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ABSTRACT

he purpose of this thesis is to construct explicit regular models of curves, both over fields

and over discrete valuation rings. Given a perfect field 2 and a smooth plane curve Cy/k,

we know there exists a unique non-singular projective curve C 2 Cy. The problem is to

find C explicitly. Under certain conditions, a method called toric resolution describes such a curve

from a certain elementary combinatorial object attached to Cy. Unfortunately, this approach does

not always work. We extend this classical construction to any curve, preserving its computational
and combinatorial nature.

Let K be the field of fraction of some discrete valuation ring O and C/K a hyperelliptic curve

of genus g. A regular model of C over O is a regular proper flat 2-dimensional scheme C — Spec O

with generic fibre isomorphic to C. A classical question in arithmetic geometry is how to construct

such a model. An answer is known when g < 2, thanks to algorithms developed by Tate and Liu

(in residue characteristic not 2). However, there was no general algorithm for an unbounded

g. In this thesis, we explicitly construct a regular model of C over O with normal crossings for

hyperelliptic curves of arbitrary genus, when the residue characteristic of K is not 2 (and some

cases when it is 2). The description relies on a new notion we introduce: the MacLane cluster

picture.
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CHAPTER

INTRODUCTION

urves are the main object of this dissertation. A curve C defined over a field K, denoted

C/K, is a scheme C — Spec K of finite type, pure of dimension 1. Let C be a smooth,

projective curve defined over a field K. We are interested in constructing regular models
of C. Let us explain what we mean by that. Let O be an integral domain of Dedekind dimension
< 1 with field of fractions K.

Definition A model of C over O is a proper flat scheme C — Spec O of relative dimension 1, with

generic fibre isomorphic to C.

IfdimO =0, then O = K and a model of C over O is a curve C isomorphic to C. Note that in this
case, every model is regular since C is smooth. If dim O = 1, then a model of C is a 2-dimensional
scheme and does not have to be regular. In the following sections we present our results: explicit
constructions of models of curves over perfect fields and of regular models of hyperelliptic curves
over discrete valuation rings. All our descriptions rely on applying toric resolution approaches
over certain Newton polygons attached to the curve C.

Each subsequent chapter of this thesis consists of one of the author’s papers, is self-contained
and has its own introduction and notation. Chapter 2 is [Mus1], Chapter 3 is [Mus2] and Chapter
4 is [Mus3]. In particular, the reader is not required to read the full dissertation if they are

interested in a specific result.

1.1 Models of curves over perfect fields

Every smooth, projective curve C/K is uniquely determined by any dense open subset. In fact,
given any affine smooth curve Cy/K there exists a unique smooth, projective curve C/K whose Cy

is a dense open subscheme. This theoretical existence and uniqueness raises a question: can we

1



CHAPTER 1. INTRODUCTION

find a model of C over K knowing Cy? Indeed, describing a model of C over K would lead to the
understanding of its geometry, e.g. the computation of the genus.

The problem presented above has a well-known solution, that consists of embedding Cy in a
projective space, taking its closure, and applying repeated blowing-ups to resolve all singularities.
However, this procedure is usually hard to handle in practice. For this reason, alternative
approaches have been developed. Here we want to focus on one of them, called toric resolution.

First, since all smooth, projective curves have a dense open subscheme isomorphic to a smooth
curve contained in the 2-dimensional torus G?n x> We suppose that Cy is of this form. A simple
combinatorial object, called Newton polygon, is 3[ssociated with Cg, and a toric variety T > C¢ can
be defined explicitly from it. When the closure of C in T is smooth, it is a model of C over K.

The construction above is easy and explicit but unfortunately it does not always give a model
of C over K. What can we done when it fails? In Chapter 3 we present a new approach that
extends the classical toric resolution if K is perfect. On one side, our method always leads to
the description of a model of C over K, called generalised Baker’s model. On the other side, it
preserves the computational and combinatorial nature of toric resolutions, relying on an iterative

construction of Newton polygons.

1.2 Models of hyperelliptic curves over discrete valuation rings

Suppose K is a complete discretely valued field of characteristic different from 2, with ring of
integers Ok and residue field k. To study the arithmetic of a smooth, projective curve C/K, it is
essential to understand regular models of C over Og. However, this is a difficult problem, even
when C is a hyperelliptic curve. Similarly to the case of models over fields, a repeated blowing-ups
procedure is possible but often impractical. For this reason, the study of regular models has been
a very active area in recent years.

Let C/K be a hyperelliptic curve. In Chapter 2, we explicitly construct the minimal regular
model with normal crossings C/Og of C, under certain conditions on the curve. As an application,
we also determine a basis of integral differentials of C, that is an Og-basis for the global sections
of the relative dualising sheaf w¢/o,. Note that this is possible due to the explicit description of C.
In some cases, the result presented in this chapter is able to produce a regular model even when
the characteristic of % is 2.

In Chapter 4 a regular model over O is constructed for any hyperelliptic curve C/K, if
char(k) # 2. The description of the model is given in a closed form, thanks to a new notion we
introduce, the MacLane cluster picture. Being a bridge between some of the objects recently
used in the study of regular models, the MacLane cluster picture has the potential to have an
important role in understanding the local arithmetic of hyperelliptic curves.

The constructions in both chapters follow the same spirit. We first define a toric scheme

T — Spec Ok in which a certain open subscheme Cj of C naturally embeds. The closure of Cy

2



1.2. MODELS OF HYPERELLIPTIC CURVES OVER DISCRETE VALUATION RINGS

in T is a regular model C of C over Ok (with strict normal crossings). It is important to point
out that the construction of T, and consequently of C, is explicit, coming from certain Newton

polygons attached to the hyperelliptic curve.






CHAPTER

MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC
CURVES

he purpose of this chapter is to construct regular models of hyperelliptic curves and to
describe a basis of integral differentials attached to them. We will do it under certain
conditions on the curve, mild when the residue characteristic is not 2. The content of this
chapter can be found in the author’s paper Models and Integral Differentials of Hyperelliptic

Curves [Musl], currently submitted for publication.

2.1 Introduction

To describe the arithmetic of curves over global fields, for example in the study of the Birch &
Swinnerton-Dyer conjecture, it is essential to understand regular models and integral differentials
over all primes, including those with very bad reduction. Constructing regular models of curves
over discrete valuation rings is not an easy problem, even in the hyperelliptic curve case. In fact,
there is no practical algorithm able to determine a model, unless the genus of the curve is 1 or we
have some tameness or nondegeneracy hypothesis.

One possible approach to tackle this problem is giving a full classification of possible regular
models in a fixed genus, as done by the Kodaira—Néron ([Kod], [Nér]) and Namikawa—Ueno ([NU],
[Liu2]) classifications for curves of genera 1 and 2, respectively. However, this strategy seems
impractical in general, since the number of models grows fast with the genus. Recently, new
approaches based on clusters [D?M?], Newton polytopes [Dok], and MacLane valuations [OW],
have been developed (see §2.1.4 for more detail).

On one side, clusters define nice and clear invariants from which one can extract information

on the local arithmetic of hyperelliptic curves. Such invariants turn out to be particularly useful

5



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

from a Galois theoretical point of view. However, for describing regular models, restrictions on the
reduction type of the curve and on the residue characteristic of its base field ((D?M?], [FN]) need
to be imposed. On the other side, Newton polytopes and MacLane valuations have a potential to
solve the problem in general, but the respective constructions are more algorithmic and so do not
give the result in closed form. Furthermore, they often depend on the chosen equation rather
than on the curve itself.

In this chapter, we present a new approach that preserves both positive aspects from the
above and provides a link between the two sides. We describe a model from simple invariants
defined from what we call rational cluster picture (Definition 2.1.10). This object modifies the
theory in [D?M?] and appears to be more suitable for our purpose (see §2.1.2). In fact, the rational
cluster picture also carries intrinsic connections with the other presented approaches, as it is
closely related to Newton polygons and to degree 1 MacLane valuations (see [FGMN]). When
these valuations are enough to describe a regular model we say that the curve has an almost
rational cluster picture (Definition 2.1.1; see also 2.3.29, 2.3.31). It turns out that the approach
even works in residue characteristic 2, under an extra assumption that the curve is y-regular
(Definition 2.1.4). Our main result is:

Let K be a complete1 discretely valued field with char(K) # 2, and let K™ be its maximal
unramified extension. Let C/K be a hyperelliptic curve, having an almost rational cluster picture
over K™, If the residue characteristic of K is 2, assume that Cgnr is y-regular. Then via the

rational cluster picture we determine:
(i) the minimal regular model with normal crossings Cmin,
(ii) a basis of integral differentials of C.

This result applies to a wide class of curves, covering wild cases and base fields with even
residue characteristic. For example, if g =2, then 107 out of 120 Namikawa-Ueno types (INU])
arise from hyperelliptic curves satisfying the conditions of our theorem.

In residue characteristic not 2, Chapter 4 constructs a regular model with string normal

crossings of any hyperelliptic curve C. The strategy used there generalises the one of this chapter.

2.1.1 Main results

We will now present (a simplified version of) the main results of this chapter. We will then
illustrate them with an explicit example in §2.1.3.

Let K be a complete discretely valued field of residue characteristic p, with normalised
discrete valuation v and ring of integers Og. We require char(K) to be not 2, but we allow p =2
and p = 0. In this subsection we will assume for simplicity that K = K"". Extend the valuation v

to an algebraic closure K of K. Let C/K be a hyperelliptic curve, i.e. a geometrically connected

IThe assumption on the completeness of K is not restrictive since regular models do not change under completion
of the base field.



2.1. INTRODUCTION

smooth projective curve, double cover of [P’}{. Let g be the genus of C. Assume g = 1. Fix a

Weierstrass equation
C:y?=f(x).

Let R be the set of roots of f in K. Thus

f@=cr []x-r).
reR

For any r,r' € R, with r # ', denote by D, ,» the smallest v-adic disc containing r and r'.

Definition 2.1.1 (Definition 2.3.26) We say that C has an almost rational cluster picture if for

any roots r,r’ € R with r # r/, either

(@) D, NK # 3, or

(b) p>0and |D,, NAR|=<|v(r—-w)lp for some w € K,
where |- |, denotes the canonical p-adic absolute value on Q.

The intuition behind the definition above relies on certain objects, called MacLane clusters,
which we introduce in Chapter 4 (Definitions 4.1.2, 4.1.3). Precisely, C has an almost rational

cluster picture if and only if all proper MacLane clusters have degree 1.

Definition 2.1.2 A rational cluster is a non-empty subset s ‘R of the form DR, where D is a
v-adic disc D = {x € K | v(x — w) = p} for some w € K and p € Q. We denote by Zx the set of rational

clusters.

In the following definition we introduce most of the notation and quantities, associated with

rational clusters, needed in order to state our main theorems.

Definition 2.1.3 For any s € X we say:

S proper, if [s]>1
s’ is a child of 5, if s’ € £k and s’ C 5 is a maximal subcluster
s minimal, if s has no proper children

s iibereven, if § = Uy child of s §' and |s’| even for all children s’ of s

Moreover, we write s’ < s, or s = P(s'), for a child s’ of 5, and r A 5 for the smallest rational cluster
containing the root r € 'R and s.

Let 3% be the set of proper rational clusters. For any s € 3k, define its radius

Ps = maxminv(r —w)
weK TreEs

and the following quantities:
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b; = denominator of p,

€s =v(Ccf)+ X ren Pras
D;=1if bse; odd, 2 if bse; even

ps = 1if|s] is odd, 2 if |s| is even

ss = 5(15|ps + Psps —€5)

Ys = 2 if |s| is even and e5;—|s|ps is odd, 1 otherwise
pg =1if s is minimal and s N K # @, 2 otherwise

s = —€s/2+ ps

¥ = 2if p =2 and ¢; is odd, 1 otherwise

Definition 2.1.4 (Definition 2.4.10) We say that the hyperelliptic curve C is y-regular if either
p#2orD,=1foranyse k.

Definition 2.1.5 Let s € 3x and let c € {0,...,bs — 1} such that cps— b—lr € Z. Define
§=1{d' eZg U} |5 <5 and ! - ce, ¢ 27},

where @ < s if 5 is minimal and p? = 2.

The genus g(s) of a rational cluster s € 3k is defined as follows:

o If D, =1, then g(s) = 0.

|5| _25’<5 |5’|
bs

Notation 2.1.6 (2.4.17) Let a € Z,, a,b € Q, with a > b, and fix g—z € Q so that

e If D; =2, then 2g(s)+ 1 or 2g(s) + 2 equals +|5].

no ni n Nry1 n;i nNj+1
aa=—>—>...>—>-"""= v

- dO dy dr  dr+1

ab, with

’

di di1

and r minimal. We write P1(a,a,b) for a chain of P1s (Notation 2.4.16) of length r and multiplici-
ties ady,...,ad,. Denote by P!(a,a) the chain Pl(a,qa, laa — 1]/a).

The following theorem describes the special fibre of a regular model of C with strict normal
crossings.? It follows from a more general result constructing a proper flat model of C uncondi-
tionally (Theorem 2.4.18). For the special fibre C;nin of the minimal regular model with normal
crossings, the reader can refer to Theorem 2.4.22, where we also describe a defining equation for
all components of C;nin and discuss the Galois action (for general K). Finally, note that all these

models are constructed in §2.5 by giving an explicit open affine cover (see §2.5.1-2.5.3).

Theorem 2.1.7 (Regular SNC model) Suppose C is y-regular and has almost rational cluster
picture. Then we can explicitly construct a regular model with strict normal crossings C/Og of C
(§2.5.1-2.5.3). Its special fibre C,/k is given as follows.

2Tn this thesis a ‘normal crossings’ divisor is not a ‘strict normal crossings’ divisor in general (see e.g. [Liu4,
Remark 9.1.7]).
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(1) Every s € 3k gives a 1-dimensional closed subscheme T's of multiplicity ms. If s is iibereven
and € is even, then I is the disjoint union of I'; = Pl and If= P, otherwise ' is a smooth

geometrically integral curve of genus g(s) (write I'; =T} =T in this case).

(2) Every s € Sk with D, =1 gives (|s] _Zs’eiK o'<s 5| +pg —2)/b, open-ended Pls of multiplicity
bs from T.

(3) Finally, for any s € £k draw the following chains of P's:

Conditions Chain From To
s minimal Pl(y?,-s9) I'; | open-ended
s minimal, p2/y? =2 PL(y?,-s?) I'y | open-ended
s#R Pl(ys, 85,85 — ps- Z2522) | T Ioe)
SER pelys=2 | PNYs,85,85—ps- 2472) | T L
s=R Pl()fs,ss) Iy open-ended
s=9R, ps/ys =2 P(ys,Sss) I'Y | open-ended

When p # 2, Theorem 2.1.7 is generalised by Theorem 4.1.7, constructing a regular model

with strict normal crossings for any hyperelliptic curve.

Definition 2.1.8 For any s € iK, an element w; € K is called rational centre of s if min,.c;v(r—

Ws) = Ps.

If s’ < s and wy is a rational centre of ', then wy is also a rational centre of 5. For any
minimal rational cluster s’ fix a rational centre wy. For any s € 3 fix ws = wy for some minimal
rational cluster s’ S 5.

The following result gives a basis of integral differentials when K = K. In Theorem 2.6.4 we
extend it to the case K #K™".

Theorem 2.1.9 (Theorem 2.6.3) Suppose C is y-regular and has almost rational cluster picture.
Fori=0,...,g—1, inductively

i-1
(i) define e; := m@X{ﬁ —pe— Y st/\t};

teXg 2 Jj=0

(ii) choose clusters s; € £k so that e; = % - Zj‘:o Ps;ns;- If 5 and s’ are two possible choices for s;
satisfying s' C s, then choose s; = s.

Then a basis of integral differentials is given by

i-1
. dx .
p; = el ||(x—w5j)g, i=0,...,g—-1.
J=0
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Note that given e; as in the previous theorem, the sum Zfz_ol le;] is the quantity, often denoted
by v(#%w), appearing in the period in the Birch and Swinnerton-Dyer conjecture (for more details
see [FLS?>W], [vB, §1.3]).

