j-1)} x_{j}^{s}$ by definition. Similarly to before, by Lemma 4.5 .19 we have that $\operatorname{ord}_{Z}\left(a_{s}^{(j-1)} x_{j}^{s}\right)=n_{Z}$ if and only if $\left(s, v_{j-1}\left(a_{s}\right)\right)$ is a point of the edge $L_{v_{j}}(g)$ of the Newton polygon $N_{v_{j-1}, \psi_{j}}(g)$. Therefore we can assume

$$
g^{(j)}=\sum_{s} a_{t_{j, s}}^{(j-1)} x_{j}^{t_{j, s}},
$$

where $t_{j, s}=t_{j}\left(\alpha_{j}\right)+s e_{j}$ and $\alpha_{j}=v_{j}(g)$. Then

$$
\frac{g^{(j)}}{p_{j}^{e_{v_{j}} \alpha_{j}}}=\sum_{s} \frac{a_{t_{j, s}}^{(j-1)}}{p_{j-1}^{u_{j, s}}}\left(x_{j}^{e_{j}} p_{j-1}^{-h_{j}}\right)^{s+c_{j}\left(\alpha_{j}\right)},
$$

where $u_{j, s}=u_{j}\left(\alpha_{j}\right)-s h_{j}$. Lemma 4.5.22 and the inductive hypothesis conclude the proof.
Lemma 4.5.25 Let $1 \leq j \leq h$. Then $\operatorname{ker}\left(\mathcal{R}_{j}\right)=\left(\overline{\mathcal{F}}_{2, Z}, \ldots, \overline{\mathcal{F}}_{j, Z}, \pi\right)$.
Proof. We prove the lemma by induction on j. Suppose $j=1$. Since $\operatorname{deg} \psi_{1}=1$, we have $k_{1}=k$, and so $\operatorname{ker}\left(\mathcal{R}_{1}\right)=(\pi)$. Let $j>1$. It follows from Lemma 4.5.19 that

$$
\operatorname{ord}_{Z}\left(x_{j}\right)=\operatorname{ord}_{Z}\left(\psi_{j}^{(j)}\right)>\operatorname{ord}_{Z}\left(\psi_{j}^{(j-1)}\right) .
$$

Then Lemma 4.5.24 implies that

$$
\mathcal{R}_{j-1}\left(\overline{\mathcal{F}}_{j, Z}\right)=\mathcal{R}_{j-1}\left(\Pi_{j-1}\right)^{e_{j-1} \alpha} \cdot H_{j-1, \alpha}\left(\psi_{j}\right),
$$

where $\alpha=v_{j-1}\left(\psi_{j}\right)$. Since $k_{j} \simeq k_{j-1}\left[X_{j-1}\right] /\left(H_{j-1, \alpha}\left(\psi_{j}\right)\right)$ by Remark 4.3 .11 and $\mathcal{R}_{j-1}\left(\Pi_{j-1}\right)$ is invertible by Lemma 4.5.23, we have

$$
\operatorname{ker}\left(\mathcal{R}_{j}\right)=\operatorname{ker}\left(\mathcal{R}_{j-1}\right)+\left(\overline{\mathcal{F}}_{j, Z}\right)
$$

The inductive hypothesis concludes the proof.
Let $h<j \leq n$. Then

$$
\operatorname{ord}_{Z}\left(x_{j}\right)=\operatorname{ord}_{Z}\left(\psi_{j}^{(h)}\right)
$$

by Lemma 4.5.19. Since $\tilde{m}_{j j}=1$ and $\tilde{m}_{o j}=0$ for all $1 \leq o \leq n$, $o \neq j$, there exists a Laurent polynomial $\mathcal{T}_{j} \in O_{K}\left[X_{1}^{ \pm 1}, \ldots, X_{h}^{ \pm 1}, Y, Z\right]$ such that \mathcal{F}_{j} equals $X_{j}-\mathcal{T}_{j}$ up to some unit. Let $\mathcal{R}=\mathcal{R}_{h}$ and $\mathcal{T}=\prod_{h<j \leq n} \mathcal{T}_{j}$. Denote $\mathcal{F}=\mathcal{F}_{1}$. Lemma 4.5 .25 implies that $U_{E, i} \cap\{Z=0\}$ is isomorphic to

$$
\operatorname{Spec} \frac{k_{v}\left[X_{h}^{ \pm 1}, Y, \mathcal{R}\left(\overline{\mathcal{T}}_{Z}\right)^{-1}\right]}{\left(\mathcal{R}\left(\overline{\mathcal{F}}_{Z}\right)\right)}
$$

Similar computations (using $w_{E, i+1}$ instead of $w_{E, i}$) show that if $i<r$ or E is inner, then $U_{E, i} \cap\{Y=$ $0\}$ is isomorphic to

$$
\operatorname{Spec} \frac{k_{v}\left[X_{h}^{ \pm 1}, Z, \mathcal{R}\left(\overline{\mathcal{T}}_{Y}\right)^{-1}\right]}{\left(\mathcal{R}\left(\overline{\mathcal{F}}_{Y}\right)\right)}
$$

Let $g(x, y)=y^{2}-f(x)$ and expand

$$
g=\sum_{j, o} a_{j o} \psi_{h}^{j} y^{o}, \quad a_{j o} \in K[x], \operatorname{deg} a_{j o}<\operatorname{deg} \psi_{h} .
$$

Then $y^{2}-f^{(h)}=\sum_{j, o} a_{j o}^{(h-1)} x_{h}^{j} y^{o}$. Recall the notation $w_{E, i}(y)$ from Appendix C.3. Let ξ_{i} be the plane with normal vector $\left(w_{E, i}\left(\psi_{h}\right), w_{E, i}(y), 1\right)$ and on which \tilde{E} lies. We have

$$
\operatorname{ord}_{Z}\left(a_{j o}^{(h-1)} x_{h}^{j} y^{o}\right)=\operatorname{ord}_{Z}\left(y^{2}-f^{(h)}\right) \quad \text { if and only if } \quad\left(j, o, v_{-}\left(a_{j o}\right)\right) \in \xi_{i}
$$

More precisely, $\left(X_{h}, Y, Z\right)=\left(x_{h}, y, p_{h-1}\right) \cdot M$ with

$$
M=\left(\begin{array}{cc}
\delta a_{x} & d_{i} b_{x}+k_{i} a_{x}-d_{i+1} b_{x}-k_{i+1} a_{x} \tag{4.18}\\
\delta a_{y} & d_{i} b_{y}+k_{i} a_{y}-d_{i+1} b_{y}-k_{i+1} a_{y} \\
\delta \epsilon_{h} a_{z} & \frac{n_{i}}{\delta}+\epsilon_{h} k_{i} a_{z}-\frac{n_{i+1}}{\delta}-\epsilon_{h} k_{i+1} a_{z}
\end{array}\right) \in \mathrm{SL}_{3}(\mathbb{Z})
$$

Let $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ given by

$$
\phi(s, t)=P_{0}+\left(\delta a_{x}, \delta a_{y}\right) s+\left(d_{i} b_{x}+k_{i} a_{x}, d_{i} b_{y}+k_{i} a_{y}\right) t
$$

Lemma 4.5.24 implies that, up to units, $\mathcal{R}\left(\overline{\mathcal{F}}_{Z}\right)$ equals

$$
\sum_{(s, t) \in \mathbb{Z}^{2}} H_{h-1, \alpha_{s, t}}\left(a_{\phi(s, t)}\right) X_{h}^{s} Y^{t}
$$

where $\alpha_{s, t}=\delta a_{z} s+\frac{n_{i}}{\delta \epsilon_{h}} t+k_{i} a_{z} t$. In particular, $U_{E, i} \cap\{Z=0\}$ is of dimension 1, and similarly $U_{E, i} \cap\{Y=0\}$ when $i<r$ or E is inner. It follows that the special fibre of $U_{E, i}$ is 1-dimensional.

4.5.5 Components

We want to describe $U_{E, i} \cap\{Z=0\}$ and $U_{E, i} \cap\{Y=0\}$ explicitly.
Remark 4.5.26. Let $h<j \leq n$ such that $v=\mu_{j} \wedge \mu_{h}$. Let $\left(\mathfrak{s}_{j}, \mu_{j}\right) \subseteq(\mathfrak{t}, w)<(\mathfrak{s}, v)$. Lemma 4.2.30 implies that ψ_{j} is v-equivalent to ϕ_{w}^{d}, where $d=\operatorname{deg} \mu_{j} / \operatorname{deg} w$. Thus $\left.\psi_{j}\right|_{v}$ is a power of $\left.\phi_{w}\right|_{v}$ by Proposition 4.3.19.

Lemma 4.5.27 Let $\mu_{1}, \mu_{2} \in \mathbb{V}_{M}$ such that $\mu_{1} \geq v \ngtr \mu_{2}$. Suppose ϕ_{n} is a centre of μ_{1} and let $\phi \in K[x]$ be a centre of μ_{2}. If $v \neq \mu_{1} \wedge \mu_{2}$ then $\left.\phi\right|_{v}$ is a unit.

Proof. Let $w=\mu_{1} \wedge \mu_{2}$. Then $\mu_{1}(\phi)=w(\phi)$ by Proposition 4.4.19. Since $w \leq \mu_{1}$ and $v \leq \mu_{1}$, either $w<v$ or $w \geq v$ by Theorem 4.2.21 and Remark 4.2.18(2).

Suppose $w<v$. Proposition 4.2.24 implies that there exists $w^{\prime} \geq w$ such that $v=\left[w^{\prime}, v\left(\phi_{n}\right)=\right.$ λ_{n}]. In particular, $w^{\prime}(\phi)=v(\phi)$. From [FGMN, Lemma 2.9] it follows that ϕ is v-equivalent to some polynomial of degree $<\operatorname{deg} v$. Hence $\left.\phi\right|_{v}$ is a unit by Proposition 4.3.19.

Suppose $w>v$. Then the polynomial ϕ_{n} is a centre of w and so

$$
\phi \sim_{v} \phi_{n}^{\operatorname{deg} \phi / \operatorname{deg} \phi_{n}}
$$

by Lemmas 4.2.29 and 4.2.30. Then $\left.\phi\right|_{v}$ is a unit by Proposition 4.3.19.
Lemma 4.5.28 Let $h<j \leq n$. If $v \neq \mu_{h} \wedge \mu_{j}$ then $\left.\psi_{j}\right|_{v}$ is a unit.
Proof. The lemma follows from Lemma 4.5.27.

Lemma 4.5.29 Let $h<j \leq n$.

1. Suppose $E=L_{v}$. Then, up to units, $\mathcal{R}\left(\overline{\mathcal{T}}_{j, Z}\right)$ equals $\left.\psi_{j}\right|_{v}\left(X_{h}\right)$, and, similarly, $\mathcal{R}\left(\overline{\mathcal{T}}_{j, Y}\right)$ equals $\left.\psi_{j}\right|_{v}\left(X_{h}\right)$ when $i<r$.
2. Suppose $E=V_{v}$ or $E=V_{v}^{0}$. Then $\overline{\mathcal{T}}_{j}$ is a unit. Furthermore, $\overline{\mathcal{T}}_{j}=\overline{\mathcal{T}}_{j, Z}$ if $i>0$ and $\overline{\mathcal{T}}_{j}=\overline{\mathcal{T}}_{j, Y}$ if $i<r$.

Proof. Suppose $E=L_{v}$. Then Lemma 4.5.24 implies that $\mathcal{R}\left(\overline{\mathcal{T}}_{j, Z}\right)$ equals $\left.\psi_{j}\right|_{v}\left(X_{h}\right)$ up to units. Similarly for $\mathcal{R}\left(\overline{\mathcal{T}}_{j, Y}\right)$ when $i<r$.

