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ABSTRACT

The purpose of this thesis is to construct explicit regular models of curves, both over fields

and over discrete valuation rings. Given a perfect field k and a smooth plane curve C0/k,

we know there exists a unique non-singular projective curve C ⊇ C0. The problem is to

find C explicitly. Under certain conditions, a method called toric resolution describes such a curve

from a certain elementary combinatorial object attached to C0. Unfortunately, this approach does

not always work. We extend this classical construction to any curve, preserving its computational

and combinatorial nature.

Let K be the field of fraction of some discrete valuation ring O and C/K a hyperelliptic curve

of genus g. A regular model of C over O is a regular proper flat 2-dimensional scheme C→Spec O

with generic fibre isomorphic to C. A classical question in arithmetic geometry is how to construct

such a model. An answer is known when g ≤ 2, thanks to algorithms developed by Tate and Liu

(in residue characteristic not 2). However, there was no general algorithm for an unbounded

g. In this thesis, we explicitly construct a regular model of C over O with normal crossings for

hyperelliptic curves of arbitrary genus, when the residue characteristic of K is not 2 (and some

cases when it is 2). The description relies on a new notion we introduce: the MacLane cluster

picture.
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1
INTRODUCTION

Curves are the main object of this dissertation. A curve C defined over a field K , denoted

C/K , is a scheme C → Spec K of finite type, pure of dimension 1. Let C be a smooth,

projective curve defined over a field K . We are interested in constructing regular models

of C. Let us explain what we mean by that. Let O be an integral domain of Dedekind dimension

≤ 1 with field of fractions K .

Definition A model of C over O is a proper flat scheme C→Spec O of relative dimension 1, with

generic fibre isomorphic to C.

If dimO = 0, then O = K and a model of C over O is a curve C isomorphic to C. Note that in this

case, every model is regular since C is smooth. If dimO = 1, then a model of C is a 2-dimensional

scheme and does not have to be regular. In the following sections we present our results: explicit

constructions of models of curves over perfect fields and of regular models of hyperelliptic curves

over discrete valuation rings. All our descriptions rely on applying toric resolution approaches

over certain Newton polygons attached to the curve C.

Each subsequent chapter of this thesis consists of one of the author’s papers, is self-contained

and has its own introduction and notation. Chapter 2 is [Mus1], Chapter 3 is [Mus2] and Chapter

4 is [Mus3]. In particular, the reader is not required to read the full dissertation if they are

interested in a specific result.

1.1 Models of curves over perfect fields

Every smooth, projective curve C/K is uniquely determined by any dense open subset. In fact,

given any affine smooth curve C0/K there exists a unique smooth, projective curve C/K whose C0

is a dense open subscheme. This theoretical existence and uniqueness raises a question: can we

1



CHAPTER 1. INTRODUCTION

find a model of C over K knowing C0? Indeed, describing a model of C over K would lead to the

understanding of its geometry, e.g. the computation of the genus.

The problem presented above has a well-known solution, that consists of embedding C0 in a

projective space, taking its closure, and applying repeated blowing-ups to resolve all singularities.

However, this procedure is usually hard to handle in practice. For this reason, alternative

approaches have been developed. Here we want to focus on one of them, called toric resolution.

First, since all smooth, projective curves have a dense open subscheme isomorphic to a smooth

curve contained in the 2-dimensional torus G2
m,K , we suppose that C0 is of this form. A simple

combinatorial object, called Newton polygon, is associated with C0, and a toric variety T⊃ C0 can

be defined explicitly from it. When the closure of C0 in T is smooth, it is a model of C over K .

The construction above is easy and explicit but unfortunately it does not always give a model

of C over K . What can we done when it fails? In Chapter 3 we present a new approach that

extends the classical toric resolution if K is perfect. On one side, our method always leads to

the description of a model of C over K , called generalised Baker’s model. On the other side, it

preserves the computational and combinatorial nature of toric resolutions, relying on an iterative

construction of Newton polygons.

1.2 Models of hyperelliptic curves over discrete valuation rings

Suppose K is a complete discretely valued field of characteristic different from 2, with ring of

integers OK and residue field k. To study the arithmetic of a smooth, projective curve C/K , it is

essential to understand regular models of C over OK . However, this is a difficult problem, even

when C is a hyperelliptic curve. Similarly to the case of models over fields, a repeated blowing-ups

procedure is possible but often impractical. For this reason, the study of regular models has been

a very active area in recent years.

Let C/K be a hyperelliptic curve. In Chapter 2, we explicitly construct the minimal regular

model with normal crossings C/OK of C, under certain conditions on the curve. As an application,

we also determine a basis of integral differentials of C, that is an OK -basis for the global sections

of the relative dualising sheaf ωC/OK . Note that this is possible due to the explicit description of C.

In some cases, the result presented in this chapter is able to produce a regular model even when

the characteristic of k is 2.

In Chapter 4 a regular model over OK is constructed for any hyperelliptic curve C/K , if

char(k) ̸= 2. The description of the model is given in a closed form, thanks to a new notion we

introduce, the MacLane cluster picture. Being a bridge between some of the objects recently

used in the study of regular models, the MacLane cluster picture has the potential to have an

important role in understanding the local arithmetic of hyperelliptic curves.

The constructions in both chapters follow the same spirit. We first define a toric scheme

T→ Spec OK in which a certain open subscheme C0 of C naturally embeds. The closure of C0

2



1.2. MODELS OF HYPERELLIPTIC CURVES OVER DISCRETE VALUATION RINGS

in T is a regular model C of C over OK (with strict normal crossings). It is important to point

out that the construction of T, and consequently of C, is explicit, coming from certain Newton

polygons attached to the hyperelliptic curve.

3
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2
MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC

CURVES

The purpose of this chapter is to construct regular models of hyperelliptic curves and to

describe a basis of integral differentials attached to them. We will do it under certain

conditions on the curve, mild when the residue characteristic is not 2. The content of this

chapter can be found in the author’s paper Models and Integral Differentials of Hyperelliptic

Curves [Mus1], currently submitted for publication.

2.1 Introduction

To describe the arithmetic of curves over global fields, for example in the study of the Birch &

Swinnerton-Dyer conjecture, it is essential to understand regular models and integral differentials

over all primes, including those with very bad reduction. Constructing regular models of curves

over discrete valuation rings is not an easy problem, even in the hyperelliptic curve case. In fact,

there is no practical algorithm able to determine a model, unless the genus of the curve is 1 or we

have some tameness or nondegeneracy hypothesis.

One possible approach to tackle this problem is giving a full classification of possible regular

models in a fixed genus, as done by the Kodaira–Néron ([Kod], [Nér]) and Namikawa–Ueno ([NU],

[Liu2]) classifications for curves of genera 1 and 2, respectively. However, this strategy seems

impractical in general, since the number of models grows fast with the genus. Recently, new

approaches based on clusters [D2M2], Newton polytopes [Dok], and MacLane valuations [OW],

have been developed (see §2.1.4 for more detail).

On one side, clusters define nice and clear invariants from which one can extract information

on the local arithmetic of hyperelliptic curves. Such invariants turn out to be particularly useful

5



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

from a Galois theoretical point of view. However, for describing regular models, restrictions on the

reduction type of the curve and on the residue characteristic of its base field ([D2M2], [FN]) need

to be imposed. On the other side, Newton polytopes and MacLane valuations have a potential to

solve the problem in general, but the respective constructions are more algorithmic and so do not

give the result in closed form. Furthermore, they often depend on the chosen equation rather

than on the curve itself.

In this chapter, we present a new approach that preserves both positive aspects from the

above and provides a link between the two sides. We describe a model from simple invariants

defined from what we call rational cluster picture (Definition 2.1.10). This object modifies the

theory in [D2M2] and appears to be more suitable for our purpose (see §2.1.2). In fact, the rational

cluster picture also carries intrinsic connections with the other presented approaches, as it is

closely related to Newton polygons and to degree 1 MacLane valuations (see [FGMN]). When

these valuations are enough to describe a regular model we say that the curve has an almost

rational cluster picture (Definition 2.1.1; see also 2.3.29, 2.3.31). It turns out that the approach

even works in residue characteristic 2, under an extra assumption that the curve is y-regular

(Definition 2.1.4). Our main result is:

Let K be a complete1 discretely valued field with char(K) ̸= 2, and let Knr be its maximal

unramified extension. Let C/K be a hyperelliptic curve, having an almost rational cluster picture

over Knr. If the residue characteristic of K is 2, assume that CK nr is y-regular. Then via the

rational cluster picture we determine:

(i) the minimal regular model with normal crossings Cmin,

(ii) a basis of integral differentials of C.

This result applies to a wide class of curves, covering wild cases and base fields with even

residue characteristic. For example, if g = 2, then 107 out of 120 Namikawa-Ueno types ([NU])

arise from hyperelliptic curves satisfying the conditions of our theorem.

In residue characteristic not 2, Chapter 4 constructs a regular model with string normal

crossings of any hyperelliptic curve C. The strategy used there generalises the one of this chapter.

2.1.1 Main results

We will now present (a simplified version of) the main results of this chapter. We will then

illustrate them with an explicit example in §2.1.3.

Let K be a complete discretely valued field of residue characteristic p, with normalised

discrete valuation v and ring of integers OK . We require char(K) to be not 2, but we allow p = 2

and p = 0. In this subsection we will assume for simplicity that K = Knr. Extend the valuation v

to an algebraic closure K̄ of K . Let C/K be a hyperelliptic curve, i.e. a geometrically connected

1The assumption on the completeness of K is not restrictive since regular models do not change under completion
of the base field.

6



2.1. INTRODUCTION

smooth projective curve, double cover of P1
K . Let g be the genus of C. Assume g ≥ 1. Fix a

Weierstrass equation

C : y2 = f (x).

Let R be the set of roots of f in K̄ . Thus

f (x)= c f
∏
r∈R

(x− r).

For any r, r′ ∈R, with r ̸= r′, denote by Dr,r′ the smallest v-adic disc containing r and r′.

Definition 2.1.1 (Definition 2.3.26) We say that C has an almost rational cluster picture if for

any roots r, r′ ∈R with r ̸= r′, either

(a) Dr,r′ ∩K ̸=∅, or

(b) p > 0 and |Dr,r′ ∩R| ≤ |v(r−w)|p for some w ∈ K ,

where | · |p denotes the canonical p-adic absolute value on Q.

The intuition behind the definition above relies on certain objects, called MacLane clusters,

which we introduce in Chapter 4 (Definitions 4.1.2, 4.1.3). Precisely, C has an almost rational

cluster picture if and only if all proper MacLane clusters have degree 1.

Definition 2.1.2 A rational cluster is a non-empty subset s⊂R of the form D∩R, where D is a

v-adic disc D = {x ∈ K̄ | v(x−w)≥ ρ} for some w ∈ K and ρ ∈Q. We denote by ΣK the set of rational

clusters.

In the following definition we introduce most of the notation and quantities, associated with

rational clusters, needed in order to state our main theorems.

Definition 2.1.3 For any s ∈ΣK we say:

s proper, if |s| > 1

s′ is a child of s, if s′ ∈ΣK and s′ ⊊ s is a maximal subcluster

s minimal, if s has no proper children

s übereven, if s=⋃
s′ child of s s

′ and |s′| even for all children s′ of s

Moreover, we write s′ < s, or s= P(s′), for a child s′ of s, and r∧s for the smallest rational cluster

containing the root r ∈R and s.

Let Σ̊K be the set of proper rational clusters. For any s ∈ Σ̊K , define its radius

ρs =max
w∈K

min
r∈s v(r−w)

and the following quantities:

7
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bs = denominator of ρs
ϵs = v(c f )+∑

r∈Rρr∧s
Ds= 1 if bsϵs odd, 2 if bsϵs even

ms= (3−Ds)bs

ps = 1 if |s| is odd, 2 if |s| is even

ss = 1
2 (|s|ρs+ psρs−ϵs)

γs = 2 if |s| is even and ϵs−|s|ρs is odd, 1 otherwise

p0
s = 1 if s is minimal and s∩K ̸=∅, 2 otherwise

s0
s = −ϵs/2+ρs
γ0
s = 2 if p0

s = 2 and ϵs is odd, 1 otherwise

Definition 2.1.4 (Definition 2.4.10) We say that the hyperelliptic curve C is y-regular if either

p ̸= 2 or Ds = 1 for any s ∈ Σ̊K .

Definition 2.1.5 Let s ∈ Σ̊K and let c ∈ {0, . . . ,bs−1} such that cρs− 1
bs

∈Z. Define

s̃= {s′ ∈ΣK ∪ {∅} | s′ < s and |s′|
bs

− cϵs ∉ 2Z},

where ∅< s if s is minimal and p0
s = 2.

The genus g(s) of a rational cluster s ∈ Σ̊K is defined as follows:

• If Ds = 1, then g(s)= 0.

• If Ds = 2, then 2g(s)+1 or 2g(s)+2 equals |s|−∑
s′<s |s′|

bs
+|s̃|.

Notation 2.1.6 (2.4.17) Let α ∈Z+, a,b ∈Q, with a > b, and fix ni
di

∈Q so that

αa = n0

d0
> n1

d1
> . . .> nr

dr
> nr+1

dr+1
=αb, with

∣∣∣∣∣ni ni+1

di di+1

∣∣∣∣∣= 1,

and r minimal. We write P1(α,a,b) for a chain of P1s (Notation 2.4.16) of length r and multiplici-

ties αd1, . . . ,αdr. Denote by P1(α,a) the chain P1(α,a,⌊αa−1⌋/α).

The following theorem describes the special fibre of a regular model of C with strict normal

crossings.2 It follows from a more general result constructing a proper flat model of C uncondi-

tionally (Theorem 2.4.18). For the special fibre Cmin
s of the minimal regular model with normal

crossings, the reader can refer to Theorem 2.4.22, where we also describe a defining equation for

all components of Cmin
s and discuss the Galois action (for general K). Finally, note that all these

models are constructed in §2.5 by giving an explicit open affine cover (see §2.5.1-2.5.3).

Theorem 2.1.7 (Regular SNC model) Suppose C is y-regular and has almost rational cluster

picture. Then we can explicitly construct a regular model with strict normal crossings C/OK of C

(§2.5.1-2.5.3). Its special fibre Cs/k is given as follows.
2In this thesis a ‘normal crossings’ divisor is not a ‘strict normal crossings’ divisor in general (see e.g. [Liu4,

Remark 9.1.7]).
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(1) Every s ∈ Σ̊K gives a 1-dimensional closed subscheme Γs of multiplicity ms. If s is übereven

and ϵs is even, then Γs is the disjoint union of Γ−s ≃P1 and Γ+s ≃P1, otherwise Γs is a smooth

geometrically integral curve of genus g(s) (write Γ−s =Γ+s =Γs in this case).

(2) Every s ∈ Σ̊K with Ds = 1 gives (|s|−∑
s′∈Σ̊K ,s′<s |s′|+ p0

s −2)/bs open-ended P1s of multiplicity

bs from Γs.

(3) Finally, for any s ∈ Σ̊K draw the following chains of P1s:

Conditions Chain From To

s minimal P1(γ0
s ,−s0

s) Γ−s open-ended

s minimal, p0
s /γ0

s = 2 P1(γ0
s ,−s0

s) Γ+s open-ended

s ̸=R P1(γs, ss, ss− ps · ρs−ρP(s)
2 ) Γ−s Γ−P(s)

s ̸=R, ps/γs = 2 P1(γs, ss, ss− ps · ρs−ρP(s)
2 ) Γ+s Γ+P(s)

s=R P1(γs, ss) Γ−s open-ended

s=R, ps/γs = 2 P1(γs, ss) Γ+s open-ended

When p ̸= 2, Theorem 2.1.7 is generalised by Theorem 4.1.7, constructing a regular model

with strict normal crossings for any hyperelliptic curve.

Definition 2.1.8 For any s ∈ Σ̊K , an element ws ∈ K is called rational centre of s if minr∈s v(r−
ws)= ρs.

If s′ < s and ws′ is a rational centre of s′, then ws′ is also a rational centre of s. For any

minimal rational cluster s′ fix a rational centre ws′ . For any s ∈ Σ̊K fix ws = ws′ for some minimal

rational cluster s′ ⊆ s.

The following result gives a basis of integral differentials when K = Knr. In Theorem 2.6.4 we

extend it to the case K ̸= Knr.

Theorem 2.1.9 (Theorem 2.6.3) Suppose C is y-regular and has almost rational cluster picture.

For i = 0, . . . , g−1, inductively

(i) define e i :=max
t∈Σ̊K

{
ϵt

2
−ρt−

i−1∑
j=0
ρs j∧t

}
;

(ii) choose clusters si ∈ Σ̊K so that e i = ϵsi
2 −∑i

j=0ρs j∧si . If s and s′ are two possible choices for si

satisfying s′ ⊊ s, then choose si = s.

Then a basis of integral differentials is given by

µi =π⌊e i⌋
i−1∏
j=0

(x−ws j )
dx
2y

, i = 0, . . . , g−1.
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Note that given e i as in the previous theorem, the sum
∑g−1

i=0 ⌊e i⌋ is the quantity, often denoted

by v(ω◦/ω), appearing in the period in the Birch and Swinnerton-Dyer conjecture (for more details

see [FLS3W], [vB, §1.3]).

2.1.2 Rational cluster picture

In this subsection we define the rational cluster picture and compare it with the classical cluster

picture defined in [D2M2]. We will show, via a simple example, in which sense the new object we

introduce appears to be more suitable for the study of regular models.

Definition 2.1.10 (Definition 2.3.9) Let K and C as before. The rational cluster picture of C is

the collection of its rational clusters ΣK together with their radii.

Example 2.1.11 Let p be any prime number and set K =Qnr
p . Let Ep/Qnr

p given by y2 = x3 − p.

Then Ep is an elliptic curve with Kodaira-Néron reduction type II. Therefore the minimal regular

model (with normal crossings) of Ep does not depend on p. This is in accordance with the fact that

the rational cluster picture of Ep is the same for all p. Indeed, the set of roots of the polynomial

x3 − p is R= { 3
pp,ζ3 3

pp,ζ2
3

3
pp}, where ζ3 is a primitive 3-rd of unity. Hence the rational cluster

picture of Ep is

1
3

R

1

for any p,

where we denoted with bullet points the roots in R, with a surrounding oval the only rational

cluster R, and with the subscript the radius ρR of R.

A different behaviour is observed when we consider the cluster picture [D2M2, Definition

1.26] of Ep, collection of its clusters together with their depths. The cluster picture of Ep is

p = 2 p = 3 p > 3

cluster picture
not defined 5

6

R

1

1
3

R

1

where the subscripts represent the depth of the cluster R. It does depend on p and differs from

the rational cluster picture when p = 3 (if we do not consider non-proper clusters). Thus, although

the cluster picture is particularly useful for Galois theoretical problems, the rational cluster

picture appears to be a more suitable object for the study of regular models of the curve.

Finally, note that Ep has an almost rational cluster picture. For any two distinct roots r, r′ ∈R,

the smallest v-adic disc Dr,r′ containing them also contains the whole R. The element 0 ∈Qnr
p

belongs to Dr,r′ when p ̸= 3, while |Dr,r′ ∩R| = 3= |v(r)|p, if p = 3.

The advantages of the rational cluster picture discussed in this subsection can also be observed

in the following example where we study a more complex family of hyperelliptic curves having

almost rational cluster picture.

10
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2.1.3 Example

In this subsection we are going to present an example of a family of hyperelliptic curves Cp

satisfying the hypothesis of Theorems 2.1.7 and 2.1.9. Via those results we will then describe

the special fibre of the minimal regular model and a basis of integral differentials of Cp. All the

computations involved are explained in detail in Examples 2.3.32, 2.4.24 and 2.6.5.

For any prime number p, let a ∈ Zp, b ∈ Z×
p such that the polynomial x2 + ax+ b is not a

square modulo p. Let Cp/Qp be the hyperelliptic curve of genus 4 given by y2 = f (x), where

f (x)= (x6 +ap4x3 +bp8)((x− p)3 − p11). The curve Cp/Qnr
p has an almost rational cluster picture

and is y-regular when p = 2. Its rational cluster picture is

t3 t4 R

1

where ρt3 = 4
3 , ρt4 = 11

3 , and ρR = 1. From Theorem 2.1.7 we can construct a regular model with

strict normal crossings of Cp with special fibre

2
ΓR

1

6
Γt4

1

2
3

4
5

3 4

2

6
Γt3 4

332

over F̄p. Computing the self-intersection of each irreducible component we easily see that this

model coincides with the minimal regular model Cmin. Theorem 2.4.22 also describes the action

of the Galois group Gal(F̄p/Fp) on the special fibre Cmin
s of Cmin. If the roots of x2 +ax+b mod p

are in Fp then the absolute Galois group acts trivially on each component, otherwise it swaps the

2 irreducible components of multiplicity 3 intersecting Γt3 .

From Theorem 2.1.9 it follows that, for any p, a basis of integral differentials of Cp/Qnr
p is

given by

µ0 = p4 · dx
2y

, µ1 = p3(x− p) · dx
2y

, µ2 = p(x− p)x · dx
2y

, µ3 = (x− p)x2 · dx
2y

.

In fact, this is also a basis of integral differentials of Cp/Qp since they are all defined over Qp

(see Proposition A.2.2).

Below we will present related works of other authors concerning regular models and integral

differentials of hyperelliptic curves. Note that the example presented here is not covered by

[D2M2] and [Dok] since the curve Cp is not semistable and not ∆v-regular. In fact, if p = 3 the

curve Cp does not even have tamely potential semistable reduction. The results in [FN] assume

p > 2 and Cp with tamely potential semistable reduction, hence they can not be used when

p = 2,3. Finally, there is no classification for genus 4 curves.

11
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2.1.4 Related works of other authors

Let K be a discretely valued field with residue field k of characteristic p and let C/K be a

hyperelliptic curve of genus g.

In genus 1, when k is perfect, thanks to Tate’s algorithm, one can describe the minimal

regular model and the space of integral differentials of an elliptic curve C (see for example [Sil2,

IV.8.2], [Liu4, Theorem 9.4.35]).

If K = C(t) and C has genus 2, then Namikawa and Ueno [NU] and Liu [Liu5] give a full

classification of the possible configurations of the special fibre of the minimal regular model of C.

If p ̸= 2, then Liu and Lorenzini show in [LL] that regular models of C can be seen as double

cover of well-chosen regular models of P1
K . Since the latter can be found by using the MacLane

valuations ([Mac]) approach in [OW], this argument gives a way to describe any regular model

of a hyperelliptic curve. At the moment there is no known closed form description of a regular

model based on this approach and it has not been generalised to the p = 2 case.

If p > 2, k finite, and C is semistable, then in [D2M2] the authors explicitly construct a minimal

regular model in terms of the cluster picture of C. Under the same assumptions, Kunzweiler

[Kun] gives a basis of integral differentials rephrasing [Kau, Proposition 5.5] in terms of the

cluster invariants introduced in [D2M2]. These results can be recovered from Theorem 2.4.22 (see

Corollary 2.4.26) and Theorem 2.6.3.

If p > 2 and C is semistable over some tamely ramified extension L/K , then Faraggi and

Nowell [FN] find the special fibre of the minimal regular model of C with strict normal crossings

taking the quotient of the stable model of CL and resolving the (tame) singularities. However,

since they do not describe the charts of the model, their result does not immediately yield all

arithmetic invariants, such as a basis of integral differentials.

The last work we want to recall represents an important ingredient of the strategy we will

use in this chapter (described more precisely in the next subsection). T. Dokchitser in [Dok] shows

that the toric resolution of C gives a regular model in case of ∆v-regularity ([Dok, Definition 3.9]).

This result, used also in [FN], holds for general curves and in any residue characteristic. In his

paper, Dokchitser also describes a basis of integral differentials since his model is given as open

cover of affine schemes. In Corollary 2.3.25 and Theorem 2.6.1, we will rephrase his results for

hyperelliptic curves by using rational cluster picture invariants from §2.3.

2.1.5 Strategy and outline of the chapter

In [Dok], Dokchitser not only describes a regular model of C in case of ∆v-regularity, but also

constructs a proper flat model C∆ without any assumptions on C. Assume C is y-regular and has

an almost rational cluster picture over Knr with rational centres w1, . . . ,wm ∈ Knr. Our approach

to construct the minimal regular model with normal crossings of C is composed by the following

steps:

12
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• Consider the x-translated hyperelliptic curves Cwh /Knr : y2 = f (x+wh), for h = 1, . . . ,m. For

each h, [Dok, Theorem 3.14] constructs a proper flat model Cwh
∆ , possibly singular.

• We glue regular open subschemes of these models along common opens, and show that the

result is a proper flat regular model C of CK nr with strict normal crossings.

• We give a complete description of what components of the special fibre of C have to be blown

down to obtain the minimal model with normal crossings Cmin of CK nr .

• Finally, we describe the action of the absolute Galois group Gk of k on the special fibre of

Cmin.

We will explicitly describe both the models Cwh
∆ and C. This allows us to study the global sections

of its relative dualising sheaf ωC/OK (C).

In §2.2, we present some results on Newton polygons used in the following sections. In

§2.3, we recall the basic objects and notation of [D2M2] and define the rational cluster picture.

Moreover, we relate it with the notions given in §2.2. This comparison allows us to rephrase the

objects in [Dok] in terms of rational clusters invariants in §2.4. In the same section we also state

the theorems which describe the special fibres of a proper flat model (Theorem 2.4.18) and of

the minimal regular model with normal crossings (Theorem 2.4.22) of C. The construction of

these models, from which the two theorems above follow, is presented in §2.5. Finally, in §2.6,

Theorems 2.6.3 and 2.6.4 describe a basis of integral differentials of C, in terms of rational

clusters invariants defined in §2.3.

2.1.6 Notation

The following is main notation for fields, hyperelliptic curves and Newton polytopes.

K ,v complete field with normalised discrete valuation v
OK ,π,k, p ring of integers, uniformiser, residue field, char(k)
K̄ , k̄ fixed algebraic closure of K , residue field of K̄
Ks,Knr separable closure, maximal unramified extension of K in K̄
OKnr ,ks ring of integers of Knr, residue field of Knr

F extension of K in K̄ , unramified in §2.4
GK ,Gk absolute Galois groups Gal(Ks/K),Gal(ks/k)
f (x) =∑

aixi, polynomial in K[x], separable from §2.3
NP( f ) Newton polygon of f , lower convex hull of {(i,v(ai)) | ai ̸= 0}
f |L, f |L restriction and reduction of f to an edge L of NP( f ) (2.2.5)
g(x, y) = y2 − f (x), polynomial in K[x, y] defining C
fw(x), fh(x) = f (x+w), f (x+wh), for a given rational centre wh

gw(x, y), gh(x, y) = y2 − fw(x), y2 − fh(x)
C,Cw hyperelliptic curve given by g(x, y)= 0, gw(x, y)= 0
∆w,∆w

v Newton polytopes attached to Cw as in [Dok, §1.1]
Fw
t ,Lw

t ,V w
t ,V w

0 v-faces and v-edges of ∆w (2.4.4)

13



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

For a separable polynomial f ∈ k[x] or a hyperelliptic curve C/K : y2 = f (x) as above, the
following is the main notation for clusters.

c f ,R leading coefficient and set of roots of f
Σ f ,ΣC cluster picture, the set of clusters of f ,C (2.3.2)
s ∈ΣC cluster, s=D∩R, for a v-adic disc D (2.3.1)
Gs,Ks,ks Gs =StabGK (s); Ks = (Ks)Gs ; ks residue field of Ks

ds =minr,r′∈s v(r− r′) is the depth of a cluster s (2.3.1)
s′ < s= P(s′) s′ is a child of s and s is the parent of s′ (2.3.3)
s∧ t smallest cluster containing s and t (2.3.3)
ρs =maxw∈F minr∈s v(r−w), radius of s ∈ΣCF (2.3.8, 2.4.6)
bs denominator of ρs (2.4.6)
ws rational centre of s (2.3.8)
ϵs = v(c f )+∑

r∈Rρr∧s (2.3.19, 2.4.6)
Σrat

f ,Σrat
C rational cluster picture (2.3.9)

s ∈Σrat
C rational cluster (2.3.9)

ΣF =Σrat
CF

, for some extension F/K (2.4.6)

Σz
f ,Σz

C cluster picture centred at z (2.3.34)

s ∈Σz
C cluster centred at z (2.3.33)

ρz
s,ϵz

s ρz
s =minr∈s v(r− z), ϵz

s = v(c f )+∑
r∈Rρz

r∧s (2.3.35)
ΣW , Σ̊ ΣW =⋃

w∈W Σw
C , Σ̊⊂ΣKnr non-removable clusters (2.4.19)

whl = wh −wl for fixed rational centres wh,wl (§2.5.1)
uhl ,ρhl uhl ∈O×

K , ρhl ∈Z such that whl = uhlπ
ρhl ; uhh = 0 (§2.5.1)

Ds,ms Ds = 1 if bsϵs odd, 2 if bsϵs even; ms = (3−Ds)bs (2.4.6)
ps = 1 if |s| is odd, 2 if |s| is even (2.4.6)
γs = 2 if |s| is even and ϵs−|s|ρs is odd, 1 otherwise (2.4.6)
p0
s = 1 if s is minimal and s∩Ks ̸=∅, 2 otherwise (2.4.6)

γ0
s = 2 if p0

s = 2 and ϵs is odd, 1 otherwise (2.4.6)
ss, s0

s ss = 1
2 (|s|ρs+ psρs−ϵs), s0

s =−ϵs/2+ρs (2.4.6)

gs, g0
s, f W

s , fs, f̃s polynomials in one variable over ks (2.4.14, 2.4.21)

2.2 Newton polygon

Let K be a complete field with a normalised valuation v, ring of integers OK , uniformiser π,

and residue field k of characteristic p. We fix K̄ , an algebraic closure of K , of residue field k̄,

and we denote by Ks the separable closure of K in K̄ . Denote by Knr the maximal unramified

extension of K in Ks, by OK nr its ring of integers, and by ks its residue field. Note that ks is the

separable closure of k in k̄. Extend the valuation v to K̄ . Finally, write GK , Gk for the Galois

groups Gal(Ks/K), Gal(ks/k), respectively.

Notation 2.2.1 Let OK̄ = {a ∈ K̄ | v(a)≥ 0}. Throughout this thesis, given an element a ∈OK̄ , we

will write a mod π for the reduction of a in k̄. Similarly, given a polynomial h ∈ OK̄ [x1, . . . , xn],
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namely h = ∑
ai1,...,in · xi1

1 · · ·xin
n , we will write h mod π for the polynomial

∑
(ai1,...,in mod π) ·

xi1
1 · · ·xin

n ∈ k̄[x1, . . . , xn].

Let f ∈ K[x] be a non-zero polynomial of degree d, say

f (x)=
d∑

i=0
aixi.

The Newton polygon of f , denoted NP( f ), is

NP( f )= lower convex hull {(i,v(ai)) | i = 0, . . . ,d, ai ̸= 0}⊂R2.

We recall the following well-known result (see for example [Neu, II.6.3,6.4]).

Theorem 2.2.2 Let i0 < . . . < is = d be the set of indices in {0, . . . ,d} such that the points

(i0,v(ai0)), . . . , (is,v(ais )) are the vertices of NP( f ). For any j = 1, . . . , s, denote by ρ j the slope

of the edge of NP( f ) which links the points (i j−1,v(ai j−1)) and (i j,v(ai j )). Then f has a unique

factorisation over K as a product

f = ad · g0 · g1 · · · gs,

where g0 = xi0 and, for all j = 1, . . . , s,

• the polynomials g j ∈ K[x] are monic of degree d j = i j − i j−1,

• all the roots of g j have valuation −ρ j in K̄.

In particular, NP(g j) is a segment of slope −ρ j.

Corollary 2.2.3 With the notation of Theorem 2.2.2, the polynomial f has exactly d j roots of

valuation −ρ j for all j = 1, . . . , s.

Corollary 2.2.4 If f =∑
aixi is irreducible of degree d and a0 ̸= 0, then NP( f ) is a segment linking

the points (0,v(a0)) and (d,v(ad)).

Definition 2.2.5 (Restriction and reduction) Let f =∑d
i=0 aixi ∈ K[x] and consider an edge L of

its Newton polygon NP( f ). Let (i1,v(ai1)), (i2,v(ai2)), i1 < i2 be the two endpoints of L. Denote by

ρ the slope of L and by n the denominator of ρ. Define the restriction of f to L as

f |L :=
(i2−i1)/n∑

i=0
ani+i1 xi ∈ K[x].

Moreover we define the reduction of f with respect to L to be the polynomial

f |L :=π−c f |L(π−nρx) mod π ∈ k[x],

where c = v(ai1)= v(ai2)+ (i1 − i2)ρ.
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Remark 2.2.6. These definitions coincide with the ones given in [Dok, Definitions 3.4, 3.5] when

the number of variables is 1 (for suitable choices of basis of the lattices used in the definitions).

Until the end of the section let f ∈ K[x], consider a factorisation f = ad · g0 · g1 · · · gs as in

Theorem 2.2.2. Denote by L j the edge of slope ρ j of NP( f ), for any j = 1. . . s.

Remark 2.2.7. By the lower convexity of NP( f ), for all j = 1, . . . , s, note that f |L j = c̄ j · g j|NP(g j)

for some c̄ j ∈ k×. In particular they define the same k-scheme in Gm,k. More precisely, for any

j = 1, . . . , s, let

u j = ad ·
s∏

i= j+1
g i(0).

Then c̄ j = u j/πv(u j) mod π.

Definition 2.2.8 We say that f is NP-regular if the k-scheme

XL j : { f |L j = 0}⊂Gm,k

is smooth for all j = 1, . . . , s.

Lemma 2.2.9 The polynomial f = ad · g0 · g1 · · · gs is NP-regular if and only if g j is NP-regular for

every j = 1, . . . , s.

Proof. The lemma follows from Remark 2.2.7.

We conclude this section with two examples.

Example 2.2.10 Let f = x11 +9x7 −3x6 +9x5 +81x−27 ∈Q3[x]. Then the Newton polygon of f is

i

v(ai)

(11,0)

(6,1)

(0,3)
ρ1 =− 1

3
L1

ρ2 =− 1
5

L2

Corollary 2.2.3 implies that f has 6 roots of valuation 1
3 and 5 roots of valuation 1

5 . Furthermore,

the two polynomials g1 and g2 in the factorisation f = g1 · g2 of Theorem 2.2.2 turn out to be

g1 = x6 +9, g2 = x5 +9x−3.

Finally,

f |L1 =−3x2 −27=−3 · g1|NP(g1), f |L2 = x−3= g2|NP(g2);
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and

f |L1 =−x2 −1=−(x2 +1)=−g1|NP(g1), f |L2 = x−1= g2|NP(g2) in F3[x].

Thus f is NP-regular.

Example 2.2.11 We now show an example of a polynomial that is not NP-regular. Let f =
x9 +12x6 +36x3 +81 ∈Q3[x]. Then the Newton polygon of f is

i

v(ai)

(9,0)

(3,2)

(0,4) ρ1 =− 2
3L

1

ρ2 =− 1
3

L2

Corollary 2.2.3 implies that f has 3 roots of valuation 2
3 and 6 roots of valuation 1

3 . Furthermore,

the two polynomials g1 and g2 in the factorisation f = g1 · g2 of Theorem 2.2.2 are

g1 = x3 +9, g2 = x6 +3x3 +9.

Finally,

f |L1 = 36x+81 f |L2 = x2 +12x+36,

g1|NP(g1) = x+9, g2|NP(g2) = x2 +3x+9;

and

f |L1 = x+1= g1|NP(g1), f |L2 = (x+2)2 = g2|NP(g2) in F3[x].

Then f is not NP-regular. In fact, in accordance with Lemma 2.2.9, g2 is not NP-regular.

2.3 Rational clusters

From now on, let f ∈ K[x] be a separable polynomial and denote by R the set of its roots in Ks

and by c f its leading coefficient. Then

f (x)= c f
∏
r∈R

(x− r).

Definition 2.3.1 ([D2M2, Definition 1.1]) A cluster (for f ) is a non-empty subset s ⊆R of the

form D∩R, where D is a v-adic disc D = {x ∈ K̄ | v(x− z)≥ d} for some z ∈ K̄ and d ∈Q. If |s| > 1

we say that s is proper and define its depth ds to be

ds = min
r,r′∈s

v(r− r′).

17



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

Note that every proper cluster is cut out by a disc of the form

D = {x ∈ K̄ | v(x− r)≥ ds}

for any r ∈ s.

Definition 2.3.2 ([D2M2, Definition 1.26]) The cluster picture of f is the collection of its clusters,

together with their depths.

We denote by Σ f the set of all clusters of f and by Σ̊ f the subset of Σ f of proper clusters.

Definition 2.3.3 ([D2M2, Definition 1.3]) If s′ ⊊ s is maximal subcluster, then we say that s′ is a

child of s and s is the parent of s′, and we write s′ < s. Since every cluster s ̸=R has one and only

one parent we write P(s) to refer to the unique parent of s.

We say that a proper cluster s is minimal if it does not have any proper child.

For two clusters (or roots) s1,s2, we write s1 ∧s2 for the smallest cluster that contains them.

Definition 2.3.4 ([D2M2, Definition 1.4]) A cluster s is odd/even if its size is odd/even. If |s| = 2,

then we say s is a twin. A cluster s is übereven if it has only even children.

Definition 2.3.5 ([D2M2, Definition 1.9]) A centre zs of a proper cluster s is any element zs ∈ Ks

such that s=D∩R, where

D = {x ∈ K̄ | v(x− zs)≥ ds}.

Equivalently, v(r− zs)≥ ds for all r ∈ s. The centre of a non-proper cluster s= {r} is r.

Definition 2.3.6 ([D2M2, Definition 1.6]) For a proper cluster s set

νs := v(c f )+ ∑
r∈R

dr∧s.

Definition 2.3.7 We say that Σ f is nested if one of the following equivalent conditions is satisfied:

(i) there exists z ∈ Ks such that z is a centre for all proper clusters s ∈Σ f ;

(ii) there is only one minimal cluster in Σ f ;

(iii) every non-minimal proper cluster has exactly one proper child.

Definition 2.3.8 A rational centre of a cluster s is any element ws ∈ K such that

min
r∈s v(r−ws)=max

w∈K
min
r∈s v(r−w).

If s= {r}, with r ∈ K , then ws = r.

If ws is a rational centre of a proper cluster s, we define the radius of s to be

ρs =min
r∈s v(r−ws).

18
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Definition 2.3.9 A rational cluster is a cluster cut out by a v-adic disc of the form D = {x ∈ K̄ |
v(x−w)≥ d} with w ∈ K and d ∈Q.

The rational cluster picture is the collection of all rational clusters of f together with their

radii.

We denote by Σrat
f ⊆ Σ f the set of rational clusters and by Σ̊rat

f the subset of Σrat
f of proper

rational clusters.

Lemma 2.3.10 Let s be a proper cluster. Then ds ≥ ρs.

Proof. First we want to show that

min
r,r′∈s

v(r− r′)=max
z∈Ks

min
r∈s v(r− z).

Clearly minr,r′∈s v(r− r′)≤maxz∈Ks minr∈s v(r− z). Let zs ∈ Ks such that

max
z∈Ks

min
r∈s v(r− z)=min

r∈s v(r− zs).

Then, for any r, r′ ∈ s, one has

v(r− r′)≥min{v(r− zs),v(r′− zs)}≥min
r∈s v(r− zs),

and so

min
r,r′∈s

v(r− r′)≥max
z∈Ks

min
r∈s v(r− z),

as required. From

ds = min
r,r′∈s

v(r− r′)=max
z∈Ks

min
r∈s v(r− z)≥max

w∈K
min
r∈s v(r−w)= ρs,

the lemma follows.

Definition 2.3.11 Given a proper cluster s ∈Σ f , we define the rationalisation srat of s to be the

smallest rational cluster containing s. By definition

srat =R∩ {x ∈ K̄ | v(x−ws)≥ ρs},

where ws is a rational centre of s and ρs is its radius.

Lemma 2.3.12 Let s ∈Σrat
f be a proper cluster with rational centre ws. Let s′ ∈Σrat

f be the child of

s with rational centre ws (let s′ =∅ if it does not exist). Then (|s|− |s′|)ρs ∈Z.

Proof. As s ∈Σrat
f , one has s= srat. Let bs be the denominator of ρs. Then bs divides the degree of

the minimal polynomial of r, for any r ∈ s satisfying v(ws− r)= ρs. Then (|s|− |s′|)ρs ∈Z, where

s′ =R∩ {x ∈ K̄ | v(x−ws)> ρs},

as required.
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Remark 2.3.13. If a proper cluster s ∈ Σ f satisfies ds = ρs, then a rational centre ws ∈ K of its

is also a centre. Hence s is a rational cluster and, in particular, is GK -invariant. On the other

hand, if a proper cluster s ∈Σ f is GK -invariant and K(s)/K is tamely ramified, then s has a centre

zs ∈ K by [D2M2, Lemma B.1]. Thus ρs = ds and s ∈Σrat
f .

Lemma 2.3.14 Let s be a proper cluster with rational centre ws and let t ∈ Σ f satisfying t ⊇ s.

Then ws is a rational centre of t and ρt ≤ ρs. Furthermore, if s is a rational cluster and t⊋ s, then

ρt < ρs.

Proof. It suffices to prove the lemma for t= P(s). Hence we first want to show that minr∈P(s) v(r−
ws)= ρP(s) and ρP(s) ≤ ρs. Note that

min
r∈P(s)

v(r−ws)≤max
w∈K

min
r∈P(s)

v(r−w)= ρP(s).

Moreover,

ρP(s) =max
w∈K

min
r∈P(s)

v(r−w)≤max
w∈K

min
r∈s v(r−w)= ρs.

If r ∈ s then v(ws− r)≥ ρs, by definition of ρs. On the other hand, if r ∈ P(s)∖s then fixing r′ ∈ s
we have

v(r−ws)= v(r− r′+ r′−ws)≥min{v(r− r′),v(r′−ws)}≥min{dP(s),ρs}≥ ρP(s),

by the previous lemma. Thus minr∈P(s) v(r−ws)= ρP(s), as required.

Now suppose s ∈Σrat
f with t⊋ s. From Definition 2.3.8, it follows that

{x ∈ K̄ | v(x−ws)≥ ρs}∩R= s⊊ t⊆ {x ∈ K̄ | v(x−ws)≥ ρt}∩R,

as ws is a rational centre of t. Thus ρt < ρs.

Lemma 2.3.15 Every cluster s with ρs < ds has no rational subcluster s′ ⊊ s.

Proof. Suppose by contradiction there exists s′ ∈ Σrat
C , s′ ⊊ s, and fix a rational centre ws′ of s′.

Then ws′ is a rational centre of s by the previous lemma. If |s′| = 1, then ws′ is also a centre of

s and this contradicts ρs < ds; so assume s′ proper. Let r′ ∈ s′ such that v(r′−ws′)= ρs′ and r ∈ s
such that v(r−ws′)= ρs. But then ds ≤ v(r−ws′ +ws′ − r′)= ρs again by Lemma 2.3.14.

In particular, the lemma above shows that if s ∈ Σ f and s′ ∈ Σrat
f is a maximal rational

subcluster of s, with s′ ⊊ s, then s′ is a child of s. Moreover, the parent of a rational cluster is

rational.

Definition 2.3.16 We say that a proper rational cluster s ∈Σrat
f is (rationally) minimal if it does

not have any proper rational child.

Lemma 2.3.17 Let s,s′ ∈Σrat
f such that s′ ⊈ s. If ws is a rational centre of s then

min
r∈s′

v(r−ws)= ρs∧s′ .
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Proof. By Lemma 2.3.14 we have

min
r∈s∧s′

v(r−ws)= ρs∧s′ .

Therefore minr∈s′ v(ws− r)≥ ρs∧s′ . Suppose by contradiction that

min
r∈s′

v(r−ws)=: ρ > ρs∧s′ .

It follows from Lemma 2.3.14 that

min
r∈s v(r−ws)= ρs > ρs∧s′

as s′ ⊈ s. But then there exists r̃ ∈ (s∧s′)∖(s∪s′) such that v(r̃−ws)= ρs∧s′ . Consider the rational

cluster

t :=R∩{
x ∈ K̄ | v(x−ws)≥min{ρ,ρs}

} ∈Σrat
f .

Then s,s′ ⊆ t, but since r̃ ∉ t we have s∧s′ ⊈ t that contradicts the minimality of s∧s′.

Lemma 2.3.18 Let t ∈Σ f with at least two children in Σrat
f . Then dt = ρt ∈Z and t ∈Σrat

f . More

precisely, if s,s′ ∈Σrat
f such that s⊊ s∧s′ ⊋ s′, then

ρs∧s′ = v(ws−ws′)= ds∧s′ ,

where ws and ws′ are rational centres of s and s′ respectively.

Proof. Clearly it suffices to prove the second statement as v(ws−ws′) ∈Z. For our assumptions

s′ ̸⊆ s. Then by Lemma 2.3.17 there exists r ∈ s′ so that v(r−ws)= ρs∧s′ . Thus,

v(ws−ws′)=min{v(ws− r),v(r−ws′)}= ρs∧s′ ,

as v(r−ws′)≥ ρs′ > ρs∧s′ by Lemma 2.3.14. Finally, ds∧s′ = ρs∧s′ follows from Lemma 2.3.15.

Definition 2.3.19 For a proper cluster s set

ϵs := v(c f )+ ∑
r∈R

ρr∧s.

Example 2.3.20 Let f = x11 −3x6 +9x5 −27 ∈Q3[x]. The set of roots of f is

R= { 3p3,ζ3
3p3,ζ2

3
3p3,− 3p3,−ζ3

3p3,−ζ2
3

3p3, 5p3,ζ5
5p3,ζ2

5
5p3,ζ3

5
5p3,ζ4

5
5p3},

where ζq is a primitive q-th root of unity for q = 3,5. Then the proper clusters of f are

s1 = { 3p3,ζ3
3p3,ζ2

3
3p3}, s2 = {− 3p3,−ζ3

3p3,−ζ2
3

3p3}, s3 = s1 ∪s2, R

with ds1 = ds2 = 5
6 , ds3 = 1

3 and dR = 1
5 . The graphic representation of the cluster picture of f is

then
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5
6

5
6 1

3 1
5

1

where the subscripts of clusters (represented as circles) are their depths.

Furthermore, note that 0 is a rational centre for all proper clusters and we have ρs1 = ρs2 =
ρs3 = 1

3 and ρR = 1
5 .

Finally, for every cluster s we can also compute νs and ϵs, that are

νs1 = νs2 = 9
2

, νs3 = ϵs1 = ϵs2 = ϵs3 = 3, νR = ϵR = 11
5

.

Example 2.3.21 Let f = x9 +12x6 +36x3 +81 ∈Q3[x] and fix an isomorphism Q3 ≃C. Then the

set of roots of f is

R= {
3
√

32,ζ3
3
√

32,ζ2
3

3
√

32,ζ9
3p3,ζ2

9
3p3,ζ4

9
3p3,ζ5

9
3p3,ζ7

9
3p3,ζ8

9
3p3},

where ζq = e2πi/q is a primitive q-th root of unity for q = 3,9. Then the proper clusters of f are

s1 = { 3p32,ζ3
3p32,ζ2

3
3p32}, s2 = {ζ9

3p3,ζ4
9

3p3,ζ7
9

3p3},

s3 = {ζ2
9

3p3,ζ5
9

3p3,ζ8
9

3p3}, s4 = s2 ∪s3, R

with ds1 = 7
6 , ds2 = ds3 = 5

6 , ds4 = 1
2 , and dR = 1

3 . The cluster picture of f is then

7
6

5
6

5
6 1

2 1
3

1

It is easy to see that 0 is a rational centre for all proper clusters and that ρs1 = 2
3 , ρs2 = ρs3 = ρs4 =

ρR = 1
3 . Finally,

νs1 = 11
2

, νs2 = νs3 = 5, νs4 = 4, νR = 3; ϵs1 = 4, ϵs2 = ϵs3 = ϵs4 = ϵR = 3.

The goal of this section is to describe the NP-regularity of f ∈ K[x] in terms of conditions on

its cluster picture.

Notation 2.3.22 If p > 0, we denote by | · |p the standard p-adic absolute value attached to Q, i.e.

|a|p = p−vp(a) for all a ∈Q. If p = 0, then we write | · |p for the function on Q identically equal to 1,

i.e. |a|p = 1 for all a ∈Q.

Lemma 2.3.23 Suppose that x ∤ f and that NP( f ) is a segment L of slope −ρ. Let n be the

denominator of ρ. Then f is NP-regular if and only if all proper clusters s ∈ Σ f with |s| > |ρ|p
satisfy ds = ρ.

More precisely:
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(i) If s ∈ Σ̊ f with |s| > |ρ|p but ds > ρ, then f |L has a non-zero multiple root ū = rn

πnρ mod π, for

some (any) r ∈ s.

(ii) The multiplicity of a root ū ∈ k̄× of f |L equals |s0|/n, where

s0 =
{
r ∈R | ū = rn

πnρ mod π
}

.

(iii) All multiple roots of f |L come from clusters s as described in (i).

Proof. Let q be the highest power of p dividing n (set q = 1 if p = 0). Let m = n/q so that p ∤ m.

Let R= {r i | i = 1, . . . ,D} be the (multi-)set of roots of f , where D := deg f . Fix some choice of npπ
and define ūi ∈ k̄× as ūi = r i/πρ mod π, for all i = 1, . . . ,D. Firstly, note that there exists a proper

cluster s with |s| > |ρ|p and ds > ρ if and only if there exists a subset I ⊆ {1, . . . ,D} of size |I| > q

such that ūi1 = ūi2 for all i1, i2 ∈ I. Indeed, given s, then I = {i ∈ {1, . . . ,D} | r i ∈ s}, while given I,

then s= {r i | ūi = ūi0 , for any i0 ∈ I}. Secondly, recall that f is not NP-regular if and only if f |L
has a multiple root in k̄×. Therefore we will prove that f |L has a non-zero multiple root if and

only if there exists a subset I ⊆ {1, . . . ,D} with size |I| > q and such that ūi1 = ūi2 for all i1, i2 ∈ I.

Note that for the lower convexity of NP( f )= L, we have

f |L(xn)=π−(v(c f )+Dρ) f (πρx) mod π.

Hence {ūi | i = 1, . . . ,D} is the multiset of roots of f |L(xn). Then there exists an n-to-1 map

φ̄ : {ūi} // {w̄ j}

ūi
� // ūm

i

,

where {w̄ j | j = 1, . . . ,D/n} is the multiset of roots of f |L. Note that w̄ j ̸= 0 for all j = 1, . . . ,D/n, so

all roots of f |L are non-zero.

Now, suppose that f is not NP-regular. We want to show that there exists a subset I ⊂ {1, . . . ,D}

with |I| > q such that ūi1 = ūi2 for all i1, i2 ∈ I. Since f is not NP-regular, its reduction f |L has a

(non-zero) multiple root. Then there exist j1, j2 ∈ {1, . . . ,D/n} so that w̄ j1 = w̄ j2 =: w̄. Hence, by the

definition of φ̄, for some (any) ū ∈ φ̄−1(w̄), there are at least 2q ūi ’s with ūi = ū. Let I denote the

set of their indices. Then |I| ≥ 2q > q and ūi1 = ūi2 for all i1, i2 ∈ I, as required.

On the other hand, suppose that there exists a subset I ⊂ {1, . . . ,D} with |I| > q and such

that ūi1 = ūi2 for all i1, i2 ∈ I. We want to show that f |L has a multiple root, that is there

exist two indices j1, j2 ∈ {1, . . . ,D/n} such that w̄ j1 = w̄ j2 . Suppose not and let j ∈ {1, . . . ,D/n}

such that w̄ j = ūm
i = φ̄(ūi) for some (all) i ∈ I. Then the polynomial xn − w̄ j = (xm − w̄ j)q ∈ k̄[x],

factor of f |L(xn), should have a root of order |I| > q. This would imply xm − w̄ j is inseparable, a

contradiction as p ∤ m.

The parts (i), (ii) and (iii) of the lemma follow from above:

(i) Given a proper cluster s ∈ Σ f with |s| > |ρ|p and ds > ρ, we showed that f |L has a non-zero

multiple root w̄ j = ūn
i = rn

i/πnρ mod π, where r i is any root in s.
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(ii) By the definition of φ̄, given w̄ ∈ k̄, the number of w̄ j ’s such that w̄ j = w̄ equals |s0|/n, where

s0 = {r i | ūn
i = w̄}.

(iii) Given a (non-zero) multiple root w̄ of f |L we showed that there exists I ⊆ {1, . . . ,D}, with |I| > q

and ūi1 = ūi2 for any i1, i2 ∈ I, such that ūn
i = w̄ for all i ∈ I. The set s= {r i | ūi = ūi0 , for any i0 ∈ I}

is a proper cluster as in (i).

Theorem 2.3.24 Let w ∈ K and fw(x)= f (x+w). For all clusters s ∈Σ f define λs =minr∈s v(r−w),

and let b be the denominator of λs. Then fw is NP-regular if and only if all proper clusters s ∈Σ f

with |s| > |λs|p have ds =λs.
More precisely:

(i) Let s ∈ Σ̊ f with |s| > |λs|p but ds > λs, and let r ∈ s with v(r −w) = λs. Then fw|L has a

non-zero multiple root ū = (r−w)b

πbλs mod π, where L is the edge of NP( fw) of slope −λs.

(ii) Let L be an edge of NP( fw) of slope −λ. Let l be the denominator of λ. The multiplicity of a

root ū ∈ k̄× of fw|L equals |s0|/l, where

s0 = {
r ∈R | v(r−w)=λ and ū = (r−w)l

πlλ mod π
}
.

(iii) For every edge L of NP( fw), the multiple roots of fw|L come from proper clusters s for f as

described in (i).

Proof. Let Rw be the set of roots of fw. Note that we have a natural bijection R→Rw, r 7→ r−w,

which induces a bijective function ψ :Σ f →Σ fw , sending

s=R∩ {x ∈ K̄ | v(x− z)> d} 7→ ψ(s)=Rw ∩ {x ∈ K̄ | v(x+w− z)> d}.

In particular, if s ∈Σ f , |s| = |ψ(s)|, ds = dψ(s) and

λs =min
r∈s v(r−w)= min

r∈ψ(s)
v(r).

Hence it suffices to show the theorem for w = 0.

Assume w = 0. Let f = c f · g0 · g1 . . . gt be a factorisation of Theorem 2.2.2. Note that if t = 0,

then either f ∈ K or f ∈ K x. In both cases, f is clearly NP-regular and has no proper clusters.

Then assume t > 0 and let −ρ i be the slope of NP(g i) for any i = 1, . . . , t. Denote by R the set of

roots of f and by Ri the set of roots of g i for i = 0, . . . , t. Note that the Ri ’s are pairwise disjoint.

From Remark 2.2.7, for every edge L of NP( f ) there exists i such that f |L = c̄i · g i|NP(g i) for some

c̄i ∈ k×. Hence, by Lemma 2.2.9 and Lemma 2.3.23, we need to prove that there exists a proper

cluster s ∈ Σ f such that |s| > |λs|p and ds > λs if and only if for some i = 1, . . . , t there exists a

proper cluster si ∈Σg i such that |si| > |λsi |p = |ρ i|p and dsi >λsi = ρ i. We will show that one can

choose s= si.
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First, note that if s is a proper cluster , then s ̸⊆ R0, as |R0| ≤ 1. Furthermore, if s ∈ Σ f

contains roots of different valuations, that is s⊈Ri for all i, then

ds = min
r,r′∈s

v(r− r′)=min
r∈s v(r)=λs =min{ρ i |Ri ∩s ̸=∅}.

Now suppose there exists a proper cluster s ∈ Σ f such that |s| > |λs|p and ds > λs. For the

observation above, the inequality ds > λs implies that s⊆Ri for some i = 1, . . . , t. Let D be the

v-adic disc such that s =D∩R. Since s ⊆Ri, one has s =D∩Ri which means that s ∈ Σg i , as

required.

Finally suppose that for some i = 1, . . . , s, there exists a proper cluster si ∈ Σg i such that

|si| > |ρ i|p and dsi > ρ i. Let r i ∈ si. Then

si = {x ∈ K̄ | v(x− r i)≥ dsi }∩Ri.

Consider the cluster s := {x ∈ K̄ | v(x− r i)≥ dsi }∩R of f . Clearly si ⊆ s. Therefore

λsi =min
r∈si

v(r)≥min
r∈s v(r)=λs,

which implies

ds = dsi > ρ i =λsi ≥λs,

where ds = dsi by construction. Again from the observation above the inequality ds >λs implies

that s is contained in R j for some j. As s∩Ri ⊇ si ∩Ri = si, we must have s⊆Ri. Thus s= si,

that concludes the proof.

Corollary 2.3.25 Let f ∈ K[x] be a separable polynomial. Let w ∈ K and fw(x)= f (x+w). Then

fw is NP-regular if and only if all proper clusters s ∈ Σ f have rational centre w and those with

|s| > |ρs|p satisfy ds = ρs.

Proof. If fw is NP-regular, then, from the previous theorem, all proper clusters s ∈ Σ f with

|s| > |λs|p have ds =λs, where λs =minr∈s v(r−w). First let s ∈Σ f proper and assume |s| > |λs|p.

Then

ds =λs =min
r∈s v(r−w)≤max

z∈K
min
r∈s v(r− z)= ρs ≤ ds,

so ds = λs = ρs, and w is a rational centre of s. Now assume |s| ≤ |λs|p. In particular, p > 0 and

λs ∉Z, and so

min
r∈s v(r−w)=λs ̸= v(w−ws),

where ws is a rational centre of s. Let r ∈ s such that v(r−w)=λs. Then

ρs ≤ v(r−w+w−ws)=min{λs,v(w−ws)}≤λs.

Clearly

ρs =max
z∈K

min
r∈s v(r− z)≥min

r∈s v(r−w)=λs,

25



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

that implies ρs =λs =minr∈s v(r−w). Hence w is a rational centre of s.

On the other hand, suppose that all proper clusters s ∈ Σ f have rational centre w ∈ K and

those with |s| > |ρs|p satisfy ds = ρs. Then ρs =minr∈s v(r−w) for any s ∈Σ f . Thus fw is NP-regular

again by Theorem 2.3.24.

Definition 2.3.26 We say that f has an almost rational cluster picture if all proper clusters

s ∈Σ f with |s| > |ρs|p have ds = ρs.

In the following we give different characterisations of the previous definition.

Corollary 2.3.27 Suppose that K(R)/K is a tamely ramified extension. Then f has an almost

rational cluster picture if and only if every proper cluster s ∈Σ f is GK -invariant.

Proof. Since K(R)/K is tamely ramified, every cluster s ∈Σ f has |ρs|p ≤ 1. Therefore the corollary

follows from Remark 2.3.13.

Corollary 2.3.28 Suppose that K(R)/K is a tamely ramified extension. Then fw is NP-regular for

some w ∈ K if and only if Σ f is nested.

Proof. First note that every cluster s ∈Σ f has |ρs|p ≤ 1, as K(R)/K is tamely ramified. Therefore

from Corollary 2.3.25, we need to prove that Σ f is nested if and only if all clusters s ∈Σ f have

ds = ρs and rational centre w, for some w ∈ K . But this follows from Remark 2.3.13.

Corollary 2.3.29 The polynomial f has an almost rational cluster picture if and only if for every

r ∈R K, there exists w ∈ K so that rb
w := (r−w)b

πb·v(r−w) mod π is a simple root of fw|L, where b is the

denominator of v(r−w), fw(x)= f (x+w) and L is the edge of NP( fw) of slope −v(r−w).

Proof. Fix r̃ ∈R K and let s be the smallest proper cluster containing r̃. Let ws be a rational

centre of s. Note that v(r̃−ws)= ρs =minr∈s v(r−ws), for the choice of s, as r̃ ∉ K . Moreover, for

any proper cluster t containing r̃, we have s⊆ t. In particular, ws is a rational centre of all such

clusters. Let L be the edge of NP( fws) of slope −ρs. Theorem 2.3.24 shows that r̃bs
ws

is a multiple

root of fws |L if and only if there exists t ∈Σ f such that r̃ ∈ t, |t| > |ρt|p and dt > ρt. Therefore if f

has an almost rational cluster picture, then r̃bs
ws

is a simple root.

Suppose there exists t ∈Σ f such that |t| > |ρt|p and dt > ρt. Then t∩K =∅. By Theorem 2.3.24,

it remains to show that for any w ∈ K , we have |t| > |λt|p and dt >λt, where λt =minr∈t v(r−w).

First note dt > ρt ≥λt. Moreover, in the proof of Corollary 2.3.25, we saw that |t| ≤ |λt|p implies

ρt =λt, which contradicts |t| > |ρt|p.

Lemma 2.3.30 Suppose f has an almost rational cluster picture. Let s ∈Σ f proper. If ds > ρs, then

p > 0 and |s| is a p-power. In particular, if ws is a rational centre of s, for any r ∈ s, the elements

r−ws are all the roots of a monic polynomial with coefficients in Ks, and constant term c such

that |v(c)|p ≥ 1.
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2.3. RATIONAL CLUSTERS

Proof. Let s ∈Σ f proper, with ds > ρs. Since f has an almost rational cluster picture, we must

have |s| ≤ |ρs|p. Since s is proper, p > 0. Let bs be the denominator of ρs. Then vp(bs)> 1. Fix a

rational centre ws of s and a root r ∈ s such that v(r−ws)= ρs. Consider s′ = {x ∈R | v(x− r)> ρs}.
Then s ⊆ s′ ≤ srat and |s′| ≤ |ρs|p (as ds′ > ρs = ρs′). Let Iw be the wild inertia subgroup of GK .