2.1.2 Rational cluster picture

In this subsection we define the rational cluster picture and compare it with the classical cluster
picture defined in [D?M?]. We will show, via a simple example, in which sense the new object we

introduce appears to be more suitable for the study of regular models.

Definition 2.1.10 (Definition 2.3.9) Let K and C as before. The rational cluster picture of C is

the collection of its rational clusters Zx together with their radii.

Example 2.1.11 Let p be any prime number and set K = Q}". Let E,/Q}" given by y2=x%—p.
Then E, is an elliptic curve with Kodaira-Néron reduction type II. Therefore the minimal regular
model (with normal crossings) of E,, does not depend on p. This is in accordance with the fact that
the rational cluster picture of E, is the same for all p. Indeed, the set of roots of the polynomial
x-pisR= {(¢/p,(39/pP,¢ % ¥/p}, where (3 is a primitive 3-rd of unity. Hence the rational cluster

picture of E, is

1 for any p,

where we denoted with bullet points the roots in R, with a surrounding oval the only rational
cluster R, and with the subscript the radius ps; of fR.
A different behaviour is observed when we consider the cluster picture [D?M?, Definition

1.26] of E, collection of its clusters together with their depths. The cluster picture of E, is

p=2 p=3 p>3

R

cluster picture
not defined

8
5

6 3

where the subscripts represent the depth of the cluster R. It does depend on p and differs from
the rational cluster picture when p = 3 (if we do not consider non-proper clusters). Thus, although
the cluster picture is particularly useful for Galois theoretical problems, the rational cluster
picture appears to be a more suitable object for the study of regular models of the curve.

Finally, note that E , has an almost rational cluster picture. For any two distinct roots r,r’ € R,
the smallest v-adic disc D, ,» containing them also contains the whole R. The element 0 € @Zr
belongs to D, » when p # 3, while |D, ,» NnR| =3 = |v(r)lp, if p =3.

The advantages of the rational cluster picture discussed in this subsection can also be observed
in the following example where we study a more complex family of hyperelliptic curves having

almost rational cluster picture.

10
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2.1.3 Example

In this subsection we are going to present an example of a family of hyperelliptic curves C,,
satisfying the hypothesis of Theorems 2.1.7 and 2.1.9. Via those results we will then describe
the special fibre of the minimal regular model and a basis of integral differentials of Cj. All the
computations involved are explained in detail in Examples 2.3.32, 2.4.24 and 2.6.5.

For any prime number p, let a € Z;,, b € Z; such that the polynomial x?+ax+b is not a
square modulo p. Let C,/Q, be the hyperelliptic curve of genus 4 given by y2 = f(x), where
Fx) = +ap*x® +bp®)(x - p)® — p1). The curve C p/Qp" has an almost rational cluster picture

and is y-regular when p = 2. Its rational cluster picture is

(@990009,0@90),),

where p¢, = %, Py, = %, and pgs = 1. From Theorem 2.1.7 we can construct a regular model with

strict normal crossings of C, with special fibre

over [,. Computing the self-intersection of each irreducible component we easily see that this
model coincides with the minimal regular model C™™. Theorem 2.4.22 also describes the action
of the Galois group Gal(F,/F,) on the special fibre C;nin of C™_If the roots of x2 +ax+b mod p
are in [F,, then the absolute Galois group acts trivially on each component, otherwise it swaps the
2 irreducible components of multiplicity 3 intersecting I't,.

From Theorem 2.1.9 it follows that, for any p, a basis of integral differentials of C p/er is
given by

: dx

_ 4 dx e ). % = o — ). B — (v — )2
Ho=p -5, H1=P (x—p) 2y p2 = plx—plx 2y us =(x—p)x T

In fact, this is also a basis of integral differentials of C,,/Q, since they are all defined over Q,,
(see Proposition A.2.2).

Below we will present related works of other authors concerning regular models and integral
differentials of hyperelliptic curves. Note that the example presented here is not covered by
[D2M?] and [Dok] since the curve C p is not semistable and not A,-regular. In fact, if p = 3 the
curve C), does not even have tamely potential semistable reduction. The results in [FN] assume
p > 2 and C, with tamely potential semistable reduction, hence they can not be used when

p =2,3. Finally, there is no classification for genus 4 curves.

11



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

2.1.4 Related works of other authors

Let K be a discretely valued field with residue field % of characteristic p and let C/K be a
hyperelliptic curve of genus g.

In genus 1, when £ is perfect, thanks to Tate’s algorithm, one can describe the minimal
regular model and the space of integral differentials of an elliptic curve C (see for example [Sil2,
1V.8.2], [Liu4, Theorem 9.4.35]).

If K = C(¢) and C has genus 2, then Namikawa and Ueno [NU] and Liu [Liu5] give a full
classification of the possible configurations of the special fibre of the minimal regular model of C.

If p # 2, then Liu and Lorenzini show in [LL] that regular models of C can be seen as double
cover of well-chosen regular models of IPII{. Since the latter can be found by using the MacLane
valuations ([Mac]) approach in [OW], this argument gives a way to describe any regular model
of a hyperelliptic curve. At the moment there is no known closed form description of a regular
model based on this approach and it has not been generalised to the p =2 case.

If p > 2, k finite, and C is semistable, then in [D?M?] the authors explicitly construct a minimal
regular model in terms of the cluster picture of C. Under the same assumptions, Kunzweiler
[Kun] gives a basis of integral differentials rephrasing [Kau, Proposition 5.5] in terms of the
cluster invariants introduced in [D?M?]. These results can be recovered from Theorem 2.4.22 (see
Corollary 2.4.26) and Theorem 2.6.3.

If p > 2 and C is semistable over some tamely ramified extension L/K, then Faraggi and
Nowell [FN] find the special fibre of the minimal regular model of C with strict normal crossings
taking the quotient of the stable model of C;, and resolving the (tame) singularities. However,
since they do not describe the charts of the model, their result does not immediately yield all
arithmetic invariants, such as a basis of integral differentials.

The last work we want to recall represents an important ingredient of the strategy we will
use in this chapter (described more precisely in the next subsection). T. Dokchitser in [Dok] shows
that the toric resolution of C gives a regular model in case of A,-regularity ([Dok, Definition 3.9]).
This result, used also in [FN], holds for general curves and in any residue characteristic. In his
paper, Dokchitser also describes a basis of integral differentials since his model is given as open
cover of affine schemes. In Corollary 2.3.25 and Theorem 2.6.1, we will rephrase his results for

hyperelliptic curves by using rational cluster picture invariants from §2.3.

2.1.5 Strategy and outline of the chapter

In [Dok], Dokchitser not only describes a regular model of C in case of A,-regularity, but also
constructs a proper flat model Cx without any assumptions on C. Assume C is y-regular and has
an almost rational cluster picture over K" with rational centres wi,...,w, € K. Our approach
to construct the minimal regular model with normal crossings of C is composed by the following

steps:

12



2.1. INTRODUCTION

* Consider the x-translated hyperelliptic curves C¥*/K™ : y% = f(x + wp,), for h =1,...,m. For
each A, [Dok, Theorem 3.14] constructs a proper flat model Cy", possibly singular.

¢ We glue regular open subschemes of these models along common opens, and show that the

result is a proper flat regular model C of Cg»r with strict normal crossings.

* We give a complete description of what components of the special fibre of C have to be blown

down to obtain the minimal model with normal crossings C™™ of Cgnr.

¢ Finally, we describe the action of the absolute Galois group G, of £ on the special fibre of

Cmin

We will explicitly describe both the models CLAUh and C. This allows us to study the global sections
of its relative dualising sheaf wc/o, (C).

In §2.2, we present some results on Newton polygons used in the following sections. In
§2.3, we recall the basic objects and notation of [D?M?] and define the rational cluster picture.
Moreover, we relate it with the notions given in §2.2. This comparison allows us to rephrase the
objects in [Dok] in terms of rational clusters invariants in §2.4. In the same section we also state
the theorems which describe the special fibres of a proper flat model (Theorem 2.4.18) and of
the minimal regular model with normal crossings (Theorem 2.4.22) of C. The construction of
these models, from which the two theorems above follow, is presented in §2.5. Finally, in §2.6,
Theorems 2.6.3 and 2.6.4 describe a basis of integral differentials of C, in terms of rational

clusters invariants defined in §2.3.

2.1.6 Notation

The following is main notation for fields, hyperelliptic curves and Newton polytopes.

K,v complete field with normalised discrete valuation v
Ogk,m,k,p ring of integers, uniformiser, residue field, char(k)

K,k fixed algebraic closure of K, residue field of K

KS K™ separable closure, maximal unramified extension of K in K
Ognr , k® ring of integers of K™, residue field of K"

F extension of K in K, unramified in §2.4

Gk,Gp absolute Galois groups Gal(K*%/K),Gal(k5/k)

f(x) =Y a;x’, polynomial in K[x], separable from §2.3

NP(f) Newton polygon of f, lower convex hull of {(i,v(a;)) | a; # 0}
flo, flL restriction and reduction of f to an edge L of NP(f) (2.2.5)
g(x,y) = y% — f(x), polynomial in K[x,y] defining C

fuw ), fr(x)
guw(x,y),8n(x,y)
c,cv

A% AV

FY LY V¥, V¥

= fx+w), f(x +wp), for a given rational centre wj,
= y% = fu(x),y% = fa(x)

hyperelliptic curve given by g(x,y) =0, g, (x,y) =0
Newton polytopes attached to C¥ as in [Dok, §1.1]
v-faces and v-edges of AY (2.4.4)

13
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For a separable polynomial f € k[x] or a hyperelliptic curve C/K : y? = f(x) as above, the
following is the main notation for clusters.

cr, R leading coefficient and set of roots of f

Zr,Zc cluster picture, the set of clusters of f,C (2.3.2)

SEXZC cluster, s = D n R, for a v-adic disc D (2.3.1)

Gs,Ks, ks G = Stabg, (5); Ks = (K*)9; ks residue field of K,

ds =min, ,eq U(r —r') is the depth of a cluster s (2.3.1)
s'<5=P(s) s’ is a child of s and s is the parent of s’ (2.3.3)

sAt smallest cluster containing s and t (2.3.3)

Os = maxyeF Minye; v(r —w), radius of s € Z¢,, (2.3.8, 2.4.6)
bs denominator of p; (2.4.6)

W rational centre of 5 (2.3.8)

€q = 0(cp) + Lrem Pras (2.3.19, 2.4.6)

Z;at,Z‘g’t rational cluster picture (2.3.9)

sexft rational cluster (2.3.9)

XF = Z‘g‘;, for some extension F/K (2.4.6)

Z?, 2% cluster picture centred at z (2.3.34)

s€XY cluster centred at z (2.3.33)

p%,€2 PZ =min,e; v(r—2), €2 =v(cy) + Y em Popg (2.3.35)

AL W = Upew 5 ¥ ¢ Zg» non-removable clusters (2.4.19)
Why = wy, —w; for fixed rational centres wy,w; (§2.5.1)
Uhl,Phl up; € Ok, pp; € Z such that wy; = up P ; upy =0 (§2.5.1)
Dg,mg D,;=1ifbses 0dd, 2if bses even; ms =(3—Ds)bs (2.4.6)
Ps =1if|s| is odd, 2 if || is even (2.4.6)

Ys =2 if |s] is even and €5 —|s|ps is odd, 1 otherwise (2.4.6)
pg =1if s is minimal and s N K, # &, 2 otherwise (2.4.6)

Y2 =2if pd =2 and ¢, is odd, 1 otherwise (2.4.6)

Ss, SO 85 = 2(I5lps + Psps — €5), 82 = —€5/2+ ps (2.4.6)

g,g,ﬁ,ﬁ, f5 polynomials in one variable over & (2.4.14, 2.4.21)

2.2 Newton polygon

Let K be a complete field with a normalised valuation v, ring of integers Oy, uniformiser 7,
and residue field % of characteristic p. We fix K, an algebraic closure of K, of residue field %,
and we denote by K*® the separable closure of K in K. Denote by K" the maximal unramified
extension of K in K®, by Ogn»- its ring of integers, and by %° its residue field. Note that %° is the
separable closure of & in k. Extend the valuation v to K. Finally, write Gg, G, for the Galois
groups Gal(K®/K), Gal(k®/k), respectively.

Notation 2.2.1 Let Og = {a € K | v(a) = 0}. Throughout this thesis, given an element a € Og, we

will write @ mod 7 for the reduction of @ in %. Similarly, given a polynomial z € O zlx1,...,x0],
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namely A =Y a;, xil---x,i{‘, we will write 2 mod 7 for the polynomial }(a;,, . ;, modm)-

..... in

i i 7
xy' ey € klxg, ..., xp]

Let f € K[x] be a non-zero polynomial of degree d, say
d .
f)=) a;x".
=0

The Newton polygon of f, denoted NP(f), is
NP(f) =lower convex hull {(i,v(a;))|i=0,...,d,a; #0} c RZ.
We recall the following well-known result (see for example [Neu, 11.6.3,6.4]).

Theorem 2.2.2 Let ig < ... < ig =d be the set of indices in {0,...,d} such that the points
(io,v(a;y)),...,(is,v(a;,)) are the vertices of NP(f). For any j = 1,...,s, denote by p; the slope
of the edge of NP(f) which links the points (ij_l,v(aijfl)) and (ij,v(aij)). Then [ has a unique

factorisation over K as a product
f=ad-80-81-8&s,
where go=x" and, forall j=1,...,s,
* the polynomials g € Klx] are monic of degree dj=1i;—1i;_1,
* all the roots of g ; have valuation —p; in K.
In particular, NP(g ;) is a segment of slope —p;.

Corollary 2.2.3 With the notation of Theorem 2.2.2, the polynomial f has exactly d; roots of

valuation —pj forall j=1,...,s.

Corollary 2.2.4 If f =Y a;x is irreducible of degree d and ag # 0, then NP(f) is a segment linking
the points (0,v(ag)) and (d,v(ag)).

Definition 2.2.5 (Restriction and reduction) Let f = Z‘;’:O a;x' € K[x] and consider an edge L of
its Newton polygon NP(f). Let (i1,v(a;,)),(i2,v(a;,)), i1 < iz be the two endpoints of L. Denote by
p the slope of L and by n the denominator of p. Define the restriction of f to L as

(ia=iy)/n .
flo:= )  ani+ix' €Klxl.
i=0

Moreover we define the reduction of f with respect to L to be the polynomial
flz =1 flo(r ™ x) mod 7 € k[x],
where ¢ =v(a;,) =v(a;,)+(i1—12)p.

15



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

Remark 2.2.6. These definitions coincide with the ones given in [Dok, Definitions 3.4, 3.5] when

the number of variables is 1 (for suitable choices of basis of the lattices used in the definitions).

Until the end of the section let f € K[x], consider a factorisation f =a4:-g0-g1--'&s as in
Theorem 2.2.2. Denote by L ; the edge of slope p; of NP(f), for any j=1...s.

Remark 2.2.7. By the lower convexity of NP(f), for all j = 1,...,s, note that f|L, = ¢;- gl
for some ¢; € . In particular they define the same k-scheme in G,, . More precisely, for any

j=1,...,s,let
S
uj =aq- H gi(O).
i=j+1
Then ¢; = uj/n”(uf) mod 7.
Definition 2.2.8 We say that f is NP-regular if the k-scheme
X, AflL; =0 cGp e

is smooth for all j=1,...,s.

Lemma 2.2.9 The polynomial f =aq-80-81-*&s is NP-regular if and only if g ; is NP-regular for

every j=1,...,s.
Proof. The lemma follows from Remark 2.2.7. O
We conclude this section with two examples.

Example 2.2.10 Let f =2 +9x7 — 3x% + 945 + 81x — 27 € Q3[x]. Then the Newton polygon of f is

v(a;)

0,3)

2
!
/
L0/

(6,1) T

]
i)
/ OVl

11,0y

Corollary 2.2.3 implies that f has 6 roots of valuation % and 5 roots of valuation % Furthermore,

the two polynomials g1 and g9 in the factorisation f = g1 - g9 of Theorem 2.2.2 turn out to be
g1=x6+9, g2=x5+9x—3.