Expand

$$
\psi_{j}=\sum_{t=0}^{d} a_{t} \psi_{h}^{t}, \quad a_{t} \in K[x], a_{d} \neq 0, \operatorname{deg} a_{t}<\operatorname{deg} \psi_{h} .
$$

Then $\psi_{j}^{(h)}=\sum_{t} a_{t}^{(h-1)} x_{h}^{t}$.
Suppose (\mathfrak{s}, v) maximal and $E=V_{v}$. Then $h=1$ and $\operatorname{deg} \psi_{h}=1$. Lemma C.3.2 implies that $w_{E, i}\left(\psi_{j}\right)=d \cdot w_{E, i}\left(\psi_{1}\right)$ for any $i=0, \ldots, r$. In fact, for all $i=1, \ldots, r$ we have

$$
\begin{equation*}
w_{E, i}\left(\psi_{j}-\psi_{1}^{d}\right)>w_{E, i}\left(\psi_{j}\right) \tag{4.19}
\end{equation*}
$$

since $w_{E, i}\left(\psi_{h}\right)<w_{E, 0}\left(\psi_{h}\right)$. Recall

$$
\operatorname{ord}_{Z}\left(\psi_{j}^{(1)}\right)=w_{E, i}\left(\psi_{j}\right) \operatorname{ord}_{Z}(\pi)
$$

from Lemma 4.5.19, and similarly, $\operatorname{ord}_{Y}\left(\psi_{j}^{(1)}\right)=w_{E, i+1}\left(\psi_{j}\right) \operatorname{ord}_{Y}(\pi)$ when $i<r$. The inequality (4.19 implies that $\overline{\mathcal{T}}_{j}$ is a unit, $\overline{\mathcal{T}}_{j}=\overline{\mathcal{T}}_{j, Z}$ when $i>0$ and $\overline{\mathcal{T}}_{j}=\overline{\mathcal{T}}_{j, Y}$ when $i<r$.

Suppose $E=V_{v}$ inner. Then $w_{E, i}$ is a MacLane valuation with centre ψ_{h} and satisfying $v \geq w_{E, i} \geq w$. In particular, $w_{E, i}\left(\psi_{j}\right)=w_{E, i}\left(a_{t_{v}} \psi_{h}^{t_{v}}\right)$. Lemma 4.5.19 implies that $\overline{\mathcal{T}}_{j, Z}$ is a unit if and only if $\left.\psi_{j}\right|_{w_{E, i}}$ is a unit. But then $\overline{\mathcal{T}}_{j, Z}=\overline{\mathcal{T}}_{j}$ is a unit when $i>0$ by Lemma 4.5.27. Similarly $\overline{\mathcal{T}}_{j, Y}=\overline{\mathcal{T}}_{j}$ is a unit when $i<r$.

Suppose (\mathfrak{s}, v) degree-minimal and $E=V_{v}^{0}$. Then $w_{E, i}$ is a MacLane valuation with centre ψ_{h} and satisfying $v \leq w_{E, i}$. In particular, $w_{E, i}\left(\psi_{j}\right)=w_{E, i}\left(a_{t_{v}^{0}} \psi_{h}^{t_{v}^{0}}\right)$. Similarly to the previous case, Lemmas 4.5.19, 4.5.27 conclude the proof.

Suppose $E=L_{v}$. Fix $P_{0}=\left(t_{v}, 0\right), P_{1}=\left(\left\lfloor\frac{t_{v}-1}{2}\right\rfloor, 1\right)$. Then

$$
\begin{equation*}
s_{1}^{E}=e_{v}\left(\lambda_{v}\left(\left\lfloor t_{v} / 2\right\rfloor+1\right)-\frac{v(f)}{2}\right), \tag{4.20}
\end{equation*}
$$

and $s_{2}^{E}=\left\lfloor s_{1}^{E}-1\right\rfloor$. The h-edge L_{v} corresponds to the edge $L_{v}(f)$ of $N_{v_{-}, \psi_{h}}(f)$. In particular, $\delta_{E}=e_{h}$ and $v=\left(1,0,-\lambda_{h}\right)$. Therefore, up to units,

$$
\begin{array}{ll}
\mathcal{R}\left(\overline{\mathcal{F}}_{Z}\right)=\left.f\right|_{v}\left(X_{h}\right) & \text { for } 0<i \leq r, \\
\mathcal{R}\left(\overline{\mathcal{F}}_{Y}\right)=\left.f\right|_{v}\left(X_{h}\right) & \text { for } 0 \leq i<r .
\end{array}
$$

Fix

$$
k_{j}=\ell_{h} n_{j}+\ell_{h}^{\prime} e_{h} d_{j}\left(\left\lfloor t_{v} / 2\right\rfloor+1\right), \quad \text { for } j=0, \ldots, r+1
$$

Then $k_{j} \equiv n_{j}\left(\delta_{E} \epsilon_{h} a_{z}\right)^{-1} \bmod \delta_{E}$, as required. Let $i=0$ and let M be the matrix of (4.18). Then

$$
M^{-1}=\left(\begin{array}{ccc}
\ell_{h}^{\prime} & 0 & -\ell_{h} \\
d_{1} e_{v} \lambda_{v} & d_{1} e_{v} \frac{v(f)}{2}+\frac{1}{d_{0}} & d_{1} e_{h} \\
d_{0} e_{v} \lambda_{v} & d_{0} e_{v} \frac{v(f)}{2} & d_{0} e_{h}
\end{array}\right) .
$$

Hence $y^{2} p_{h}^{-e_{v} v(f)}=Y^{2 / d_{0}}$. Lemma 4.5.24 then implies that $R_{h}\left(\overline{\mathcal{F}}_{Z}\right)$ equals

$$
Y^{2 / d_{0}}-H_{h, v(f)}(f)\left(X_{h}\right)
$$

up to units. The quantity $n_{v}:=2 / d_{0}$ equals 1 if $e_{v} v(f)$ is odd and 2 if $e_{v} v(f)$ is even. Recall

$$
H_{h, v(f)}(f)(X)=\left.X^{t_{v}^{0} / e_{h}-\ell_{h} \epsilon_{h} v(f)} f\right|_{v}
$$

from (4.5). Note that $t_{v}^{0}=t_{w}$ if (\mathfrak{s}, v) has a child (\mathfrak{t}, w) with centre ψ_{h} and $t_{v}^{0}=0$ otherwise.
Suppose $E=V_{v}$. We can choose $P_{0}=\left(t_{v}, 0\right), P_{1}=\left(\left\lfloor\frac{t_{v}-1}{2}\right\rfloor, 1\right)$ so that

$$
s_{1}^{E}=\delta_{E} \epsilon_{h}\left(\lambda_{v}\left(\left\lfloor t_{v} / 2\right\rfloor+1\right)-\frac{v(f)}{2}\right),
$$

If $(\mathfrak{s}, v) \neq\left(\mathfrak{R}, w_{\mathfrak{R}}\right)$ and $(\mathfrak{s}, v)<(\mathfrak{t}, w)$, then

$$
s_{2}^{E}=\delta_{E} \epsilon_{h}\left(\lambda_{w}\left(\left\lfloor t_{v} / 2\right\rfloor+1\right)-\frac{w(f)}{2}\right)
$$

while $s_{2}^{E}=\left\lfloor s_{1}^{E}-1\right\rfloor$ otherwise. Up to units

$$
\begin{array}{ll}
\mathcal{R}\left(\overline{\mathcal{F}}_{Z}\right)=X_{h}^{b}-H_{h-1, \alpha}\left(a_{t_{v}}\right) & \text { for } 0<i \leq r \\
\mathcal{R}\left(\overline{\mathcal{F}}_{Y}\right)=X_{h}^{b}-H_{h-1, \alpha}\left(a_{t_{v}}\right) & \text { for } 0 \leq i<r
\end{array}
$$

where $b=E_{\mathbb{Z}}(\mathbb{Z})+1$ and $\alpha=v_{-}\left(a_{t_{v}}\right)$. Let $u=c_{f} \prod_{r^{\prime} \notin \mathfrak{s}}\left(x-r^{\prime}\right) \in K[x]$ and let $u_{h}=u-\psi_{h} q$ for some $q \in K[x]$ such that $\operatorname{deg} u_{h}<\operatorname{deg} \psi_{h}$. From Theorem 4.4.26, one has $H_{h-1, \alpha}\left(a_{t_{v}}\right)=H_{h-1, v_{-}\left(u_{h}\right)}\left(u_{h}\right)$.

Suppose $v=\mu_{h}$ and $E=V_{v}^{0}$. Fix $P_{0}=(0,2), P_{1}=(1,1)$, so

$$
s_{1}^{E}=-\delta_{E} \epsilon_{h}\left(\lambda_{v}-\frac{v(f)}{2}\right)
$$

and $s_{2}^{E}=\left\lfloor s_{1}^{E}-1\right\rfloor$. Then up to units

$$
\begin{array}{ll}
\mathcal{R}\left(\overline{\mathcal{F}}_{Z}\right)=X_{h}^{-b}-H_{h-1, \alpha}\left(a_{t_{v}^{0}}\right) & \text { for } 0<i \leq r, \\
\mathcal{R}\left(\overline{\mathcal{F}}_{Y}\right)=X_{h}^{-b}-H_{h-1, \alpha}\left(a_{t_{v}^{0}}\right) & \text { for } 0 \leq i<r
\end{array}
$$

where $b=E_{\mathbb{Z}}(\mathbb{Z})+1$ and $\alpha=v_{-}\left(a_{t_{v}^{0}}\right)$. Let \Re_{h} be the set of roots of ψ_{h}. Let $u^{0}=c_{f} \prod_{r^{\prime} \in \Re \backslash \Re_{h}}\left(x-r^{\prime}\right) \in$ $K[x]$ and let $u_{h}^{0}=u^{0}-\psi_{h} q$ for some $q \in K[x] \operatorname{such}$ that $\operatorname{deg} u_{h}^{0}<\operatorname{deg} \psi_{h}$. One has $H_{h-1, \alpha}\left(a_{t_{v}^{0}}\right)=$ $H_{h-1, v_{-}\left(u_{h}^{0}\right)}\left(u_{h}^{0}\right)$.

4.5.6 Regularity

If (\mathfrak{s}, v) has a proper child with centre $\phi_{w} \neq \phi_{v}$, then $\left.\phi_{w}\right|_{v}$ is irreducible by Lemmas 4.5.2 and 4.3.21. Let $E=L_{v}$. By Remark 4.5.26 and Lemmas 4.5.28, 4.5.29, the subscheme $U_{E, i} \cap\{Z=0\}$ is isomorphic to

$$
\begin{equation*}
\operatorname{Spec} \frac{k_{v}\left[X_{h}^{ \pm 1}, Y, \prod_{(\mathrm{t}, w)<(\mathfrak{s}, v)}\left(\left.\phi_{w}\right|_{v}\left(X_{h}\right)\right)^{-1}\right]}{\left(\mathcal{R}\left(\overline{\mathcal{F}}_{Z}\right)\right)} \tag{4.21}
\end{equation*}
$$

where the product runs through all proper children of (\mathfrak{s}, v). Similarly for $U_{E, i} \cap\{Y=0\}$ when $i<r$.

Notation 4.5.30 We denote by $\stackrel{\circ}{\Gamma}_{v}$ the scheme $U_{L_{v}, 0} \cap\{Z=0\}$.
Theorem 4.5.31 The model \mathcal{C} / O_{K} is regular.
Proof. We want to prove that $U_{E, i}$ is regular, for any h-edge $E, h=1, \ldots, n$, and any $i=0, \ldots, r_{E}$. In fact, for the definition of Π, it suffices to show that the subschemes $U_{E, i} \cap\{Z=0\}$ and $U_{E, i} \cap\{Y=0\}$ are regular, where the latter is considered only if $i<r$. From the description given in $\S 4.5 .5$ we only need to consider the case $E=L_{v}$, for some proper MacLane cluster (\mathfrak{s}, v) for f. Let $r=r_{E}$. For the explicit description of $\mathcal{R}\left(\overline{\mathcal{F}}_{Z}\right)$ and $\mathcal{R}\left(\overline{\mathcal{F}}_{Y}\right)$ it suffices to prove that all multiple irreducible factors of $\left.f\right|_{v}$ are of the form $\left.\phi_{w}\right|_{v}$ for some proper child (\mathfrak{t}, w) of (\mathfrak{s}, v). But this follows from Theorem 4.4.29.

4.5.7 Properness

Let $\mathcal{C}_{s}^{\text {red }}$ be the underlying reduced subscheme of the special fibre of \mathcal{C}. In the previous subsections we showed that $\mathcal{C}_{s}^{\text {red }}$ consist of 1-dimensional subschemes Γ_{v} for each proper MacLane cluster (\mathfrak{s}, v), closures of $\stackrel{\circ}{\Gamma}_{v}$ (Notation 4.5.30) in \mathcal{C}, and chains of \mathbb{P}^{1}. In this subsection we will show that Γ_{v} is projective for any proper $(\mathfrak{s}, v) \in \Sigma_{f}^{M}$. By [Liu4, Remark 3.28] the properness of \mathcal{C} will follow.