As v(r−ws) = ρs there exist σ1 = id,σ2, . . . ,σ|ρs|p ∈ Iw such that σi(r) ̸= σ j(r) if i ̸= j. Moreover,

v(σi(r)− r) > ρs from the definition of Iw. Therefore σi(r) ∈ s′ for all i and so |ρs|p ≤ |s′|. Thus

|s′| = |ρs|p and s⊆ s′ = {σi(r) | i = 1, . . . , |ρs|p}. Finally, as s′ contains only conjugates of r ∈ s, the

cluster s′ is union of orbits of s. In particular, |s| | |s′| = |ρs|p, and so |s| is a p-power. The rest of

the lemma follows.

Proposition 2.3.31 The polynomial f has an almost rational cluster picture if and only if for

every proper cluster s ∈Σ f one of the following is satisfied:

(a) the smallest disc containing s also contains a rational point;

(b) p > 0 and after a translation by an element of K, the elements in s are all the roots of a

polynomial with coefficients in Ks of p-power degree and constant term c such that |v(c)|p ≥ 1.

Proof. First of all note that point (a) is equivalent to requiring ds = ρs. Therefore by Lemma

2.3.30 it only remains to show that if ds > ρs and (b) is satisfied, then |s| ≤ |ρs|p. Let F ∈ Ks[x]

be the polynomial in (b) and let w ∈ K such that r −w, for r ∈ s, are all the roots of F. We

have ρs ≥minr∈s v(r−w). Fix r ∈ s such that ρs ≥ v(r−w)=: ρ. Since ds > ρs ≥ v(r−w), we have

v(r′−w)= v(r−w)= ρ for any r′ ∈ s. Then

|s| = degF = |1/degF|p ≤ |v(c)/degF|p = |ρ|p.

Let ws be a rational centre of s. Suppose by contradiction that ρs > ρ. Let rs ∈ s such that

v(rs−ws)= ρs. Hence

v(w−ws)= v(w− rs+ rs−ws)=min{ρ,ρs}= ρ.

But then ρ ∈Z, which contradicts |s| ≤ |ρ|p.

Example 2.3.32 Let p be a prime number and let a ∈ Zp, b ∈ Z×
p such that the polynomial

x2+ax+b is not a square modulo p. Let f ∈Qp[x] given by f (x)= (x6+ap4x3+bp8)((x− p)3− p11).

For any prime p the rational cluster picture of f is

t3 t4 R

1

where ρt3 = 4
3 , ρt4 = 11

3 , and ρR = 1.

If p ̸= 3, then the proper clusters of Σ f coincide with the rational clusters above and ds = ρs
for any s= t3,t4,R. In particular, f has an almost rational cluster picture when p ̸= 3.

Suppose p = 3. Then the cluster picture of f is
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t1 t2 t3
t4

R

1

where dt1 = dt2 = 11
6 , dt3 = ρt1 = ρt2 = 4

3 , dt4 = 25
6 and dR = 1. Thus f has an almost rational cluster

picture for all p.

We conclude this section by showing that the cluster picture centred at 0 completely determines

the Newton polygon of f .

Definition 2.3.33 Let z ∈ K̄ . A cluster centred at z is a cluster cut out by a v-adic disc of the form

D = {x ∈ K̄ | v(x− z)≥ d} for some d ∈Q.

Definition 2.3.34 Let z ∈ K̄ . Define Σz
f to be the set of all clusters centred at z. Write Σ̊z

f for the

set Σz
f ∖ {{z}}. Note that Σz

f is nested, i.e. every cluster s ∈Σz
f has at most one child in Σz

f .

Definition 2.3.35 Let z ∈ K̄ , and let s ∈Σ f {{z}}. The radius of s with respect to the centre z is

ρz
s =min

r∈s v(r− z).

The cluster picture centred at z of f is the collection of all clusters in Σz
f together with their radii

with respect to z. Finally set

ϵz
s := v(c f )+ ∑

r∈R
ρz

r∧s.

Remark 2.3.36. From the definitions above, if s is a cluster centred at z ∈ Ks, then s=R∩ {x ∈ K̄ |
v(x− z)≥ ρz

s}. But this does not mean z is a centre for s, that is false in general. For example, R is

clearly a cluster centred at any z ∈ Ks, but there are elements of Ks which are not centres of R,

e.g. any z ∈ Ks with valuation v(z)<minr∈R v(r).

Remark 2.3.37. Let s ∈Σ f be a proper cluster with centre z and rational centre w. Then s ∈Σz
f ,

ds = ρz
s , νs = ϵz

s , ρs = ρw
s , and ϵs = ϵw

s . Furthermore, s ∈Σrat
f if and only if s ∈Σw

f .

Lemma 2.3.38 Let w ∈ K and let fw(x)= f (x+w). Then there is a 1-to-1 correspondence between

the clusters in Σ̊w
f and the edges of NP( fw). More explicitly, let s1 ⊂ ·· · ⊂ sn =R be the clusters in

Σ̊w
f and let s0 = {w} if {w} ∈Σw

f or s0 =∅ otherwise. Then NP( fw) has vertices Q i, i = 0, . . . ,n, where

• Qn = (|R|,ϵw
R
−|R|ρw

R
)= (deg f ,v(c f )),

• Q i = (|si|,ϵw
si
−|si|ρw

si
)= (|si|,ϵw

si+1
−|si|ρw

si+1
), for i = 1, . . . ,n−1,

• Q0 = (|s0|,ϵw
s1
−|s0|ρw

s1
).

and edges L i, i = 1, . . . ,n, of slope −ρw
si

linking Q i−1 and Q i.

Furthermore, for any i = 1, . . . ,n we have

fw|L i (x
bi )= u

πv(u)

∏
r∈si si−1(x+ w−r

πρi ) mod π, u = c f
∏

r∈R s(w− r),

where ρ i = ρw
si

, and bi is the denominator of ρ i.
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Proof. Without loss of generality we can assume w = 0 so that fw = f . First note that the

coordinates of Qn are trivial. Now consider a factorisation f = c f · g0 · g1 · · · gs of Theorem 2.2.2.

Recall the polynomials g j are monic and g0 | x. Let R j be the set of roots of g j. It follows from

the definition of cluster centred at 0 that

n = s, and si =
i⋃

j=0
R j for all i = 0, . . . ,n.

Therefore s0 =R0 and Ri = si si−1 for any i = 1, . . . ,n.

Let i = 1, . . . ,n−1. Then the x-coordinate of Q i follows as

|si| =
i∑

j=0
|R j| =

i∑
j=0

deg g j = deg
i∏

j=0
g j.

The y-coordinate of Q i equals the sum of v(c f ) and the valuation of the constant term of
∏n

j=i+1 g j,

so

Q i =
(
|si|,v(c f )+

n∑
j=i+1

|R j|v(r j)
)
,

where r j is any root in R j. But since si =⋃i
j=0R j, we have v(r j)= ρ0

s j
. Therefore

v(c f )+
n∑

j=i+1
|R j|v(r j)= v(c f )+

n∑
j=i+1

(|s j|− |s j−1|)ρ0
s j
= ϵ0

si
−|si|ρ0

si
.

Moreover,

ϵ0
si
−|si|ρ0

si
= ϵ0

si+1
−|si|ρ0

si+1

from the easy computation ϵ0
si
− ϵ0

si+1
= |si|

(
ρ0
si
−ρ0

si+1

)
. Finally the x-coordinate of Q0 is trivial,

while its y-coordinate equals

v(c f )+
n∑

j=1
|R j|v(r j)= v(c f )+

n∑
j=1

(|s j|− |s j−1|)ρ0
s j
= ϵ0

s1
−|s0|ρ0

s1
,

that concludes the first part of the proof as |s0| = |R0| = deg g0.

The computation of f |L i follows from Remark 2.2.7. Indeed, let i = 1, . . . ,n, and define

c̄i = u/πv(u) mod π, where u = c f
∏n

j=i+1 g j(0). Then f |L i (x
bi ) = c̄i · g i|NP(g i)(x

bi ), where bi is the

denominator of ρ0
si

. But

g i|NP(g i)(x
bi )= g i

(
π
ρ0
si x

)
/πρ

0
si

deg g i mod π.

Thus the lemma follows as Ri = si si−1.

Notation 2.3.39 Let s ∈ Σ̊w
f . Following the notation of Lemma 2.3.38, let i ∈ {1, . . . ,n} be such that

s= si. We will write Lw
s for the edge L i.
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2.4 Description of a regular model

From now on, assume char(K) ̸= 2 and let C/K be a hyperelliptic curve, i.e. a geometrically

connected, smooth, projective curve, equipped with a separable morphism C → P1
K of degree

2. Let y2 = f (x) be a Weierstrass equation of C. Suppose deg f > 1. Let g be the genus of C.

Accordingly with [D2M2] we define the cluster picture of C as the cluster picture of f . Analogously,

all definitions and notations attached to f given in §2.3 (e.g. Σ f , Σrat
f , Σz

f ) are given for C in the

same way (e.g. ΣC, Σrat
C , Σz

C). In particular, we will say that C has an almost rational cluster

picture if f does (Definition 2.3.26).

In this section we present the main results that follow from the construction of a model of

C we develop in §2.5. In particular, Theorem 2.4.22 describes the special fibre of the minimal

regular model of C with normal crossings when C has an almost rational cluster picture and is

y-regular (Definition 2.4.10).

For the following sections we will use the main definitions, notations and results of [Dok, §3].

In particular, we recall (without stating) the definitions of Newton polytopes ∆ and ∆v attached

to a polynomial g ∈ K[x, y], v-vertices/edges/faces of ∆, the denominator δλ of a v-face/edge λ, the

slopes sλ1, sλ2 of a v-edge λ.

Notation 2.4.1 We denote by ∆w
v and ∆w respectively the polytopes ∆v and ∆ attached to the

polynomial gw(x, y) = y2 − f (x+w). The piecewise affine function v : ∆w → R determining the

bijection ∆w → ∆w
v , P 7→ (P,v(P)), will be denoted by v (with a little abuse of notation). For a

v-face F of ∆w, denote by vF :∆w → R the linear function equal to v on F. Since the projection

∆w
v →∆w is a bijection, given a vertex/edge/face λ of ∆w

v we will denote by the same symbol λ the

corresponding v-vertex/edge/face of ∆w. Since they are mainly used for indexing, this will not

cause confusion.

Notation 2.4.2 Given a v-edge λ of ∆w, we will denote by rλ the smallest non-negative integer

such that we can fix ni
di

∈Q, for i = 0, . . . , rλ+1 so that

sλ1 = n0

d0
> n1

d1
> . . .> nrλ

drλ
> nrλ+1

drλ+1
= sλ2, with

∣∣∣∣∣ni ni+1

di di+1

∣∣∣∣∣= 1.

Thanks to Lemma 2.3.38 we can explicitly relate the Newton polytope ∆w
v of gw(x, y) and the

cluster picture centred at w of C.

Lemma 2.4.3 Let w ∈ K. Then there is a 1-to-1 correspondence between the clusters in Σ̊w
C and the

faces of the Newton polytope ∆w
v . More explicitly, let s1 ⊂ ·· · ⊂ sn =R be the clusters in Σ̊w

C and let

s0 = {w} if {w} ∈Σw
C or s0 =∅ otherwise. Then ∆w

v has vertices T, Q i, i = 0, . . . ,n, where

• T = (0,2,0),

• Qn = (|R|,0,v(c f )),
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• Q i = (|si|,0,ϵw
si+1

−|si|ρw
si+1

) for i = 0, . . . ,n−1,

and edges L i (i = 1, . . . ,n), linking Q i−1 and Q i, and Vj ( j = 0, . . . ,n), linking Q j and T. Further-

more, (possible choices for) the slopes of the v-edges of ∆w are:

•

sVn
1 = δVn

−v(c f )+(|R|−2g)ρw
R

2 and sVn
2 = ⌊sVn

1 −1⌋;

•

sVi
1 = δVi

(
− ϵw

si
2 +

(⌊ |si |
2

⌋
+1

)
ρw
si

)
,

sVi
2 = δVi

(
− ϵw

si+1
2 +

(⌊ |si |
2

⌋
+1

)
ρw
si+1

) for all i = 1, . . . ,n−1;

•

sV0
1 = δV0

(
ϵw
s1
2 −ρw

s1

)
and sV0

2 = ⌊sV0
1 −1⌋;

•

sL i
1 = δL i

(
− ϵw

si
2 +

(⌊ |si |
2

⌋
+1

)
ρw
si

)
and sL i

2 = ⌊sL i
1 −1⌋,

for all i = 1, . . . ,n. In particular, as δL i is the denominator of ρw
si

,

rL i =
1 if δL iϵ

w
si

is odd,

0 if δL iϵ
w
si

is even.

Finally, for suitable choices of basis of the lattices in [Dok, 3.4, 3.5], we have

gw|L i (x
bi )=− u

πv(u)

∏
r∈si si−1(x+ w−r

πρi ) mod π, u = c f
∏

r∈R si (w− r),

for any i = 1, . . . ,n, where ρ i = ρw
si

, and bi is the denominator of ρ i;

gw|Vj (y)= y|V̄j(Z)Z|−1 − u
πv(u) mod π, u = c f

∏
r∈R s j (w− r),

for any j = 0, . . . ,n, where |V̄j(Z)Z| is the number of integer points P on the v-edge Vj with v(P) ∈Z,

endpoints included.

Proof. The structure of ∆w
v follows from Lemma 2.3.38. For the computation of the slopes, we

only need to individuate, for all the v-edges, the two points P0 and P1 of [Dok, Definition 3.12]. It

is easy to see that the followings are admissible choices.

• For Vi and L i (i = 1, . . . ,n), choose P0 = (|si|,0) and P1 =
(⌊ |si |−1

2

⌋
,1

)
.

• For V0, choose P0 = (0,2) and P1 = (1,1);
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The second part of the lemma then follows from the first one. The computations of the re-

ductions also follows from Lemma 2.3.38 by choosing the lattices Q i−1 + (bi,0)Z for gw|L i and

Q i + (−|si|/a,2/a)Z for gw|Vj , where a = |V̄j(Z)Z|−1.

Notation 2.4.4 Let C be as above and let w ∈ K . For every cluster s ∈ Σ̊w
C denote by Fw

s the v-face

of the Newton polytope ∆w of gw(x, y)= y2 − f (x+w) that corresponds to s.

Following the notation of Lemma 2.4.3, let i ∈ {1, . . . ,n} be such that s= si. We will write Lw
s ,

V w
s , V w

0 for the v-edges L i, Vi, V0, respectively.

Example 2.4.5 Let C be the hyperelliptic curve over Q3 given by the equation y2 = f (x) where

f (x)= x11 −3x6 +9x5 −27 is the polynomial of Example 2.3.20.

Its cluster picture centred at 0 is

1
3 1

5

1

where the subscripts represent the radii with respect to 0. As we can see, Σ0
C consists of two

clusters: s1 of size 6, radius 1
3 and ϵ0

s1
= 3, and s2 =R of size 11, radius 1

5 and ϵ0
s2
= 11

5 . Therefore

the picture of ∆0 broken into v-faces will be

Q0 Q1 Q2

T

L1 L2

V0 V1

V2

where T = (0,2), Q0 = (0,0), Q1 = (6,0), and Q2 = (11,0). Denoting the values of v on vertices, the

picture becomes

3 1 0

0

To state the theorems which describe the special fibre of the proper flat model C of C we will

construct in §2.5, we need some definitions.

Definition 2.4.6 Let F/K be an unramified extension and let ΣF =Σrat
CF

(i.e. set of clusters cut out

by discs with centre in F). For any proper s ∈ΣF let Gs = StabGK (s) and Ks = (Ks)Gs . We define

the following quantities:
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s ∈ΣF , proper

radius ρs = maxw∈F minr∈s v(r−w)

bs = denominator of ρs
ϵs = v(c f )+∑

r∈Rρr∧s
Ds= 1 if bsϵs odd, 2 if bsϵs even

multiplicity ms= (3−Ds)bs

parity ps = 1 if |s| is odd, 2 if |s| is even

slope ss = 1
2 (|s|ρs+ psρs−ϵs)

γs = 2 if s is even and ϵs−|s|ρs is odd, 1 otherwise

p0
s = 1 if s is minimal and s∩Ks ̸=∅, 2 otherwise

s0
s = −ϵs/2+ρs
γ0
s = 2 if p0

s = 2 and ϵs is odd, 1 otherwise

Lemma 2.4.7 Keep the notation of the previous definition and let s ∈ ΣK . Then s ∈ ΣF but the

quantities in Definition 2.4.6 do not depend on F.

Proof. A cluster s ∈ΣF belongs to ΣK if and only if σ(s)= s for any σ ∈GK . Then the result follows

from Lemma A.1.1.

Remark 2.4.8. Lemma 2.4.3 shed some light on the quantities we defined in Definition 2.4.6. Let

s ∈ΣF . Fix a rational centre ws ∈ F of s such that ws ∈ Ks if p0
s = 1. Denoting V = V ws

s , L = Lws
s ,

and V0 =V ws

0 , we have:

• bs = δL and rL = 2−Ds.

• γs = δV , ps/γs = V̄ (Z)Z−1 and sV
1 = γsss. If V is internal, that is s ̸=R, then sV

2 = γs(ss−
ps

ρs−ρP(s)
2 ).

• If s is minimal and so V0 is an edge of Fws
s , then γ0

s = δV0 , p0
s /γ0

s = V̄0(Z)Z−1 and sV0
1 =−γ0

s s0
s .

Lemma 2.4.9 Let s ∈Σrat
C with rational centre w ∈ K. Then Ds = 1 if and only if vFw

s
((a,1)) ∉Z, for

every a ∈Z.

Proof. If Ds = 1 then rLw
s
= 1 by Lemma 2.4.3, and so vFw

s
((a,1)) ∉ Z, for every a ∈ Z. Now let

c,d ∈Z such that ρs · c+d = 1/bs. If Ds = 2, then bsϵs ∈ 2Z, so

vFw
s

(cbsϵs/2,1)= vFw
s

((cbsϵs,0))
2

= ϵs− (cbsϵs)ρs
2

= dbsϵs

2
∈Z,

as required.

Definition 2.4.10 We say that C is y-regular if p ∤ Ds for every proper s ∈Σrat
C , i.e. if either p ̸= 2

or Ds = 1 for any proper s ∈Σrat
C .
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Remark 2.4.11. Let F/K be an unramified extension. Then from Lemma 2.4.7, if CF is y-regular

then C is y-regular.

The next lemma gives a characterisation of the ∆v-regularity for hyperelliptic curves. In fact,

C is ∆v-regular along the horizontal edges of ∆=∆0 if f is NP-regular, and is ∆v-regular along

the non-horizontal edges of ∆ if C is y-regular.

Lemma 2.4.12 The hyperelliptic curve C is ∆v-regular if and only if C is y-regular and f is

NP-regular.

Proof. Let g(x, y)= y2− f (x). If C is y-regular and f is NP-regular, then C is ∆v-regular by Lemma

2.4.3 and Lemma 2.4.9.

Conversely, if C is ∆v-regular, then f is NP-regular, and all clusters have rational centre 0 by

Corollary 2.3.25. It remains to show that if p = 2 then Ds = 1 for every proper s ∈Σrat
C . Suppose

there exists s ∈Σrat
C such that Ds = 2. Consider the variety X̄F0

s
([Dok, Definition 3.7]). By Lemma

2.4.9, the smoothness of X̄F0
s

implies there exists s′ ∈ Σrat
C , such that |s|− |s′| = 1. Hence ρs ∈ Z

from Lemma 2.3.12. Therefore F̄0
s (Z)= F̄0

s (Z)Z, by Lemma 2.4.9. But this gives a contradiction as

it forces either g|V 0
s′

or g|V 0
s

to be a square.

Definition 2.4.13 Let s ∈ΣF be a proper cluster and let c ∈ {0, . . . ,bs−1} such that cρs− 1
bs

∈Z.

Define

s̃= {s′ ∈ΣF ∪ {∅} | s′ < s and |s′|
bs

− cϵs ∉ 2Z},

where ∅< s if s is minimal and p0
s = 2.

The genus g(s) of a rational cluster s ∈ΣF is defined as follows:

• If Ds = 1, then g(s)= 0.

• If Ds = 2, then 2g(s)+1 or 2g(s)+2 equals

|s|−∑
s′∈ΣF ,s′<s |s′|

bs
+|s̃|.

Definition 2.4.14 Let Σmin
C be the set of rationally minimal clusters of C and let Σ⊆Σmin

C . For

each cluster s ∈ Σ, fix a rational centre ws; if possible, choose ws ∈ s. Let W be the set of these

rational centres and define ΣW = ⋃
w∈W Σw

C . For any proper cluster s ∈ ΣW fix a rational centre

ws ∈ W. Denote rs = ws−r
πρs

for r ∈R. Define reductions f W
s (x) ∈ k[x], gs ∈ k[y], and for s ∈ Σ also

g0
s ∈ k[y] by

f W
s (xbs)= u

πv(u)

∏
r∈s ⋃

s′<s s′
(x+ rs) mod π, u = c f

∏
r∈R s rs,

gs(y)= yps/γs − u
πv(u) mod π, u = c f

∏
r∈R s rs,

g0
s(y)= yp0

s/γ0
s − u

πv(u) mod π, u = c f
∏

r∈R {ws} rs.

where the union runs through all s′ ∈ΣW , s′ < s. Finally define the k-schemes
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1. XW
s : { f W

s = 0}⊂Gm,k;

2. Xs : {gs = 0}⊂Gm,k;

3. X0
s : {g0

s = 0}⊂Gm,k if s ∈Σ.

Notation 2.4.15 Given a scheme X /OK we will denote by Xη its generic fibre X ×Spec OK Spec K ,

and by Xs its special fibre X ×Spec OK Spec k.

Notation 2.4.16 If C = C1∪·· ·∪Cr is a chain of P1
ks of length r and multiplicities mi ∈Z (meeting

transversely), then ∞∈ Ci is identified with 0 ∈ Ci+1, and 0,∞∈ C are respectively 0 ∈ C1 and

∞∈ Cr. Finally, if r = 0, then C =Spec k and 0=∞.

Notation 2.4.17 Let α ∈Z+, a,b ∈Q, with a > b, and fix ni
di

∈Q so that

αa = n0

d0
> n1

d1
> . . .> nr

dr
> nr+1

dr+1
=αb, with

∣∣∣∣∣ni ni+1

di di+1

∣∣∣∣∣= 1,

and r minimal. We write P1(α,a,b) for a chain of P1
ks of length r and multiplicities αd1, . . . ,αdr.

We denote by P1(α,a) the chain P1(α,a,⌊αa−1⌋/α). Moreover, we write P̄1(α,a,b), P̄1(α,a) for

P1(α,a,b)×Spec k Spec ks, P1(α,a)×Spec k Spec ks, respectively.

Theorem 2.4.18 and Theorem 2.4.22 will follow from §2.5.

Theorem 2.4.18 Let C/K be a hyperelliptic curve given by a Weierstrass equation y2 = f (x).

Suppose deg f > 1 and let Σ, W and ΣW as in Definition 2.4.14. Then there exists a proper flat

model C/OK (constructed in §2.5) of C such that its special fibre Cs/k consists of 1-dimensional

schemes given below in (1),(2),(3),(4),(5), glued along 0-dimensional transversal intersections:

(1) Every proper cluster s ∈ΣW gives a 1-dimensional closed subscheme Γs of multiplicity ms.

Γs is not integral if and only if Ds = 2, s̃∩ (ΣW ∪ {∅}) =∅ and f W
s is a square. When this

happens, if p = 2 then Γs is not reduced and (Γs)red is irreducible of multiplicity 2 in Γs, if

p ̸= 2 then Γs is reducible, namely Γs =Γ+s ∪Γ−s , with Γ±s =P1
k.

(2) Every proper cluster s ∈ΣW with Ds = 1 gives the closed subscheme XW
s ×P1

k, of multiplicity

bs, where XW
s × {0}⊂Γs.

(3) Every proper cluster s ∈ΣW such that s ̸=R, gives the closed subscheme Xs×P1(γs, ss, ss−
ps · ρs−ρP(s)

2 ) where Xs× {0}⊂Γs and Xs× {∞}⊂ΓP(s).

(4) Every cluster s ∈Σ gives the closed subscheme X0
s ×P1(γ0

s ,−s0
s) where X0

s ×{0}⊂Γs (the chains

are open-ended).

(5) Finally, the cluster R gives the closed subscheme XR×P1(γR, sR) where XR× {0}⊂Γs (the

chains are open-ended).
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If Γs is reducible, the two points in Xs× {0} (and X0
s × {0} if s ∈Σ) belong to different irreducible

components of Γs. Similarly, if s ̸=R and ΓP(s) is reducible, the two points of Xs× {∞} belong to

different irreducible components of ΓP(s).

Furthermore, if C has an almost rational cluster picture and is y-regular, then, by choosing

Σ=Σmin
C , the model C is regular with strict normal crossings. In that case, if s is übereven and ϵs

is even, then Γs ≃ Xs×P1
k, otherwise Γs is irreducible of genus g(s).

Theorem 2.4.18 can be compared with Theorem 4.6.3 that describes a regular (proper flat)

model of C when p ̸= 2.

Definition 2.4.19 Let s ∈ΣK nr . We say that

• s is removable if either |s| = 1, or s has a child s′ ∈ΣK nr of size 2g+1 (s=R in this case).

• s is contractible if one of the following conditions holds:

1. |s| = 2 and ρs ∉Z, ϵs odd, ρP(s) ≤ ρs− 1
2 ;

2. s=R of size 2g+2, with a child s′ ∈ΣK nr of size 2g, and ρs ∉Z, v(c f ) odd, ρs′ ≥ ρs+ 1
2 ;

3. s =R of size 2g+2, union of its 2 odd proper children s1,s2 ∈ ΣK nr , with v(c f ) odd,

ρsi ≥ ρs+1 for i = 1,2.

Notation 2.4.20 Write Σ̊⊆ΣK nr for the subset of non-removable clusters.

Definition 2.4.21 Choose rational centres ws for every s ∈ Σ̊, in such a way that ws ∈ s when

p0
s = 1, and σ(ws)= wσ(s) for all σ ∈Gal(Knr/K). Denote rs = ws−r

πρs
for r ∈R and define gs, g0

s ∈ ks[y]

as in Definition 2.4.14, and fs(x) ∈ ks[x], by

x2−p0
s fs(xbs)= u

πv(u)

∏
r∈s ⋃

s′<s s′
(x+ rs) mod π, u = c f

∏
r∈R s rs,

where the union runs through all s′ ∈ Σ̊, s′ < s. Let Gs =StabGK (s), Ks = (Ks)Gs , and let ks be the

residue field of Ks. Then fs ∈ ks[x], gs ∈ ks[y], and for s minimal g0
s ∈ ks[y].

Let s0 ∈ Σ̊ be minimal and contained in s. Denote s̊= s̃ {{r}< s | r ̸= ws0}. Note that s̊ does not

depend on the choice of s0. Define f̃s ∈ ks[x] by

f̃s(x)= ∏
s′∈s̊

(
x−us′,s

) · fs(x),

where us′,s = ws′−ws

πρs
mod π if s′ ̸=∅ and us′,s = 0 otherwise.

In the next theorem we describe the special fibre of the minimal regular model of C with

normal crossings. We use Definitions/Notations 2.3.1, 2.3.3, 2.3.4, 2.3.2, 2.3.8, 2.3.9, 2.3.26, 2.4.6,

2.4.10, 2.4.13, 2.4.17, 2.4.19, 2.4.20, 2.4.21 in the statement. Note that a full description of the

model is developed in §2.5.
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Theorem 2.4.22 (Minimal regular NC model) Let C/K : y2 = f (x) be a hyperelliptic curve of genus

≥ 1. Suppose CK nr has an almost rational cluster picture and is y-regular. Then the minimal

regular model with normal crossings Cmin/OK nr of C has special fibre Cmin
s /ks described as follows:

(1) Every s ∈ Σ̊ gives a 1-dimensional subscheme Γs of multiplicity ms. If s is übereven and ϵs is

even, then Γs is the disjoint union of Γrs,−
s ≃P1

ks and Γrs,+
s ≃P1

ks , otherwise Γs is irreducible of

genus g(s) (write Γrs,−
s =Γrs,+

s =Γs in this case). The indices rs,− and rs,+ are the roots of gs

(where rs,− = rs,+ if deg gs = 1).

(2) Every s ∈ Σ̊ with Ds = 1 gives open-ended P1
kss of multiplicity bs from Γs indexed by roots of

fs.

(3) Every non-maximal element s ∈ Σ̊ gives chains P̄1(γs, ss, ss− ps · ρs−ρP(s)
2 ) from Γs to ΓP(s)

indexed by roots of gs.

(4) Every minimal element s ∈ Σ̊ gives open-ended chains P̄1(γ0
s ,−s0

s) from Γs indexed by roots of

g0
s .

(5) The maximal element s ∈ Σ̊ gives open-ended chains P̄1(γs, ss) from Γs indexed by roots of gs.

(6) Finally, blow down all Γs where s is a contractible cluster.

In (3) and (5), a chain indexed by r goes from Γr
s. In (3) the chain indexed by rs,− goes to ΓrP(s),−

P(s)
and the chain indexed by rs,+ goes to ΓrP(s),+

P(s) .

Before blowing down in (6), the components given in (1)–(5) describe the special fibre of a

regular model of CK nr with strict normal crossings.

The Galois group Gk acts naturally, i.e. for every σ ∈Gk, σ(Γr
s) = Γσ(r)

σ(s), and similarly on the

chains.

If Γs is irreducible, then its function field is isomorphic to ks(x)[y] with the relation yDs = f̃s(x).

Remark 2.4.23. Note that if Γs or ΓP(s) is reducible then ps/γs = 2.

Example 2.4.24 Let p be a prime number and let a ∈ Zp, b ∈ Z×
p such that the polynomial

x2 +ax+b is not a square modulo p. Let C be the hyperelliptic curve over Qp of genus 4 given

by the equation y2 = f (x), where f (x)= (x6 +ap4x3 +bp8)((x− p)3 − p11). In Example 2.3.32, we

described the rational cluster picture of C and proved that C has an almost rational cluster

picture. Recall that Σrat
C consists of 3 clusters t3,t4,R of size 6,3,9 respectively such that t3 <R

and t4 <R. In particular, note that ΣQnr
p =Σrat

C , and no cluster of ΣQnr
p is removable, so Σ̊=Σrat

C .

The minimal elements of Σ̊ are then t3 and t4.

We want to describe the special fibre of the minimal regular model with normal crossings

Cmin of C. Compute the quantities in Definitions 2.4.6 and 2.4.13, and the polynomials fs, gs, g0
s

of Definition 2.4.21, for any cluster in Σ̊:
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ρs bs ϵs Ds ms ps ss γs p0
s s0

s γ0
s g(s) fs(x) gs(y) g0

s(y)

t3
4
3 3 11 1 6 2 −1

6 2 2 −25
6 2 0 x2 + āx+ b̄ y+1 y−1

t4
11
3 3 17 1 6 1 −7

6 1 2 −29
6 2 0 x−1 y−1 y+1

R 1 1 9 1 2 1 1
2 1 2 0 1 y−1

where ā, b̄ are the reductions of a,b modulo p. Then C is also y-regular for any p. Following the

steps of Theorem 2.4.22 the special fibre of Cmin over F̄p can be described as follows:

(1) The clusters t3,t4,R give 3 irreducible components Γt3 ,Γt4 ,ΓR of genus 0 of multiplicities

6,6,2 respectively;

(2) The cluster t3 gives 2 open-ended P1s of multiplicity 3 from Γt3 , while t4 gives 1 open-ended

P1 of multiplicity 3 from Γt4 .

(3) From γt3 st3 =−1
3 >−1

2 >−1= γt3
(
st3 − pt3 ·

ρt3−ρR
2

)
, the cluster t3 gives 1 P1 of multiplicity 4

from Γt3 to ΓR. From

γt4 st4 =−7
6 >−6

5 >−5
4 >−4

3 >−3
2 >−2>−5

2 = γt3
(
st4 − pt4 ·

ρt4−ρR
2

)
the cluster t4 gives 1 chain of P1s of multiplicities 5,4,3,2,1 from Γt4 to ΓR.

(4) From −γ0
t3

s0
t3
= 25

3 > 8 > 7 the cluster t3 gives 1 open-ended P1 of multiplicity 2 from Γt3 .

From −γ0
t4

s0
t4
= 29

3 > 19
2 > 9> 8, the cluster t4 gives 1 open-ended chain of P1s of multiplicities

4,2 from Γt4 .

(5) From γRsR = 1
2 > 0>−1, the cluster R gives 1 open-ended P1 of multiplicity 1 from ΓR.

(6) There is no contractible cluster, so the components we considered in the steps above describe

the special fibre of Cmin over F̄p:

2
ΓR

1

6
Γt4

1
23
4 5

3 4
2

6
Γt3 4

332

Finally, from the Galois action on the roots of the polynomials fs, gs, g0
s , for s ∈ Σ̊, we get that

Gk acts trivially if x2+ āx+ b̄ is reducible in Fp, while it swaps the two components of multiplicity

3 intersecting Γt3 (coming from (2)) otherwise.
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As application of Theorem 2.4.22 we suppose k is finite of characteristic p > 2 and C is

semistable of genus g ≥ 2. In this setting [D2M2, Theorem 8.5] describes the minimal regular

model of C in terms of its cluster picture ΣC. We compare that result with the one obtained from

Theorem 2.4.22 (Corollary 2.4.26).

First note that CK nr is y-regular as p ̸= 2. From [D2M2, Definition 1.7], if C is semistable then

1. the extension K(R)/K has ramification degree at most 2;

2. every proper cluster is Gal(Ks/Knr)-invariant;

3. every principal cluster has ds ∈Z and νs ∈ 2Z.

It follows from Corollary 2.3.27 that CK nr has an almost rational cluster picture.

In fact, (1) and (2) imply ρs = ds and ϵs = νs for any proper cluster s (Remark 2.3.13). In

particular, Σ̊rat
CKnr

= Σ̊C. We will then say that s ∈ ΣC is non-removable if s is proper and non-

removable as rational cluster in ΣK nr .

Lemma 2.4.25 Suppose k finite and p > 2. Assume C is semistable and let s ∈ ΣC be a non-

removable cluster. Then ds ∈ 1
2Z and νs ∈ Z. Moreover, s is contractible if and only if ds ∉ Z or

νs ∉ 2Z.

Proof. Let s ∈ΣC be a non-removable cluster. Since K(R)/K has ramification degree at most 2,

then ds ∈ 1
2Z.

By Theorem 2.4.22 the multiplicity of the 1-dimensional scheme Γs is ms. Furthermore, Γs is

an irreducible component of the special fibre of the minimal regular model of C if and only if s is

not contractible. Therefore if s is not contractible, then ms = 1, i.e. Ds = 2 and bs = 1. It follows

that νs ∈ 2Z and ds ∈Z. Suppose s contractible. Then either ds ∉Z (and νs ∈Z) or s=R of size

2g+2, with 2 odd rational children and v(c f ) odd. We want to show that in the latter case, νs is

odd. By Lemma 2.3.18, dR ∈Z. Then νR = v(c f )+ (2g+2)dR is odd.

Let s ∈ΣC be a non-removable cluster. By Lemma 2.4.25, if s is not contractible, then 2g(s)+1

or 2g(s)+2 equals the number of odd children of s. In fact, this also holds when s is contractible

since in that case g(s)= 0 and s has at most 2 odd children.

Corollary 2.4.26 (Minimal regular model (semistable reduction)) Suppose that k is finite and

p > 2. Let C/K be a semistable hyperelliptic curve of genus g ≥ 2. The minimal regular model

Cmin/OK nr of C has special fibre Cmin
s /ks described as follows:

(1) Every non-removable cluster s ∈ΣC gives a 1-dimensional subscheme Γs. If s is übereven,

then Γs is the disjoint union of Γrs,−
s ≃P1 and Γrs,+

s ≃P1, otherwise Γs is irreducible of genus

g(s) (write Γrs,−
s =Γrs,+

s =Γs in this case). The indices rs,− and rs,+ are the roots of gs.

(2) Every odd proper cluster s ∈ ΣC of size |s| ≤ 2g gives a chain of P1s of length
⌊ ds−dP(s)−1

2
⌋

from Γs to ΓP(s) indexed by the root of gs.
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(3) Every even proper cluster s ∈ΣC of size |s| ≤ 2g gives a chain of P1s of length
⌊
ds−dP(s) − 1

2
⌋

from Γ
rs,−
s to ΓrP(s),−

P(s) indexed by rs,− and a chain of P1s of same length from Γ
rs,+
s to ΓrP(s),+

P(s)
indexed by rs,+.

(4) Finally, blow down all Γs where s is a contractible cluster.

All components have multiplicity 1, and the absolute Galois group Gk acts naturally, as in Theorem

2.4.22.

Proof. Let s ∈ΣC be a non-removable cluster. From Lemma 2.4.25, if s is not contractible, then

Ds = 2, γsss ∈Z and γ0
s s0

s ∈Z. Suppose s contractible. If |s| = 2 with ds ∉Z (case (1) of Definition

2.4.19), then γ0
s s0

s ∈Z and γs = 1, ss ∈ 1
2Z Z and so ss−ds+dP(s) ∈Z, as P(s) can not be contractible.

If s=R (cases (2), (3) of Definition 2.4.19), then v(c f ) is odd, and so γs = 2 and γsss ∈Z. Therefore

(2), (4) and (5) of Theorem 2.4.22 do not give any components.

Finally, as γs = 1 and ps
ds−dP(s)

2 ∈ 1
2Z for any proper s with size |s| ≤ 2g (i.e. non-maximal), the

length of P1(γs, ss, ss− ps · ds−dP(s)
2 ) is

⌊
γsss−γs

(
ss− ps ·

ds−dP(s)

2

)
− 1

2

⌋
=

⌊
ps ·

ds−dP(s)

2
− 1

2

⌋
.

The corollary then follows from Theorem 2.4.22.

2.5 Construction of the model

We are going to construct a proper flat model C/OK of C by glueing models defined in [Dok, §4].

For this reason we will assume the reader has familiarity with the definitions and the results

presented in that paper. Let us start this section by describing the strategy we will follow.

Let Σmin
C be the set of rationally minimal clusters of C and let Σ ⊆ Σmin

C . For any cluster

s ∈Σ fix a rational centre ws in such a way that Σ̊ws

C consists of the proper clusters in Σws

C . This

requirement can be satisfied by choosing ws ∈ s whenever possible.3 Let W be the set of all such

rational centres and define ΣW :=⋃
w∈W Σw

C . For every proper cluster t ∈ΣW fix a rational centre

wt ∈W (Lemma 2.3.14). For every w ∈W, consider the curve Cw : y2 = f (x+w), isomorphic to C,

and construct the (proper flat) model Cw
∆ /OK by [Dok, §4, Theorem 3.14]. We will define an open

subscheme C̊w
∆ of Cw

∆ and we will show that glueing the schemes C̊w
∆ , to varying of w ∈W, along

common opens, gives a proper flat model C/OK of C. Furthermore, if Σ=Σmin
C , and C is y-regular

and has an almost rational cluster picture, then C̊w
∆ is an open regular subscheme of Cw

∆ and

therefore C is also regular.

3This is the assumption used in Theorem 2.4.18.
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2.5.1 Charts

In this subsection we explicitly describe the matrices defining the charts of the schemes Cw
∆ ,

w ∈W , as presented in [Dok, §4].

Let Σ= {s1 . . . ,sm} ⊆Σmin
C be a set of rationally minimal clusters and let W = {w1, . . . ,wm} be

a set of corresponding rational centres, such that Σ̊wh
C consists of the proper clusters of Σwh

C , for

any h = 1, . . . ,m. Define ΣW :=⋃m
h=1Σ

wh
C . For any h, l = 1, . . . ,m, h ̸= l, define whl := wh −wl , and

write whl = uhlπ
ρhl , where uhl ∈O×

K and ρhl ∈Z. Note that ρhl = ρsh∧sl = ρlh, by Lemma 2.3.18.

Set uhh := 0. Finally, for any h, l = 1, . . . ,m, denote by uhl ∈ k the reduction of uhl modulo π.

Definition 2.5.1 Let h = 1, . . . ,m and let t ∈ Σwh
C be a proper cluster. Recall the matrices and

cones defined in [Dok, §4]. We say that a matrix M is associated to t if M = MLwh
t ,i or M = MV wh

t , j

(or M = MV wh
0 , j if t= sh). For a matrix M associated to t we denote by δM and σM respectively

• the denominator δLwh
t

and the cone σLwh
t ,i,i+1 if M = MLwh

t ,i,

• the denominator δV wh
t

and the cone σV wh
t , j, j+1 if M = MV wh

t , j,

• the denominator δV wh
0

and the cone σV wh
0 , j, j+1 if M = MV wh

0 , j.

Finally, define XM =Spec OK [σ∨
M ∩Z3] and write

X h
∆ =⋃

M
XM ,

for the toric scheme defined in [Dok, §4.2].

The following lemma describes all possible matrices associated to t.

Lemma 2.5.2 Let t ∈ Σwh
C be a proper cluster. Consider the v-face Fwh

t . Let P0,P1 ∈ Z2 and

ni,di,ki ∈Z be as in [Dok, §4] and define

δ := δM , γi := n0di −nid0

δd0
and Ti :=

( 1
δ
−ki ki+1

0 δ 0
0 0 δ

)
,

for each matrix M associated to t.

• Let c be the unique element of {0, . . . ,bt−1} such that 1
bt

−ρt · c = d ∈Z. For all i = 0, . . . , rLwh
t

,

choose ki = cni +dδdi(⌊t/2⌋+1); then

ML
wh
t ,i =

 δ −cδdi

(
ϵt
2 +γi

)
cδdi+1

(
ϵt
2 +γi+1

)
0 di −di+1

−δρt −dδdi

(
ϵt
2 +γi

)
dδdi+1

(
ϵt
2 +γi+1

)
, M−1

L
wh
t ,i

= Ti ·

 1
⌊ |t|

2

⌋+1 0

di+1ρt
di+1ϵt

2 +γi+1 di+1

diρt
diϵt

2 +γi di

,

where P0 = (|t|,0), P1 = (⌊|t|−1/2⌋,1) and δ= δLwh
t

= bt.
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• If t is odd, then for all j = 0, . . . , rV wh
t

, we have

MV
wh
t , j =

(
−|t| − |t|+1

2 d j
|t|+1

2 d j+1
2 d j −d j+1

−ϵt+|t|ρt n j −n j+1

)
, M−1

V
wh
t , j

= T j ·
 1 |t|+1

2 0

d j+1ρt−2·γ j+1
d j+1ϵt

2 −|t|·γ j+1 d j+1

d jρt−2·γ j
d jϵt

2 −|t|·γ j d j

,

where P0 = (|t|,0), P1 = (⌊|t|−1/2⌋,1), δ= δV wh
t

= 1 and k j = k j+1 = 0.

• If t is even, then for all j = 0, . . . , rV wh
t

, we have

MV
wh
t , j =

( −δ |t|
2 −( |t|

2 +1
)
d j−k j

|t|
2

( |t|
2 +1

)
d j+1+k j+1

|t|
2

δ d j+k j −d j+1−k j+1

−δ ϵt−|t|ρt
2

n j
δ
−k j

ϵt−|t|ρt
2 − n j+1

δ
+k j+1

ϵt−|t|ρt
2

)
, M−1

V
wh
t , j

= T j ·

 1 |t|
2 +1 0

d j+1ρt−γ j+1
d j+1ϵt

2 − |t|
2 γ j+1 d j+1

d jρt−γ j
d jϵt

2 − |t|
2 γ j d j

,

where P0 = (|t|,0), P1 = (⌊|t|−1/2⌋,1) and δ= δV wh
t

.

• If f (wh)= 0, then for all j = 0, . . . , rV wh
0

, we have

MV
wh
0 , j =

( 1 d j −d j+1
−2 −d j d j+1

ϵsh−ρsh n j −n j+1

)
, M−1

V
wh
0 , j

= T j ·
( −1 −1 0

d j+1ρsh+2·γ j+1
d j+1ϵsh

2 +γ j+1 d j+1

d jρsh+2·γ j
d jϵsh

2 +γ j d j

)
,

where P0 = (0,2), P1 = (1,1), δ= δV wh
0

= 1 and k j = k j+1 = 0.

• If f (wh) ̸= 0, then for all j = 0, . . . , rV wh
0

, we have

MV w
0 , j =

(
0 d j −d j+1
−δ −d j−k j d j+1+k j+1

δ
ϵsh

2
n j
δ
+k j

ϵsh
2 − n j+1

δ
−k j+1

ϵsh
2

)
, M−1

V
wh
0 , j

= T j ·
( −1 −1 0

d j+1ρsh+γ j+1
d j+1ϵsh

2 d j+1

d jρsh+γ j
d jϵsh

2 d j

)
,

where P0 = (0,2), P1 = (1,1) and δ= δV wh
0

.

Proof. We follow the notation of [Dok, §4]. Choose P0,P1 ∈Z2 as in the proof of Lemma 2.4.3.

First consider the edge Lwh
t of Fwh

t . From Lemma 2.4.3 we have

ν= (1,0,−ρt) and (wx,wy)= (−⌊|t|/2⌋−1,1) .

Then MLwh
t ,i and M−1

Lwh
t ,i

follow from [Dok, §4.3] as ki ≡ ni(δρt)−1 mod δ and

n0
δd0

= 1
δ

sLwh
t

1 = vFwh
t

(P1)−vFwh
t

(P0)=− ϵt

2
+ (⌊|t|/2⌋+1)ρt

Now assume t even and consider the edge V wh
t of Fwh

t . Since t is even,

V wh
t (Z)=

{
(|t|,0),

( |t|
2

,1
)
, (0,2)

}
, ν=

(
− |t|

2
,1,− ϵt

2
+ |t|

2
ρt

)
and (wx,wy)=

(
− |t|

2 −1,1
)

as above. Then MV wh
t , j and M−1

V wh
t , j

follow again from [Dok, (4.3)] as

n0
δd0

= 1
δ

sV wh
t

1 = vFwh
t

(P1)−vFwh
t

(P0)=− ϵt

2
+

( |t|
2
+1

)
ρt.

Similar arguments and computations yield the remaining matrices.

Remark 2.5.3. From the lemma above one can explicitly construct the charts of the model Cwh
∆ .

The description of its special fibre Cwh
∆,s which follows from [Dok, Theorem 3.14], matches the one

given in Theorem 2.4.18 in the case W = {wh}.
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2.5.2 Open subschemes

In this subsection we explicitly describe the open subschemes C̊w
∆ ⊆ Cw

∆ , for w ∈W .

Let h = 1, . . . ,m and let t ∈Σwh
C be a proper cluster. Let M be a matrix associated to t. Write

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 and M−1 =


m̃11 m̃12 m̃13

m̃21 m̃22 m̃23

m̃31 m̃32 m̃33


Recall that XM =Spec R, where

R = OK [X±1,Y , Z](
π− X m̃13Y m̃23 Zm̃33

) ,→ OK [X±1,Y±1, Z±1](
π− X m̃13Y m̃23 Zm̃33

) M≃ K
[
x±1, y±1]

,

via the change of variable( X
Y
Z

)
=

( xm11 ym21πm31

xm12 ym22πm32

xm13 ym23πm33

)
=

( x
y
z

)
•M,

( x
y
π

)
=

(
X m̃11 Y m̃21 Zm̃31

X m̃12 Y m̃22 Zm̃32

X m̃13 Y m̃23 Zm̃33

)
=

( X
Y
Z

)
•M−1.

Let l ̸= h. Set

Thl
M (X ,Y , Z) :=

1+uhl Xρhl m̃13−m̃11Y ρhl m̃23−m̃21 Zρhl m̃33−m̃31 if t⊇ sh ∧sl ,

u−1
hl X m̃11−ρhl m̃13Y m̃21−ρhl m̃23 Zm̃31−ρhl m̃33 +1 if t ̸⊇ sh ∧sl ,

element of R[Y−1, Z−1]. Note that

if t⊇ sh ∧sl then Thl
M (X ,Y , Z) M7−→ x+whl

x
,

if t ̸⊇ sh ∧sl then Thl
M (X ,Y , Z) M7−→ x+whl

whl
.

The following two lemmas prove that Thl
M (X ,Y , Z) ∈ R. Therefore, up to units, Thl

M (X ,Y , Z) can be

seen as the polynomial in OK [X±1,Y , Z] satisfying

x−whl
M= X nX Y nY ZnZ Thl

M (X ,Y , Z),

with nX ,nY ,nZ ∈Z, such that ordY (Thl
M )= ordZ(Thl

M )= 0.

Lemma 2.5.4 Let h, l = 1, . . . ,m, with h ̸= l, let t ∈ Σwh
C be such that t ⊇ sh ∧ sl and let M be a

matrix associated to t. Then

ρhl m̃23 − m̃21 ≥ ρtm̃23 − m̃21 ≥ 0 and ρhl m̃33 − m̃31 ≥ ρtm̃33 − m̃31 ≥ 0.

Furthermore if M = MLwh
t ,i then

• ρhlm̃23 − m̃21 = 0 if and only if i = rLwh
t

or t= sh ∧sl ,

• ρhlm̃33 − m̃31 = 0 if and only if t= sh ∧sl ;

43



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

if M = MV wh
t , j then

• ρhl m̃23 − m̃21 > 0,

• ρhl m̃33 − m̃31 = 0 if and only if t= sh ∧sl and j = 0.

Proof. This result follows from Lemma 2.5.2, which gives a complete description of M and M−1.

We show it when t is even and M = MV wh
t , j, and leave the other cases for the reader. First of all

recall that ρhl = ρsh∧sl by Lemma 2.3.18. Then

ρhl m̃23 − m̃21 = δ
(
d j+1

(
ρhl −ρt

)+γ j+1
)> δd j+1

(
ρsh∧sl −ρt

)≥ 0,

where γ j = n0d j−n j d0
δd0

and δ= δM . Similarly,

ρhl m̃33 − m̃31 = δ
(
d j

(
ρhl −ρt

)+γ j
)≥ δd j

(
ρsh∧sl −ρt

)≥ 0.

In particular ρhl m̃33 − m̃31 = 0 if and only if t= sh ∧sl and j = 0.

Lemma 2.5.5 Let t ∈Σwh
C be a proper cluster such that t ̸⊇ sh∧sl , and let M be a matrix associated

to t. Then

m̃21 −ρhl m̃23 ≥ 0 and m̃31 −ρhl m̃33 > 0.

Furthermore, m̃21 −ρhlm̃23 = 0 if and only if

• M = MLwh
t ,i and i = rLwh

t
, or

• t< sh ∧sl , M = MV wh
t , j, and j = rV wh

t
.

Proof. This result follows again from Lemma 2.5.2. As in the previous lemma, we show it when t

is even and M = MV wh
t , j, and leave the other cases for the reader.

Let r = rV wh
t

. Note that t ̸=R. Set δ= δM and γ j = n0d j−n j d0
δd0

. Then

m̃31 −ρhl m̃33 = δ
(
d j

(
ρt −ρhl

)−γ j
)> δd j

(
ρP(t) −ρsh∧sl

)≥ 0.

since d j > 0 and γ j/d j < γr+1/dr+1 = ρt−ρP(t). Similarly,

m̃21 −ρhl m̃23 = δ
(
d j+1

(
ρt −ρhl

)−γ j+1
)≥ δd j+1

(
ρP(t) −ρsh∧sl

)≥ 0,

In particular m̃21 −ρhl m̃23 = 0 if and only if t< sh ∧sl and j = r.

Let

Th
M(X ,Y , Z) := ∏

l ̸=h
Thl

M (X ,Y , Z),

and define

V h
M :=Spec R[Th

M(X ,Y , Z)−1]⊂ XM , and X̊ h
∆ := ⋃

t,M
V h

M ⊆ X h
∆,
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where t runs through all proper clusters in Σwh
C and M runs through all matrices associated to t.

We can then define the subscheme

C̊wh
∆ := Cwh

∆ ∩ X̊ h
∆ ⊂ X h

∆,

where Cwh
∆ /OK is the model of the hyperelliptic curve Cwh : y2 = f (x+wh) described in [Dok,

Theorem 3.14] (see [Dok, §4] for the construction). Explicitly, let gh(x, y) := y2 − f (x+wh) and

define Fh
M ∈OK [X±1,Y , Z] such that ordY (Fh

M)= ordZ(Fh
M)= 0, with all non-zero coefficients in

O×
K , satisfying

y2 − f (x+wh) M= Y nY ,h ZnZ,hFh
M(X ,Y , Z),

for unique nY ,h,nZ,h ∈Z. Consider the subscheme

Uh
M :=Spec

R
[
Th

M(X ,Y , Z)−1](
Fh

M(X ,Y , Z)
) ⊂V h

M .

Then

C̊wh
∆ = ⋃

t,M
Uh

M ⊂ X̊ h
∆,

where t runs through all proper clusters in Σwh
C and M runs through all matrices associated to t,

as before.

2.5.3 Glueing

In this subsection we show how to glue the schemes C̊w
∆ , for w ∈W , to obtain a proper flat model

C of C (properness will be proved in §2.5.8-2.5.9).

Let h, l = 1, . . . ,m, with h ̸= l. Consider the isomorphism

(2.1) φ : K

[
x±1, y±1,

∏
o ̸=l

(x+wlo)−1

]
≃−→ K

[
x±1, y±1,

∏
o ̸=h

(x+who)−1

]

sending x 7→ x+whl , y 7→ y. If t⊇ sh ∧sl and M is a matrix associated to t, then φ gives a map

R[Y−1, Z−1,T l
M(X ,Y , Z)−1]

M−1◦φ◦M−−−−−−−→ R[Y−1, Z−1,Th
M(X ,Y , Z)−1],

which sends

F(X ,Y , Z) 7→ F(X ·Thl
M (X ,Y , Z)m11 ,Y ·Thl

M (X ,Y , Z)m12 , Z ·Thl
M (X ,Y , Z)m13).

Hence it induces the isomorphisms

(2.2) R[T l
M(X ,Y , Z)−1] ≃−→ R[Th

M(X ,Y , Z)−1], V h
M

≃−→V l
M .

Via these maps we see that gh(x, y)=Y nY ,h ZnZ,hFh
M(X ,Y , Z) also equals

Y nY ,l ·ZnZ,l · (Thl
M )nY ,l m12+nZ,l m13F l

M

(
X · (Thl

M )m11 ,Y · (Thl
M )m12 , Z · (Thl

M )m13
)
,
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where Thl
M = Thl

M (X ,Y , Z). Since neither Y nor Z divide Thl
M (X ,Y , Z), we have nY ,h = nY ,l , nZ,h =

nZ,l and

Fh
M(X ,Y , Z)= (Thl

M )nY ,l m12+nZ,l m13F l
M

(
X (Thl

M )m11 ,Y (Thl
M )m12 , Z (Thl

M )m13
)
.

Hence (2.2) induces the isomorphisms

(2.3)
R

[
T l

M(X ,Y , Z)−1](
F l

M(X ,Y , Z)
) ≃−→ R

[
Th

M(X ,Y , Z)−1](
Fh

M(X ,Y , Z)
) , Uh

M
≃−→U l

M .

Define the subschemes

V hl := ⋃
tl ,Ml

V h
Ml

⊆ X̊ h
∆, Uhl :=V hl ∩Cwh

∆ ⊆ C̊wh
∆ ,

where tl runs through all proper clusters in Σwh
C ∩Σwl

C (i.e. tl ∈ ΣW , sh ∧ sl ⊆ tl) and Ml runs

through all matrices associated to tl . From (2.1), (2.2) and (2.3) we have isomorphisms of schemes

(2.4) V hl ≃−→V lh, Uhl ≃−→U lh.

Now, Uhl ⊂V hl are open subschemes respectively of C̊wh
∆ ⊂ X̊ h

∆ for any l ̸= h. Glueing the schemes

C̊wh
∆ ⊂ X̊ h

∆, to varying of h = 1, . . . ,m, respectively along the opens Uhl ⊂ V hl via (2.4) gives the

schemes C ⊂X . We will show that C/OK is a proper flat4 model of C.

2.5.4 Generic fibre

We start studying the generic fibre Cη of C. Since it is the glueing of all C̊wh
∆,η through the glueing

maps

Uhl
η −→U lh

η

induced by (2.4), we start focusing on C̊wh
∆,η for h = 1, . . . ,m. In particular, as C̊wh

∆ is an open

subscheme of Cwh
∆ , we study Cwh

∆,η∖ C̊wh
∆,η = Cwh ∖ C̊wh

∆,η.

Lemma 2.5.6 For any h = 1, . . . ,m,

Cwh ∖ C̊wh
∆,η =Spec

K[x, y](
gh(x, y),

∏
o ̸=h (x+who)

) .

Proof. For every choice of a proper cluster t ∈Σwh
C , and M associated to t, let

PM :=
(
Cwh
∆,η∖ C̊wh

∆,η

)
∩ XM =Spec

R⊗OK K(
Fh

M(X ,Y , Z),Th
M(X ,Y , Z)

) .

To study PM we are going to use Lemma 2.5.2 and the definition of Th
M(X ,Y , Z).

4Note that the flatness of C is trivial since it is a local property.
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Suppose first t ̸=R and M = MV wh
t , j. Then m̃23, m̃33 > 0, so

(2.5) PM =Spec
R[Y−1, Z−1](

Fh
M(X ,Y , Z),Th

M(X ,Y , Z)
) M≃ Spec

K[x±1, y±1]
(gh(x, y),

∏
o (x+who))

,

where the product runs over all o ̸= h. Now let t=R and M = MV wh
t , j. If j ̸= rV wh

R
, then PM is as

in the previous case (since m̃23, m̃33 > 0). If j = rV wh
R

, then m̃33 > 0, m̃23 = 0, but ρhl m̃23 − m̃21 > 0

by Lemma 2.5.4. So from the definition of Thl
M (X ,Y , Z) we have once more the equality (2.5).

Similarly, if t= sh and M = MV wh
0 , j, then m̃33 > 0, and m̃21 −ρhl m̃23 > 0 by Lemma 2.5.5. Hence

we have (2.5) again.

It remains to study PM when M = MLwh
t ,i. If i ̸= rLwh

t
, then m̃23, m̃33 > 0 and so PM is as in

(2.5). Let i = rLwh
t

. Then m̃33 > 0 but both m̃23 and ρhl m̃23 − m̃21 equal 0. Hence m̃23 = m̃21 = 0,

which also implies m21 = m23 = 0. Therefore M defines an isomorphism R[Z−1]≃ K[x±1, y], which

induces

PM =Spec
R[Z−1](

Fh
M(X ,Y , Z),Th

M(X ,Y , Z)
) M≃ Spec

K[x±1, y](
gh(x, y),

∏
o ̸=h (x+who)

) .

This concludes the proof.

Regarding Cwh
∆ as a model of C via the natural isomorphism C ∼−→ Cwh , we get

C∖ C̊wh
∆,η =Spec

K[x, y](
y2 − f (x),

∏
o ̸=h (x−wo)

) .

Thus the generic fibre of C is isomorphic to C.

2.5.5 Special fibre

We now study the structure of the special fibre Cs of C. As for the generic fibre, we consider

Cwh
∆,s ∖ C̊wh

∆,s,

for any h = 1, . . . ,m. For every choice of a proper cluster t ∈Σwh
C , and M associated to t, let

SM :=
(
Cwh
∆,s ∖ C̊wh

∆,s

)
∩ XM =Spec

OK [X±1,Y , Z](
Fh

M(X ,Y , Z),Th
M(X ,Y , Z),Y m̃23 Zm̃33 ,π

) .

Lemma 2.5.7 Let M = ML,i for L = Lwh
t . Let l ̸= h. If t= sl ∧sh, then Thl

M (X ,Y , Z)= X−1(X +uhl),

otherwise

(i) Thl
M (X ,Y ,0)= 1 for i = 0, . . . , rL;

(ii) Thl
M (X ,0, Z)= 1 for i = 0, . . . , rL −1.
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Proof. Fix l ̸= h. If t ̸⊇ sl∧sh, then by Lemma 2.5.5, we have m̃21−ρhl m̃23 ≥ 0 and m̃31−ρhl m̃33 > 0.

Moreover, if m̃21 −ρhlm̃23 = 0, then i = rL. Therefore the equalities in (i) and (ii) follow directly

from the definition of Thl
M .

On the other hand, if t ⊋ sl ∧ sh, then by Lemma 2.5.4, we have ρhl m̃23 − m̃21 ≥ 0 and

ρhl m̃33 − m̃31 > 0. Moreover, if ρhl m̃23 − m̃21 = 0, then i = rL. Therefore we have (i) and (ii) again.

Finally, assume t= sl ∧sh. Since ρt = ρhl ∈Z, then ρhlm̃13 − m̃11 =−1. Hence

Thl
M (X ,Y , Z)= 1+uhl X−1 = X−1 (X +uhl) ,

by Lemma 2.5.4.

Lemma 2.5.8 Suppose M = MLwh
t ,i. Then

SM =Spec
OK [X±1,Y , Z]

(Fh
M(X ,Y , Z),

∏
l (X +uhl) ,Y m̃23 Zm̃33 ,π)

⊂ Cwh
∆ ,

where the product runs over all l ̸= h such that t= sl ∧sh.

Proof. Lemma 2.5.2 shows that m̃33 is always different from 0, while m̃23 = 0 if and only if

i = rLwh
t

. Thus the result follows from Lemma 2.5.7.