Finally,
flo, =-8x%>-27=-3 - 81lnp(gy)s flL, =x—3=g2lup(gy);
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and

flo, =22 -1=~(*+1) = —g1lp(gy)» flL,=x—1=gsalwpg,  inF3lx].

Thus f is NP-regular.

Example 2.2.11 We now show an example of a polynomial that is not NP-regular. Let f =
x9 +12x5 + 36x3 + 81 € Q3[x]. Then the Newton polygon of f is

v(a;)
(0,4)

R
y

Ol

(9,0)i

Corollary 2.2.3 implies that f has 3 roots of valuation % and 6 roots of valuation % Furthermore,

the two polynomials g; and g9 in the factorisation f = g1 - g2 of Theorem 2.2.2 are

g1=23+9, go=x%+32%+9.
Finally,
fl,=36x+81  fl, =x%+12x+36,
81lvp(g) =x+9, &2Inp(gy) =x? +3x+9;
and
flo, =x+1=g1lwg),  flL,=@+2)?=g2hpg,  inFslxl.

Then f is not NP-regular. In fact, in accordance with Lemma 2.2.9, g9 is not NP-regular.

2.3 Rational clusters

From now on, let f € K[x] be a separable polynomial and denote by R the set of its roots in K*®

and by c its leading coefficient. Then

fx)=cy H(x—r).
rei

Definition 2.3.1 ([D?M2, Definition 1.1]) A cluster (for f) is a non-empty subset s < 9% of the
form DN, where D is a v-adic disc D={x € K |v(x—2z) = d} for some z€ K and d € Q. If |s| > 1
we say that s is proper and define its depth d. to be

ds = minv(r—r).
r,r'es
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Note that every proper cluster is cut out by a disc of the form
D={xeK|v(x—r)=ds}
for any r € s.

Definition 2.3.2 ([D?M?, Definition 1.26]) The cluster picture of f is the collection of its clusters,
together with their depths.
We denote by X the set of all clusters of f and by 3 r the subset of Z¢ of proper clusters.

Definition 2.3.3 ([D?M?, Definition 1.3]) If s C s is maximal subcluster, then we say that ' is a
child of 5 and s is the parent of s', and we write s’ < 5. Since every cluster s # R has one and only
one parent we write P(s) to refer to the unique parent of s.

We say that a proper cluster s is minimal if it does not have any proper child.

For two clusters (or roots) s1,59, we write s1 A 59 for the smallest cluster that contains them.

Definition 2.3.4 ([D2M?2, Definition 1.4]) A cluster s is odd /even if its size is odd/even. If |s| = 2,

then we say s is a twin. A cluster s is tibereven if it has only even children.

Definition 2.3.5 ((D?M?, Definition 1.9]) A centre z; of a proper cluster s is any element z, € K®
such that s = D NR, where
D={xeK|v(x—zs)=ds)}.

Equivalently, v(r —z;) = d;; for all r € 5. The centre of a non-proper cluster s ={r} is r.

Definition 2.3.6 ([D>M2, Definition 1.6]) For a proper cluster s set

vs:=vlcp)+ Z drps.
reR

Definition 2.3.7 We say that X/ is nested if one of the following equivalent conditions is satisfied:
(i) there exists z € K® such that z is a centre for all proper clusters 5 € X¢;
(ii) there is only one minimal cluster in X¢;
(iii) every non-minimal proper cluster has exactly one proper child.

Definition 2.3.8 A rational centre of a cluster s is any element w; € K such that
minv(r —w;s) = maxminv(r — w).
res WwE

K r€s

Ifs={r}, with r e K, then ws =r.

If w; is a rational centre of a proper cluster s, we define the radius of s to be
Ps = glgglv(r —ws).
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Definition 2.3.9 A rational cluster is a cluster cut out by a v-adic disc of the form D ={x € K |
v(x—w)=d} withweK and d € Q.

The rational cluster picture is the collection of all rational clusters of f together with their
radii.

We denote by Z;at ¢ X the set of rational clusters and by i;at the subset of Z;at of proper

rational clusters.
Lemma 2.3.10 Let s be a proper cluster. Then ds = ps.

Proof. First we want to show that

min v(r — ') = maxminv(r — 2).
r,r'es zeKs TES

Clearly min, ,es v(r — ') < max,egs min,e; v(r — 2). Let z; € K® such that
maxminv(r —z) =minv(r — z;).
5

zeKs Tres re

Then, for any r,r’ € 5, one has
v(r—r') 2 min{v(r — z,),v(r' — z)} = m&_inv(r - 25),
res
and so

min v(r — ') = maxminv(r — 2),
r,r'es zeKs T€s

as required. From

ds = minv(r —r’') = maxminv(r — z) = maxminv(r — w) = ps,
r,r'es zeKS T€s weK T€s

the lemma follows. O

Definition 2.3.11 Given a proper cluster s € Z¢, we define the rationalisation 5" of 5 to be the

smallest rational cluster containing s. By definition
s =Rn{xek|vix—ws) = ps),
where w; is a rational centre of s and p; is its radius.

Lemma 2.3.12 Let s € Zl}at be a proper cluster with rational centre ws. Let ' € Z‘}Qat be the child of

s with rational centre w (let s' = & if it does not exist). Then (|s|—|s'|)ps € Z.

Proof. Asse Z;at, one has 5 = 5. Let b, be the denominator of p;. Then b, divides the degree of

the minimal polynomial of r, for any r € s satisfying v(ws —r) = ps. Then (|s| —|s'|)ps € Z, where
s =Rni{xeK|vlx—ws)> pst,
as required. O
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Remark 2.3.13. If a proper cluster s € Z¢ satisfies d; = ps, then a rational centre w; € K of its
is also a centre. Hence s is a rational cluster and, in particular, is Gg-invariant. On the other
hand, if a proper cluster s € ¢ is Gg-invariant and K(s)/K is tamely ramified, then s has a centre

zs € K by [D’M2, Lemma B.1]. Thus ps=dsand s € Z;at.

Lemma 2.3.14 Let s be a proper cluster with rational centre ws and let t € Xy satisfying t 2.

Then ws is a rational centre of t and p¢ < ps. Furthermore, if s is a rational cluster and t 2 s, then

Pt < Ps-

Proof. 1t suffices to prove the lemma for t = P(s). Hence we first want to show that min,cpg)v(r—

ws) = pp(s) and pp(s) < ps. Note that

min v(r —ws) <max min v(r —w) = .
reP(s) 17 WweK reP(s) PP

Moreover,

P(s) = Mmax min v(r —w) < maxminv(r —w) = ps.
PP& = 08 56 wek e Ps

If r € s then v(ws — ) = ps, by definition of ps. On the other hand, if r € P(s) \ s then fixing r’ € 5

we have
v(r—wg)=v(r—r' +r' —ws) = minfv(r — r'),v(r' — ws)} = min{dps), Ps} = PP(s),

by the previous lemma. Thus min,cpe) v(r —ws) = pp(s), as required.
Now suppose s € Z‘]}at with t D s. From Definition 2.3.8, it follows that

{xeK|vix-—ws)=pstnR=sCtc{xeK|v(x—ws)=pd NN,
as w; is a rational centre of t. Thus p¢ < ps. O
Lemma 2.3.15 Every cluster s with p; < ds has no rational subcluster s' C s.

Proof. Suppose by contradiction there exists §' € 212, 5’ C 5, and fix a rational centre wy of 5'.
Then wy is a rational centre of s by the previous lemma. If |s'| = 1, then wy is also a centre of
s and this contradicts ps < ds; so assume s’ proper. Let r’ € s such that v(r' —wy) = psy and re s

such that v(r —wg) = ps. But then ds < v(r —wy + wy —r') = ps again by Lemma 2.3.14. O

In particular, the lemma above shows that if s € Z, and s € Z;}at is a maximal rational
subcluster of s, with s’ C s, then s’ is a child of s. Moreover, the parent of a rational cluster is

rational.

Definition 2.3.16 We say that a proper rational cluster s € Z;"‘t is (rationally) minimal if it does

not have any proper rational child.
Lemma 2.8.17 Let 5,5' € Z;at such that s' ¢ s. If ws is a rational centre of s then

Ininl)(l” - wS) = ps/\s’.
res’
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Proof. By Lemma 2.3.14 we have

min v(r —ws) = Pspg'-
resns’

Therefore min, ¢y v(ws — r) = psps. Suppose by contradiction that
minv(r —ws) =: p > Psng'-
res

It follows from Lemma 2.3.14 that
minv(r —ws) = Ps > Psng

as s’ ¢ 5. But then there exists 7 € (s As') \ (s Us') such that v(F —wg) = psps. Consider the rational
cluster
t:=Rn{xeK |v(x—ws)=min{p,ps}} € Z;at.

Then 5,5’ = t, but since 7 ¢ t we have s As’ ¢ t that contradicts the minimality of s A5’ O

Lemma 2.3.18 Let t € X¢ with at least two children in Z;at. Then dy=pieZ and te Z;at. More
precisely, if 5,5' € Z;at such that s CsAs' D6’ then

Psns' = V(ws — Wg) = dsps,
where ws and wy are rational centres of s and s' respectively.

Proof. Clearly it suffices to prove the second statement as v(ws; —ws) € Z. For our assumptions

s’ ¢ 5. Then by Lemma 2.3.17 there exists r € s’ so that v(r —ws) = psps. Thus,
v(ws —wy) = minfv(ws — 1), v(r —wg)} = Psps's
as v(r—wgy) = pg > Psps by Lemma 2.3.14. Finally, dsae = psas follows from Lemma 2.3.15. O

Definition 2.3.19 For a proper cluster s set

€s:=v(cy)+ Z Oras-
refR

Example 2.3.20 Let f =x'! —3x% + 925 — 27 € Q3[x]. The set of roots of f is
M =1{V3,(3V3,(3V3,-V3,-(3V3,-(5V3,V3,05V3,(3V3,(3V3,(3V/3),
where (; is a primitive g-th root of unity for g = 3,5. Then the proper clusters of f are
51={V3,(3V3,(2V3}, s50=1{-V3,-(3V3,-(2V3}, s3=s1Us3, N

with ds, =dg, = %, ds, = % and ds; = % The graphic representation of the cluster picture of f is
then
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5

where the subscripts of clusters (represented as circles) are their depths.

Furthermore, note that 0 is a rational centre for all proper clusters and we have ps, = ps, =

Psg = % and py = %
Finally, for every cluster s we can also compute v; and €5, that are

9 11
V51:V52:§7 V53:€51:€52:€53:3> VERZGSRZF-

Example 2.3.21 Let f = x° + 1245 + 36x3 + 81 € Q3[x] and fix an isomorphism Q5 = C. Then the

set of roots of f is
R ={(V/32,05V/32,033/32, 00 V/3,(3 V3,04 V3,03 V/3,(] V/3,(5 V),
where {; = e2"/q i a primitive g-th root of unity for ¢ = 3,9. Then the proper clusters of f are
51=1{V32,(3 \3/3_2,(§ V32}, s3=1{(9 V/3,05V/3,03V/3},
53 =1{(2V3,05V3,(8V3), s4=s9Us3, R

with ds, = %, ds, =ds, = %, ds, = %, and dg; = % The cluster picture of f is then

[@cn)g (@99, (°°°)QJ

ol

It is easy to see that 0 is a rational centre for all proper clusters and that ps, = 5, P, = Ps3 = Ps, =

oR = % Finally,

11
Ve, = ?, Veg =Vs3 =5, Vs, =4, vir=3; €5, =4, €55 =€55 =65, =€ =3.
The goal of this section is to describe the NP-regularity of f € K[x] in terms of conditions on

its cluster picture.

Notation 2.3.22 If p >0, we denote by |-|, the standard p-adic absolute value attached to Q, i.e.
lal, = p @ for all @ € Q. If p =0, then we write |- | p for the function on Q identically equal to 1,

ie. lalp=1forallaeqQ.

Lemma 2.3.23 Suppose that x 1 f and that NP(f) is a segment L of slope —p. Let n be the
denominator of p. Then f is NP-regular if and only if all proper clusters s € Zr with |s| > |plp
satisfy ds = p.

More precisely:
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n

(@) Ifse if with |s| > |pl, but ds; > p, then f_IL has a non-zero multiple root @ = ﬂrnp mod 7, for

some (any) r € s.

(ii) The multiplicity of a root i@ € B> of f|r equals |s°|/n, where

n

soz{reiﬁlﬁ:ﬂrw modn}.

(iii) All multiple roots of f|, come from clusters s as described in (i).

Proof. Let q be the highest power of p dividing n (set ¢ = 1 if p = 0). Let m = n/q so that ptm.
Let R={r;|i=1,...,D} be the (multi-)set of roots of f, where D := deg f. Fix some choice of {/7
and define @; € k* as @i; = r;/n” mod x, for all i = 1,...,D. Firstly, note that there exists a proper
cluster s with |s| > [p|, and d; > p if and only if there exists a subset I ={1,...,D} of size |I| > q
such that @;, =@,, for all i1,i2 € I. Indeed, given s, then I ={i € {1,...,D} | r; € 5}, while given I,
then s ={r; | &; = @;,, for any io € I}. Secondly, recall that f is not NP-regular if and only if f_IL
has a multiple root in £*. Therefore we will prove that f|;, has a non-zero multiple root if and
only if there exists a subset I < {1,...,D} with size |I| > ¢ and such that @;, =@;, forall i;,ig € I.
Note that for the lower convexity of NP(f) = L, we have

Fl™ =7~ @CDO) (7P ) mod 7.
Hence {@; | i = 1,...,D} is the multiset of roots of f|7,(x"). Then there exists an n-to-1 map

¢ {a)} — {w;},

ﬁiﬁ—>ﬁ,§n

where {w; | j=1,...,D/n} is the multiset of roots offTL. Note that w; #0 for all j=1,...,D/n, so
all roots of /|7, are non-zero.

Now, suppose that f is not NP-regular. We want to show that there exists a subset I c {1,...,D}
with |I| > g such that @;, =@;, for all i1,i2 € I. Since f is not NP-regular, its reduction fIz has a
(non-zero) multiple root. Then there exist j1,j2 €{1,...,D/n} so that w; =w;, =:w. Hence, by the
definition of ¢, for some (any) @ € ¢~ 1(10), there are at least 2¢ @;’s with @; = @. Let I denote the
set of their indices. Then [I| =2q > q and @;, =@;, for all 1,13 € I, as required.

On the other hand, suppose that there exists a subset I c {1,...,D} with |I| > ¢ and such
that @;, = @;, for all i1,ig € I. We want to show that f_IL has a multiple root, that is there
exist two indices j1,j2 € {1,...,D/n} such that w; = w;,. Suppose not and let j € {1,...,D/n}
such that w; = a:" = ¢(i1;) for some (all) i € I. Then the polynomial x" — wj="-w;)e Elx],
factor of f|1(x™), should have a root of order |I| > ¢. This would imply x — ;j is inseparable, a
contradiction as p{m.

The parts (i), (ii) and (iii) of the lemma follow from above:

(i) Given a proper cluster s € X with |s| > [p|, and d; > p, we showed that fT has a non-zero

multiple root w; = @? =rj/z"* mod m, where r; is any root in s.
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(ii) By the definition of ¢, given i € k, the number of ’s such that @ ; = w equals 1s°)/n, where
sO={r;|a? = w).

(iii) Given a (non-zero) multiple root w of f|;, we showed that there exists I ={1,...,D}, with |I| > ¢
and @;, = 4;, for any i1,ig € I, such that af =wforalliel.Thesets={r;|a; =u;,, for any ig € I}

is a proper cluster as in (i). O

Theorem 2.3.24 Let w € K and fy,(x) = f(x +w). For all clusters 5 € Zr define A5 = min,c; v(r —w),
and let b be the denominator of As. Then f,, is NP-regular if and only if all proper clusters s € Xy
with |s| > [As|p have ds = As.