Let (\mathfrak{s}, v) be a proper MacLane cluster and recall the notation introduced in previous subsections. Let C_{v} be the regular projective curve with ring of rational functions

$$
k_{v}(X)[Y] /\left(Y^{n_{v}}-\left.X^{t_{v}^{0} / e_{h}-\ell_{h} \epsilon_{h} v(f)} f\right|_{v}\right) .
$$

From (4.21) we have a natural birational map $\Gamma_{v} \rightarrow-C_{v}$ defined on the dense open Γ_{v}. It extends to a morphism $\iota: \Gamma_{v} \rightarrow C_{v}$ by [EGA, II.7.4.9]. Zariski's Main Theorem implies that ι is an open immersion, since Γ_{v} is separated and regular. By point counting we can prove that t is an isomorphism.

Let $\stackrel{\circ}{C}_{v}=\iota\left({ }_{\Gamma} \Gamma_{v}\right)$. By Theorem 4.4.29 we have

$$
\operatorname{ord}_{\left.\phi_{w}\right|_{v}}\left(\left.f\right|_{v}\right)=|\mathfrak{t}| / \operatorname{deg} w,
$$

for any proper child $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ with $\phi_{w} \neq \phi_{v}$. The set $C_{v}(\bar{k}) \backslash \dot{C}_{v}(\bar{k})$ is finite and consists of:
(1) $\operatorname{gcd}\left(n_{v}, t_{v}^{0} / e_{h}-\ell_{h} \epsilon_{h} v(f)+\operatorname{deg}\left(\left.f\right|_{v}\right)\right)$ points at infinity;
(2) $\operatorname{gcd}\left(n_{v}, t_{v}^{0} / e_{h}-\ell_{h} \epsilon_{h} v(f)\right)$ points on $X=0$;
(3) $\operatorname{gcd}\left(n_{v},|\mathfrak{t}| / \operatorname{deg} w\right)$ points on $Y=0(X \neq 0)$ for each proper child $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ with $\phi_{w} \neq \phi_{v}$.
(1) Let $E=V_{v}$. The scheme Γ_{v} has $\left(\left|E_{\mathbb{Z}}(\mathbb{Z})\right|+1\right) \bar{k}$-points in

$$
U_{E, 0} \cap\{Y=Z=0\}
$$

not contained in $\stackrel{\circ}{\Gamma}_{v}$. Note that $\left|E_{\mathbb{Z}}(\mathbb{Z})\right|$ equals 1 if t_{v} and $\epsilon_{h}\left(v(f)-t_{v} \lambda_{v}\right)$ are both even, while it equals 0 otherwise. In fact,

$$
\left(\epsilon_{h}\left(v(f)-t_{v} \lambda_{v}\right), t_{v}\right)=\left(e_{v} v(f), t_{v} / e_{h}-\ell_{h} \epsilon_{h} v(f)\right) \cdot\left(\begin{array}{cc}
\ell_{h}^{\prime} & \ell_{h} \\
-h_{h} & e_{h}
\end{array}\right),
$$

and so

$$
\left|E_{\mathbb{Z}}(\mathbb{Z})\right|+1=\operatorname{gcd}\left(n_{v}, t_{v}^{0} / e_{h}-\ell_{h} \epsilon_{h} v(f)+\operatorname{deg}\left(\left.f\right|_{v}\right)\right),
$$

since $\operatorname{deg}\left(\left.f\right|_{v}\right)=\left(t_{v}-t_{v}^{0}\right) / e_{h}$.
(2) Let $E=V_{v}^{0}$. Let $(\mathrm{t}, w)<(\mathfrak{s}, v)$ such that $E=V_{w}$ if (\mathfrak{s}, v) is not degree-minimal. Let $U=U_{V_{v}^{0}, 0}$ if (\mathfrak{s}, v) is degree-minimal and $U=U_{V_{w}, r_{E}+1}$ otherwise. The scheme Γ_{v} has $\left(\left|E_{\mathbb{Z}}(\mathbb{Z})\right|+1\right) \bar{k}$-points in

$$
U \cap\{Y=Z=0\}
$$

not visible on $\stackrel{\circ}{\Gamma}_{v}$. Note that $\left|E_{\mathbb{Z}}(\mathbb{Z})\right|$ equals 1 if t_{v}^{0} and $\epsilon_{h}\left(v(f)-t_{v}^{0} \lambda_{v}\right)$ are both even, while equals 0 otherwise. Similarly to the case above,

$$
\left(\epsilon_{h}\left(v(f)-t_{v}^{0} \lambda_{v}\right), t_{v}^{0}\right)=\left(e_{v} v(f), t_{v}^{0} / e_{h}-\ell_{h} \epsilon_{h} v(f)\right) \cdot\left(\begin{array}{cc}
\ell_{h}^{\prime} & \ell_{h} \\
-h_{h} & e_{h}
\end{array}\right),
$$

and so

$$
\left|E_{\mathbb{Z}}(\mathbb{Z})\right|+1=\operatorname{gcd}\left(n_{v}, t_{v}^{0} / e_{h}-\ell_{h} \epsilon_{h} v(f)\right) .
$$

(3) Let $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ be a proper child such that $\phi_{w} \neq \phi_{v}$. Let $E=V_{w}$. The scheme Γ_{v} has $\left(\left|E_{\mathbb{Z}}(\mathbb{Z})\right|+1\right) \bar{k}$-points in

$$
U_{E, 0} \cap\{Y=Z=0\}
$$

not visible on $\stackrel{\circ}{\Gamma}_{v}$. Note that $\left|E_{\mathbb{Z}}(\mathbb{Z})\right|$ equals 1 if t_{w} and $e_{v}\left(v(f)-t_{w} \lambda_{v}\right)$ are both even, while it equals 0 otherwise. Since $t_{w}=|\mathfrak{t}| / \operatorname{deg} w$ by Proposition 4.4.25, we can compute

$$
\left|E_{\mathbb{Z}}(\mathbb{Z})\right|+1=\operatorname{gcd}\left(n_{v},|\mathfrak{t}| / \operatorname{deg} w\right) .
$$

Thus $\left|\Gamma_{v}(\bar{k}) \backslash \stackrel{\circ}{\Gamma}_{v}(\bar{k})\right|=\left|C_{v}(\bar{k}) \backslash \stackrel{\circ}{C}_{v}(\bar{k})\right|$, and so $\Gamma_{v} \simeq C_{v}$.

Remark 4.5.32. If k_{v} is perfect, Γ_{v} is a generalised Baker's model of the curve $\stackrel{\circ}{\Gamma}_{v} \cap \mathbb{G}_{m, k_{v}}^{2}$ according to [Mus2].

4.6 Main result

Let C / K be a hyperelliptic curve of genus $g \geq 1$. Choose a separable polynomial $f \in K[x]$ as in the previous section so that $C / K: y^{2}=f(x)$. Then $v_{K}(r)>0$ for every root $r \in \bar{K}$ of f. Denote by \Re the set of roots of f as before. Consider the MacLane cluster picture of f and fix a centre ϕ_{v} for all proper MacLane clusters $(\mathfrak{s}, v) \in \Sigma_{f}^{M}$ as we did at the beginning of $\S 4.5$. Denote by Σ the set of proper MacLane clusters for f.

Definition 4.6.1 Let $(\mathfrak{s}, v) \in \Sigma$. Consider its cluster chain

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right] .
$$

Define the following quantities:

$$
\begin{aligned}
& \epsilon_{v}=e_{v_{m-1}} \\
& b_{v}=e_{v} / \epsilon_{v} \\
& \ell_{v}=\ell_{m} \\
& k_{v}=k_{m} \\
& f_{v}=\left[k_{v}: k\right] \\
& v_{v}=v(f) \\
& n_{v}=1 \text { if } e_{v} v_{v} \text { odd, } 2 \text { if } e_{v} v_{v} \text { even } \\
& m_{v}=2 e_{v} / n_{v} \\
& t_{v}=|\mathfrak{s}| / \operatorname{deg} v \\
& p_{v}=1 \text { if } t_{v} \text { is odd, } 2 \text { if } t_{v} \text { is even } \\
& s_{v}=\frac{1}{2}\left(t_{v} \lambda_{v}+p_{v} \lambda_{v}-v_{v}\right) \\
& \gamma_{v}=2 \text { if } t_{v} \text { is even and } \epsilon_{v}\left(v_{v}-t_{v} \lambda_{v}\right) \text { is odd, } 1 \text { otherwise } \\
& \delta_{v}=1 \text { if }(\mathfrak{s}, v) \text { is degree-minimal, } 0 \text { otherwise } \\
& p_{v}^{0}=1 \text { if } \delta_{v}=1 \text { and deg } v=\min _{r \in \mathfrak{s}}[K(r): K], 2 \text { otherwise } \\
& s_{v}^{0}=-v_{v} / 2+\lambda_{v} \\
& \gamma_{v}^{0}=2 \text { if } p_{v}^{0}=2 \text { and } \epsilon_{v} v_{v} \text { is an odd integer, } 1 \text { otherwise }
\end{aligned}
$$

Define

$$
\tilde{v}=\left\{(\mathfrak{t}, w) \in \Sigma \mid(\mathfrak{t}, w)<(\mathfrak{s}, v) \text { and } \frac{f_{v}|\mathfrak{t}|}{f_{w} b_{v} \operatorname{deg} v}-\ell_{v} v_{v} \epsilon_{w} \notin 2 \mathbb{Z}\right\} .
$$

Let $c_{v}^{0}=1$ if $\frac{2-p_{v}^{0}}{b_{v}}-\ell_{v} v_{v} \epsilon_{v} \notin 2 \mathbb{Z}$, and $c_{v}^{0}=0$ otherwise. Define

$$
u_{v}=\frac{|\mathfrak{s}|-\sum_{(\mathfrak{t}, w)<(\mathfrak{s}, v)}|\mathfrak{t}|-\left(2-p_{v}^{0}\right) \operatorname{deg} v}{e_{v}}+\sum_{(\mathfrak{t}, w) \in \tilde{v}} \frac{f_{w}}{f_{v}}+\delta_{v} c_{v}^{0}
$$

The genus $g(v)$ of (\mathfrak{s}, v) is defined as follows:

- if $n_{v}=1$, then $g(v)=0$;
- if $n_{v}=2$, then $g(v)=\max \left\{\left\lfloor\left(u_{v}-1\right) / 2\right\rfloor, 0\right\}$.

We say that (\mathfrak{s}, v) is übereven if $u_{v}=0$.
Recall the definition of $H_{m-1, \alpha}$, for $\alpha \in \Gamma_{v_{m-1}}$, from Definition 4.3.8(ii). Define $\overline{g_{v}} \in k_{v}[y]$, and $\overline{g_{v}^{0}} \in k_{v}[y]$ if $\delta_{v}=1$, by

$$
\begin{array}{ll}
\overline{g_{v}}(y)=y^{p_{v} / \gamma_{v}}-H_{m-1, v_{m-1}(u)}(u), & u=c_{f} \prod_{r \in \mathfrak{R} \backslash 5}(x-r) \bmod \phi_{v} \\
\overline{g_{v}^{0}}(y)=y^{p_{v}^{0} / \gamma_{v}^{0}}-H_{m-1, v_{m-1}(u)}(u), & u=c_{f} \prod_{r \in \mathfrak{R} \Re_{v}(x-r) \bmod \phi_{v}},
\end{array}
$$

where \mathfrak{R}_{v} is the set of roots of ϕ_{v}.
Define $f_{v}^{\prime} \in K[x]$ by

$$
\phi_{v}^{2-p_{v}^{0}} f_{v}^{\prime}(x)=\prod_{r \in \mathfrak{s} \backslash \bigcup(t, w)<(\mathfrak{s}, v)}(x-r),
$$

where the union runs through all proper children $(\mathfrak{t}, w)<(\mathfrak{s}, v)$.