Lemma 2.5.9 Let fh(x) = f (x+wh) and l ̸= h. Then ulh is a multiple root of fh|L of order |tl |,
where L = Lwh

sh∧sl
and tl ∈Σwl

C , tl < sh ∧sl .

Furthermore, if Σ= {s1, . . . ,sm}=Σmin
C , C has an almost rational cluster picture and ᾱ ∈ k̄ is a

multiple root of fh|L for some edge L of NP( fh), then ᾱ= ulh and L = Lwh
sh∧sl

for some l ̸= h.

Proof. For any proper cluster s ∈ Σ f , let λs = minr∈s v(r−wh). Let s ∈ Σwl
C , with sl ⊆ s⊊ sh ∧ sl .

Then wh is not rational centre of s, and for every root r ∈ s, one has

v(r−wh)= v(r−wl +wl −wh)=min{v(r−wl),ρhl}= ρhl ,

as v(r−wl)≥ ρs > ρhl . Therefore λs = ρhl ∈Z. In particular, |λs|p ≤ 1. Furthermore,

ds ≥ ρs >λs = ρhl and r−wh
πρhl

≡ wlh
πρhl

mod π,

and so Theorem 2.3.24(i) implies that ulh = wlh
πρhl mod π is a multiple root of fh|L, where L = Lwh

sh∧sl
.

Let tl ∈Σwl
C , tl < sh ∧sl . Since sl ⊆ tl < sh ∧sl we have

tl =
{
r ∈R | ulh = r−wh

πρhl mod π
}
,

as v(r−wl)> ρhl if and only if ulh = r−wh
πρhl mod π. Thus the multiplicity of ulh is |tl | by Theorem

2.3.24(ii).

Now let ᾱ be a multiple root of fh|L for some edge L of NP( fh) and let s ∈Σ f associated to ᾱ

by Theorem 2.3.24(iii). We want to prove that if C has an almost rational cluster picture and
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Σ=Σmin
C , then there exists l ̸= h so that ᾱ= ulh. Note first wh is not a rational centre of s. Indeed,

if wh is a rational centre of s, then

|s| > |λs|p = |ρs|p, ds >λs = ρs,

which contradicts the fact that C has an almost rational cluster picture. As {s1, . . . ,sm}=Σmin
C , we

must have that wl is a rational centre of s, for some l ̸= h. Then sl ⊆ s⊊ sh ∧sl . Since ᾱ= r−wh
πλs

mod π for any r ∈ s, from above we have ᾱ= ulh. Finally, L is the edge of NP( fh) of slope −λs =−ρhl .

Thus L = Lwh
sh∧sl

.

It remains to compute SM when M = MV , j, where V =V wh
t or V =V wh

0 .

Lemma 2.5.10 Let M = MV , j for V =V wh
t , or V =V wh

0 if t= sh. For any l ̸= h we have

(i) Thl
M (X ,Y ,0)= 1 except when t= sl ∧sh and j = 0;

(ii) Thl
M (X ,0, Z)= 1 except when t< sl ∧sh and j = rV .

Proof. The lemma immediately follows from Lemmas 2.5.4 and 2.5.5.

Lemma 2.5.11 Let M = MV , j with V =V wh
t , or V =V wh

0 if t= sh. Then SM =∅.

Proof. For any l ̸= h, we want to prove that

(2.6) Shl
M := {Thl

M (X ,Y , Z)=Y m̃23 Zm̃33 = 0}=∅.

Lemma 2.5.2 shows that m̃33 is always different from 0 and that m̃23 = 0 if and only if j = rV ,

and V = V wh
R

or V = V wh
0 . Assume that if t= sl ∧sh then j ̸= 0 and that if t< sl ∧sh then j ̸= rV .

Lemma 2.5.10 implies (2.6).

If t= sl ∧sh and j = 0, then ρhl m̃33 − m̃31 = 0 but ρhlm̃23 − m̃21 > 0. So

Shl
M = {Thl

M (X ,Y , Z)= Zm̃33 = 0}⊂Spec R[Y−1].

Similarly, if t< sl ∧sh and j = rV , then m̃21 −ρhl m̃23 = 0, however m̃31 −ρhl m̃33 > 0. Then

Shl
M = {Thl

M (X ,Y , Z)=Y m̃23 = 0}⊂Spec R[Z−1].

In both cases, Shl
M ⊆ XF as sets, where F = Fwh

sl∧sh
([Dok, Definition 3.7]). Let L = Lwh

sl∧sh
, and let

fh(x)= f (x+wh) and gh(x, y)= y2 − fh(x). By Lemmas 2.5.8 and 2.5.9, one has

Shl
M ⊆ XF ∩SML,0 =∅,

as Fh
ML,0

(X ,Y ,0) mod π equals Y b − X a fh|L(X ), for some a ∈ Z, b = 1,2 (see Lemma 2.5.17 for

more details, whose proof is independent of this result). Thus if V = V wh
t and M = MV , j, then

SM =∅.
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2.5.6 Components

Now that we have compared the special fibre of C with those of the models Cwh
∆ , let us describe

closed subschemes that form it. We will first study closed subschemes forming C̊wh
∆,s and then how

they glue in Cs.

Let fh(x)= f (x+wh) and gh(x, y)= y2 − fh(x). According to [Dok, Theorem 3.14] the special

fibre of Cwh
∆ is formed by:

• Chains of P1
ks coming from v-edges of ∆wh .

• 1-dimensional subschemes coming from v-faces of ∆wh .

More precisely, each v-edge E gives a scheme XE ×PE, where PE is a chain of P1
ks and XE ⊂Gm,k

is given by gh|E = 0. The multiplicities and and the length of PE can be completely described

by the slopes of E. On the other hand, each v-face F gives a proper scheme X̄F containing an

open subscheme XF ⊆G2
m,k given by gh|F = 0. How the previous schemes intersect to form Cwh

∆,s is

described by [Dok, Theorem 3.14]. The reader is pointed to [Dok] for more details.

Definition 2.5.12 Let t ∈ΣW be a proper cluster. For any rational centre w of t, let rt,w = w−r
πρt

,

ut,w = c f
∏

r∈R t rt,w and u0
sh,wh

= c f
∏

r∈R {wh} rsh,wh . Define f W
t,w, gt,w ∈ k[X ], and g0

sh,wh
∈ k[X ] for

any h = 1, . . . ,m, as follows:

(1) Let u = ut,w. Define f W
t,w by

f W
t,w(X bt)= u

πv(u)

∏
r∈t ⋃

s<t s
(X + rt,w) mod π,

where the union runs through all children s of t in ΣW . If Σ=Σmin
C denote f W

t,w by ft,w.

(2) Let u = ut,w. Define gt,w(X ) := X pt/γt − u
πv(u) mod π.

(3) Let u = u0
sh,wh

. Define g0
sh,wh

(X ) := X p0
sh

/γ0
sh − u

πv(u) mod π.

Note that the polynomials defined in Definition 2.5.12 agree with the ones in Definition 2.4.14

when w = wt.

Lemma 2.5.13 Let s,t ∈Σrat
C , with s⊊ t. Let w′,w be rational centres of s and t respectively, and

define uw′w = w′−w
πρt

mod π. Then uw′w does not depend on the choice of a rational centre w′ of s.

Proof. Suppose that w1,w2 are two rational centres of s. Then v(w1 −w2) ≥ ρs > ρt, and so the

lemma follows.

Remark 2.5.14. Let t ∈ Σwh
C . Let l = 1, . . . ,m, l ̸= h. Then t = sh ∧ sl if and only if it has a child

s ∈Σwl
C Σwh

C . In particular, if this happens, Lemma 2.5.13 shows that ulh = w−wh
πρt

mod π for any

rational centre w of s.
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Definition 2.5.15 Let t ∈Σwh
C be a proper cluster. Define t̂W := {s ∈ΣW ∪ {∅} | s< t}, where ∅< t

only if t has no child in ΣW . If ∅< t then we will say that wh is the rational centre of ∅.

Define Gt,wh :=Gm,k
⋃

l{ulh}, where the union runs through all l ̸= h such that sl ∧sh = t. Note

that Remark 2.5.14 shows that Gt,wh =A1
k

⋃
s∈t̂W {uwswh }, where uwswh = ws−wh

πρt
mod π, and ws is

any rational centre of s.

Let t ∈Σwh
C be a proper cluster. Let V =V wh

t and M = MV , j. In §2.5.5 we showed the special

fibre of Uh
M equals XM ∩Cwh

∆,s. Therefore the components of C̊wh
∆,s coming from V are the same of

those of Cwh
∆,s given by the same v-edge. Therefore V gives a closed subscheme XV ×PV of C̊wh

∆,s,

where PV is a chain of P1
ks and XV : {gh|V = 0} over Gm,k. Lemma 2.4.3 implies that gh|V = gt,wh .

Let V0 =V wh
0 and M = MV0, j. Similarly to above, XM ∩ C̊wh

∆,s = XM ∩Cwh
∆,s and so V0 gives rise to

a closed subscheme XV0 ×PV0 of C̊wh
∆,s, where PV0 is a chain of P1

ks and XV0 : {gh|V0 = 0} over Gm,k.

Note that gh|V0 = g0
sh,wh

.

Let t ∈Σwh
C be a proper cluster. Let L = Lwh

t and M = ML,i. By Lemma 2.5.8, the v-edge L gives

a subscheme XW
L ×PL of C̊wh

∆,s, where PL is a chain of P1
ks of length rL and XW

L : {gh|L = 0} in Gt,wh .

Note that rL = 0 or 1 by Lemma 2.4.3 and rL = 1 if and only if Dt = 1. Let th ∈Σwh
C be the unique

child of t with rational centre wh or set th =∅ if t has no such child. We will show that

(2.7) gh|L(X )=− ∏
s∈t̂W ,s ̸=th

(X +uwswh )|s| · f W
t,wh

(X ).

where uwswh = ws−wh
πρt

mod π, and ws is any rational centre of s.

Suppose t ̸= sh ∧sl for any l ̸= h. Equivalently, all children of t in ΣW (at most one) belong to

Σwh
C . Then Lemma 2.4.3 shows that gh|L =− f W

t,wh
. Suppose now that t= sh ∧sl for some l ̸= h. In

this case bt = 1. We have

gh|L(X )∏
s∈t̂W ,s̸=th (X +uwswh )|s|

=
( − u

πv(u)

∏
r∈t th (X + rt,wh )∏

s∈t̂W ,s ̸=th
∏

r∈s(X + rt,wh )
mod π

)
=− f W

t,wh
(X ),

where rt,wh and u = ut,wh are as in Definition 2.5.12. Indeed, uwswh = rt,wh mod π for every r ∈ s
as v(ws− r)≥ ρs > ρt, and since bt = 1, Lemma 2.4.3 implies that

gh|L(x)=− u
πv(u)

∏
r∈t th (x+ rt,wh ) mod π.

In particular, Remark 2.5.13 and Lemma 2.5.9 shows that (X +uhl) ∤ f W
t,wh

(X ), for any l ̸= h such

that sl ∧ sh = t. Moreover, X ∤ f W
t,wh

(X ) by definition. Therefore the scheme XW
L is equal to the

closed subscheme XW
t,wh

⊂A1
k given by f W

t,wh
= 0.

Let t ∈ ΣW be a proper cluster. For any h = 1, . . . ,m such that sh ⊆ t, let X̄Fwh
t

be the 1-

dimensional closed subscheme of Cwh
∆,s given by Fwh

t . Define

X̊Fwh
t

:= X̄Fwh
t

∩ C̊wh
∆ .

Denote by Γt the 1-dimensional closed subscheme of Cs, result of the glueing of the subschemes

X̊Fwh
t

of C̊wh
∆,s to varying of h such that t ∈Σwh

C .
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Lemma 2.5.16 Let t ∈Σwh
C be a proper cluster. The multiplicity of Γt in Cs is mt.

Proof. Let L = Lwh
t , M = ML,0, and let F = Fwh

t . The multiplicity of X̄Fwh
t

, and so of X̊Fwh
t

and Γt,

is δF . Hence we only need to show that mt = δF . Let d0 ∈Z as in Lemma 2.5.2. Then δF = δLd0.

The result follows as δL = bt and d0, denominator of sL
1 , equals 3−Dt by Lemma 2.4.3.

Lemma 2.5.17 Let L = Lwh
t , F = Fwh

t and M = ML,0. Let c ∈ {0, . . . ,bt−1} such that 1/bt−ρt · c ∈Z.

Then Fh
M(X ,Y ,0) mod π equals the polynomial

gh|F (X ,Y )=Y Dt − ∏
s∈t̂W

(X −uwswh )
|s|
bt
−cϵt f W

t,wh
(X ),

where uwswh = ws−wh
πρt

mod π, and ws is any rational centre of s.

In particular, Γh
t ⊂Gt,wh ×A1

k given by g|F = 0 is the open subscheme Uh
M ∩ {Z = 0} of X̊F , and

the points in SM belong to all irreducible components of X̄F .

Proof. From [Dok, §3.5] and the equation of Cwh , the polynomial Fh
M(X ,Y ,0) reduces modulo π to

X a1Y b+X a2 gh|L(X ), for some b = 1,2 and a ∈Z. Lemma 2.4.9 shows that b = Dt. By Lemma 2.4.3,

a1 = 2m̃12, a2 = |th|m̃11+(ϵt−|th|ρt)m̃13, where th ∈Σwh
C ∪{∅}, th < t. Then a1 = 0 and a2 = |th|

bt
−cϵt

by Lemma 2.5.2.

If t has one or no child, or Dt = 1, then gh|L =− f W
t,wh

by (2.7). On the other hand, if Dt = 2 and

t has two or more children in Σrat
C , then bt = 1, and so c = 0. Therefore the equality (2.7) concludes

the proof of the first part of the statement also in this case. Finally, the last part of the lemma

follows from Lemma 2.5.8.

Let c as in the previous lemma and define t̃W := {s ∈ t̂W | |s|bt
− cϵt ∉ 2Z}.

Proposition 2.5.18 Let L = Lwh
t and M = ML,0. The dense open subscheme Γt ∩Uh

M of Γt is

isomorphic to the closed subscheme of Gt,wh ×A1
k given by

Y Dt = ∏
s∈t̃W

(X −uwswh ) · f W
t,wh

(X ),

where uwswh = ws−wh
πρt

mod π, and ws is any rational centre of s.

Proof. The proposition follows from Lemma 2.5.17 and the definition of Gt,wh .

We conclude this subsection describing how the glueing morphism (2.4) restricts to the special

fibre. Suppose t⊇ sl ∧sh for l ̸= h and let M be a matrix associated to t. Consider the glueing map

Uh
M →U l

M explicitly defined in §2.5.3.

Suppose first M = MV , j with V = V wl
t . By Lemma 2.5.10 the glueing morphism restricts to

the identity on XV ×PV .

Suppose M = ML,i with L = Lwl
t . Note that m̃12 = 0 from Lemma 2.5.2. Recall the open

subscheme Γh
t of X̊Fwh

t
defined in Lemma 2.5.17. Then, Lemma 2.5.7 implies that the glueing map

restricts to an isomorphism Γh
t 7→Γl

t induced by the ring homomorphism sending X 7→ X +uwhwl ,
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where uwhwl = wh−wl
πρt

mod π. Similarly, it restricts to an isomorphism XW
Lwh
t

×PLwh
t

→ XW
Lwl
t

×PLwl
t

,

where PLwh
t

→PLwl
t

is the identity and XW
Lwh
t

→ XW
Lwl
t

is induced by the ring homomorphism sending

X 7→ X +uwhwl .

2.5.7 Regularity

In this subsection we prove that if C has an almost rational cluster picture and is y-regular, then

the scheme C is regular.

Let wh ∈W. We want to show that if Σ=Σmin
C , and C has an almost rational cluster picture

and is y-regular, then C̊wh
∆ is a regular scheme.

Lemma 2.5.19 Consider the model Cwh
∆ /OK and let fh(x)= f (x+wh). Suppose Σ= {s1, . . . ,sm}=

Σmin
C , and C has an almost rational cluster picture and is y-regular. If P is a singular point of Cwh

∆

then

P ∈Spec
OK [X±1,Y , Z]

(Fh
M(X ,Y , Z), X +uhl ,Y m̃23 Zm̃33 ,π)

⊂ Cwh
∆ ∩ XM ,

for some l ̸= h, where M = MLwh
sh∧sl

,i for i = 0, . . . , rLwh
sh∧sl

.

Proof. Denote by mα(X ) ∈ OK [X ] a lift of the minimal polynomial in k[X ] of ᾱ ∈ k̄. By Lemma

2.5.9, we only need to show that if P ∈ Cwh
∆ is a singular point then

(2.8) P ∈Spec
OK [X±1,Y , Z]

(Fh
ML,i

(X ,Y , Z),mα(X ),Y m̃23 Zm̃33 ,π)
,

for some v-edge L = Lwh
t of ∆wh , and some multiple root ᾱ of fh|L. For any v-edge E of ∆wh and

any i = 0, . . . , rE, we study the polynomial Fh
M where M = ME,i, using [Dok, §4.5]. Let gh(x, y)=

y2 − fh(x). Let L = Lwh
t and M = ML,i. Note that gh|L =− fh|L. We have Fh

M(X ,0, Z)= gh|L(X ) for

any i. On the other hand, Fh
M(X ,Y ,0) = gh|L(X ) if i > 0 and Fh

M(X ,Y ,0) = gh|F (X ,Y ) if i = 0.

From the description given in Lemma 2.5.17, we conclude that for these matrices M the points

in (2.8) are the only possibly singular points of Cwh
∆ ∩ XM . In particular, this proves that for any

v-face F of ∆wh , the points in XF are non-singular in Cwh
∆ .

Let V = V wh
t or V = V wh

0 and M = MV , j. Since C is y-regular, p ∤ deg(gh|V ) by Lemma 2.4.9.

By [Dok, §4.5] and the fact that the points in XF are non-singular for all v-faces F, we conclude

that Cwh
∆ has no singular point on XM for these matrices M, as required.

Proposition 2.5.20 Suppose Σ = Σmin
C , and C has an almost rational cluster picture and is

y-regular, then C is a regular scheme.

Proof. Lemmas 2.5.19 and 2.5.8 show that C̊wh
∆ is regular for every h. Thus their glueing C is

regular as well.
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2.5.8 Separatedness

It remains to prove that C is a proper scheme. In this subsection we show it is separated. Clearly

it suffices to prove that X /OK is separated. Since the schemes X h
∆ are separated, then the open

subschemes X̊ h
∆ are separated as well by [Liu4, Proposition 3.3.9]. Consider the open cover

{V h
M}h,M of X . Let h, l = 1, . . . ,m and let Mh and Ml be matrices associated to proper clusters

th ∈Σwh
C and tl ∈Σwl

C respectively. By [Liu4, Proposition 3.3.6] we want to show

(i) V h
Mh

∩V l
Ml

is affine,

(ii) The canonical homomorphism

OX (V h
Mh

)⊗ZOX (V l
Ml

)−→OX (V h
Mh

∩V l
Ml

)

is surjective.

The definition of the glueing map (2.4) implies (i). If h = l, or sl ⊆ th, or sh ⊆ tl , then (ii) follows

from the separatedness of X̊ h
∆ and X̊ l

∆. So assume l ̸= h, and th,tl ⊊ sh ∧sl . Consider the Moebius

transformation

ψl : x 7→ x
xw−1

hl +1
, y 7→ y

(xw−1
hl +1)g+1

.

It sends the curve Cwl to the isomorphic hyperelliptic curve

Ch
l : y2 = (xw−1

hl +1)2g+2 f
(
x(xw−1

hl +1)−1 +wl
)
.

As

f h
l (x) := (xw−1

hl +1)2g+2 f
(
x(xw−1

hl +1)−1 +wl
)

= c f w|R|
hl (xw−1

hl +1)2g+2−|R| ∏
r∈R∖{wh}

r−wh

wlh

(
xw−1

hl +
r−wl

r−wh

)
,

every cluster s ∈Σwl
C such that s⊊ sh ∧sl , corresponds to a unique cluster sh ∈Σ0

Ch
l

of same size,

same radius and rational centre 0. Moreover,

ϵsh = v(c f h
l
)+ ∑

r′∈sh

ρsh +
∑

r′∉sh

v(r′)= ϵs.

Call thl the cluster in Σ0
Ch

l
corresponding to tl . Let ∆lh and ∆lh

v be the Newton polytopes attached

to y2 − f h
l (x) and let X lh

∆ be the associated toric scheme (defined in [Dok, §4.2]). Since tl ⊊ sh ∧sl ,

the v-faces Ftl of ∆wl and Fthl
of ∆lh are identical by Lemma 2.4.3. Furthermore, note that if

tl < sh ∧sl , then ρP(thl ) ≤ ρhl = ρP(tl ) and so sV 0

2 ≤ sV
2 , where V 0 =V 0

thl
and V =V wl

tl
. Therefore the

matrix M := Ml is also associated to thl .

For every o = 1, . . . ,m, with o ̸= l, define

whlo =


whl wlo
who

if o ̸= h,

whl if o = h,

54



2.5. CONSTRUCTION OF THE MODEL

and write whlo = uhloπ
ρhlo , where uhlo ∈O×

K and ρhlo ∈Z, i.e.

uhlo =


uhl ulo
uho

if o ̸= h,

uhl if o = h,
and ρhlo =

ρhl +ρlo −ρho if o ̸= h,

ρhl if o = h.

Define

T̃hlo
M (X ,Y , Z) :=

1+uhloXρhlom̃13−m̃11Y ρhlom̃23−m̃21 Zρhlom̃33−m̃31 if tl ⊇ so,

u−1
hloX m̃11−ρhlom̃13Y m̃21−ρhlom̃23 Zm̃31−ρhlom̃33 +1 if tl ̸⊇ so.

We want to show T̃hlo
M (X ,Y , Z) ∈ R. If o = h then

T̃hlo
M (X ,Y , Z)= Thl

M (X ,Y , Z) ∈ R.

So assume o ̸= h. If so ⊆ tl , then it follows from Lemma 2.5.4 as sl ∧so ⊊ sl ∧sh and so ρhlo = ρlo.

On the other hand, if so ̸⊆ tl , then it follows from Lemma 2.5.5 as m̃23, m̃33 > 0 and ρhlo ≤
max{ρhl ,ρlo}. Let

T̃hl
M (X ,Y , Z) := ∏

o ̸=l
T̃hlo

M (X ,Y , Z).

The Moebius transformation

K[x±1, y±1,
∏

o ̸=l(x+wlo)−1]
ψl−→ K[x±1, y±1,

∏
o ̸=l (x+whlo)−1]

considered above induces an isomorphism

R[T l
M(X ,Y , Z)−1]

M−1◦ψl◦M−−−−−−−−→ R[T̃hl
M (X ,Y , Z)−1],

sending

X 7→ X ·Thl
M (X ,Y , Z)−m11−(g+1)m21 ,

Y 7→Y ·Thl
M (X ,Y , Z)−m12−(g+1)m22 ,

Z 7→ Z ·Thl
M (X ,Y , Z)−m13−(g+1)m23 .

Then

Ṽ lh
M :=Spec R[T̃hl

M (X ,Y , Z)−1]

is an open subscheme of X lh
∆ , isomorphic to V l

M . We can clearly carry out similar constructions

for th, Mh.

By comparing the Newton polytopes ∆lh
v and ∆hl

v , we see that the Moebius transformation

x 7→ whl /(w−1
lh x), y 7→ y/(w−1

lh x)g+1 gives an isomorphism

ψ : K[x±1, y±1,
∏
o ̸=l

(x+whlo)−1]−→ K[x±1, y±1,
∏
o ̸=h

(x+wlho)−1]

which induces a birational map X hl
∆ X lh

∆ , defined on the open set Ṽ hl
Mh

of X hl
∆ . In particular,

there exists an open set Ṽ lh
Mh

of X lh
∆ , isomorphic to V h

Mh
via the map induced by ψ−1

h ◦ψ.
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Recall the definition of φ in (2.1), which induces the glueing map between V l
Ml

and V h
Mh

. Since

the following diagram

K[x±1, y±1,
∏

o ̸=l(x+wlo)−1] K[x±1, y±1,
∏

o ̸=h(x+who)−1]

K[x±1, y±1,
∏

o ̸=l(x+whlo)−1] K[x±1, y±1,
∏

o ̸=h(x+wlho)−1]

φ

ψl ψh

ψ

is commutative, then the surjectivity of

OX (V h
Mh

)⊗ZOX (V l
Ml

)−→OX (V h
Mh

∩V l
Ml

)

follows from the separatedness of X lh
∆ .

2.5.9 Properness

In this subsection we prove that C is proper. By [EGA, IV.15.7.10], it remains to show that Cs is

proper. From [Liu4, Exercise 3.3.11], we only need to prove that the 1-dimensional subscheme Γt
is proper for every t= sh ∧sl . Indeed every other component is entirely contained in a model Cwh

∆ ,

which is proper (see §2.5.5). Let t= sh ∧sl for some h, l = 1, . . . ,m, with h ̸= l. For any o = 1, . . . ,m

such that so ⊂ t, let to be the unique child of t with so ⊆ to < t. Then Γt is equal to the glueing of

the schemes

Spec
R[To

M(X ,Y , Z)−1](
F o

M(X ,Y , Z), Z,π
) , M = MLwo

t ,0, MV wo
t ,0,

and

Spec
R[To

M(X ,Y , Z)−1](
F o

M(X ,Y , Z),Y ,π
) , M = MV wo

to ,rV wo
to

,

for all o such that so ⊂ t, through the isomorphism (2.4) and the glueing maps in the definition of

Cwo
∆ . In particular, for any o as above there exists a natural birational map so :Γt X̄Fwo

t
which

is defined as the identity morphism on the dense open X̊Fwo
t

=Γt∩ C̊wo
∆ .

Let D/k be a normal curve, let P ∈ D and let D ∖ {P}
g−→ Γt be a non-constant morphism

of curves. We want to show that g extends to D. For every o as above, X̄Fwo
t

is proper, so the

birational map

go := so ◦ g : D∖ {P} X̄Fwo
t

extends to a morphism ḡo : D −→ X̄Fwo
t

. If

Po := ḡo(P) ∈
(
X̄Fwo

t
∩ C̊wo

∆

)
= so

(
Γt∩ C̊wo

∆

)
for some o such that so ⊂ t (we will later show this is always the case), then there exists an

open neighbourhood U of Po such that U ⊆
(
X̄Fwo

t
∩ C̊wo

∆

)
and so so|Us−1

o (U) is an isomorphism. Since

P ∈ ḡ−1
o (U), the map

ḡ−1
o (U)

ḡo|Uḡ−1
o (U)−−−−−−→U

(
so|Us−1

o (U)

)−1

−−−−−−−−→ s−1
o (U) ,→Γt,
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induces an extension D −→Γt of g.

Suppose that Po ∉ X̄Fwo
t

∩ C̊wo
∆ for any o such that so ⊂ t. From §2.5.5 we have

(2.9) Po ∈ SM =Spec
R

(F o
M(X ,Y , Z),

∏
l (X +uol) , Z,π)

,

where M = MLwo
t ,0, and the product runs over all l ̸= o such that t= so ∧sl . In particular Po is

a point of each irreducible component of X̄Fwo
t

by Lemma 2.5.17. Let h ̸= o such that X + uoh

vanishes at Po. Let ξ be the generic point of D and let ξo = go(ξ), ξh = gh(ξ) be generic points of

X̄Fwo
t

and X̄Fwh
t

respectively. Then the birational maps so and sh give

X̄Fwo
t

D∖ {P} Γt

X̄Fwh
t

g

so

sh

=⇒

k
(
ξo

)
k(D)

k
(
ξh

)
φgo

≃
φgh

where we denote by φgo and φgh the homomorphisms between function fields induced by go and

gh. The vertical isomorphism is induced by the map

R[To
M(X ,Y , Z)−1](

F o
M(X ,Y , Z), Z

) −→ R[Th
M(X ,Y , Z)−1](

Fh
M(X ,Y , Z), Z

)
which sends (see §2.5.3 and Lemma 2.5.7)

X +uoh 7→ X ·Tho
M (X ,Y , Z)m11 +uoh = X

(
1+uhoX−1)+uoh = X .

But the rational function X +uoh vanishes at Po, while X does not vanish at Ph by (2.9). This

gives a contradiction, as ḡo(P)= Po and ḡh(P)= Ph.

2.5.10 Genus

Suppose Σ = {s1, . . . ,sm} = Σmin
C , and C has an almost rational cluster picture and is y-regular.

In the previous subsections we proved that C/OK is a proper regular model of C. Let t ∈Σwh
C be

a proper cluster. In this subsection we want to describe the genus of the components Γt of Cs

introduced in §2.5.6.

Proposition 2.5.21 Let t ∈Σwh
C . Then Γt is isomorphic to the smooth projective 1-dimensional

scheme given by

Y Dt = ∏
s∈t̃W

(X −uwswh ) ft,wh (X )

where uwswh = ws−wh
πρt

mod π, and ws is any rational centre of s.

In particular,
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1. if Dt = 1, then Γt ≃P1
k;

2. if Dt = 2 and t is übereven, then Γt is the disjoint union of two P1s over some quadratic

extension of k;

3. in all other cases, Γt is a hyperelliptic curve of genus g(t).

Proof. The first part of the proposition follows from Proposition 2.5.18.

For the second part of the statement note that if Dt = 1 then the result follows. Suppose

Dt = 2. Then p ̸= 2 as C is y-regular. Note that since Σ = Σmin
C , the proper clusters in ΣW

correspond to the proper clusters in Σrat
C . Recall the definition of t̃ given in Definition 2.4.13. Let

h(X )=∏
s∈t̃W (X −uwswh ) ft,wh (X ).

Suppose t is übereven. Then all its children are (proper) rational cluster by Lemma 2.3.30

since they are even and p ̸= 2. In particular bt = 1 by Lemma 2.3.18 and so ϵt ∈ 2Z and t̃= t̃W =∅
since it equals the set of odd rational children. Moreover, t=⋃

s<t,sproper s, and so ft,wh ∈ k. Thus

h(X ) ∈ k.

Now suppose h(X ) ∈ k. Then t̃W =∅ and t=⋃
s<t s, where s runs through all children s ∈ΣW of

t. The non-proper clusters in ΣW are of the form {wl} for some l = 1, . . . ,m. If {wl}< t, then t= sl ,

but in that case t would not equal the union of its children in ΣW . Hence t has no non-proper

children. It follows that t̃= t̃W and t equals the union of its proper rational children. In particular,

t has two or more children in Σrat
C , so bt = 1, by Lemma 2.3.18. But then t̃ is the set of odd children

of t as ϵt ∈ 2Z, and so all rational children of t are even.

It only remains to prove that if h(x) ∉ k, then the genus of Γt is g(t). Since h(X ) is a separable

polynomial, we need to show that

degh =
|t|−∑

s∈Σrat
C ,s<t |s|

bt
+ t̃.

It suffices to prove that if s ∈ Σrat
C is a non-proper rational child of t different from {wh}, then

bt = 1 and s ∈ t̃. Suppose s = {r} is such a rational cluster. Since r ∈ t, we have v(r−wh) ≥ ρt.

Suppose v(r−wh) > ρt. Then s ∈ Σ̊wh
C , as s< t and r ̸= wh. But this contradicts our choice of W.

Then ρt = v(r−wh) ∈Z and so bt = 1. It follows that t̃ is the set of odd children of t. Thus s ∈ t̃.

2.5.11 Minimal regular NC model

Suppose the base extended curve CK nr is y-regular and has an almost rational cluster picture.

Consider the model C/OK nr constructed before with Σ=Σmin
CKnr

. In this subsection we study what

components of Cs have to be blown down to obtain the minimal regular model with normal

crossings.

Recall [Dok, §5]. Let ΣK nr =Σrat
CKnr

and fix a proper cluster t ∈Σwh
CKnr

. Suppose first t ̸= sh ∧sl

for all l = 1, . . . ,m with l ̸= h. Equivalently, t has at most one proper child in ΣK nr . Then Γt ≃ X̄Fwh
t

and can be seen entirely in C̊wh
∆ . In particular, if Γt can be blown down then Fwh

t is a removable or

contractible v-face (see [Dok, Theorem 5.7]). By Lemma 2.4.3, we find
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• Fwh
t is removable if and only if t=R with a child in ΣK nr of size 2g+1.

• Fwh
t is contractible if and only if either |t| = 2 and ϵt

2 −ρt ∈Z or t has a proper rational child

s ∈ΣK nr , of size 2g, and ϵt
2 − gρt ∈Z.

Recall Definition 2.4.19. Note that Fwh
t is removable if and only if t is removable. In this case,

Fwh
t can be ignored for the construction of Cwh

∆ (for any h since t=R), and so t can be ignored for

the construction of C.

Assume now Fwh
t contractible. We want to understand when Γt can be blown down. First

consider the case |t| = 2 and ϵt
2 −ρt ∈Z. Then Γt intersects other components of Cs in 2 points (as

V wh
t gives two chains of P1s and the v-edges V wh

0 and Lwh
t give no component in Cwh

∆,s). To have

self-intersection −1, Γt has to have multiplicity > 1. It follows from Lemma 2.5.16 that ρt ∉Z, as
ϵt
2 −ρt ∈Z. Moreover, by Lemma 2.3.12, one has ρt ∈ 1

2Z. Therefore ϵt is odd and the multiplicity

of Γt is 2. Let r := rV wh
t

and consider

γtst = n0
d0

> n1
d1

> ·· · > nr
dr

> nr+1
dr+1

= γt
(
st−ρt+ρP(t)

)
given by V wh

t . If Γt can be blown down then d1 = 1. Since γtst = − ϵt
2 +2ρt, we have d0 = 2. In

particular d1 = 1 if and only if ρt−ρP(t) = n0
d0

− nr+1
dr+1

≥ 1
2 (see also [Dok, Remark 3.15]). Thus if

|t| = 2, then Γt can be blown down if and only if ρt ∉Z, ϵt odd, ρP(t) ≤ ρt− 1
2 . Note that this is case

(1) of Definition 2.4.19.

Second consider the case |t| = 2g+2 with a proper rational child s of size 2g and ϵt
2 − gρt ∈Z.

The argument is very similar to the previous one. If Γt can be blown down then it must have

multiplicity > 1 and this implies ρt ∉Z again by Lemma 2.5.16. From Lemma 2.3.12 it follows

that (|t|− |s|)ρt ∈Z, so ρt ∈ 1
2Z. Then mt = 2 and

v(c f )

2
= ϵt

2
− (g+1)ρt ∈ 1

2Z Z,

so v(c f ) odd. Let r := rV wh
s

and consider

γsss = n0
d0

> n1
d1

> ·· · > nr
dr

> nr+1
dr+1

= γs(ss−ρs+ρt)

given by V wh
s . If Γt can be blown down then dr = 1. Recall that ϵs − |s|ρs = ϵt − |s|ρt. Then

γs(ss−ρs+ρt)=− ϵt
2 +(g+1)ρt, so dr+1 = 2. In particular dr = 1 if and only if ρs−ρt = n0

d0
− nr+1

dr+1
≥ 1

2 .

Thus if t has size 2g+2 and has a unique proper rational child s ∈ΣK nr , then Γt can be blown

down if and only if |s| = 2g, ρt ∉Z, v(c f ) odd, ρs ≥ ρt+ 1
2 . This is case (2) of Definition 2.4.19.

Finally, if |t| = 2g+1, t has a proper child s ∈ΣK nr of size 2g and ϵt
2 − gρt ∈Z, then ρt ∈Z, as

(|t|− |s|)ρt ∈Z. It follows that ϵt ∈Z and so mt = 1. This implies the self-intersection of Γt is not

−1, since it intersects the rest of Ct in at least two points as before. Hence in this case Γt can

never be blown down.

Now assume there exists l ̸= h such that t= sh ∧sl . Then t is not minimal. Let th,tl ∈ ΣK nr

be such that sh ⊆ th < t and sl ⊆ tl < t. Suppose Γt irreducible. If |t| ≤ 2g (or, equivalently, t is not
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the largest non-removable cluster), then Γt intersects at least other 3 components of Cs (given

by th,tl , and P(t)). So it cannot be contracted to obtain a model with normal crossings. A similar

argument holds if there exists o ̸= l such that so ∧sh = t: at least 3 components (given by th, tl
and to) intersect Γt, so blowing down Γt would make the model lose normal crossings. Assume

then |t| > 2g and so∧sh ̸= t for all o ̸= l. Then Γt intersects at least other 2 components of Cs given

by V wh
th

and V wl
tl

. Firstly, if Γt can be blown down, then mt > 1. But ρt = ρhl ∈ Z. Then mt is at

most 2. If mt = 2 then Dt = 1, that implies ϵt odd and Γt ≃P1 by Proposition 2.5.21. It also follows

st ∈ 1
2Z Z. If t is odd then this implies that V wh

t gives a P1 intersecting Γt. Since that would be a

third component intersecting Γt, the cluster t has to be even. Hence t=R and |t| = 2g+2. Then

ϵt is odd if and only if v(c f ) is odd, as ρt ∈Z. Now, Lwh
t gives some P1s intersecting X̄Fwh

t
⊂ Cwh

∆,s.

All these P1s are not in C̊wh
∆,s (and so in Cs) if and only if th ∪ tl = t. In particular, th and tl are

either both even or both odd. If th is even, then γth = 2, and so the component given by V wh
th

has

multiplicity at least 2. The self-intersection of Γt could not be −1 in this case. Assume th is odd.

Let r := rV wh
th

and consider

γth sth = n0
d0

> n1
d1

> ·· · > nr
dr

> nr+1
dr+1

= γth
(
sth −

ρth −ρt
2

)
given by V wh

th
. We want dr = 1. Since

γth

(
sth −

ρth −ρt
2

)
=− ϵt

2
+ |th|−1

2
ρt ∈ 1

2Z∖Z,

we have dr+1 = 2. As before dr = 1 if and only if
ρth−ρt

2 = n0
d0

− nr+1
dr+1

≥ 1
2 and similarly for tl . Thus if

t has two or more rational children and Γt is irreducible then it can be blown down if and only

if v(c f ) is odd and t=R is union of its 2 odd rational children th and tl , satisfying ρth ≥ ρt+1,

ρtl ≥ ρt+1. This is case (3) of Definition 2.4.19.

Suppose now Γt reducible. By Proposition 2.5.21 the cluster t is übereven, ϵt is even and Γt is

the disjoint union of Γ−t ≃P1 and Γ+t ≃P1. As before, both Γ−t and Γ+t intersect at least other two

components (given by the proper children of t). But then neither Γ−t nor Γ+t has self-intersection

−1, as mt = 1.

We have showed that, for a rational cluster t ∈ΣK nr , an irreducible component of Γt can be

blown down if and only if t is contractible. Moreover, in this case, Γt is irreducible. It remains

to show that after blowing down all components Γt where t is a contractible cluster, no other

component can be blown down. First note that if t is a contractible cluster, then mt = 2 and Γt
intersects one or two other components of multiplicity 1 at two points in total. If it intersects

only one component, then after the blowing down, the latter will have a node and will not be

isomorphic to P1. If Γt intersects two components and those intersect something else in Cs, then

they will not have self-intersection −1 also when Γt is blown down. Therefore suppose that one of

those two does not intersect any other component of Cs. If we are in case (1) or case (2), it is easy

to see that this never happens. Indeed, in those cases, Γt intersects non-open-ended chains of P1s.

Then without loss of generality assume to be in case (3) and that Γth is the component that can
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be blown down once Γt has been contracted. This implies sh = th and ρsh = ρt+1. Then bsh = 1

and ϵsh = ϵt+|sh|. Since both ϵt and sh are odd, we have ϵsh ∈ 2Z. So Dsh = 2 and s̃h is the set of

rational children of sh. Hence g(sh) =
⌊ |sh|−1

2

⌋
≥ 1 since |sh| ≥ 3. But then Γsh cannot be blown

down.

2.5.12 Galois action

Consider the base extended hyperelliptic curve CK nr /Knr. The rational clusters of CK nr and their

corresponding rational centres are then over Knr. Denote ΣK nr =Σrat
CKnr

. For any proper cluster

s ∈ΣK nr , let Gs =StabGK (s), Ks = (Ks)Gs and ks be the residue field of Ks. Let Σmin
CKnr

= {s1, . . . ,sm}

be the set of rationally minimal clusters of CK nr . Fix a set W = {w1, . . . ,wm}⊂ Knr of corresponding

rational centres. By Lemma A.1.1, we can assume this choice to be GK -equivariant, i.e. for

any σ ∈ GK , one has σ(wl) = wh if and only if σ(sl) = sh. We can also require that wh ∈ sh if

sh ∩Ksh ̸=∅. Similarly, for any proper cluster t ∈ΣK nr Σmin
CKnr

, fix a rational centre wt in such a

way that wσ(t) =σ(wt) for any σ ∈GK . Set wso := wo for any o = 1, . . . ,m.

Lemma 2.5.22 With the choices above, for any h = 1, . . . ,m, the set of proper clusters in Σwh
CKnr

coincides with Σ̊wh
CKnr

.

Proof. Suppose by contradiction that there exists a non-proper cluster {r}= s ∈Σwh
CKnr

, with r ̸= wh.

Note that r ∈ sh and so s< sh. Recall that since s is a cluster centred at wh, it is cut out by the disc

D = {x ∈ K̄ | v(x−wh)≥ ρwh
s }, with ρ

wh
s = v(r−wh)> ρsh . This implies that wh ∉R, otherwise wh ∈ s

and |s| ≥ 2. In particular, wh ∉ sh. For our choice of wh, it follows that sh ∩Ksh =∅. Therefore

r ∉ Ksh and so there exists σ ∈Gsh such that σ(r) ̸= r. Since wh ∈ Ksh we have

v(σ(r)−wh)= v(σ(r−wh))= v(r−wh)= ρwh
s .

But then σ(r) ∈ s, and so |s| ≥ 2, a contradiction.

Assume that CK nr is y-regular and has an almost rational cluster picture. By the previous

lemma, from the set of rational centres W we can construct the proper regular model C/OK nr of

CK nr as previously presented in this section. In this subsection we show how the Galois group

Gal(Knr/K) acts on the OK nr -scheme C. Moreover, we describe the induced action of Gk on the

special fibre Cs/ks, and give defining equations for the principal components of Cs compatibly with

the action.

For any l = 1, . . . ,m, recall the notation f l(x) = f (x+wl) ∈ Knr[x] and Cwl /Knr : y2 = f l(x).

Fix σ ∈ GK . Let l,h = 1, . . . ,m such that σ(sl) = sh. Then σ( f l) = fh. Now, let t ∈ Σwl
CKnr

be a

proper cluster. Then σ(t) ∈ Σwh
CKnr

and ρt = ρσ(t). It follows that most of the quantities attached

to t, such as those of Definition 2.4.6, are the same for σ(t), e.g. ϵt = ϵσ(t). In particular, if M

is a matrix associated to t then M is associated to σ(t) as well. So σ(F l
M) = Fh

M . Finally, as

σ(
∏

o ̸=l(x+wlo)−1)=∏
o ̸=h(x+who)−1 we also have σ(T l

M)= Th
M .
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Hence the natural Knr-isomorphism Cwh σ−→ Cwl induces OK nr -isomorphisms of schemes

(2.10) Cwh
∆

σ−→ Cwl
∆ , C̊wh

∆

σ−→ C̊wl
∆ , Uh

M
σ−→U l

M .

Via the glueing morphisms (2.4), these maps describe the action of GK on C.

We want to study the action of Gk on the special fibre of C more in detail. Let σ ∈Gal(Knr/K)

and let σ̄ ∈Gk corresponding to σ via the canonical isomorphism Gal(Knr/K)≃Gk. Let l,h and

t as above. In §2.5.6 we described closed 1-dimensional subschemes composing C̊wl
∆,s and the

morphisms induced by the glueing maps. Recall the polynomials introduced in Definition 2.5.12.

From (2.10) we get

σ̄(g0
sl ,wl

)= g0
sh,wh

, σ̄(gt,wl )= gσ(t),wh , σ̄(gl |Lwl
t

)= gh|Lwh
σ(t)

.

From the equality (2.7) we obtain σ̄( ft,wl )= fσ(t),wh . Note that the previous relations can also be

recovered directly from the definitions.

Lemma 2.5.23 Let wt be the rational centre of t fixed above. Then

(i) gt,wt , ft,wt ∈ kt[X ];

(ii) gt,wt = gt,wl and ft,wt(X )= ft,wl (X +uwtwl ) where uwtwl = wt−wl
πρt

mod π;

Proof. For any rational centre w of t, let ut,w = c f
∏

r∈R t(w− r) as in Definition 2.5.12. Note that

ut,w/πv(ut,w) is independent of w since

v((wt− r)− (w− r))= v(wt−w)≥ ρt > v(wt− r)

for any r ∈R t. Then gt,wt = gt,wl . If σ̄ ∈Gal(ks/kt), i.e. σ ∈Gal(Knr/Kt), then

σ̄(gt,wt)= σ̄(gt,wl )= gt,wh = gt,wt .

In particular gt,wt ∈ kt[X ].

Since ut,w/πv(ut,w) is independent of w we also have

ft,wt(X
bt)= ft,wl ((X +uwtwl )

bt).

Suppose ρt ∈Z. Then bt = 1 and so the equality above implies ft,wt(X )= ft,wl (X +uwtwl ). Suppose

ρ ∉ Z. Then v(w−wt) > ρt for any rational centre w of t as v(w−wt) ∈ Z and v(w−wt) ≥ ρt.

Hence uwtwl = 0. Thus ft,wt(X
bt)= ft,wl (X

bt), which implies ft,wt(X )= ft,wl (X )= ft,wl (X +uwtwl ).

If σ̄ ∈Gal(ks/kt), i.e. σ ∈Gal(Knr/Kt), then

σ̄( ft,wt)(X )= σ̄( ft,wl )(X + σ̄(uwtwl ))= ft,wh (X +uwtwh )= ft,wt(X ),

and so ft,wt ∈ kt[X ].
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Remark 2.5.24. Note that the polynomials ft,wt , gt,wt and g0
sh,wh

equal the polynomials ft, gt and

g0
sh

given in Definition 2.4.21.

Let V = V wl
t and consider the subscheme XV ×PV of Cs given by V , where PV is a chain of

P1s and XV : {gt,wl = 0} over Gm,ks . If sh ⊂ t, then the glueing map Uh
M →U l

M induces the identity

φhl
V : XV wh

t

=−→ XV wl
t

. Define Xt ⊆ Gm,ks given by gt,wt = 0. By Lemma 2.5.23, φo
V : Xt

≃−→ XV wo
t

, for

o = h, l, and this isomorphism is compatible with the Galois action and the glueing maps, i.e.

σ◦φh
V =φl

V ◦σ and φhl
V ◦φh

V =φl
V as morphisms on Xt.

When V0 =V wl
0 we can consider the subscheme XV0 ×PV0 given by V0, where PV0 is a chain of

P1s and XV0 : {gsl ,wl = 0} over Gm,ks . Since XV0 ×PV0 is never glued to any other component there

is no need to choose a different model for it.

Let L = Lwl
t and consider the subscheme XW

L ×PL given by L, where PL is a chain of P1s and

XW
L : { ft,wl = 0} over A1

ks . If sh ⊂ t, then the isomorphism φhl
L : XW

Lwh
t

≃−→ XW
Lwl
t

given by the glueing

map Uh
M → U l

M is induced by the ring isomorphism ks[X ] → ks[X ], sending X 7→ X + uwhwl ,

where uwhwl = wh−wl
πρt

mod π. Define XW
t ⊆ A1

ks given by ft,wt = 0. By Lemma 2.5.23, the map

X 7→ X +uwtwl induces an isomorphism φo
L : XW

t
≃−→ XW

Lwo
t

, for o = h, l, compatible with the Galois

action and the glueing morphisms, i.e. σ◦φh
L =φl

L ◦σ and φhl
L ◦φh

L =φl
L as morphisms on XW

t .

Recall the definitions of t̂W and Gt,wl ⊆A1
ks given in Definition 2.5.15 and the definition of t̊

given in Definition 2.4.21. Note that by Lemma 2.5.22,

t̂W = {s ∈ΣK nr ∪ {∅} | s< t} {{r} ∈ΣK nr | r ∉W}.

Fix c = 0, . . . ,bt−1 such that 1/bt−cρt ∈Z. For any rational centre w ∈ Knr of t define f̂t,w ∈ ks[X ,Y ]

by

f̂t,w(X )= ∏
s∈t̂W

(X −uwsw)
|s|
bt

−cϵt ft,w(X ),

where uwsw = ws−w
πρt

mod π (ws = wl if s = ∅). Let L = Lwl
t , F = Fwl

t and M = ML,0. It follows

from Lemma 2.5.17 that the scheme Γwl
t = X̊F ∩U l

M is given by Y Dt = f̂t,wl (X ) as a subscheme of

Gt,wl ×A1
ks . We then obtain σ̄( f̂t,wl )= f̂σ(t),wh from the action (2.10) of σ on U l

M .

Lemma 2.5.25 With the notation above,

(i) f̂t,wt ∈ kt[X ];

(ii) f̂t,wt(X )= f̂t,wl (X +uwtwl ) where uwtwl = wt−wl
πρt

mod π;

Proof. If s ∈ t̊, then σ(s) ∈ ˚(σ(t)) and σ̄(uwsw) = uwσ(s)σ(w) for any rational centre w of t. Hence

f̂t,wt ∈ kt[X ] and σ̄( f̂t,wl ) = f̂σ(t),wh by Lemma 2.5.23(i),(iii). Since uwswt = uwswl −uwtwl , Lemma

2.5.23(ii) implies f̂t,wt(X )= f̂t,wl (X +uwtwl ).

Define Γwt

t ⊂ Gt,wt ×A1
ks given by Y Dt = f̂t,wt . Suppose sh ⊂ t, and let φhl

t : Γwh
t ≃ Γwl

t be the

isomorphism coming from the glueing map Uh
M → U l

M induced by the ring homomorphism
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X 7→ X +uwhwl . By Lemma 2.5.25, the map X 7→ X +uwtwl induces an isomorphism φo
t :Γwt

t ≃Γwo
t ,

for o = h, l, which is compatible with the Galois action and the glueing maps, i.e. σ◦φh
t =φl

t ◦σ
and φhl

t ◦φh
t =φl

t as morphisms on Γwt

t . Therefore Γt is isomorphic to the smooth completion of

Γwt

t , and so it is given by Y Dt = f̃t(X ), where f̃t(X ) = ∏
s∈t̊(X −uwswt) ft,wt(X ) is the polynomial

given in Definition 2.4.21.

2.6 Integral differentials

Let C be a hyperelliptic curve of genus g ≥ 1 defined over K by a Weierstrass equation y2 = f (x). It

is well-known that the K-vector space of global sections of the sheaf of differentials of C, namely

H0(C,Ω1
C/K ), is spanned by the basis

ω=
{

dx
2y

, x dx
2y

, . . . , xg−1 dx
2y

}
.

Let C be a regular model of C over OK and consider its canonical (or dualising) sheaf ωC/OK . The

free OK -module of its global sections H0(C,ωC/OK ) can be viewed as an OK -lattice in H0(C,Ω1
C/K )

(see [Liu4, Corollary 9.2.25(a)]). The aim of this section is to present a basis of H0(C,ωC/OK ) as

an OK -linear combination of the elements in ω under the assumptions of Theorem 2.4.22. Note

that by [Liu4, Corollary 9.2.25(b)] the problem is independent of the choice of model C but it does

depend on the choice of the equation y2 = f (x) since the basis ω does. Throughout this section let

C and C/OK be as above.

If C is ∆v-regular, [Dok, Theorem 8.12] gives an OK -basis of H0(C,ωC/OK ), as required. We

rephrase it in terms of rational cluster invariants, by using results of §2.3 and Lemma 2.4.12.

Theorem 2.6.1 Suppose C has an almost rational cluster picture and is y-regular, and all proper

clusters s ∈ΣC have same rational centre w ∈ K. Let s1 ⊂ ·· · ⊂ sn =R be the proper clusters in Σrat
C .

For every j = 0, . . . , g−1, define

i j :=min{i ∈ {1, . . . ,n} | 2( j+1)< |si|}

and

e j := 1
2ϵsi j

− ( j+1)ρsi j
.

Then the differentials

µ j =π⌊e j⌋(x−w) j dx
2y

j = 0, . . . , g−1,

form an OK -basis of H0(C,ωC/OK ).

Proof. Let Cw : y2 = f (x+w) be the hyperelliptic curve isomorphic to C through the change of

variable y 7→ y, x 7→ x+w. By Corollary 2.3.25 and Lemma 2.4.12, the curve Cw is ∆v-regular.

Since Σ̊rat
C consists of the proper clusters in Σw

C , Lemma 2.4.3 and [Dok, Theorem 8.12] implies

that

µ j =π⌊e j⌋x j dx
2y

j = 0, . . . , g−1,
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form an OK -basis of H0(C,ωC/OK ) as a lattice in H0(Cw,Ω1
Cw/K ) (that is if C is regarded as a model

of Cw). Changing variables concludes the proof.

Suppose now C has an almost rational cluster picture and is y-regular. Let Σmin
C be the set of

rationally minimal clusters and let W = {ws | s ∈Σmin
C } be a corresponding set of rational centres,

such that all clusters in Σ̊ws

C are proper. For every proper cluster t ∈Σrat
C , choose a minimal cluster

s⊆ t and set wt := ws. Consider the regular model C/OK of C of Theorem 2.4.18, constructed in

§2.5 by glueing the open subschemes C̊w
∆ of Cw

∆ for w ∈ W. We want to describe the canonical

morphism C → C. Write W = {w1, . . . ,wm} as in §2.5. For any h = 1, . . . ,m, let t ∈Σwh
C be a proper

cluster and let M be a matrix associated to t. Let Cwh : y2 = f (x+wh) and

y2 − f (x+wh) M= Y nY ZnZFh
M(X ,Y , Z).

Then, on the affine chart XM the projection C → Cwh
∆ is induced by

R(
Fh

M(X ,Y , Z)
) M−→ K[(x′)±1, (y′)±1](

(y′)2 − f (x′+wh)
) ≃−→ K[x±1, y±1](

y2 − f (x)
) ,

where (X ,Y , Z) = (x′, y′,π) • M and (x′, y′) = (x−wh, y). In particular it follows that (X ,Y , Z) =
(x−wh, y, z)•M and so 

x−wh

y

π

=


X m̃11Y m̃21 Zm̃31

X m̃12Y m̃22 Zm̃32

X m̃13Y m̃23 Zm̃33

=


X

Y

Z

•M−1.

For a proper cluster t ∈Σrat
C recall the definitions of Γt and mt.

Proposition 2.6.2 Let t ∈Σrat
C be a proper cluster. Then5

ordΓt(x−ws)= mtρt,

ordΓt
dx
2y =−mt

(1
2ϵt−ρt−1

)−1.

for every proper cluster s ∈Σrat
C , s⊆ t.

Proof. Let g(x, y) = y2 − f (x). Let W = {w1, . . . ,wm} as above. Let h = 1, . . . ,m such that wh = ws.

Let F = Fwh
t , V = V wh

t , M = MV ,0 and let X ,Y , Z be the transformed variables (X ,Y , Z) = (x−
ws, y,π)•M. Define H(X ,Y , Z)=π− X m̃13Y m̃23 Zm̃33 , and G(X ,Y , Z)= g((X ,Y , Z)•M−1). We have

Fh
M(X ,Y , Z)=Y−nY Z−nZG(X ,Y , Z),

where nZ = mtϵt, since ordZ(y2)= mtϵt for Lemma 2.5.2. Write F =Fh
M .

5If Γt is reducible, say Γt =Γ−t ∪Γ+t , with ordΓt (·) we mean min{ordΓ−t (·),ordΓ+t (·)}
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Note that d(x−ws) = dx and (gws)
′
x(x−ws) = g′

x(x), where gws(x, y) = g(x+ws, y). Then, by

[Dok, 8.7], (x−ws)g′
x = m11XG′

X +m12YG′
Y +m13ZG′

Z

yg′
y = m21XG′

X +m22YG′
Y +m23ZG′

Z

from which it follows that

m11 yg′
y −m21(x−ws)g′

x = (m11m22 −m21m12)YG′
Y − (m21m13 −m11m23)ZG′

Z

= m̃33YG′
Y − m̃23ZG′

Z .

We will show later that this quantity is non-zero. Moreover,

m̃33YG′
Y − m̃23ZG′

Z =Y nY ZnZ
(
m̃33YF ′

Y − m̃23ZF ′
Z + (nY +nZ)F

)
.

Recall that X = (x−ws)m11 ym21πm31 . Then dX
X = m11

dx
x−ws

+ m21
d y
y . Furthermore, as 0 = dg =

g′
xdx+ g′

yd y in ΩC/K , we have

dX
X

=
(

m11
x−ws

− m21
y

g′x
g′y

)
dx = dx

(x−ws)yg′y

(
m11 yg′

y −m21(x−ws)g′
x

)
.

Therefore

(2.11)
dx

2(x−ws)y2 = dX
XY nY ZnZ

(
m̃33YF ′

Y − m̃23ZF ′
Z + (nY +nZ)F

) .

Let S =Spec OK . Considering X−1 as an independent variable, the scheme

U =Spec
OK [Y , Z, X−1, X ]
(F ,H, X · X−1 −1)

defines a complete intersection in A4
S. Furthermore, U is an open subscheme of Cwh

∆ ∩ XM that

restricted to A4
S {Th

M(X ,Y , Z)= 0} equals Uh
M . In particular, U is integral. From §2.5.5 it follows

that Ut =U ∩ {Z = 0} is a dense open subset of X̊F . Recall that X̊F is an open subscheme of Γt.

Hence it suffices to prove the proposition for Ut instead of Γt ([Liu4, Lemma 9.2.17(a)]). Since X

and Y are units and Z vanishes to order 1 on Ut, Lemma 2.5.2 implies that

(2.12) ordUt(x−ws)= m̃31 = mtρt and ordUt y= m̃32 = mt
ϵt
2 .

Recall that U is integral and that Uη is isomorphic to an open subscheme of C. Then Uη is

smooth. Hence, by [Liu4, Corollary 6.4.14(b)], the sheaf ωC/OK is generated on U by E−1dX where

E :=

∣∣∣∣∣∣∣∣
F ′

Y F ′
Z F ′

X−1

H′
Y H′

Z F ′
X−1

0 0 X

∣∣∣∣∣∣∣∣=−πXY−1Z−1 (
m̃33YF ′

Y − m̃23ZF ′
Z
)
,

if E is non-zero. Suppose it is; we are going to prove it later. Thus, as F = 0 on U , from (2.11) and

(2.12) we have

ordUt

dx
2y

= mt
(1

2ϵt+ρt
)+ m̃33 −nZ −1= mt

(−1
2ϵt+ρt+1

)−1.
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It remains to show that E does not equal 0 on U . Suppose it does. Then from the computations

above, it follows that m11 yg′
y −m21(x−ws)g′

x = 0 in K(C). Since m21 equals either 1 or 2 by

Lemma 2.5.2, it follows that there exists a non-zero c ∈ K , such that

m11 yg′
y −m21(x−ws)g′

x + cg = 0

(c ∈ K from degree analysis). Then c f (x)= m21(x−ws) f ′(x). Note that m21 is non-zero as char(K) ̸=
2. But then a contradiction follows since f is a separable polynomial of degree ≥ 3.

In the following two theorems we describe a basis of integral differentials of C. We use

Definitions/Notations 2.3.1, 2.3.3, 2.3.2, 2.3.8, 2.3.9, 2.3.26, 2.4.6, 2.4.10 in the statements.

Theorem 2.6.3 Let C/K be a hyperelliptic curve of genus g ≥ 1 defined by the Weierstrass equation

y2 = f (x) and let C/OK be a regular model of C. Suppose C has an almost rational cluster picture

and is y-regular. For i = 0, . . . , g−1 choose inductively proper clusters si ∈Σrat
C so that

e i := ϵsi

2
−

i∑
j=0

ρs j∧si = max
t∈Σrat

C

{ϵt
2
−ρt−

i−1∑
j=0

ρs j∧t
}
,

where if s and s′ are two possible choices for si satisfying s′ ⊂ s, then choose si = s. Then the

differentials

µi =π⌊e i⌋
i−1∏
j=0

(x−ws j )
dx
2y

, i = 0, . . . , g−1,

form an OK -basis of H0(C,ωC/OK ).

Proof. Since H0(C,ωC/OK ) is independent of the choice of regular model, we consider C to be the

model described in Theorem 2.4.18 and constructed in §2.5.

We first show that the differentials µi are global sections of ωC/OK . It suffices to prove they are

regular along all components Γt, where t ∈Σrat
C proper. Indeed for the construction of C and the

definition of the e i ’s, the differentials µi are regular along all other components of Cs by Theorem

2.6.1. Fix i = 1, . . . , g−1 and let j = 0, . . . , i−1. Let t ∈Σrat
C be a proper cluster. If s j ⊆ t then

ordΓt(x−ws j )= mtρt = mtρs j∧t,

by Proposition 2.6.2. If t⊊ s j then wt is a rational centre of s j. Hence

v(wt−ws j )≥min
r∈t min{v(r−wt),v(r−ws j )}≥min{ρt,ρs j }= ρs j = ρs j∧t.