More precisely:

(i) Let 5 € 3¢ with |s| > |Asl, but ds > As, and let r € 5 with v(r —w) = As. Then f,|1, has a
) L 71, where L is the edge of NP(f,,) of slope —As.

non-zero multiple root it = “—;
T S

(ii) Let L be an edge of NP(f,) of slope —A. Let | be the denominator of A. The multiplicity of a
root @ € > of fulr, equals |s°|/l, where

s'={reR|vr-w)=1 and ﬁ:(r;# mod 7}.

(iit) For every edge L of NP(f,,), the multiple roots of f,,|; come from proper clusters s for f as
described in (i).

Proof. Let R, be the set of roots of f,,. Note that we have a natural bijection R — R, r—r—w,

which induces a bijective function ¢ : Xy — X , sending
s=RnixeK|vx-2)>d} — ywE)=Ryn{xeK|vix+w-z)>d}.
In particular, if s € Z¢, |s| = [y(s)], ds = dy(s) and

As = Iggglv(r —w) = rrglu}'(rﬁl)v(r).
Hence it suffices to show the theorem for w = 0.

Assume w =0. Let f =cf-g0-g1...8: be a factorisation of Theorem 2.2.2. Note that if t =0,
then either f € K or f € Kx. In both cases, f is clearly NP-regular and has no proper clusters.
Then assume ¢ > 0 and let —p; be the slope of NP(g;) for any i =1,...,t. Denote by ‘R the set of
roots of / and by fR; the set of roots of g; for i =0,...,¢. Note that the fR;’s are pairwise disjoint.
From Remark 2.2.7, for every edge L of NP(f) there exists i such that f|z = é; 'ng(gi) for some
¢; € k™. Hence, by Lemma 2.2.9 and Lemma 2.3.23, we need to prove that there exists a proper
cluster s € ¢ such that |s| > [As|, and d; > A, if and only if for some i = 1,...,¢ there exists a
proper cluster s; € 25, such that |s;| > [A,1, = |p;|p and ds, > A5, = p;. We will show that one can
choose s = 5;.

24



2.3. RATIONAL CLUSTERS

First, note that if s is a proper cluster , then s € Ry, as [Ro| = 1. Furthermore, if 5 € Z¢
contains roots of different valuations, that is s g R; for all i, then

ds=minv(r—r') =minv(r) = As = min{p; | R; Ns # T}.
r,r'es res

Now suppose there exists a proper cluster s € Z; such that |s| > |1s|, and ds > As. For the
observation above, the inequality d; > A; implies that s € R; for some i =1,...,¢. Let D be the
v-adic disc such that s = D nR. Since 5 € R;, one has s = DN R; which means that s € X, as
required.

Finally suppose that for some i = 1,...,s, there exists a proper cluster s, € Z,, such that

Isil > |pilp and ds, > p;. Let r; € 5;. Then
s;i={xeK|vix—r;)= ds,} NR;.
Consider the cluster s:={x e K |v(x—r;) = ds,}NR of f. Clearly s; < 5. Therefore

Ag; =minv(r) =z minv(r) = A,
res; res

which implies
ds= dsi >p;= Aﬁi = As,

where d; = ds, by construction. Again from the observation above the inequality ds > A5 implies
that s is contained in 2R} for some j. As sNR; 25, NNR; = 5;, we must have s < R;. Thus s =5,

that concludes the proof. O

Corollary 2.3.25 Let f € K[x] be a separable polynomial. Let w € K and f,(x) = f(x +w). Then

fw is NP-regular if and only if all proper clusters s € Ly have rational centre w and those with

5| > [oslp satisfy ds = ps.

Proof. If f,, is NP-regular, then, from the previous theorem, all proper clusters s € Xy with
Is| > [As]p have ds = A5, where A5 = min,e; v(r —w). First let s € ¢ proper and assume |s] > [As]p.
Then

ds=A; =minv(r —w) <maxminv(r —z) = ps < ds,
res zeK TeEs

so ds = A5 = ps, and w is a rational centre of 5. Now assume |s| < |A;],. In particular, p >0 and
As € Z, and so

minv(r —w) = A # v(w —wy),
res

where w; is a rational centre of s. Let r € s such that v(r —w) = 15. Then
Ps <v(r—w+w-—ws)=min{ls, v(w —ws)} < As.

Clearly

Ps =maxminv(r —z) = minv(r —w) = A,
2€K TES res
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that implies ps = A = min,¢; v(r —w). Hence w is a rational centre of s.

On the other hand, suppose that all proper clusters s € £ have rational centre w € K and
those with |s| > [p;|, satisfy ds = ps. Then p; = min,e; v(r—w) for any s € 7. Thus f;, is NP-regular
again by Theorem 2.3.24. O

Definition 2.3.26 We say that f has an almost rational cluster picture if all proper clusters

s € Xr with |s]| > |ps], have ds = ps.
In the following we give different characterisations of the previous definition.

Corollary 2.3.27 Suppose that K(R)/K is a tamely ramified extension. Then f has an almost

rational cluster picture if and only if every proper cluster s € ¢ is Gg-invariant.

Proof. Since K(R)/K is tamely ramified, every cluster s € X has |p;|, < 1. Therefore the corollary
follows from Remark 2.3.13. O

Corollary 2.3.28 Suppose that K(R)/K is a tamely ramified extension. Then f,, is NP-regular for

some w € K if and only if Zr is nested.

Proof. First note that every cluster s € 2 has |ps|, < 1, as K(R)/K is tamely ramified. Therefore
from Corollary 2.3.25, we need to prove that X is nested if and only if all clusters s € £y have

d; = ps; and rational centre w, for some w € K. But this follows from Remark 2.3.13. O

Corollary 2.3.29 The polynomial f has an almost rational cluster picture if and only if for every

)b
r € R\K, there exists w € K so that r& := %

denominator of v(r —w), f,(x) = f(x+w) and L is the edge of NP(f,,) of slope —v(r —w).

mod 7 is a simple root of [y |1, where b is the

Proof. Fix 7 € R\K and let s be the smallest proper cluster containing 7. Let ws be a rational
centre of s. Note that v(7 —w;) = ps = min,c; v(r —ws), for the choice of s, as 7 ¢ K. Moreover, for
any proper cluster t containing 7, we have s € t. In particular, w; is a rational centre of all such
clusters. Let L be the edge of NP(f,,,) of slope —p;. Theorem 2.3.24 shows that ij‘s is a multiple
root of fy,_ |1, if and only if there exists t € X such that 7 €, [t| > |p¢|, and d{ > p(. Therefore if f
has an almost rational cluster picture, then Fﬁfﬁ is a simple root.

Suppose there exists t € Xy such that [t| > [p¢|, and d¢ > p¢. Then tNnK = &. By Theorem 2.3.24,
it remains to show that for any w € K, we have |t| > |1, and d > A(, where A¢ = min,¢ v(r —w).
First note d¢ > p¢ = A¢. Moreover, in the proof of Corollary 2.3.25, we saw that [t| < |A(|, implies

pt = Ay, which contradicts [t| > [p¢],. O

Lemma 2.3.30 Suppose f has an almost rational cluster picture. Let s € Z¢ proper. If ds > ps, then
p >0and |s| is a p-power. In particular, if ws is a rational centre of s, for any r € s, the elements
r—w; are all the roots of a monic polynomial with coefficients in K®, and constant term c such
that |v(c)lp = 1.
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Proof. Let s € Xy proper, with ds > p;. Since f has an almost rational cluster picture, we must
have |s| < |psl,. Since s is proper, p > 0. Let b5 be the denominator of ps. Then v,(bs) > 1. Fix a
rational centre ws of s and a root r € s such that v(r —ws) = ps. Consider s’ ={x € R |v(x —r) > ps}.
Then s © 5’ < 6™ and |s'| < |psl, (as dg > ps = ps). Let I, be the wild inertia subgroup of Gg.

As v(r —ws) = ps there exist o1 = id,09,...,0|,|, € I, such that o,(r) # 0(r) if i # j. Moreover,

I
v(g;(r)—r) > ps from the definition of I,,. Therefore o;(r) € s’ for all i and so |ps|, < |s'|. Thus
Is'l = |pslp and s € 5" ={o;(r) | i =1,...,|pslp}. Finally, as s’ contains only conjugates of r € 5, the
cluster s’ is union of orbits of s. In particular, |s| | |s'| = |ps| p» and so |s] is a p-power. The rest of

the lemma follows. O

Proposition 2.3.31 The polynomial f has an almost rational cluster picture if and only if for

every proper cluster 5 € Zr one of the following is satisfied:
(a) the smallest disc containing s also contains a rational point;

(b) p >0 and after a translation by an element of K, the elements in s are all the roots of a

polynomial with coefficients in K® of p-power degree and constant term c such that |v(c)|, = 1.

Proof. First of all note that point (a) is equivalent to requiring d; = ps. Therefore by Lemma
2.3.30 it only remains to show that if d; > ps; and (b) is satisfied, then |s| < |ps|,. Let F € K®[x]
be the polynomial in (b) and let w € K such that r —w, for r € s, are all the roots of F. We
have ps; = min,¢; v(r —w). Fix r € s such that p; = v(r —w) =: p. Since d; > p; = v(r —w), we have

v(r' —w)=v(r—w) = p for any r’ € 5. Then
|s| =degF =|1/degF|, < |v(c)/degF|, = |plp.

Let w; be a rational centre of s. Suppose by contradiction that p; > p. Let r; € s such that

v(rs —ws) = ps. Hence
v(w—-wg)=v(w—rg+rs—ws) =min{p, ps} = p.
But then p € Z, which contradicts |s| < |p|,. O

Example 2.3.32 Let p be a prime number and let a € Z,, b € Z; such that the polynomial
x?+ax+b is not a square modulo p. Let f € Qplx] given by f(x) = (8 +ap*x®+bp8)(x—p)3—plh).

For any prime p the rational cluster picture of f is

(@99000,0@00,)

where py¢, = %, Pty = %, and pg; = 1.
If p # 3, then the proper clusters of X/ coincide with the rational clusters above and ds = p;
for any s = t3,t4, . In particular, f has an almost rational cluster picture when p # 3.

Suppose p = 3. Then the cluster picture of f is
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where d¢, =dy, = %, di, =Py, =P, = %, di, = %5 and dsz = 1. Thus f has an almost rational cluster

picture for all p.

We conclude this section by showing that the cluster picture centred at 0 completely determines

the Newton polygon of f.

Definition 2.3.33 Let z € K. A cluster centred at z is a cluster cut out by a v-adic disc of the form
D={xeK |v(x—2z)=d} for some d € Q.

Definition 2.3.34 Let z € K. Define Z; to be the set of all clusters centred at z. Write i? for the

set Z? ~ {{z}}. Note that Z}Zc is nested, i.e. every cluster s € Z? has at most one child in Z']i.

Definition 2.3.35 Let z€ K, and let se X £ \{z}}. The radius of s with respect to the centre z is

2 .
=minov(r —z).
Ps res ( )

The cluster picture centred at z of f is the collection of all clusters in Z']i together with their radii

with respect to z. Finally set

e =vlcp)+ Z PFns-
reR

Remark 2.3.36. From the definitions above, if 5 is a cluster centred at z € K®, then s =9in{x € K |
v(x —2z) = pZ}. But this does not mean z is a centre for s, that is false in general. For example, R is
clearly a cluster centred at any z € K5, but there are elements of K® which are not centres of R,

e.g. any z € K® with valuation v(z) < min,cs; v(r).

Remark 2.3.37. Let 5 € X be a proper cluster with centre z and rational centre w. Then s € X%,

ds=pZ,vs=€Z, ps = p¢, and €5 = €. Furthermore, s € Z;at if and only if 5 € Z?’.

Lemma 2.3.38 Let w € K and let f,,(x) = f(x +w). Then there is a 1-to-1 correspondence between
the clusters in Z?’ and the edges of NP(f,,). More explicitly, let 51 c--- c 5, =R be the clusters in

i;" and let s ={w} if {w} € Z? or 59 = J otherwise. Then NP(f,,) has vertices Q;, i =0,...,n, where

© Qn=(RI,e4 - 19RIpY) = (deg f,v(cp)),

w

* Q;=(sil,ey —Isilog) =Usil,ey | —lsilpg, ), fori=1,...,n-1,

* Qo =(sol,eq, —50lp5))-

and edges L;, i =1,...,n, of slope —pfs‘; linking Q;-1 and Q;.
Furthermore, for any i =1,...,n we have

biy— = -
fwlLi(x ) - ﬁ HrEﬁi\Si_l(‘x + u])-[l’ir) mod T, u= Cf Hreiﬂ\s(w - r)7

where p; = p’s‘;, and b; is the denominator of p;.
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Proof. Without loss of generality we can assume w = 0 so that f,, = f. First note that the
coordinates of @, are trivial. Now consider a factorisation f =cf-go-g1---gs of Theorem 2.2.2.
Recall the polynomials g; are monic and g | x. Let 3 be the set of roots of g;. It follows from
the definition of cluster centred at 0 that

i
n=s, and s;=JMR,; foralli=0,...,n.
j=0

Therefore sg = Ro and R; =s;\s;,_1 forany i=1,...,n.
Leti=1,...,n—1. Then the x-coordinate of @; follows as

i

l5il =3 191 =} degg;=deg[]s;.

Jj=0 Jj=0 Jj=0

The y-coordinate of @; equals the sum of v(cy) and the valuation of the constant term of ]_[;.Z:i 418>

SO
n

Qi =(Isihviep+ Y 1Bluery),

J=i+1

where r; is any root in R;. But since s; = Uj.zoi)% i, we have v(r;) = pgj. Therefore

n n
viep)+ Y IRjlvr)=vicp)+ ). (Iﬁjl—lﬁj—ll)pgj=€2i—|5ilpgi.
j=itl j=itl

Moreover,

0 0_ 0 1.0
€5i - |5i|p5i - €5i+1 - |5l|p5i+1

0 0

from the easy computation €;, — €5 | = |5i|(p2i - pSH .)- Finally the x-coordinate of @ is trivial,

while its y-coordinate equals
- - 0 _ 0 0
vlep)+ ) IR;lv(r)) =vlep)+ Y_(1s;]=1sj-1Dps, = €5, — 1501055
j=1 j=1 '

that concludes the first part of the proof as |sg| = |JRg| = deg go.

The computation of f[z, follows from Remark 2.2.7. Indeed, let i = 1,...,n, and define
éi = u/n’™® mod 7, where u = cr H;-‘:ngj(O). Then fILL.(xbi) =¢; -giINp(gi)(xbi), where b; is the
denominator of p_ . But

—_ b 0 0 .
Zilwp(g,x%) = gi(n° x)/ns: deggi  1mod 7.
Thus the lemma follows as R; =5;\s;_1. O

Notation 2.3.39 Letse i}‘ﬁ’. Following the notation of Lemma 2.3.38, let i € {1,...,n} be such that
s=5;. We will write LY for the edge L;.
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2.4 Description of a regular model

From now on, assume char(K) # 2 and let C/K be a hyperelliptic curve, i.e. a geometrically
connected, smooth, projective curve, equipped with a separable morphism C — [FD}{ of degree
2. Let y2 = f(x) be a Weierstrass equation of C. Suppose degf > 1. Let g be the genus of C.
Accordingly with [D?M?] we define the cluster picture of C as the cluster picture of f. Analogously,

z

f
same way (e.g. Z¢, Zrcat, 2%). In particular, we will say that C has an almost rational cluster

picture if f does (Definition 2.3.26).

In this section we present the main results that follow from the construction of a model of

all definitions and notations attached to f given in §2.3 (e.g. Z¢, Z’}}at, 2%) are given for C in the

C we develop in §2.5. In particular, Theorem 2.4.22 describes the special fibre of the minimal
regular model of C with normal crossings when C has an almost rational cluster picture and is
y-regular (Definition 2.4.10).

For the following sections we will use the main definitions, notations and results of [Dok, §3].
In particular, we recall (without stating) the definitions of Newton polytopes A and A, attached
to a polynomial g € K[x, y], v-vertices/edges/faces of A, the denominator 6, of a v-face/edge A, the

slopes s’ll,s% of a v-edge A.