Define $\overline{f_{v}}, \tilde{f}_{v} \in k_{v}[x]$ by

$$
\begin{aligned}
& \overline{f_{v}}(x)=\left.H_{m-1, v_{m-1}(u)}(u) \cdot f_{v}^{\prime}\right|_{v}(x), \quad u=c_{f} \prod_{r \in \mathfrak{R} \backslash \mathfrak{s}}(x-r) \quad \bmod \phi_{v} \\
& \tilde{f}_{v}(x)=\left.\overline{f_{v}}(x) \cdot x^{\delta_{v} c_{v}^{0}} \cdot \prod_{(t, w) \in \tilde{v}} \phi_{w}\right|_{v}(x)
\end{aligned}
$$

Finally, define the k_{v}-schemes

- $X_{v}:\left\{\overline{f_{v}}=0\right\} \subset \mathbb{G}_{m, k_{v}} ;$
- $Y_{v}:\left\{\overline{g_{v}}=0\right\} \subset \mathbb{G}_{m, k_{v}} ;$
- $Y_{v}^{0}:\left\{\overline{g_{v}^{0}}=0\right\} \subset \mathbb{G}_{m, k_{v}}$ if (\mathfrak{s}, v) is degree-minimal.

Recall Notations 2.4.16, 2.4.17 from Chapter 2.
Notation 4.6.2 Let $a, b \in K[x], b \neq 0$. We denote by $a \bmod b$ the remainder of the division of a by b.

In the next theorem we describe the special fibre of the scheme \mathcal{C} constructed in $\S 4.5$.
Theorem 4.6.3 (Regular SNC model) The scheme $\mathcal{C} \rightarrow O_{K}$ constructed in $\S 4.5$ is a regular model of C with strict normal crossings; its special fibre \mathcal{C}_{s} / k is described as follows:
(1) Every $(\mathfrak{s}, v) \in \Sigma$ gives a 1-dimensional closed subscheme Γ_{v} of multiplicity m_{v}. The ring of rational functions of Γ_{v} is isomorphic to $k_{v}(x)[y] /\left(y^{n_{v}}-\tilde{f}_{v}(x)\right)$. If $n_{v}=2, u_{v}=0$, and $\tilde{f}_{v} \in k_{v}^{2}$, then $\Gamma_{v} \simeq \mathbb{P}_{k_{v}}^{1} \sqcup \mathbb{P}_{k_{v}}^{1}$, otherwise Γ_{v} is irreducible of genus $g(v)$.
(2) Every $(\mathfrak{s}, v) \in \Sigma$ with $n_{v}=1$ gives the closed subscheme $X_{v} \times{ }_{k} \mathbb{P}_{k}^{1}$, of multiplicity e_{v}, where $X_{v} \times_{k}\{0\} \subset \Gamma_{v}\left(\right.$ the $\mathbb{P}_{k}^{1} s$ are open-ended).
(3) Every non-maximal $(\mathfrak{s}, v) \in \Sigma$, with $(\mathfrak{s}, v)<(\mathfrak{t}, w)$, gives the closed subscheme

$$
Y_{v} \times_{k} \mathbb{P}^{1}\left(\epsilon_{v} \gamma_{v}, s_{v}, s_{v}-\frac{p_{v}}{2}\left(\lambda_{v}-\frac{\operatorname{deg} v}{\operatorname{deg} w} \lambda_{w}\right)\right)
$$

where $Y_{v} \times_{k}\{0\} \subset \Gamma_{v}$ and $Y_{v} \times_{k}\{\infty\} \subset \Gamma_{w}$.
(4) Every degree-minimal $(\mathfrak{s}, v) \in \Sigma$ gives the closed subscheme $Y_{v}^{0} \times_{k} \mathbb{P}^{1}\left(\epsilon_{v} \gamma_{v}^{0},-s_{v}^{0}\right)$, where $Y_{v}^{0} \times_{k}$ $\{0\} \subset \Gamma_{v}$ (the chains are open-ended).
(5) Finally, the maximal element $(\mathfrak{s}, v) \in \sum$ gives the closed subscheme $Y_{v} \times{ }_{k} \mathbb{P}^{1}\left(\epsilon_{v} \gamma_{v}, s_{v}\right)$, where $Y_{v} \times_{k}\{0\} \subset \Gamma_{v}$ (the chains are open-ended).

If Γ_{v} is reducible, the two points in $Y_{v} \times_{k}\{0\}$ (and $Y_{v}^{0} \times_{k}\{0\}$ if (\mathfrak{s}, v) is degree-minimal) belong to different irreducible components of Γ_{v}. Similarly, if (\mathfrak{s}, v) is not maximal with $(\mathfrak{s}, v)<(\mathfrak{t}, w)$, and Γ_{w} is reducible, then the two points of $Y_{v} \times_{k}\{\infty\}$ belong to different irreducible components of Γ_{w}.

Proof. The description of the special fibre of \mathcal{C} follows from its explicit construction developed in $\S 4.5$ (see especially §4.5.5). We highlight the key points.
(1) Each proper MacLane cluster (\mathfrak{s}, v) gives the 1-dimensional closed subscheme Γ_{v} of \mathcal{C}_{s}, coming from the $*$-face F_{v}. The open subscheme Γ_{v}° (Notation 4.5.30) of Γ_{v} is isomorphic to

$$
\operatorname{Spec} \frac{k_{v}\left[X^{ \pm 1}, Y, \prod_{(\mathrm{t}, w)<(\mathfrak{s}, v)}\left(\left.\phi_{w}\right|_{v}\right)^{-1}\right]}{\left(Y^{n_{v}}-\left.X^{t_{v}^{0} / b_{v}-\ell_{v} \epsilon_{v} v_{v}} f\right|_{v}\right)}
$$

where the product runs through all proper children of (\mathfrak{s}, v). The multiplicity of Γ_{v} in \mathcal{C}_{s} is given by $e_{v} d_{0}$, where d_{0} is the denominator of the slope $s_{1}^{L_{v}}$. We noticed in $\S 4.5 .5$ that $n_{v}=2 / d_{0}$. If $n_{v}=1$, then $\Gamma_{v} \simeq \mathbb{P}_{k_{v}}^{1}$. Suppose $n_{v}=2$. We want to show that the ring of rational functions of Γ_{v} is

$$
\begin{equation*}
k_{v}(X)[Y] /\left(Y^{n_{v}}-\tilde{f}_{v}(X)\right) \tag{4.22}
\end{equation*}
$$

If (\mathfrak{s}, v) is degree-minimal, then $t_{v}^{0}=2-p_{v}^{0}$ from (4.9). If (\mathfrak{s}, v) is not degree-minimal, then there exists a child $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ with $\phi_{w}=\phi_{v}$; in particular, $t_{v}^{0}=t_{w}, f_{w}=f_{v}$ and so

$$
t_{v}^{0} / b_{v}-\ell_{v} \epsilon_{v} v_{v}=\frac{f_{v}|t|}{f_{w} b_{v} \operatorname{deg} v}-\ell_{v} v_{v} \epsilon_{w}
$$

Now let $(\mathfrak{t}, w)<(\mathfrak{s}, v)$ with $\phi_{w} \neq \phi_{v}$. Theorem 4.4.29 implies that

$$
\operatorname{ord}_{\phi_{w} \mid v}\left(\left.f\right|_{v}\right)=|\mathfrak{t}| / \operatorname{deg} w
$$

Note that $\epsilon_{w}=e_{v}$ and $f_{v} \operatorname{deg} w=f_{w} b_{v} \operatorname{deg} v$ by Lemma 4.3.21. Then

$$
\frac{|t|}{\operatorname{deg} w} \notin 2 \mathbb{Z} \quad \text { if and only if } \quad \frac{f_{v}|t|}{f_{w} b_{v} \operatorname{deg} v}-\ell_{v} v_{v} \epsilon_{w} \notin 2 \mathbb{Z} .
$$

Let $\left[v_{0}, \ldots, v_{h}\left(\phi_{h}\right)=\lambda_{h}\right]$ be the cluster chain for v. Let $f_{\mathfrak{s}}=\prod_{r \in \Re_{15}}(x-r)$. The Newton polygon $N_{v_{h-1}, \phi_{v}}\left(f_{\mathfrak{s}}\right)$ has only slopes $>-\lambda_{v}$. Then $\left.f_{\mathfrak{s}}\right|_{v}=\left.u\right|_{v}$, where $u=f_{\mathfrak{s}} \bmod \phi_{v}$.

The observations above, together with Proposition 4.3.18(iv), imply that (4.22) is the ring of rational functions of Γ_{v}.

The subscheme given by $(\mathfrak{s}, v) \in \Sigma$ in (2) is the closure of

$$
\begin{equation*}
\bigcup_{i=1}^{r_{E}}\left(U_{E, i} \cap\{Z=0\}\right) \tag{4.23}
\end{equation*}
$$

when $E=L_{v}$. The subscheme given by $(\mathfrak{s}, v) \in \Sigma$ in (3) or (5) is the closure of (4.23) when $E=V_{v}$. Note that $\left(V_{v}\right)_{\mathbb{Z}}(\mathbb{Z})+1=p_{v} / \gamma_{v}$. The subscheme given by a degree-minimal $(\mathfrak{s}, v) \in \Sigma$ in (4) is the closure of (4.23) when $E=V_{v}^{0}$. Note that $\left(V_{v}^{0}\right)_{\mathbb{Z}}(\mathbb{Z})+1=p_{v}^{0} / \gamma_{v}^{0}$.

Remark 4.6.4. Let $(\mathfrak{s}, v) \in \Sigma$. Note that
(i) if Γ_{v} is reducible then $p_{v} / \gamma_{v}=2$.
(ii) if $(\mathfrak{s}, v)<(\mathfrak{t}, w)$ and Γ_{w} is reducible, then $p_{v} / \gamma_{v}=2$.
(iii) if (\mathfrak{s}, v) is degree-minimal and Γ_{v} is reducible then $p_{v}^{0} / \gamma_{v}^{0}=2$.

RATIONAL CLUSTER PICTURE AND BASE EXTENSIONS

In this appendix we introduce two auxiliary results for Chapter 2. In §A. 1 we study the choice of a rational centre of a proper cluster. In §A. 2 we show how the dualising sheaf behaves under finite Galois extension of the base field. Note that this second result holds for every geometrically connected, smooth, projective curve.

A. 1 Rational centres over tame extensions

Let C / K be a hyperelliptic curve given by $y^{2}=f(x)$.
Lemma A.1.1 Let L / K be a field extension. Consider the base extended curve C_{L} / L and its associated cluster picture $\Sigma_{C_{L}}$. Let $\mathfrak{s} \in \Sigma_{C_{L}}$ be a proper cluster $G_{\mathfrak{s}}=\operatorname{Stab}_{G_{K}}(\mathfrak{s})$, and $K_{\mathfrak{s}}=\left(K^{\mathfrak{s}}\right)^{G_{\mathfrak{s}}}$. If $L / L \cap K_{\mathfrak{s}}$ is tamely ramified, then \mathfrak{s} has a rational centre $w_{\mathfrak{s}} \in L \cap K_{\mathfrak{s}}$.