Therefore Proposition 2.6.2 implies

ordΓt(x−ws j )≥min{ordΓt(x−wt),ordΓt(wt−ws j )}

≥min{mtρt,mtρs j∧t}= mtρs j∧t.
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If s j ⊈ t and t⊈ s j then from Lemma 2.3.18 it follows that

ordΓt(x−ws j )=min{mtρt,mtρs j∧t}= mtρs j∧t.

as ρt > ρs j∧t. Thus we have proved that

(2.13) ordΓt(x−ws j )≥ mtρs j∧t, where the equality holds if t ̸⊂ s j.

Hence it follows from Proposition 2.6.2 that

ordΓtµi ≥ mt

(
⌊e i⌋+

i−1∑
j=0

ρs j∧t−
ϵt

2
+ρt +1

)
−1.

But

⌊e i⌋ ≥
⌊ϵt

2
−ρt−

i−1∑
j=0

ρs j∧t
⌋
> ϵt

2
−ρt−

i−1∑
j=0

ρs j∧t−1,

then ordΓtµi >−1, that implies ordΓtµi ≥ 0, as required.
Now we need to show that the differentials µi span H0(C,ωC/OK ), i.e. the lattice they span

is saturated in the global sections of ωC/OK . Suppose not. Then there exist I ⊆ {0, . . . , g−1} and
ui ∈O×

K for i ∈ I such that the differential 1
π

∑
i∈I uiµi is regular along Γt, for every proper cluster

t ∈ Σrat
C . First we want to show that for any i1, i2 = 0, . . . , g−1 with i1 < i2, one has si2 ̸⊂ si1 .

Suppose by contradiction that si2 ⊊ si1 . Then

e i2 ≥
ϵsi1

2
−ρsi1

−
i2−1∑
j=0

ρs j∧si1
= e i1 −ρsi1

−
i2−1∑

j=i1+1
ρs j∧si1

≥ e i1 −ρsi1
−

i2−1∑
j=i1+1

ρs j∧si2

≥
ϵsi2

2
−ρsi2

−
i1−1∑
j=0

ρs j∧si2
−ρsi1

−
i2−1∑

j=i1+1
ρs j∧si2

=
ϵsi2

2
−

i2∑
j=0

ρs j∧si2
= e i2 .

Therefore

max
t∈Σrat

C

{ϵt
2
−ρt−

i2−1∑
j=0

ρs j∧t
}
= e i2 =

ϵsi1

2
−ρsi1

−
i2−1∑
j=0

ρs j∧si1
,

and this means that si1 is a possible choice for the i2-th cluster si2 . But si2 ⊊ si1 , so the i2-th

cluster should have been si1 , a contradiction.

Let I0 ⊆ I be the set of indices i such that γi := e i −⌊e i⌋ is maximal. Let i0 = min I0 and let

Γ0 =Γsi0
. Since si0 ̸⊂ s j, for all j = 0, . . . , i0 −1, from (2.13) it follows that

m := ordΓ0

1
π
µi0 =−msi0

γi0 +msi0

(
e i0 −

ϵsi0

2
+ρsi0

+
i0−1∑
j=0

ρs j∧si0

)
−1

=−msi0
γi0 −1< 0.

Furthermore,

ordΓ0

1
π
µi ≥−msi0

γi +msi0

(
e i −

ϵsi0

2
+ρsi0

+
i−1∑
j=0

ρs j∧si0

)
−1

≥−msi0
γi −1≥−msi0

γi0 −1= m,

for all i ∈ I. Let J := {i ∈ I | ordΓ0
1
π
µi = m}. Then J ̸=∅ since i0 ∈ J. The order of the differential

1
π

∑
i∈J uiµi along Γ0 must be > m. Let i ∈ I. From the computations above i ∈ J if and only if

68



2.6. INTEGRAL DIFFERENTIALS

(i) ordΓ0 (x−ws j )= msi0
ρsi0∧s j for all j = 0, . . . , i−1. Equivalently, if s j ⊋ si0 for some j < i, then

v(wsi0
−ws j )= ρsi0∧s j .

(ii) e i =
ϵsi0

2 −ρsi0
−∑i−1

j=0ρs j∧si0
. In particular, if si ⊆ si0 , then si = si0 .

(iii) γi = γi0 . Equivalently, i ∈ I0.

Therefore J ⊆ I0, i0 =min J and

⌊e i⌋−⌊e i0⌋ = e i −γi − e i0 +γi0 = e i − e i0 =−
i−1∑
j=i0

ρs j∧si0
,

for all i ∈ J. Hence
1
π

∑
i∈J

uiµi = 1
π
µi0

( ∑
i∈J

ui

π
∑i−1

j=i0
ρs j∧si0

i−1∏
j=i0

(x−ws j )
)
,

and since ordΓ0
1
π
µi0 = m < 0 we must have

(2.14) ordΓ0

( ∑
i∈J

ui

π
∑i−1

j=i0
ρs j∧si0

i−1∏
j=i0

(x−ws j )
)
> 0.

For any j < i ∈ J, with i0 ≤ j we have s j ̸⊂ si0 . Therefore either s j = si0 or s j ∧ si0 ⊋ si0 . In the

latter case,

ordΓ0(x−wsi0
)= msi0

ρsi0
> msi0

ρs j∧si0
= ordΓ0(x−ws j ).

It follows from (2.14) that

ordΓ0

( ∑
i∈J

vi
(x−wsi0

)βi

π
βiρsi0

)
> 0,

where Ji = { j ∈ I | i0 ≤ j < i and s j ̸= si0}, vi = ui
∏

j∈Ji

wsi0
−ws j

π
ρs j∧si0

∈O×
K , and βi = |{i0, . . . , i−1} Ji|.

To find a contradiction, we will use the explicit description of a dense open affine subset of Γ0.

Let W = {w1, . . . ,wm} be the set of rational centres of the rationally minimal clusters for C fixed

at the beginning of the section. Let wh ∈W such that wh = wsi0
, and let L = Lwh

si0
, M = ML,0, and

consider

Uh
M ∩ {Z = 0}=Spec

R[Th
M(X ,Y , Z)−1](

Fh
M(X ,Y , Z), Z

) ⊂Γt,

dense open subscheme of Γt. From Lemma 2.5.2,

∑
i∈J

vi
(x−wh)βi

π
βiρsi0

= ∑
i∈J

vi X
βi /bsi0 ,

which is a unit since the polynomial Fh
M(X ,Y , Z) in {Z = 0} is of the form Y 2−G(X ) or Y −G(X ) for

some non-constant G(X ) ∈ K[X ] (for more details see Lemma 2.5.17). This gives a contradiction

and concludes the proof.
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Assume now CK nr has an almost rational cluster picture and is y-regular as in Theorem 2.4.22.

Since |ΣC| is finite, there exists a finite unramified extension F/K such that CF has an almost

rational cluster picture and is y-regular. Denote by OF the ring of integers of F. Let ΣF =Σrat
CF

. Fix

a rational centre ws ∈ F for every rationally minimal cluster s ∈ΣF . For all non-minimal proper

clusters t ∈ΣF choose a rational centre wt = ws for some rationally minimal cluster s⊆ t. In this

setting the next theorem gives a basis of integral differentials of C.

Theorem 2.6.4 Let C/K be a hyperelliptic curve of genus g ≥ 1 defined by the Weierstrass equation

y2 = f (x) and let C/OK be a regular model of C. Suppose there exists a finite unramified extension

F/K such that CF has an almost rational cluster picture and is y-regular. For i = 0, . . . , g−1 choose

inductively proper clusters si ∈ΣF so that

e i := ϵsi

2
−

i∑
j=0

ρs j∧si =max
t∈ΣF

{ϵt
2
−ρt−

i−1∑
j=0

ρs j∧t
}
,

where if s and s′ are two possible choices for si satisfying s′ ⊂ s, then choose si = s. Let β ∈O×
F such

that TrF/K (β) ∈O×
K . Then the differentials

µi =π⌊e i⌋ ·TrF/K

(
β

i−1∏
j=0

(x−ws j )
) dx

2y
, i = 0, . . . , g−1,

form an OK -basis of H0(C,ωC/OK ).

Proof. First note that without loss of generality we can suppose F/K Galois. Moreover, since F/K

is unramified, Gal(F/K)≃Gal(f/k), where f is the residue field of F, and so the existence of β is

guaranteed by the surjectivity of Trf/k. Let C be the minimal regular model of C over OK . By

[Liu4, Proposition 10.1.17], the base extended scheme COF is the minimal regular model of CF

over OF . Let µF
0 , . . . ,µF

g−1 be the basis of integral differentials of CF given by Theorem 2.6.3.

Suppose µ′0, . . . ,µ′g−1 is a basis of integral differentials of CF that, for any σ ∈Gal(F/K) and

any j = 0, . . . , g−1, satisfies

(2.15) σ(µ′j)=µ′j +
∑

0≤i< j
λi jµ

′
i,

for some λi j ∈ OF (depending on σ). Note that µF
0 , . . . ,µF

g−1 is in fact such a basis. We want to

prove that, for any j = 0, . . . , g−1, the differentials

(2.16) µ′0, . . . ,µ′j−1,TrF/K (βµ′j),µ
′
j+1, . . . ,µ′g−1

still form a basis of H0(CF ,ωCF /OF ) satisfying condition (2.15). From equation (2.15) it follows that

TrF/K (βµ′j)=
∑

σ∈Gal(F/K)
σ(β)σ(µ′j)=TrF/K (β)µ′j +

∑
i< j

λ′
i jµ

′
i,

for some λ′
i j ∈OF . Since TrF/K (β) ∈O×

K , the differentials in (2.16) form a basis of H0(CF ,ωCF /OF )

satisfying condition (2.15).
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Since µF
0 , . . . ,µF

g−1 satisfies (2.15), by induction it follows that

TrF/K (βµF
0 ), . . . ,TrF/K (βµF

g−1)

is a basis of H0(CF ,ωCF /OF ). Proposition A.2.2 concludes the proof.

We conclude this section with an application of Theorem 2.6.3.

Example 2.6.5 Let p be a prime number and let a ∈ Zp, b ∈ Z×
p such that the polynomial

x2+ax+b is not a square modulo p. Let C be the hyperelliptic curve over Qp of genus 4 described

by the equation y2 = f (x), where f (x)= (x6 +ap4x3 +bp8)((x− p)3 − p11). We have already shown

in Examples 2.3.32 and 2.4.24 that C satisfies the hypothesis of Theorem 2.6.3 and has rational

cluster picture

t3 t4 R

1

We choose rational centres for the minimal clusters t3 and t4: wt3 = 0 and wt4 = p. Since R= t3∧t4,

we can set either wR = wt3 or wR = wt4 . Let us fix wR = wt3 = 0. Then to choose s0,s1,s2,s3 as in

Theorem 2.6.3 we draw the following table:

ρt ϵt
ϵt

2
−ρt ϵt

2
−ρt−ρs0∧t

ϵt

2
−ρt−

1∑
j=0

ρs j∧t
ϵt

2
−ρt−

2∑
j=0

ρs j∧t

t3
4
3

11
25
6

19
6

11
6

1
2

t4
11
3

17
29
6

7
6

1
6

−5
6

R 1 9
7
2

5
2

3
2

1
2

The numbers in red indicate that s0 = t4, s1 = s2 = t3 and s3 =R. Thus the differentials

µ0 = p4 · dx
2y

, µ1 = p3 · (x− p) dx
2y

, µ2 = p · (x− p)x dx
2y

, µ3 = (x− p)x2 dx
2y

form a Zp-basis of H0(C,ωC/Zp ), for any regular model C/Zp of C.
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3
A GENERALISATION OF THE TORIC RESOLUTION OF CURVES

Let k be a perfect field and let C0 be a smooth curve in the torus G2
m,k. Extending the toric

resolution of C0 with respect to its Newton polygon, we explicitly construct an explicit

model over k of the smooth completion of C0. Such a model exists for any smooth projective

curve and can be described via a combinatorial algorithm using an iterative construction of

Newton polygons. The content of this chapter can be found in the paper A generalisation of the

toric resolution of curves [Mus2], submitted for publication.

3.1 Introduction

Let U be any smooth affine curve defined over a perfect field k. Up to isomorphism there exists a

unique smooth projective curve C/k birational to U, called the smooth completion of U. In this

chapter we study the problem of finding explicit models of C over k, i.e curves C̃ isomorphic to C

over k. More precisely, we present an algorithm to construct a model over k of smooth projective

curves which are birational to a smooth curve C0 ⊂G2
m,k. In fact, every smooth projective curve is

the smooth completion of a curve C0 as above (Corollary B.1.4). Note that a curve is not required

to be connected in this work (see conventions and notations in §3.1.4).

3.1.1 Overview

When it exists, a Baker’s model of a smooth projective curve C/k is an explicit model of C over

k. It is constructed via a toric resolution of a smooth curve C0 ⊂G2
m,k, birational to C. A Baker’s

model helps in studying the geometry of C. For example, it gives combinatorial interpretations

of the genus, the gonality, the Clifford index and the Clifford degree [CC]. Let us give a brief

description of this model.
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For any C and C0 as above, let f = ∑
(i, j)∈Z2 ci j xi y j ∈ k[x±1, y±1] be a Laurent polynomial

defining C0 : f = 0 in the torus G2
m,k. Let ∆ be the Newton polygon of f . A classical construction

associates a 2-dimensional toric variety T∆ to the integral polytope ∆. The Zariski closure C1 of

C0 in T∆ is called the completion of C0 with respect to its Newton polygon. It is an easy-to-describe

projective curve, whose C0 is a dense open. The construction of C1 from C0 is said toric resolution

on T∆. If C1 is regular, it is isomorphic to C and is said a Baker’s model of C. A smooth projective

curve does not always admit a Baker’s model (see Appendix B.2). Its existence is closely related

to another interesting property: the nondegeneracy.

For any face λ of ∆ (of any dimension) let fλ = ∑
(i, j)∈Z2∩λ ci j xi y j. The Laurent polynomial

f is nondegenerate if for every face λ of ∆ the system of equations fλ = x ∂ fλ
∂x = y∂ fλ

∂y = 0 has no

solutions in (k̄×)2. The nondegeneracy of f has a geometric interpretation in terms of C1. From

the explicit description of C1, there is a canonical way to endow the subset C1 C0 with a structure

of closed subscheme. We say C1 is outer regular if C1 C0 is smooth. One can prove that f is

nondegenerate if and only if C1 is outer regular. This is a sufficient condition for the regularity of

C1.

A smooth projective curve C is said nondegenerate if it admits an outer regular Baker’s model.

Nondegenerate curves have several applications. They have turned out to be useful in singular

theory [Kou] and in the theory of sparse resultants [GKZ], as well as for studying specific classes

of curves [Mik],[BP],[KWZ]. Over finite fields, nondegenerate curves have also been used in

p-adic cohomology theory [AS], in the computation of zeta-functions [CDV] and in the study of

the torsion subgroup of their own Jacobians [CST]. Unfortunately, nondegenerate curves are rare,

especially for high genera [CV1]. In fact, recall that even a Baker’s model may not exist.

Let C/k be any smooth projective curve. In this chapter we construct an explicit model Cn

of C over k, called generalised Baker’s model (Definition 3.7.1), extending the classical toric

resolution without losing the connection with Newton polygons. Every smooth projective curve

C has a generalised Baker’s model and it can be constructed from any smooth curve C0 ⊂G2
m,k

birational to C. Similarly to the classical case, the subset Cn C0 will naturally be equipped with a

structure of closed subscheme. We say that Cn is outer regular if the subscheme Cn C0 is smooth.

Although not all smooth projective curves are nondegenerate, they always have an outer regular

generalised Baker’s model (Corollary 3.7.8). Let us describe our approach briefly.

For any smooth curve C0 ⊂G2
m,k, we construct a sequence of proper birational morphisms of

curves

(3.1) . . .
sn+1−−−→ Cn+1

sn−→ Cn
sn−1−−−→ . . .

s1−→ C1,

where C1 is the completion of C0 with respect to its Newton polygon. The curves Cn are birational

to C0 and explicitly constructed over an algebraic closure k̄/k via an iterative construction of

Newton polygons. We also describe the action of the absolute Galois group Gal(k̄/k) on Cn ×k k̄.

Note that since C1 is projective, the curves Cn will be projective as well. If Cn is regular, for some
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n, then it is a model over k of C. Such Cn is what we call a generalised Baker’s model of C. Thus

the following theorem is a key result of the current chapter.

Theorem 3.1.1 (Theorems 3.5.10, 3.7.7) For a sufficiently large n, the curve Cn is outer regular.

From the explicit construction of an outer regular generalised Baker’s model one can also

describe the set C(k̄) C0(k̄). The result that is obtained extends the known one for nondegenerate

curves. We will state them in §3.1.3, in the case of geometrically connected curves. In the next

subsection we discuss one of the main motivations of this work: the study of regular models of

curves over discrete valuation rings.

3.1.2 Models of curves over discrete valuation rings

Let K be a complete discretely valued field with ring of integers OK and residue field k. Let C/K

be a projective curve. A model of C over OK is a proper flat scheme C → Spec OK of dimension

2 such that its generic fibre Cη = C×OK K is a model of C over K . The study of regular models

over OK of geometrically connected smooth projective curves C is of great interest in Arithmetic

Geometry. The understanding of such models is essential for describing the arithmetic of C

and leads to the computation of important objects, such as Tamagawa numbers and integral

differentials.

Let C0 ⊂G2
m,K be an affine curve given by f (x, y)= 0 and let C1 be the completion of C0 with

respect to its Newton polygon ∆. Via a toric resolution approach, [Dok] constructs a model of C1

over OK , denoted C∆. This is an innovative result, able to construct regular models of curves over

discrete valuation rings in cases that were previously hard to tackle (such as the case of curves

with wildly potential semistable reduction). However, this approach has two major limits. First,

it can construct a model of a smooth projective curve C only if C admits a Baker’s model. Second,

although we are mainly interested in regular models, C∆ may be singular. Let us discuss more in

detail this second aspect.

The scheme C∆ is given as the Zariski closure of C0 in a toric scheme XΣ. The ambient space

XΣ is constructed from ∆, taking into account also the valuations of the coefficients of f . The

connection of C∆ with toric resolution of curves goes beyond its generic fibre. Let Cred
∆,s be the

reduced closed subscheme with the same underlying topological space of the special fibre C∆,s of

C∆. Then Cred
∆,s can be decomposed in principal components X̄F and chains of P1s. The components

X̄F are the completions of curves XF ⊂G2
m,k with respect to their Newton polygons. One can see

that if all X̄F are outer regular, then C∆ is regular. Thus the fact that not every projective curve

has an outer regular Baker’s model is the main obstruction for the regularity of C∆.

Therefore the existence of outer regular generalised Baker’s models, subject of this chapter,

has the potential to extend Dokchitser’s result to construct regular models of all smooth projective

curves. Although such an extension is highly non-trivial, in [Mus1] we can already see an implicit

application of generalised Baker’s model towards that goal. Let us spend a few lines explaining
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why. In [Mus1] the author constructs a regular model C over OK for a wide class of hyperelliptic

curves C/K as follows. Let C : y2 = h(x) be a hyperelliptic curve in this class. One considers

smooth curves Cw
0 ⊂G2

m,K , for w ∈W ⊆ K , given by y2 = h(x+w) and so birational to C. For each

w ∈ W, let C∆w be the model of C constructed from Cw
0 by [Dok]. The regular model C is then

obtained by glueing regular open subschemes C̊∆w of C∆w , containing all points of codimension

1. In particular, for any principal component X̄F of Cred
∆w,s there exists a closed subscheme Γt of

Cs = C×OK k, birational to X̄F . The regularity of C follows from the fact that Γt is an outer regular

generalised Baker’s model of the smooth completion of XF (this can be checked by comparing

the description of Γt in [Mus1, §5] and the construction in §3.8 of an outer regular generalised

Baker’s model for curves given by superelliptic equations).

3.1.3 Outer regular generalised Baker’s model

Let k be a perfect field with algebraic closure k̄. Let f ∈ k[x±1, y±1] such that C0 : f = 0 is a

geometrically connected smooth curve over G2
m,k, and let ∆ be the Newton polygon of f . If f is

nondegenerate, then the completion C1 of C0 with respect to ∆ is outer regular. In particular, C1

is a Baker’s model of the smooth completion C of C0. From C1 we can describe the points in C C0

in an elementary way as follows.

Definition 3.1.2 For any edge ℓ of an integral 2-dimensional polytope P , consider the unique

surjective affine function ℓ∗ : Z2 → Z given by ℓ∗|ℓ = 0, ℓ∗|P ≥ 0. Write ℓ∗(i, j) = ai+ b j+ c, for

some a,b, c ∈Z. Then the primitive vector (a,b) ∈Z2 will be called the normal vector of ℓ.

We also extend this definition to segments P , considered as integral 2-dimensional polytopes

of zero volume. In this case P has two edges, equal to P itself, with opposite normal vectors.

Notation 3.1.3 For any primitive vector β= (β1,β2) ∈Z2 fix δβ = (δ1,δ2) ∈Z2 such that δ1β2 −
δ2β1 = 1. Note that δβ can be freely chosen, and depends (only) on β.

For any edge ℓ of ∆:

(1) Consider its normal vector β= (β1,β2) ∈Z2 and δβ = (δ1,δ2) ∈Z2.

(2) Via the change of variables x = Xδ1Y β1 , y= Xδ2Y β2 , let fℓ ∈ k[X ,Y ] such that X ∤ fℓ, Y ∤ fℓ,

and

f (x, y)= X nX Y nY · fℓ(X ,Y ),

for some nX ,nY ∈Z.

Define the curve Cℓ : fℓ(X ,Y ) = 0 in Gm,k ×A1
k = Spec k[X±1,Y ]. Note that Cℓ∩G2

m,k = C0. The

completion of C0 with respect to ∆ is

C1 =
⋃
ℓ⊂∂∆

Cℓ,

where the curves Cℓ are glued along their common open subscheme C0.
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Let P1 =⊔
ℓ⊂∂∆{ fℓ}, where ℓ runs through all edges of ∆. For any fℓ ∈ P1 define f |ℓ ∈ k[X ] by

f |ℓ(X )= fℓ(X ,0). It is easy to see that f is nondegenerate if and only if f |ℓ has no multiple roots

in k̄× for any edge ℓ of ∆. Then from the description of C1 we have the following result.

Theorem 3.1.4 ([Dok, Theorem 2.2(3)]) Suppose f nondegenerate. There is a natural bijection

that preserves Gal(k̄/k)-action,

C(k̄) C0(k̄) 1:1←→ ⊔
fℓ∈P1

{(simple) roots of f |ℓ in k̄×}.

If f is not nondegenerate, or, equivalently, if C1 is not outer regular, we can construct from

C1 an outer regular generalised Baker’s model Cn of C, that always exists. Then the explicit

description of Cn can be used to obtain a more general version of Theorem 3.1.4 capable to

describe the points in C C0 unconditionally.

First we are going to define finite indexed sets Pn of polynomials in k̄[X ,Y ], for all n ∈Z+. A

polynomial in Pn will be denoted by fℓ for an edge ℓ of some 2-dimensional polytope. However, if

n ≥ 2 then fℓ ∈ Pn will be indexed not only by ℓ but also by a polynomial of Pn−1 and a non-zero

element of k̄. For any fℓ ∈ Pn, define f |ℓ ∈ k̄[X ] by f |ℓ(X )= fℓ(X ,0). Let P1 be as above. For n ∈Z+,

we recursively construct the set Pn+1 from Pn via the following algorithm.

Algorithm 3.1.5 For any fℓ ∈ Pn and any multiple root a ∈ k̄× of f |ℓ do:

(1) Rename the variables of fℓ from X ,Y to x, y.

(2) Let fℓ,a ∈ k̄[x, y] given by fℓ,a(x, y)= fℓ(x+a, y).

(3) Draw the Newton polygon ∆ℓ,a of fℓ,a.

(4) For any edge ℓ′ of ∆ℓ,a with normal vector β = (β1,β2) ∈ Z2+, consider δβ = (δ1,δ2) ∈ Z2,

previously fixed.

(5) Through the change of variables x = Xδ1Y β1 , y= Xδ2Y β2 , let fℓ′ = ( fℓ,a)ℓ′ ∈ k̄[X ,Y ] such that

X ∤ fℓ′ , Y ∤ fℓ′ , and

fℓ,a(x, y)= X nX Y nY · fℓ′(X ,Y ),

for some nX ,nY ∈Z.

(6) Define Pℓ,a =⊔
ℓ′⊂∂∆ℓ,a { fℓ′}, where ℓ′ runs through all edges of ∆ℓ,a with normal vector in Z2+.

Then

Pn+1 := ⊔
fℓ,a

Pℓ,a,

where fℓ runs through all polynomials in Pn and a runs through all multiple roots of f |ℓ in k̄×.
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For every n ∈Z+, one can inductively define an action of Gal(k̄/k) on Pn with the following

property: for any σ ∈Gal(k̄/k) and fℓ ∈ Pn the polynomials σ · fℓ and f σ
ℓ

are equal. Note that this

property is not enough to describe the action since Pn is an indexed set.

Let σ ∈Gal(k̄/k). If fℓ ∈ P1, then define σ · fℓ = fℓ. Let fℓ′ ∈ Pn+1 for n ∈Z+. From Algorithm

3.1.5 it follows that fℓ′ = ( fℓ,a)ℓ′ for some fℓ ∈ Pn and some multiple root a ∈ k̄× of f |ℓ. By

inductive hypothesis σ · fℓ is an element fσ(ℓ) of Pn, and σ(a) is a multiple root of f |σ(ℓ). Moreover,

fσ(ℓ),σ(a) = f σ
ℓ,a. Hence the Newton polygon ∆σ(ℓ),σ(a) coincides with ∆ℓ,a. In particular, it has an

edge σ(ℓ′) with normal vector equal to the one of ℓ′. Then define

σ · fℓ′ := fσ(ℓ′) = ( fσ(ℓ),σ(a))σ(ℓ′) ∈ Pn+1.

Iterate Algorithm 3.1.5 until Pn+1 =∅, i.e. for all fℓ ∈ Pn, the polynomials f |ℓ have no multiple

roots in k̄×. The procedure terminates. Define

P = P1 ⊔·· ·⊔Pn.

Note that the Galois action on Pi for all 1 ≤ i ≤ n induces an action on P. For any σ ∈ Gal(k̄/k)

and fℓ ∈ P, let fσ(ℓ) ∈ P be the element σ · fℓ. We can now generalise Theorem 3.1.4.

Theorem 3.1.6 There is a natural bijection

C(k̄) C0(k̄) 1:1←→ ⊔
fℓ∈P

{simple roots of f |ℓ in k̄×},

that preserves Gal(k̄/k)-action, where σ ∈Gal(k̄/k) takes a simple root r ∈ k̄× of f |ℓ to the simple

root σ(r) ∈ k̄× of f |σ(ℓ).

Theorem 3.1.6 is proved at the end of §3.7.

Example 3.1.7 Let f = (x2 +1)2 + y− y3 ∈ F3[x±1, y±1] and let C0 : f = 0 in G2
m,F3

. Note that C0 is

regular. By [CV2, Proposition 3.2], the smooth completion C of C0 is not nondegenerate. Hence

Theorem 3.1.4 cannot be used. We want to describe the points in C C0 via Theorem 3.1.6. First

compute the set P via Algorithm 3.1.5. One has P = P1 ⊔P2, where

• P1 consists of 3 polynomials fℓ1 , fℓ2 , fℓ3 , where f |ℓ1 = (X2 +1)2, f |ℓ2 = X3 + X2 −1, f |ℓ3 =
−X +1, up to some power of X ;

• P2 consists of 2 polynomials fℓ4 , fℓ5 , satisfying fℓ5 = fσ(ℓ4), where σ is the Frobenius auto-

morphism; furthermore, f |ℓ4 = f |ℓ5 =−X +1, up to some power of X .

Thus Theorem 3.1.6 shows that C C0 consists of one point coming from ℓ4,ℓ5 with residue field

F9, one point coming from ℓ2 with residue field F27 and one F3-rational point coming from ℓ3.
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3.1.4 Outline of the chapter and notation

For the most part of the chapter we will assume k = k̄. In §3.2 we define toric varieties Tv

attached to primitive integer-valued vectors v. The charts of the curves Cn in the sequence (3.1)

will be the Zariski closures of dense opens of C0 inside Tv. In §3.4 we show how to construct the

sequence (3.1) recursively and explain its connection with Newton polygons. We also prove the

properties of the curves and the morphisms in (3.1) previously listed in §3.3. Section 3.5 gives

the definition of generalised Baker’s model and outer regularity over algebraically closed base

fields. We prove some crucial results and present interesting consequences. In §3.6 we see the

construction developed in previous sections from a more general point of view. This will be useful

to tackle the case of non-algebraically closed base fields, treated in §3.7. Finally, §3.8 and §3.9

consist of applications of our construction. In §3.8 we discuss the case of superelliptic equations.

In §3.9 we show an explicit and non-trivial example of a generalised Baker’s model.

Conventions and notations

• Throughout, k will be a perfect field, algebraically closed in §3.2-3.6.

• An algebraic variety X over k, denoted X /k, is a scheme of finite type over Spec k. Let KX

be the sheaf of stalks of meromorphic functions on X ([Liu4, Definition 7.1.13]). We denote

by k(X ) the set of global sections of KX , i.e. k(X ) = H0(X ,KX ). It will be called the ring of

rational functions or function ring of X . It extends the notions of field of rational functions or

function field of integral varieties.

• Let X /k be an algebraic variety. Since k is perfect, X is smooth if and only if it is regular. In

this context we will then use the words smooth, regular, non-singular interchangeably. We

will denote by Reg(X ) the open subset of regular points of X and by Sing(X ) the closed subset

of singular points of X .

• A morphism X → Y between two algebraic varieties X ,Y defined over k will always be a

morphism of k-schemes, unless otherwise specified.

• A birational map f : X Y between algebraic varieties X ,Y over k is a k-rational map ([EGA,

I.7.1.2]) that comes from an isomorphism from a dense open U ⊆ X onto a dense open V ⊆Y .

If such a map exists, we say that X is birational to Y . A birational morphism is a morphism

which is (a representative of) a birational map ([Liu4, Definition 7.5.3]).

• A curve is an equidimensional algebraic variety of dimension 1. We will denote by Gm the

affine algebraic group Gm,k =Spec k[x±1
1 , y±1] whenever k is algebraically closed.

• Given a ring A and an ideal I of A we identify the ideals of A/I with the ideals of A containing

I. Furthermore, sometimes we refer to an element a ∈ A as an element of A/I omitting the

class symbol.
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• Finally, the set of natural numbers will contain 0, i.e. N=Z≥0.

3.2 Ambient toric varieties and charts

Let k be an algebraically closed field, n ∈ Z+, A = k[x±1
1 , . . . , x±1

n , y±1] and Gn+1
m = Spec A. Let

v = (v1, . . . ,vn,vn+1) ∈Zn+1 be a primitive vector. Define the affine function φv :Zn+1 →Z given by

φv(i1, . . . , in, j)= v1 i1 +·· ·+vn in +vn+1 j.

For any i = (i1, . . . , in, j) ∈Zn+1, denote by xi the monomial xi1
1 · · ·xin

n y j of k[x±1
1 , . . . , x±1

n , y±1].

For any monomial xi define ordv(xi)=φv(i). For f ∈ A, with f ̸= 0, expand

f =∑
i

cixi, ci ∈ k×,

and set ordv( f ) = mini ordv(xi). We have just defined a map ordv : A× → Z, which naturally

extends to a valuation ordv : Frac(A)× →Z.

Definition 3.2.1 Given a primitive vector w ∈ Zn+1, we say that a matrix M ∈ SLn+1(Z) is

attached to w if its last row is w.

Fix a matrix M = (ai j) attached to v. It gives the change of variables

(x1, . . . , xn, y)= (X a11
1 · · ·X an1

n Y v1 , . . . , X a1(n+1)
1 · · ·X an(n+1)

m Y vn+1)

= (X1, . . . , Xn,Y )•M,

(X1, . . . , Xn,Y )= (x1, . . . , xn, y)•M−1.

For any f ∈ A×, denoting by F ∈ k[X±1
1 , . . . , X±1

n ,Y±1]× the Laurent polynomial given by

F (X1, . . . , Xn,Y )= f ((X1, . . . , Xn,Y )•M),

note that ordv( f )= ordY (F ). We get an embedding

A
M≃ k[X±1

1 , . . . , X±1
n ,Y±1]←- k[X±1

1 , . . . , X±1
n ,Y ]=: R,

from which we define the affine toric variety Tv =Spec R ←-Gn+1
m . Since v is the last row of M, the

toric variety Tv only depends on v up to isomorphisms that restricted to Gn+1
m equal the identity.

Furthermore, up to isomorphism, the closed subvariety T̄v =Spec R/(Y )≃Gn
m of Tv only depends

on v as well.

Now let I be an ideal of A defining a curve C0,I = Spec A/I in Gn+1
m . We denote by Cv,I the

Zariski closure of C0,I in Tv. Then Cv,I is determined by v and I, up to isomorphisms that preserve

C0,I . Recall that Cv,I =Spec R/I, where I is the inverse image of I under the embedding R ,→ A

above. Suppose J ⊂ R is an ideal such that A/I ≃ R[Y−1]/J R[Y−1] via M. Then J defines Cv,I

80



3.2. AMBIENT TORIC VARIETIES AND CHARTS

if and only if it equals its saturation with respect to Y , i.e. J = Y∞ :J , or, equivalently, if the

image of Y in R/J is a regular element.

Finally, let f = f1 ∈ k[x±1
1 , y±1] defining a smooth curve C0 : f = 0 in G2

m =Spec k[x±1
1 , y±1]. For

all i = 2, . . . ,n, let g i ∈ k[x±1
1 , y±1] and denote f i = xi − g i. Then

k[x±1
1 , y±1]g2···gn

( f )
≃ k[x±1

1 , x±1
2 , . . . , x±1

n , y±1]
( f1, f2, . . . , fn)

.

Let T be the tuple (g2, . . . , gn) and I the ideal ( f1, . . . , fn). Define C0,T = Spec
k[x±1

1 ,y±1]g2 ···gn
( f ) , an

affine open of C0. Then T gives an open immersion C0,T ,→Gn+1
m with image C0,I . Let v ∈Zn+1 be

a primitive vector. Denote by Cv,T the curve Cv,I (closure of C0,I inside Tv). We will often identify

C0,T with the dense open image of the immersion C0,T ≃ C0,I ,→ Cv,T .

Let C0 as above. For any m ∈Z+ define

Ωm = {(v,T) | v ∈Zm+1 is a primitive vector and T ∈ k[x±1
1 , y±1]m−1}.

If α= (v,T) ∈Ωm for some m ∈Z+, denote by C0,α, Cα, respectively the curves C0,T , Cv,T intro-

duced in the previous section. Furthermore, we set Cα = C0,α = C0 when α= 0. Define

Ω= {
α ∈⊔

m∈Z+Ωm | C0,α is dense in C0
}
.

If α= (v,T) ∈Ω, denote by C̄α the scheme-theoretic intersection of Cα and T̄v in Tv. Note that, up

to isomorphism, C̄α only depends on α.

From the open immersions with dense images C0,α ,→ Cα, C0,α ,→ C0, we have natural

birational maps sαα′ : Cα Cα′ , for all α,α′ ∈Ω⊔ {0}. Denote by Uαα′ the largest (dense) open of

Cα such that sαα′ comes from an open immersion Uαα′ ,→ Cα′ . Note that C0,α∩C0,α′ embeds in

Uαα′ via the canonical open immersion C0,α ,→ Cα.

Definition 3.2.2 Let m ∈Z+ and c ∈Z. Let v = (v1, . . . ,vm,vm+1) ∈Zm+1 and β= (β1,β2) ∈Z2 be

primitive vectors. Define the primitive vector

β◦c v = (v1β2,v2β2, · · · ,vmβ2,β1 + cβ2,vm+1β2) ∈Zm+2.

If g ∈ k[x±1
1 , . . . , x±1

m , y±1], define β◦g v =β◦ordv(g) v.

Definition 3.2.3 Let m ∈ Z+ and α ∈ Ωm. Write α = (v,T) where T = (g2, . . . , gm). Fix g ∈
k[x1, . . . , xm, y] and let gm+1 ∈ k[x±1

1 , y±1] be the unique Laurent polynomial such that gm+1 ≡ g

mod ( f2, . . . , fm), where f i = xi − g i. For any primitive vector β ∈N×Z+, define

β◦gα= (β◦g v, (g2, . . . , gm, gm+1)) ∈Ωm+1.

Note that for any α,α′ ∈Ωm, polynomials g, g′ ∈ k[x1, . . . , xm, y], and primitive vectors β,β′ ∈
N×Z+, if β◦gα=β′ ◦g′ α′, then α=α′.

Definition 3.2.4 Let m ∈Z+. Given α ∈Ωm and γ ∈Ωm+1, we will write α< γ if there exists a

polynomial g ∈ k[x1, . . . , xm, y] and a primitive vector β ∈N×Z+ such that γ = β◦g α. Endow Ω

with a structure of partially ordered set by extending < by transitivity.
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3.3 Baker’s resolution

Let k be an algebraically closed field and let f ∈ k[x±1
1 , y±1] be a Laurent polynomial defining a

smooth curve C0 : f = 0 over G2
m. We will construct a sequence

. . .
sn+1−−−→ Cn+1

sn−→ Cn
sn−1−−−→ . . .

s1−→ C1

of proper birational morphisms of projective curves over k, birational to C0. Such a sequence will

be called a Baker’s resolution of C0 (Definition 3.6.2). Each curve Cn will be explicitly described

and inductively constructed via Newton polygons. In particular, the curve C1 is the completion of

C0 with respect to the Newton polygon ∆ of f . In §3.5 we will show how to use Baker’s resolution

to desingularise C1, by finding a regular curve Cn, model over k of the smooth completion of C0.

For any n ∈Z+, we aim to construct the projective curve Cn as follows:

Construction 3.3.1 We will define a finite subset Σn ⊂Ω. Then

Cn :=⋃
α∈Σn Cα∪C0,

where the glueing morphisms are given by the birational maps sαα′ , for α,α′ ∈ Σn ⊔ {0}. More

precisely, the chart Cα is glued with Cα′ along Uαα′ via the isomorphism Uαα′
∼−→Uα′α induced

by sαα′ . In fact, for our choice of Σn the opens Uαα′ will be as small as possible, i.e. Cα∩Cα′ =
C0,α∩C0,α′ , for any α,α′ ∈Σn ⊔ {0}, α ̸=α′

Furthermore, for any α= (v,T) ∈Σn, we construct:

(a) An ideal aα = (F2, . . .Fm) ⊂ k[X±1
1 , . . . , X±1

m ,Y ], and a matrix Mα ∈ SLm+1(Z) attached to v

defining an isomorphism

k[x±1
1 , . . . , x±1

m , y±1]
( f2, . . . , fm)

Mα≃ k[X±1
1 , . . . , X±1

m ,Y±1]
(F2, . . . ,Fm)

,

where f i = xi − g i and T = (g2, . . . , gm).

(b) A positive integer jα ≤ m such that there is an embedding

Rα := k[X±1
1 , . . . , X±1

m ,Y ]
(F2, . . . ,Fm)

,→ k(X jα ,Y ),

taking X jα 7→ X jα and Y 7→Y . Moreover, Y is not invertible in Rα.

(c) A polynomial Fα ∈ k[X jα ,Y ], not divisible by Y , such that

Cα =Spec
k[X±1

1 , . . . , X±1
m ,Y ]

(Fα,F2, . . . ,Fm)
.
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The ideal aα equals its saturation with respect to Y by (b). Therefore (a) implies that aα is

uniquely determined by Mα.

The homomorphism in (b) induces an injective ring homomorphism

Rα

(Y )
= k[X±1

1 , . . . , X±1
m ,Y ]

(F2, . . . ,Fm,Y )
,→ k(X jα),

taking X jα 7→ X jα . Let Dα be its image. Then Dα is a localisation of k[X jα], isomorphic to Rα/(Y ).

More precisely, if t1, . . . , tm are the images of X1, . . . , Xm in k(X jα), then Dα = k[X jα , t±1
1 , . . . , t±1

m−1].

Then, from (c), there exists a non-zero polynomial f |α ∈ k[X jα ], given by f |α(X jα )=Fα(X jα ,0),

such that
k[X±1

1 , . . . , X±1
m ,Y ]

(Fα,F2, . . . ,Fm,Y )
≃ Dα

( f |α)
.

The closed subscheme C̄α of Cα will be identified with Spec Dα/( f |α). As a set, it is finite and

equals Cα C0,α.

Finally, note that the injective homomorphism in (b) and the description of Cα in (c) give an

open immersion Cα ,→Spec k[X jα ,Y ]/(Fα).

3.4 Construction of the sequence

Let k be an algebraically closed field and let f ∈ k[x±1
1 , y±1] be a Laurent polynomial defining a

smooth curve C0 : f = 0 over G2
m.

3.4.1 Completion with respect to Newton polygon

In this subsection we give a description of the curve C1, completion of C0 with respect to its

Newton polygon, with the properties of 3.3.1. We will show that Cα ≃ C0 for all but finitely many

α ∈Ω1 ⊂Ω. Defining Σ1 ⊆Ω1 as the subset of those exceptional elements, the curve C1 will be the

glueing of Cα, α ∈Σ1, along the common open C0.

Let v = (a,b) ∈Z2 be any primitive vector and α= (v, ()) ∈Ω1. Fix a matrix Mα = ( c d
a b

) ∈SL2(Z)

attached to v and define φv : Z2 → Z by φv(i, j) = ai+ b j−ordv( f ). Via the change of variables

given by Mα we get

f ((X1,Y )•Mα)= X∗
1 Y ordv( f )Fα(X1,Y ), where Fα ∈ k[X1,Y ].

Then ordY (Fα)= 0 and so Cα =Spec k[X±1
1 ,Y ]/(Fα).

Note that C0,α = C0. Let f |α ∈ k[X1] given by f |α(X1) = Fα(X1,0). Recall that the scheme

C̄α =Spec k[X±1
1 ]/( f |α) equals Cα C0,α as a set. Therefore Cα ≃ C0 if and only if f |α is invertible

in k[X±1
1 ]. Expand f =∑

i, j ci jxi
1 y j. Let ∆ be the Newton polygon of f . It follows that

f |α = X∗
1 · ∑

(i, j)∈φ−1
v (0)

ci j X
ci+d j
1 .
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Hence f |α is not invertible in k[X±1
1 ] if and only if φ−1

v (0)∩∆= edge.

Then we can explicitly construct Σ1 as follows. For every edge ℓ of ∆ consider its normal

vector vℓ ∈Z2 (see Definition 3.1.2). Define Σ1 = {(vℓ, ()) ∈Ω1 | ℓ edge of ∆}. The next result follows

from the computations above.

Proposition 3.4.1 Let v be the normal vector of an edge ℓ of ∆ and let α = (v, ()) ∈ Σ1. Let

(i0, j0), . . . , (i l , jl) be the points of ℓ∩Z2, ordered along ℓ counterclockwise with respect to ∆. Then

f |α = X d
1 ·

l∑
r=0

cir jr X r
1, for some d ∈N.

Glueing Cα for any α ∈ Σ1 gives the curve C1. Note that C1 is the Zariski closure of C0 in⋃
(v,())∈Σ1Tv (where the toric varieties Tv are glued along their common open G2

m).

Remark 3.4.2. Consider the toric surface T∆ of ∆. It is a complete algebraic variety. Then⋃
(v,())∈Σ1Tv is a (non-proper) subscheme of T∆. Nevertheless the curve C1 is also the Zariski

closure of C0 in T∆ (see [Dok, Remark 2.6]). Thus it is projective.

Remark 3.4.3. Note that for any α ∈Σ1, the points on Cα C0 are not visible on any other chart of

C1. Indeed for any α,α′ ∈Σ1, where α ̸=α′, consider the birational map

sαα′ : Cα =Spec k[X±1
1 ,Y ]/(Fα) Spec k[X±1

1 ,Y ]/(Fα′)= Cα′

given by the matrix Mαα′ = MαM−1
α′ . Since the lower left entry of Mαα′ is non-zero, the largest

open Uαα′ of Cα for which sαα′ comes from an open immersion Uαα′ ,→ Cα′ is Uαα′ = D(Y ) ⊂ Cα,

i.e. the image of C0 in Cα. Thus Cα∩Cα′ = C0 for any α,α′ ∈Σ1 ⊔ {0}, α ̸=α′.

3.4.2 Inductive construction of the curves

Until the end of the section let n ∈Z+ and suppose we constructed a finite subset Σn ⊂Ω and a

projective curve Cn as in 3.3.1. In particular, Cn =⋃
α∈Σn Cα∪C0.

Remark 3.4.4. Let α ∈Σn. Recall C0,α is smooth as so is C0. Therefore Sing(Cα)⊆ Cα C0,α. Then,

as an easy consequence of the Jacobian criterion, any singular point of Cα is the image of a

singular point of C̄α under the closed immersion C̄α ,→ Cα. This fact can be observed by comparing

the Jacobian matrices of Cα, defined in 3.3.1(c), and C̄α = Cα∩ {Y = 0}, at points of Cα C0,α = C̄α.

In particular, if Cn is singular then C̄α is singular for some α ∈Σn.

Let α ∈Σn and fix Sn ⊆Sing(C̄α). Via the immersion C̄α ,→ Cn given by the closed immersion

C̄α ,→ Cα and the inclusion Cα ⊆ Cn, the points in Sn will be identified with their images in Cn.

In this subsection we will construct a finite subset Σn+1 ⊂Ω defining a curve Cn+1 as indicated in

3.3.1. Then, in §3.4.4 we will define a proper birational morphism sn : Cn+1 → Cn with exceptional

locus s−1
n (Sn ∩Sing(Cn)).
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Let m ∈ Z+ such that α ∈Ωm. Write α = (v,T), where v ∈ Zm+1 and T ∈ k[x±1
1 , y±1]m−1. Let

Mα ∈SLm+1(Z) be the matrix attached to v fixed by 3.3.1(a), defining a change of variables

(x1, . . . , xm, y)= (X1, . . . , Xm, Ỹ )•Mα.

Note that we have changed the notation for the variable Y to Ỹ for avoiding confusion later. Let

aα = (F̃2, . . . ,F̃m)⊂ k[X±1
1 , . . . , X±1

m , Ỹ ] be the ideal in 3.3.1(a) and Fα ∈ k[X jα , Ỹ ] be the polynomial

in 3.3.1(c) so that

Cα =Spec
k[X±1

1 , . . . , X±1
m , Ỹ ]

(Fα,F̃2 . . . ,F̃m)
.

Denote Am = k[X±1
1 , . . . , X±1

m ].

Fix a point p ∈ Sn. Recall C̄α =Spec Dα/( f |α), where Dα is a (non-trivial) localisation of k[X jα ]

and f |α ∈ k[X jα ] is non-zero. There exists some irreducible Ḡp ∈ Dα such that (Ḡp) is the maximal

ideal of OC̄α,p. Then f |α ∈ (Ḡp)2. We choose Ḡp ∈ k[X jα] monic of degree 1. Consider p as a point

of Cn. Then p ∈ Cα C0,α. In particular, p ∉ C0, since C0 ∩Cα = C0,α. For any G̃p ∈ k[X jα , Ỹ ] such

that G̃p ≡ Ḡp mod Ỹ , the ideal (G̃, Ỹ )+aα is the maximal ideal of OCα,p. We fix a choice of G̃p such

that G̃p − Ḡp ∈ Ỹ k[Ỹ ] and G̃p ∤Fα.

Remark 3.4.5. Note that such a choice of G̃p is always possible. Indeed, if degỸ (Fα) is the degree

of Fα with respect to Ỹ , it suffices to define

G̃p = Ḡp + Ỹ degỸ (Fα)+1

On the other hand, G̃p = Ḡp is often admissible and better for computations. For instance, if C0 is

connected, then we can always choose G̃p = Ḡp.

Lemma 3.4.6 Consider the principal open set Up = D(G̃p) of Cα. Then Up is dense in Cα.

Proof. As a consequence of 3.3.1, we saw that there is a natural open immersion

Cα ,→Spec k[X jα , Ỹ ]/(Fα).

Since G̃p ∈ k[X jα , Ỹ ], the image of Up is the open subset Vp = D(G̃p) of Spec k[X jα , Ỹ ]/(Fα). Note

that if Vp is dense, then Up is dense in Cα. In fact, Vp is dense in Spec k[X jα , Ỹ ]/(Fα) since

G̃p ∤Fα.

Write T = (g2, . . . , gm). From 3.3.1(a) recall the isomorphism

k[x±1
1 , x±1

2 , . . . , x±1
m , y±1]

( f2, . . . , fm)
Mα≃ Am[Ỹ±1]

aα
,

where f i = xi − g i for all i = 2, . . . ,m. Let gp ∈ k[x1, . . . , xm, y] such that

x∗1 · · ·x∗m y∗ · gp(x1, . . . , xm, y)= G̃p
(
(x1, . . . , xm, y)•M−1

α

)
.

We fix a canonical choice of gp by requiring ordy gp = 0, and ordxi (gp)= 0 for all i = 1, . . . ,m.
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Definition 3.4.7 We say that gp ∈ k[x1, . . . , xm, y] is related to G̃p by Mα if it is defined as above.

Note that it is uniquely determined by G̃p and Mα.

Define αp = (0,1) ◦gp α ∈ Ωm+1 (Definition 3.2.3). Fix a choice of a matrix Mαp ∈ SLm+2(Z)

attached to (0,1)◦gp v such that the change of variables

(x1, . . . , xm, xm+1, y)= (X1, . . . , Xm, X̃m+1, Ỹ )•Mαp

restricts to the change of variables given by the matrix Mα on the subring k[x±1
1 , . . . , x±1

m , y±1] of

k[x±1
1 , . . . , x±1

m+1, y±1] and gives the equality

(3.2) xm+1 − gp = X n1
1 · · ·X nm

m Ỹ ordv(gp)(X̃m+1 − G̃p),

for some n1, . . . ,nm ∈Z. In particular,

(3.3)
k[x±1

1 , . . . , x±1
m+1, y±1]

( f2, . . . , fm, xm+1 − gm+1)

Mαp≃ Am[X̃±1
m+1, Ỹ±1]

aα+ (X̃m+1 − G̃p)
,→ k(X jα , Ỹ ).

where gm+1 ∈ k[x±1
1 , y±1] is the unique polynomial so that gm+1 ≡ gp mod ( f2, . . . , fm).

Remark 3.4.8. Such Mαp is constructed as follows. Via Mα write

gp = X n1
1 · · ·X nm

m Y ordv(gp) · G̃p

for some n1, . . . ,nm ∈Z. Then

• The (m+1)-th row of Mαp is the vector (0, . . . ,0,1,0);

• The (m+1)-th column of Mαp is the vector (n1, . . . ,nm,1,ordv(gp));

• The submatrix of Mαp obtained by removing the (m+1)-th row and the (m+1)-th column

equals Mα.

This construction is unique. Indeed, the (m+1)-th column is fixed by the equality (3.2), while

all other columns are fixed by the fact that Mαp defines the same change of variables of Mα on

k[x±1
1 , . . . , x±1

m , y±1].

Lemma 3.4.9 With the notation above

Cαp =Spec
k[X±1

1 , . . . , X±1
m , X̃±1

m+1, Ỹ ]

(Fα,F̃2, . . . ,F̃m, X̃m+1 − G̃p)
.

Furthermore, C0,αp is dense in C0, i.e. αp ∈Ω, and the birational map sαpα comes from an open

immersion sαpα : Cαp ,→ Cα with image D(G̃p)⊂ Cα. Finally, sαpα induces C̄αp ≃ C̄α {p}.
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Proof. First note that C0,αp ⊂ C0,α. Considering C0,α as an open subscheme of Cα, then C0,αp

equals D(G̃p)∩C0,α ⊂ Cα. Then C0,αp is dense in C0,α by Lemma 3.4.6. It follows that C0,αp is

dense in C0 since so is C0,α. In other words, αp ∈Ω. The ring homomorphism

Aα := Am[Ỹ ]
(Fα)+aα → Am[X̃±1

m+1,Ỹ ]
(Fα,X̃m+1−G̃p)+aα =: Aαp

is injective by Lemma 3.4.6 and induces the birational map sαpα if Cαp = Spec Aαp from (3.3).

The injectivity implies that Ỹ is a regular element of Aαp since Ỹ is a regular element of Aα by

definition of Cα. This concludes the proof by definition of Cαp .

Now consider the lexicographic monomial order X jα > X̃m+1 > Ỹ on k[X jα , X̃m+1, Ỹ ] and

compute the normal form Fα,p of Fα by X̃m+1 − G̃p with respect to >. In other words, the

polynomial Fα,p is the remainder of the complete multivariate division of Fα by X̃m+1 − G̃p.

Note that Fα,p ∈ k[X̃m+1, Ỹ ], as G̃p − Ḡp ∈ Ỹ k[Ỹ ] and Ḡp ∈ k[X jα] of degree 1.

Let β ∈ Z2+ be any primitive vector. Fix a matrix Mβ ∈ SL2(Z) attached to β. Then Mβ

gives an isomorphism between k[X̃±1
m+1, Ỹ±1] and k[X±1

m+1,Y±1] through the change of variables

(X̃m+1, Ỹ )= (Xm+1,Y )•Mβ. This transformation lifts to

(3.4) Am[X̃±1
m+1, Ỹ±1]

Im⊕Mβ≃ Am[X±1
m+1,Y±1],

where Im ∈SLm(Z) is the identity matrix of size m. Since β ∈Z2+, the isomorphism (3.4) restricts

to a homomorphism

Am[X̃m+1, Ỹ ]
Im⊕Mβ−−−−−→ Am[X±1

m+1,Y ]

Let β= (β1,β2) and let (δ1,δ2) be the first row of Mβ, so δ1β2−δ2β1 = 1. Set Am+1 = Am[X±1
m+1].

Denote by F2, . . . ,Fm,Gp ∈ Am+1[Y ] the images of F̃2, . . . ,F̃m, G̃p under Im ⊕Mβ, respectively. Let

Fm+1 = Xδ1
m+1Y β1 −Gp, image of X̃m+1 − G̃p. Then we get the homomorphism

(3.5)
Am[Ỹ ]
aα

≃ Am[X̃m+1, Ỹ ]
aα+ (X̃m+1 − G̃p)

Im⊕Mβ−−−−−→ Am+1[Y ]
(F2, . . . ,Fm+1)

.

Note that since β2 > 0 then

Gp ≡ Ḡp mod Y , and Fi ≡ F̄i mod Y for any i = 2, . . . ,m,

where F̄i is the unique polynomial in Am such that F̃i ≡ F̄i mod Ỹ .

Let γ=β◦gp α ∈Ωm+1. By definition, C0,γ = C0,αp . Therefore γ ∈Ω by Lemma 3.4.9. Let aγ be

the ideal of Am+1[Y ] generated by F2, . . . ,Fm+1 and set Mγ = (Im ⊕Mβ) ·Mαp ∈ SLm+2(Z). Note

that the matrix Mγ is attached to β◦gp v. Let Fγ ∈ k[Xm+1,Y ], with ordY (Fγ)= 0, satisfying

Fα,p((Xm+1,Y )•Mβ)= X nX
m+1Y nY ·Fγ(Xm+1,Y ),

for some nX ,nY ∈Z. Note that

(3.6) k[x±1
1 ,...,x±1

m+1,y±1]
( f2,..., fm+1)

Mαp≃ k[X±1
1 ,...,X±1

m ,X̃±1
m+1,Ỹ±1]

(F̃2,...,F̃m,X̃m+1−G̃p)

Im⊕Mβ≃ k[X±1
1 ,...,X±1

m+1,Y±1]
(F2,...,Fm+1) ,
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where fm+1 = xm+1 − gm+1. In particular, the ideal aγ and the matrix Mγ satisfy 3.3.1(a) for γ.

With jγ = m+1 we are now going to show 3.3.1(b) for γ.

Recall from 3.3.1(b) there is an injective homomorphism Rα ,→ k(X jα , Ỹ ) taking X jα 7→ X jα

and Ỹ 7→ Ỹ . Since G̃p − Ḡp ∈ Ỹ k[Ỹ ] and Ḡp ∈ k[X jα] monic of degree 1, we have

Am[X̃m+1, Ỹ ]
aα+ (X̃m+1 − G̃p)

,→ k(X jα , Ỹ )[X̃m+1]

(X̃m+1 − G̃p)
≃ k(X̃m+1, Ỹ ).

Then we can construct the following commutative diagram

(3.7)

Am+1[Y±1]
aγ

= k[X±1
1 ,...,X±1

m+1,Y±1]
(F2,...,Fm,Fm+1) k(Xm+1,Y )

k[X±1
1 ,...,X±1

m ,X̃±1
m+1,Ỹ±1]

(F̃2,...,F̃m,X̃m+1−G̃p) k(X̃m+1, Ỹ )

ιγ

Im⊕Mβ Mβ

given by the matrix Mβ. Therefore the homomorphism ιγ is injective and takes Xm+1 7→ Xm+1

and Y 7→Y .

Lemma 3.4.10 With the notation above, there is an isomorphism

k[X±1
1 , . . . , X±1

m+1,Y ]
(F2, . . . ,Fm+1,Y )

≃ k[X±1
m+1],

taking Xm+1 7→ Xm+1. The images of X1, . . . , Xm in k[X±1
m+1] lies in k.

Proof. Recall that for every i = 2, . . . ,m there exists a (unique) Laurent polynomial F̄i ∈ Am such

that F̃i ≡ F̄i mod Ỹ . Since Fm+1 ≡ Ḡp mod Y and Fi ≡ F̄i mod Y for any i = 2, . . . ,m, we have

k[X±1
1 ,...,X±1

m+1,Y ]
(F2,...,Fm+1,Y ) ≃ k[X±1

1 ,...,X±1
m+1,Ỹ ]

(F̃2,...,F̃m,Ḡp,Ỹ ) ≃ Dα

(Ḡp) [X
±1
m+1]≃ k[X±1

m+1],

and the isomorphisms take Xm+1 7→ Xm+1, as required.

Proposition 3.4.11 With the notation above, there is an injective homomorphism

Rγ := Am+1[Y ]
aγ

,→ k(Xm+1,Y ).

taking Xm+1 7→ Xm+1 and Y 7→Y . Furthermore, Y Rγ is prime ideal.

Proof. Lemma 3.4.10 shows Y Rγ is a prime ideal as Rγ/(Y ) ≃ k[X±1
m+1] is an integral domain.

From (3.7) we have
Am+1[Y ]

aγ
→ Am+1[Y±1]

aγ
,→ k(Xm+1,Y )

taking Xm+1 7→ Xm+1 and Y 7→ Y . Therefore it suffices to show that the ideal aγ of Am+1[Y ]

equals its saturation aγ : Y∞ with respect to Y . Suppose not. Consider the primary decomposition

of aγ,

aγ = q1 ∩·· ·∩qs, pi =p
qi.
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Recall that the primary decomposition of aγ : Y∞ consists of all the qi ’s which do not contain any

power of Y . Hence there exists some i = 1, . . . , s such that pi ⊇ (Y )+aγ. Moreover, we can choose i

such that pi is a minimal prime ideal over aγ, i.e. pi ∈Min(aγ). Then, by Krull’s height theorem,

the height of pi is at most m (the number of generators of aγ), and so ht((Y )+aγ)≤ m. But

dim
Am+1[Y ]
(Y )+aγ

= 1,

by Lemma 3.4.10. This gives a contradiction, since

ht((Y )+aγ)+dim Am+1[Y ]
(Y )+aγ = dim Am+1[Y ]= m+2,

from the regularity of Am+1[Y ].

Proposition 3.4.12 Let β ∈Z2+ and γ=β◦gp α as above. Then

Cγ =Spec
k[X±1

1 , . . . , X±1
m+1,Y ]

(Fγ,F2, . . . ,Fm+1)
.

Proof. The isomorphism in (3.6) implies that C0,γ ≃Spec Am+1[Y±1]
(Fγ)+aγ via Mγ. Then from the defini-

tion of Cγ, it suffices to show that Y is a regular element of Rγ/(Fγ), where Rγ = Am+1[Y ]/aγ. From

Proposition 3.4.11 there is an injective homomorphism Rγ ,→ k(Xm+1,Y ), taking Xm+1 7→ Xm+1

and Y 7→ Y . Moreover, Y Rγ is a prime ideal. Therefore if Y is a zero-divisor of Rγ/(Fγ) then

Fγ ∈Y Rγ, as Rγ is an integral domain. But this is not possible as Y is not invertible in Rγ and

we chose Fγ such that ordY (Fγ)= 0. Thus Y is a regular element of Rγ/(Fγ).

Notation 3.4.13 Let γ=β◦gp α, with β ∈Z2+ primitive. We have defined:

• aγ = (F2, . . . ,Fm+1) and Mγ = (Mβ⊕ Im) ·Mαp for some matrix Mβ attached to β;

• jγ = m+1, Rγ = k[X±1
1 , . . . , X±1

m+1,Y ]/aγ;

• Fγ ∈ k[Xm+1,Y ], with Y ∤Fγ, satisfying Fα,p
Mβ= X∗

m+1Y ∗ ·Fγ, and f |γ ∈ k[Xm+1] given by

f |γ(Xm+1)=Fγ(Xm+1,0).

With the notation above, γ satisfies the properties (a), (b), (c) of 3.3.1 by (3.6) and Propositions

3.4.11, 3.4.12.

Define ḠSn ∈ k[X jα], G̃Sn ∈ k[X jα , Ỹ ] and gSn ∈ k[x1, . . . , xm, y] by

ḠSn =
∏

p∈Sn

Ḡp, G̃Sn =
∏

p∈Sn

G̃p, gSn =
∏

p∈Sn

gp.