Notation 2.4.1 We denote by A and AY respectively the polytopes A, and A attached to the
polynomial g, (x,y) = ¥ — f(x + w). The piecewise affine function v : A¥ — R determining the
bijection A¥ — AY, P — (P,v(P)), will be denoted by v (with a little abuse of notation). For a
v-face F of A, denote by vy : A¥ — R the linear function equal to v on F. Since the projection
AY — AY is a bijection, given a vertex/edge/face A of A we will denote by the same symbol A the
corresponding v-vertex/edge/face of A¥. Since they are mainly used for indexing, this will not

cause confusion.

Notation 2.4.2 Given a v-edge 1 of A¥, we will denote by r, the smallest non-negative integer

such that we can fix Z—i €Q,fori=0,...,ry+1sothat

nho ni nr Nr,+1 . n; Njt1
s”llz—>—>...>—'l>#=sé, with Lo

=1.
d() d1 dm dr,1+1

i dig1

Thanks to Lemma 2.3.38 we can explicitly relate the Newton polytope AY of g,,(x,y) and the

cluster picture centred at w of C.

Lemma 2.4.3 Let w € K. Then there is a 1-to-1 correspondence between the clusters in Zg’ and the
faces of the Newton polytope AY. More explicitly, let 51 < --- < 5, =R be the clusters in iz and let
50 = {w} if {w} € Z%’ or 5o = & otherwise. Then AY has vertices T, Q;, 1 =0,...,n, where

* T=(0,2,0),
* Qn=(NRI,0,v(cy)),
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i Ql:(|5l|50’€g) _|5i|pg;+1)f0ri:()’"';n_li

i+1

and edges L; (i=1,...,n), linking Q;,-1 and Q;, and V; (j=0,...,n), linking Qj and T. Further-
more, (possible choices for) the slopes of the v-edges of A¥ are:

—v(ep)+(IR1-28)pg,;

Vo _ v,
s;"=0y,— 5 = and s

o = lsy" —1;

=0 (o (3] + 1)),

5 +1)er )

foralli=1,....n—-1;

[V
N
Il
[o9)
=
|
™
K
M+
—
+
—_——
—

€5,
SYO =6V0(71—p;”1) and sgo = Ls‘llo—lj;
. €Y. . . )
sll”zﬁLi (—7’+([%J +1)p;‘;) and sé”z[sll”—lj,
forall i =1,...,n. In particular, as 61, is the denominator of p,,

{1 if 81,€¥ is odd,
rL; =

. w
0 if L€ is even.

Finally, for suitable choices of basis of the lattices in [Dok, 3.4, 3.5], we have

o 1. (i) — - —
Sw |Li(x ) - _ﬁ Hresi\si,l(x"' L;-)[Pir) mOd T, u= Cf Hr(—:%\ﬁi(w - r)a

forany i=1,...,n, where p; = pé‘j, and b; is the denominator of p;;
gulv,(y) = yVit@zl=1 _ — modr, u=cfllrems,(W—r),

forany j=0,...,n, where IVj(Z)ZI is the number of integer points P on the v-edge V; with v(P)€ Z,
endpoints included.

Proof. The structure of AY follows from Lemma 2.3.38. For the computation of the slopes, we
only need to individuate, for all the v-edges, the two points Py and P; of [Dok, Definition 3.12]. It

is easy to see that the followings are admissible choices.
e For Viand L; (i =1,...,n), choose Py =(|s;|,0) and P; = ({%J ,1).
¢ For Vy, choose Py =(0,2) and P; =(1,1);
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The second part of the lemma then follows from the first one. The computations of the re-
ductions also follows from Lemma 2.3.38 by choosing the lattices @;_1 +(b;,0)Z for g, |z, and
Q,; +(—l|s;l/a,2/a)Z for gwlvj, where a = IVj(Z)ZI -1. O

Notation 2.4.4 Let C be as above and let w € K. For every cluster s € ig denote by F' the v-face
of the Newton polytope A¥ of g, (x,y) = y2 — f(x +w) that corresponds to s.
Following the notation of Lemma 2.4.3, let i € {1,...,n} be such that s = 5;. We will write LY,

Vs, V' for the v-edges L;, V;, Vo, respectively.

Example 2.4.5 Let C be the hyperelliptic curve over Q3 given by the equation y? = f(x) where
f(x) = x1 —3x% +9x% — 27 is the polynomial of Example 2.3.20.

Its cluster picture centred at O is

(@33399), 00009)

where the subscripts represent the radii with respect to 0. As we can see, Zg consists of two
clusters: 51 of size 6, radius % and 621 =3, and s9 =R of size 11, radius % and 622 = % Therefore

the picture of A° broken into v-faces will be

T

Vs
\%
0 Vi

Qo I Q1 I, Q2

where T =(0,2), 9 =(0,0), @1 =(6,0), and @2 = (11,0). Denoting the values of v on vertices, the

picture becomes

To state the theorems which describe the special fibre of the proper flat model C of C we will

construct in §2.5, we need some definitions.

Definition 2.4.6 Let F/K be an unramified extension and let 2z = Zfif (i.e. set of clusters cut out
by discs with centre in F'). For any proper s € 2 let G; = Stabg, (s5) and K; = (K $)(s. We define

the following quantities:

32



2.4. DESCRIPTION OF A REGULAR MODEL

5 € XF, proper

radius 0Ps = MaXyep MiNcs 0(r —w)
b; = denominator of p,
€5 =v(Cp)+ X e Pras
D;=11if bses 0odd, 2 if bses even
multiplicity ms=(3—D;)bs
parity ps = 1if|s| is odd, 2 if |s| is even
slope ss = 3(Islps + psps —€s)
Ys =2 if 5 is even and e5—|s|p; is odd, 1 otherwise
pY =1if s is minimal and s N K # @, 2 otherwise

32 = —€s/2+ pg

Y2 =2if p? = 2 and ¢, is odd, 1 otherwise

Lemma 2.4.7 Keep the notation of the previous definition and let s € Xg. Then s € Zf but the
quantities in Definition 2.4.6 do not depend on F.

Proof. A cluster s € 2 belongs to Xg if and only if o(s) = s for any 0 € Gg. Then the result follows
from Lemma A.1.1. O

Remark 2.4.8. Lemma 2.4.3 shed some light on the quantities we defined in Definition 2.4.6. Let
s€ Xp. Fix a rational centre w; € F of 5 such that ws € K, if p? = 1. Denoting V = V*, L = L¥*,

and Vo = V,*, we have:

* vs=0v, ps/ys = V(Z)z -1 and s‘ll = vs8s. If V is internal, that is s # R, then sg =7Ys(s5—
Ds Ps—gp(s))_

e If 5 is minimal and so Vp is an edge of F”°, then yg =0v,, pg/yg =Vy(Z)7—-1 and 3‘170 = —ygsg.

Lemma 2.4.9 Letse Zrcat with rational centre w € K. Then D =1 if and only if vp»((a,1)) € Z, for

everya€/Z.

Proof. If Ds = 1 then rp» = 1 by Lemma 2.4.3, and so vp=((a,1)) ¢ Z, for every a € Z. Now let
¢,d € Z such that ps-c+d =1/b;. If D; =2, then bge; € 27, so

2 2 2 ’

vre(cbses/2,1) =
as required. O

Definition 2.4.10 We say that C is y-regular if p{ D for every proper s € 12 i.e. if either p # 2
or D, =1 for any proper s € Z‘g“t.
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Remark 2.4.11. Let F/K be an unramified extension. Then from Lemma 2.4.7, if Cr is y-regular
then C is y-regular.

The next lemma gives a characterisation of the A,-regularity for hyperelliptic curves. In fact,
C is A,-regular along the horizontal edges of A = A? if f is NP-regular, and is A,-regular along

the non-horizontal edges of A if C is y-regular.

Lemma 2.4.12 The hyperelliptic curve C is Ay-regular if and only if C is y-regular and f is
NP-regular.

Proof. Let g(x,y) = y2—f(x). If C is y-regular and f is NP-regular, then C is A,-regular by Lemma
2.4.3 and Lemma 2.4.9.

Conversely, if C is A,-regular, then f is NP-regular, and all clusters have rational centre 0 by
Corollary 2.3.25. It remains to show that if p =2 then D, = 1 for every proper s € Z‘"Cat. Suppose
there exists s € Zlg"t such that D, = 2. Consider the variety X 7O ([Dok, Definition 3.7]). By Lemma
2.4.9, the smoothness of X 7o implies there exists s’ € >rat such that |s| —|s’| = 1. Hence ps€Z
from Lemma 2.3.12. Therefore F(Z) = F)(Z)7, by Lemma 2.4.9. But this gives a contradiction as

it forces either 8lyo or glyo to be a square. O

Definition 2.4.13 Let s € ZF be a proper cluster and let ¢ €{0,...,bs — 1} such that cp; — % €”Z.
Define
§=1{5' €Zp Ui} |5 <sand ! - ce, ¢ 22,

where @ < s if 5 is minimal and p? = 2.

The genus g(s) of a rational cluster s € 2 is defined as follows:
e If D; =1, then g(s)=0.
e If D; =2, then 2g(s)+ 1 or 2g(s) + 2 equals

5| = Xgresp,s'<s |s’|
+
bs

15].

Definition 2.4.14 Let Zg‘in be the set of rationally minimal clusters of C and let X < Zg}in. For
each cluster s € Z, fix a rational centre wy; if possible, choose w; € s. Let W be the set of these

rational centres and define ZW = Uy cw 2. For any proper cluster s € =W fix a rational centre

Wes—T
TIPS

ws € W. Denote r; = for r € R. Define reductions fsw(x) € klx], g5 € kly], and for s € Z also

g0 € kly] by

fPaby=-ts [ (x+rs) modum, u = crIlreoneTss
res\Ugr o 5’
— s/
gs(y) = yPs ys_nzw mod 7, u:CerEZR\srs,
50(y) = yPIYY _ _u =
gg(y) - y - ”v(u) mOd JT, u= Cf Href)%\{ws} 7"5.

where the union runs through all s' € 2¥ | s’ < 5. Finally define the k-schemes
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1 XV AW =0} c G
2. X, {85 =0} CGpp;
3. X0:{g0=0} Gy ifses.

Notation 2.4.15 Given a scheme X/Og we will denote by &}, its generic fibre X" xgpec 0, Spec K,
and by X; its special fibre X’ xgpec 0, Spec k.

Notation 2.4.16 If C = C1uU---UC, is a chain of [F"}es of length r and multiplicities m; € Z (meeting
transversely), then co € C; is identified with 0 € C;,1, and 0,00 € C are respectively 0 € C; and
oo € C,. Finally, if r =0, then C = Spec %2 and 0 = oco.

Notation 2.4.17 Let a € Z,, a,b € Q, with a > b, and fix Z—j € Q so that

no _ni ny _ Nril )
=—>—>..>—>—"""=qgb, with
do di dr  drs1

n; nit+1

di diq1

aa =1,

and r minimal. We write P1(a,a,b) for a chain of IP]%S of length r and multiplicities ad;,...,ad,.
We denote by Pl(a,a) the chain PX(a,a, aa — 1)/a). Moreover, we write PX(a,a,b), PX(a,a) for

Pl(a,a,b) XSpec £ Spec k°, Pla,a) XSpec £ Spec k°, respectively.
Theorem 2.4.18 and Theorem 2.4.22 will follow from §2.5.

Theorem 2.4.18 Let C/K be a hyperelliptic curve given by a Weierstrass equation y® = f(x).
Suppose degf > 1 and let 3, W and =W as in Definition 2.4.14. Then there exists a proper flat
model C/Og (constructed in §2.5) of C such that its special fibre Cs/k consists of 1-dimensional

schemes given below in (1),(2),(3),(4),(5), glued along 0-dimensional transversal intersections:

(1) Every proper cluster s € 2V gives a 1-dimensional closed subscheme T's of multiplicity m.
Ts is not integral if and only if D; = 2, N (VY U{@)) = & and fs_W is a square. When this
happens, if p =2 then T's is not reduced and (I's)yeq is irreducible of multiplicity 2 in Ts, if
p # 2 then Ts is reducible, namely I's =T} UT,, with T'F = [F",}a.

(2) Every proper cluster s € =V with D, = 1 gives the closed subscheme X :V X [P’,i, of multiplicity
bs, where X:V x {0} cT.

(3) Every proper cluster s € ZW such that s # R, gives the closed subscheme X x PI(Y5,85,85 -
ps - 2202 where X x {0} < T's and X x {oo} < Ip().

(4) Every cluster s € T gives the closed subscheme X2 xPX(y?, —s9) where X0 x{0} < T (the chains

are open-ended).

(5) Finally, the cluster SR gives the closed subscheme X x PX(ys, si) where Xo x {0} < T (the

chains are open-ended).
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If T is reducible, the two points in X x {0} (and X 2 x {0} if s € 2) belong to different irreducible
components of I's. Similarly, if s # R and I'p) is reducible, the two points of X5 x {oo} belong to
different irreducible components of I'ps).

Furthermore, if C has an almost rational cluster picture and is y-regular, then, by choosing
z= Zg}in, the model C is regular with strict normal crossings. In that case, if s is iibereven and €

is even, then I's = X x [P}:i, otherwise I'; is irreducible of genus g(s).

Theorem 2.4.18 can be compared with Theorem 4.6.3 that describes a regular (proper flat)
model of C when p # 2.

Definition 2.4.19 Let s € Zg». We say that
* 5is removable if either |s| =1, or s has a child s’ € g of size 2g + 1 (s =R in this case).
* s5is contractible if one of the following conditions holds:

1. |s|=2and ps ¢ Z, €5 0dd, pp(s) < ps — 5;

2. s =N of size 2g +2, with a child s’ € Zgn of size 2g, and p, ¢ Z, v(cy) odd, ps = ps + %;

3. 5 =R of size 2g + 2, union of its 2 odd proper children 51,59 € Zg», with v(cy) odd,
ps; = ps+1fori=1,2.

Notation 2.4.20 Write 3 € Zx» for the subset of non-removable clusters.

Definition 2.4.21 Choose rational centres w; for every s € ¥, in such a way that w; € s when

ws—r
TIPS

pg =1, and 0(ws) = wy(s) for all o € Gal(K™/K). Denote r; = for r € R and define g_s,g € kS[y]

as in Definition 2.4.14, and f,(x) € £5[x], by

0=
X2 Ps f(x0e) = # l_[ (x+rs) modnm, u=crllrens’s,
res\Uyr o 5’
where the union runs through all s’ € 3, s/ < s. Let G = Stabg, (s), Ks = (K 8)Gs and let %, be the
residue field of K. Then f; € ks[x], g5 € ks[y], and for 5 minimal glekslyl
Let 50 € 3 be minimal and contained in s. Denote & = 5\ {{r} <s | r # ws,}. Note that § does not

depend on the choice of s9. Define f; € ks[x] by
fo) = T] (2~ %ss) - fol),
s'es

Wy —We
TIPS

where uy 5 = mod 7 if ' # @ and ug ; = 0 otherwise.

In the next theorem we describe the special fibre of the minimal regular model of C with
normal crossings. We use Definitions/Notations 2.3.1, 2.3.3, 2.3.4, 2.3.2, 2.3.8, 2.3.9, 2.3.26, 2.4.6,
2.4.10,2.4.13, 2.4.17, 2.4.19, 2.4.20, 2.4.21 in the statement. Note that a full description of the
model is developed in §2.5.
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Theorem 2.4.22 (Minimal regular NC model) Let C/K : y2 = f(x) be a hyperelliptic curve of genus
= 1. Suppose Cgrr has an almost rational cluster picture and is y-regular. Then the minimal

regular model with normal crossings C™/Ogx of C has special fibre C™"/k® described as follows:

(1) Everyse 3 gives a 1-dimensional subscheme I of multiplicity mg. If s is iibereven and €; is
even, then I's is the disjoint union of ng” ~ IP’%S and 1";5’+ =Pl otherwise I's is irreducible of
genus g(s) (write F;E" = F;” =15 in this case). The indices rs _ and rg 4 are the roots of g5

(wherers _=rs , if deggs = 1).