Proof. This proof takes ideas from $\left[\mathrm{D}^{2} \mathrm{M}^{2}\right.$, Lemma B.1]. Let $w_{\mathfrak{s}} \in L$ be a rational centre of \mathfrak{s} and let $\rho_{\mathfrak{s}}=\max _{w \in L} \min _{r \in \mathfrak{s}} v(r-w)$ be its radius. Recall the rationalisation $\mathfrak{s}^{\text {rat }} \in \sum_{C_{L}}^{\mathrm{rat}}$ of \mathfrak{s} (Definition 2.3.11). Denote $\mathfrak{t}=\mathfrak{s}^{\text {rat }}$ and define $G_{\mathfrak{t}}=\operatorname{Stab}_{G_{K}}(\mathfrak{t})$. Since $\mathfrak{s} \subseteq \mathfrak{t}$ we have $G_{\mathfrak{s}} \subseteq G_{\mathfrak{t}}$. Furthermore, $\operatorname{Gal}\left(K^{\mathrm{s}} / L\right) \subseteq G_{\mathrm{t}}$. Let $F_{\mathfrak{s}}=L \cap K_{\mathfrak{s}}$. Then $\operatorname{Gal}\left(K^{\mathrm{s}} / F_{\mathfrak{s}}\right) \subseteq G_{\mathfrak{t}}$. Since $L / F_{\mathfrak{s}}$ is tamely ramified, we can consider a maximal tamely ramified extension $F_{\mathfrak{s}}^{\mathrm{t}}$ of $F_{\mathfrak{s}}$ extending L. Write $F_{\mathfrak{s}}^{n r}$ for the maximal unramified extension of $F_{\mathfrak{s}}$ in $F_{\mathfrak{s}}^{t}$. Fix a uniformiser $\pi_{\mathfrak{s}}$ of $F_{\mathfrak{s}}$. Since $L / F_{\mathfrak{s}}$ is tamely ramified and $w_{\mathfrak{s}} \in L$, for a sufficiently large b fix a choice of $\sqrt[b]{\pi_{\mathfrak{s}}}$ such that $w_{\mathfrak{s}} \in F_{\mathfrak{s}}^{n r}\left(\sqrt[b]{\pi_{\mathfrak{s}}}\right)$. Write the v-adic expansion of $w_{\mathfrak{s}}$ as

$$
w_{\mathfrak{s}}=u_{t}{\sqrt[b]{\pi_{\mathfrak{s}}}}^{t}+u_{t+1}{\sqrt[b]{\pi_{\mathfrak{s}}}}^{t+1}+\ldots
$$

for a suitable $t \in \mathbb{Z}$, with $u_{l} \in F_{\mathfrak{s}}^{n r}$. Define

$$
w=\sum_{l<e_{F_{\mathfrak{s}} / K} b \rho_{\mathfrak{s}}} u_{l}{\sqrt[b]{\pi_{\mathfrak{s}}}}^{l}
$$

We first show that $w \in F_{\mathfrak{s}}^{\mathrm{t}}$. It trivially follows if $w=0$. Suppose $0 \neq w \notin F_{\mathfrak{s}}^{\mathrm{t}}$, and that $u_{l_{0}} \sqrt[b]{\pi_{\mathfrak{s}}} l_{0}$ is the lowest valuation term of the expansion which is not in $F_{\mathfrak{s}}^{\mathrm{t}}$. Let $w^{\prime}=\sum_{l<l_{0}} u_{l} \sqrt[b]{\pi_{\mathfrak{s}}} l$. Note that $w^{\prime} \in F_{\mathfrak{s}}^{\mathrm{t}}$ for our assumption on l_{0}. As $v\left(w-w_{\mathfrak{s}}\right) \geq \rho_{\mathfrak{s}}$, we have $v\left(w_{\mathfrak{s}}-w^{\prime}\right)=v\left(w-w^{\prime}\right)=l_{0} / e_{F_{\mathfrak{s}} / K} b$. Since $L \subseteq F_{\mathfrak{s}}^{\mathrm{t}}$, we have $w_{\mathfrak{s}}-w^{\prime} \in F_{\mathfrak{s}}^{\mathrm{t}}$ and so the denominator of l_{0} / b is not divisible by p. But then $u_{l_{0}}{\sqrt[b]{\pi_{\mathfrak{s}}}}^{l_{0}} \in F_{\mathfrak{s}}^{\mathrm{t}}$ as $u_{l_{0}} \in F_{\mathfrak{s}}^{n r} \subseteq F_{\mathfrak{s}}^{\mathrm{t}}$ and $\sqrt[b]{\pi_{\mathfrak{s}}}{ }^{l_{0}} \in F_{\mathfrak{s}}^{\mathrm{t}}$.

Let $\mathcal{D}_{\mathfrak{t}}=\left\{x \in K^{\mathrm{s}} \mid v\left(x-w_{\mathfrak{s}}\right) \geq \rho_{\mathfrak{s}}\right\}$ be the smallest disc in K^{s} cutting out \mathfrak{t}. Note that $\operatorname{Stab}_{G_{K}}\left(\mathcal{D}_{\mathfrak{t}}\right)=$ $G_{\mathfrak{t}}$. Since $w \in \mathcal{D}_{\mathfrak{t}}$, for $\sigma \in \operatorname{Gal}\left(K^{\mathfrak{s}} / F_{\mathfrak{s}}\right) \subseteq G_{\mathfrak{t}}$ we have $\sigma(w) \in \mathcal{D}_{\mathfrak{t}}$ and so $v\left(\sigma(w)-w_{\mathfrak{s}}\right) \geq \rho_{\mathfrak{s}}$. Therefore the terms in the v-adic expansions of $\sigma(w)$ and w agree up to $\sqrt[b]{\pi_{\mathfrak{s}}} e_{F_{\mathfrak{s}} K} b \rho_{\mathfrak{s}}$ (excluded). Furthermore, if $w \in L$, then w is a rational centre of \mathfrak{s}. Indeed, for any $r \in \mathfrak{s}$ one has

$$
v(r-w) \geq \min \left\{v\left(r-w_{\mathfrak{s}}\right), v\left(w-w_{\mathfrak{s}}\right)\right\} \geq \rho_{\mathfrak{s}}
$$

We showed $w \in F_{\mathfrak{s}}^{\mathrm{t}}$. It remains to prove that $w \in F_{\mathfrak{s}}$, i.e. it is $\operatorname{Gal}\left(K^{\mathrm{s}} / F_{\mathfrak{s}}\right)$-invariant. Suppose not, and that $u_{l} \sqrt[b]{\pi_{\mathfrak{s}}} l$ is the lowest valuation term of the expansion which is not $\operatorname{Gal}\left(K^{\mathrm{s}} / F_{\mathfrak{s}}\right)$-invariant. Note that the denominator of l / b is not divisible by p since $w \in F_{\mathfrak{s}}^{\mathrm{t}}$. If $b \nmid l$, then there is some element σ of tame inertia of $F_{\mathfrak{s}}$ which fixes $u_{l} \in F_{\mathfrak{s}}^{n r}$ and maps $\sqrt[b]{\pi_{\mathfrak{s}}} l$ to $\zeta \sqrt[b]{\pi_{\mathfrak{s}}} l$, where $\zeta \neq 1$ is a root of unity; this contradicts the fact that $\sigma(w) \equiv w \bmod \sqrt[b]{\pi_{\mathfrak{s}}} e_{F_{\mathfrak{5}} / K} b \rho_{\mathfrak{s}}$. If $b \mid l$, then we must have $u_{l} \notin F_{\mathfrak{s}}$. Then there exists some element $\sigma \in \operatorname{Gal}\left(F_{\mathfrak{s}}^{n r} / F_{\mathfrak{s}}\right)$ so that $\sigma\left(u_{l}\right) \neq u_{l}$; this contradicts $\sigma(w) \equiv w \bmod \sqrt[b]{\pi_{\mathfrak{s}}}{ }^{e_{F_{5} / K} b \rho_{\mathfrak{s}}}$ similarly to before.

A. 2 Dualising sheaf under base extensions

Let F / K be a finite Galois extension and let O_{F} be the ring of integers of F.
Lemma A.2.1 Let M be a flat O_{K}-module and $M_{F}:=M \otimes_{O_{K}} O_{F}$. Then

$$
M \simeq M_{F}^{\operatorname{Gal}(F / K)}=\left\{m \in M_{F} \mid \sigma(m)=m \text { for every } \sigma \in \operatorname{Gal}(F / K)\right\}
$$

Proof. As M is flat, the functor $M \otimes_{O_{K}}$ - is (left) exact. From the isomorphism $O_{K} \simeq O_{F}^{\operatorname{Gal(F/K)}}$ it follows that

$$
M \otimes_{O_{K}} O_{K} \simeq M \otimes_{O_{K}} O_{F}^{\mathrm{Gal}(F / K)}
$$

that is $M \simeq M_{F}^{\mathrm{Gal}(F / K)}$, as required.
Proposition A.2.2 Let C be a geometrically connected, smooth, projective curve of genus $g \geq 1$ and let \mathcal{C} be a regular model of C over O_{K}. Denote by C_{F} and $\mathcal{C}_{O_{F}}$ the base extended schemes. Then $H^{0}\left(\mathcal{C}_{F}, \omega_{\mathcal{C}_{F} / O_{F}}\right) \simeq H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right) \otimes_{O_{K}} O_{F}$ and

$$
H^{0}\left(\mathcal{C}, \omega_{\mathcal{C} / O_{K}}\right) \simeq H^{0}\left(\mathcal{C}_{F}, \omega_{\mathcal{C}_{F} / O_{F}}\right)^{\operatorname{Gal}(F / K)}
$$

Proof. The lemma follows from the following results: [Liu4, Proposition 10.1.17], [Liu4, Theorem 6.4.9(b)], [Liu4, Exercise 6.4.6], [Liu4, Corollary 5.2.27] and the previous lemma.

SMOOTH COMPLETION AND BAKER'S MODEL

The content of this appendix is particularly related to Chapter 3. In §B.1, as a corollary of a more general result on varieties, we show that every smooth projective curve has a dense open subscheme which is isomorphic to a smooth plane curve. In §B. 2 we show that not every smooth projective curve C admits a Baker's model.

B. 1 Birational smooth hypersurface of a variety

Let k be a perfect field. Recall that an algebraic variety Z over k, denoted Z / k, is a scheme $Z \rightarrow$ Spec k of finite type.

Lemma B.1. 1 Let Z/k be a geometrically reduced algebraic variety, pure of dimension n. Suppose either $n>0$ or k infinite. Then there exists a separable polynomial $f \in k\left(x_{1}, \ldots, x_{n}\right)[y]$, such that $k(Z)=k\left(x_{1}, \ldots, x_{n}\right)[y] /(f)$.

Proof. Let Z_{1}, \ldots, Z_{m} be the irreducible components of Z. From [Liu4, Proposition 7.1.15], [Liu4, Lemma 7.5.2(a)] it follows that $k(Z) \simeq \bigoplus_{i=1}^{m} k\left(Z_{i}\right)$. Let $i=1, \ldots, m$. As Z is pure, $\operatorname{dim} Z_{i}=\operatorname{dim} Z=n$. Since Z_{i} is geometrically reduced and integral, it follows from [Liu4, Proposition 3.2.15] that the field of functions $k\left(Z_{i}\right)$ is a finite separable extension of a purely trascendental extension $k\left(x_{1}, \ldots, x_{n}\right)$. Hence there exists a monic irreducible separable polynomial $f_{i} \in k\left(x_{1}, \ldots, x_{n}\right)[y]$ such that

$$
k\left(Z_{i}\right) \simeq k\left(x_{1}, \ldots, x_{n}\right)[y] /\left(f_{i}\right)
$$

We want to show that we can inductively choose the polynomials f_{i} above such that f_{i} and f_{j} are coprime for all $j<i$. Suppose we have fixed f_{1}, \ldots, f_{i-1} for some $i \geq 1$, and let $g_{i} \in$ $k\left(x_{1}, \ldots, x_{n}\right)[y]$ be any monic irreducible polynomial such that $k\left(Z_{i}\right) \simeq k\left(x_{1}, \ldots, x_{n}\right)[y] /\left(g_{i}\right)$. Since
$k\left(x_{1}, \ldots, x_{n}\right)$ is infinite, there exists $c \in k\left(x_{1}, \ldots, x_{n}\right)$ such that $\tau_{c} g_{i} \neq f_{j}$ for any $j<i$, where $\tau_{c} g_{i}$ is the polynomial defined by $\tau_{c} g_{i}(y)=g_{i}(y-c)$. But $\tau_{c} g_{i}$ and f_{j} are irreducible monic polynomials, so $\operatorname{gcd}\left(\tau_{c} g_{i}, f_{j}\right)=1$. Moreover, $\tau_{c} g_{i}$ is separable and

$$
k\left(x_{1}, \ldots, x_{n}\right)[y] /\left(g_{i}\right) \simeq k\left(x_{1}, \ldots, x_{n}\right)[y] /\left(\tau_{c} g_{i}\right)
$$

via the map taking $y \mapsto y-c$. Then choose $f_{i}=\tau_{c} g_{i}$.
Thus assume $\operatorname{gcd}\left(f_{i}, f_{j}\right)=1$ for any $i, j=1, \ldots, m$. From the Chinese Remainder Theorem it follows that

$$
k(Z) \simeq \bigoplus_{i=1}^{m} k\left(Z_{i}\right) \simeq \bigoplus_{i=1}^{m} \frac{k\left(x_{1}, \ldots, x_{n}\right)[y]}{\left(f_{i}\right)} \simeq \frac{k\left(x_{1}, \ldots, x_{n}\right)[y]}{(f)}
$$

where $f=\prod_{i=1}^{m} f_{i}$.
The following result is a variant of [BMS, Theorem 5.7].
Theorem B.1.2 Let Z/k be a geometrically reduced, separated algebraic variety, pure of dimension n. Suppose either $n>0$ or k infinite. Then there exists a smooth affine hypersurface V in \mathbb{A}_{k}^{n+1} birational to Z.