Then G̃Sn ≡ ḠSn mod Ỹ and gSn is related to G̃Sn by Mα, i.e. x∗1 · · ·x∗m y∗ · gSn = G̃Sn via Mα. Define

α̃= (0,1)◦gSn
α. Analogously to what we did for αp in Remark 3.4.8, we can uniquely construct a
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matrix Mα̃ ∈SLm+2(Z) attached to (0,1)◦gSn
v in such a way that the change of variables given by

Mα̃ restricts to the change of variables given by Mα on (x1, . . . , xm, y) and

xm+1 − gSn = X∗
1 · · ·X∗

mỸ ordv(gSn )(X̃m+1 − G̃Sn ) via Mα̃.

In particular, denoting by gm+1 ∈ k[x±1
1 , y±1] the unique polynomial such that gm+1 ≡ gSn

mod ( f2, . . . , fm) one has

(3.8)
k[x±1

1 , . . . , x±1
m+1, y±1]

( f2, . . . , fm, xm+1 − gm+1)

Mα̃≃ Am[X±1
m+1, Ỹ±1]

aα+ (Xm+1 − G̃Sn )
,→ k(X jα , Ỹ ).

Remark 3.4.14. The construction of Mα̃ is given by Remark 3.4.8 by replacing Mαp with Mα̃, gp

with gSn , and G̃p with G̃Sn .

Lemma 3.4.15 With the notation above

Cα̃ =Spec
k[X±1

1 , . . . , X±1
m , X±1

m+1, Ỹ ]

(Fα,F̃2, . . . ,F̃m, Xm+1 − G̃Sn )
.

Moreover, C0,α̃ is dense in C0, i.e. α̃ ∈Ω, and for any p ∈ Sn the birational maps sα̃α, sα̃αp , sαpα

induce a commutative diagram of open immersions

Cα̃ Cα

Cαp

sα̃αp

sα̃α

sαpα

where sα̃α has image D(G̃Sn )⊂ Cα. Finally, sα̃α induces C̄α̃ ≃ C̄α Sn.

Proof. First note that C0,α̃ =⋂
p∈Sn C0,αp . Then C0,α̃ is a dense open of C0 by Lemma 3.4.9. The

ring homomorphism

Aαp := Am[X̃±1
m+1,Ỹ ]

(Fα,X̃m+1−G̃p)+aα ≃ Rα[G̃−1
p ]

(Fα) → Rα[G̃−1
Sn

]
(Fα) ≃ Am[X±1

m+1,Ỹ ]
(Fα,Xm+1−G̃Sn )+aα =: Aα̃.

is injective by Lemma 3.4.6 and induces the birational map sα̃αp if Spec Aα̃ = Cα̃ from (3.3) and

(3.8). Since Ỹ is a regular element of Aαp by Lemma 3.4.9, then Ỹ is a regular element of Aα̃.

This proves Cα̃ =Spec Aα̃ by definition of Cα̃ and gives the required commutative diagram again

by Lemma 3.4.9.

Notation 3.4.16 Define

• aα̃ = aα+ (X̃m+1 − G̃Sn )⊂ k[X±1
1 , . . . , X±1

m , X̃±1
m+1, Ỹ ] and Mα̃ as described in Remark 3.4.14;

• jα̃ = jα, Rα̃ = Rα[X̃±1
m+1]/(X̃m+1 − G̃Sn ) and Dα̃ = Dα[Ḡ−1

Sn
];

• Fα̃ =Fα and f |α̃ = f |α.

With the notation above, α̃ satisfies the properties (a), (b), (c) of 3.3.1.
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Definition 3.4.17 For any p ∈ Sn let

Σp = {γ=β◦gp α |β ∈Z2
+ primitive, and C0,γ⊊Cγ}⊂Ω,

and ΣSn =
⋃

p∈SnΣp. Define

Σ̂n =Σn {α}, Σ̃n = Σ̂n ∪ {α̃}, Σn+1 =ΣSn ∪ Σ̃n.

Recall that for any γ,γ′ ∈Ω⊔ {0} we have a canonical way to glue the curves Cγ, Cγ′ through

the birational maps sγγ′ . Then

Cn+1 =
⋃

γ∈Σn+1

Cγ∪C0.

We also define the following curves.

Definition 3.4.18 For any p ∈ Sn define

Cp := ⋃
γ∈Σp

Cγ, Ĉn := ⋃
α′∈Σ̂n

Cα′ .

Then Cn+1 =⋃
p∈Sn Cp ∪Cα̃∪ Ĉn ∪C0.

3.4.3 The role of Newton polygons

Let p ∈ Sn. In this subsection we show that Newton polygons can be used to obtain an explicit

description of the set Σp. We want to find all primitive vectors β ∈Z2+ such that C0,γ⊊Cγ, where

γ=β◦gp α.

Let β = (β1,β2) ∈ Z2+ be a primitive vector and let γ = β ◦gp α. Recall that f |γ(Xm+1) =
Fγ(Xm+1,0). Hence f |γ ̸= 0 since Y ∤Fγ. Note that Dγ = k[X±1

m+1] by Lemma 3.4.10. Therefore

Cγ = C0,γ if and only if f |γ is invertible in k[X±1
m+1]. Since through the change of variables given

by Mβ

Fα,p = X∗
m+1Y ordβ(Fα,p) ·Fγ,

from the Newton polygon ∆α,p of Fα,p one can see whether f |γ is invertible in k[X±1
m+1] or not.

Let φ :Z2 →Z be the affine function defined by

φ(i, j)=β1 i+β2 j−ordβ(Fα,p).

Then f |γ is not invertible in k[X±1
m+1] if and only if φ−1(0)∩∆α,p = edge. Thus Σp consists of all

elements β◦gp α such that β ∈Z2+ is the normal vector of some edge of ∆α,p. All these elements

are distinct as immediate consequence of Definition 3.2.3. Furthermore, note that this description

shows that Σp is finite and non-empty as X̃m+1 |Fα,p(X̃m+1,0) but X̃m+1 ∤Fα,p.
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Proposition 3.4.19 Let β ∈Z2+ be the normal vector of an edge ℓ of the Newton polygon ∆α,p of

Fα,p. Let γ = β ◦gp α. Expand Fα,p = ∑
i, j ci j X̃ i

m+1Ỹ j, where ci j ∈ k. Let (i0, j0), . . . , (i l , jl) be the

points of ℓ∩Z2, ordered along ℓ counterclockwise with respect to ∆α,p. Then

f |γ = X d
m+1

l∑
r=0

cir jr X r
m+1

for some d ∈N.

Proof. Let (δ1,δ2) be the first row of Mβ. It is easy to see that

f |γ =
∑

(i, j)∈ℓ
ci j X

δ1 i+δ2 j+d′
m+1 for some d′ ∈Z,

with δ1 i+δ2 j+d′ ≥ 0. Note that (ir, jr)= (i0, j0)+ r(β2,−β1). Therefore, for d = d′+ (δ1 i0 +δ2 j0),

the proposition follows since δ1β2 −δ2β1 = 1.

3.4.4 Inductive construction of the morphisms

In this subsection we want to construct a birational morphism sn : Cn+1 → Cn. In §3.4.5 we will

prove that sn is proper with the exceptional locus s−1
n (Sn ∩Sing(Cn)).

Remark 3.4.20. Let p ∈ Sn. Similarly to the classical case (Remark 3.4.3), for any γ,γ′ ∈Σp, γ ̸= γ′,
one has Cγ∩Cγ′ = C0,γ. More precisely, the birational map sγγ′ : Cγ Cγ′ has domain of definition

C0,γ giving an isomorphism C0,γ→ C0,γ′ .

Remark 3.4.21. Let p ∈ Sn. For any primitive vector β ∈Z2+, if γ=β◦gpα then from (3.5) we obtain

the homomorphism of rings

(3.9)
Am[Ỹ ]

(Fα)+aα
≃ Am[X̃m+1, Ỹ ]

(Fα, X̃m+1 − G̃p)+aα

Im⊕Mβ−−−−−→ Am+1[Y ]
(Fγ)+aγ

that induces a birational morphism Cγ → Cα. In fact, from the definition of Mγ we see that it

agrees with sγα : Cγ Cα as rational map.

Lemma 3.4.22 Let p ∈ Sn and γ=β◦gp α for some primitive β ∈Z2+. Then sγα : Cγ→ Cα restricts

to an isomorphism C0,γ
∼−→ D(G̃p)∩C0,α ⊂ Cαand sγα(Cγ C0,γ)⊆ {p}.

Proof. Let γ= β◦gp α for some β ∈Z2+. The first part of the lemma follows from Remark 3.4.21

and (3.4). The morphism sγα is induced by the ring homomorphism taking Ỹ 7→ Xδ2
m+1Y β2 , with

Mβ =
(
δ1 δ2
β1 β2

)
. Recall

Cγ C0,γ = C̄γ = {Y = 0}⊂ Cγ.

Since Ḡp ≡Fm+1 mod Y , the morphism sγα takes C̄γ into the closed subscheme {Ḡp = 0} of C̄α.

This concludes the proof as {Ḡp = 0}= {p}.
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Let p ∈ Sn. Considering p as a point of Cα, denote by Uα,p the open subscheme D(G̃p)∩C0,α of

Cα. Recall that C0,α is dense in Cα by definition. Hence Lemma 3.4.6 implies that Uα,p is dense.

Let Cα,p =Uα,p ∪ {p} as subset of Cα. We want to show that Cα,p is dense and open in Cα. From

the density of Uα,p it follows that Cα,p is dense and that Vp := Cα Uα,p is a finite set of closed

points of Cα. Thus Cα,p, complement of Vp {p}, is open in Cα.

Definition 3.4.23 For any p ∈ Sn we define Cα,p to be the dense open subset Uα,p ∪ {p} of Cα,

equipped with the canonical structure of open subscheme.

Let p ∈ Sn. By Remark 3.4.20 and Lemma 3.4.22, the maps sγα : Cγ→ Cα, for γ ∈Σp, glue to a

morphism Cp → Cα,p.

Definition 3.4.24 For any p ∈ Sn, define sp : Cp → Cα,p as the glueing of the morphisms

sγα : Cγ→ Cα, for all γ ∈Σp.

Lemma 3.4.25 The morphism sp : Cp → Cα,p is separated.

Proof. Consider the open immersion ιp : Cα,p → Cα. By [Liu4, Proposition 3.3.9(e)] it suffices to

prove that ιp ◦ sp is separated. Since Cα is affine, we only have to show that Cp is separated over

Spec k by [Liu4, Exercise 3.3.2]. Let ∆α,p be the Newton polygon of Fα,p. Recall from §3.4.3 that

Cp =⋃
β

Cβ◦gpα
with Cγ =Spec

Am[X±1
m+1,Y ]

(Fγ)+aγ
, γ=β◦gp α,

where β runs through all normal vectors in Z2+ of edges of ∆α,p and the curves Cβ◦gpα
are glued

along their common open C0,αp = C0,β◦gpα
. To avoid confusion, if γ=β◦gp α, rename the variables

Xm+1,Y of OCγ
(Cγ) to Xβ,Yβ. Since closed immersions are separated and separated morphisms

are stable under base changes it suffices to prove that the toric variety
⋃
βSpec k[X±1

β
,Yβ]⊂T∆α,p

is separated. This follows from the classical theory on toric varieties.

Lemma 3.4.26 The morphism sp induces an isomorphism s−1
p (Uα,p)→Uα,p. In particular, sp is

birational.

Proof. This result immediately follows from Lemma 3.4.22 as Σp ̸=∅.

Lemma 3.4.27 The morphism sp : Cp → Cα,p is proper.

Proof. By Lemma 3.4.25, the morpshism sp is separated. We will then prove the lemma via the

valuative criterion for properness. Let R be a discrete valuation ring with field of fractions K . We

want to prove that any commutative diagram

Spec K Cp

Spec R Cα,p

tp

sp

tα
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can be filled in as shown. Let π be a uniformiser of R and let ω= (π) be the closed point of Spec R.

Since Cα,p =Uα,p ∪ {p} and s−1
p (Uα,p)→Uα,p is an isomorphism by Lemma 3.4.26, we can assume

p = tα(ω). Indeed, if not, then s−1
p is defined on the open dense neighbourhood Uα,p of tα(ω),

that therefore contains the image of tα. Moreover, tα can be supposed not constant, otherwise

Spec R → Cp can be defined as the constant morphism of image tp((0)).

Recall that the injective homomorphism Rα ,→ k(X jα , Ỹ ), given by 3.3.1(b), induces an open

immersion Cα ,→Spec(k[X jα ,Ỹ ]/(Fα)). In particular, the local ring OCα,p, equal to OCα,p,p, is naturally

isomorphic to the localisation of k[X jα , Ỹ ]/(Fα) at the prime ideal (G̃p, Ỹ )= (Ḡp, Ỹ ). From the local

homomorphism

τ :
k[X jα ,Ỹ ](G̃p ,Ỹ )

(Fα) ≃OCα,p,p
t#
α,ω−−→ R

we observe that ordπ(G̃p)> 0, ordπ(Ỹ )> 0. We want to show that neither Ỹ nor G̃p are taken to 0

by τ. Note that ker(τ)⊊ (G̃p, Ỹ ), since tα is not constant. Hence it suffices to prove that τ(Ỹ )= 0 if

and only if τ(G̃p)= 0.

Suppose τ(Ỹ ) = 0. Then τ( f |α) = 0 and τ(G̃p) = τ(Ḡp). Recall that Ḡp is a factor of f |α. Let

hp ∈ k[X jα ] with Ḡp ∤ hp such that f |α = hp ·(Ḡp)mp , for some mp ∈Z+. Note that τ(hp) is invertible

as hp ∉ (G̃p, Ỹ ). Since τ( f |α)= 0 and R is reduced, it follows that τ(G̃p)= 0.

Suppose τ(G̃p) = 0. Let Hp ∈ k[Ỹ ] be the normal form of Fα by G̃p with respect to the lexi-

cographic order on k[X jα , Ỹ ] given by X jα > Ỹ . Note that τ(Hp) = 0 as τ(Fα) = 0, but Hp ̸= 0 as

G̃p ∤Fα. Recall that G̃p − Ḡp ∈ Ỹ k[Ỹ ]. Since Ḡp is a degree 1 factor of f |α and Fα− f |α ∈ (Ỹ ), one

has Hp ∈ Ỹ k[Ỹ ]. Write Hp = Ỹ t ·H, for t ∈ Z+ and H ∉ Ỹ k[Ỹ ]. Note that τ(H) is invertible as

H ∉ (G̃p, Ỹ ). It follows that τ(Ỹ )= 0 since R is reduced and τ(Hp)= 0.

Hence ordπ(G̃p),ordπ(Ỹ ) ∈Z+ and so the affine function

φ :Z2 →Z, (i, j) 7→ ordπG̃ i
pỸ j

is a non-trivial linear map with a rank 1 kernel spanned by some primitive vector (β2,−β1) ∈
Z+×Z−. Set β= (β1,β2) and γ=β◦gp α. Then

Cγ =Spec
Am+1[Y ]
(Fγ)+aγ

and Cγ ⊂ Cp from the definition of Cp (also when γ ∉Σp). Hence

(3.10)
K Am[X±1

m+1,Y ]
(Fγ)+aγ

R Am[Ỹ ]
(Fα)+aα ,

where the ring homomorphism on the right, inducing the map

sγα : Cγ
sp−→ Cα,p ,→ Cα,
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is given by Ỹ 7→ Xδ2
m+1Y β2 for Mβ =

(
δ1 δ2
β1 β2

)
∈SL2(Z). To conclude the proof it suffices to show that

the commutative diagram (3.10) can be filled in as shown. Recall

Fm+1 = Xδ1
m+1Y β1 −Gp ∈ aγ.

Then
ordπ(Xm+1)= ordπ(G̃β2

p Ỹ−β1)=φ((β2,−β1))= 0

and so ordπ(Y )> 0 as β ∈Z2+. Thus (3.10) can be filled in as shown.

Lemma 3.4.28 If p ∈ Sn is a regular point of Cn, then sp is an isomorphism.

Proof. As p is a regular point of codimension 1, the ring OCα,p,p is normal. Therefore there

exists a normal integral open subscheme U ⊆ Cα,p containing p. Since sp is proper birational by

Lemma 3.4.27, then so is sU : s−1
p (U)→U . In particular, s−1

p (U) is integral. It follows from [Liu4,

Corollary 4.4.3]) that sU is an isomorphism. Thus sp is an isomorphism, since s−1
p (Uα,p)→Uα,p

is an isomorphism by Lemma 3.4.26.

Proposition 3.4.29 For any γ ∈Σn+1, the curve C0,γ is dense in Cn+1.

Proof. For any γ ∈Σn+1 recall that C0,γ is dense in its closure Cγ. Therefore C0 =⋃
γ∈Σn+1 C0,γ∪C0

is dense in Cn+1 =⋃
γ∈Σn+1 Cγ∪C0. Fix γ ∈Σn+1. It suffices to show that C0,γ is dense C0. But this

holds as γ ∈Ω.

Definition 3.4.30 Define a surjective function ψn : Σn+1 ⊔ {0} → Σn ⊔ {0} by ψn(0) = 0,ψn|Σ̂n
=

idΣ̂n
,ψn(Σn+1 Σ̂n)= {α}.

Let γ ∈Σn+1⊔{0} and denote αγ =ψn(γ). Then the birational map sγαγ has domain of definition

Cγ. Indeed, it is trivial when γ= 0 or γ ∈ Σ̂n while it follows from Remark 3.4.21 if γ ∈ΣSn and

from Lemma 3.4.15 if γ= α̃.

Theorem 3.4.31 There exists a unique morphism sn : Cn+1 → Cn extending the birational maps

sγ′α′ : Cγ′ Cα′ for γ′ ∈Σn+1 ⊔ {0}, α′ ∈Σn ⊔ {0}. In particular,

sn|C0 : C0
id−→ C0 ⊆ Cn, sn|Ĉn

: Ĉn
id−→ Ĉn ⊆ Cn,

and sn|Cp : Cp
sp−→ Cα,p ⊆ Cn, for any p ∈ Sn.

Proof. For any γ ∈ Σn+1 ⊔ {0} let αγ = ψn(γ). We observed that the birational maps sγαγ have

domain of definition Cγ, and so define morphisms

sγ : Cγ

sγαγ−−−→ Cαγ ⊆ Cn.

Note that sγ|C0,γ is an open immersion. This fact is trivial when γ ∈ Σ̂n ⊔ {0} and follows from

Lemmas 3.4.15 and 3.4.22 otherwise.
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Recall the definition of the dense open Uγγ′ of Cγ for any γ,γ′ ∈Ω⊔ {0}. We want to show

that for any γ,γ′ ∈ Σn+1 ⊔ {0} and any α′ ∈ Σn ⊔ {0} the maps sγ and sγ′α′ : Cγ′ Cα′ ⊆ Cn agree

on the intersection of their domains of definition. Let D be the domain of definition of sγ′α′ .

Then D ⊇Uγ′α′ . Let U = D∩Cγ ⊆ Cn+1 and U0 = C0,γ∩C0,γ′ ∩C0,α′ . Since C0,γ′ ∩C0,α′ ⊆Uγ′α′ , one

has U0 ⊆ D. Hence U0 is an open of U, dense by Proposition 3.4.29. Now, U is reduced, Cn is

separated and sγ|U0 = sγ′α′ |U0 by definition. Therefore [Liu4, Proposition 3.3.11] implies the two

maps coincide on U , as required.

Thus the morphisms sγ glue to a morphism sn : Cn+1 → Cn and sn extends the birational

maps sγ′α′ : Cγ Cα′ for γ′ ∈Σn+1 ⊔ {0}, α′ ∈Σn ⊔ {0}. Then the uniqueness follows.

Definition 3.4.32 Define sn : Cn+1 → Cn to be the birational morphism of k-schemes of Theorem

3.4.31. We call sn the morphism resolving Sn (although s−1
n (Sn) is not necessarily non-singular).

Remark 3.4.33. Let γ,γ′ ∈ Σn+1 ⊔ {0} and α′ ∈ Σn ⊔ {0}. Suppose there exist open subschemes

Vα′ ⊆ Cα′ , Uγ ⊆ Cγ, Uγ′ ⊆ Cγ′ such that sn restricts to isomorphisms Uγ→Vα′ , Uγ′ →Vα′ . Since sn

extends the rational maps sγα′ , sγ′α′ , the map sγγ′ is defined on Uγ and induces an isomorphism

Uγ→Uγ′ . This implies that the opens Uγ, Uγ′ are glued, and so are equal in Cn+1.

It follows that if U1,U2 are opens of Cn+1 such that sn|U1 and sn|U2 are open immersions,

then sn|U1∪U2 is an open immersion.

3.4.5 Geometric properties

In this subsection we will show that Σn+1 and Cn+1 satisfy all remaining properties of 3.3.1, i.e.

Cn is a projective curve and Cγ∩Cγ′ = C0,γ∩C0,γ′ for any γ,γ ∈Σn+1 ⊔ {0}, γ ̸= γ′. Furthermore,

we will prove that the morphism sn defined in Theorem 3.4.31, is a proper birational morphism

with exceptional locus s−1
n (Sn ∩Sing(Cn)).

Consider the principal open D(G̃Sn )⊂ Cα. Note that

(3.11) U = {Cα′ |α′ ∈ Σ̂n}∪ {C0}∪ {Cα,p | p ∈ Sn}∪ {D(G̃Sn )}

is an open cover of Cn.

Lemma 3.4.34 The morphism sn : Cn+1 → Cn is surjective.

Proof. We want to show that every open in the cover (3.11) is contained in the image of sn.

Recall sα̃α(Cα̃)= D(G̃Sn ) by Lemma 3.4.15. Moreover, the morphism sp : Cp → Cα,p is surjective

by Lemma 3.4.22 as Σp ̸=∅. Then the lemma follows from Theorem 3.4.31.

Lemma 3.4.35 For any p ∈ Sn, we have

s−1
n (p)= Cp C0,αp , and s−1

n (Cα,p)= Cp.

Furthermore, the morphism s−1
n (Cn Sn)→ Cn Sn induced by sn is an isomorphism.
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Proof. Let p ∈ Sn. Lemma 3.4.22 shows that

s−1
p (p)= ⋃

γ∈Σp

(Cγ C0,γ)= Cp C0,αp ,

where the last equality holds as C0,γ = C0,αp for all γ ∈Σp. Moreover, p ∉ sn(Cq) for any q ∈ Sn,

q ̸= p, and also p ∉ sn(Cα̃) by Lemma 3.4.15. Recall p ∉ C0. In particular, p ∉ Cα′ for any α′ ∈ Σ̂n,

since Cα∩Cα′ ⊆ C0 (from our assumptions on Cn). Then s−1
n (p)= s−1

p (p) by Theorem 3.4.31.

Let USn = Cn Sn. We want to show that s−1
n (USn )→USn is an isomorphism. From above

s−1
n (USn )= Ĉn ∪C0 ∪Cα̃,

as C0,γ ⊆ C0 for any γ ∈ΣSn . Note that sn|Ĉn
, sn|C0 and sn|Cα̃

are open immersions by Theorem

3.4.31. Thus s−1
n (USn )→USn is an isomorphism from Remark 3.4.33 and Lemma 3.4.34.

Recall that Cα,p {p} = Uα,p ⊆ USn and s−1
p (Uα,p) = C0,αp by Lemma 3.4.22. Moreover, sp

induces an isomorphism C0,αp →Uα,p by Lemma 3.4.26. Since s−1
n (USn )→USn is an isomorphism,

s−1
n (Cα,p)= s−1

p (Cα,p)= Cp.

Theorem 3.4.36 The morphism sn : Cn+1 → Cn resolving Sn ⊆ Sing(C̄α) is a surjective proper

birational morphism with exceptional locus contained in s−1
n (Sn). In particular, the curve Cn+1 is

projective.

Proof. First recall sn is surjective by Lemma 3.4.34. Consider the open cover U of Cn introduced

in (3.11). As properness is a local property on the codomain, if s−1
n (U) → U is proper for any

U ∈U , then sn is proper. Lemma 3.4.35 implies that s−1
n (U)→U is an isomorphism except when

U = Cα,p for some p ∈ Sn. But s−1
n (Cα,p) = Cp for any p ∈ Sn again by Lemma 3.4.35. Hence

Lemma 3.4.27 implies that sn is proper. It follows that the curve Cn+1 is complete, and then

projective, since so is Cn.

Proposition 3.4.29 implies that C0 is dense in Cn+1. Let USn = Cn Sn, dense in Cn. Since

C0 ⊆ s−1
n (USn ), the isomorphism s−1

n (USn ) →USn implies that sn is birational with exceptional

locus contained in s−1
n (Sn).

Lemma 3.4.37 Let sn : Cn+1 → Cn be the morphism resolving Sn ⊆ Sing(C̄α). Let p ∈ Sn. Then

p ∈Reg(Cn) if and only if the exceptional locus of sn is contained in s−1
n (Sn {p}). In that case, C̄γ

is regular for all γ ∈Σp.

Proof. If p ∈Reg(Cn) then sp : Cp → Cα,p is an isomorphism by Lemma 3.4.28. Then the excep-

tional locus of sn is contained in s−1
n (Sn {p}) by Lemma 3.4.35 and Theorem 3.4.31.

Suppose the exceptional locus of sn is contained in s−1
n (Sn {p}). In particular, there exists

an open neighbourhood U of p such that s−1
n (U) → U is an isomorphism. This implies that

sp : Cp → Cα,p is an isomorphism by Theorem 3.4.31 and Lemma 3.4.35. Recall Σp ̸=∅. Let γ ∈Σp

so that γ=β◦gp α with β ∈Z2+. As in §3.4.2, write

Cα =Spec
Am[Ỹ ]

(Fα)+aα
, Cγ =Spec

Am[X±1
m+1,Y ]

(Fγ)+aγ
.
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Consider the morphism sγα : Cγ→ Cα induced by the ring homomorphism taking Ỹ 7→ Xδ2
m+1Y β2 ,

where β = (β1,β2) and δ1,δ2 ∈ Z such that δ1β2 −δ2β1 = 1. Recall that sγα(Cγ C0,γ) = {p} by

Lemma 3.4.22. As sp is an isomorphism, sγα is an open immersion. In particular,

(3.12) s#
γα(Uαγ) :OCα

(Uαγ)→OCγ
(Cγ)

is an isomorphism, where Uαγ = sγα(Cγ). In fact, Uαγ = Cα,p. Then p ∈Uαγ and mp = (G̃p, Ỹ )+aα

is the maximal ideal of OCα
(Uαγ) corresponding to p. Recall Fm+1 = Xδ1

m+1Y β1 −Gp ∈ aγ. Then

mpOCγ
(Cγ) ⊆ (Fγ,Y )+aγ, which implies the equality, since mpOCγ

(Cγ) has to be maximal. It

follows that the ring isomorphism (3.12) induces

k ≃ Dα

(Ḡp)
≃

Am[Ỹ ](G̃p,Ỹ )+aα
(G̃p, Ỹ )+aα

∼−→
Am[X±1

m+1,Y ](Fγ,Y )+aγ
(Fγ,Y )+aγ

≃ Dγ

( f |γ)
.

Therefore C̄γ =Spec Dγ/( f |γ)≃Spec k, and so is regular. In particular, the point w = s−1
n (p) is a

non-singular point of Cn+1 (Remark 3.4.4). Thus Cn is regular at p, as w is not in the exceptional

locus of sn.

Proposition 3.4.38 Let sn : Cn+1 → Cn be the morphism resolving Sn. Then Sn ⊂Reg(Cn) if and

only if sn is an isomorphism. In that case, C̄γ is regular for all γ ∈ΣSn .

Proof. The proposition follows from Lemma 3.4.37.

Recall from 3.3.1 that Cγ∩Cγ′ = C0,γ∩C0,γ′ for any γ,γ′ ∈ Σn ⊔ {0}, γ ̸= γ′. We now want to

show this fact is true for Σn+1 as well.

Proposition 3.4.39 For any γ,γ′ ∈Σn+1 ⊔ {0}, if γ ̸= γ′, then

Cγ∩Cγ′ = C0,γ∩C0,γ′ .

Proof. Let γ,γ′ ∈ Σn+1 ⊔ {0}, γ ̸= γ′. Recall s−1
n (C0) = C0 and that sn restricts to the identity

C0 → C0. Hence it suffices to show that

sn(Cγ)∩ sn(Cγ′)= sn(C0,γ)∩ sn(C0,γ′).

Consider the open D(G̃Sn )⊆ Cα and let Uα,Sn = D(G̃Sn )∩C0,α. If both γ and γ′ belong to Σ̃n⊔{0},

we can conclude by the hypothesis on Cn (see 3.3.1), since sn(Cα̃)= D(G̃Sn ) and sn(C0,α̃)=Uα,Sn

by Lemma 3.4.15. Then assume γ ∈Σp for some p ∈ Sn. Lemma 3.4.22 shows that sn(Cγ)= Cα,p

and sn(C0,γ)=Uα,p. If γ′ ∈Σp as well, then C0,γ = Cγ∩Cγ′ = C0,γ′ from Remark 3.4.20. If γ′ ∈Σq

for some q ∈ Sn, q ̸= p, then

sn(Cγ)∩ sn(Cγ′)= Cα,p ∩Cα,q =Uα,p ∩Uα,q = sn(C0,γ)∩ sn(C0,γ′).

If γ′ = α̃, then

sn(Cγ)∩ sn(Cα̃)= Cα,p ∩D(G̃Sn )=Uα,p ∩Uα,Sn = sn(C0,γ)∩ sn(C0,α̃).
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Finally, suppose γ′ ∈ Σ̂n ⊔ {0}. Note that Uα,p = Cα,p ∩C0,α. Then

sn(Cγ)∩ sn(Cγ′)= Cα,p ∩Cγ′ =Uα,p ∩C0,γ′ = sn(C0,γ)∩ sn(C0,γ′),

as Cα∩Cγ′ = C0,α∩C0,γ′ from the inductive hypothesis on Cn.

3.5 A generalised Baker’s model

Let k be an algebraically closed field. Let f ∈ k[x±1
1 , y±1] be a Laurent polynomial defining a

smooth curve C0 : f = 0 over G2
m. Let ∆ be the Newton polygon of f and let C1 be the completion

of C0 with respect to ∆.

Definition 3.5.1 Let C0 and C1 as above. A simple Baker’s resolution of C0 is a sequence of

proper birational morphisms of k-schemes

(3.13) . . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

where the curves Cn/k are constructed from subsets Σn ⊂Ω as described in 3.3.1 and the maps

sn are the morphisms resolving sets Sn ⊆Sing(C̄α), for some α ∈Σn.

We have showed how to construct simple Baker’s resolutions of C0 recursively for any choice

of sets Sn ⊆Sing(C̄α), α ∈Σn. We want to prove that for any simple Baker’s resolution of C0, the

sets Sn are eventually empty. Thus simple Baker’s resolutions can be used to desingularise C1.

Definition 3.5.2 Recall k is supposed algebraically closed. Let C/k be a smooth projective curve.

A smooth curve C̃/k is a generalised Baker’s model of C if there exist a smooth curve C̃0 ⊂ G2
m,

birational to C, and a simple Baker’s resolution

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

of C̃0 so that C̃ = Cn for some n ∈Z+. In this case we say that C̃ is a generalised Baker’s model of

C with respect to C̃0. Note that C̃ is a model of C over k, i.e. C̃ ≃ C, by Lemma B.1.3.

For the remainder of the section we fix a simple Baker’s resolution of C0

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

where the maps sn are the morphisms resolving Sn ⊆Sing(C̄α), α ∈Σn.

Theorem 3.5.3 There exists h ∈Z+ such that Sn ⊂Reg(Cn) for all n ≥ h.

Proof. Let n ∈ Z+ and consider sn : Cn+1 ↠ Cn resolving Sn. As birational morphism between

projective curves, sn is finite ([Liu4, Lemma 7.3.10]). By Theorem 3.4.36 we have an exact

sequence of sheaves

0→OCn → s∗nOCn+1 →Sn → 0,
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where Sn is a skyscraper sheaf with support contained in Sn. Denote the arithmetic genus of a

curve X /k by pa(X ). Then we get

(3.14) pa(Cn+1)= pa(Cn)−dimk H0(Cn,Sn).

Let r be the number of irreducible components of C0. For any n, recall there is a natural open

immersion C0 ,→ Cn with dense image. Therefore the curve Cn is reduced and has r irreducible

components X1, . . . , Xr. Let i = 1, . . . , r and let X ′
i be the normalisation of X i. Then H0(X ′

i,OX ′
i
)= k

as k is algebraically closed ([Liu4, Corollary 3.3.21]). Hence pa(X ′
i)≥ 0. Therefore pa(Cn)≥ 1− r

by [Liu4, Proposition 7.5.4]. It follows from (3.14) that (pa(Cn))n∈Z+ is a decreasing sequence

in Z bounded below by 1− r. Hence it is eventually constant, i.e. there exists h ∈Z+ such that

pa(Cn+1)= pa(Cn) for all n ≥ h. From (3.14), we have H0(Cn,Sn)= 0, that implies Sn = 0, as it is

a skyscraper sheaf. Hence OCn ≃ s∗nOCn+1 . It follows that sn is an isomorphism since it is affine.

Thus Lemma 3.4.38 shows that Sn ⊂Reg(Cn) for any n ≥ h.

Remark 3.5.4. Let n ∈Z+. In Remark 3.4.4 we noticed that any singular point of Cn is the image

of a point in Sing(C̄α) under the immersion C̄α ,→ Cn, for some α ∈Σn. Therefore if Cn is singular,

we can choose Sn ⊆Sing(C̄α), α ∈Σn, such that Sn ∩Sing(Cn) ̸=∅.

Theorem 3.5.5 Let N = {n ∈Z+ | Cn is singular}. Suppose Sn ∩Sing(Cn) ̸=∅ for all n ∈ N. Then

N is finite. In other words, there exists h ∈Z+ so that Cn is regular for all n ≥ h. In particular, for

any n ≥ h, the curve Cn is a generalised Baker’s model of the smooth completion of C0.

Proof. The result follows from Theorem 3.5.3.

Remark 3.5.6. The arithmetic genus of the curve C1 is pa(C1)= |∆(Z)|, where |∆(Z)| is the number

of internal integer points of the Newton polygon of C0 ([Dok, Remark 2.6(d)]). Therefore it can be

explicitly computed. Equation (3.14) gives a recursive way to calculate the arithmetic genus of

the following curves Cn.

By choosing the sets Sn as in Theorem 3.5.5, we would eventually compute the genus g of the

smooth completion of C0. Furthermore, if h ∈Z+ is as in Theorem 3.5.5 then g ≤ |∆(Z)|−h. Hence

the number of steps needed to desingularise C1 via a simple Baker’s resolution is ≤ |∆(Z)|.

Lemma 3.5.7 For any n ∈Z+,

Cn C0 =
⊔
γ∈Σn

Cγ C0,γ =
⊔
γ∈Σn

C̄γ.

Proof. From 3.3.1, for any γ,γ′ ∈Σn⊔{0}, one has Cγ∩Cγ′ = C0,γ∩C0,γ′ . This implies that if γ ∈Σn

then Cγ∩C0 = C0,γ and Cγ∩Cγ′ ⊆ C0 for every γ′ ∈Σn, γ′ ̸= γ. The lemma follows.

Theorem 3.5.8 There exists h ∈Z+ such that Sn =∅ for all n ≥ h.

100



3.5. A GENERALISED BAKER’S MODEL

Proof. By Theorem 3.5.3 there exists h′ ∈Z+ such that Sn ⊂Reg(Cn) for all n ≥ h′. Let n ≥ h′. For

any Γ⊆Σn let N(Γ) be the number of points of Cn C0 which are singular on C̄γ for some γ ∈ Γ.

Note that by Lemma 3.5.7, one has N(Γ)=∑
γ∈Γ N({γ}).

Let α ∈ Σn such that Sn ⊆ Sing(C̄α). Since Cα̃ embeds in Cα via sn and Sn = C̄α sn(C̄α̃) by

Lemma 3.4.15, we have N(Σ̃n) = N(Σn)− |Sn|. On the other hand, N(ΣSn ) = 0 by Proposition

3.4.38, as Sn ⊂Reg(Cn). Hence

N(Σn+1)= N(ΣSn )+N(Σ̃n)= N(Σn)−|Sn| ≤ N(Σn).

Then N(Σn)n≥h′ forms a decreasing sequence bounded below by 0. Thus it is eventually

constant, i.e. there exists h ∈Z+ such that N(Σn+1)= N(Σn) for all n ≥ h. But we saw above that

this happens only if Sn =∅.

Definition 3.5.9 For any n ∈Z+, the curve Cn is said outer regular if C̄γ is regular for any γ ∈Σn.

In other words, Cn is outer regular if the closed subset Cn C0 of Cn, equipped with the structure

of closed subscheme coming from Lemma 3.5.7, is regular.

Note that from Remark 3.4.4, if Cn is outer regular, then it is regular.

Theorem 3.5.10 Suppose Sn ̸=∅ for all n ∈ Z+ such that Cn is not outer regular. Then there

exists h ∈Z+ so that for all n ≥ h the closed subschemes C̄γ are regular for all γ ∈Σn. In particular,

the curve Ch is an outer regular generalised Baker’s model of the smooth completion of C0.

Proof. The result follows from Theorem 3.5.8.

Corollary 3.5.11 Every smooth projective curve defined over an algebraically closed field k admits

an outer regular generalised Baker’s model.

Proof. By Corollary B.1.4, for any smooth projective curve C there exists a smooth curve C0 ⊂G2
m

birational to C. Construct a simple Baker’s resolution (3.13) of C0 recursively by choosing Sn ̸=∅
whenever Cn is not outer regular. Theorem 3.5.10 concludes the proof.

Lemma 3.5.12 Let n ∈Z+. For any γ ∈Σn we have a natural bijection

Reg(C̄γ) 1:1←→ {simple roots of f |γ in k×}.

Proof. For any γ ∈Σn, we have

Reg
(
Spec

k[X±1
jγ

]

( f |γ)

)
1:1←→ {simple roots of f |γ in k×}.

We will prove by induction on n that Reg(C̄γ) = Reg
(
Spec k[X±1

jγ
]/( f |γ)

)
. If n = 1, the statement

follows since Dγ = k[X±1
jγ

] for all γ ∈ Σ1. Suppose n > 0 and γ ∈ Σn+1. Let sn : Cn+1 → Cn be

the morphism resolving Sn ⊆ Sing(C̄α), for α ∈Σn. By Definition 3.4.17 the result follows from

the inductive hypothesis except when either γ = α̃ or γ ∈ ΣSn . If γ ∈ ΣSn , then Dγ = k[X±1
jγ

] by

Lemma 3.4.10, so C̄γ = Spec k[X±1
jγ

]/( f |γ). If γ = α̃, then C̄γ = C̄α Sn by Lemma 3.4.15. Then

Reg(C̄γ)=Reg(C̄α). Thus Reg(C̄γ)=Reg
(
Spec k[X±1

jγ
]/( f |γ)

)
since jα̃ = jα and f |α̃ = f |α.
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Theorem 3.5.13 Let n ∈Z+. Suppose Cn is outer regular. Then we have a natural bijection

Cn(k) C0(k) 1:1←→ ⊔
γ∈Σn

{simple roots of f |γ in k×}.

Proof. Lemma 3.5.7 shows that Cn C0 =⊔
γ∈Σn C̄γ. Thus Lemma 3.5.12 concludes the proof.

We conclude the section with the following two lemmas, proving that for any n ∈Z+ the unions

in Definition 3.4.17 are all disjoint. This fact is particularly useful in applications: together with

Proposition 3.4.39 it implies the points in Cγ C0,γ for γ ∈ΣSn ∪ {α̃} are not visible on Ĉn.

Recall the partial order < on Ω given in Definition 3.2.4.

Lemma 3.5.14 Let n ∈Z+. For any γ,γ′ ∈Σn, neither γ< γ′ nor γ′ > γ.

Proof. We are going to prove the lemma by induction on n. If n = 1 the result is trivial. Suppose

n > 0 and let α ∈ Σn such that Sn ⊆ Sing(C̄α). Suppose by contradiction there exist γ,γ′ ∈ Σn+1

such that γ < γ′. By definition Σn+1 = Σ̃Sn ∪ Σ̂n, where Σ̃Sn = ΣSn ∪ {α̃}. Let m ∈ Z+ such that

α ∈Ωm. Then α′ ∈Ωm+1 for any α′ ∈ Σ̃Sn . In particular, γ and γ′ cannot be both in Σ̃Sn . In fact, by

inductive hypothesis, either γ ∈ Σ̃Sn and γ′ ∈ Σ̂n or viceversa. Suppose γ ∈ Σ̃Sn . Then α< γ< γ′.
But this gives a contradiction since α,γ′ ∈Σn. Suppose γ′ ∈ Σ̃Sn . Then α is the unique element of

Ωm such that α< γ′. In particular, γ≤ α. But γ ̸= α since γ ∈ Σ̂n. Thus γ< α, contradicting the

inductive hypothesis on Σn.

Lemma 3.5.15 Let n ∈Z+ and let α ∈Σn such that Sn ⊆Sing(C̄α). Then the sets Σ̂n, {α̃}, and Σp,

for p ∈ Sn, are pairwise disjoint.

Proof. Let p ∈ Sn. First note that for every γ ∈Σp and γ′ ∈⋃
q∈Sn {p}Σq∪ {α̃}, the images of Cγ and

Cγ′ under sn are different. Then γ ̸= γ′. It remains to show that if γ ∈Σp ∪ {α̃} and α′ ∈ Σ̂n, then

γ ̸=α′. Note that γ>α. Therefore if γ=α′ then α′ >α, where both α and α′ are elements of Σn.

But this is not possible by Lemma 3.5.14.

3.6 Simultaneous resolution of different charts

Let k be an algebraically closed field and let f ∈ k[x±1
1 , y±1] be a Laurent polynomial defining

a smooth curve C0 : f = 0 over G2
m. Let C1 be the completion of C0 with respect to its Newton

polygon. In the previous sections we showed that we can construct a sequence of proper birational

morphisms

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1,

where the curves Cn/k are constructed from sets Σn ⊆Ω as described in 3.3.1 and the maps sn

are the morphisms resolving Sn ⊂Sing(C̄αn ) for αn ∈Σn.
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Let n ∈Z+. Note that, once we have chosen the polynomials G̃p for any p ∈ Sn, the construction

of Σn+1 Σ̂n only depends on αn and Sn by Lemma 3.5.15. Suppose αn+1 ∈ Σ̂n. Then

Σn+2 =ΣSn ∪ΣSn+1 ∪ {α̃n, α̃n+1}∪ (Σn {αn,αn+1}).

Thus Σn+2 would have been defined in the same way if, instead of resolving Sn first and then

Sn+1, we had resolved Sn+1 first and then Sn. In other words, the construction of Σn+2, and so of

Cn+2, from Σn does not depend on the order of resolution of Sn and Sn+1.

In this section we will show that from our construction we can resolve points coming from

different charts simultaneously. More precisely, we will explain how to construct a sequence as

in §3.3 where the morphisms sn resolve finite sets of points Sn ⊆⊔
α∈Σn Sing(C̄α). Note that by

Lemma 3.5.7 we can identify the points in Sn with points of Cn via the immersions C̄α ,→ Cn.

Suppose that, for some n ∈ Z+, we have constructed Σn ⊂ Ω and Cn as in 3.3.1. Let Sn ⊆⊔
α∈Σn Sing(C̄α). Denote Sn,α = Sn∩C̄α for any α ∈Σn. Consider the subset Σn,Sn := {α ∈Σn | Sn,α ̸=

∅} of Σn and order its elements α0,α1, . . . ,αh. For each i = 0, . . . ,h we can recursively construct the

morphism sn+i : Cn+i+1 → Cn+i resolving Sn,αi ⊆ Sing(C̄αi ) as described in §3.4. Indeed α0 ∈Σn

and αi ∈Σn+i since

αi ∈Σn {α0, . . . ,αi−1}⊆ Σ̂n+i−1 for any i ≥ 1.

Therefore from the observation made at the beginning of the section

Σn+h+1 =
h⋃

i=0
ΣSn,αi

∪ {α̃0, . . . , α̃h}∪ (Σn {α0, . . . ,αh})

= ⋃
α∈Σn,Sn

(ΣSn,α ∪ {α̃})∪ (Σn Σn,Sn ).

In particular, Σn+h+1 is independent of the order chosen for the elements in Σn,Sn . This approach

eventually constructs a complete curve Cn+h+1 and a surjective birational morphism

Cn+h+1
sn+h◦sn+h−1◦···◦sn−−−−−−−−−−−−→ Cn,

with exceptional locus equal to the inverse image of Sn ∩Sing(Cn). This morphism does not

depend on the order chosen for the elements αi of Σn,Sn . Indeed by Theorem 3.4.31 it is the unique

morphism extending the birational maps sγα : Cγ Cα for γ ∈Σn+h+1 ⊔ {0} and α ∈Σn ⊔ {0}.

Definition 3.6.1 We will say that sn+h ◦ · · · ◦ sn is the morphism resolving the finite set Sn ⊆⊔
α∈Σn Sing(C̄α).

We can then redefine Σn+1 :=Σn+h+1 and Cn+1 := Cn+h+1 to see that we can construct finite

subsets Σn ⊂Ω and projective curves Cn/k as described in 3.3.1 and a sequence of proper birational

morphisms

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1,

where the maps sn : Cn+1 → Cn are the morphisms resolving freely chosen Sn ⊆⊔
α∈Σn Sing(C̄α).

103



CHAPTER 3. A GENERALISATION OF THE TORIC RESOLUTION OF CURVES

Definition 3.6.2 Let C0 and C1 as above. A Baker’s resolution of C0 is a sequence of proper

birational morphisms of k-schemes

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

where the curves Cn/k are constructed from subsets Σn ⊂Ω as indicated in 3.3.1 and the maps sn

are the morphisms resolving sets Sn ⊆⊔
α∈Σn Sing(C̄α).

Simple Baker’s resolutions are Baker’s resolution. In fact, from what discussed in this section,

Baker’s resolutions of C0 are just contraptions of simple Baker’s resolutions. Hence the results

in §3.5 extends to Baker’s resolutions. Let us explicitly restate Theorem 3.5.8 in light of the

terminology introduced in the current section as an example.

Theorem 3.6.3 For any Baker’s resolution of C0 given as in Definition 3.6.2, there exists h ∈Z+
such that Sn =∅ for any n ≥ h.

Baker’s resolutions are not really a new concept, but rather a more general point of view

which will be useful in the next section, where we tackle the case of a non-algebraically closed

base field.

3.7 The case of non-algebraically closed base field

In this section let k be a perfect field with algebraic closure k̄. Denote by Gk the absolute Galois

group Gal(k̄/k). Let f ∈ k[x±1
1 , y±1] such that C0,k : f = 0 is a smooth curve defined over G2

m,k. Set

C0 = C0,k×k k̄. In the previous section we showed how to construct a sequence of proper birational

morphisms of k̄-schemes

. . .
sn+1−−−→ Cn+1

sn−→ Cn
sn−1−−−→ . . .

s1−→ C1,

called Baker’s resolution of C0, where the curves Cn/k̄ are equipped with canonical open immer-

sions ιn : C0 ,→ Cn such that sn ◦ ιn+1 = ιn. Suppose that for any n ∈Z+ one has Gk ⊆Aut(Cn) and

sn ◦σ=σ◦ sn for all σ ∈Gk. Then, from the universal property of quotient schemes, one has an

induced sequence of proper birational morphisms of k-schemes

. . .
sn+1,k−−−−→ Cn+1,k

sn,k−−→ Cn,k
sn−1,k−−−−→ . . .

s1,k−−→ C1,k.

where the curves Cn,k := Cn/Gk are defined over k. Furthermore, the morphisms ιn induce open

immersions ιn,k : C0,k ,→ Cn,k such that sn,k ◦ ιn+1,k = ιn,k. In fact, Cn ≃ Cn,k ×k k̄ and the quotient

morphism Cn → Cn,k is the canonical projection. Then Cn is smooth if and only if so is Cn,k.

The argument above motivates the subject of this section, which is constructing a Baker’s

resolution of C0 such that Gk ⊆Aut(Cn) and sn is Galois-invariant for any n ∈Z+. The following

definition extends Definitions 3.5.2, 3.5.9 to the case of general perfect fields.
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Definition 3.7.1 Let C/k be a smooth projective curve. A curve C̃/k is a generalised Baker’s model

of C if C̃ ≃ C and there exists a smooth curve C̃0,k/k such that the base extended curve C̃×k k̄ is a

generalised Baker’s model of C×k k̄ with respect to C̃0,k ×k k̄. Furthermore, a generalised Baker’s

model C̃ of C is outer regular if C̃×k k̄ is outer regular.

Let us first describe a group action of Gk on Ω. Let α = (v,T) ∈Ω and σ ∈ Gk. Let m ∈ Z+
such that α ∈Ωm and write T = (g2, . . . , gm) for Laurent polynomials g i ∈ k̄[x±1

1 , y±1]. Set Tσ =
(gσ2 , . . . , gσm) and define (v,T)σ = (v,Tσ). Recall

C0,α =Spec
k̄[x±1

1 , . . . , x±1
m , y±1]

( f1, f2, . . . , fm)

with f1 = f ∈ k[x±1
1 , y±1] and f i = xi − g i ∈ k̄[x±1

1 , y±1] for i ≥ 2. Hence C0,ασ = Cσ
0,α. Then C0,ασ is

dense in C0 and so ασ ∈Ω. Thus the element ασ is set as the image of α under the action of σ.

The next lemma follows.

Lemma 3.7.2 Let σ ∈Gk and α ∈Ω. Let m ∈Z+ such that α ∈Ωm. If γ=β◦gα, for some primitive

vector β ∈N×Z+ and g ∈ k̄[x1, . . . , xm, y] then γσ =β◦gσ α
σ.

We will show that if the morphisms sn resolve Galois-invariant sets of points for any n ∈Z+,

the curves Cn can be constructed from subsets Σn ⊂ Ω with the properties of 3.3.1 and the

following additional one:

(d) The action of Gk on Ω restricts to Σn. Furthermore, for any σ ∈Gk and any α ∈Σn, we have

Mασ = Mα, jασ = jα, Fασ =Fσ
α .

In particular, if (d) holds for n ∈Z+, then Gk ⊆Aut(Cn).

Suppose the set Σn defining Cn satisfies the additional property (d). Let α ∈Σn and let m ∈Z+
such that α ∈Ωm. Let σ ∈Gk. From (d) it follows that ασ ∈Σn and aσα = aασ , Rασ = Rσ

α, Cασ = Cσ
α,

f |ασ = f |σα. Hence Dασ = Dσ
α and so C̄ασ = C̄σ

α.

Let p ∈ Sing(C̄α). Recall Ḡp ∈ k̄[X jα] is monic of degree 1 generating the maximal ideal of

OC̄α,p. Since C̄σ
α = C̄ασ , the ideal (Ḡσp ) is the maximal ideal of OC̄σ

α,pσ . Therefore Ḡpσ = Ḡσp as

Ḡσp ∈ k̄[X jασ ] is linear and monic. Finally, the equality Fασ = Fσ
α implies that we can choose

G̃pσ = G̃σp . Let gp ∈ k̄[x1, . . . , xm, y] related to G̃p by Mα. If G̃pσ = G̃σp , then gσp is the polynomial

related to G̃pσ by Mασ = Mα; hence gpσ = gσp.

Now let Sn ⊆⊔
α∈Σn Sing(C̄α) be a Gk-invariant set. Consider the morphism sn : Cn+1 → Cn

resolving Sn. We want to show that we can construct the collection Σn+1 defining Cn+1 in such a

way that it satisfies (d). Define Sn,α = Sn ∩ C̄α for any α ∈Σn and Σn,Sn = {α ∈Σn | Sn,α ̸=∅}. Note

that since Sn is Gk-invariant, so is Σn,Sn . Moreover,

Sσ
n,α = {pσ | p ∈ Sn,α}= Sn,ασ

for any α ∈Σn and σ ∈Gk.
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Let γ ∈Σn+1 and σ ∈Gk. Assume G̃pσ = G̃σp for any p ∈ Sn. If γ ∉Σn, then for some α ∈Σn,Sn

either γ= α̃ or γ=β◦gp α, for some p ∈ Sn,α, and β ∈Z2+ primitive. It follows from Lemma 3.7.2

that γσ equals either α̃σ or β◦gpσ α
σ. In particular, the matrix Mγσ , the positive integer jγσ and

the polynomial Fγσ have been defined in §3.4.2 even when γσ ∉Σn+1 (see Notation 3.4.13, 3.4.16).

This allows us to state the following result.

Theorem 3.7.3 Consider the morphism sn : Cn+1 → Cn resolving the Gk-invariant set Sn ⊆⊔
α∈Σn Sing(C̄α). Suppose Σn satisfies the additional property (d). Then Σn+1 satisfies (d) if for all

σ ∈Gk, one has

(1) G̃pσ = G̃σp for all p ∈ Sn;

(2) Mγ = Mγσ for any γ ∈Σn+1;

(3) ordX jγ
(Fγ)= ordX jγσ

(Fγσ) for any γ ∈Σn+1.

Furthermore, if α1, . . . ,αh ∈Σn,Sn so that Σn,Sn =
⊔h

i=1 Gkαi, then

Σn+1 =Gk ·
h⋃

i=1
(ΣSn,αi

∪ {α̃i})∪ (Σn Σn,Sn ).

Proof. Assume (1), (2) and (3) and let σ ∈Gk. Let γ ∈Σn+1 Σn. Then there exists α ∈Σn,Sn such

that γ= α̃ or γ ∈ΣSn,α .

Suppose γ = α̃ for some α ∈ Σn,Sn . Then γσ = α̃σ by Lemma 3.7.2 and so γσ ∈ Σn+1. Note

that jγ = jγσ and Fγ = Fγσ . Indeed, jα̃ = jα, Fα̃ = Fα by construction, and jγσ = jασ = jα and

Fγσ =Fασ =Fσ
α , where the last equalities follow from the fact that Σn satisfies (d).

Suppose now that γ ∈ ΣSn,α . Then γ = β ◦gp α for some p ∈ Sn,α and some primitive vector

β ∈Z2+. Lemma 3.7.2 implies that γσ =β◦gpσ α
σ. Let m ∈Z+ such that α ∈Ωm. Note that jγ = jγσ .

Indeed jγ = m+1 by construction, and similarly jγσ = m+1 since ασ ∈Ωm.

Now we want to show that Fσ
γ =Fγσ . Let αp = (0,1)◦gp α, as in §3.4.2. Then (αp)σ = (0,1)◦gpσ

ασ = (ασ)pσ by Lemma 3.7.2. Since gσp = gpσ and Mα = Mασ , Remark 3.4.8 shows that Mαp =
M(ασ)pσ . Recall that the matrix Mγ is obtained as the product (Im⊕Mβ) ·Mαp , for some matrix Mβ

attached to β. Similarly, Mγσ = (Im ⊕M′
β
) ·M(ασ)pσ for some matrix M′

β
attached to β. It follows

that Mβ = M′
β

as we are assuming Mγ = Mγσ .

We recall Fγ and Fγσ are constructed from Fα,p and Fασ,pσ respectively, via the change of

variables given by Mβ. Explicitly,

Fα,p
Mβ= X n1

m+1Y n2 ·Fγ, Fασ,pσ
Mβ= X n3

m+1Y n4 ·Fγσ ,

for some n1,n2,n3,n4 ∈Z. Note that Fσ
α,p =Fασ,pσ since G̃σp = G̃pσ and Fσ

α =Fασ . Therefore Fσ
γ =

Fγσ as ordXm+1(Fγ)= ordXm+1(Fγσ) by assumption and ordY (Fγ)= ordY (Fγσ)= 0 by construction.

To conclude the proof it only remains to show that C̄γσ ̸=∅ since this would imply γσ ∈ΣSn,ασ .

We showed jγσ = jγ, Mγσ = Mγ and Fγσ =Fσ
γ , and so C̄γσ = C̄σ

γ . But C̄γ ̸=∅ since γ ∈ΣSn,α . Thus

C̄γσ ̸=∅.
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Remark 3.7.4. Suppose Σn satisfies (d). In this remark we show that conditions (1),(2),(3) of

Theorem 3.7.3 can always be obtained.

Let σ ∈ Gk. We have already observed that we can choose the polynomials G̃p, for p ∈ Sn,

satisfying (1). Let γ ∈Σn+1. If γ ∈Σn, then the equalities Mγ = Mγσ and ordX jγ
(Fγ)= ordX jγσ

(Fγσ)

follow from the fact that Σn satisfies (d). Suppose γ = α̃ for some α ∈ Σn,Sn . Assuming (1), the

equality Mγ = Mγσ follows from Lemma 3.7.2 and Remark 3.4.14. Furthermore, jγ = jγσ and

Fσ
γ =Fγσ as jα = jγα and Fσ

α =Fασ . Suppose γ ∈ΣSn,α for some α ∈Σn,Sn . Then γ=β◦gpα for some

primitive β ∈Z2+ and some p ∈ Sn,α. Let m ∈Z+ such that α ∈Ωm. In the proof of Theorem 3.7.3 we

showed that Mγ = (Im ⊕Mβ) ·Mαp and Mγσ = (Im ⊕M′
β
) ·Mαp , for some matrices Mβ, M′

β
attached

to β that can be freely chosen. Therefore it suffices to choose Mβ = M′
β

to have Mγ = Mγσ . Finally,

the polynomial Fγ is fixed up to a power of X jγ , so we can easily require ordX jγ
(Fγ)= ordX jγσ

(Fγσ ).

Remark 3.7.5. The conditions of Theorem 3.7.3 are satisfied if

(1) G̃p = Ḡp for any p ∈ Sn;

(2) for any primitive β ∈ Z2+, a fixed matrix Mβ ∈ SL2(Z) attached to β is chosen whenever

choosing a matrix attached to β is required;

(3) there exists a ∈N such that ordX jγ
(Fγ)= a for any γ ∈Σn+1.

Note that point (2) implies that if γ=β◦gp α, for some α ∈Σn, p ∈ Sn,α, and some primitive vector

β ∈Z2+, then we use the fixed matrix Mβ to construct Mγ = (Im ⊕Mβ) ·Mαp .

Let C1 be the completion of C0 with respect to its Newton polygon. From §3.4.1 we easily

see that γσ = γ and Fσ
γ =Fγ for any γ ∈ Σ1 and any σ ∈ Gk. Hence the set Σ1 ⊂Ω, defining C1,

satisfies (d). Theorem 3.7.3 and Remark 3.7.4 show that we can construct Baker’s resolutions of

C0

. . .
sn+1−−−→ Cn+1

sn−→ Cn
sn−1−−−→ . . .

s1−→ C1,

such that for all n ∈Z+ the sets Σn satisfy the additional property (d). In particular, Gk ⊆Aut(Cn)

and Σn is Gk-invariant. The Galois-invariance of Σn makes the action on Cn easy to describe. Fix

such a Baker’s resolution.

Lemma 3.7.6 Let n ∈Z+. Then σ◦ sn = sn ◦σ, for any σ ∈Gk.

Proof. Recall that sn restricts to the identity on C0. Then the two morphisms of k-schemes σ◦ sn

and sn ◦σ agree on C0. But C0 is a dense open of Cn+1, thus σ◦ sn = sn ◦σ by [Liu4, Proposition

3.3.11].

Let n ∈ Z+. Recall that for any σ ∈ Gk and γ ∈ Σn, we have f |γσ = f |σγ , as Σn satisfies (d).

Therefore there is a natural action of Gk on the set⊔
γ∈Σn {simple roots of f |γ in k̄×},

where the simple root r ∈ k̄× of f |γ is taken to the simple root σ(r) of f |γσ .
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Theorem 3.7.7 Let f ∈ k[x±1
1 , y±1] be a Laurent polynomial defining a smooth curve C0,k : f = 0

over G2
m,k. Denote C0 = C0,k ×k k̄. We can recursively construct a Baker’s resolution of C0

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

where the maps sn are the birational morphisms resolving Gk-invariant sets Sn ⊆⊔
α∈Σn Sing(C̄α)

(chosen arbitrarily) and the sets Σn, defining the curves Cn/k̄, satisfy the additional property (d).

For any such sequence:

(i) There exists h ∈Z+ such that Sn =∅ for any n ≥ h.

(ii) If Sing(C̄α)⊆Reg(Cn) for all α ∈Σn, then the scheme-theoretical quotient Cn/Gk is a gener-

alised Baker’s model of the smooth completion C of C0,k.

(iii) If Cn is outer regular, then there is a natural bijection

C(k̄) C0,k(k̄) 1:1←→ ⊔
γ∈Σn

{simple roots of f |γ in k̄×},

preserving the action of the Galois group Gk.

Proof. Theorem 3.7.3 and Remark 3.7.4 show that the sequence can be constructed recursively,

for any choice of Galois-invariant Sn ⊆⊔
α∈Σn Sing(C̄α). Part (i) follows from Theorem 3.6.3. Part

(ii) is implied by Remark 3.4.4, Lemma 3.7.6 and the argument presented at the beginning of

the current section. Now assume Cn is outer regular, i.e. C̄α is regular for all α ∈Σn. Therefore

Lemma 3.5.12 shows that, for every γ ∈Σn, from the definition C̄γ =Spec Dγ

( f |γ) we obtain a natural

bijective map

C̄γ
1:1←→ {simple roots of f |γ in k̄×}.

By part (ii), the smooth completion C of C0,k is isomorphic to the quotient Cn/Gk. Therefore

C×k k̄ ≃ Cn and so C(k̄) ≃ Cn(k̄). Since C0,k(k̄) ≃ C0(k̄) by definition, Lemma 3.5.7 implies part

(iii).