(2) Every s € 3 with D, = 1 gives open-ended PL.s of multiplicity b from I's indexed by roots of
fo-

(3) Every non-maximal element s € 3 gives chains I]3>1()/5,ss,s5 - ps- %) from T's to I'p(s)

indexed by roots of g.

(4) Every minimal element s € 3 gives open-ended chains I]i’l(yg, —sg) from T'; indexed by roots of

g9
(5) The maximal element s €3 gives open-ended chains |]3>1()/5,35) from T'; indexed by roots of g.

(6) Finally, blow down all T'; where s is a contractible cluster.

In (3) and (5), a chain indexed by r goes from I',. In (3) the chain indexed by rs _ goes to F;Iz ‘;)"
and the chain indexed by r; , goes to l";fzg’*.

Before blowing down in (6), the components given in (1)—(5) describe the special fibre of a
regular model of Cgrr with strict normal crossings.
The Galois group G, acts naturally, i.e. for every o € G, o(I'}) = Fgg;, and similarly on the

chains.

If T's is irreducible, then its function field is isomorphic to kS(x)[y] with the relation yPs = fo(x).
Remark 2.4.23. Note that if I's or I'p(s) is reducible then ps/ys = 2.

Example 2.4.24 Let p be a prime number and let a € Z,, b € Z; such that the polynomial
x? +ax + b is not a square modulo p. Let C be the hyperelliptic curve over Qp of genus 4 given
by the equation y? = f(x), where f(x) = (x® + ap*x® + bp®)((x — p)3 — p'1). In Example 2.3.32, we
described the rational cluster picture of C and proved that C has an almost rational cluster
picture. Recall that erat consists of 3 clusters t3, t4, R of size 6,3,9 respectively such that t3 <R
and t4 <fR. In particular, note that Z@gr = Zlg‘t, and no cluster of Z@Zr is removable, so 3= Zgat.
The minimal elements of 3 are then t3 and t4.

We want to describe the special fibre of the minimal regular model with normal crossings
C™in of C. Compute the quantities in Definitions 2.4.6 and 2.4.13, and the polynomials E,g,g
of Definition 2.4.21, for any cluster in PR
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Ps | bs | €5 | Ds|ms|ps| Ss | Vs pg Sg 72 &(s) E(x) 8s(y) gg(y)
ts| 58|11 1|6 |2|-2(2(2|-&|2| 0 |«2+ax+b|y+1|y-1
tg[H]3]17) 16 |1 |-F|1|2|-2|2] 0 x-1 |y-1|y+1
Rl1|1|l9|1]2|1]L]1]2 0 1 y—1

where a,b are the reductions of @,b modulo p. Then C is also y-regular for any p. Following the
steps of Theorem 2.4.22 the special fibre of C™™ over F, can be described as follows:

(1) The clusters t3,t4,R give 3 irreducible components I'y,,I'¢,,I'5z of genus 0 of multiplicities

6,6,2 respectively;

(2) The cluster 3 gives 2 open-ended P's of multiplicity 3 from I'y,, while t4 gives 1 open-ended
P! of multiplicity 3 from T’ -

(3) From yy,s¢, = 3 > —§ >—1=y4 (st — Pty - M) the cluster t3 gives 1 P! of multiplicity 4

from I'y, to I'z. From

7 6 3 5
Yt,Sty = 6 > 5”4~ 73”739 >-2>- Yf3(8t4 Pty

o
™~

p£4 PR )

W~

the cluster t4 gives 1 chain of P's of multiplicities 5,4,3,2,1 from Iy, to I's.

(4) From y? s(t) = 5 > 8 > 7 the cluster t3 gives 1 open-ended P! of multiplicity 2 from [y,.
From yt s? t = 39 > % >9 > 8, the cluster t4 gives 1 open-ended chain of P's of multiplicities

4,2 from I'y,.
(5) From ygmsm = % >0 > —1, the cluster R gives 1 open-ended P! of multiplicity 1 from T'.

(6) There is no contractible cluster, so the components we considered in the steps above describe

the special fibre of C™" over [ ,:

3 4 6
4 5 Iy,
6 ‘2 ‘3 ‘3 3 o
I, T T T " 1 1 9
T Fm

Finally, from the Galois action on the roots of the polynomials f5, g5, Q, for s € 3, we get that
G}, acts trivially if % + @x + b is reducible in F p» While it swaps the two components of multiplicity

3 intersecting I'y, (coming from (2)) otherwise.
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As application of Theorem 2.4.22 we suppose % is finite of characteristic p > 2 and C is
semistable of genus g = 2. In this setting [D?M?2, Theorem 8.5] describes the minimal regular
model of C in terms of its cluster picture X¢. We compare that result with the one obtained from
Theorem 2.4.22 (Corollary 2.4.26).

First note that Cg» is y-regular as p # 2. From [D?2M?, Definition 1.7], if C is semistable then

1. the extension K(R)/K has ramification degree at most 2;
2. every proper cluster is Gal(K®/K"")-invariant;
3. every principal cluster has d; € Z and v, € 27.

It follows from Corollary 2.3.27 that Cg»- has an almost rational cluster picture.
In fact, (1) and (2) imply ps = ds and €; = v for any proper cluster s (Remark 2.3.13). In
particular, ig";r = 3. We will then say that s € £¢ is non-removable if s is proper and non-

removable as rational cluster in Xgnr.

Lemma 2.4.25 Suppose k finite and p > 2. Assume C is semistable and let s € ¢ be a non-
removable cluster. Then ds € %Z and vs; € Z. Moreover, s is contractible if and only if d; ¢ Z or
Vs ¢ 27.

Proof. Let s € Z¢ be a non-removable cluster. Since K(R)/K has ramification degree at most 2,
then d; € %Z.

By Theorem 2.4.22 the multiplicity of the 1-dimensional scheme I's is m . Furthermore, I'; is
an irreducible component of the special fibre of the minimal regular model of C if and only if s is
not contractible. Therefore if s is not contractible, then m; =1, i.e. D; =2 and b, = 1. It follows
that v; € 27 and d; € Z. Suppose s contractible. Then either d; ¢ Z (and v € Z) or s =R of size
2g +2, with 2 odd rational children and v(cy) odd. We want to show that in the latter case, v, is
odd. By Lemma 2.3.18, diz € Z. Then vig = v(cy) +(2g +2)dg is odd. O

Let s € Z¢ be a non-removable cluster. By Lemma 2.4.25, if 5 is not contractible, then 2g(s) + 1
or 2g(s) + 2 equals the number of odd children of s. In fact, this also holds when s is contractible

since in that case g(s) =0 and s has at most 2 odd children.

Corollary 2.4.26 (Minimal regular model (semistable reduction)) Suppose that k is finite and
p > 2. Let C/K be a semistable hyperelliptic curve of genus g = 2. The minimal regular model
C™/Ognr of C has special fibre C;nin/kS described as follows:

(1) Every non-removable cluster s € Z¢ gives a 1-dimensional subscheme T';. If s is iibereven,
then T is the disjoint union of r;“ =P! and Fg“ =P, otherwise Ts is irreducible of genus

g(s) (write F;S" = F;5’+ =15 in this case). The indices rs — and rs . are the roots of gs.
(2) Every odd proper cluster s € X¢ of size |s| < 2g gives a chain of Pls of length L%J

from I's to I'p(s) indexed by the root of gs.
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(3) Every even proper cluster s € X of size |s| < 2g gives a chain of Pls of length [ds —dps) — %J
from T3 to F;f:(;))’_ indexed by rs - and a chain of P's of same length from F;“ to F;fz(;)“
indexed by rs ;.

(4) Finally, blow down all I's where s is a contractible cluster.

All components have multiplicity 1, and the absolute Galois group G, acts naturally, as in Theorem
2.4.22.

Proof. Let s € X¢ be a non-removable cluster. From Lemma 2.4.25, if 5 is not contractible, then
D;=2,yss;€Z and 7232 € Z. Suppose s contractible. If |s| = 2 with d ¢ Z (case (1) of Definition
2.4.19), then ygsg €Zandys;=1,s5€ %Z\Z and so s;—ds+dp(s) € Z, as P(s) can not be contractible.
If s = R (cases (2), (3) of Definition 2.4.19), then v(cf) is odd, and so ys; =2 and y;s; € Z. Therefore
(2), (4) and (5) of Theorem 2.4.22 do not give any components.

Finally,as y; =1 and p 5@ € %Z for any proper s with size |s| < 2g (i.e. non-maximal), the
length of [P’l()/s,ss,s5 —Pps- %) is

ds_dP(s))_lJ_{ _ds—dp(s)_lJ
Bt () = | p,.- 2P _

\‘Ysss Vs (35 —Ds- 2 2 2 2

The corollary then follows from Theorem 2.4.22. O

2.5 Construction of the model

We are going to construct a proper flat model C/Og of C by glueing models defined in [Dok, §41].
For this reason we will assume the reader has familiarity with the definitions and the results
presented in that paper. Let us start this section by describing the strategy we will follow.

Let Zgﬁn be the set of rationally minimal clusters of C and let X < Zg‘in. For any cluster
s € X fix a rational centre w; in such a way that igs consists of the proper clusters in Zzs. This
requirement can be satisfied by choosing w; € s whenever possible.? Let W be the set of all such
rational centres and define =V := U, ew Z ;. For every proper cluster te W fix a rational centre
w¢ € W (Lemma 2.3.14). For every w € W, consider the curve C¥ : y? = f(x + w), isomorphic to C,
and construct the (proper flat) model C/Ok by [Dok, §4, Theorem 3.14]. We will define an open
subscheme CLA" of C} and we will show that glueing the schemes CLA” , to varying of w € W, along
common opens, gives a proper flat model C/Og of C. Furthermore, if £ = Zg’in, and C is y-regular
and has an almost rational cluster picture, then CX’ is an open regular subscheme of C and

therefore C is also regular.

3This is the assumption used in Theorem 2.4.18.
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2.5.1 Charts

In this subsection we explicitly describe the matrices defining the charts of the schemes CY¥,
w € W, as presented in [Dok, §4].

Let X ={s1...,5} S Zg’in be a set of rationally minimal clusters and let W = {w1,...,w,,} be

a set of corresponding rational centres, such that igh consists of the proper clusters of Zgh, for
any h =1,...,m. Define =V := UZ’:lZg". For any h,l =1,...,m, h #1, define wy; := w;, —w;, and

write wp; = up P, where up; € O and pp; € Z. Note that pp; = ps,as, = P11, by Lemma 2.3.18.
Set upy := 0. Finally, for any A,l =1,...,m, denote by uy; € & the reduction of uj; modulo 7.

Definition 2.5.1 Let h=1,...,m and let te Zzh be a proper cluster. Recall the matrices and

cones defined in [Dok, §4]. We say that a matrix M is associated to t it M = M} w; ; or M = My, j
t t o

(or M = M,w, j if t =s3). For a matrix M associated to t we denote by 637 and o respectively
o s

¢ the denominator 6L':)h and the cone UL':)h’i,i+1 if M= ML':’h,i,

¢ the denominator 6Vtwh and the cone Tywn j j+1 ifM=M Vi o

¢ the denominator 6V(;”h and the cone Oywn j j+1 ifM=M ANE
Finally, define Xjs = Spec Ok[o}, N Z%] and write

h _
Xy = UXM )
M

for the toric scheme defined in [Dok, §4.2].

The following lemma describes all possible matrices associated to t.

Lemma 2.5.2 Let t € Zzh be a proper cluster. Consider the v-face Ffjh Let Py,P1 € 72 and
ni,di,k; € Z be as in [Dok, $4] and define

nod; —nido

6:=06Mm, vi:= 54

1 % k.
5 i Ri+l
and Ti = (0 5 0 ),
0 0
for each matrix M associated to t.

® Let c be the unique element of {0,...,b¢— 1} such that b% —prrc=deZ Foralli=0,...,r u,
t
choose k; =cn; +dod;([¥/2] + 1); then

6 —oodi(G+yi) eddina(G +rin) 1[5 o0
_ d;
MLwh ;= 0 die —d€i+1 s ML'%h = T;-| div1p¢ l+21€t +Yi+1 dis1 |,
€ , )
-6p¢ _dﬁdi(§l+7’i] d6di+1(§t+?’i+1) t d;p¢ d‘;t +y;  d;

where Py =(|t],0), P1 =([lt-¥2],1) and 6 = 6sz;, =by.

41
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If tis odd, then for all j=0,...,rywn, we have
t

t+1
-l -Mrd; K 1 ! gt ’
MV'”h = 2 d; —djs1 |, M‘_/wh .:Tj' djr10¢—2Yjs1 12 =Itlyj+1 djs1 |,
T \—etitlpe ny —nji1 A

djpt=2-y; @—Iﬂ%‘ d;
where Py = (|t],0), P1 = ([It-12],1), 6 = Oyen =1 and kj=Fkj;1=0.
t

e Iftiseven, then forall j=0,... Ty, we have
1tl
5 —(Yr1)d—k Y (Y 1)d gty L X o I 1 0
Mth .= 6 dj+k; —dj1—kj s M w,  =Tj | djr1pe=7Yjn %—%‘Yju dj1 |,
L O e 1.7 25 W N L 1 Vit djeg |y
2 5 RT3 5 TRj+17 djpe-v; 3V dj

where Py =(|t],0), P1 =(lt-¥2],1) and § = 5V£Wh.

e If f(wy) =0, then for allj:0,...,rV(;vh, we have

-2 —d; djn

( 1 dj —dj+1
€5, —Psp Nj —Nj+1

M wp .=
V 5] V deg
0 5J €5

0 djp5h+2'}/j J2 h +Y; dj

-1 Lol 0
e
, ML, _=Tj.(dj+1psh+2'7j+1 Loy ju dj+1),

where Py =(0,2), P1=(1,1), 6 = 6V(;uh =land kj=Fk;;1=0.

e If f(wy) #0, then for allj:O,...,rV(;uh, we have

0 dj _dj+1 -1 d'+_115h 0
Myw ;= =0 —dj=k;  dja+kjn ML = | diaps, Ty 5t dja
0 §€5h nj k.esh 1 Y esy, Vohyj J djes), s
2 3 TR 75 Rt djps, +Yj 3 d;

where Py =(0,2), P1=(1,1) and 6 = 6yun.
0

Proof. We follow the notation of [Dok, §4]. Choose Py, P; € Z? as in the proof of Lemma 2.4.3.
First consider the edge L{" of F|"". From Lemma 2.4.3 we have

v=(1,0,-ps) and (wy,wy)=(-11t/2]-1,1).

Then M;w; ; and Mzih _follow from [Dok, §4.3] as k&; = ni(6pt)_1 mod § and
t

t ot

no

= ven (P1) ~vgen (Po) = =+ (LIt2] + D pe

1L
=S
ddg 61

Now assume t even and consider the edge Vtwh of F,i” ", Since t is even,

VtWh(Z) = {(|t|’0), (%, 1) ,(0,2)} , V= (—%, > _% + %pt)
and (wy,w,) = (_L;' -1, 1) as above. Then MVt‘”h , and M‘;})h ; follow again from [Dok, (4.3)] as
t

’

no LV (Py) = v (Pg) = (Y1)
MO—&S1 —thh(Pl) thh(PO)— 5 + 5 +1] pt.
Similar arguments and computations yield the remaining matrices. O

Remark 2.5.3. From the lemma above one can explicitly construct the charts of the model CK’L.
The description of its special fibre CZ)’; which follows from [Dok, Theorem 3.14], matches the one
given in Theorem 2.4.18 in the case W = {wy,}.
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2.5.2 Open subschemes

In this subsection we explicitly describe the open subschemes é’g’ cCy,forweWw.