Proof. Lemma B.1.1 shows that there exists a separable polynomial $f \in k\left(x_{1}, \ldots, x_{n}\right)[y]$ such that $k(Z) \simeq k\left(x_{1}, \ldots, x_{n}\right)[y] /(f)$. Rescaling f by an element of $k\left(x_{1}, \ldots, x_{n}\right)$ if necessary, we can assume that f is a polynomial in $k\left[x_{1}, \ldots, x_{n}, y\right]$ with no irreducible factors in $k\left[x_{1}, \ldots, x_{n}\right]$. Hence the total quotient ring of $k\left[x_{1}, \ldots, x_{n}, y\right] /(f)$ is $k\left(x_{1}, \ldots, x_{n}\right)[y] /(f)$. It follows that there exists a birational map $Z \rightarrow Z_{0}$, where Z_{0} is the affine hypersurface defined by $f\left(x_{1}, \ldots, x_{n}, y\right)=0$. Let $A=k\left[x_{1}, \ldots, x_{n}, y\right] /(f)$ be the coordinate ring of Z_{0}. If Z_{0} is smooth then we are done. Suppose Z_{0} is not smooth. Then there exists $h \in J \cap k\left[x_{1}, \ldots, x_{n}\right]$, where $J \subset k\left[x_{1}, \ldots, x_{n}, y\right]$ is the ideal defining the singular locus of Z_{0}.

The rest of the proof follows the spirit of [BMS, Theorem 5.7]. Expand $f=\sum_{i=0}^{d} c_{i} y^{i}$, where $c_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$, and $c_{0} \neq 0$. Via the change of variable $\left(h c_{0}^{2}\right) y^{\prime}=y$ we get $f=\sum_{i=0}^{d} c_{i}\left(h c_{0}^{2}\right)^{i}\left(y^{\prime}\right)^{i}$. Dividing by c_{0}, we define $f^{\prime}=1+\sum_{i=1}^{d} c_{i} c_{0}^{i-1}\left(h c_{0} y^{\prime}\right)^{i}$ and $Z_{0}^{\prime}=\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}, y^{\prime}\right] /\left(f^{\prime}\right)$. Then via the homomorphism $y \mapsto\left(h c_{0}^{2}\right) y^{\prime}$ we see that Z_{0}^{\prime} is isomorphic to the smooth dense open subvariety $D\left(h c_{0}\right)$ of Z_{0}. Thus Z_{0}^{\prime} is a smooth affine hypersurface in \mathbb{A}_{k}^{n+1} birational to Z.

Lemma B.1.3 If a smooth affine curve C_{0} / k is birational to a smooth projective curve C / k, then C is isomorphic to the smooth completion of C_{0}. Equivalently, there exists an open immersion with dense image $C_{0} \hookrightarrow C$.

Proof. Since C is complete and C_{0} is smooth and separated (as affine), the birational map $C_{0-->} C$ uniquely extends to a separated birational morphism $\iota: C_{0} \rightarrow C$. Denoting by \tilde{C} the smooth completion of C_{0} note that ι decomposes into the canonical open immersion $C_{0} \hookrightarrow \tilde{C}$ and the morphism $\tilde{\imath}: \tilde{C} \rightarrow C$ extending the rational map given by ι. Therefore it suffices to prove that $\tilde{\imath}$ is an isomorphism.

First note that $\tilde{\imath}$ is proper by [Liu4, Proposition 3.3.16(e)] since \tilde{C} and C are complete. Furthermore, both \tilde{C} and C are smooth, so they are geometrically reduced and have irreducible connected components. For any connected component \tilde{U} of \tilde{C} there is a connected component U of C such that \tilde{l} restricts to a morphism $\iota_{U}: \tilde{U} \rightarrow U$. Note that ι_{U} is a proper birational morphism, as \tilde{U} is a closed subscheme of \tilde{C} and $\tilde{\imath}$ is proper birational. Since both \tilde{U} and U are integral and smooth of dimension 1, and so normal, [Liu4, Corollary 4.4.3(b)] implies that $\iota_{U}: \tilde{U} \rightarrow U$ is an isomorphism. It follows that $\tilde{\imath}: \tilde{C} \rightarrow C$ is an isomorphism.

Corollary B.1.4 Every smooth projective curve C/k has a dense affine open which is isomorphic to a smooth plane curve.

Proof. From Theorem B.1.2 there exists a smooth affine plane curve C_{0} birational to C. Then Lemma B.1.3 concludes the proof.

B. 2 Existence of a Baker's model

Let k be a perfect field. We say that a curve C / k is nice if it is geometrically connected, smooth and projective over k. In this appendix we slightly extend some results in [CV1, CV2] for studying the existence of a Baker's model of a nice curve. Define the index of a nice curve C / k to be the smallest extension degree of a field K / k such that $C(K) \neq \varnothing$.

Lemma B.2.1 Let C be a nice curve of genus 1. Then C admits a Baker's model if and only if C has index at most 3 .

Proof. Suppose C has index at most 3. Then by [CV1, Lemma 4.1] the curve C is nondegenerate. Hence C has an outer regular Baker's model.

Suppose now that C admits a Baker's model. Then there exists a smooth curve $C_{0} \hookrightarrow C$ defined in $\mathbb{G}_{m, k}^{2}$ by $f \in k\left[x^{ \pm 1}, y^{ \pm 1}\right]$ such that the completion C_{1} of C_{0} with respect to the Newton polygon Δ of f is regular. We follow the spirit of the proof of [CV1, Lemma 4.1]. Since the arithmetic genus of C is 1 there is exactly 1 interior integer point of Δ. There are 16 equivalence classes of integral polytopes with this condition (see [CV1, Appendix]). Then without loss of generality we can assume Δ is in this list. Note that there is an edge $\ell \subseteq \partial \Delta$ such that $\#\left(\ell \cap \mathbb{Z}^{2}\right) \leq 4$. Let v be the normal vector of ℓ and $\alpha=(v,()) \in \Sigma_{1}$. Then $\left.f\right|_{\alpha}$ has at most 3 roots in \bar{k}^{\times}by Proposition 3.4.1. Therefore the splitting field K of $\left.f\right|_{\alpha}$ has degree ≤ 3 over k. Furthermore, by definition C_{1} has at least one point defined over K visible on C_{α}. Thus C_{1}, and so C, has index at most 3 .

Remark B.2.2. The lemma above implies that there are nice curves which does not have a Baker's model. Indeed, if k is a number field, [Cla] proves there exist nice curves of genus 1 of any index.

Theorem B.2.3 Let C be a nice curve of genus $g \leq 3$. If k is finite or $C(k) \neq \varnothing$ then C admits a Baker's model.

APPENDIX B. SMOOTH COMPLETION AND BAKER'S MODEL

Proof. The first theorem in [CV1] and [CV2, Proposition 3.2] show C is nondegenerate except when C is birational to a curve C_{0} given in $\mathbb{G}_{m, k}^{2}$ by

$$
\begin{array}{ll}
f^{(2)}=(x+y)^{4}+(x y)^{2}+x y(x+y+1)+(x+y+1)^{2}, & \text { with } k=\mathbb{F}_{2}, \text { or } \\
f^{(3)}=\left(x^{2}+1\right)^{2}+y-y^{3}, & \text { with } k=\mathbb{F}_{3} .
\end{array}
$$

Recall that if C is nondegenerate then it has an outer regular Baker's model. Therefore it suffices to show that in the two exceptional cases above the completion C_{1} of the curve C_{0} with respect to its Newton polygon is smooth. We use the notation of §3.1.3.

Suppose $k=\mathbb{F}_{2}$ and $C_{0}: f^{(2)}=0$ over $\mathbb{G}_{m, \mathbb{F}_{2}}^{2}$. Note that C_{0} is smooth. Denote $f=f^{(2)}$. The Newton polygon Δ of f is

where the normal vectors of the edges $\ell_{1}, \ell_{2}, \ell_{3}$ of Δ are respectively $\beta_{1}=(0,1), \beta_{2}=(1,0)$, $\beta_{3}=(-1,-1)$. Then by fixing $\delta_{\beta_{1}}=(1,0), \delta_{\beta_{2}}=(-1,-1), \delta_{\beta_{3}}=(0,1)$ we have

$$
f_{\ell_{i}}(X, Y)=\left(X^{2}+X+1\right)^{2}+X(X+1) Y+\left(X^{2}+X+1\right) Y^{2}+Y^{4}
$$

for every $i=1,2,3$. Note that the points on $Y=0$ are regular points of $C_{\ell_{i}}$. Thus C_{ℓ} is smooth for any edge ℓ of Δ and so C_{1} is smooth.

Suppose $k=\mathbb{F}_{3}$ and $C_{0}: f^{(3)}=0$ over $\mathbb{G}_{m, \mathbb{F}_{3}}^{2}$. Note that C_{0} is smooth. Denote $f=f^{(3)}$. The Newton polygon Δ of f is

where the normal vectors of the edges $\ell_{1}, \ell_{2}, \ell_{3}$ of Δ are respectively $\beta_{1}=(0,1), \beta_{2}=(1,0)$, $\beta_{3}=(-3,-4)$. We can choose $\delta_{\beta_{1}}=(1,0)$ so that

$$
f_{\ell_{1}}(X, Y)=\left(X^{2}+1\right)^{2}+Y-Y^{3} .
$$

The points on $Y=0$ are regular points of $C_{\ell_{1}}$ and so $C_{\ell_{1}}$ is smooth. Furthermore, up to a power of X the polynomials $f \mid \ell_{2}$ and $f \ell_{\ell_{3}}$ equal $X^{3}+X^{2}-1$ and $-X+1$ respectively. It follows that the charts $C_{\ell_{2}}$ and $C_{\ell_{3}}$ of C_{1} are regular. Thus C_{1} is smooth.

PSEUDO-VALUATIONS AND AN EXPLICIT TOROIDAL EMBEDDING

In this appendix we cover some definitions and results for Chapter 4. In §C. 1 we give the definition of pseudo-valuation and of the associated objects. In §C. 2 and §C.3, we explicitly describe the toroidal embedding introduced in §4.5.2.

C. 1 Pseudo-valuations

Let A be an integral domain (with identity). Let $\hat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$. The ordering and the group law on \mathbb{Q} are canonically extended to the set $\hat{\mathbb{Q}}$.

Definition C.1.1 A map $v: A \rightarrow \hat{\mathbb{Q}}$ is called pseudo-valuation (of A) if
(a) $v(a b)=v(a)+v(b)$,
(b) $v(a+b) \geq \min \{v(a), v(b)\}$,
for any $a, b \in A$. A pseudo-valuation v is said valuation if it also satisfies
(c) $v(a)=\infty$ if and only if $a=0$;
we call it infinite pseudo-valuation otherwise.
Definition C.1.2 Let $v: A \rightarrow \hat{\mathbb{Q}}$ be a pseudo-valuation.

- The valuation group of a pseudo-valuation $v: A \rightarrow \hat{\mathbb{Q}}$, denoted Γ_{v}, is the subgroup generated by the subset $v(A) \cap \mathbb{Q}$ of \mathbb{Q}. Note that if $\mathbb{Z} \subseteq v(A)$, then $\Gamma_{v}=v(A) \cap \mathbb{Q}$.
- v is discrete if there exists $e \in \mathbb{Z}_{+}$such that $e \Gamma_{v}=\mathbb{Z}$. If that happens, then $e_{v}=e$ is said ramification index of v.
- The valuation ring O_{v} of a pseudo-valuation $v: A \rightarrow \hat{\mathbb{Q}}$ is the set of $a \in A$ with $v(a) \geq 0$.
- The residue ring of v is the quotient of O_{v} by the prime ideal O_{v}^{+}consisting of the elements $a \in A$ with $v(a)>0$.
- If v is a valuation, the residue field of v is the residue ring of the valuation of $\operatorname{Frac}(A)$ that v induces.