Corollary 3.7.8 Any smooth projective curve C defined over a perfect field k has an outer regular

generalised Baker’s model.

Proof. By Corollary B.1.4, for any projective smooth curve C/k there exists a curve C0,k/k as

in Theorem 3.7.7, birational to C. By Theorem 3.7.7 we can construct a Baker’s resolution of

C0,k ×k k̄

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

where sn are the birational morphisms resolving the Galois-invariant sets Sn =⊔
α∈Σn Sing(C̄α)

and the sets Σn satisfy the additional property (d). Furthermore, by Theorem 3.7.7(i) there exists

n ∈Z+ such that Sn =∅. It follows that C̄γ is regular for all γ ∈Σn, i.e. Cn is outer regular. Let

C̃ = Cn/Gk. Thus C̃ is an outer regular generalised Baker’s model of C.
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In the next proof we will show how Algorithm 3.1.5 and Theorem 3.1.6 follow from previous

results.

Proof of Theorem 3.1.6. Suppose C0,k is geometrically connected. We recursively construct a

Baker’s resolution of C0 = C0,k ×k k̄

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

where the morphisms sn resolve the sets Sn =⊔
α∈Σn Sing(C̄α). In the construction, for any n ∈Z+,

we make the following choices:

(1) For any point p ∈ Sn choose G̃p = Ḡp. This is always possible, since C0 is connected (see

Remark 3.4.5).

(2) Every time we need to choose a matrix Mβ ∈ SL2(Z) attached to some primitive vector

β= (β1,β2) ∈Z2+, choose Mβ =
(δ1 δ2
β1 β2

)
, where (δ1,δ2)= δβ (Notation 3.1.3).

(3) For any γ ∈Σn+1 Σn, choose Fγ with ordX jγ
(Fγ)= 0.

With the choices above, by Theorem 3.7.3 and Remark 3.7.5, the sets Σn satisfy the additional

property (d) and the sets Sn are Galois-invariant. Theorem 3.7.7(i) implies that there exists

n ∈Z+ such that C̄α is regular for all α ∈Σn. In other words, Cn is outer regular. Let n be as small

as possible, i.e. such that Ch is not outer regular for every h < n. By Theorem 3.7.7(iii) there is a

natural bijection preserving the action of the Galois group Gk,

C(k̄) C0,k(k̄) 1:1←→ ⊔
γ∈Σn

{simple roots of f |γ in k̄×},

where C is the smooth completion of C0,k.

For any h < n recall Sh,α = Sh ∩ C̄α for any α ∈Σh, and note that

Σh,Sh = {α ∈Σh | Sh,α ̸=∅}= {α ∈Σh | C̄α is singular},

as Sh,α =Sing(C̄α). Define

Σ̃h = {α̃ |α ∈Σh,Sh }∪ (Σh Σh,Sh ), and Σ+
h+1 =

⋃
α∈Σh,Sh

ΣSh,α ,

so that Σh+1 =Σ+
h+1 ∪ Σ̃h. We are going to show that C̄γ is regular for any γ ∈ Σ̃h. From the choice

of Sh, we have C̄γ regular for any γ ∈Σh Σh,Sh . Now let α ∈Σh,Sh . Lemma 3.4.15 shows that C̄α̃

is isomorphic to C̄α Sh,α. This is a regular scheme since Sh,α =Sing(C̄α).

Now we want to describe the set Sh for any h < n. Define Σ+
1 =Σ1. If h > 1, then C̄γ is regular

when γ ∈ Σ̃h−1. Therefore Σh,Sh ⊆ Σ+
h for all h < n. Now Dγ = k[X±1

jγ
] for all γ ∈ Σ+

h from §3.4.1

(case h = 1) and Lemma 3.4.10 (case h > 1). Hence the points in Sh bijectively corresponds to

non-zero multiple roots of f |γ, γ ∈Σ+
h . Furthermore, given γ ∈Σ+

h , for any multiple root r ∈ k̄× of

f |γ we have Ḡpr = X jγ − r, where pr is the point of Sh corresponding to r.

Let Ph, P be the indexed sets of polynomials in k̄[X ,Y ] constructed in §3.1.3 via Algorithm

3.1.5. We are going to prove the following facts:
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(i) Ph =⊔
γ∈Σ+

h
{Fγ(X ,Y )} for any h ≤ n;

(ii)
⊔h

i=1 Pi =⊔
γ∈Σh {Fγ(X ,Y )} for any h ≤ n;

(iii) P =⊔
γ∈Σn {Fγ(X ,Y )};

where Fγ(X ,Y ) denotes the image of Fγ under the isomorphism

k̄[X jγ ,Y ]→ k̄[X ,Y ], X jγ 7→ X , Y 7→Y .

Note that (iii) concludes the proof of Theorem 3.1.6.

We prove (i) by induction on h. If h = 1, then Σ+
1 =Σ1, and so the equality follows from §3.4.1.

Suppose h ≥ 1. We want to show that

Ph+1 =
⊔

γ∈Σ+
h+1

{Fγ(X ,Y )}.

Let us recall the steps that have to be done to construct the polynomials Fγ, for γ ∈ Σ+
h+1. We

observed that the points in Sh correspond to non-zero multiple roots of f |α for α ∈Σ+
h . For any

α ∈Σ+
h and any multiple root a ∈ k̄× of f |α do:

(1) Replace Y with Ỹ in Fα so that Fα ∈ k̄[X jα , Ỹ ].

(2) Denote by pa the point of Sh corresponding to a. We noted that Ḡpa = X jα−a. Since we chose

G̃pa = Ḡpa , the normal form Fα,pa of Fα by X̃m+1 − G̃pa with respect to the lexicographic

order given by X jα > X̃m+1 > Ỹ is

Fα,pa (X̃m+1, Ỹ )=Fα(X̃m+1 +a, Ỹ )

(here m ∈Z+ such that α ∈Ωm).

(3) Draw the Newton polygon ∆α,pa of Fα,pa .

(4) Let γ= β◦gpa
α for the normal vector β ∈Z2+ of some edge of ∆α,pa . From §3.4.3, we have

γ ∈Σpa .

(5) The fixed matrix Mβ =
(
δ1 δ2
β1 β2

)
gives the change of variables

(X̃m+1, Ỹ )= (Xm+1,Y )•Mβ = (Xδ1
m+1Y β1 , Xδ2

m+1Y β2).

Via this transformation we define Fγ to be the unique polynomial in k̄[Xm+1,Y ] such that

ordXm+1Fγ = ordYFγ = 0, satisfying

Fα,pa (X̃m+1, Ỹ )
Mβ= X nX

m+1Y nY ·Fγ(Xm+1,Y ),

for some nX ,nY ∈Z.

110



3.8. SUPERELLIPTIC EQUATIONS

(6) In fact, all elements γ ∈Σpa equals β◦gpa
α with β ∈Z2+ normal vector of some edge of ∆α,pa .

The procedure presented here describes how to construct the polynomials Fγ for all γ ∈ Σ+
h+1

knowing the polynomials Fα, for all α ∈Σh,Sn ⊆Σ+
h . Comparing it with Algorithm 3.1.5 we see

that Ph+1 =⊔
γ∈Σ+

h+1
{Fγ(X ,Y )} since

⊔
α∈Σ+

h
{Fα(X ,Y )}= Ph by inductive hypothesis.

We now prove (ii) by induction on h. If h = 1, then (ii) follows from (i) as Σ1 =Σ+
1 by definition.

Suppose then h ≥ 1. We want to show that
⊔h+1

i=1 Pi =⊔
γ∈Σh+1{Fγ(X ,Y )}. But Σh+1 =Σ+

h+1 ⊔ Σ̃h, so,

by (i) and inductive hypothesis, it suffices to show that⊔
γ∈Σ̃h

{Fγ(X ,Y )}= ⊔
γ∈Σh

{Fγ(X ,Y )}.

But this easily follows from the definition of Σ̃h since Fα̃ =Fα for any α ∈ΣSh,h (Notation 3.4.16).

To prove (iii), first note that from (i), for any h ≤ n the indexed set Ph is non-empty. Then (iii)

is implied by (ii) if for any fℓ ∈ Pn, the polynomial f |ℓ(X )= fℓ(X ,0) has no non-zero multiple roots.

But this follows from (i) since C̄α is regular for any α ∈Σn, and so f |γ has no multiple roots in k̄×

for any γ ∈Σ+
h as Dγ = k[X±1

jγ
] in this case (Lemma 3.4.10). As already observed, this concludes

the proof of Theorem 3.1.6.

3.8 Superelliptic equations

Let k be a perfect field and let k̄ be an algebraic closure of k. Denote by Gk the absolute Galois

group of k. As application of the construction presented in the previous sections, we consider a

curve C0,k in G2
m,k defined by an equation

ys = h(x),

for some polynomial h ∈ k[x] and some s ∈Z+ not divisible by char(k). By convention the poly-

nomial f (x, y) defining C0,k will be ys −h(x). Denote by C0 the curve C0,k ×k k̄. Note that C0 is

smooth, but may be not connected, e.g. when h(x) is an s-th power. Expand

h(x)=
d∑

i=m0

cixi, ci ∈ k,

where cm0 and cd are non-zero. We want to study a Baker’s resolution of C0

. . .
sn+1
↠ Cn+1

sn
↠Cn

sn−1
↠ . . .

s1
↠C1

as in Theorem 3.7.7, where the Galois-invariant sets Sn which the birational morphisms sn

resolve are as large as possible, i.e. Sn =⊔
α∈Σn Sing(C̄α). For the purpose of the construction of

the Baker’s resolution x1 = x.

The Newton polygon ∆ of f always has at least two edges: ℓ1 with endpoints (m0,0), (0, s)

and normal vector gcd(m0, s)−1(s,m0), and ℓ2 with endpoints (d,0), (0, s) and normal vector
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gcd(d, s)−1(−s,−d). If h is a monomial then ∆ is a segment, otherwise ∆ is a triangle. In the

latter case, the third edge ℓ has endpoints (m0,0), (d,0) and normal vector (0,1). Construct the

completion C1 of C0 with respect to ∆, as described in §3.4.1. For any i = 1,2 let vi ̸= (0,1) be the

normal vector of ℓi and set αi = (vi, ()) ∈Σ1. From Proposition 3.4.1 it follows that

f |αi = X∗
1 · (al X l

1 +a0), l ∈Z+, a0,al ∈ k×,

where char(k) ∤ l. In fact, if i = 1 then l = gcd(m0, s), al = −cm0 , a0 = 1, while if i = 2 then

l = gcd(d, s), al = 1, a0 =−cd. In particular, f |αi has no multiple roots in k̄×.

Suppose now that h is not a monomial. Let v = (0,1) be the normal vector of ℓ and let α= (v, ())

be the corresponding element of Σ1. Consider Fα ∈ k̄[X1,Y ]. Note that since v = (0,1), we can

choose Mα = (1 0
0 1

)
and so Fα = f (X1,Y ). In particular, f |α = f (X1,0)=−h(X1). Since Dα = k̄[X±1

1 ],

the singular points of C̄α correspond to the non-zero multiple roots of f |α, or, equivalently, to

the non-zero multiple roots of h. Hence S1 is the set of those points. If S1 =∅, then C1 is (outer)

regular. We deduce the following lemma.

Lemma 3.8.1 If h has no multiple root in k̄×, then C1 is an outer regular (generalised) Baker’s

model of the smooth completion of C0.

Suppose S1 ̸=∅. Construct the morphism s1 : C2 → C1 resolving S1. Let v and α as above.

Rename the variable Y of Fα to Ỹ , so that Fα ∈ k̄[X1, Ỹ ]. Let p ∈ S1 and let r ∈ k̄× be the multiple

root of h corresponding to p. One has Ḡp = X1 − r. Note that Ḡp does not divide Fα, so choose

G̃p = Ḡp. Then

Fα,p(X̃2, Ỹ )=Fα(X̃2 + r, Ỹ )= f (X̃2 + r, Ỹ )= Ỹ s −h(X̃2 + r).

It follows that the Newton polygon ∆α,p of Fα,p has a unique edge ℓr with normal vector in

Z2+. Denoting by mr the multiplicity of the root r of h, the endpoints of ℓr are (mr,0), (0, s) and

βr = gcd(mr, s)−1(s,mr) is its normal vector. Let γr =βr ◦gp α, where gp is the polynomial related

to G̃p by Mα. Define hr(x)= h(x)/(x− r)mr ∈ k̄[x]. Then Proposition 3.4.19 implies

f |γr (X2)= X∗
2 · (−ar Xgcd(mr ,s)

2 +1),

where ar = hr(r). In particular, since char(k) ∤ s, the polynomial f |γr has no multiple root in k̄×.

Therefore C̄γr is regular for any non-zero multiple root r of h. Moreover, C̄α̃ is also regular as

C̄α̃ ≃ C̄α S1. Recall the notation Σ̃1 = Σ̂1 ∪ {α̃}, where Σ̂1 =Σ1 {α}. Since

Σ2 = {γr | r multiple root of h}∪ Σ̃1

the schemes C̄γ are regular for all γ ∈Σ2. We obtain the following result.

Lemma 3.8.2 If h has multiple roots in k̄×, then C1 is singular, but C2 is an outer regular

generalised Baker’s model of the smooth completion of C0.

Remark 3.8.3. Note that C2 =⋃
γ∈Σ2 Cγ since C0 ⊆ Cγ for any γ ∈Σ2.
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We want to give an explicit description of the curve C2,k = C2/Gk, when h has multiple roots

in k̄×. First note that for any γ ∈ Σ̃1 the polynomials defining the curves Cγ have coefficients in k.

Therefore Gk ⊆ Aut(Cγ) for all γ ∈ Σ̃1 and the charts Cγ/Gk of C2,k easily follows. It remains to

describe the curve
(⋃

σ∈Gk Cγσ(r)

)
/Gk for any non-zero multiple root r of h.

Let g ∈ k[x] be the minimal polynomial of a multiple root r ∈ k̄× of h. Let mr, hr, βr, γr as

above. Set sr = gcd(mr, s). Note that ordg(h)= mr. If
(
δ1 δ2
β1 β2

)
is the matrix attached to βr used for

the construction of Cγr then

OCγr
(Cγr )=

k̄[X±1
1 , X±1

2 ,Y ]

(1− X sr
2 ·hr(X1), Xδ1

2 Yβ1 − X1 + r)
.

Define gr,hg ∈ k̄[x] by gr(x) = g(x)/(x− r), hg(x) = h(x)/g(x)mr . Note that gr(X1) is invertible in

OCγr
(Cγr ). Consider the homomorphism

φr :
k̄[X±1

1 , X±1
2 ,Y ]

(1− X sr
2 ·hg(X1), Xδ1

2 Yβ1 − g(X1))
−→ k̄[X±1

1 , X±1
2 ,Y ]

(1− X sr
2 ·hr(X1), Xδ1

2 Yβ1 − X1 + r)
,

taking X1 7→ X1, X2 7→ X2 · gr(X1)β2 , Y 7→Y · gr(X1)−δ2 . Let Ag :=Dom(φr). Note that Spec Ag =
Cγg , where γg = βr ◦g α ∈Ω. Then φr induces an open immersion ιr : Cγr ,→ Cγg . The glueing of

the open immersions ισ(r), for σ ∈Gk, gives an isomorphism(⋃
σ∈Gk Cγσ(r)

)≃ Cγg ,

commuting with the Galois action. Since Cγg is defined by polynomials with coefficients in k, the

quotient Cγg /Gk is easy to describe, as required.

3.9 Example

Let C0.F2 : f = 0⊂G2
m,F2

with f = x4
1 +1+ y2+ y3. Note that C0,F2 is smooth. Write C0 = C0,F2 ×F2 F̄2,

where F̄2 is an algebraic closure of F2.

3.9.1 Construction of C1

The Newton polygon ∆ of f is

x1

y

(4,0)

(0,3)

ℓ3

ℓ1
ℓ2

We want to construct the completion C1 of C0 with respect to ∆ as explained in §3.4.1. For

any edge ℓi of ∆ let βi be the normal vector of ℓi. Then β1 = (1,0), β2 = (−3,−4), β3 = (0,1). Let

αi = (βi, ()) ∈Σ1 for i = 1,2,3. Then Σ1 = {α1,α2,α3} and

C1 = Cα1 ∪Cα2 ∪Cα3 ,
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where we omitted C0 as C0 ⊂ Cα for every α ∈Σ1. From Proposition 3.4.1 the polynomials f |α1

and f |α2 are separable (up to a power of X1) and so the corresponding curves Cα1 and Cα2 are

regular. On the other hand, 1 ∈ F2 is a non-zero multiple root of f |α3 , so Cα3 may be singular. Let

us compute the defining polynomial Fα3 . The identity matrix I ∈SL2(Z) is attached to β3, so we

fix Mα3 = I. Via I we get

Fα3 = X4
1 +1+Y 2 +Y 3.

Then Cα3 = Spec F̄2[X±1
1 ,Y ]/(Fα3) is singular. Thus C1 is not smooth, having 1 singular point,

visible on Cα3 .

3.9.2 Construction of C2

Rename the variable Y of Cα3 to Ỹ . Let p be the singular point of Cα3 . Then Ḡp = X1 +1. Choose

G̃p = Ḡp. We will construct the morphism s1 : C2 → C1 resolving the set S1 = {p}. Note that

S1 =⊔
α∈Σ1 Sing(C̄α). Let α=α3 and β=β3. Then

G̃p
(
(x1, y)•M−1

α

)= x1 +1,

so gp = x1 +1 ∈ F2[x1, y] is the polynomial related to G̃p by Mα. Define g2 = gp and f2 = x2 − g2.

Note that since S1 consists of a single point, we have G̃S1 = G̃p and gS1 = gp. Then αp = α̃.

Compute ordβ(gp)= 0 and α̃=αp = (0,1)◦gS1
α= ((0,0,1), (g2)). Then

Cα̃ = Cαp =Spec
F̄2[X±1

1 , X̃±1
2 , Ỹ ]

(Fα3 , X̃2 + X1 +1)
.

The normal form of Fα3 by X̃2 −G with respect to the lexicographic order given by X1 > X̃2 > Ỹ is

Fα,p =Fα

(
X̃2 +1, Ỹ

)= X̃4
2 + Ỹ 2 + Ỹ 3.

The Newton polygon of Fα,p is

X̃2

Ỹ

(4,0)

(0,2)

(0,3)

ℓ4

There is only 1 edge, denoted ℓ4, with normal vector in Z2+. The normal vector of ℓ4 is β4 = (1,2).

It follows that v4 =β4 ◦gp β= (0,1,2). Hence γ4 =β4 ◦gp α= (v4, (g2)) is the corresponding element

of Σp. Then Σ2 = {α1,α2, α̃3,γ4}.

To check whether Cγ4 is regular, compute Fγ4 . The matrix Mβ4 =
(1 1
1 2

)
, attached to β4, defines

the change of variables X̃2 = X2Y , Ỹ = X2Y 2, from which we get

Fα,p = X2
2Y 4Fγ4 , Fγ4 = X2

2 +1+ X2Y 2,

X̃2 − G̃p =F2, F2 = X2Y + X1 +1,
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where F2 is the generator of the ideal aγ4 . Therefore the curve

Cγ4 =Spec
F̄2[X±1

1 , X±1
2 ,Y ]

(Fγ4)+aγ4

is singular, and so is the projective curve C2 = Cα1 ∪Cα2 ∪Cα̃3 ∪Cγ4 . In the union we omitted C0,

as C0 ⊂ Cα1 .

3.9.3 Construction of C3

Let q be the singular point of Cγ4 . We now construct the morphism s2 : C3 → C2 resolving S2 = {q}.

Let γ= γ4. Rename the variable Y of Cγ to Ỹ . Choose G̃q = Ḡq = X2 +1. By definition

Mγ = ((1)⊕Mβ4) ·Mαp =
(1 0 0

0 1 1
0 1 2

)
·
(1 0 0

0 1 0
0 0 1

)
=

(1 0 0
0 1 1
0 1 2

)
, M−1

γ =
(1 0 0

0 2 −1
0 −1 1

)
.

Then gq = x2
2 + y ∈ F2[x1, x2, y] is the polynomial related to G̃q by Mγ, as

G̃q

(
(x1, x2, y)•M−1

γ

)
= x2

2 y−1 +1.

Let g3 = (x1+1)2+ y be the Laurent polynomial in k[x±1
1 , y±1] congruent to gq modulo f2. Compute

ordv4(gq)= 2. Then

γ̃= γq = (0,1)◦gq γ= ((0,1,2,2), (g2, g3)).

The normal form of Fγ by X̃3 − G̃q with respect to the lexicographic order given by X2 > X̃3 > Ỹ is

Fγ,q = X̃2
3 + (X̃3 +1)Ỹ 2.

The Newton polygon of Fγ,q is

X̃3

Ỹ

(2,0)

(0,2) (1,2)

ℓ5

There is only 1 edge, denoted ℓ5, with normal vector in Z2+. The normal vector of ℓ5 is β5 = (1,1)

and so the corresponding element of Σq is

γ5 =β5 ◦gq γ= ((0,1,3,2), (g2, g3)).

Hence Σ3 = {α1,α2, α̃3, γ̃4,γ5}.

The matrix Mβ5 =
(1 0
1 1

)
, attached to β5, defines the change of variables X̃3 = X3Y , Ỹ =Y from

which we get

Fγ,q =Y 2Fγ5 Fγ5 = X2
3 + X3Y +1,

X̃3 − G̃q =F3 F3 = X3Y + X2 +1,
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and F2 = X2Y + X1 +1 is the image of the generator of aγ under Mβ5 . Then aγ5 = (F2,F3) and

Cγ5 =Spec
F̄2[X±1

1 , X±1
2 , X±1

3 ,Y ]
(Fγ5)+aγ5

is regular (even if f |γ5 is not separable). Therefore the curve

C3 = Cα1 ∪Cα2 ∪Cα̃3 ∪Cγ̃4 ∪Cγ5

is regular as well, and is a generalised Baker’s model of the smooth completion of C0. It is not

outer regular, since C̄γ5 has a singular point. One more step is therefore necessary (and sufficient

by Proposition 3.4.38) to construct an outer regular generalised Baker’s model. Note that in the

description of C3 we omitted C0, as C0 ⊂ Cα1 . Finally, the polynomials defining the charts Cγ,

γ ∈Σ3 have coefficients in F2, so the construction of the generalised Baker’s model C3/GF2 of the

smooth completion of C0,F2 easily follows.
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4
REGULAR MODELS OF HYPERELLIPTIC CURVES

This chapter is based on the paper Regular models of hyperelliptic curves [Mus3], submitted

for publication. Let K be a complete discretely valued field of odd residue characteristic

and OK its ring of integers. We explicitly construct a regular model C over OK with strict

normal crossings of any hyperelliptic curve C/K : y2 = f (x). For this purpose, we introduce the

new notion of MacLane cluster picture, that aims to be a link between clusters and MacLane

valuations.

The description of the special fibre of C, presented in Theorem 4.1.7, is being implemented in

MAGMA by T. Dokchitser.

4.1 Introduction

In this paper we construct regular models of hyperelliptic curves over discrete valuation rings

with residue characteristic different from 2. The understanding of regular models is essential to

describe the arithmetic of curves and for example finds application in the study of the Birch &

Swinnerton-Dyer conjecture over global fields.

4.1.1 Overview

Let K be a complete discretely valued field, with ring of integers OK . Given a connected smooth

projective curve C/K , a regular model of C over OK is an integral regular proper flat scheme

C→OK of dimension 2 with generic fibre isomorphic to C. The main result of this work can be

presented as follows:

Suppose that the residue characteristic of K is not 2. Let C/K : y2 = f (x) be a hyperelliptic

curve. From the MacLane clusters for f we determine a regular model of C over OK with strict
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normal crossings.

The MacLane clusters for a separable polynomial f ∈ K[x] are a new notion we introduce

in this paper (see §4.1.2 for more details). It has connections with other objects used for the

study of regular models: clusters [D2M2], rational clusters [Mus1], Newton polytopes [Dok],

and MacLane valuations [OW]. Like (rational) clusters, MacLane clusters define nice and clear

invariants from which one can give a result in a closed form. In fact, one can see that rational

clusters are MacLane clusters of degree 1. On the other side, the construction of our model can

be implemented from the algorithmic nature of the approaches based on Newton polytopes and

MacLane valuations.

The construction of the model presented in §4.5 generalises the one showed in Chapter 2. For

this reason, the author believes the approach developed in this chapter could be used to tackle

some even residue characteristic cases, as we did in Chapter 2.

4.1.2 Main result

Let K be a complete discretely valued field, with normalised discrete valuation vK , ring of integers

OK , and residue field k. Let K̄ be an algebraic closure of K , extend vK to K̄ . Assume char(k) ̸= 2.

Let C/K be a hyperelliptic curve, i.e. a geometrically connected smooth projective curve of genus

≥ 1, double cover of P1
K . We can fix a Weierstrass equation C : y2 = f (x) where

f (x)= c f
∏

r∈R(x− r) ∈ K[x], c f ∈ K ,

such that vK (r)> 0 for all r ∈R.

Definition 4.1.1 Let Q̂=Q∪ {∞}. Given a monic irreducible polynomial g ∈ K[x] and an element

λ ∈ Q̂, the discoid D(g,λ) is the set

D = D(g,λ)= {α ∈ K̄ | vK (g(α))≥λ}⊂ K̄ .

For any r ∈R, denote by D∧ r the smallest discoid containing D and r.

Define degD =min{d ∈Z+ | D = D(g,λ), deg g = d}.

To each discoid we can associate a pseudo-valuation (Appendix C.1) vD : K[x]→ Q̂ defined by

vD( f )= infα∈D vK ( f (α)).

The map D 7→ vD is injective. Therefore if v = vD denote Dv = D and dv = degD.

Definition 4.1.2 A MacLane cluster is a pair (s,v) where s⊆R, and v = vD for some discoid D,

such that

1. s= D∩R ̸=∅;

2. if s= D′∩R for a discoid D′ ⊊ D then degD′ > degD.
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The degree of (s,v) is the quantity dv.

Definition 4.1.3 For any MacLane clusters (s,v), (t,w) we say:

(s,v) proper, if |s| > dv

(t,w)⊆ (s,v), if Dw ⊆ Dv

(t,w) is a child of (s,v), if (t,w)⊊ (s,v) is a maximal subcluster

(s,v) degree-minimal, if (s,v) has no proper children of degree dv

We write (t,w)< (s,v) for a child (t,w) of (s,v).

For the remainder of this subsection we also assume k algebraically closed. This additional

condition is not necessary for the construction of the model but it simplifies the statement of

Theorem 4.1.7.

Let Σ be the set of proper MacLane clusters.

Notation 4.1.4 Let P ⊂ K[x] be the subset of monic irreducible polynomials. For any d ∈ Z+,

denote P≤d = {g ∈P | deg g ≤ d}.

Definition 4.1.5 (4.6.1) Let (s,v) ∈Σ. Define the following quantities:

λv = maxg∈P≤dv
minr∈s vK (g(r)), called radius

bv = denominator of λvdv

ev = bvdv

νv = vK (c f )+∑
r∈R

(
λvDv∧r /dvDv∧r

)
nv = 1 if evνv odd, 2 if evνv even

mv= 2ev/nv

tv = |s|/dv

pv = 1 if tv is odd, 2 if tv is even

sv = 1
2 (tvλv + pvλv −νv)

γv = 2 if tv is even and νvdv−|s|λv is odd, 1 otherwise

δv = 1 if (s,v) is degree-minimal, 0 otherwise

p0
v = 1 if δv = 1 and dv =minr∈s[K(r) : K], 2 otherwise

s0
v = −νv/2+λv

γ0
v = 2 if p0

v = 2 and νvdv is an odd integer, 1 otherwise

Let ℓv ∈Z, 0≤ ℓv < bv such that ℓvλvdv − 1
bv

∈Z. Define

ṽ = {
(t,w) ∈Σ | (t,w)< (s,v) and |t|

ev
−ℓvνvdw ∉ 2Z

}
.

Let c0
v = 1 if 2−p0

v
bv

−ℓvνvdv ∉ 2Z, and c0
v = 0 otherwise. Define

uv = |s|−∑
(t,w)<(s,v) |t|−dv(2− p0

v)

ev
+|ṽ|+δvc0

v,

where the sum runs through the proper children (t,w) of (s,v). The genus g(v) of a MacLane

cluster (s,v) ∈Σ is defined as follows:
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• If nv = 1, then g(v)= 0.

• If nv = 2, then g(v)=max{⌊(uv −1)/2⌋,0}.

We recall the following notation from Chapter 2.

Notation 4.1.6 (2.4.17) Let α ∈Z+, a,b ∈Q, with a > b, and fix ni
di

∈Q so that

αa = n0
d0

> n1
d1

> . . .> nr
dr

> nr+1
dr+1

=αb, with
∣∣∣∣∣ni ni+1

di di+1

∣∣∣∣∣= 1,

and r minimal. We write P1(α,a,b) for a chain of P1
ks of length r and multiplicities αd1, . . . ,αdr.

Denote by P1(α,a) the chain P1(α,a,⌊αa−1⌋/α).

The following theorem describes the special fibre of the regular model of a hyperelliptic curve

C/K with strict normal crossings we construct in §4.5, when k algebraically closed and char(k) ̸= 2.

See Definition 4.6.1 and Theorem 4.6.3 for a more general statement which does not require k

algebraically closed.

Theorem 4.1.7 (Regular SNC model) Assume char(k) ̸= 2. Suppose k algebraically closed. Let

C/K be a hyperelliptic curve. Then we can explicitly construct a regular model with strict normal

crossings C/OK of C (§4.5). Its special fibre Cs/k is given as follows.1

(1) Every (s,v) ∈ Σ gives a 1-dimensional closed subscheme Γv of multiplicity mv. If nv = 2

and uv = 0, then Γv is the disjoint union of Γ−v ≃P1
k and Γ+v ≃P1

k, otherwise Γv is a smooth

integral curve of genus g(v) (write Γ−v =Γ+v =Γv in this case).

(2) Every (s,v) ∈Σ with nv = 1 gives

1
ev

(
|s|−∑

(t,w)∈Σ
(t,w)<(s,v)

|t|+dv(p0
v −2)

)
open-ended P1

ks of multiplicity ev from Γv.

(3) Finally, for any (s,v) ∈Σ draw the following chains of P1
ks:

Conditions Chain From To

δv = 1 P1(dvγ
0
v,−s0

v) Γ−v open-ended

δv = 1, p0
v/γ0

v = 2 P1(dvγ
0
v,−s0

v) Γ+v open-ended

(s,v)< (t,w) P1(dvγv, sv, sv − pv
2 (λv − dv

dw
λw)) Γ−v Γ−w

(s,v)< (t,w), pv/γv = 2 P1(dvγv, sv, sv − pv
2 (λv − dv

dw
λw)) Γ+v Γ+w

(s,v) maximal P1(dvγv, sv) Γ−v open-ended

(s,v) maximal, pv/γv = 2 P1(dvγv, sv) Γ+v open-ended

As we pointed out in §2.1, Theorem 4.1.7 is a generalisation of Theorem 2.1.7.
1This theorem is being implemented by T. Dokchitser in MAGMA.
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4.1.3 Example

Let p ̸= 2 be a prime number and let Qnr
p be the maximal unramified extension of Qp in Q̄p. Let

f = (x2− p)3− p5 ∈Qp[x] and C/Qnr
p : y2 = f (x) a genus 2 hyperelliptic curve. We can represent the

set of MacLane clusters as

2
5
3

(R,v2) 1

1
2

(R,v1)

where the bullet points denote the roots of f , the circles are the proper MacLane clusters and the

superscripts and the subscripts are respectively the degree and the radius of the corresponding

cluster. In fact, there are two proper MacLane clusters:

(i) (R,v1), where Dv1 = D(x,1/2);

(ii) (R,v2), where Dv2 = D(x2 − p,5/3).

Note that minr∈R[K(r) : K]= 6 since f is irreducible. We have

bv ev νv nv mv tv pv sv γv δv p0
v s0

v γ0
v g(v)

v1 2 2 3 2 2 6 2 1/2 1 1 2 −1 2 0

v2 3 6 10 2 6 3 1 −5/3 1 1 2 −10/3 1 0

By Theorem 4.1.7, the special fibre of the regular model C we construct is

2
Γv1

1

6
Γv24

4

2

4

2

1

where all irreducible components have genus 0. In fact, by computing the self-intersections of all

irreducible components, we see that C is the minimal regular model of C ([Liu4, Theorem 9.3.8]).

4.1.4 Related works of other authors

Let K be a discretely valued field of odd residue characteristic and let C/K be a hyperelliptic curve.

In this subsection we want to present previous works studying regular models of C, possibly

under some extra conditions. Note that some of the results cited below may apply to more general

curves and fields.

In genus 1 there is a complete characterisation of (minimal) regular models of C (see for

example [Sil2, IV.8.2] when the residue field of K is perfect). A description of all special fibre

configurations is also given by Namikawa and Ueno [NU] and Liu [Liu5] for genus 2 curves,

when K =C(t).
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If C is semistable over some tamely ramified extension L/K , then [FN] describes the special

fibre of the minimal regular model of C with strict normal crossings. If, in addition, L = K is a

local field, in [D2M2] we can also see an explicit construction of the model itself.

T. Dokchitser in [Dok] shows that a certain toric resolution of C gives a regular model in case

of ∆v-regularity ([Dok, Definition 3.9]). This condition is rephrased in terms of clusters in [Mus1,

Corollary 3.25].

Finally, [Mus1] constructs the minimal regular model with normal crossings if C has almost

rational cluster picture. One can see that the latter condition is equivalent of requiring that all

MacLane clusters have degree 1.

4.2 MacLane valuations

In this section we summarise definitions and results on MacLane valuations. Our main references

are [KW], [Mac], [OS1] and [Rüt].

Let K be a complete discretely valued field, with normalised discrete valuation vK , ring of

integers OK and residue field k. Let K̄ be an algebraic closure of K and let K s be the separable

closure of K in K̄ . Let GK =Gal(K s/K) be the absolute Galois group of K .

Let V̂ denote the set of the discrete pseudo-valuation2 v : K[x]→ Q̂ extending vK and satisfying

v(x)≥ 0. Let V be the set of valuations in V̂. In other words, V consists of those pseudo-valuations

v ∈ V̂ satisfying v−1(∞)= 0. We can equip V̂ with a natural partial order:

v ≥ w if and only if v(g)≥ w(g) for all g ∈ K[x].

The partially ordered set V̂ has a least element v0, called Gauss valuation, defined by

v0(amxm +·· ·+a1x+a0)=min
i

vK (ai) (ai ∈ K).

Note that v0 is a valuation, i.e. v0 ∈V.

Every v ∈V can be extended to a valuation K(x)→ Q̂, that will also be denoted by v.

Definition 4.2.1 For every v ∈V define

Γv the valuation group of v

ev the index [Γv :Z]

Av the residue ring of v

Fv the residue field of v

Definition 4.2.2 Let v ∈V. For any g,h ∈ K(x) we say that

• g is v-equivalent to h, denoted g ∼v h, if v(g−h)> v(g).

• g is v-divisible by h, denoted h |v g, if there exists q ∈ K[x] such that g ∼v qh.
2See Appendix C.1 for more details.
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Let v ∈V. For any α ∈Γv, define

Ov(α)= {g ∈ K[x] | v(g)≥α}, O+
v (α)= {g ∈ K[x] | v(g)>α}.

The graded algebra of v is the integral domain

Gr(v) := ⊕
α∈Γv

Av(α), where Av(α)=Ov(α)/O+
v (α).

The canonical homomoprhism k → Av equips Av and Gr(v) with a k-algebra structure. There is a

natural map Hv : K[x]→Gr(v) given by Hv(0)= 0 and

Hv(g)= g+O+
v (v(g)) ∈ Av(v(g)),

when g ̸= 0. The map Hv satisfies the following properties

1. f ∼v g if and only if Hv( f )= Hv(g),

2. Hv( f g)= Hv( f )Hv(g),

for f , g ∈ K[x]. Let Uv ⊆ K[x]∗ be the multiplicative set

Uv = {g ∈ K[x] | Hv(g) is a unit in Gr(v)}

and let Pv ⊆ K(x) be the localisation of K[x] by Uv. We extend Hv to a map Pv →Gr(v) by taking
g/u 7→ Hv(g)Hv(u)−1 ∈ Av(v(g/u)), for any g ∈ K[x],u ∈Uv. With a little abuse of notation we denote

the extended map again by Hv. The properties (1), (2) of Hv hold for all f , g ∈ Pv.

Definition 4.2.3 We call Hv : Pv →Gr(v) the residue map of v.

For any α ∈Γv, let

Pv(α)= {g ∈ Pv | v(g)≥α}, P+
v (α)= {g ∈ Pv | v(g)>α}.

Note that Hv induces a birational map Pv(α)/P+
v (α)→ Av(α).

Definition 4.2.4 Let v ∈V. A monic polynomial φ ∈ K[x] is a key polynomial over v if

(1) φ is v-irreducible, i.e. if φ |v ab then φ |v a or φ |v b, for all a,b ∈ K[x];

(2) φ is v-minimal, i.e. if φ |v a then dega ≥ degφ, for all a ∈ K[x].

Denote by KP(v) the set of key polynomials over v.

Remark 4.2.5. Let v ∈V. Then KP(v)⊆OK [x] ([FGMN, Corollary 1.10]).
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Definition 4.2.6 ([Mac, Theorem 4.2]) Let v ∈ V. Let φ ∈ KP(v) and λ ∈ Q̂, λ > v(φ). Define a

pseudo-valuation w ∈ V̂, denoted w = [v,v(φ)=λ], by

w(amφ
m +·· ·+a1φ+a0)=min

i
(v(ai)+ iλ) ai ∈ K[x], degai < degφ.

We call w the augmentation of v with respect to (φ,λ).

Remark 4.2.7. Let w = [v,v(φ)=λ] be an augmentation of v. Then

(i) w > v by [FGMN, Propositions 1.7, 1.9].

(ii) λ and degφ are uniquely determined by w, but not the key polynomial φ itself in general

(see [KW, Remark 2.7]).

Definition 4.2.8 A pseudo-valuation v ∈ V̂ is MacLane if it can be attained after a finite number

of augmentations starting with v0. Write

v = [v0,v1(φ1)=λ1, . . . ,vm(φm)=λm], m ∈N,

where vi = [vi−1,vi(φi)= λi] is an augmentation of vi−1 for any i = 1, . . . ,m, and vm = v. We will

call φm a centre of v and λm the radius of v.3

Let V̂M ⊂ V̂ denote the set of MacLane pseudo-valuations and let VM ⊂V denote the set of

MacLane valuations.

Remark 4.2.9. There are different equivalent characterisations for the sets VM and V̂M (see [KW,

§2]). In fact,

(i) VM consists of those valuations v ∈V with residue field Fv of transcendence degree 1 over k;

(ii) all infinite pseudo-valuations v ∈ V̂ are Maclane.

Notation 4.2.10 Let v ∈ V̂M . Remark 4.2.7(ii) implies that the radius of v is uniquely determined

by v. We will denote it by λv.

Definition 4.2.11 Let v ∈ V̂M . An augmentation chain (of length m) for v is a tuple

(4.1) ((φ1,λ1), . . . , (φm,λm)),

where v = [v0,v1(φ1)=λ1, . . . ,vm(φm)=λm]. We say that (4.1) is

1. a MacLane chain if φi+1 ̸∼vi φi for any i = 1, . . . ,m−1.

2. minimal if degφi+1 > degφi for any i = 1, . . . ,m−1.

3By convention, if v = v0, then any monic integral polynomial of degree 1 is a centre of v and 0 is the radius of v.
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For any augmentation chain (4.1) we have

degφ1 | degφ2 | · · · | degφm,

by [FGMN, Lemma 2.10]. If it is a MacLane chain, then v(φi)=λi for any i = 1, . . . ,m. In particular,

Γv =λ1Z+·· ·+λmZ.

Remark 4.2.12. Let v ∈ V̂M .

1. A minimal augmentation chain is a Maclane chain.

2. From any MacLane chain ((φ1,λ1), . . . , (φm,λm)) for v, we can find a minimal augmentation

chain for v by removing the pairs (φi,λi) with degφi = degφi+1, for i = 1, . . . ,m−1 ([Mac,

Lemma 15.1], [FGMN, Lemma 3.4]).

Notation 4.2.13 We will denote an augmentation chain (4.1) by

[v0,v1(φ1)=λ1, . . . ,vm(φm)=λm],

where vi = [vi−1,vi(φi)=λi] for all i = 1, . . . ,m.

Definition 4.2.14 Let v ∈ V̂M given by a MacLane chain

(4.2) [v0,v1(φ1)=λ1, . . . ,vm(φm)=λm].

(a) The degree of v, denoted degv, is the positive integer degφm.

(b) If (4.2) is minimal, then m is said the depth of v.

The degree and the depth of v are independent of the chosen MacLane chain (4.2) by [FGMN,

Proposition 3.6].

Note that if v ∈VM then degv | degφ for any φ ∈KP(v).

Definition 4.2.15 Let v ∈VM . A key polynomial φ ∈KP(v) is said

1. proper if v has a centre φv ̸∼v φ.

2. strong if v = v0 or degφ> degv.

Lemma 4.2.16 Let w ∈ V̂M . A polynomial φ ∈ K[x] is a centre of w if and only if φ ∈KP(w) and

degw = degφ. Furthermore, if w = [v,w(φ)=λ], then any two centres of w are v-equivalent.

Proof. Let v ∈ VM such that w = [v,w(φw) = λw]. If φ ∈ K[x] is a centre of w then φ ∈ KP(w)

by [FGMN, Proposition 1.7(4)] and degw = degφ from Remark 4.2.7(ii). Conversely, suppose

φ ∈KP(w) and degφ= degw. From the w-minimality of φ and φw, one has w(φ)=λw. Hence

v(φ−φw)= w(φ−φw)≥λw > v(φw).

Therefore φ∼v φw. In particular, φ ∈KP(v) as degφ= degφw, and so w = [v,w(φ)=λw]. Thus φ is

a centre of w.
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Definition 4.2.17 Given a monic irreducible polynomial φ ∈ K[x] and an element λ ∈ Q̂, the

discoid of centre φ and radius λ is the set

D = D(φ,λ)= {α ∈ K̄ | vK (φ(α))≥λ}⊂ K̄ .

Let DK denote the set of discoids.

Remark 4.2.18. Let D = D(φ,λ) be a discoid.

1. D is finite if λ=∞, while equals the union of the Galois orbits of a disc centred at a root of

φ if λ<∞ ([Rüt, Lemma 4.43]).

2. For any D′ ∈DK such that D∩D′ ̸=∅ either D ⊆ D′ or D ⊆ D′ ([Rüt, Lemma 4.44]).

Definition 4.2.19 Given a MacLane pseudo-valuation v, define

Dv = {α ∈ K̄ | vK (g(α))≥ v(g) for all g ∈ K[x]}.

It is a discoid by the following lemma.

Lemma 4.2.20 If v = [v0,v1(φ1), . . . ,vm−1(φm−1) = λm−1,vm(φm) = λm] is a MacLane pseudo-

valuation, then Dv = D(φm,λm).

Proof. If v ∈ VM , then the lemma follows from [Rüt, Lemma 4.55]. Suppose v is an infinite

MacLane pseudo-valuation. Then λm =∞. Clearly Dv ⊆ D(φm,λm). Let r ∈ D(φm,λm), i.e. r is

a root of φm. Let g ∈ K[x]. We want to show that vK (g(r)) ≥ v(g). If φm | g, then g(r) = 0 and

v(g)=∞, so vK (g(r))= v(g). If φm ∤ g, then there is a sufficiently large λ ∈Q such that w(g)= v(g),

with w = [vm−1,w(φm) = λ]. Since w ∈ VM , we have D(φm,λ) = Dw. But r ∈ D(φm,λ), and so

vK (g(r))≥ w(g)= v(g).

Theorem 4.2.21 The map V̂M →DK taking v 7→ Dv is well-defined, bijective, and inverts partial

orders, i.e. for any v,w ∈ V̂M we have

w ≥ v if an only if Dw ⊆ Dv.

Given a discoid D, then D = Dv, where v is the MacLane pseudo-valuation given by v(g) =
infr∈D vK (g(r)) for all g ∈ K[x].

Proof. The result follows from [Rüt, Theorem 4.56], [KW, Remark 2.3].

Lemma 4.2.22 Let v ∈ V̂M and Dv = D(g,λ) the associated discoid. Then degv ≤ deg g and

v(g)≥λ.
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Proof. Theorem 4.2.21 implies that infr∈Dv vK (g(r))= v(g). Then v(g)≥λ. It follows that

Dv ⊆ D(g,v(g))⊆ D(g,λ)= Dv.

Then Dv = D(g,v(g)). Suppose degv > deg g and let

[v0,v1(φ1)=λ1, . . . ,vm(φm)=λm]

be a MacLane chain for v. Then vm−1 < v but vm−1(g)= v(g). Therefore Dv ⊊ Dvm−1 ⊆ D(g,v(g)), a

contradiction.

Remark 4.2.23. Lemma 4.2.22 shows that degv is the lowest positive integer such that Dv =
D(g,λ) for some monic irreducible polynomial g ∈ K[x] of degree deg g = degv and some λ ∈ Q̂.

Proposition 4.2.24 Let v,w ∈ V̂M , with v0 < w ≤ v. Let

[v0,v1(φ1)=λ1, . . . ,vn(φn)=λn]

be a minimal MacLane chain for v. Then there exists m ≤ n such that w = [vm−1,w(φm)=λ], for

some vm−1(φm)<λ≤λm.

Proof. Let [v0,w1(ψ1)=µ1, . . . ,wm(ψm)=µm] be a minimal MacLane chain for w. Then n ≥ m by

[Rüt, Proposition 4.35] and vm−1 = wm−1 by [Rüt, Corollary 4.37]. Then w = [vm−1,w(ψm)=µm].

Since vm ≤ v ≥ w, either vm < w or w ≤ vm from Remark 4.2.18(2). Suppose by contradiction that

vm < w. Then m < n. Furthermore, vm = [vm−1,vm(ψm) = λm] and λm < µm by [FGMN, Lemma

7.6]. Let r be a root of φn. Then r ∈ Dv. Since m < n, one has degψm = degvm < degv. Therefore

vK (ψm(r)) = v(ψm) = λm by [OS2, Corollary 2.8], giving a contradiction to w ≤ v. Hence w ≤ vm.

Thus [FGMN, Lemma 7.6] implies w = [vm−1,w(φm)=µm] and µm ≤λm, as required.

Lemma 4.2.25 Let v,w ∈ V̂M . Suppose w < v. Then λw < λv and degw ≤ degv. Moreover, if

degw = degv, any centre φ of v is also a centre of w.

Proof. The statement is trivial when w = v0. Suppose w > v0. Let φ be a centre of v. Consider a

minimal augmentation chain [v0, . . . ,vn(φn)=λn] for v, with φn =φ. By Proposition 4.2.24 there

exist m ≤ n and µm < λm such that w = [vm−1,w(φm) = µm]. Then degw ≤ degv and λw < λv by

[Rüt, Lemma 4.21]. Furthermore, if degw = degv then n = m, since the key polynomials φi have

strictly increasing degrees. This concludes the proof as φm =φn =φ could be any centre of v.

Lemma 4.2.26 Let v ∈VM . For any monic non-constant g ∈ K[x] of degree deg g ≤ degv we have

v(g)≤λv, with v(g)=λv only if deg g = degv.

Proof. We prove the lemma by induction on degv. Let

[v0, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm]
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be a minimal MacLane chain for v. Recall λv =λm. If degv = 1, then deg g = degv. By definition

v(g) = min{v(φm),v(g−φm)} ≤ λv. Suppose degv > 1. If deg g = degv then v(g) ≤ λv as above. If

deg g < degv then v(g)= vm−1(g)≤λm−1 <λm.

Recall the following result from [FGMN].

Theorem 4.2.27 ([FGMN, Theorem 3.10]) Let v ∈VM . For any monic non-constant g ∈ K[x] one

has
v(g)
deg g

≤ λv

degv
,

and the equality holds if and only if g is v-minimal.

Lemma 4.2.28 Let g1, g2 ∈ K[x] monic and non-constant. Then g1 · g2 is v-minimal if and only if

both g1 and g2 are v-minimal.

Proof. Suppose g1 is not v-minimal. Then there exists a ∈ K[x], dega < deg g1 such that g1 |v a.

Hence g1 g2 |v ag2 and deg(ag2)< deg(g1 g2). So g1 ·g2 is not v-minimal. Similarly for g2. Suppose

both g1 and g2 are v-minimal. Theorem 4.2.27 implies that

v(g1 · g2)degv = (v(g1)+v(g2))degv =λv(deg g1 +deg g2)=λv deg(g1 · g2),

and so g1 · g2 is v-minimal.

Lemma 4.2.29 Let v,w ∈VM satisfying w ≥ v. Let g ∈OK [x] monic and non-constant. Suppose g

is w-minimal. Then g is v-minimal.

Proof. By [Rüt, Remark 4.36] we can write

w = [v0,v1(φ1)=λ1, . . . ,vm(φm)=λm, . . . ,vn(φn)=λn],

with v = vm. Let i = m, . . . ,n−1. By recursion it suffices to show that g is vi-minimal if it is vi+1-

minimal. We can suppose g irreducible by Lemma 4.2.28. Since φi+1 is vi-minimal, by Theorem

4.2.27 we have
vi(g)
deg g

≤ λi

degφi
= vi(φi+1)

degφi+1
< λi+1

degφi+1
= vi+1(g)

deg g
.

Therefore vi+1(g)> vi(g) that is equivalent to φi+1 |vi g by [Rüt, Lemma 4.13]. [FGMN, Theorem

6.2] implies that vi(g)= deg g · vi(φi+1)
degφi+1

. But then Theorem 4.2.27 shows that g is vi-minimal.

Lemma 4.2.30 Let v ∈ VM and let φ be a centre of v. Let g ∈ K[x] monic, non-constant and

v-minimal. Then

(i) degv | deg g.

(ii) g ∼w φdeg g/degv for any w ∈VM , w < v.
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Proof. (i) follows from [FGMN, Lemma 2.10]. For proving (ii) we can suppose without loss of

generality that φ ∈KP(w) by Proposition 4.2.24 and Lemma 4.2.29. Equivalently, v = [w,v(φ)=λ]

for some λ ∈Q, λ> w(φ). Let d = deg g/degφ and expand

g =
d∑

j=0
a jφ

j, where a j ∈ K[x], dega j < degφ,

and v(ad)= w(ad)= 0. Note that v(g)= v(φd) by Theorem 4.2.27. Therefore

w(φd)= v(g)−d(λ−w(φ))≤ v(a jφ
j)−d(λ−w(φ))

< v(a jφ
j)− j(λ−w(φ))= w(a jφ

j),

for all j < d. Thus g ∼w φd as required.

The following two results come from [OS2].

Proposition 4.2.31 ([OS2, Proposition 2.5]) Let φ ∈ OK [x] be a monic irreducible polynomial.

There exists a unique MacLane valuation vφ over which φ is a strong key polynomial.

Proposition 4.2.32 ([OS2, Proposition 2.7]) Let v ∈VM and φ a proper key polynomial over v.

Let w = [v,w(φ)=λ], for some λ> v(φ) and let r ∈ Dw. For any g ∈ K[x] such that v(g)= w(g), we

have vK (g(r))= v(g).

Lemma 4.2.33 Let v ∈ V̂M given by a MacLane chain

[v0,v1(φ1)=λ1, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm].

Suppose m > 0. The ramification index evm−1 equals [Γφm (v) :Z], where

Γφm (v)= {v(a) | a ∈ K[x], a ̸= 0, dega < degφm}.

In particular, it is independent of the chosen MacLane chain.

Proof. First note that if we restrict to minimal MacLane chains, the result is trivial. By Remark

4.2.12(2) it suffices to prove that if m > 1 and degφm−1 = degφm, then evm−2 = evm−1 . We have

vm−1(φm −φm−1)=λm−1.

since φm−1 ̸∼vm−1 φm. But deg(φm −φm−1)< degφm−1, so

λm−1 = vm−1(φm −φm−1)= vm−2(φm −φm−1) ∈Γvm−2 .

Thus Γvm−2 =Γvm−1 , as required.

Definition 4.2.34 Let v ∈ V̂M given by a MacLane chain

[v0, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm].

Define ϵv = evm−1 if m > 0, and ϵv = 1 otherwise.
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For any monic irreducible polynomial φ ∈ K[x], define Kφ = K[x]/(φ), finite extension of K . Let

Oφ be the ring of integers of Kφ and kφ the residue field. Recall degφ= eφ fφ, where eφ and fφ
are respectively the ramification index and the residual degree of the extension Kφ/K .

Let v ∈ V̂M with centre φ. Then [FGMN, Proposition 1.9(2)] shows that eφ = [Γφ(v) :Z], and so

eφ = ϵv by Lemma 4.2.33. It follows that fφ = degv/eφ is independent of the choice of the centre φ.

Notation 4.2.35 Given v ∈ V̂M with centre φ, denote fv = fφ.

Let f ∈ K[x], v ∈VM and φ ∈KP(v). Write

f =
d∑

t=0
atφ

t, where degat < degφ.

The Newton polygon, Nv,φ( f ) of f is

Nv,φ( f )= lower convex hull({(t,v(at)) | at ̸= 0})⊂R2.

Notation 4.2.36 Let λ ∈Q, λ> v(φ) and w = [v,w(φ)=λ]. We denote by Lw( f ) the intersection of

Nv,φ( f ) with the line of slope −λ which first touches it from below:

Lw( f ) := {(t,u) ∈ Nv,φ( f ) | u+λt is minimal}.

Therefore if Nv,φ( f ) has an edge L of slope −λ then Lw( f ) = L, otherwise Lw( f ) is one of the

vertices of Nv,φ( f ).

Notation 4.2.37 Let λ ∈ Q̂, λ> v(φ) and w = [v,w(φ)=λ]. If λ<∞ denote by (t0
w,u0

w), (tw,uw) the

two endpoints of Lw( f ) (equal if Lw( f ) is a vertex), where t0
w ≤ tw. If λ=∞, set t0

w = 0, u0
w =∞,

and denote by (tw,uw) the left-most vertex of Nv,φ( f ).

4.3 MacLane chains invariants and residual polynomials

Let f ∈ K[x] and let −λ be the slope of an edge L of the Newton polygon of f . From §2.2, given the

1-dimensional MacLane valuation v = [v0,v(x)=λ], there is a natural way to define a reduction

f |v as f |L. Our purpose is to extend this definition to compute reductions of polynomials with

respect to any MacLane valuation. Part of the current section can be found in [FGMN, §3].

Let v ∈VM given by a MacLane chain

(4.3) [v0,v1(φ1)=λ1, . . . ,vn(φn)=λn].

Note that most of the objects and quantities we define in this section are attached to the MacLane

chain (4.3) rather than v itself, starting from the following data.
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Definition 4.3.1 Set v−1 = v0, π−1 =π, φ0 = x, λ0 = 0 and for all 0≤ i ≤ n define

e i = evi /evi−1 , hi = eviλi, f i−1 = fvi / fvi−1 .

Fix ℓi,ℓ′i, such that ℓihi +ℓ′i e i = 1, with 0≤ ℓi < e i. Then inductively define

γi =φe i
i π

−hi
i−1 , πi =φℓi

i π
ℓ′i
i−1.

Remark 4.3.2. Let 0≤ i < n. Then degvi+1 = e i f i degvi and vi(φn) ∈Γvi−1 .

Lemma 4.3.3 For any 1≤ i ≤ n and any j > i, we have

• v j(γi)= vi(γi)= 0;

• v j(πi)= vi(πi)= 1
evi

. So πi is a uniformiser for vi.

Proof. The lemma follows by induction and the equality v j(φi)= vi(φi).

Notation 4.3.4 We will denote by bv,hv,ℓv,ℓ′v the quantities en,hn,ℓn,ℓ′n respectively. They are

independent of the chosen MacLane chain for v.

Lemma 4.3.5 For any 0 ≤ i ≤ n− 1 there exists a polynomial Si ∈ K[x] such that Si ∼vi πi.

Furthermore, there exists a polynomial S′
i ∈ K[x] such that vi(S′

i)=−vi(πi) and (S′
i)
−1 ∼vi+1 πi.

Proof. First note that if Si exists, then Si ∼vi+1 πi as vi(πi)= vi+1(πi) by Lemma 4.3.3. Now we

prove the lemma by induction on i. When i = 0, we can choose Si =π=πi and S′
i =π−1. Suppose

i > 0. Define Si ∈ K[x] by

Si =
φ

ℓi
i S

ℓ′i
i−1 if ℓ′i ≥ 0,

φ
ℓi
i (S′

i−1)−ℓ
′
i if ℓ′i < 0.

By inductive hypothesis, Si−1 ∼vi πi−1 and (S′
i−1)−1 ∼vi πi−1. Therefore Si ∼vi πi. Finally, [Rüt,

Lemma 4.24] shows the existence of S′
i.

Lemma 4.3.6 For any 0≤ i ≤ n, we have φi = γℓ
′
i

i π
hi
i and πi−1 = γ−ℓi

i π
e i
i .

Proof. The lemma follows from direct computation.

Lemma 4.3.7 For any 0≤ i ≤ n, we have

πi =φm′
i

i · · ·φm′
1

1 ·πm′
0 and π

evi
i = γmi

i · · ·γm1
1 ·πm0 ,

where

m′
j =

ℓ′1 ·ℓ′i if j = 0,

ℓ jℓ
′
j+1 · · ·ℓ′i if j > 0.

and m j =
1 if j = 0,

e1 · · · e j−1ℓ j if j > 0.

Note that

γi =φe i
i ·φ−hi m′

i−1
i−1 · · ·φ−hi m′

1
1 π−hi m′

0 , φ
evi
i = γevi−1

i ·γhi mi−1
i−1 · · ·γhi m1

1 πhi .
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Proof. The proof follows by mathematical induction and Lemma 4.3.6.

Let i = 0, . . . ,n. Recall the definition of the residue map Hvi of vi. From [FGMN, Lemma 2.9]

a polynomial f ∈ K[x] belongs to Uvi if vi−1( f )= vi( f ). Therefore φ j,π j,γ j are units of Pvi , for all

j = 0, . . . , i−1. It follows that φi,πi,γi ∈ Pvi , domain of Hvi . Denote

xi = Hvi (φi), pi = Hvi (πi−1), yi = Hvi (γi).

Note that by [FGMN, Lemma 2.9] the set of units A×
vi

of Avi coincides with the image of the

canonical homomorphism Avi−1 → Avi .

We recall the following from [Rüt, §4.1.3] and [FGMN, §3.4]. There exist a sequence of simple

field extensions

k = k0 ⊆ k1 ⊆ k2 ⊆ ·· · ⊆ kn,

with ki ≃ kφi , such that for all i = 0, . . . ,n there are isomorphisms of k-algebras H̄i : Avi → ki[X i].

One can see that H̄i is the unique homomorphism satisfying:

(i) H̄i(yi)= X i;

(ii) H̄i(u)= H̄i−1(u) when i > 0 and u ∈ Avi−1 , where we canonically see u ∈ Avi via Avi−1 → Avi

and H̄i−1(u) ∈ ki via the natural map ki−1[X i−1] → ki taking X i−1 to the generator of ki

over ki−1.

By [FGMN, Proposition 3.9], the canonical embedding Avi ,→ Fvi induces an isomorphism between

the field of fractions of Avi and Fvi . Therefore we can consider the largest subring Fvi ⊂ K(x) such

that the isomorphism H̄i lifts to a surjective homomorphism

Hi : Fvi → ki[X±1
i ],

satisfying Hi( f )= Hi(g) if f ∼vi g. In particular, Pvi (0)⊆ Fvi and Hi = H̄i ◦Hvi on Pvi (0). Further-

more, note that γ−1
i ∈ Fvi from (i).

Definition 4.3.8 Let α ∈Γvi . Define

(i) Fvi (α)= Fvi ·Pvi (α)⊂ K(x).

(ii) Hi,α : Fvi (α)→ ki[X±1
i ] given by Hi,α( f )= Hi

(
f /π

eviα

i
)
.

The map Hi,α in (ii) is well-defined since π−1
i ∈ Fvi (−α).

Definition 4.3.9 For 0 ≤ i ≤ n and α ∈ Γvi , let ti(α),ui(α) ∈Z such that ui(α)e i + ti(α)hi = eviα,

with 0≤ ti(α)< e i. Define

(i) ϕi(α)= xti(α)
i pui(α)

i ∈ Avi (α);

(ii) ci(α)= ℓ′i ti(α)−ℓiui(α) ∈Z.
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Let α ∈Γvi . Let Ri,α : Ovi (α)→ ki[X i] be the map defined in [FGMN, Definition 3.13], where

we replaced the variable y with X i. By [FGMN, Theorem 4.1], we have Avi (α) = ϕi(α)Avi and

Ri,α is the lift of the map

R̄i,α : Avi (α)→ ki[X i]

given by R̄i,α(ϕi(α) ·a)= H̄i(a). Since eviα= ui(α)e i + ti(α)hi, by Lemma 4.3.6, we have

π
eviα

i γ
ci(α)
i =φti(α)

i π
ui(α)
i−1 .

Therefore for any f ∈ Avi (α) we have

(4.4) Hi,α( f )= X ci(α)
i ·Ri,α( f ).

We extend Ri,α through (4.4).