Let h=1,...,mandlet te Zgh be a proper cluster. Let M be a matrix associated to t. Write

mi1 miz mi3 mi1 M1z Mmi3

_ 1| - .
M=|mgo1 moa mos and M~ =|rg mag a3
mg1 mg32 msg mg1 Mmgg Mmg3

Recall that X; = Spec R, where

OkIX*1)Y,Z] Og[X*LY* . Z* N m .1 4
R= o, ———— =K [x*,y"],
(H—Xm13Ym23Zm33) (H—Xm13Ym23Zm33)

via the change of variable

X x™11 yM21 31 x x X111y ™21 Zm31 X 1
(Y) — xm12ym22”m32 ] (y).M’ (y) = X'ﬁIZY'hZZZ’;‘32 — (Y).M .
Z x™18 y™23 ™33 z T X113y ™23 ZM33 VA
Let [ #h. Set
Thl(X .2 1+ uthphlrhlB_mllYPthN’LZS_mZIZPhlﬁ’l%_ﬁ’lSl if t2s, A sy,
M PRl =

u}—llleﬁu—thfﬁmYﬁlm—thﬁlstrﬁsl—th'ﬁss +1 iftzsyAsy,

element of R[Y ~1,Z~1]. Note that

+

if t2s,As then TH(X,Y,z)-LIT2h
X
+

if tzs,As then TH(X,Y,z)-L IT2h
Whi

The following two lemmas prove that T]}fj (X,Y,Z)eR. Therefore, up to units, Tﬂ (X,Y,Z) can be
seen as the polynomial in Og[X*!,Y,Z] satisfying

x—wp EXXY 2T (XY, Z),
with nx,ny,nz € Z, such that ordy(TZ}(,Il) = ordz(TZ"‘,Il) =0.

Lemma 2.5.4 Let h,l =1,...,m, with h #1, let t € ZZ" be such that t2 sy, As; and let M be a

matrix associated to t. Then
PhiMog — g1 = pyigg —1iie1 20 and  ppisz —mgy = pyigg —m31 = 0.
Furthermoreif M =M L then
* ppites—mie1 =0ifand only if i = rLen or t=s5, N5,
* ppitigz—ms1 =0ifand only if t=s, As;;
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ifM=M v j then
® PriMgg —ma1 >0,
* ppimss—ms31 =0ifand only if t=s, As; and j=0.

Proof. This result follows from Lemma 2.5.2, which gives a complete description of M and M.
We show it when t is even and M = My,us i and leave the other cases for the reader. First of all
t

recall that pp; = ps;, a5, by Lemma 2.3.18. Then

pritis — g1 =8 (djr1 (Phr — pe) +Vj+1) > 8d i1 (Psyns, — i) 20,

where y; = 4% and 6 = 6. Similarly,

phitigs —ms1 =08 (d; (o — pe) +7j) = 6d; (psyns — pt) = 0.
In particular pp;riszs — g1 =0 if and only if t =s5 As; and j=0. O

Lemma 2.5.5 Let te ZZ” be a proper cluster such that t 2 s;, A5y, and let M be a matrix associated
to t. Then

o1 —pPpie3 =0 and 31— ppritgg >0.
Furthermore, oy — ppimos =0 if and only if
M :Mszh’i and i = rLeh, OF
[ ] = w . 1 =
t<spAs, M MVt h s and j ryn.

Proof. This result follows again from Lemma 2.5.2. As in the previous lemma, we show it when t
is even and M = My,u;, i and leave the other cases for the reader.
A
Let r= ryen. Note that t ZR. Set 6 =6y and vy, = %Zjdo. Then
31— pnimas =08 (d;j (o —pni) —v;) > 6d; (0P~ Psynrs) = 0.

since d; >0 and y;/dj <yri1/dr+1 = pt— ppy. Similarly,

o1 — ppitias =6 (djr1 (pe — pri) = vj+1) = 6djs1 (0P — Psyns,) =0,
In particular g1 — ppyies =0 if and only if t <s; As; and j=r. O

Let

Th(X,Y,Z):= [| TH(X,Y,2),
L#h

and define
Vh =S R h -1 Sh ._ h h
1 :=Spec R[Ty(X,Y,Z) "1c Xy, and X3:=]V; <X},
tM
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where t runs through all proper clusters in Zzh and M runs through all matrices associated to t.

We can then define the subscheme
COZ”T = Cx)h n}ofg CXZ,

where CLAUh/OK is the model of the hyperelliptic curve C¥* : y2 = f(x + w},) described in [Dok,
Theorem 3.14] (see [Dok, §4] for the construction). Explicitly, let gp(x,y) := y? - f(x + wp,) and
define F ]}“4 € Og[X*1,Y,Z] such that ordy (F ]{‘4) =ordz(F ]}‘2) =0, with all non-zero coefficients in
Ok, satisfying

y2 = flax+wp) u Y”Y’hZ”th]-"I}J,I(X,Y,Z),

for unique ny j,nz p € Z. Consider the subscheme

R[Th(X,Y,Z)!]
c .
(Fhx,y,z)) M

U]};I := Spec

Then
5 h _wh
CLAUh =U Uy =Xy,
LM

where t runs through all proper clusters in Zg" and M runs through all matrices associated to t,

as before.

2.5.3 Glueing

In this subsection we show how to glue the schemes C¥, for w € W, to obtain a proper flat model
C of C (properness will be proved in §2.5.8-2.5.9).
Let h,l=1,...,m, with h #1. Consider the isomorphism

+1 +1 -1
oy [] (e +who)

2.1) ¢:K xﬂ,yﬂ,l'[(mwzo)—l] =K
oZh

0#l

sending x — x +wp;, y— y. If t25, As; and M is a matrix associated to t, then ¢ gives a map

’10 o
RIY L,z Th(x, Y, 2y =

RIYLz7LTh(X,Y,2)71],
which sends

F(X,Y,Z)—FX -TH(X,Y,Z)"™,Y - TH(X,Y,Zy"2,Z - T?(X,Y , Z)™®).
Hence it induces the isomorphisms
(2.2) RIT:(X,Y,Z) "1 =RITH(X,Y,2)l, V=V
Via these maps we see that g (x,y) = Y”Y’hZ”Z:hf]"’/I(X,Y,Z) also equals

VAR OV ACA _(Tlfttll)ny,zm12+nz,zm13].‘zlv[ (X-(Tl}f,ll)mn,Y-(T]}‘lj)mm,Z . (Tzlfll)mlg) ,
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where TI’l‘/_f = T]"‘/IZ(X,Y,Z). Since neither Y nor Z divide TZ’{,;(X,Y,Z), we haveny , =ny ,nzn=

nz,; and
f]}‘l,l(X,Y,Z) — (TI}lLJZ )ny,zm12+nz,zm13f]{4 (X(T]}‘lll )mn,Y(TII‘Zj)mm,Z(TI}‘L;)mB) )

Hence (2.2) induces the isomorphisms

R[T,(X,Y,2)'] . R[TH(X,Y,Z)7}]

, Ul =uUt.
(FL(X,Y,2)) (Fh(X,Y,2)) MM

(2.3)

Define the subschemes

hl._ hoeyh hl ._yrhl A oW c (Wh
v ._tLAJlVMngA, U :=v"ncyh <Cy’,
1,241

where {; runs through all proper clusters in Z3* N/ (ie. {; € =W s, As; < 4;) and M; runs

through all matrices associated to t;. From (2.1), (2.2) and (2.3) we have isomorphisms of schemes
(2.4) v =yt yht Syt

Now, U < V! are open subschemes respectively of CX”L cX g for any [ # h. Glueing the schemes
COZ”‘ cX Z, to varying of & = 1,...,m, respectively along the opens U c V! via (2.4) gives the
schemes C c X. We will show that C/Ox is a proper flat* model of C.

2.5.4 Generic fibre

We start studying the generic fibre C; of C. Since it is the glueing of all CZ”;] through the glueing
maps
hl lh
Uy — U,
induced by (2.4), we start focusing on CZ”;7 for h = 1,...,m. In particular, as CLAUh is an open

wp wp SWh _ wp, SWh
subscheme of C,", we study CAJ] \CA’T] =C \CAJT

Lemma 2.5.6 Forany h=1,...,m,

Klx,y]
(8n(x, ), TTown (x +who))

C¥r CZ)’;] = Spec

Proof. For every choice of a proper cluster te ZLCU", and M associated to t, let

R ®0g K
(Fr(X,Y,2),Th(X,Y,2))

Py= (CZ),’;] ~ CK’%) N Xy = Spec

To study Pjs we are going to use Lemma 2.5.2 and the definition of Tz}“,[(X Y, Z).

4Note that the flatness of C is trivial since it is a local property.
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Suppose first t ZR and M = M« = Then mog,mg3 >0, so
t

-1 -1 +1 ,,#1
(2.5) Py = Spec — RIY ’Zh ! M Spec Klx™,y™] ,
(FL(X,Y,2), T} (X,Y,Z)) (g (%, ¥), 1o (x +who))

where the product runs over all o #h. Now let t=Rand M =M v e If j # ’"ng;h’ then Py is as
in the previous case (since mog, 133 >0). If j = "Vg";h’ then riigg > 0, mag =0, but pp g — g1 >0
by Lemma 2.5.4. So from the definition of Tzlllel (X,Y,Z) we have once more the equality (2.5).
Similarly, if t =55, and M = MV(;% 7 then 33 >0, and rize1 — ppyMies > 0 by Lemma 2.5.5. Hence
we have (2.5) again.

It remains to study Py when M = Mth,i' If 1 # rLens then rigg,m33 > 0 and so Py is as in
(2.5). Let i = rLe Then rizgz > 0 but both mog and pp;mes — ire1 equal 0. Hence rigg = ritg; = 0,
which also implies mg; = mag = 0. Therefore M defines an isomorphism R[Z 1] = K[x*!, y], which

induces
RIZ™1] M Klx*!,y]
PM = Spec 7 7 ~ Spec .

This concludes the proof. O

Regarding CZ”L as a model of C via the natural isomorphism C — C%*, we get

Klx,y]
(¥2 = F(2), TTozn (x — wy))

o

C\CZU=Spec

Thus the generic fibre of C is isomorphic to C.

2.5.5 Special fibre

We now study the structure of the special fibre Cs of C. As for the generic fibre, we consider

wrp, Swp,
CA,s ~ CA,s’

for any A = 1,...,m. For every choice of a proper cluster te X", and M associated to t, let

Ox[X*',Y,Z]

Sy = |C¥ ~C¥" | n X)s = Spec ——.
= (O G n X =Sp (FyX.Y,2), T} (X,Y,Z),Y "= Z s, 1)

S

Lemma 2.5.7 Let M = My, ; for L=L"". Let | #h. If t = 5; A s, then T'/(X,Y,Z) = X XX +up),

otherwise
() ThHX,Y,00=1fori=0,...,r;
(ii) Th(X,0,Z)=1fori=0,...,rp - 1.

47



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

Proof. Fixl # h.Ift2 s;Asp, then by Lemma 2.5.5, we have riig1 —pp7ites = 0 and riig1 —ppyrings > 0.
Moreover, if riia; — ppmiog =0, then i = rz,. Therefore the equalities in (i) and (ii) follow directly
from the definition of T]}f/[l .

On the other hand, if t D s; A 55, then by Lemma 2.5.4, we have pp;mog —rize; = 0 and
PriM3s —ms1 > 0. Moreover, if pp;mog — g1 =0, then i = rr. Therefore we have (i) and (ii) again.

Finally, assume t =5; A 55,. Since p¢ = pp; € Z, then pp;rin13 — 11 = —1. Hence
THNX,Y,Z)=1+upX ' =X"1(X +upn),
by Lemma 2.5.4. O
Lemma 2.5.8 Suppose M = Mth,i' Then

Og[X*1,Y,Z]
(FRX,Y,Z), T (X +upi),Y ™2 Z M3, 1)

S = Spec CCK’L,

where the product runs over all [ # h such that t =s; A sp,.

Proof. Lemma 2.5.2 shows that rg3 is always different from 0, while r293 = 0 if and only if

L=rpw. Thus the result follows from Lemma 2.5.7. O
t

Lemma 2.5.9 Let f,(x) = f(x+wp) and | # h. Then uyy, is a multiple root of f1|1, of order |4;],
where L = L¥"

arns, and t €0 4 <sp A sy

Furthermore, if £ ={s1,...,5n} = Zrcnin, C has an almost rational cluster picture and @ €k is a

maultiple root of fr|1, for some edge L of NP(f},), then & =u;, and L = L’;’h”,\sl for some [ # h.

Proof. For any proper cluster s € Z¢, let 15 = min,esv(r —wy). Let 5 € Zgl, with 5; €5 C 55 A 57,

Then wy, is not rational centre of 5, and for every root r € 5, one has
v(r—wp) =v(r —w; +w; —wp) = min{o(r —w;), pp1} = Pwi,

as v(r —w;) = ps > pp;. Therefore As = pp; € Z. In particular, |A5], < 1. Furthermore,

ds=ps>As = pp1 and %E% mod 7,
and so Theorem 2.3.24(i) implies that u;; = S& mod 7 is a multiple root of £z, where L = LfL";zh/\ﬁl'

Let 4; EZ?, {; <sp As;. Since 57 S t; <55, As; we have
Y Z{FEmlulh 2% modn},

as v(r —w;) > pp; if and only if 77, = "7 mod 7. Thus the multiplicity of %y, is |t;| by Theorem
2.3.24(11).
Now let @ be a multiple root of £z, for some edge L of NP(f3) and let s € ¢ associated to @

by Theorem 2.3.24(iii). We want to prove that if C has an almost rational cluster picture and
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= Zg‘in, then there exists [ # h so that @ = u;;. Note first wy, is not a rational centre of 5. Indeed,

if wy, is a rational centre of s, then
|5|>|/15|p:|p5|p’ ds > As = ps,

which contradicts the fact that C has an almost rational cluster picture. As {s1,...,5,} = ngin, we

must have that w; is a rational centre of s, for some [ # h. Then s; €5 C 55 A5;. Since & = r;f;h

mod 7 for any r € s, from above we have @ = uy;. Finally, L is the edge of NP(f},) of slope —15 = —pp;.
Thus L = L¥" O

SpAS
It remains to compute Sy when M = My j, where V =V or V = V"
Lemma 2.5.10 Let M = My j for V =V{*, or V =V’" if t = s5. For any | # h we have
(i) T]}f/ll(X,Y,O) =1 except when t=s; Asp and j=0;
(it) T]}l‘/ll(X,O,Z) =1 except when t<s; Asp and j=ry.
Proof. The lemma immediately follows from Lemmas 2.5.4 and 2.5.5. O
Lemma 2.5.11 Let M = My j with V =V, or V =V, if t=s. Then Sy = @.
Proof. For any I # h, we want to prove that

(2.6) SM = {Th(X,Y,Z)=Y ™2™ =0} = 2.

Lemma 2.5.2 shows that m 33 is always different from 0 and that g3 = 0 if and only if j = ry,
and V = V;:h orV = Vévh. Assume that if t = 5; A 55, then j # 0 and that if t < s; A5, then j # ry.
Lemma 2.5.10 implies (2.6).

Ift=5; A5, and j =0, then pp;riigs — g1 = 0 but ppyriteg — g1 > 0. So

Sh—(T"(X,Y,Z) = Z"™% = 0} c Spec R[Y 1.
Similarly, if t <s; A5, and j =ry, then g1 — ppiriies = 0, however sy — ppyriss > 0. Then
Sh—(T"U(X,Y,Z) = Y™ = 0} c Spec R[Z 1.

In both cases, SZ}{,} c X7 as sets, where F = F*’" _ ([Dok, Definition 3.7]). Let L = L¥"_ , and let

S1N\Sp SINSp?

fr(x) = f(x+wp) and g7, (x,y) = y2 — f(x). By Lemmas 2.5.8 and 2.5.9, one has
St e XpnSu,, =9,

as .F]’ll,ILO(X,Y,O) mod 7 equals Y? - X°f1.(X), for some a € Z, b =1,2 (see Lemma 2.5.17 for
more details, whose proof is independent of this result). Thus if V = Vtw” and M = My j, then
Sy =2. O
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2.5.6 Components

Now that we have compared the special fibre of C with those of the models CZ”’ , let us describe
closed subschemes that form it. We will first study closed subschemes forming CLAU’; and then how
they glue in Cs.