C. 2 Explicit matrices

In this section we explicitly describe the matrices introduced in §4.5.1. Recall the notation of $\S 4.5 .1$. Suppose the permutation τ equals the identity. Let m_{j}^{\prime}, for $j=0, \ldots, h$, be the quantities defined in Lemma 4.3.7. Then

$$
M_{E, i}^{\mathbb{R}}=\left(\begin{array}{ccccccccccc}
e_{1} & -h_{2} m_{1}^{\prime} & \ldots & -h_{h-1} m_{1}^{\prime} & 0 & -\beta_{h+1} m_{1}^{\prime} & \ldots & \ldots & -\beta_{n} m_{1}^{\prime} & 0 & 0 \\
0 & e_{2} & \ddots & -h_{h-1} m_{2}^{\prime} & 0 & -\beta_{h+1} m_{2}^{\prime} & \ldots & \ldots & -\beta_{n} m_{2}^{\prime} & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & e_{h-1} & 0 & -\beta_{h+1} m_{h-1}^{\prime} & \ldots & \ldots & -\beta_{n} m_{h-1}^{\prime} & 0 & 0 \\
\vdots & \vdots & \ddots & 0 & \delta a_{x} & -\beta_{h+1}^{\prime} & \ldots & \ldots & -\beta_{n}^{\prime} & d_{i} b_{x} & -d_{i+1} b_{x} \\
\vdots & \vdots & \ddots & \vdots & 0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & 0 & 1 & \ddots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ddots & 1 & 0 & 0 \\
0 & 0 & \ldots & 0 & \delta a_{y} & 0 & 0 & \ddots & 0 & d_{i} b_{y} & -d_{i+1} b_{y} \\
-h_{1} m_{0}^{\prime} & -h_{2} m_{0}^{\prime} & \ldots & -h_{h-1} m_{0}^{\prime} & \delta a_{z} & -\beta_{h+1} m_{0}^{\prime} & \ldots & \ldots & -\beta_{n} m_{0}^{\prime} & \frac{n_{i}}{\delta \epsilon_{v}} & -\frac{n_{i+1}}{\delta \epsilon_{v}}
\end{array}\right)
$$

where for any $o=h+1, \ldots, n$ we have

$$
\beta_{o}=\left\{\begin{array}{ll}
0 & \text { if } \mu_{o}>v_{E}, \\
\epsilon_{v} v\left(\psi_{o}\right) & \text { otherwise }
\end{array} \quad \beta_{o}^{\prime}= \begin{cases}v\left(\psi_{o}\right) / \lambda_{v} & \text { if } \mu_{o}>v_{E} \\
0 & \text { otherwise }\end{cases}\right.
$$

Therefore

$$
\operatorname{det} M_{E, i}^{\mathbb{R}}=\left|\begin{array}{cccccc}
e_{1} & & & & & \\
& e_{2} & & & * & \\
& & \ddots & & & \\
& & & e_{h-1} & & \\
\\
& & & & 1 & \\
& & & & \ddots & \\
& & & & & \\
& & &
\end{array}\right| \cdot\left|\begin{array}{ccc}
\delta v_{x} & d_{i} w_{x} & -d_{i+1} w_{x} \\
\delta v_{y} & d_{i} w_{y} & -d_{i+1} w_{y} \\
\delta v_{z} & \frac{n_{i}}{\delta c_{v}} & -\frac{n_{i+1}}{\delta c_{v}}
\end{array}\right|=1
$$

Furthermore, T_{h} and T equal respectively
and T_{h}^{-1} and T^{-1} are respectively
where all missing entries are 0s.
Finally, the vectors \tilde{v}_{o}, for $1 \leq o \leq n$, first n rows of the matrix $M_{E, i}^{\mathbb{R}}$, are

$$
\tilde{v}_{o}= \begin{cases}\left(0, \ldots, 0, \frac{1}{e_{o}}, \frac{h_{o+1} m_{o}}{e_{v_{o+1}}}, \ldots, \frac{h_{h-1} m_{o}}{e_{v_{h-1}}}, 0, \frac{\beta_{h+1} m_{o}}{\varepsilon_{v}} \ldots, \frac{\beta_{n} m_{o}}{\varepsilon_{v}}, 0,0\right) & \text { if } 1 \leq o<h \\ \frac{1}{\delta}\left(0, \ldots, 0, b_{y}, \beta_{h+1}^{\prime} b_{y}, \ldots, \beta_{n}^{\prime} b_{y}, b_{x}, 0\right) & \text { if } o=h \\ (0, \ldots, 0,1,0, \ldots, 0)=\varepsilon_{o} & \text { if } h<o \leq n\end{cases}
$$

C. 3 MacLane clusters fan

We want to show that the cones constructed in $\S 4.5 .2$ form a fan. Let $h=1, \ldots, n$. Recall the degree-minimal MacLane cluster $\left(\mathfrak{s}_{h}, \mu_{h}\right)$. Let

$$
\left[v_{0}, v_{1}\left(\phi_{1}\right)=\lambda_{1}, \ldots, v_{m-1}\left(\phi_{m-1}\right)=\lambda_{m-1}, v_{m}\left(\phi_{m}\right)=\lambda_{m}\right]
$$

be the cluster chain for μ_{h}. Let $c \in \mathbb{R}$, with $c>\lambda_{m-1}$ if $m>1$. Define the valuation $v_{h, c}: K(x) \rightarrow \hat{\mathbb{R}}$ given on $K[x]^{*}$ by

$$
v_{h, c}\left(\sum_{j} c_{j} \psi_{h}^{j}\right)=\min _{j}\left(v_{m-1}\left(c_{j}\right)+j c\right), \quad c_{j} \in K[x], \operatorname{deg}\left(c_{j}\right)<\operatorname{deg}\left(\psi_{h}\right)
$$

Note that when $m=1$, then $\operatorname{deg} \psi_{h}=1$ and so $v_{0}\left(c_{j}\right)=v_{K}\left(c_{j}\right)$.
Let (\mathfrak{s}, v) be a proper MacLane cluster with centre $\phi_{v}=\psi_{h}$, and let E be the h-edge L_{v}, V_{v}, or V_{v}^{0} if (\mathfrak{s}, v) is degree-minimal. Recall the notation of $\S 4.5 .1$. Let $r=r_{E}$ and $\delta=\delta_{E}$.

Lemma C.3.1 For any $i=0, \ldots, r+1$, there exist $\alpha, \beta \in \mathbb{Q} \geq 0$, such that

$$
\tilde{\omega}_{i}=\alpha \tilde{\omega}_{0}+\beta \tilde{\omega}_{r+1} .
$$

Proof. If $i=0$ or $i=r+1$, the statement is trivial. Then assume $1 \leq i \leq r$. Since $n_{0} d_{i}>n_{i} d_{0}$ and $n_{i} d_{r+1}>n_{r+1} d_{i}$, there exist $\alpha_{i}, \beta_{i} \in \mathbb{Q}_{+}$such that

$$
\alpha_{i} n_{i} d_{0}+\beta_{i} n_{i} d_{r+1}=\alpha_{i} n_{0} d_{i}+\beta_{i} n_{r+1} d_{i}
$$

Define $e=\frac{d_{i}}{d_{0} \alpha_{i}+d_{r+1} \beta_{i}}, \alpha=e \alpha_{i}, \beta=e \beta_{i}$. The lemma follows from (4.15).
Lemma C.3.2 Let $c \in \mathbb{R}$ and $v_{h, c}: K[x] \rightarrow \hat{\mathbb{R}}$ as above. If
(i) $(\mathfrak{s}, v)<(\mathfrak{t}, w), E=V_{v}$, and $w\left(\psi_{h}\right)<c<\lambda_{v}$, or
(ii) (\mathfrak{s}, v) maximal, $E=V_{v}$, and $c<\lambda_{v}$, or
(iii) (\mathfrak{s}, v) degree-minimal, $E=V_{v}^{0}$, and $c>\lambda_{v}$,
then $v_{h, c}\left(\gamma_{j, E}\right)=0$ for any $j=1, \ldots, n, j \neq h$.
Proof. Let $j=1, \ldots, n, j \neq h$. Expand

$$
\psi_{j}=\sum_{t=1}^{d} c_{t} \psi_{h}^{t}, \quad c_{t} \in K[x], c_{d} \neq 0, \operatorname{deg} c_{t}<\operatorname{deg} \psi_{h}
$$

If $j=\tau(o)$ for some $o<m$, then $v_{h, c}\left(\psi_{j}\right)=v_{m-1}\left(\psi_{j}\right)$. It follows from Lemma 4.3.3 that $v_{h, c}\left(\gamma_{j, E}\right)=0$. Hence assume $j \neq \tau(o)$ for all $o<m$.
(i) Assume $(\mathfrak{s}, v)<(\mathfrak{t}, w), E=V_{v}$, and $w\left(\psi_{h}\right)<c<\lambda_{v}$. Suppose $\mu_{j} \geq v$. Lemma 4.5.10 implies that $c_{d}=1$ and $v\left(\psi_{j}\right)=v\left(\psi_{h}^{d}\right)=d \lambda_{v}$. Since $c<\lambda_{v}$ we have $v_{h, c}\left(\psi_{j}\right)=d c$, by definition. Then $v_{h, c}\left(\gamma_{j, E}\right)=0$. Suppose $\mu_{j} \nsupseteq v$. Therefore

$$
v\left(\psi_{j}\right)=w\left(\psi_{j}\right) \leq v_{h, c}\left(\psi_{j}\right) \leq v\left(\psi_{j}\right)
$$

where the first equality follows from Lemma 4.5.10. Hence $v_{h, c}\left(\gamma_{j, E}\right)=0$.
(ii) Assume (\mathfrak{s}, v) maximal, $E=V_{v}$, and $c<\lambda_{v}$. Then $\mu_{j} \geq v$. Lemma 4.5.10 implies that $c_{d}=1$ and $v\left(\psi_{j}\right)=v\left(\psi_{h}^{d}\right)=d \lambda_{v}$. It follows that $v_{h, c}\left(\psi_{j}\right)=d c$ as $c<\lambda_{v}$. Therefore $v_{h, c}\left(\gamma_{j, E}\right)=0$.
(iii) Assume (\mathfrak{s}, v) degree-minimal, $E=V_{v}^{0}$, and $c>\lambda_{v}$. Recall the definition of v_{E}. Then $\mu_{j} \nsupseteq v_{E}$ and $v_{E}\left(\psi_{j}\right) \geq v_{h, c}\left(\psi_{j}\right) \geq v\left(\psi_{j}\right)$. It follows from (4.13) that $v_{h, c}\left(\psi_{j}\right)=v\left(\psi_{j}\right)$. Thus $v_{h, c}\left(\gamma_{j, E}\right)=0$.

Lemma C.3.3 For any $\tilde{\omega} \in \sigma_{E, i, i+1} \backslash \sigma_{E, i+1}$, there exists $c \in \mathbb{R}$, with $c>\lambda_{m-1}$ if $m>1$, so that

$$
\tilde{\omega}=e\left(v_{h, c}\left(\psi_{1}\right), \ldots, v_{h, c}\left(\psi_{n}\right), C, 1\right)
$$

for some $e \in \mathbb{R}_{+}, C \in \mathbb{R}$. In particular,
(i) if $(\mathfrak{s}, v)<(\mathfrak{t}, w)$ and $E=V_{v}$, then $w\left(\psi_{h}\right)<c<\lambda_{v}$;
(ii) if (\mathfrak{s}, v) maximal and $E=V_{v}$, then $c<\lambda_{v}$;
(iii) if (\mathfrak{s}, v) degree-minimal and $E=V_{v}^{0}$, then $c>\lambda_{v}$;
(iv) if $E=L_{v}$, then $c=\lambda_{v}$.