Definition 4.3.10 Let α ∈Γvi . The residual polynomial operator Ri,α is the map Fvi (α)→ ki[X±1
i ]

given by Ri,α( f )= X−ci(α)
i ·Hi,α( f ).

Remark 4.3.11. Let 0 ≤ i < n and αi = vi(φi+1) = f i e iλi. By [FGMN, Corollary 5.5(2)] the field

ki+1 is isomorphic to ki[X i]/(Ri,αi (φi+1)). Furthermore, ki+1 ≃ ki[X±1
i ]/(Hi,αi (φi+1)) by definition.

Notation 4.3.12 We denote by kv the field kn. In fact, it does not depend on the radius of v.

Definition 4.3.13 Let α ∈Γv. For any f ∈ Fv(α), define f |v,α ∈ kv[X ] by f |v,α(X )= Rn,α( f )(X ).

Let f ∈ K[x]. Let α= v( f ). Denote by Nn( f ) the Newton polygon Nvn−1,φn . If n > 0, consider

the edge Lv( f ) of Nn( f ). Let (t0
v,u0

v), (tv,uv) be the two endpoints of Lv( f ), with t0
v ≤ tv. Note that

t0
v − tn(α)= en · ⌊t0

v/en⌋.

Definition 4.3.14 ([FGMN, Definition 3.15]) The reduction of f with respect to v is

f |v =
 f |v,α if n = 0,

f |v,α/X ⌊t0
v/en⌋ if n > 0.

Remark 4.3.15. Note that f |v,α and f |v do depend on the chosen MacLane chain for v.

Note that

(4.5) Hn,α( f )(X )= X ⌊t0
v/en⌋+c(α) f |v = X t0

v/en−ℓn evn−1α f |v.

Lemma 4.3.16 Expand f =∑
t atφ

t
n, degat < degφn. If n > 0, then

f |v =
∑
j≥0

Hn−1,α j (at j )X
j,

where t j = t0
v + jen and α j =α− t jλn.

133



CHAPTER 4. REGULAR MODELS OF HYPERELLIPTIC CURVES

Proof. There exists f ′ ∈ K[x] such that f ∼v f ′ and f ′ = ∑
t a′

tφ
t
n, where either a′

t = 0 or a′
t = at

and v(a′
t)=α− tλn. If a′

t ̸= 0, then (t,v(at)) ∈ Lv( f ). Since

Lv( f )∩
(
Z× 1

evn−1
Z

)
= (t0

v,α− t0
vλn)+ (en,−λn)Z,

we have f ′ =∑
j≥0 a′

t j
φ

t j
n . It follows that

f ′ =φtn(α)
n π

un(α)
n−1 γ

⌊t0
v/en⌋

n
∑
j≥0

a′
t j

π
evn−1α j

n−1

γ
j
n.

Therefore

(4.6) f |v,α = f ′|v,α = X ⌊t0
v/en⌋ ∑

j≥0
Hn−1,α j

(
a′

t j

)
X j.

Finally, note that a′
t j
= 0 if and only if v(at j )> evn−1α j. Thus in (4.6) we can replace Hn−1,α j

(
a′

t j

)
with Hn−1,α j (at j ).

Example 4.3.17 Let f = (x3 −2p)2 − px2(x3 −2p) ∈Qp[x] (p ̸= 2) and

v = v2 = [v0,v1(x)= 1/3,v2(x3 −2p)= 5/3]

The Newton polygon N2( f ) is

i

v1(ai) (
1, 5

3
)

(2,0)

5
3

1

Then π0 = p, π1 = x, π2 = x,γ1 = x3 p−1 and k1 = k0 = Fp. Since x3−2p = p−1(γ1−2), then R1,1(x3−
2p)= X1 −2. It follows that k2 = Fp[X1]/(X1 −2)≃ Fp. Via Lemma 4.3.16 compute

f |v = X +H1,5/3(−px2)= X +H1

(−px2

x5

)
= X + H̄1(−y−1

1 )= X −2−1.

Proposition 4.3.18 ([FGMN, Corollary 4.9, Corollary 4.11]) Suppose n > 0. Following the nota-

tion above, we have:

(i) the j-th coefficient of f |v,α is non-zero if and only if vn−1(at j )=α j;

(ii) deg f |v,α = ⌊tv/bv⌋ and ordX ( f |v,α)= ⌊t0
v/bv⌋;

(iii) deg f |v = (tv − t0
v)/bv and f |v(0) ̸= 0;

(iv) f h|v = f |vh|v for all h ∈ K[x].

134



4.4. MACLANE CLUSTERS

Proposition 4.3.19 ([FGMN, Corollary 4.10]) For non-zero f ,h ∈ K[x], the following conditions

are equivalent:

(i) f ∼v h,

(ii) v( f )= v(h) and f |v = h|v,

(iii) Lv( f )= Lv(h) and f |v = h|v.

Lemma 4.3.20 ([FGMN, Lemma 5.1]) A polynomial f ∈ K[x] is v-irreducible if and only if either

• t0
v = tv = 1 or

• t0
v = 0 and f |v is irreducible in kn[X ].

Lemma 4.3.21 ([FGMN, Lemma 5.2]) Suppose n > 0. A monic f ∈ K[x] is a key polynomial over v

if and only if one of the two following conditions is satisfied:

(1) deg f = degv and f ∼v φn;

(2) t0
v = 0, deg f = tv degv and f |v is irreducible.

In case (2), deg f = bv degv ·deg f |v, Nn( f )= Lv( f ) and f |v is monic.

4.4 MacLane clusters

Let f ∈ K[x] be a separable polynomial and let c f ∈ K be its leading term. Assume f /c f ∈OK [x]

and write R for the sets of roots of f in K̄ . If C/K is a hyperelliptic curve, it is always given by an

equation y2 = f (x), where f ∈ K[x] is as above.

Definition 4.4.1 A MacLane cluster (for f ) is a pair (s,v) where s ⊆R, and v is a MacLane

pseudo-valuation such that

1. s= Dv ∩R ̸=∅;

2. if s= Dw ∩R for a MacLane valuation w > v then degw > degv.

If v is a MacLane valuation then (s,v) is said proper MacLane cluster. The degree of (s,v) is degv.

The degree, a centre and the radius of a MacLane cluster (s,v) are the degree, a centre and the

radius of v, respectively.

Remark 4.4.2. Let (s,v) be a MacLane cluster. Note that by definition

(i) s is GK -invariant,

(ii) v determines s.
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Definition 4.4.3 The MacLane cluster picture of f is the combinatorial data consisting of the

collection of all MacLane clusters for f together with their radii. We will denote by ΣM
f the set of

all MacLane clusters for f .

Definition 4.4.4 We say that a MacLane pseudo-valuation v ∈ V̂M defines a MacLane cluster

(s,w) ∈ΣM
f , if w = v (and s= Dv ∩R).

Definition 4.4.5 We write (t,w)⊆ (s,v) if w ≥ v. If (t,w)⊊ (s,v) is maximal, we write (t,w)< (s,v)

and v = P(w), and refer to (t,w) as a child of (s,v), and to (s,v) as the parent of (t,w). A proper

MacLane cluster (s,v) with no proper child of degree degv is said degree-minimal.

Lemma 4.4.6 Let (s,v), (t,w) ∈ΣM
f such that s⊊ t. Then (s,v)⊊ (t,w).

Proof. Since s⊆ Dv ∩Dw either Dv ⊊ Dw or Dw ⊆ Dv. But

Dv ∩R= s⊊ t= Dw ∩R,

so Dv ⊊ Dw. Thus w > v.

[KW, Proposition 2.26] shows that the meet of any two MacLane pseudo-valuations v and w

exists; it will be denoted by v∧w. Hence v∧w is the maximal MacLane pseudo-valuation ≤ v and

≤ w. In other words, V̂M with ≤ forms a meet-semilattice.

Lemma 4.4.7 Let (s,v), (t,w) ∈ΣM
f , and s∧t= Dv∧w∩R. Then (s∧t,v∧w) is the smallest MacLane

cluster containing (s,v) and (t,w).

Proof. We only need to show that (s∧ t,v∧w) is a MacLane cluster. Suppose not. Then there

exists a MacLane valuation v′ > v∧w, with s∧ t= Dv′ ∩R and degv′ ≤ deg(v∧w). Then v′ ̸≤ v or

v′ ̸≤ w, from the definition of v∧w. Without loss of generality we can assume that v′ ̸≤ v.

If v ̸< v′, then Dv′ ̸⊂ Dv and Dv ̸⊆ Dv′ so Dv′∩Dv =∅ by Remark 4.2.18(2). But this contradicts

Dv ∩R= s⊆ s∧ t= Dv′ ∩R.

If v < v′, then

s⊆ s∪ t⊆ s∧ t= Dv′ ∩R⊆ Dv ∩R= s.

But then s= Dv′ ∩R, v′ > v and degv′ ≤ deg(v∧w) ≤ degv by Lemma 4.2.25, which contradicts

the definition of MacLane cluster for (s,v).

Let F ∈ K[x] be a monic irreducible factor of f . Let vF be the MacLane pseudo-valuation with

DvF = D(F,∞) (Theorem 4.2.21). We also denote vF by vr where r ∈R is any root of F. For any

non-empty GK -invariant subset s⊆R, define gs =∏
r∈s(x− r) ∈ K[x]. Then gs | f . Let F1, . . . ,Fm

be the irreducible monic factors of gs. Define vs ∈ V̂M by

vs = vF1 ∧·· ·∧vFm .
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Lemma 4.4.8 Let v ∈ V̂M and let s= Dv ∩R ̸=∅. Then v ≤ vs. In particular, (s,vs) is a MacLane

cluster.

Proof. The set s is GK -invariant, as so are Dv and R. Let F1, . . . ,Fm be the irreducible factors of

gs as above. Let si be the set of roots of Fi. Note that DvFi
= si for all i. Then Dvs ⊇

⋃m
i=1 DvFi

= s.

Suppose w ∈ V̂M with s= Dw ∩R. Then DvFi
⊆ Dw, so w ≤ vFi for all i. By definition of vs we have

w ≤ vs. Since w ≤ vs for any w with s= Dw ∩R, it only remains to show that s= Dvs ∩R. Since

v ≤ vs from above, we have

s⊆ Dvs ∩R⊆ Dv ∩R= s,

that implies Dvs ∩R= s. Thus (s,vs) is a MacLane cluster.

Lemma 4.4.9 Let s= Dv ∩R ̸=∅, for some v ∈ V̂M . Let

[v0,v1(φ1)=λ1, . . . ,vn(φn)=λn]

be a minimal MacLane chain for vs. Then there exists i = 0, . . . ,n such that v ≤ vi, degv = degvi

and (s,vi) is a cluster. In particular, if (s,v) is a MacLane cluster, then v = vi.

Proof. Let w ∈ V̂M such that Dw ∩R= s. Then w ≤ vs by Lemma 4.4.8. Proposition 4.2.24 implies

that w ≤ vi, degw = degvi for some i = 0, . . . ,n.

The argument above holds in particular when w = v. It only remains to show that s= Dvi ∩R.

We have

s= Dvs ∩R⊆ Dvi ∩R⊆ Dv ∩R= s,

that implies s= Dvi ∩R, as required.

Proposition 4.4.10 The set ΣM
f under the partial order ⊇ forms a rooted tree.

Proof. Let V M
f = {v ∈ V̂M | (Dv ∩R,v) ∈ΣM

f }. By Remark 4.4.2(ii) there is a natural bijection from

V M
f to ΣM

f taking v 7→ (Dv ∩R,v) inverting partial orders by definition. Hence it suffices to show

that V M
f is a rooted tree. First note that V M

f ̸=∅ since vF ∈V M
f for any monic irreducible factor

F of f . Then V M
f is a rooted tree by [KW, Corollary 2.8] and Lemma 4.4.7.

Lemma 4.4.11 Let (s,v) be a MacLane cluster. Then |s| ≥ degv. Furthermore, |s| > degv if and

only if (s,v) is proper.

Proof. First note that v ≤ vs by Lemma 4.4.8. Then Lemma 4.2.25 implies

degv ≤ degvs ≤min
r∈s degvr =min

r∈s |GK · r| ≤ |s|.

If |s| = degv, then s= GK · r for some (any) r ∈ s, and degv = degvs. It follows from Lemma

4.4.9 that v = vs = vr. Hence (s,v) is not proper.

If (s,v) is not proper, that is v ∉ VM , then v = vs = vr for some (any) r ∈ s. In particular,

s= degvr = degv.
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Remark 4.4.12 (Alternative definition for MacLane clusters). Let Σ be the set of pairs (s,n), where

n ∈ Z+ and s = Dv ∩R ̸=∅ for some MacLane pseudo-valuation v of degree n. It follows from

Remark 4.2.18(2) and Theorem 4.2.21 that the map ΣM
f →Σ, taking (s,v) 7→ (s,degv) is bijective.

Lemma 4.4.13 Let (s,v) be a MacLane cluster. Then λv =minr∈s vK (φ(r)) for any centre φ of v.

Proof. Let λ = minr∈s vK (φ(r)). Since s ⊂ Dv = D(φ,λv), we have λ ≥ λv. Suppose λ > λv. Let

w = [v,w(φ) = λ]. Then w > v and degw = degφ= degv. But s=R∩Dw for our choice of λ. This

contradicts the fact that (s,v) is a MacLane cluster (Definition 4.4.12).

Notation 4.4.14 Let P ⊂ K[x] to be the subset of monic irreducible polynomials. For any d ∈Z,

denote by P≤d the set {g ∈P | deg g ≤ d}.

Lemma 4.4.15 Let (s,v) be a proper MacLane cluster. Then

λv = max
g∈P≤degv

min
r∈s vK (g(r)).

Proof. Let d = degv. By Lemma 4.4.13 we only need to show that λv ≥maxg∈P≤d minr∈s vK (g(r)).

Suppose not. Then there exists a polynomial g ∈ P≤d such that λ := minr∈s vK (g(r)) > λv. Let

w ∈ V̂M such that Dw = D(g,λ) (Theorem 4.2.21). Then s⊆ Dw ∩R. By Lemma 4.2.22 we have

degw ≤ deg g ≤ degv and w(g) ≥ λ. Since s ⊂ Dw ∩Dv, either Dv ⊆ Dw or Dw ⊊ Dv by Remark

4.2.18(2). If Dw ⊊ Dv, then w > v and s= Dw∩R, a contradiction, since (s,v) is a MacLane cluster.

So Dv ⊆ Dw, that is v ≥ w. Hence v(g)≥ w(g)≥λ>λv. This gives a contradiction since v(g)≤λv

by Lemma 4.2.26.

Lemma 4.4.16 Let v ∈ V̂M and s= Dv ∩R. Then (s,v) ∈ΣM
f if and only if

λv = max
g∈P≤degv

min
r∈s vK (g(r)).

Proof. One implication follows from Lemma 4.4.15. Suppose

λv =maxg∈P≤degv minr∈s vK (g(r)).

By Lemma 4.4.9, there exists a MacLane pseudo-valuation w ≥ v with degw = degv such that

(s,w) ∈ΣM
f . Let λw be the radius of w. Then Lemma 4.4.15 implies λw =λv. But this is possible

only if w = v, by Lemma 4.2.25.

Lemma 4.4.17 Let v ̸= v0 be a MacLane valuation, φ a strong key polynomial over v and λ ∈ Q̂,

λ> v(φ). Set w = [v,w(φ)=λ], s= Dv ∩R, t= Dw ∩R. If t ̸=∅, then (s,v) is a MacLane cluster.

Proof. First note that t⊆ s. Let g ∈ K[x] be any monic irreducible polynomial of degree deg g ≤
degv. Then deg g < degφ and so w(g)= v(g). Hence Proposition 4.2.32 implies that

v(g)= w(g)=min
r∈t vK (g(r))≥min

r∈s vK (g(r))≥ v(g).

As g was arbitrary, (s,v) is a MacLane cluster by Lemmas 4.2.26 and 4.4.16.
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Lemma 4.4.18 Let (s,v) be a MacLane cluster and let (t,w) be its parent. Then v = [w,v(φ)=λv]

for any centre φ of v.

Proof. The lemma follows from Proposition 4.2.24 and Lemma 4.4.17.

Proposition 4.4.19 Let F ∈ OK [x] monic and irreducible. Let v,w ∈ V̂M such that v ≤ vF , e.g.

when v ∈VM and F ∈KP(v). Then

(v∧w)(F)=min{v(F),w(F)}

In particular, if v ̸< w, then w(F)= (v∧w)(F).

Proof. The first part of the statement follows from the proof of [KW, Proposition 2.26], defining

w∧v. Suppose v ̸< w. If v = w, then (v∧w)(F)= w(F). If v ̸≤ w, then v∧w < v ≤ vF . This implies

v(F)> (v∧w)(F) by [KW, Lemma 2.22]. Thus (v∧w)(F)= w(F).

Lemma 4.4.20 Let v ∈ V̂M . Then

v( f )= vK (c f )+ ∑
F∈P ,F| f

degF · λv∧vF

deg(v∧vF )
= vK (c f )+ ∑

r∈R

λv∧vr

deg(v∧vr)
.

Proof. Recall f /c f ∈ OK [x]. Then f = c f ·
∏

F∈P ,F| f F and the factors F in the product belong to

OK [x]. It suffices to show that v(F)= degF · λv∧vF
deg(v∧vF ) for all F ∈P ∩OK [x]. Let F ∈P ∩OK [x]. By

Lemma 4.2.29, the polynomial F is w-minimal, for any MacLane valuation w < vF . In particular,

F is (v∧vF )-minimal. Hence
(v∧vF )(F)

degF
= λv∧vF

deg(v∧vF )
.

by Theorem 4.2.27. Since vF ̸< v, Proposition 4.4.19 shows v(F)= (v∧vF )(F) and so concludes the

proof.

4.4.1 Newton polygons

Let v be a MacLane valuation and φ ∈KP(v). Recall the definition of the Newton polygon Nv,φ( f ).

Definition 4.4.21 The principal Newton polygon N−
v,φ( f ) is formed by the edges of Nv,φ( f ) with

slope <−v(φ).

For any edge L of N−
v,φ( f ) with slope −λ, define the MacLane valuation vL = [v,vL(φ) = λ].

Then L = LvL ( f ) (Notation 4.2.36). Denote by λL the radius of vL.

The aim of this subsection is proving the following result, that gives a correspondence between

MacLane clusters and edges of certain Newton polygons attached to f . It can be viewed as a

generalisation of Lemma 2.3.38. Since the statement of the theorem may be not easy to digest,

let us briefly present its main consequence. Let (s,µ) be a degree-minimal MacLane cluster

with centre φ. Suppose that v = v0 or that v defines a MacLane cluster (e.g. φ is a strong key

polynomial over v). Then there is a 1-to-1 correspondence between the proper MacLane clusters
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(t,w) of degree degµ satisfying v < w ≤µ and the edges of the principal Newton polygon N−
v,φ( f ).

Moreover, the radii of the MacLane clusters are the opposites of the slopes of the edges.

The generality of Theorem 4.4.22 allows us to use it as one of the key results to construct

proper MacLane clusters algorithmically from f (see Remark 4.4.31).

Theorem 4.4.22 Let v ∈VM and φ ∈KP(v).

(i) If (t,w′) is a MacLane cluster with centre φ′ ∼v φ satisfying w′(φ)<∞, then N−
v,φ( f ) has an

edge L of slope −w′(φ) and tvL = |t|/degφ.

(ii) Conversely, for every edge L of N−
v,φ( f ) there is a MacLane cluster (t,wL) with wL ≥ vL,

degwL = degφ, wL(φ)=λL and |t| = tvL degφ.

In case (ii), if there exists a proper (s,w) ∈ΣM
f with w = [v,w(φ)=λ], λ≥λL, then wL = vL.

We first recall the following result from [FGMN].

Theorem 4.4.23 ([FGMN, Theorem 6.2]) Let F ∈OK [x] be a monic irreducible polynomial and

r ∈ K̄ a root of F. Then φ |v F if and only if vK (φ(r))> v(φ). Moreover, if this condition holds, one

also has:

1. Either F =φ, or Nv,φ(F) consists of one edge of slope −vK (φ(r)).

2. d := degF/degφ ∈Z+ and F ∼v φ
d.

Lemma 4.4.24 Let w = [v,w(φ) = λ] be an augmentation of v. Let sλ be the set of roots r of f

satisfying vK (φ(r))=λ. Then |sλ|/degφ= tw − t0
w.

Proof. Without loss of generality we can suppose f monic. If λ=∞, then |sλ| = ordφ( f ) and the

equality |sλ|/degφ= tw − t0
w follows from the definition of t0

w, tw. Hence suppose λ<∞.

We first show the statement for f = F irreducible. In this case either sλ = ∅ or sλ = R.

Suppose sλ =R, which means vK (φ(r)) = λ> v(φ) for any (some) r ∈R. Since F ̸= φ (otherwise

φ(r)= 0), Theorem 4.4.23 implies that Lw(F)= Nv,φ(F), t0
w = 0 and tw = degF/degφ= |sλ|/degφ.

Now suppose that Lw(F) is an edge of Nv,φ(F). So tw ≥ 1. We want to show sλ ̸=∅. Let t = tw.

Expand

F =
d∑

j=0
a jφ

j, a j ∈ K[x], dega j < degφ, ad ̸= 0.

By definition of Lw( f ) we have w(a jφ
j)≥ w(atφ

t) for all j. Therefore

v(atφ
t)= w(atφ

t)− t(λ−v(φ))< w(a jφ
j)− j(λ−v(φ))= v(a jφ

j)

for all j < t. In particular, v(a0)> v(F), so φ |v F. Theorem 4.4.23 then implies that −λ=−vK (φ(r))

for any r ∈R. Therefore sλ ̸=∅.
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Let f ∈OK [x] be any monic separable polynomial. Write f = F0 · · ·Ft, with F j ∈OK [x] monic

irreducible. Denote by R j the set of roots of F j and by sλ, j the elements r ∈ R j satisfying

vK (φ(r))=λ. Clearly sλ =⊔
j sλ, j. Moreover, from [FGMN, Corollary 2.7], we have

Lw( f )= Lw(F0)+·· ·+Lw(Ft)

(see before [FGMN, Corollary 2.7] for a definition of +). The lemma then follows from the first

part of the proof.

Proposition 4.4.25 Let w = [v,w(φ) = λ] be an augmentation of v and let s = Dw ∩R. Then

tw = |s|/degφ.

Proof. By definition tw =∑
λ′≥λ(tw′ − t0

w′), where w′ = [v,w′(φ)=λ′]. Lemma 4.4.24 implies

tw degφ= ∑
λ′≥λ

|sλ′ | =
∣∣∣ ⋃
λ′≥λ

sλ′
∣∣∣= |s|,

where sλ′ ⊆R is the set of roots r of f satisfying vK (φ(r))=λ′.

Now we are ready to prove Theorem 4.4.22.

Proof of Theorem 4.4.22. (i). Let (t,w) be a cluster with centre φ′ ∼v φ and w(φ)<∞. In particular,

degφ= degφ′. Let λt = minr∈t vK (φ(r)) ≥ w(φ). Consider the MacLane valuation wt = [v,wt(φ) =
λt]. Then t ⊆ Dwt ∩R. By Remark 4.2.18(2) and Theorem 4.2.21, either wt > w or wt ≤ w. By

definition of MacLane cluster we have wt ≤ w. But then λt ≤ w(φ). Thus λt = w(φ). Furthermore,

t⊆ Dwt ∩R⊆ Dw ∩R= t,

and so t= Dwt ∩R. Then Lemma 4.4.24 implies that Lwt( f ) is an edge of Nv,φ( f ). The equality

twt degφ= |t| follows from Proposition 4.4.25.

(ii). Let L be an edge of N−
v,φ( f ). Let t= DvL ∩R. From Lemma 4.4.24 and Proposition 4.4.25

it follows that

|t| = tvL ·degφ and min
r∈t vK (φ(r))=λL.

By Lemma 4.4.9 there exists a unique MacLane pseudo-valuation wL ≥ vL such that degwL =
degvL = degφ and (t,wL) is a cluster. In particular, wL(φ)=λL as

λL = vL(φ)≤ wL(φ)≤min
r∈t vK (φ(r))=λL.

there exists a proper MacLane cluster (s,w) with w = [v,w(φ) = λ], λ ≥ λL. Then w ≥ vL

and so s ⊆ t. Furthermore, degwL = degvL = degw; hence, by definition of cluster, if s = t then

w = vL = wL. So suppose s⊊ t. It follows from Lemma 4.4.6 that (s,w)⊊ (t,wL). Since φ is centre

of w, Lemma 4.2.25 implies that φ is also a centre of wL. But we have already showed wL(φ)=λL,

so wL = vL as required.
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4.4.2 Residual polynomials

In this subsection we will see that there is a close relationship between certain children (t,w)<
(s,v) and multiple irreducible factors of f |v. We will need the following result.

Theorem 4.4.26 ([FGMN, Theorem 6.4]) Let v ∈VM and let φ ∈ K[x] be a proper key polynomial

over v. Every monic g ∈OK [x] factorises into a product of monic polynomials in OK [x]

g = g0 ·φordφ(g) ∏
λ,h

gλ,h,

where −λ runs on the slopes of N−
v,φ(g) and h ∈ kwλ

[X ] runs on the monic irreducible factors of

g|wλ
, where wλ = [v,wλ(φ) = λ]. Let g = F1, . . . ,Fs be the factorisation of g in monic irreducible

polynomials F j ∈OK [x]. Then g0 is the product of all F j such that φ ∤v F j, while gλ,h is the product

of all F j with Nv,φ(F j) one-sided of slope −λ and F j|wλ
= hl for some l. In particular,

deg g0 = deg g− l(N−
v,φ(g))degφ, deg gλ,h = bwλ

·ordh(g|wλ
) ·degh ·degφ,

where bwλ
(Notation 4.3.4) equals the denominator of evλ.

Consider a MacLane valuation v. Assume v ̸= v0. Let φv be a centre of v. By Proposition 4.2.31

there exists a unique MacLane valuation v′ over which φv is a strong key polynomial. Then

v = [v′,v(φv)=λv]. Let s= Dv ∩R. We decompose

(4.7) f /c f = f0φ
ordφv ( f )
v

∏
λ,h

fλ,h,

as in Theorem 4.4.26 with respect to the principal Newton polygon N−
v′,φv

( f ). Recall ϵv = ev′ and

bv equals the denominator of ϵvλv.

Lemma 4.4.27 If φ ∈KP(v) such that φ|v is a multiple irreducible factor of f |v, then N−
v,φ( f ) has

an edge.

Proof. By Theorem 4.4.26 it suffices to show that f has a monic irreducible factor F ̸= φ that

v-divisible by φ. Let h =φ|v. Since fλv,h|v = hordh( f |v), one has fλv,h ̸=φ. As f is separable, there

exists a monic irreducible factor F of fλv,h different from φ. Thus φ |v F by [FGMN, Theorem

5.3].

Lemma 4.4.28 Let w = [v,w(φ)=λ] be an augmentation of v. Suppose (t,w) is a proper MacLane

cluster. If φ|v is irreducible4, then ordφ|v ( f |v)> 1.

Proof. Let h =φ|v. Lemma 4.3.21 implies φ ̸∼v φv and

(4.8) degφ= bv deghdegφv.

4Note that φ|v is irreducible if and only if φ is not a centre of v, by Lemma 4.3.21.
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Then by Theorem 4.4.26 it suffices to show that deg fλv,h > degφ. Since φ ̸∼v φv one has w(φv)=λv

by [Rüt, Lemmas 4.13,4.14]. Let r ∈ t and let F ∈OK [x] be the minimal polynomial of r. Then

vK (φv(r))= w(φv)= v(φv)=λv > v′(φv),

where the first equality follows from Proposition 4.2.32. Then either F =φv or Nv′,φv (F) consists

of one edge of slope −λv by Theorem 4.4.23. On the other hand

vK (φ(r))≥ w(φ)=λ> v(φ).

Again by Theorem 4.4.23 we have F ∼v φ
l , for some l ∈Z+. In particular, F ̸=φv and F|v = hl by

Propositions 4.3.19 and 4.3.18(iv). It follows from Theorem 4.4.26 that F | fλv,h. Thus |t| ≤ deg fλv,h.

Then Lemma 4.4.11 concludes the proof.

Theorem 4.4.29 Suppose (s,v) is a proper MacLane cluster with v ̸= v0.

(i) Let h ∈ kv[X ] monic and irreducible such that ordh( f |v) > 1. There exists a proper child

(t,w)< (s,v) with centre φ such that φ|v = h.

(ii) Conversely, for any proper child (t,w)< (s,v) with centre φ such that φ|v is irreducible, one

has ordφ|v ( f |v)> 1.

In either case, fλv,φ|v =
∏

r∈t(x− r) and ordφ|v ( f |v)= |t|/degw.

Proof. Without loss of generality assume f monic. Let v′ ∈ VM and φv ∈ KP(v) as above and

consider the factorisation (4.7) of f .

(i). Suppose that the monic irreducible polynomial h ∈ kv[X ] is a multiple factor of f |v. Then

fλv,h|v = hordh( f |v) where ordh( f |v)> 1.

By [FGMN, Theorem 5.7] there exists φ ∈KP(v) such that φ|v = h. Let Rh be the set of roots of

fλv,h and set

λ= min
r∈Rh

vK (φ(r)).

Now φ is a proper key polynomial over v since φ|v is irreducible. Then [FGMN, Theorem 5.13]

implies that φ |v F for any irreducible monic factor F of fλv,h. Hence λ> v(φ) by Theorem 4.4.23.

Therefore w = [v,w(φ)=λ] is an augmentation of v. Let t= Dw ∩R. From the definition of λ we

have Rh ⊆ t. The pair (t,w) may not be a MacLane cluster. However, by Lemma 4.4.9, we can find

a MacLane pseudo-valuation w′ ≥ w with degw′ = degw such that (t,w′) is an MacLane cluster.

Let ψ be a centre of w′. Then ψ is a centre of w by Lemma 4.2.25. It follows from Lemma 4.2.16

that ψ ∈KP(v) and ψ∼v φ. Hence ψ|v =φ|v = h by Proposition 4.3.19. Therefore, by replacing φ

with ψ and w with w′ if necessary, we can assume (t,w) is a MacLane cluster. Furthermore,

|t| ≥ |Rh| = deg fλv,h > bv deghdegv = degφ
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by Theorem 4.4.26 and Lemma 4.3.21. Lemma 4.4.11 implies that (t,w) is proper.

The MacLane cluster (t,w) may not be a child of (s,v). Suppose there exists a (proper) MacLane

cluster (t′,w′) such that (t,w)⊊ (t′,w′)⊊ (s,v). We want to show that φ is a centre of w′. Suppose

degw > degw′. Then for any centre φ′ of w′, degφ′ < degφ and so w(φ′)= v(φ′). On the other hand,

w′ > w and w′(φ′) > v(φ′), so w(φ′) ≥ w′(φ′) > v(φ′), which gives a contradiction. Hence Lemma

4.2.25 implies that φ is also a centre of (t′,w′).
(ii). Let (t,w)< (s,v) proper with centre φ such that φ|v is irreducible. Then w > v. Proposition

4.2.24 and Lemma 4.4.17 implies that w = [v,w(φ)=λ] for some λ> v(φ), since (t,w) is a child of

(s,v). Lemma 4.4.28 concludes the proof of (ii).

In the proof of Lemma 4.4.28 we showed that |t| ≤ deg fλv,φ|v . Then t=Rh from above. Finally,

ordφ|v ( f |v)= |t|/degw by Theorem 4.4.26 and (4.8).

Proposition 4.4.30 Suppose −λv is the minimum slope of N−
v′,φv

( f ). Then (s,v) is not a degree-

minimal MacLane cluster if and only if bv = 1 and f |v has a multiple factor h ∈ kv[X ] of degree

1.

Proof. Suppose (s,v) is a degree-minimal MacLane cluster. Suppose that bv = 1 and that f |v
has a multiple irreducible factor h ∈ kv[X ]. Theorem 4.4.29 implies that there exists a proper

child (t,w)< (s,v) with centre φ such that φ|v = h. Then degφ> degv. Hence degh > 1 by Lemma

4.3.21.

Now suppose (s,v) is not a degree-minimal MacLane cluster. Then there exists w > v with

degv = degw such that (t,w) is a proper MacLane cluster, for some t ⊆R. Proposition 4.2.24

implies that w = [v,w(φ)=λ] for some φ ∈KP(v) and λ> v(φ). In particular, w is also an augmen-

tation of v′. If φ∼v φv, then

w(φv)=min{λ,v(φv −φ)}>λv.

Hence N−
v′,φv

( f ) would have a slope −w(φv) smaller than −λv by Theorem 4.4.22(i), contradicting

our assumptions. Hence φ ̸∼v φv. It follows that

λv = v(φv)= v(φ−φv)= v′(φ−φv) ∈Γv′ ,

and so bv = 1. By Lemma 4.3.21 the polynomial φ|v is irreducible and degφ|v = 1. Therefore

ordφ|v ( f |v)> 1 by Lemma 4.4.28.

Remark 4.4.31. In §4.3 we showed how to compute the reduction f |v algorithmically for any

v ∈VM , knowing a MacLane chain for v (see also [FGMN, §3]). Assume vK (r)> 0 for any r ∈R (in

the next section we will see that we can always require this condition for our purpose). Suppose

we know how to factorise polynomials in k[X ], e.g. k is finite. Then we can algorithmically find

MacLane chains for all MacLane valuations defining MacLane clusters, starting from the Newton

polygon Nv0,x( f ) and using the results 4.4.22, 4.4.27, 4.4.28, 4.4.30, 4.4.29.
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4.5 Model construction

Suppose char(k) ̸= 2. Let C/K be a hyperelliptic curve of genus g ≥ 1. We can find a separable

polynomial f = c f
∏

r∈R(x− r) ∈ K[x], where vK (r) > 0 for any r ∈R, such that C/K : y2 = f (x).

Given any proper MacLane cluster (s,v) ∈ ΣM
f we want to fix a canonical choice of a MacLane

chain for v. It will be called cluster chain and defined in Definition 4.5.1. But first, let us fix a

centre for each proper MacLane cluster.

Let (s1,µ1), . . . , (sn,µn) be all degree-minimal MacLane clusters for f . Note that if r ∈ si has

minimal polynomial F ∈ K[x] of degree degµi, then F is a centre of µi by Lemma 4.2.25, as

vF ≥µi. Choose centres ψ1, . . . ,ψn of µ1, . . . ,µn respectively, with the following property:

(4.9)
If possible, choose ψi equal to the minimal polynomial

of some root r ∈ si of K-degree degµi.

Thanks to Lemma 4.2.25, for any proper MacLane cluster (s,v) ∈ΣM
f we inductively choose a

centre φv as follows:

(i) If (s,v) is degree-minimal, that is (s,v)= (si,µi) for some 1≤ i ≤ n, fix φv =ψi.

(ii) If (s,v) has children of degree degv, choose one of them, say (t,w), and fix φv =φw.

Definition 4.5.1 Let (s,v) be a proper MacLane cluster. A cluster chain for v is MacLane chain

[v0,v1(φ1)=λ1, . . . ,vm(φm)=λm]

for v, where {φw | (t,w)⊇ (s,v)}= {φ1, . . . ,φm}.

The next results show that every MacLane valuation defining a MacLane cluster has a unique

cluster chain (Lemma 4.5.2).

Lemma 4.5.2 Let (s,v) ∈ΣM
f proper and let [v0, . . . ,vm(φm)=λm] be a cluster chain for v. Consider

the chain of proper MacLane clusters

(t1,w1)⊋ (t2,w2)⊋ · · ·⊋ (ts,ws)= (s,v)

satisfying:

(a) (t1,w1)⊇ (t,w) for any proper MacLane cluster (t,w)⊇ (s,v).

(b) φwi ̸=φwi+1 for all 1≤ i < s.

(c) For any 1 ≤ i < s, the MacLane cluster (ti,wi) is the smallest MacLane cluster containing

(ti+1,wi+1) and satisfying (b).

Then m = s, φi =φwi and vi = wi.
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Proof. Clearly {φw | (t,w)⊇ (s,v)}= {φw1 , . . . ,φws }, with the centres φwi all distinct. By definition

of cluster chain m ≥ s. However, if m > s, then φi = φ j for some i < j. This is not possible, as

v(φi)=λi <λ j = v(φ j) by [Rüt, Lemmas 4.21,4.22]. Hence m = s.

Clearly vm = wm. Suppose there exists i < m such that φi =φv. It follows that

λi = vi(φi)= v(φi)=λv =λm,

a contradiction by [Rüt, Lemma 4.21]. Therefore φm = φwm . Let σ ∈ Sm−1 be the permutation

such that φwi = φσ(i). For any i = 1, . . . ,m−1, either (ti,wi) is degree-minimal or there exists a

child (s′,v′)< (ti,wi) not containing (ti+1,wi+1) such that φwi =φv′ by (c).

Suppose (ti,wi) is degree-minimal. Let

j i =max{ j = 1, . . . ,m | degφ j = degφwi }.

Lemma 4.4.17 implies that v j i defines a proper MacLane cluster of degree degwi and so v j i = wi.

In fact, φ j i must equal φwi since (ti,wi) is degree-minimal, for our choice of centres. Therefore

σ(i)= j i and so wi = vσ(i).

Suppose (ti,wi) is not degree-minimal and let (s′,v′)< (ti,wi) as above. Note that (s′,v′) does

not contain in (s,v) and (s′∧ s,v′∧ v) = (ti,wi). Hence wi(φwi ) = v(φσ(i)) = λσ(i) by Proposition

4.4.19. It follows that

Dwi = D(φwi ,wi(φwi ))= D(φσ(i),λσ(i))= Dvσ(i) ,

and so wi = vσ(i) from Theorem 4.2.21.

We showed that wi = vσ(i) for any i = 1, . . . ,m−1. Since v1 < ·· · < vm and w1 < ·· · < wm the

permutation σ must be the identity.

Notation 4.5.3 Let (R,wR) denote the root of (ΣM
f ,⊇) (Proposition 4.4.10).

Lemma 4.5.4 The pseudo-valuation wR is a degree 1 MacLane valuation. Furthermore, wR > v0.

Proof. Let w be the maximal element of

{w′ ∈ V̂M | Dw′ ∩R=R, degw′ = 1}.

Note that the set is non-empty as v0 belongs to it. If w is not a valuation, then |R| ≤ 1 by Lemma

4.4.11, a contradiction. Hence (R,w) is a proper MacLane cluster and so wR ≤ w. But then w = wR

by definition of MacLane cluster since degw = 1. Finally,

λwR ≥min
r∈R

vK (r)> 0,

by Lemma 4.4.16, and so wR > v0.

Lemma 4.5.5 Let (s,v) be a proper MacLane cluster. There exists a unique cluster chain for v.

Furthermore, v > v0.
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Proof. The uniqueness follows by Lemma 4.5.2. Moreover, v > v0 by Lemma 4.5.4. We construct

a cluster chain of v recursively to prove the existence. First let (R,wR) as above. Then wR =
[v0,wR(φR)=λR] is a cluster chain for (R,wR). Now let (s,v) be any MacLane cluster different

from (R,wR) and consider its parent (t,w). By recursion we can assume that w is equipped with

a cluster chain

[v0, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm]

So φm =φw from Lemma 4.5.2. If φw =φv, then

[v0, . . . ,vm−1(φm−1)=λm−1,v(φm)=λv]

is a cluster chain for v. If φw ̸=φv, Lemma 4.4.18 implies that

[v0, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm,v(φv)=λv]

is an augmentation chain for v. Proving it is a MacLane chain would conclude the proof. Suppose

by contradiction that φv ∼w φw. Then degφv = degφw. In particular, (t,w) is not degree-minimal.

As φv ̸=φw, there exists a child (s′,v′)< (t,w) such that φw =φv′ . Hence (s∧s′,v∧v′)= (t,w). Set

w′ = [w,w′(φw)=min{λv′ ,λv,w(φv −φw)}].

Therefore w < w′ ≤ v′. Moreover v(φw)=min{λv,w(φw−φv)}, and so v ≥ w′. But then w < w′ ≤ v∧v′

which gives a contradiction.

Thanks to cluster chains, the Newton polytopes needed for the construction of the model

can be defined without ambiguity. Let h = 1, . . . ,n and consider the MacLane valuation µh of the

degree-minimal cluster (sh,µh). Let

(4.10) [v0,v1(φ1)=λ1, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm]

be a cluster chain for µh. Then φm =ψh. Denote φ=ψh and v = vm−1. Denote by ϵh the ramifica-

tion index ev = ϵµh . Let g(x, y)= y2 − f (x) and expand

g =∑
i, j

ai jφ
i y j, ai j ∈ K[x], degai, j < degφ.

Define the Newton polytopes

∆h = convex hull
(
{(i, j) : ai j ̸= 0}

)⊂R2,

∆̃h = lower convex hull
(
{(i, j,v(ai j)) : ai j ̸= 0}

)⊂R3.

Consider the homeomorphic projection sh : ∆̃h →∆h. Above every point P ∈∆h there is a unique

point (P, µ̃h(P)) ∈ ∆̃h. This defines a piecewise affine function µ̃h :∆h →R, and the pair (∆h, µ̃h)

determines ∆̃h. Let F̃ be any 2-dimensional (open) face of ∆̃h and let F = sh(F̃). Define ṽF,h :R2 →R

to be the unique affine function coinciding with µ̃h on F. Let λF = ṽF,h(0,0)− ṽF,h(1,0). Define
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∆̃−
h ⊆ ∆̃h as the sub-polytope consisting of (the closure of) all 2-dimensional faces F̃ of ∆̃h with

λF > v(φ). Clearly

∆̃−
h = lower convex hull

(
{(i,0,u) : (i,u) ∈ N−

v,φ( f )}∪ {(0,2,0)}
)
⊂R3.

where N−
v,φ( f ) is the principal Newton polygon of f with respect to v,φ. The image of ∆̃−

h under

sh will be denoted by ∆−
h . The images of the 0-,1- and 2-dimensional (open) faces of the polytope

∆̃−
h under sh are called h-vertices, h-edges and h-faces. Finally, a ∗-vertex, ∗-edge, ∗-face is

respectively an h-vertex, h-edge, h-face for some h = 1, . . . ,n.

Definition 4.5.6 Let G be a h-vertex, h-edge or h-face.

(a) Denote by G̃ the inverse image of G under sh.

(b) Denote by Ḡ the closure of G in R2.

(c) Denote by GZ the set of points P of G with ϵhµ̃h(P) ∈Z.

(d) Denote by GZ(Z) the intersection GZ∩Z.

Finally, define the denominator of G, denoted δG , as the common denominator of ϵhµ̃h(P) for

every P ∈ Ḡ(Z).

Let (s,w) be a proper MacLane cluster centre φw =ψh. Lemma 4.5.2 implies that the cluster

chain for w is

[v0,v1(φ1)=λ1, . . . ,vm−1(φm−1)=λm−1,w(ψh)=λw]

where vi,φi,λi are as in (4.10). Theorem 4.4.22 implies that there is a 1-to-1 correspondence

between proper MacLane clusters and ∗-faces. Given a proper MacLane cluster (s,w) we will

denote by Fw the corresponding ∗-face. If φw =ψh, then Fw is an h-face. Then Fw has 3 edges:

(1) An h-edge, denoted Lw, linking the points (t0
w,0) and (tw,0).

(2) An h-edge, denoted Vw, linking the points (tw,0) and (0,2).

(3) An h-edge, denoted V 0
w, linking the points (t0

w,0) and (0,2).

Definition 4.5.7 For any proper MacLane cluster (s,w) and any l = 1, . . . ,n, define w̃l :R2 →R by

w̃l(x, y)=−w(ψl)x− w( f )
2 y+w( f )

and w̃ :Rn+1 →R by

w̃(x1, . . . , xn, y)=−(w(ψ1)x1 +·· ·+w(ψn)xn)− w( f )
2 y+w( f ).

Finally define ew̃ = (Γ̃w :Z), where Γ̃w = w̃(Zn+1).
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Let (s,w) be a proper MacLane cluster with centre φw =ψh. Then w̃h = ṽFw,h. We will denote

(sFw ,vFw )= (s,w).

Definition 4.5.8 Let E be an h-edge. We say E is inner if E = Vw for some proper MacLane

cluster (s,w) ̸= (R,wR). In this case we say that E bounds Fw and FP(w). In all other cases E is

said outer and bounds only the h-face whose it is an edge.

4.5.1 Matrices

Let (s,v) be a proper cluster with centre φv =ψh. Let

(4.11) [v0,v1(φ1)=λ1, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm]

be the unique cluster chain for v. Construct the invariants and the rational functions attached to

(4.11) in §4.3. Denote v− = vm−1. Recall ev− = ϵh.

Let E be either Lv or Vv or V 0
v if (s,v) is degree-minimal. Let vE = [v−,vE(ψh)=∞] if E =V 0

v ,

and vE = v otherwise.

Definition 4.5.9 Let o = 1, . . . ,n, o ̸= h. Define γo,E = γ j if ψo =φ j, while

γo,E =
ψo ·ψ−degψo/degψh

h if µo ≥ vE,

ψo ·π−evm−1 v(ψo)
m−1 otherwise,

if ψo ̸=φ j, for all j = 1, . . . ,m.

Lemma 4.5.10 Let o = 1, . . . ,n, o ̸= h. Then γo,E is a well-defined element of K(x) satisfying

vF (γo,E)= 0 for any ∗-face F bounded by E.

Proof. Let F be any ∗-face bounded by E. Then (s,v)≤ (sF ,vF ). Lemma 4.5.2 implies that vF (φ j)=
v(φ j) for all j < m. So the statement is trivial if ψo =φ j, for some j < m. Suppose ψo ̸=φ j, for all

j < m. Then µo ̸≤ v. In particular, µo ̸< vF and so vF (φo)= (vF ∧µo)(φo) by Proposition 4.4.19.

Suppose vE ≤ µo. Then vF ≤ µo and so ψo is vF -minimal by Lemma 4.2.29. It follows that

degv | degψo by Lemma 4.2.30. Theorem 4.2.27 implies that

v(ψo)
degψo

= λv

degv
and

vF (ψo)
degψo

= vF (ψh)
degv

,

since vF = v when F = Fv. Therefore vF (γo,L)= 0.

Suppose vE ̸≤µo. First we want to show that

(4.12) vE ∧µo = vF ∧µo.

Note that either vE ∧µ0 ≤ vF or vE ∧µ0 > vF since vE ≥ vF . If E = V 0
v (and so v is degree-

minimal), then vF = v. If vE ∧µo ≤ v, then (4.12) follows. Suppose vE ∧µo > v. Then µo > v and so
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µo(ψh) = v(ψh) by Lemma 4.5.2. Furthermore, ψh is a centre of vE ∧µo ≤ vE. But then Lemma

4.2.25 and Proposition 4.4.19 imply that

µo(ψh)= (vE ∧µo)(ψh)=λvE∧µo >λv = v(ψh)=µo(ψh),

a contradiction. If E ̸= V 0
v , then vE = v. Since v∧µo < v defines a MacLane cluster by Lemma

4.4.7, we have v∧µo ≤ vF . Hence (4.12).

It follows from (4.12) and Proposition 4.4.19 that

(4.13) vE(ψo)= (vE ∧µo)(ψo)= (vF ∧µo)(ψo)= vF (ψo).

Hence it suffices to show that v(ψo) ∈Γvm−1 . By Proposition 4.2.24 write

v∧µo = [va−1, (v∧µo)(φa)=λ′
a],

for some a ≤ m and λ′
a ≤λa.

If v ≤µo, then v is degree-minimal. It follows that v∧µo appears in the cluster chain for µo

by Lemma 4.5.2. Therefore v(ψo) ∈Γva−1 ⊆Γvm−1 by Remark 4.3.2.

If v ̸≤ µo, then v∧µo < v. By Lemma 4.4.7, the valuation v∧µo defines a proper MacLane

cluster (s′,v∧µo)⊋ (s,v). Let (t,w) ∈ΣM
f such that

(s,v)⊆ (t,w)< (s′,v∧µo).

Since µo ̸≥ w, if ψw = ψv∧µo , then v∧µo appears in the cluster chain for µo by Lemma 4.5.2.

Therefore v(ψo) ∈Γvm−1 as above. Finally, if ψw ̸=ψv∧µo , then v∧µo appears in the cluster chain

for v again by Lemma 4.5.2. Since v∧µo < v, one has (v∧µo)(g) ∈ Γvm−1 for any g ∈ K[x]. In

particular, v(ψo) ∈Γvm−1 from (4.13).

Let E∗
v be the unique affine function Z2 →Z with E∗

v |E = 0 and E∗
v |Fv ≥ 0. Choose P0,P1 ∈Z2

such that E∗
v (P0)= 0 and E∗

v (P1)= 1.

Definition 4.5.11 Define the slopes [sE
1 , sE

2 ], at E to be

sE
1 = δEϵh (ṽh(P1)− ṽh(P0)) ,

sE
2 =

δEϵh (w̃h(P1)− w̃h(P0)) if E inner, with (s,v)< (t,w),

⌊sE
1 −1⌋ if E outer.

Let δ= δE. Pick fractions ni
di

∈Q such that

sE
1 = n0

d0
> ·· · > nrE+1

drE+1
= sE

2 , with
∣∣∣∣∣ni ni+1

di di+1

∣∣∣∣∣= 1.

Let r = rE. Redefine nr+1 =−1, dr+1 = 0 if E is outer.
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Write Ẽ = P̃0 +νR, with δν= (δax,δay,δaz) ∈Z2 × 1
ϵh
Z primitive and such that (ax,ay) goes

counterclockwise along ∂Fv. Let o ̸= h. By Definition 4.5.9 and Lemma 4.3.7, we can uniquely

write

γo,E =ψm1o
1 · · ·ψmno

n ·πm(n+2)o

Define νo ∈Rn+2 by νo = (m1o, . . . ,mno,0,m(n+2)o).

Now consider the embedding ιh :R3 ,→Rn+2 given by

(xh, y, z) 7→ (0, . . . ,0, xh,0, . . . ,0, y, z),

where xh is the h-th coordinate in Rn+2. Define νRh = ιh(δν). Write P1 −P0 = (bx,by) and define

ωRi = ιh
(
dibx,diby, ni

δϵh

) ∈ Rn+2 for any i = 0, . . . , r+1. The vectors above define hyperplanes in

Rn+2,

PE,i = ν1R+·· ·+νnR+ωiR i = 0, . . . , r+1.

Let MR
E,i ∈ Mn+2(R) be the matrix given by

MR
E,i = (ν1, . . . ,νh−1,νRh,νh+1, . . . ,νn,ωRi ,−ωRi+1)

where the vectors represent the columns of MR
E,i. Then5

det MR
E,i =

∏m−1
o=1 eo · 1

evm−1
= 1.

Moreover, all entries of MR
E,i are integers except possibly δaz ∈ 1

ϵh
Z, and ni

δϵh
, − ni+1

δϵh
, rational

numbers in 1
δϵh
Z. Pick ki with

ki ≡−ni(δϵhaz)−1 mod δ.

This is possible as δν is primitive in Z2 × 1
ϵh
Z. Let τ ∈ Sn+2 be a permutation such that φo =ψτ(o)

for all o = 1, . . . ,m and τ(n+1)= n+1, τ(n+2)= n+2. Define the vectors

νh = νRh +
m−1∑
o=1

coντ(o)δaz, ωi =ωRi +ki
νRh

δ
+

m−1∑
o=1

coντ(o)(
ni
δϵh

+kiaz),

where co = evo−1ℓo. The next lemma shows that they belong to Zn+2.

Lemma 4.5.12 Write
∑m−1

o=1 coντ(o) = (a1, . . . ,an+2). Then

aτ( j) =


ϵhℓ jℓ

′
j+1 · · ·ℓ′m−1 if j < m,

0 if m ≤ j ≤ n+1,

ϵhℓ
′
1 · · ·ℓ′m−1 −1 if j = n+2.

In particular, νh,ωi ∈Zn+2.

5See Appendix C.2 for more details.

151



CHAPTER 4. REGULAR MODELS OF HYPERELLIPTIC CURVES

Proof. Recall γE,τ(o) = γo for any o = 1, . . . ,m. If j < m Lemma 4.3.7 implies

aτ( j) = c j e j −∑m−1
o= j+1 cohoℓ jℓ

′
j+1 · · ·ℓ′o−1

= ev jℓ j −∑m−1
o= j+1 evo−1 (ℓoho)ℓ jℓ

′
j+1 · · ·ℓ′o−1

= ℓ j
(
ev j +

∑m−1
o= j+1 evoℓ

′
j+1 · · ·ℓ′o −

∑m−1
o= j+1 evo−1ℓ

′
j+1 · · ·ℓ′o−1

)
= ℓ j

(
ev j + evm−1ℓ

′
j+1 · · ·ℓ′m−1 − ev j

)
= evm−1ℓ jℓ

′
j+1 · · ·ℓ′m−1,

where we used ℓoho +ℓ′oeo = 1. If m ≤ j ≤ n+1, then the τ( j)-th coordinate of ντ(o) is 0 for all

o = 1, . . . ,m−1; so aτ( j) = 0. Finally

an+2 =−∑m−1
o=1 cohoℓ

′
1 · · ·ℓ′o−1 =

∑m−1
o=1 evoℓ

′
1 · · ·ℓ′o −

∑m−1
o=1 evo−1ℓ

′
1 · · ·ℓ′o−1

= evm−1ℓ
′
1 · · ·ℓ′m−1 −1,

as required.

Define ME,i = (ν1, . . . ,νn,ωi,−ωi+1) ∈ M(n+2)(Z), where the vectors represent the columns of

ME,i. Note that det ME,i = det MR
E,i = 1. Let us describe ME,i as product of simpler matrices. Let

ε1, . . . ,εn+2 ∈Rn+2 be the standard basis of Rn+2. Define κi = ki
δ
εh and ξ=∑m−1

o=1 coετ(o). Define

Th = (ε1, . . . ,εh−1,εh +δaz ·ξ,εh+1, . . . ,εn,εn+1 + ni
δϵh

ξ,εn+2 − ni+1
δϵh

ξ),

T = (ε1, . . . ,εn,εn+1 +κi,εn+2 −κi+1).

Then ME,i = MR
E,i ·Th ·T. Now we want to describe M−1

E,i. It follows from before that M−1
E,i =

T−1 ·T−1
h · (MR

E,i)
−1, where

T−1
h = (ε1, . . . ,εh−1,εh −δaz ·ξ,εh+1, . . . ,εn,εn+1 − ni

δϵh
ξ,εn+2 + ni+1

δϵh
ξ),

T−1 = (ε1, . . . ,εn,εn+1 −κi,εn+2 +κi+1),

It remains to describe (MR
E,i)

−1. First note that the h-th, (n+1)-th and (n+2)-th columns of

(MR
E,i)

−1 are respectively

ιh
(
(by/δ,ni+1ay −δϵhdi+1azby,niay −δϵhdiazby)

)
,

ιh
(
(−bx/δ,−ni+1ax +δϵhdi+1azbx,−niax +δϵhdiazbx)

)
,

ιh
(
(0,δϵhdi+1,δϵhdi)

)
.

Let o = 1, . . . ,n. Lemma 4.3.7 and Definition 4.5.9 imply that we can write

(4.14) ψ
ϵh
o = γα1o

1,E · · ·γα(h−1)o
h−1,E ·ψαho

h ·γα(h+1)o
h+1,E · · ·γαno

n,E ·παπo ,

for some unique α1o, . . . ,αno,απo ∈Z. Let α̃o j =αo j/ϵh. Define

ν̃o =
(α̃o1, . . . , α̃on,0,0), if o ̸= h

1
δ
(α̃h1by, . . . , α̃hnby,bx,0) if o = h
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Finally, define

ω̃i = δϵhdi
(( ni
δϵhdi

ay −azby
)
α̃h1 + α̃π1, . . .(4.15)

. . . ,
( ni
δϵhdi

ay −azby
)
α̃hn + α̃πn,− ni

δϵhdi
ax +azbx,1

)
.

From the definition of MR
E,i it follows that

(MR
E,i)

−1 =


ν̃1...
ν̃n
ω̃i+1
ω̃i

,

where the vectors are the rows of the matrix. Lemma 4.3.7 gives an explicit of (MR
E,i)

−1. Note also

that for the structure of T−1 and T−1
h the τ(o)-th row of M−1

E,i coincides with the τ(o)-th row of

(MR
E,i)

−1, when o > m. Define

P⊥+
E,i = ω̃iR+,

ray perpendicular to the hyperplane PE,i.

Remark 4.5.13. Note that ν̃τ(o) = ετ(o) for m < o ≤ n.

Lemma 4.5.14 Suppose E is inner, with (s,v)< (t,w). Then ṽh|E = w̃h|E.

Proof. Recall that E =Vv. If Fw is an h-face, the result trivially follows, as E =V 0
w.

Suppose Fw is not an h-face. By definition of cluster chain we have w = v−. The polynomial
ψh is w-minimal, hence λw

degw = w(ψh)
degv by Theorem 4.2.27. From Lemma 4.4.20 and Proposition

4.4.25 it follows that

ṽh(tv,0)= v( f )− |s|
degv ·λv = w( f )− |s|

degw ·λw = w( f )− |s|
degv ·w(ψh)= w̃h(tv,0).

This concludes the proof since ṽh(0,2)= 0= w̃h(0,2).

Lemma 4.5.15 We have

ω̃0 = e ṽ(v(ψ1), . . . ,v(ψn), v( f )
2 ,1).

Let r = rE. Then

ω̃r+1 =
ew̃(w(ψ1), . . . ,w(ψn), w( f )

2 ,1) if E inner, with (s,v)< (t,w),

(−ayα̃h1, . . . ,−ayα̃hn,ax,0) if E outer.

Proof. Note that δFv = δEd0 and δFvϵh = e ṽ. Recall ṽFv,h = ṽh and

ṽh(x, y)=−λvx− v( f )
2 y+v( f ).

Then since ν and (bx,by, n0
δϵhd0

) generate F̃v (face of ∆̃h), we have

(4.16) n0
δϵhd0

ay −azby =λv and − n0
δϵhd0

ax +azbx = v( f )
2 .
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By (4.14) and Lemmas 4.3.3 and 4.5.10, we have v(ψo)=λvα̃ho + α̃πo for any o = 1, . . . ,n. Hence

the description of ω̃0 follows from (4.16).

Suppose that E is inner, with (s,v) < (t,w). Then either w = v− or w = [v−,w(ψh) = λw]. In

either case, δEdr+1ϵh = ew̃. We have

w̃h(x, y)=−w(ψh)x− w( f )
2 y+w( f ).

Since w̃h|E = ṽh|E by Lemma 4.5.14 and nr+1
δϵhdr+1

= w̃h(P1)−w̃h(P0), the vectors ν and (bx,by, nr+1
δϵhdr+1

)

generate the plane z = w̃h(x, y) in R3. Hence

nr+1
δϵhdr+1

ay −azby = vF (ψh) and nr+1
δϵhdr+1

ax −azbx = vF ( f )
2 .

Similarly to before, by (4.14) and Lemmas 4.3.3 and 4.5.10, we have vF (ψo)= vF (ψh)α̃ho + α̃πo for

any o = 1, . . . ,n. The description of ω̃r+1 follows, for E inner.

Finally, suppose that E is outer. Then nr+1 =−1 and dr+1 = 0. The description of ω̃r+1 follows

directly from the definition.

4.5.2 Toroidal embedding

Let us start this subsection with the following notation.

Notation 4.5.16 Let A be a ring and let a1, . . . ,an ∈ A×, for some n ∈ Z+. For any matrix

M = (mi j) ∈SLn(Z) denote by (a1, . . . ,an)•M the vector

(am11
1 · · ·amn1

n , . . . ,am1n
1 · · ·amnn

n ).

Denote by m∗∗ and m̃∗∗ the entries of ME,i and M−1
E,i respectively. Note that m̃(n+1)(n+2) ≥ 0

and m̃(n+2)(n+2) ≥ 0. Then the coordinate transformation

(X1, . . . , Xn,Y , Z)= (x1, . . . , xn, y,π)•ME,i,

(x1, . . . , xn, y,π)= (X1, . . . , Xn,Y , Z)•M−1
E,i

gives the ring isomorphism

K[x±1
1 , . . . , x±1

n , y±1]
ME,i≃ OK [X±1

1 , . . . , X±1
n ,Y±1, Z±1]

(π− X m̃1(n+2)
1 · · ·X m̃n(n+2)

n Y m̃(n+1)(n+2) Zm̃(n+2)(n+2) )
.

Define

R = OK [X±1
1 , . . . , X±1

n ,Y , Z]

(π− X m̃1(n+2)
1 · · ·X m̃n(n+2)

n Y m̃(n+1)(n+2) Zm̃(n+2)(n+2))
.

For any h-edge E, define cones in Rn+1 ×R+

0-dimensional cone σ0 = {0},

1-dimensional cones σE,i =P⊥+
E,i (0≤ i ≤ r+1),

2-dimensional cones σE,i,i+1 =P⊥+
E,i +P⊥+

E,i+1 (0≤ i ≤ r).
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The set of all such cones from all E is a fan Σ from Appendix C.3. Recall

PE,i = ν1R+·· ·+νnR+ωiR= m∗1R+·· ·+m∗nR+m∗(n+1)R,

PE,i+1 = ν1R+·· ·+νnR+ωi+1R= m∗1R+·· ·+m∗nR+m∗(n+2)R,

PE,i ∩PE,i+1 = ν1R+·· ·+νnR= m∗1R+·· ·+m∗nR,

σE,i = m̃(n+2)∗R+, σE,i+1 = m̃(n+1)∗R+,

σE,i,i+1 = m̃(n+1)∗R++ m̃(n+2)∗R+.