Proof. From Lemma 4.5.15, the statement is true for $\tilde{\omega}=\tilde{\omega}_{0}$. So suppose $\tilde{\omega} \neq \tilde{\omega}_{0}$. Lemma C.3.1 implies that $\tilde{\omega}=\alpha \tilde{\omega}_{0}+\beta \tilde{\omega}_{r+1}$ for some $\alpha, \beta \in \mathbb{R}_{+}$. Let $e \in \mathbb{R}_{+}, c \in \mathbb{R}$ as follows

$$
e=\alpha \delta \epsilon_{h} d_{0}+\beta \delta \epsilon_{h} d_{r+1}, \quad c=\frac{\alpha n_{0} a_{y}+\beta n_{r+1} a_{y}}{e}-a_{z} b_{y}
$$

From the definition of $\tilde{\omega}_{0}$ and $\tilde{\omega}_{r+1}$ in (4.15) we have

$$
\tilde{\omega}=e\left(c \tilde{\alpha}_{h 1}+\tilde{\alpha}_{\pi 1}, \ldots, c \tilde{\alpha}_{h n}+\tilde{\alpha}_{\pi n}, C, 1\right)
$$

for some $C \in \mathbb{R}$. Furthermore, c satisfies the inequalities of cases (i)-(iv) by Lemma 4.5.15. In particular, $c>\lambda_{m-1}$ if $m>1$. From (4.14), Lemma C.3.2 concludes the proof.

Remark C.3.4. Note that the element $c \in \mathbb{R}$ in Lemma C.3.3 is uniquely determined by the vector $\tilde{\omega}$. Indeed, c equals the division of the h-th coordinate of $\tilde{\omega}$ by its last coordinate.

Let $i=0, \ldots, r+1$, with $i \leq r$ if E is outer. Let $c_{i}=\frac{n_{i}}{\delta e_{v-} d_{i}} a_{y}-a_{z} b_{y}$. We define the valuation $w_{E, i}: K[x] \rightarrow \hat{\mathbb{Q}}$ by $w_{E, i}(g)=v_{h, c_{i}}(g)$ for any $g \in K[x]^{*}$. In other words, $w_{E, i}$ is given on $K[x]^{*}$ by

$$
\begin{equation*}
w_{E, i}\left(\sum_{j} a_{j} \psi_{h}^{j}\right)=\min _{j}\left(v_{-}\left(a_{j}\right)+j c_{i}\right) \tag{C.1}
\end{equation*}
$$

where $a_{j} \in K[x], \operatorname{deg}\left(a_{j}\right)<\operatorname{deg}\left(\psi_{h}\right)$. In fact, $w_{E, i}$ is the MacLane valuation

$$
w_{E, i}=\left[v_{-}, w_{E, i}\left(\psi_{h}\right)=\frac{n_{i}}{\delta e_{v_{-}} d_{i}} a_{y}-a_{z} b_{y}\right],
$$

except possibly when (\mathfrak{s}, v) is maximal, $E=V_{v}$ and $1 \leq i \leq r$. Lemma C.3.3 implies that

$$
\tilde{\omega}_{i}=\delta e_{v_{-}} d_{i}\left(w_{E, i}\left(\psi_{1}\right), \ldots, w_{E, i}\left(\psi_{n}\right), C, 1\right)
$$

for some $C \in \mathbb{Q}$. We denote C by $w_{E, i}(y)$.
Theorem C.3.5 The set of cones Σ defined in $\S 4.5 .2$ is a fan.
Proof. For any *-edge E let

$$
\sigma_{E, 0, r_{E}+1}=\bigcup_{i=0}^{r_{E}} \sigma_{E, i, i+1}
$$

By Lemma C.3.1 it suffices to show that the set

$$
\Sigma^{\prime}=\left\{\sigma_{0}\right\} \cup \bigcup_{E * \text {-edge }}\left(\sigma_{E, 0} \cup \sigma_{E, r_{E}+1} \cup \sigma_{E, 0, r_{E}+1}\right)
$$

is a fan. But this follows from Lemma C.3.3.

BIBLIOGRAPHY

[AS] A. Adolphson, S. Sperber, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. of Math. (2) 130 (1989), no. 2, 367-406.
[Bak] H. F. Baker, Examples of applications of Newton's polygon to the theory of singular points of algebraic functions, Trans. Cam. Phil. Soc. 15 (1893), 403-450.
[BMS] S. Bloch, M.P. Murthy, L. Szpiro, Zero cycles and the number of generators of an ideal (French), Mém. Soc. Math. France (N.S.) no. 38 (1989), 51-74.
[BP] P. Beelen, R. Pellikaan, The Newton polygon of plane curves with many rational points, Des. Codes Cryptogr. 21 (2000), no. 1-3, 41-67.
[BW] I. Bouw, S. Wewers, Computing L-functions and semistable reduction of superelliptic curves, Glasgow Mathematical Journal, 59(1), 77-108.
[vB] R. van Bommel, Models of curves: the Birch and Swinnerton-Dyer conjecture and ordinary reduction, Ph.D. Thesis, Leiden University, 2018, available at https: //openaccess.leidenuniv.nl/handle/1887/66673.
[CC] W. Castryck, F. Cools, Linear pencils encoded in the Newton polygon, Int. Math. Res. Not. IMRN 2017, no. 10, 2998-3049.
[CDV] W. Castryck, J. Denef, F. Vercauteren, Computing zeta functions of nondegenerate curves, Int. Math. Res. Pap. 2006, Article ID 72017, 57 pages.
[Cla] P. L. Clark, There are genus one curves of every index over every number field, J. Reine Angew. Math. 594 (2006), 201-206.
[CST] W. Castryck, M. Streng, D. Testa, Curves in characteristic 2 with non-trivial 2-torsion, Adv. Math. Commun. 8 (2014), no. 4, 479-495.
[CV1] W. Castryck, J. Voight, On nondegeneracy of curves, Algebra Number Theory 3 (2009), no. $3,255-281$.
[CV2] W. Castryck, J. Voight, Nondegenerate curves of low genus over small finite fields, Arithmetic, geometry, cryptography and coding theory 2009, 21-28, Contemp. Math., 521, Amer. Math. Soc., Providence, RI, 2010.
[$\left.\mathrm{D}^{2} \mathrm{M}^{2}\right]$ T. Dokchitser, V. Dokchitser, C. Maistret, A. Morgan, Arithmetic of Hyperelliptic Curves over Local Fields, Math. Ann. (2022).
[Dok] T. Dokchitser, Models of curves over discrete valuation rings, Duke Math. J. 170 (2021), no. 11, 2519-2574.
[EGA] A. Grothendieck, J. A. Dieudonné, Éléments de géométrie algébrique (French), Inst. Hautes Études Sci. Publ. Math., 1960-1967.
[FGMN] J. Fernández, J. Guárdia, J. Montes, E. Nart, Residual ideals of MacLane valuations, J. Algebra 427 (2015), 30-75.
[FLS ${ }^{3}$ W] E. V. Flynn, F. Leprévost, E. F. Schaefer, W. A. Stein, M. Stoll, J. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675-1697.
[FN] O. Faraggi, S. Nowell, Models of hyperelliptic curves with tame potentially semistable reduction, Trans. London Math. Soc. 7 (2020), no. 1, 49-95.
[GKZ] I. Gel'fand, M. Kapranov, A. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory \& Applications, Birkhäuser Boston, Inc., Boston, MA, 1994.
[Kau] I. Kausz, A discriminant and an upper bound for w^{2} for hyperelliptic arithmetic surfaces, Compositio Mathematica 115 (1999), 37-69.
[$\left.\mathrm{K}^{2} \mathrm{MS}\right]$ G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings I, LNM 339, Springer, 1973.
[Kod] K. Kodaira, On the structure of compact complex analytic surfaces I, II, Amer. J. Math. 86 (1964), 751-798; 88 (1966), 682-721.
[Kou] A. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Inv. Math. 32 (1976), 1-31.
[Kun] S. Kunzweiler, Differential Forms on Hyperelliptic Curves with Semistable Reduction, Res. Number Theory 6, 25 (2020), 1-17.
[KW] S. Kunzweiler, S. Wewers, Integral differential forms for superelliptic curves, preprint, arXiv:2003.12357.
[KWZ] A. Kresch, J. Wetherell, M. Zieve, Curves of every genus with many points, I: Abelian and toric families, J. Algebra 250 (2002), no. 1, 353-370.
[Liu1] Q. Liu, Modéles minimaux des courbes de genre deux, J. Reine Angew. Math. 453 (1994), 137-164.
[Liu2] Q. Liu, Conducteur et discriminant minimal de courbes de genre 2, Compositio Math. 94 (1994), no. 1, 51-79 (French).
[Liu3] Q. Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. AMS, 348, no. 11 (1996), 4577-4610 (French).
[Liu4] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Univ. Press, Oxford, 2002.
[Liu5] Q. Liu, Quelques erreurs dans la table de: 'The complete classification of fibers in pencils of curves [NU]' (French), available at https://www.math.u-bordeaux.fr/~qliu/ articles/errata-NU.pdf.
[LL] Q. Liu, D. Lorenzini, Models of curves and finite covers, Compositio Math. 118 (1999), no. 1, 61-102.
[Mac] S. MacLane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc. 40 (1936), no. 3, 363-395.
[Mau] S. Maugeais, Relévement des revetements p-cycliques des courbes rationnelles semistables, Math. Ann. 327 (2003), 365-393, (French).
[Mik] G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309-326.
[Mus1] S. Muselli, Models and integral differentials of hyperelliptic curves, preprint, arXiv:2003.01830.
[Mus2] S. Muselli, A generalisation of the toric resolution of curves, preprint, arXiv:2203.02976.
[Mus3] S. Muselli, Regular models of hyperelliptic curves, preprint, arXiv:2206.10420.
[Nér] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux (French), Publ. Math. IHES 21 (1964), 361-482.
[Neu] J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften 322, Springer-Verlag, Berlin, 1999.
[NU] Y. Namikawa, K. Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math. 9 (1973), 143-186.
[OS1] A. Obus, P. Srinivasan, Conductor-Discriminant inequality for hyperelliptic curves in odd residue characteristic, preprint, arXiv:1910.02589.
[OS2] A. Obus, P. Srinivasan, Explicit minimal embedded resolutions of divisors on models of the projective line, Res. Number Theory 8 (2022), no. 2, Paper No. 27, 27 pp.
[OW] A. Obus, S. Wewers, Explicit resolution of weak wild arithmetic surface singularities, J. Algebraic Geom. 29 (2020), 691-728.
[Rüt] J. Rüth, Models of curves and valuations, Ph.D. Thesis, Universität Ulm, 2014, available at https://oparu.uni-ulm.de/xmlui/handle/123456789/3302.
[Sai] T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J. 57 (1988), no. 1, 151-173.
[Sil1] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, SpringerVerlag, New York, 1986.
[Sil2] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer-Verlag, New York, 1994.

[^0]: - Your contact details
 - Bibliographic details for the item, including a URL
 -An outline nature of the complaint

[^1]: ${ }^{1}$ The assumption on the completeness of K is not restrictive since regular models do not change under completion of the base field.

[^2]: ${ }^{2}$ In this thesis a 'normal crossings' divisor is not a 'strict normal crossings' divisor in general (see e.g. [Liu4, Remark 9.1.7]).

[^3]: ${ }^{3}$ This is the assumption used in Theorem 2.4.18.

[^4]: ${ }^{4}$ Note that the flatness of \mathcal{C} is trivial since it is a local property.

[^5]: ${ }^{5}$ If $\Gamma_{\mathfrak{t}}$ is reducible, say $\Gamma_{\mathfrak{t}}=\Gamma_{\mathfrak{t}}^{-} \cup \Gamma_{\mathfrak{t}}^{+}$, with $\operatorname{ord}_{\Gamma_{\mathfrak{t}}}(\cdot)$ we mean $\min \left\{\operatorname{ord}_{\Gamma_{\mathfrak{t}}^{-}}(\cdot), \operatorname{ord}_{\Gamma_{\mathfrak{t}}^{+}}(\cdot)\right\}$

[^6]: ${ }^{1}$ This theorem is being implemented by T. Dokchitser in MAGMA.

[^7]: ${ }^{2}$ See Appendix C. 1 for more details.

[^8]: ${ }^{3}$ By convention, if $v=v_{0}$, then any monic integral polynomial of degree 1 is a centre of v and 0 is the radius of v.

[^9]: ${ }^{4}$ Note that $\left.\phi\right|_{v}$ is irreducible if and only if ϕ is not a centre of v, by Lemma 4.3.21.

[^10]: ${ }^{5}$ See Appendix C. 2 for more details.