The monomial exponents from the dual cone are

σ∨
E,i ∩Zn+2 = m∗1Z+·· ·+m∗nZ+m∗(n+1)Z+m∗(n+2)Z+,

σ∨
E,i+1 ∩Zn+2 = m∗1Z+·· ·+m∗nZ+m∗(n+1)Z++m∗(n+2)Z,

σ∨
E,i,i+1 ∩Zn+2 = m∗1Z+·· ·+m∗nZ+m∗(n+1)Z++m∗(n+2)Z+.

The toric scheme

TΣ = ⋃
σ∈Σ

Tσ, Tσ =Spec OK [σ∨∩Zn+2],

associated with Σ ([K2MS]) is then obtained by glueing TσE,i,i+1 = Spec R for varying E and i,

along their common opens. Note that

Tσ0 =Spec R[Y−1, Z−1], TσE,i =Spec R[Y−1], TσE,i+1 =Spec R[Z−1].

Note that degψτ(1) = 1 by Lemmas 4.5.4 and 4.5.2. Let

C0 =Spec
K[x][x±1

1 , . . . , x±1
n , y±1]

(y2 − f (x), x1 −ψ1(x), . . . , xn −ψn(x))
.

Then C0 ⊆ C. Furthermore it canonically embeds in Tσ0 via the isomorphism given by ME,i and

the isomorphism given by
K[x]

[
x±1
τ(1)

](
xτ(1) −ψτ(1)(x)

) ≃ K
[
x±1
τ(1)

]
.

We define C as the closure of C0 in TΣ. Then C is integral and also separated since so is TΣ.

Furthermore, C is flat by [Liu4, Corollary 3.10]. We will explicitly describe C and show it is a

proper regular model of C with strict normal crossing.

4.5.3 Charts

Keep the notation of §4.5.1. From now on we suppose without loss of generality that the permuta-

tion τ is the identity.

Let 1≤ o ≤ h. By [Mac, Theorem 16.1] every polynomial g ∈ K[x] can be uniquely written as a

sum

g =∑
s

as ·ψn1s
1 · · ·ψnos

o ,
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where as ∈ K and n js < degψ j+1/degψ j for any j < o. Let us ∈O×
K such that as = us ·πvK (as). Then

we denote by g(o), the polynomial

g(o) =∑
s

us ·πvK (as) · xn1s
1 · · ·xnos

o ∈ K[x1, . . . , xo].

Consider ME,i. Recall m̃(n+1)(n+2), m̃(n+2)(n+2) ≥ 0. Define

Π(X1, . . . , Xn,Y , Z)=π− X m̃1(n+2)
1 . . . X m̃n(n+2)

n Y m̃(n+1)(n+2) Zm̃(n+2)(n+2) ,

Via ME,i we have the following isomorphism

K[x][x±1
1 , . . . , x±1

n , y±1]
(y2 − f (x), x1 −ψ1(x), . . . , xn −ψn(x))

ME,i≃ OK [X±1
1 , . . . , X±1

n ,Y±1, Z±1]
(Π,F1, . . . ,Fn)

,

where F1, . . . ,Fn ∈O×
K [X±1

1 , . . . , X±1
n ,Y , Z] satisfying Y ∤F j, Z ∤F j, and

y2 − f (h)(x1, . . . , xh)
ME,i= Y nY ,1 ZnZ,1F1(X1, . . . , Xn,Y , Z),

x j −ψ( j−1)
j (x1, . . . , x j−1)

ME,i= Y nY , j ZnZ, jF j(X1, . . . , Xn,Y , Z) for 2≤ j ≤ h,

x j −ψ(h)
j (x1, . . . , xh)

ME,i= Y nY , j ZnZ, jF j(X1, . . . , Xn,Y , Z) for h < j ≤ n,

for some nY , j,nZ, j ∈Z. Then we define the affine OK -scheme

UE,i =Spec
OK [X±1

1 , . . . , X±1
n ,Y , Z]

(Π,F1, . . . ,Fn)
.

In the next lemma we will describe the special fibre of UE,i. In particular, we will show that it

has dimension 1. Then the next lemma implies that UE,i = C∩TσE,i,i+1 .

Lemma 4.5.17 If the special fibre of UE,i is of dimension ≤ 1, then UE,i = C∩TσE,i,i+1 .

Proof. By construction the generic fibre of UE,i is isomorphic to Cη∩TσE,i,i+1 . Then it suffices

to show that UE,i is the closure of its generic fibre in TσE,i,i+1 . Suppose not. Then UE,i has an

irreducible component U entirely contained in its special fibre. Since OK [X±1
1 , . . . , X±1

n ,Y , Z] is

regular, dimU ≥ 2 by Krull’s height theorem.

4.5.4 Special Fibre

In this section we want to study the special fibre of UE,i. Now, UE,i ⊂ TσE,i,i+1 and the special fibre

of the latter has underlying reduced subscheme Z = 0 if E is outer and i = r, or Y Z = 0 otherwise.

Notation 4.5.18 Let g ∈ K[x±1
1 , . . . , x±1

n , y±1]. Let G ∈O×
K [X±1

1 , . . . , X±1
n ,Y±1, Z±1] given by

g
(
(X1, . . . , Xn,Y , Z)•M−1

E,i
)=G(X1, . . . , Xn,Y , Z).

Denote by ordZ(g) [resp. ordY (g)] the integer ordZ(G) [resp. ordY (G)].
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We want to study UE,i ∩ {Z = 0}. Let wE,i : K[x] → Q̂ be the valuation given in (C.1). Then

ordZ(x j)= wE,i(ψ j)ordZ(π) for all 1≤ j ≤ n. Let w j = v j for all j < h and wh = wE,i.

Lemma 4.5.19 Let g ∈ K[x]. For all 1≤ j ≤ h,

ordZ
(
g( j))= w j(g)ordZ(π)

Proof. If wE,i is MacLane then the equality follows from [Mac, Theorem 16.1]. Suppose wE,i is

not MacLane. Then (s,v) is maximal, E =Vv and 1≤ i ≤ r. But then h = 1 and degψ1 = 1. Expand

g =∑
t atψ

t
1, where at ∈ K . Then g(1) =∑

t atxt
1. It follows that

ordZ
(
g(1))=min

t

(
vK (at)ordZ(π)+ t ·ordZ(x1)

)= wE,i(g)ordZ(π)

as ordZ(x1)= wE,i(ψ1)ordZ(π).

Notation 4.5.20 For any G ∈OK [X±1
1 , . . . , X±1

n ,Y , Z] denote

ḠY =G(X1, . . . , Xn,0, Z), ḠZ =G(X1, . . . , Xn,Y ,0),

and Ḡ =G(X1, . . . , Xn,0,0).

Definition 4.5.21 Define p0 =π ∈OK . Let 1≤ j ≤ h and recursively define p j ∈ K[x±1
1 , . . . , x±1

j ] by

p j = xℓ j
j p

ℓ′j
j−1. Then p j(ψ1, . . . ,ψ j)=π j.

Define Π j ∈OK [X±1
1 , . . . , X±1

n ] by

Y ∗Z∗ ·Π j
ME,i= p j.

Note that

(4.17) (ψ1, . . . ,ψn, y,π)•ME,i = (γ1, . . . ,γh−1,ψδax
h yδayπ

δaz
h−1, . . . ),

and that α̃h j = 0, α̃π j =λ j for any j < h.

Lemma 4.5.22 Let 1≤ j ≤ h. Then X j
ME,i= xe j

j p−h j
j−1 if j < h or E = Lv.

Proof. When j < h, then X j = xe j
j p−h j

j−1 from (4.17). If j = h, then X j = xδax
j yδay pδaz

j−1. If E = Lv,

then wE,i = v. Since Lv corresponds to the edge Lv( f ) of N−
v−,ψh

( f ), one has δ= eh, ax = 1, ay = 0,

az =−λh. It follows that X j = xe j
j p−h j

j−1, as required.

Lemma 4.5.23 Let 1≤ j ≤ h. Then Π j ∈OK [X±1
1 , . . . , X±1

h ].

Proof. If o > h then m̃ jo = 0 for j ̸= o. The lemma follows.

Recall the definition of the fields k j, j = 1, . . . ,h, given in §4.3. Note that k1 = k0 since

degψ1 = 1 (Remark 4.3.11). The ring homomorphisms ko[X±1
o ]→ ko+1, 1≤ o < j, taking Xo to the

generator of ko+1 over ko, induce a surjective homomorphism

R j : OK [X±1
1 , . . . , X±1

n ,Y , Z]→ k j[X±1
j , . . . , X±1

n ,Y , Z].
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Lemma 4.5.24 Let 1≤ j ≤ h and let g ∈ K[x]. Fix a polynomial G ∈O×
K [X±1

1 , . . . , X±1
n ,Y , Z], Y ∤G,

Z ∤G, such that

g( j)(x1, . . . , x j)
ME,i= Y nY ZnZG(X1, . . . , Xn,Y , Z),

for some nY ,nZ ∈Z. If either E = Lv or j < h, then

R j(ḠZ)=Y ∗ ·R j(Π j)
ev jα ·H j,α(g)(X j)

where α= v j(g).

Proof. We prove the lemma by induction on j. Suppose either E = Lv or j < h, so that w j = v j.

Let j = 1. Expand g = ∑
s asφ

j
1, where as ∈ K . Then g(1)(x1) = ∑

s asxs
1. Lemma 4.5.19 implies

that ordZ(asxs
1)= nZ if and only if (s,vK (as)) is a point of the edge Lv1(g) of the Newton polygon

Nv0,ψ1 (g). Therefore we can assume g(1)(x1)=∑
s≥0 at1+se1 xt1+se1

1 , where t1 = t1(α1) and α1 = v1(g).

Then
g(1)

p
ev1α1

1

= ∑
s≥0

(
at1+se1

πu1−sh1

)
(xe1

1 π−h1)s+c1(α1),

where u1 = u1(α1). Then we obtain the required equality by Lemma 4.5.22.

Now suppose j > 1. Expand

g = ∑
s≥0

asψ
s
j, where degas < degψ j.

Note that g( j) = ∑
s a( j−1)

s xs
j by definition. Similarly to before, by Lemma 4.5.19 we have that

ordZ
(
a( j−1)

s xs
j
)= nZ if and only if (s,v j−1(as)) is a point of the edge Lv j (g) of the Newton polygon

Nv j−1,ψ j (g). Therefore we can assume

g( j) =∑
s a( j−1)

t j,s
xt j,s

j ,

where t j,s = t j(α j)+ se j and α j = v j(g). Then

g( j)

p
ev jα j

j

=∑
s

a( j−1)
t j,s

pu j,s
j−1

(
xe j

j p−h j
j−1

)s+c j(α j)
,

where u j,s = u j(α j)− sh j. Lemma 4.5.22 and the inductive hypothesis conclude the proof.

Lemma 4.5.25 Let 1≤ j ≤ h. Then ker(R j)= (F̄2,Z , . . . ,F̄ j,Z ,π).

Proof. We prove the lemma by induction on j. Suppose j = 1. Since degψ1 = 1, we have k1 = k,

and so ker(R1)= (π). Let j > 1. It follows from Lemma 4.5.19 that

ordZ(x j)= ordZ
(
ψ

( j)
j

)> ordZ
(
ψ

( j−1)
j

)
.

Then Lemma 4.5.24 implies that

R j−1(F̄ j,Z)=R j−1(Π j−1)ev j−1α ·H j−1,α(ψ j),
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where α = v j−1(ψ j). Since k j ≃ k j−1[X j−1]/(H j−1,α(ψ j)) by Remark 4.3.11 and R j−1(Π j−1) is

invertible by Lemma 4.5.23, we have

ker(R j)= ker(R j−1)+ (F̄ j,Z).

The inductive hypothesis concludes the proof.

Let h < j ≤ n. Then

ordZ(x j)= ordZ
(
ψ(h)

j
)

by Lemma 4.5.19. Since m̃ j j = 1 and m̃o j = 0 for all 1 ≤ o ≤ n, o ̸= j, there exists a Laurent

polynomial T j ∈OK [X±1
1 , . . . , X±1

h ,Y , Z] such that F j equals X j −T j up to some unit. Let R=Rh

and T =∏
h< j≤nT j. Denote F =F1. Lemma 4.5.25 implies that UE,i ∩ {Z = 0} is isomorphic to

Spec
kv[X±1

h ,Y ,R(T̄Z)−1]

(R(F̄Z))
.

Similar computations (using wE,i+1 instead of wE,i) show that if i < r or E is inner, then UE,i∩{Y =
0} is isomorphic to

Spec
kv[X±1

h , Z,R(T̄Y )−1]

(R(F̄Y ))
.

Let g(x, y)= y2 − f (x) and expand

g =∑
j,o

a joψ
j
h yo, a jo ∈ K[x], dega jo < degψh.

Then y2 − f (h) = ∑
j,o a(h−1)

jo x j
h yo. Recall the notation wE,i(y) from Appendix C.3. Let ξi be the

plane with normal vector (wE,i(ψh),wE,i(y),1) and on which Ẽ lies. We have

ordZ(a(h−1)
jo x j

h yo)= ordZ(y2 − f (h)) if and only if ( j, o,v−(a jo)) ∈ ξi.

More precisely, (Xh,Y , Z)= (xh, y, ph−1)•M with

(4.18) M =
(
δax di bx+kiax −di+1bx−ki+1ax
δay di by+kiay −di+1by−ki+1ay

δϵhaz
ni
δ
+ϵhkiaz − ni+1

δ
−ϵhki+1az

)
∈SL3(Z).

Let φ :Z2 →Z2 given by

φ(s, t)= P0 + (δax,δay)s+ (dibx +kiax,diby +kiay)t.

Lemma 4.5.24 implies that, up to units, R(F̄Z) equals∑
(s,t)∈Z2

Hh−1,αs,t

(
aφ(s,t)

)
X s

hY t,

where αs,t = δazs+ ni
δϵh

t+ kiaz t. In particular, UE,i ∩ {Z = 0} is of dimension 1, and similarly

UE,i ∩ {Y = 0} when i < r or E is inner. It follows that the special fibre of UE,i is 1-dimensional.
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4.5.5 Components

We want to describe UE,i ∩ {Z = 0} and UE,i ∩ {Y = 0} explicitly.

Remark 4.5.26. Let h < j ≤ n such that v = µ j ∧µh. Let (s j,µ j) ⊆ (t,w) < (s,v). Lemma 4.2.30

implies that ψ j is v-equivalent to φd
w, where d = degµ j/degw. Thus ψ j|v is a power of φw|v by

Proposition 4.3.19.

Lemma 4.5.27 Let µ1,µ2 ∈VM such that µ1 ≥ v ̸>µ2. Suppose φn is a centre of µ1 and let φ ∈ K[x]

be a centre of µ2. If v ̸=µ1 ∧µ2 then φ|v is a unit.

Proof. Let w =µ1 ∧µ2. Then µ1(φ)= w(φ) by Proposition 4.4.19. Since w ≤µ1 and v ≤µ1, either

w < v or w ≥ v by Theorem 4.2.21 and Remark 4.2.18(2).

Suppose w < v. Proposition 4.2.24 implies that there exists w′ ≥ w such that v = [w′,v(φn)=
λn]. In particular, w′(φ) = v(φ). From [FGMN, Lemma 2.9] it follows that φ is v-equivalent to

some polynomial of degree < degv. Hence φ|v is a unit by Proposition 4.3.19.

Suppose w > v. Then the polynomial φn is a centre of w and so

φ∼v φ
degφ/degφn
n

by Lemmas 4.2.29 and 4.2.30. Then φ|v is a unit by Proposition 4.3.19.

Lemma 4.5.28 Let h < j ≤ n. If v ̸=µh ∧µ j then ψ j|v is a unit.

Proof. The lemma follows from Lemma 4.5.27.

Lemma 4.5.29 Let h < j ≤ n.

1. Suppose E = Lv. Then, up to units, R(T̄ j,Z) equals ψ j|v(Xh), and, similarly, R(T̄ j,Y ) equals

ψ j|v(Xh) when i < r.

2. Suppose E =Vv or E =V 0
v . Then T̄ j is a unit. Furthermore, T̄ j = T̄ j,Z if i > 0 and T̄ j = T̄ j,Y if

i < r.

Proof. Suppose E = Lv. Then Lemma 4.5.24 implies that R(T̄ j,Z) equals ψ j|v(Xh) up to units.

Similarly for R(T̄ j,Y ) when i < r.

Expand

ψ j =
d∑

t=0
atψ

t
h, at ∈ K[x], ad ̸= 0, degat < degψh.

Then ψ(h)
j =∑

t a(h−1)
t xt

h.

Suppose (s,v) maximal and E = Vv. Then h = 1 and degψh = 1. Lemma C.3.2 implies that

wE,i(ψ j)= d ·wE,i(ψ1) for any i = 0, . . . , r. In fact, for all i = 1, . . . , r we have

(4.19) wE,i(ψ j −ψd
1 )> wE,i(ψ j)
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since wE,i(ψh)< wE,0(ψh). Recall

ordZ(ψ(1)
j )= wE,i(ψ j)ordZ(π)

from Lemma 4.5.19, and similarly, ordY (ψ(1)
j ) = wE,i+1(ψ j)ordY (π) when i < r. The inequality

(4.19 implies that T̄ j is a unit, T̄ j = T̄ j,Z when i > 0 and T̄ j = T̄ j,Y when i < r.

Suppose E = Vv inner. Then wE,i is a MacLane valuation with centre ψh and satisfying

v ≥ wE,i ≥ w. In particular, wE,i(ψ j) = wE,i(atvψ
tv
h ). Lemma 4.5.19 implies that T̄ j,Z is a unit if

and only if ψ j|wE,i is a unit. But then T̄ j,Z = T̄ j is a unit when i > 0 by Lemma 4.5.27. Similarly

T̄ j,Y = T̄ j is a unit when i < r.

Suppose (s,v) degree-minimal and E = V 0
v . Then wE,i is a MacLane valuation with centre

ψh and satisfying v ≤ wE,i. In particular, wE,i(ψ j)= wE,i(at0
v
ψ

t0
v

h ). Similarly to the previous case,

Lemmas 4.5.19, 4.5.27 conclude the proof.

Suppose E = Lv. Fix P0 = (tv,0), P1 =
(⌊ tv−1

2

⌋
,1

)
. Then

(4.20) sE
1 = ev

(
λv(⌊tv/2⌋+1)− v( f )

2
)
,

and sE
2 = ⌊sE

1 −1⌋. The h-edge Lv corresponds to the edge Lv( f ) of Nv−,ψh ( f ). In particular, δE = eh

and ν= (1,0,−λh). Therefore, up to units,

R(F̄Z)= f |v(Xh) for 0< i ≤ r,

R(F̄Y )= f |v(Xh) for 0≤ i < r.

Fix

k j = ℓhn j +ℓ′hehd j(⌊tv/2⌋+1), for j = 0, . . . , r+1.

Then k j ≡ n j(δEϵhaz)−1 mod δE, as required. Let i = 0 and let M be the matrix of (4.18). Then

M−1 =
 ℓ′h 0 −ℓh

d1evλv d1ev
v( f )

2 + 1
d0

d1eh

d0evλv d0ev
v( f )

2 d0eh

.

Hence y2 p−evv( f )
h =Y 2/d0 . Lemma 4.5.24 then implies that Rh(F̄Z) equals

Y 2/d0 −Hh,v( f )( f )(Xh)

up to units. The quantity nv := 2/d0 equals 1 if evv( f ) is odd and 2 if evv( f ) is even. Recall

Hh,v( f )( f )(X )= X t0
v/eh−ℓhϵhv( f ) f |v,

from (4.5). Note that t0
v = tw if (s,v) has a child (t,w) with centre ψh and t0

v = 0 otherwise.

Suppose E =Vv. We can choose P0 = (tv,0), P1 =
(⌊ tv−1

2

⌋
,1

)
so that

sE
1 = δEϵh

(
λv(⌊tv/2⌋+1)− v( f )

2
)
,
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If (s,v) ̸= (R,wR) and (s,v)< (t,w), then

sE
2 = δEϵh

(
λw(⌊tv/2⌋+1)− w( f )

2
)
,

while sE
2 = ⌊sE

1 −1⌋ otherwise. Up to units

R(F̄Z)= X b
h −Hh−1,α(atv ) for 0< i ≤ r,

R(F̄Y )= X b
h −Hh−1,α(atv ) for 0≤ i < r,

where b = EZ(Z)+1 and α= v−(atv ). Let u = c f
∏

r′∉s(x− r′) ∈ K[x] and let uh = u−ψhq for some

q ∈ K[x] such that deguh < degψh. From Theorem 4.4.26, one has Hh−1,α(atv )= Hh−1,v−(uh)(uh).

Suppose v =µh and E =V 0
v . Fix P0 = (0,2), P1 = (1,1), so

sE
1 =−δEϵh

(
λv − v( f )

2
)
,

and sE
2 = ⌊sE

1 −1⌋. Then up to units

R(F̄Z)= X−b
h −Hh−1,α(at0

v
) for 0< i ≤ r,

R(F̄Y )= X−b
h −Hh−1,α(at0

v
) for 0≤ i < r,

where b = EZ(Z)+1 and α= v−(at0
v
). Let Rh be the set of roots of ψh. Let u0 = c f

∏
r′∈R Rh (x− r′) ∈

K[x] and let u0
h = u0 −ψhq for some q ∈ K[x] such that degu0

h < degψh. One has Hh−1,α(at0
v
) =

Hh−1,v−(u0
h)(u

0
h).

4.5.6 Regularity

If (s,v) has a proper child with centre φw ̸= φv, then φw|v is irreducible by Lemmas 4.5.2 and

4.3.21. Let E = Lv. By Remark 4.5.26 and Lemmas 4.5.28, 4.5.29, the subscheme UE,i ∩ {Z = 0} is

isomorphic to

(4.21) Spec
kv

[
X±1

h ,Y ,
∏

(t,w)<(s,v)(φw|v(Xh))−1]
(R(F̄Z))

,

where the product runs through all proper children of (s,v). Similarly for UE,i ∩ {Y = 0} when

i < r.

Notation 4.5.30 We denote by Γ̊v the scheme ULv,0 ∩ {Z = 0}.

Theorem 4.5.31 The model C/OK is regular.

Proof. We want to prove that UE,i is regular, for any h-edge E, h = 1, . . . ,n, and any i = 0, . . . , rE. In

fact, for the definition of Π, it suffices to show that the subschemes UE,i∩{Z = 0} and UE,i∩{Y = 0}

are regular, where the latter is considered only if i < r. From the description given in §4.5.5 we

only need to consider the case E = Lv, for some proper MacLane cluster (s,v) for f . Let r = rE.

For the explicit description of R(F̄Z) and R(F̄Y ) it suffices to prove that all multiple irreducible

factors of f |v are of the form φw|v for some proper child (t,w) of (s,v). But this follows from

Theorem 4.4.29.
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4.5.7 Properness

Let Cred
s be the underlying reduced subscheme of the special fibre of C. In the previous subsections

we showed that Cred
s consist of 1-dimensional subschemes Γv for each proper MacLane cluster

(s,v), closures of Γ̊v (Notation 4.5.30) in C, and chains of P1. In this subsection we will show that

Γv is projective for any proper (s,v) ∈ΣM
f . By [Liu4, Remark 3.28] the properness of C will follow.

Let (s,v) be a proper MacLane cluster and recall the notation introduced in previous subsec-

tions. Let Cv be the regular projective curve with ring of rational functions

kv(X )[Y ]/
(
Y nv − X t0

v/eh−ℓhϵhv( f ) f |v
)
.

From (4.21) we have a natural birational map Γv Cv defined on the dense open Γ̊v. It extends

to a morphism ι : Γv → Cv by [EGA, II.7.4.9]. Zariski’s Main Theorem implies that ι is an open

immersion, since Γv is separated and regular. By point counting we can prove that ι is an

isomorphism.

Let C̊v = ι(Γ̊v). By Theorem 4.4.29 we have

ordφw|v ( f |v)= |t|/degw,

for any proper child (t,w)< (s,v) with φw ̸=φv. The set Cv(k̄) C̊v(k̄) is finite and consists of:

(1) gcd(nv, t0
v/eh −ℓhϵhv( f )+deg( f |v)) points at infinity;

(2) gcd(nv, t0
v/eh −ℓhϵhv( f )) points on X = 0;

(3) gcd(nv, |t|/degw) points on Y = 0 (X ̸= 0) for each proper child (t,w)< (s,v) with φw ̸=φv.

(1) Let E =Vv. The scheme Γv has (|EZ(Z)|+1) k̄-points in

UE,0 ∩ {Y = Z = 0}

not contained in Γ̊v. Note that |EZ(Z)| equals 1 if tv and ϵh(v( f )− tvλv) are both even, while it

equals 0 otherwise. In fact,

(
ϵh(v( f )− tvλv), tv

)= (
evv( f ), tv/eh −ℓhϵhv( f )

) · ( ℓ′h ℓh
−hh eh

)
,

and so

|EZ(Z)|+1= gcd(nv, t0
v/eh −ℓhϵhv( f )+deg( f |v)),

since deg( f |v)= (tv − t0
v)/eh.

(2) Let E =V 0
v . Let (t,w)< (s,v) such that E =Vw if (s,v) is not degree-minimal. Let U =UV 0

v ,0

if (s,v) is degree-minimal and U =UVw,rE+1 otherwise. The scheme Γv has (|EZ(Z)|+1) k̄-points in

U ∩ {Y = Z = 0}
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not visible on Γ̊v. Note that |EZ(Z)| equals 1 if t0
v and ϵh(v( f )− t0

vλv) are both even, while equals 0

otherwise. Similarly to the case above,

(
ϵh(v( f )− t0

vλv), t0
v
)= (

evv( f ), t0
v/eh −ℓhϵhv( f )

) · ( ℓ′h ℓh
−hh eh

)
,

and so

|EZ(Z)|+1= gcd(nv, t0
v/eh −ℓhϵhv( f )).

(3) Let (t,w) < (s,v) be a proper child such that φw ̸= φv. Let E = Vw. The scheme Γv has

(|EZ(Z)|+1) k̄-points in

UE,0 ∩ {Y = Z = 0}

not visible on Γ̊v. Note that |EZ(Z)| equals 1 if tw and ev(v( f )− twλv) are both even, while it

equals 0 otherwise. Since tw = |t|/degw by Proposition 4.4.25, we can compute

|EZ(Z)|+1= gcd(nv, |t|/degw).

Thus |Γv(k̄) Γ̊v(k̄)| = |Cv(k̄) C̊v(k̄)|, and so Γv ≃ Cv.

Remark 4.5.32. If kv is perfect, Γv is a generalised Baker’s model of the curve Γ̊v∩G2
m,kv

according

to [Mus2].

4.6 Main result

Let C/K be a hyperelliptic curve of genus g ≥ 1. Choose a separable polynomial f ∈ K[x] as in the

previous section so that C/K : y2 = f (x). Then vK (r)> 0 for every root r ∈ K̄ of f . Denote by R the

set of roots of f as before. Consider the MacLane cluster picture of f and fix a centre φv for all

proper MacLane clusters (s,v) ∈ ΣM
f as we did at the beginning of §4.5. Denote by Σ the set of

proper MacLane clusters for f .

Definition 4.6.1 Let (s,v) ∈Σ. Consider its cluster chain

[v0,v1(φ1)=λ1, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm].

Define the following quantities:
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ϵv = evm−1

bv = ev/ϵv

ℓv = ℓm

kv = km

fv = [kv : k]

νv = v( f )

nv = 1 if evνv odd, 2 if evνv even

mv= 2ev/nv

tv = |s|/degv

pv = 1 if tv is odd, 2 if tv is even

sv = 1
2 (tvλv + pvλv −νv)

γv = 2 if tv is even and ϵv(νv−tvλv) is odd, 1 otherwise

δv = 1 if (s,v) is degree-minimal, 0 otherwise

p0
v = 1 if δv = 1 and degv =minr∈s[K(r) : K], 2 otherwise

s0
v = −νv/2+λv

γ0
v = 2 if p0

v = 2 and ϵvνv is an odd integer, 1 otherwise

Define

ṽ = {
(t,w) ∈Σ | (t,w)< (s,v) and fv|t|

fwbv degv −ℓvνvϵw ∉ 2Z
}
.

Let c0
v = 1 if 2−p0

v
bv

−ℓvνvϵv ∉ 2Z, and c0
v = 0 otherwise. Define

uv = |s|−∑
(t,w)<(s,v) |t|− (2− p0

v)degv
ev

+ ∑
(t,w)∈ṽ

fw
fv

+δvc0
v.

The genus g(v) of (s,v) is defined as follows:

• if nv = 1, then g(v)= 0;

• if nv = 2, then g(v)=max{⌊(uv −1)/2⌋,0}.

We say that (s,v) is übereven if uv = 0.

Recall the definition of Hm−1,α, for α ∈Γvm−1 , from Definition 4.3.8(ii). Define gv ∈ kv[y], and

g0
v ∈ kv[y] if δv = 1, by

gv(y)= ypv/γv −Hm−1,vm−1(u)(u), u = c f
∏

r∈R s(x− r) mod φv,

g0
v(y)= yp0

v/γ0
v −Hm−1,vm−1(u)(u), u = c f

∏
r∈R Rv (x− r) mod φv,

where Rv is the set of roots of φv.

Define f ′v ∈ K[x] by

φ
2−p0

v
v f ′v(x)= ∏

r∈s ⋃
(t,w)<(s,v) t

(x− r),

where the union runs through all proper children (t,w)< (s,v).
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Define fv, f̃v ∈ kv[x] by

fv(x)= Hm−1,vm−1(u)(u) · f ′v|v(x), u = c f
∏

r∈R s(x− r) mod φv,

f̃v(x)= fv(x) · xδv c0
v ·∏(t,w)∈ṽφw|v(x).

Finally, define the kv-schemes

• Xv : { fv = 0}⊂Gm,kv ;

• Yv : {gv = 0}⊂Gm,kv ;

• Y 0
v : {g0

v = 0}⊂Gm,kv if (s,v) is degree-minimal.

Recall Notations 2.4.16, 2.4.17 from Chapter 2.

Notation 4.6.2 Let a,b ∈ K[x], b ̸= 0. We denote by a mod b the remainder of the division of a

by b.

In the next theorem we describe the special fibre of the scheme C constructed in §4.5.

Theorem 4.6.3 (Regular SNC model) The scheme C→OK constructed in §4.5 is a regular model

of C with strict normal crossings; its special fibre Cs/k is described as follows:

(1) Every (s,v) ∈Σ gives a 1-dimensional closed subscheme Γv of multiplicity mv. The ring of

rational functions of Γv is isomorphic to kv(x)[y]/(ynv − f̃v(x)). If nv = 2, uv = 0, and f̃v ∈ k2
v,

then Γv ≃P1
kv
⊔P1

kv
, otherwise Γv is irreducible of genus g(v).

(2) Every (s,v) ∈ Σ with nv = 1 gives the closed subscheme Xv ×k P
1
k, of multiplicity ev, where

Xv ×k {0}⊂Γv (the P1
ks are open-ended).

(3) Every non-maximal (s,v) ∈Σ, with (s,v)< (t,w), gives the closed subscheme

Yv ×k P
1(
ϵvγv, sv, sv − pv

2 (λv − degv
degwλw)

)
,

where Yv ×k {0}⊂Γv and Yv ×k {∞}⊂Γw.

(4) Every degree-minimal (s,v) ∈Σ gives the closed subscheme Y 0
v ×kP

1(ϵvγ
0
v,−s0

v), where Y 0
v ×k

{0}⊂Γv (the chains are open-ended).

(5) Finally, the maximal element (s,v) ∈Σ gives the closed subscheme Yv ×k P
1(ϵvγv, sv), where

Yv ×k {0}⊂Γv (the chains are open-ended).

If Γv is reducible, the two points in Yv ×k {0} (and Y 0
v ×k {0} if (s,v) is degree-minimal) belong to

different irreducible components of Γv. Similarly, if (s,v) is not maximal with (s,v)< (t,w), and

Γw is reducible, then the two points of Yv ×k {∞} belong to different irreducible components of Γw.
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Proof. The description of the special fibre of C follows from its explicit construction developed in

§4.5 (see especially §4.5.5). We highlight the key points.

(1) Each proper MacLane cluster (s,v) gives the 1-dimensional closed subscheme Γv of Cs,

coming from the ∗-face Fv. The open subscheme Γ̊v (Notation 4.5.30) of Γv is isomorphic to

Spec
kv

[
X±1,Y ,

∏
(t,w)<(s,v)(φw|v)−1]

(Y nv − X t0
v/bv−ℓvϵvνv f |v)

,

where the product runs through all proper children of (s,v). The multiplicity of Γv in Cs is given

by evd0, where d0 is the denominator of the slope sLv
1 . We noticed in §4.5.5 that nv = 2/d0. If

nv = 1, then Γv ≃P1
kv

. Suppose nv = 2. We want to show that the ring of rational functions of Γv is

(4.22) kv(X )[Y ]/(Y nv − f̃v(X )).

If (s,v) is degree-minimal, then t0
v = 2− p0

v from (4.9). If (s,v) is not degree-minimal, then

there exists a child (t,w)< (s,v) with φw =φv; in particular, t0
v = tw, fw = fv and so

t0
v/bv −ℓvϵvνv = fv|t|

fwbv degv −ℓvνvϵw.

Now let (t,w)< (s,v) with φw ̸=φv. Theorem 4.4.29 implies that

ordφw|v ( f |v)= |t|/degw.

Note that ϵw = ev and fv degw = fwbv degv by Lemma 4.3.21. Then

|t|
degw ∉ 2Z if and only if fv|t|

fwbv degv −ℓvνvϵw ∉ 2Z.

Let [v0, . . . ,vh(φh)=λh] be the cluster chain for v. Let fs =∏
r∈R s(x− r). The Newton polygon

Nvh−1,φv ( fs) has only slopes >−λv. Then fs|v = u|v, where u = fs mod φv.

The observations above, together with Proposition 4.3.18(iv), imply that (4.22) is the ring of

rational functions of Γv.

The subscheme given by (s,v) ∈Σ in (2) is the closure of

(4.23)
⋃rE

i=1

(
UE,i ∩ {Z = 0}

)
,

when E = Lv. The subscheme given by (s,v) ∈Σ in (3) or (5) is the closure of (4.23) when E =Vv.

Note that (Vv)Z(Z)+1= pv/γv. The subscheme given by a degree-minimal (s,v) ∈Σ in (4) is the

closure of (4.23) when E =V 0
v . Note that (V 0

v )Z(Z)+1= p0
v/γ0

v.

Remark 4.6.4. Let (s,v) ∈Σ. Note that

(i) if Γv is reducible then pv/γv = 2.

(ii) if (s,v)< (t,w) and Γw is reducible, then pv/γv = 2.

(iii) if (s,v) is degree-minimal and Γv is reducible then p0
v/γ0

v = 2.
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RATIONAL CLUSTER PICTURE AND BASE EXTENSIONS

In this appendix we introduce two auxiliary results for Chapter 2. In §A.1 we study the

choice of a rational centre of a proper cluster. In §A.2 we show how the dualising sheaf

behaves under finite Galois extension of the base field. Note that this second result holds

for every geometrically connected, smooth, projective curve.

A.1 Rational centres over tame extensions

Let C/K be a hyperelliptic curve given by y2 = f (x).

Lemma A.1.1 Let L/K be a field extension. Consider the base extended curve CL/L and its

associated cluster picture ΣCL . Let s ∈ΣCL be a proper cluster Gs =StabGK (s), and Ks = (Ks)Gs . If

L/L∩Ks is tamely ramified, then s has a rational centre ws ∈ L∩Ks.

Proof. This proof takes ideas from [D2M2, Lemma B.1]. Let ws ∈ L be a rational centre of s and

let ρs =maxw∈L minr∈s v(r−w) be its radius. Recall the rationalisation srat ∈Σrat
CL

of s (Definition

2.3.11). Denote t = srat and define Gt = StabGK (t). Since s ⊆ t we have Gs ⊆ Gt. Furthermore,

Gal(Ks/L) ⊆ Gt. Let Fs = L∩Ks. Then Gal(Ks/Fs) ⊆ Gt. Since L/Fs is tamely ramified, we can

consider a maximal tamely ramified extension Ft
s of Fs extending L. Write Fnr

s for the maximal

unramified extension of Fs in F t
s. Fix a uniformiser πs of Fs. Since L/Fs is tamely ramified and

ws ∈ L, for a sufficiently large b fix a choice of b
p
πs such that ws ∈ Fnr

s ( b
p
πs). Write the v-adic

expansion of ws as

ws = ut
b
p
πs

t +ut+1
b
p
πs

t+1 + . . .

for a suitable t ∈Z, with ul ∈ Fnr
s . Define

w = ∑
l<eFs /K bρs

ul
b
p
πs

l .
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We first show that w ∈ Ft
s. It trivially follows if w = 0. Suppose 0 ̸= w ∉ Ft

s, and that ul0
b
p
πs

l0 is

the lowest valuation term of the expansion which is not in Ft
s. Let w′ =∑

l<l0 ul b
p
πs

l . Note that

w′ ∈ Ft
s for our assumption on l0. As v(w−ws) ≥ ρs, we have v(ws−w′) = v(w−w′) = l0/eFs/K b.

Since L ⊆ Ft
s, we have ws−w′ ∈ Ft

s and so the denominator of l0/b is not divisible by p. But then

ul0
b
p
πs

l0 ∈ Ft
s as ul0 ∈ Fnr

s ⊆ Ft
s and b

p
πs

l0 ∈ Ft
s.

Let Dt = {x ∈ Ks | v(x−ws)≥ ρs} be the smallest disc in Ks cutting out t. Note that StabGK (Dt)=
Gt. Since w ∈Dt, for σ ∈ Gal(Ks/Fs) ⊆ Gt we have σ(w) ∈Dt and so v(σ(w)−ws) ≥ ρs. Therefore

the terms in the v-adic expansions of σ(w) and w agree up to b
p
πs

eFs /K bρs (excluded). Furthermore,

if w ∈ L, then w is a rational centre of s. Indeed, for any r ∈ s one has

v(r−w)≥min{v(r−ws),v(w−ws)}≥ ρs.

We showed w ∈ Ft
s. It remains to prove that w ∈ Fs, i.e. it is Gal(Ks/Fs)-invariant. Suppose not,

and that ul b
p
πs

l is the lowest valuation term of the expansion which is not Gal(Ks/Fs)-invariant.

Note that the denominator of l/b is not divisible by p since w ∈ Ft
s. If b ∤ l, then there is some

element σ of tame inertia of Fs which fixes ul ∈ Fnr
s and maps b

p
πs

l to ζ b
p
πs

l , where ζ ̸= 1 is

a root of unity; this contradicts the fact that σ(w) ≡ w mod b
p
πs

eFs /K bρs . If b | l, then we must

have ul ∉ Fs. Then there exists some element σ ∈Gal(Fnr
s /Fs) so that σ(ul) ̸= ul ; this contradicts

σ(w)≡ w mod b
p
πs

eFs /K bρs similarly to before.

A.2 Dualising sheaf under base extensions

Let F/K be a finite Galois extension and let OF be the ring of integers of F.

Lemma A.2.1 Let M be a flat OK -module and MF := M⊗OK OF . Then

M ≃ MGal(F/K)
F = {m ∈ MF |σ(m)= m for every σ ∈Gal(F/K)}.

Proof. As M is flat, the functor M⊗OK − is (left) exact. From the isomorphism OK ≃OGal(F/K)
F it

follows that

M⊗OK OK ≃ M⊗OK OGal(F/K)
F ,

that is M ≃ MGal(F/K)
F , as required.

Proposition A.2.2 Let C be a geometrically connected, smooth, projective curve of genus g ≥ 1

and let C be a regular model of C over OK . Denote by CF and COF the base extended schemes. Then

H0(CF ,ωCF /OF )≃ H0(C,ωC/OK )⊗OK OF and

H0(C,ωC/OK )≃ H0(CF ,ωCF /OF )Gal(F/K).

Proof. The lemma follows from the following results: [Liu4, Proposition 10.1.17], [Liu4, Theorem

6.4.9(b)], [Liu4, Exercise 6.4.6], [Liu4, Corollary 5.2.27] and the previous lemma.
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SMOOTH COMPLETION AND BAKER’S MODEL

The content of this appendix is particularly related to Chapter 3. In §B.1, as a corollary

of a more general result on varieties, we show that every smooth projective curve has a

dense open subscheme which is isomorphic to a smooth plane curve. In §B.2 we show that

not every smooth projective curve C admits a Baker’s model.

B.1 Birational smooth hypersurface of a variety

Let k be a perfect field. Recall that an algebraic variety Z over k, denoted Z/k, is a scheme

Z →Spec k of finite type.

Lemma B.1.1 Let Z/k be a geometrically reduced algebraic variety, pure of dimension n. Suppose

either n > 0 or k infinite. Then there exists a separable polynomial f ∈ k(x1, . . . , xn)[y], such that

k(Z)= k(x1, . . . , xn)[y]/( f ).

Proof. Let Z1, . . . , Zm be the irreducible components of Z. From [Liu4, Proposition 7.1.15], [Liu4,

Lemma 7.5.2(a)] it follows that k(Z)≃⊕m
i=1 k(Zi). Let i = 1, . . . ,m. As Z is pure, dim Zi = dim Z = n.

Since Zi is geometrically reduced and integral, it follows from [Liu4, Proposition 3.2.15] that

the field of functions k(Zi) is a finite separable extension of a purely trascendental extension

k(x1, . . . , xn). Hence there exists a monic irreducible separable polynomial f i ∈ k(x1, . . . , xn)[y] such

that

k(Zi)≃ k(x1, . . . , xn)[y]/( f i).

We want to show that we can inductively choose the polynomials f i above such that f i

and f j are coprime for all j < i. Suppose we have fixed f1, . . . , f i−1 for some i ≥ 1, and let g i ∈
k(x1, . . . , xn)[y] be any monic irreducible polynomial such that k(Zi)≃ k(x1, . . . , xn)[y]/(g i). Since
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k(x1, . . . , xn) is infinite, there exists c ∈ k(x1, . . . , xn) such that τc g i ̸= f j for any j < i, where τc g i is

the polynomial defined by τc g i(y)= g i(y− c). But τc g i and f j are irreducible monic polynomials,

so gcd(τc g i, f j)= 1. Moreover, τc g i is separable and

k(x1, . . . , xn)[y]/(g i)≃ k(x1, . . . , xn)[y]/(τc g i)

via the map taking y 7→ y− c. Then choose f i = τc g i.

Thus assume gcd( f i, f j)= 1 for any i, j = 1, . . . ,m. From the Chinese Remainder Theorem it

follows that

k(Z)≃
m⊕

i=1
k(Zi)≃

m⊕
i=1

k(x1, . . . , xn)[y]
( f i)

≃ k(x1, . . . , xn)[y]
( f )

,

where f =∏m
i=1 f i.

The following result is a variant of [BMS, Theorem 5.7].

Theorem B.1.2 Let Z/k be a geometrically reduced, separated algebraic variety, pure of dimension

n. Suppose either n > 0 or k infinite. Then there exists a smooth affine hypersurface V in An+1
k

birational to Z.

Proof. Lemma B.1.1 shows that there exists a separable polynomial f ∈ k(x1, . . . , xn)[y] such

that k(Z) ≃ k(x1, . . . , xn)[y]/( f ). Rescaling f by an element of k(x1, . . . , xn) if necessary, we can

assume that f is a polynomial in k[x1, . . . , xn, y] with no irreducible factors in k[x1, . . . , xn]. Hence

the total quotient ring of k[x1, . . . , xn, y]/( f ) is k(x1, . . . , xn)[y]/( f ). It follows that there exists a

birational map Z Z0, where Z0 is the affine hypersurface defined by f (x1, . . . , xn, y) = 0. Let

A = k[x1, . . . , xn, y]/( f ) be the coordinate ring of Z0. If Z0 is smooth then we are done. Suppose Z0

is not smooth. Then there exists h ∈ J∩k[x1, . . . , xn], where J ⊂ k[x1, . . . , xn, y] is the ideal defining

the singular locus of Z0.

The rest of the proof follows the spirit of [BMS, Theorem 5.7]. Expand f =∑d
i=0 ci yi, where

ci ∈ k[x1, . . . , xn], and c0 ̸= 0. Via the change of variable (hc2
0)y′ = y we get f =∑d

i=0 ci(hc2
0)i(y′)i.

Dividing by c0, we define f ′ = 1+∑d
i=1 ci ci−1

0 (hc0 y′)i and Z′
0 =Spec k[x1, . . . , xn, y′]/( f ′). Then via

the homomorphism y 7→ (hc2
0)y′ we see that Z′

0 is isomorphic to the smooth dense open subvariety

D(hc0) of Z0. Thus Z′
0 is a smooth affine hypersurface in An+1

k birational to Z.

Lemma B.1.3 If a smooth affine curve C0/k is birational to a smooth projective curve C/k, then C

is isomorphic to the smooth completion of C0. Equivalently, there exists an open immersion with

dense image C0 ,→ C.

Proof. Since C is complete and C0 is smooth and separated (as affine), the birational map C0 C

uniquely extends to a separated birational morphism ι : C0 → C. Denoting by C̃ the smooth

completion of C0 note that ι decomposes into the canonical open immersion C0 ,→ C̃ and the

morphism ι̃ : C̃ → C extending the rational map given by ι. Therefore it suffices to prove that ι̃ is

an isomorphism.
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First note that ι̃ is proper by [Liu4, Proposition 3.3.16(e)] since C̃ and C are complete. Fur-

thermore, both C̃ and C are smooth, so they are geometrically reduced and have irreducible

connected components. For any connected component Ũ of C̃ there is a connected component U of

C such that ι̃ restricts to a morphism ιU : Ũ →U. Note that ιU is a proper birational morphism,

as Ũ is a closed subscheme of C̃ and ι̃ is proper birational. Since both Ũ and U are integral and

smooth of dimension 1, and so normal, [Liu4, Corollary 4.4.3(b)] implies that ιU : Ũ →U is an

isomorphism. It follows that ι̃ : C̃ → C is an isomorphism.

Corollary B.1.4 Every smooth projective curve C/k has a dense affine open which is isomorphic

to a smooth plane curve.

Proof. From Theorem B.1.2 there exists a smooth affine plane curve C0 birational to C. Then

Lemma B.1.3 concludes the proof.

B.2 Existence of a Baker’s model

Let k be a perfect field. We say that a curve C/k is nice if it is geometrically connected, smooth

and projective over k. In this appendix we slightly extend some results in [CV1, CV2] for studying

the existence of a Baker’s model of a nice curve. Define the index of a nice curve C/k to be the

smallest extension degree of a field K /k such that C(K) ̸=∅.

Lemma B.2.1 Let C be a nice curve of genus 1. Then C admits a Baker’s model if and only if C

has index at most 3.

Proof. Suppose C has index at most 3. Then by [CV1, Lemma 4.1] the curve C is nondegenerate.

Hence C has an outer regular Baker’s model.

Suppose now that C admits a Baker’s model. Then there exists a smooth curve C0 ,→ C defined

in G2
m,k by f ∈ k[x±1, y±1] such that the completion C1 of C0 with respect to the Newton polygon

∆ of f is regular. We follow the spirit of the proof of [CV1, Lemma 4.1]. Since the arithmetic

genus of C is 1 there is exactly 1 interior integer point of ∆. There are 16 equivalence classes of

integral polytopes with this condition (see [CV1, Appendix]). Then without loss of generality we

can assume ∆ is in this list. Note that there is an edge ℓ⊆ ∂∆ such that #(ℓ∩Z2) ≤ 4. Let v be

the normal vector of ℓ and α= (v, ()) ∈Σ1. Then f |α has at most 3 roots in k̄× by Proposition 3.4.1.

Therefore the splitting field K of f |α has degree ≤ 3 over k. Furthermore, by definition C1 has at

least one point defined over K visible on Cα. Thus C1, and so C, has index at most 3.

Remark B.2.2. The lemma above implies that there are nice curves which does not have a Baker’s

model. Indeed, if k is a number field, [Cla] proves there exist nice curves of genus 1 of any index.

Theorem B.2.3 Let C be a nice curve of genus g ≤ 3. If k is finite or C(k) ̸=∅ then C admits a

Baker’s model.
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Proof. The first theorem in [CV1] and [CV2, Proposition 3.2] show C is nondegenerate except

when C is birational to a curve C0 given in G2
m,k by

f (2) = (x+ y)4 + (xy)2 + xy(x+ y+1)+ (x+ y+1)2, with k = F2, or

f (3) = (x2 +1)2 + y− y3, with k = F3.

Recall that if C is nondegenerate then it has an outer regular Baker’s model. Therefore it suffices

to show that in the two exceptional cases above the completion C1 of the curve C0 with respect to

its Newton polygon is smooth. We use the notation of §3.1.3.

Suppose k = F2 and C0 : f (2) = 0 over G2
m,F2

. Note that C0 is smooth. Denote f = f (2). The

Newton polygon ∆ of f is

x

y

(4,0)

(0,4)

ℓ1

ℓ2
ℓ3

where the normal vectors of the edges ℓ1, ℓ2, ℓ3 of ∆ are respectively β1 = (0,1), β2 = (1,0),

β3 = (−1,−1). Then by fixing δβ1 = (1,0), δβ2 = (−1,−1), δβ3 = (0,1) we have

fℓi (X ,Y )= (X2 + X +1)2 + X (X +1)Y + (X2 + X +1)Y 2 +Y 4,

for every i = 1,2,3. Note that the points on Y = 0 are regular points of Cℓi . Thus Cℓ is smooth for

any edge ℓ of ∆ and so C1 is smooth.

Suppose k = F3 and C0 : f (3) = 0 over G2
m,F3

. Note that C0 is smooth. Denote f = f (3). The

Newton polygon ∆ of f is

x

y

(4,0)

(0,3)

ℓ1

ℓ2
ℓ3

where the normal vectors of the edges ℓ1, ℓ2, ℓ3 of ∆ are respectively β1 = (0,1), β2 = (1,0),

β3 = (−3,−4). We can choose δβ1 = (1,0) so that

fℓ1(X ,Y )= (X2 +1)2 +Y −Y 3.

The points on Y = 0 are regular points of Cℓ1 and so Cℓ1 is smooth. Furthermore, up to a power

of X the polynomials f |ℓ2 and f |ℓ3 equal X3 + X2 −1 and −X +1 respectively. It follows that the

charts Cℓ2 and Cℓ3 of C1 are regular. Thus C1 is smooth.
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PSEUDO-VALUATIONS AND AN EXPLICIT TOROIDAL EMBEDDING

In this appendix we cover some definitions and results for Chapter 4. In §C.1 we give the

definition of pseudo-valuation and of the associated objects. In §C.2 and §C.3, we explicitly

describe the toroidal embedding introduced in §4.5.2.

C.1 Pseudo-valuations

Let A be an integral domain (with identity). Let Q̂=Q∪ {∞}. The ordering and the group law on

Q are canonically extended to the set Q̂.

Definition C.1.1 A map v : A → Q̂ is called pseudo-valuation (of A) if

(a) v(ab)= v(a)+v(b),

(b) v(a+b)≥min{v(a),v(b)},

for any a,b ∈ A. A pseudo-valuation v is said valuation if it also satisfies

(c) v(a)=∞ if and only if a = 0;

we call it infinite pseudo-valuation otherwise.

Definition C.1.2 Let v : A → Q̂ be a pseudo-valuation.

• The valuation group of a pseudo-valuation v : A → Q̂, denoted Γv, is the subgroup generated

by the subset v(A)∩Q of Q. Note that if Z⊆ v(A), then Γv = v(A)∩Q.

• v is discrete if there exists e ∈ Z+ such that eΓv = Z. If that happens, then ev = e is said

ramification index of v.
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• The valuation ring Ov of a pseudo-valuation v : A → Q̂ is the set of a ∈ A with v(a)≥ 0.

• The residue ring of v is the quotient of Ov by the prime ideal O+
v consisting of the elements

a ∈ A with v(a)> 0.

• If v is a valuation, the residue field of v is the residue ring of the valuation of Frac(A) that

v induces.

C.2 Explicit matrices

In this section we explicitly describe the matrices introduced in §4.5.1. Recall the notation of

§4.5.1. Suppose the permutation τ equals the identity. Let m′
j, for j = 0, . . . ,h, be the quantities

defined in Lemma 4.3.7. Then

MR
E,i =



e1 −h2m′
1 . . . −hh−1m′

1 0 −βh+1m′
1 . . . . . . −βnm′

1 0 0

0 e2
. . . −hh−1m′

2 0 −βh+1m′
2 . . . . . . −βnm′

2 0 0
...

. . .
. . .

...
...

...
. . .

. . .
...

...
...

...
...

. . . eh−1 0 −βh+1m′
h−1 . . . . . . −βnm′

h−1 0 0
...

...
. . . 0 δax −β′h+1 . . . . . . −β′n dibx −di+1bx

...
...

. . .
... 0 1 0 . . . 0 0 0

...
...

. . .
...

... 0 1
. . . 0 0 0

...
...

. . .
...

...
...

. . .
. . .

. . .
...

...

0 0 . . . 0 0 0 0
. . . 1 0 0

0 0 . . . 0 δay 0 0
. . . 0 diby −di+1by

−h1m′
0 −h2m′

0 . . . −hh−1m′
0 δaz −βh+1m′

0 . . . . . . −βnm′
0

ni
δϵv

− ni+1
δϵv


where for any o = h+1, . . . ,n we have

βo =
0 if µo > vE,

ϵvv(ψo) otherwise,
β′

o =
v(ψo)/λv if µo > vE,

0 otherwise.

Therefore

det MR
E,i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1

e2 ∗
. . .

eh−1

1

0 . . .
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·
∣∣∣∣∣∣
δvx diwx −di+1wx

δvy diwy −di+1wy

δvz
ni
δϵv

− ni+1
δϵv

∣∣∣∣∣∣= 1
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Furthermore, Th and T equal respectively


1 δaz c1
ni c1
δϵv

− ni+1 c1
δϵv. . .

...
...

...

1 δaz ch−1
ni ch−1
δϵv

− ni+1 ch−1
δϵv

1

. . .

1

1


,



1
. . .

1

1 ki
δ

− ki+1
δ. . .

1

1


,

and T−1
h and T−1 are respectively



1 −δaz c1 − ni c1
δϵv

ni+1 c1
δϵv. . .

...
...

...

1 −δaz ch−1 − ni ch−1
δϵv

ni+1 ch−1
δϵv

1

. . .

1

1


,



1
. . .

1

1 − ki
δ

ki+1
δ. . .

1

1


,

where all missing entries are 0s.
Finally, the vectors ν̃o, for 1≤ o ≤ n, first n rows of the matrix MR

E,i, are

ν̃o =


(
0, . . . ,0, 1

eo
, ho+1mo

evo+1
, . . . , hh−1mo

evh−1
,0, βh+1mo

ϵv
. . . , βnmo

ϵv
,0,0

)
if 1≤ o < h,

1
δ

(0, . . . ,0,by,β′
h+1by, . . . ,β′

nby,bx,0) if o = h,

(0, . . . ,0,1,0, . . . ,0)= εo if h < o ≤ n,

C.3 MacLane clusters fan

We want to show that the cones constructed in §4.5.2 form a fan. Let h = 1, . . . ,n. Recall the

degree-minimal MacLane cluster (sh,µh). Let

[v0,v1(φ1)=λ1, . . . ,vm−1(φm−1)=λm−1,vm(φm)=λm]

be the cluster chain for µh. Let c ∈R, with c >λm−1 if m > 1. Define the valuation vh,c : K(x)→ R̂

given on K[x]∗ by

vh,c
(∑

j c jψ
j
h

)=min j
(
vm−1(c j)+ jc

)
, c j ∈ K[x], deg(c j)< deg(ψh).

Note that when m = 1, then degψh = 1 and so v0(c j)= vK (c j).

Let (s,v) be a proper MacLane cluster with centre φv =ψh, and let E be the h-edge Lv, Vv, or

V 0
v if (s,v) is degree-minimal. Recall the notation of §4.5.1. Let r = rE and δ= δE.

Lemma C.3.1 For any i = 0, . . . , r+1, there exist α,β ∈Q≥0, such that

ω̃i =αω̃0 +βω̃r+1.
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Proof. If i = 0 or i = r+1, the statement is trivial. Then assume 1≤ i ≤ r. Since n0di > nid0 and

nidr+1 > nr+1di, there exist αi,βi ∈Q+ such that

αinid0 +βinidr+1 =αin0di +βinr+1di.

Define e = di
d0αi+dr+1βi

, α= eαi, β= eβi. The lemma follows from (4.15).

Lemma C.3.2 Let c ∈R and vh,c : K[x]→ R̂ as above. If

(i) (s,v)< (t,w), E =Vv, and w(ψh)< c <λv, or

(ii) (s,v) maximal, E =Vv, and c <λv, or

(iii) (s,v) degree-minimal, E =V 0
v , and c >λv,

then vh,c(γ j,E)= 0 for any j = 1, . . . ,n, j ̸= h.

Proof. Let j = 1, . . . ,n, j ̸= h. Expand

ψ j =
d∑

t=1
ctψ

t
h, ct ∈ K[x], cd ̸= 0, deg ct < degψh.

If j = τ(o) for some o < m, then vh,c(ψ j)= vm−1(ψ j). It follows from Lemma 4.3.3 that vh,c(γ j,E)= 0.

Hence assume j ̸= τ(o) for all o < m.

(i) Assume (s,v) < (t,w), E = Vv, and w(ψh) < c < λv. Suppose µ j ≥ v. Lemma 4.5.10 implies

that cd = 1 and v(ψ j) = v(ψd
h) = dλv. Since c < λv we have vh,c(ψ j) = dc, by definition. Then

vh,c(γ j,E)= 0. Suppose µ j ̸≥ v. Therefore

v(ψ j)= w(ψ j)≤ vh,c(ψ j)≤ v(ψ j).

where the first equality follows from Lemma 4.5.10. Hence vh,c(γ j,E)= 0.

(ii) Assume (s,v) maximal, E =Vv, and c <λv. Then µ j ≥ v. Lemma 4.5.10 implies that cd = 1

and v(ψ j)= v(ψd
h)= dλv. It follows that vh,c(ψ j)= dc as c <λv. Therefore vh,c(γ j,E)= 0.

(iii) Assume (s,v) degree-minimal, E =V 0
v , and c >λv. Recall the definition of vE. Then µ j ̸≥ vE

and vE(ψ j)≥ vh,c(ψ j)≥ v(ψ j). It follows from (4.13) that vh,c(ψ j)= v(ψ j). Thus vh,c(γ j,E)= 0.

Lemma C.3.3 For any ω̃ ∈σE,i,i+1 σE,i+1, there exists c ∈R, with c >λm−1 if m > 1, so that

ω̃= e(vh,c(ψ1), . . . ,vh,c(ψn),C,1),

for some e ∈R+, C ∈R. In particular,

(i) if (s,v)< (t,w) and E =Vv, then w(ψh)< c <λv;

(ii) if (s,v) maximal and E =Vv, then c <λv;

(iii) if (s,v) degree-minimal and E =V 0
v , then c >λv;
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(iv) if E = Lv, then c =λv.

Proof. From Lemma 4.5.15, the statement is true for ω̃= ω̃0. So suppose ω̃ ̸= ω̃0. Lemma C.3.1

implies that ω̃=αω̃0 +βω̃r+1 for some α,β ∈R+. Let e ∈R+, c ∈R as follows

e =αδϵhd0 +βδϵhdr+1, c = αn0ay +βnr+1ay

e
−azby.

From the definition of ω̃0 and ω̃r+1 in (4.15) we have

ω̃= e(cα̃h1 + α̃π1, . . . , cα̃hn + α̃πn,C,1),

for some C ∈ R. Furthermore, c satisfies the inequalities of cases (i)-(iv) by Lemma 4.5.15. In

particular, c >λm−1 if m > 1. From (4.14), Lemma C.3.2 concludes the proof.

Remark C.3.4. Note that the element c ∈R in Lemma C.3.3 is uniquely determined by the vector

ω̃. Indeed, c equals the division of the h-th coordinate of ω̃ by its last coordinate.

Let i = 0, . . . , r+1, with i ≤ r if E is outer. Let ci = ni
δev− di

ay −azby. We define the valuation

wE,i : K[x]→ Q̂ by wE,i(g)= vh,ci (g) for any g ∈ K[x]∗. In other words, wE,i is given on K[x]∗ by

(C.1) wE,i
(∑

j a jψ
j
h

)=min j
(
v−(a j)+ jci

)
,

where a j ∈ K[x], deg(a j)< deg(ψh). In fact, wE,i is the MacLane valuation

wE,i =
[
v−,wE,i(ψh)= ni

δev− di
ay −azby

]
,

except possibly when (s,v) is maximal, E =Vv and 1≤ i ≤ r. Lemma C.3.3 implies that

ω̃i = δev−di(wE,i(ψ1), . . . ,wE,i(ψn),C,1),

for some C ∈Q. We denote C by wE,i(y).

Theorem C.3.5 The set of cones Σ defined in §4.5.2 is a fan.

Proof. For any ∗-edge E let

σE,0,rE+1 =
rE⋃
i=0

σE,i,i+1.

By Lemma C.3.1 it suffices to show that the set

Σ′ = {σ0}∪ ⋃
E ∗-edge

(σE,0 ∪σE,rE+1 ∪σE,0,rE+1)

is a fan. But this follows from Lemma C.3.3.
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