Let f5(x) = f(x +wp) and gp(x,y) = y2 — fr(x). According to [Dok, Theorem 3.14] the special
fibre of CZ”” is formed by:

¢ Chains of P}es coming from v-edges of A%,
* 1-dimensional subschemes coming from v-faces of A%,

More precisely, each v-edge E gives a scheme Xg x Pg, where Pz is a chain of [P’,is and Xg c G, 1
is given by g1 |z = 0. The multiplicities and and the length of Pz can be completely described
by the slopes of E. On the other hand, each v-face F gives a proper scheme Xy containing an
open subscheme Xz € Gi , given by gnlr =0. How the previous schemes intersect to form CZA”’; is
described by [Dok, Theorém 3.14]. The reader is pointed to [Dok] for more details. ,

Definition 2.5.12 Let te =% be a proper cluster. For any rational centre w of t, let Ttw = "o,
Utw = Cf HrEiR\trt,w and ugh,wh =Cf Hre‘ﬁ\{wh} Tsp,wy - Define ft‘ijgt,w € k[X], and g(s)h,wh € k[X] for
any h =1,...,m, as follows:

(1) Let u = uyy. Define £)¥ by

m(Xb‘)= Lo J] X+ryw) modm,

o)
ret\Us<$

where the union runs through all children s of tin =W . If = = Z’é}in denote m by ﬁ_w
(2) Let u=uyy. Define g p(X) := XPU" - L mod 7.

ae—— 0 0
3) Letu= ugh’wh. Define ggh,wh(X) = XPsYon = 4 mod 1.

o)

Note that the polynomials defined in Definition 2.5.12 agree with the ones in Definition 2.4.14

when w = wy.

Lemma 2.5.13 Let s,t€ Z‘éat, with s C t. Let w',w be rational centres of s and t respectively, and

define Uy, = wj;%:” mod 7. Then Uy, does not depend on the choice of a rational centre w' of s.
Proof. Suppose that wi,ws are two rational centres of s. Then v(wi —ws) = ps > pt, and so the

lemma follows. O

Remark 2.5.14. Let te Zg’”. Letl=1,...,m,l #h. Then t = 55 As; if and only if it has a child

w—w

s€ X, \Z;". In particular, if this happens, Lemma 2.5.13 shows that u; = “;

L mod 7 for any

rational centre w of s.
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Definition 2.5.15 Let te Zé’h be a proper cluster. Define IV :={s € ZW U {2} | s < t}, where & <
only if t has no child in ZV. If & < t then we will say that wy, is the rational centre of &.
Define Gy, := Gy, . \U;{t7}, where the union runs through all / # A such that 5; As;, = t. Note

that Remark 2.5.14 shows that Gy, = Ai \Usetw (w0, )}, Where Uy, = =257 mod 7, and w; is

any rational centre of s.

Let te ZLC‘”L be a proper cluster. Let V = Vtwh and M = My ;. In §2.5.5 we showed the special

fibre of Uz}tl/I equals Xprn CZ”;. Therefore the components of CK’; coming from V are the same of

Wh
A,s?

where Py is a chain of [P’,is and Xy :{gnlv =0} over G, ;.. Lemma 2.4.3 implies that g4|v = g¢w,-

those of CZ”; given by the same v-edge. Therefore V gives a closed subscheme Xy x Py of é

Let Vo = Vow " and M = My, ;. Similarly to above, X3/ N CZ”; =Xy OCZ”; and so V; gives rise to
a closed subscheme Xy, x Py, of CZ”; , where Py, is a chain of P}CS and Xy, :{gxlv, = 0} over G, ..

Note that gy, = ggh’wh.

Let te Zzh be a proper cluster. Let L = L't”" and M = My, ;. By Lemma 2.5.8, the v-edge L gives
a subscheme XZV x Pz, of COZ)’;, where Py, is a chain of IPis of length r;, and X{V {gnlL =0} in Gy, -
Note that r;, =0 or 1 by Ler’nma 243 andry=1ifand onlyif D =1. Let t; € Zg” be the unique
child of t with rational centre wj, or set t; = @ if t has no such child. We will show that

@.7) gt X)=- J] &+ Toow)”! ,fg]h(X).
etV s#£t,

Ws—Wh

where uy,_, =~

mod 7, and w; is any rational centre of s.

Suppose t # s, As; for any I # h. Equivalently, all children of t in =¥ (at most one) belong to
Zzh. Then Lemma 2.4.3 shows that g1, = _ft‘fuh' Suppose now that t =55, As; for some [ # h. In
this case by = 1. We have

modn) =¥ (X),

&grlL(X) B ( ——@ Hrent, X +Tew,)
HseiW,s;éth X+ uwswh)|5| Hsei"",s#th [Tres(X +7¢w,)

where r¢,, and u = uy,, are as in Definition 2.5.12. Indeed, ©,_,, = rtw, modr for every res
as v(ws — 1) = ps > pt, and since by = 1, Lemma 2.4.3 implies that

grlL(x) = =55 [rent, (x + rew,) mod 7.

In particular, Remark 2.5.13 and Lemma 2.5.9 shows that (X +up;){ E(X ), for any [ # h such
that s; A s, = t. Moreover, X { m(X ) by definition. Therefore the scheme XZV is equal to the
closed subscheme Xf‘lfvh c A,i given by f,}foh =0.

Let t € =W be a proper cluster. For any A& = 1,...,m such that s,  t, let X FUn be the 1-

dimensional closed subscheme of " given by F|"*. Define
s o 0y
Xszh .—Xszh ﬂCA .

Denote by I' the 1-dimensional closed subscheme of Cs, result of the glueing of the subschemes
X P of CLA”’; to varying of 2 such that te X"

51



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

Lemma 2.5.16 Let te Zgh be a proper cluster. The multiplicity of 'y in Cs is my.

Proof. Let L = Li"h, M=M;j,and let F' = Ftwh The multiplicity of X 7@, and so of X zen and Iy,
t t

is 0r. Hence we only need to show that m¢=dp. Let dg € Z as in Lemma 2.5.2. Then 6 = 61.d.

The result follows as 67, = b and d, denominator of sll;, equals 3—D¢ by Lemma 2.4.3. O

Lemma 2.5.17 Let L zLiUh, F= Ftwh and M =My, . Let c €{0,...,b¢— 1} such that 1/by—p¢-c € Z.
Then F Z}(,I(X ,Y 0) mod 7 equals the polynomial

- Isl_ . ———
gnlr X, V) =Y — [T X ~mgop) e fY (X),

E t,wp
setV

Ws—Wh
TPt

where Uy, = mod 7, and ws is any rational centre of s.
In particular, Ff < Gy, % A}e given by gl =0 is the open subscheme U 1}131 N{Z =0} of Xr, and

the points in Sy belong to all irreducible components of Xr.

Proof. From [Dok, §3.5] and the equation of C**, the polynomial F Z’&(X ,Y ,0) reduces modulo 7 to
Xauyb +X%g,|1(X), for some b =1,2 and a € Z. Lemma 2.4.9 shows that b = D;. By Lemma 2.4.3,
a1 =2m1g, ag = [tplm 11+ (e~ |ty prit13, where t, € 5" U{2}, t, <t. Thena; =0 and ag = % —cey
by Lemma 2.5.2.

If t has one or no child, or D¢ =1, then g,z = —m by (2.7). On the other hand, if D¢ =2 and
t has two or more children in Zz?t, then by =1, and so ¢ = 0. Therefore the equality (2.7) concludes
the proof of the first part of the statement also in this case. Finally, the last part of the lemma

follows from Lemma 2.5.8. O
Let ¢ as in the previous lemma and define T :={s etV | % —cey ¢ 273,

Proposition 2.5.18 Let L = L?’” and M = My, o. The dense open subscheme I'cnU 1}‘2 of Ty is

isomorphic to the closed subscheme of Gy, x A]i given by

yPe= H (X - uwswh)'m(X)’

setV
where Uy, = =5 mod 7, and ws is any rational centre of s.
Proof. The proposition follows from Lemma 2.5.17 and the definition of Gy, . O

We conclude this subsection describing how the glueing morphism (2.4) restricts to the special
fibre. Suppose t 2 s; Asp for [ # h and let M be a matrix associated to t. Consider the glueing map
U]}{/I — U]ZVI explicitly defined in §2.5.3.

Suppose first M = My ; with V = Vtwl. By Lemma 2.5.10 the glueing morphism restricts to
the identity on Xy x Py.

Suppose M = My, ; with L = Lfﬁ‘”. Note that 212 = 0 from Lemma 2.5.2. Recall the open
subscheme F{‘ of X P defined in Lemma 2.5.17. Then, Lemma 2.5.7 implies that the glueing map

restricts to an isomorphism Ff — Fi induced by the ring homomorphism sending X — X +uy,, 4,,
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— wp—w;
where uy,w, = —i5+

mod 7. Similarly, it restricts to an isomorphism X{‘%h X IPLT;Z — XX‘,?Z X PLTI,
where P, v, — P« is the identity and lef{"h — Xz‘fvl is induced by the ring homomorphism sending
t t t t

X—X+Uy,w,-

2.5.7 Regularity

In this subsection we prove that if C has an almost rational cluster picture and is y-regular, then
the scheme C is regular.
Let wy, € W. We want to show that if £ = Zg‘in, and C has an almost rational cluster picture

and is y-regular, then CZ’h is a regular scheme.

Lemma 2.5.19 Consider the model CZ’h/OK and let fr(x) = f(x+wy,). Suppose = =1{51,...,5,} =
Zg}in, and C has an almost rational cluster picture and is y-regular. If P is a singular point of CZ”I

then
Ox[X*,Y,Z]

C ~ ~
(FZ}‘L,[(X,Y,Z),X+ uhl,Ym23Zm33,7[)

P e Spe cCy"nXy,

for some l # h, where M =Mw,  fori=0,...,r w,
Eh/\Sl’ Eh/\SZ
Proof. Denote by mq(X) € Og[X] a lift of the minimal polynomial in 2[X] of @ € 2. By Lemma

2.5.9, we only need to show that if P € CLA"h is a singular point then

Ok[X*1Y,Z]

*8 P € Spec — — ;
(FML_(X,Y,Z),ma(X)’szgzm%,n)

for some v-edge L = th”h of A", and some multiple root @ of f3|z.. For any v-edge E of A¥" and
any i =0,...,rg, we study the polynomial ]-'1{2, where M = Mg ;, using [Dok, §4.5]. Let gp(x,y) =
y2 - fr(x). Let L =L¥" and M = My, ;. Note that g4I, = —f5|z. We have F7(X,0,Z) = g;|.(X) for
any i. On the other hand, 77.(X,Y,0) = g4[L(X) if i >0 and FI(X,Y,0) = g;[r(X,Y) if i = 0.
From the description given in Lemma 2.5.17, we conclude that for these matrices M the points
in (2.8) are the only possibly singular points of Cg’h N X . In particular, this proves that for any
v-face F' of A¥" the points in Xr are non-singular in CZ”K

Let V =V/”" or V=V, and M = My ;. Since C is y-regular, p { deg(g;|v) by Lemma 2.4.9.
By [Dok, §4.5] and the fact that the points in X are non-singular for all v-faces F', we conclude
that CZ”‘ has no singular point on X3 for these matrices M, as required. O

Proposition 2.5.20 Suppose X = Zg}in, and C has an almost rational cluster picture and is

y-regular, then C is a regular scheme.

Proof. Lemmas 2.5.19 and 2.5.8 show that ijh is regular for every h. Thus their glueing C is

regular as well. O
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2.5.8 Separatedness

It remains to prove that C is a proper scheme. In this subsection we show it is separated. Clearly
it suffices to prove that X'/Ok is separated. Since the schemes X Z are separated, then the open
subschemes X Z are separated as well by [Liu4, Proposition 3.3.9]. Consider the open cover
{VA}}}h,M of X. Let h,l =1,...,m and let M; and M; be matrices associated to proper clusters
tp € 25" and t; € £ respectively. By [Liu4, Proposition 3.3.6] we want to show

(i) Vj; NV}, is affine,
(i1) The canonical homomorphism
Ox(Vy; )87 0x(Vyy) — Ox(Vy nVy)
is surjective.

The definition of the glueing map (2.4) implies (i). If A =1, or 5; S 3, or s, S {;, then (ii) follows
from the separatedness of X Z and X lA. So assume [ # h, and t,t; C 55 A s;. Consider the Moebius

transformation
4 z Y
18X, Y g
xw,; +1 (xw,; +1)8*
It sends the curve C%¥! to the isomorphic hyperelliptic curve

C;L :y2 = (xw};ll + 1)2g+2f (x(xw}_lll +1)71+ wl) .

flx) = (wy |+ D2P2F (x(ew) ) + 17+ w;)

2g+2—|R r—wp -1, r—w
pe2-m [ ( ’

IR xwhl +
reR{w;,} Wik r—=Wh

_ -1
=crwy,; (xw;,; +1

every cluster s € Zgl such that s C s;, A 57, corresponds to a unique cluster she Zoch of same size,
1
same radius and rational centre 0. Moreover,

€gh =v(cpn) + Y pert+ Y v(r) =€
r'esh r'gsh
Call té‘ the cluster in Zg? corresponding to ;. Let A" and Af,h be the Newton polytopes attached
to y2 — flh(x) and let X lAh be the associated toric scheme (defined in [Dok, §4.2]). Since t; C sp, A 57,
the v-faces Fy, of A¥! and Ft? of A are identical by Lemma 2.4.3. Furthermore, note that if
t; <sp As], then PP < Pni = PP, and so 3‘2/0 < sg, where V0 = Vt? and V = Vt’l”’. Therefore the
matrix M := M; is also associated to t?.

For every o =1,...,m, with o #1, define

WhiWio 3
) et ifo#h,
Whio =

whi ifo=h,
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and write wp;, = upomPe, where up, € O and ppro €7, ice.

HZe ifo#h, Pl +Plo—Pho if0#h,
Uhlo = ho and  ppio =
Upl if0=h, Phl ifo=h.

Define

Thlo XY 7). 1+ uthXthaﬂlls—fﬁnYthom23—'ﬁ21Zthom33—rﬁ31 if ; 25,,
M X.Y,2):= =1 w11 —PhioM 13y M1~ Phiol23 7131~ PhioM33 ;
uhloX oM3y oM 7 oMz +1 ift; Bs,.
We want to show T71°(X,Y,Z) e R. If o = h then
Tho(X,Y,Z)=Ti(X,Y,Z)€R.

So assume o # h. If 5, S {;, then it follows from Lemma 2.5.4 as s; As, C 5; Asp, and so pp1o = Pio-
On the other hand, if s, € {;, then it follows from Lemma 2.5.5 as rigg,m33 > 0 and ppj, <
max{pn, 0jo}. Let

THX,Y,2):=[]T)°X,Y,2).
o0#l

The Moebius transformation
K,y Mo (o 4+ w10) ™1 L KlxL, y1 TTos (6 +wipio) 1]

considered above induces an isomorphism

Moy oM

RIT,(X,Y,2)™] RITHHX,Y,2)™,

sending

X—X- T%(X’Y,Z)—mn—(g+l)m21,
Y—~Y- T;‘Z;(X’Y,Z)—mlz—(g*'l)mzz’
Z—Z -TX,Y,z) ™ (g+Dma,
Then
Vit .= Spec RITHHX,Y,Z2) 1]

is an open subscheme of X lAh, isomorphic to VIf,I. We can clearly carry out similar constructions
for t, My,.
By comparing the Newton polytopes Af,h and Afjl, we see that the Moebius transformation
x— whl/(wl_hlx), y— y/(wl_hlx)ngl gives an isomorphism
v K™y T+ whio) ™ — Kl y* 1 T] e+ wing) ™
o#l o#h

which induces a birational map X Zl - X lAh, defined on the open set V]"}Ilh of X Zl . In particular,
there exists an open set szfh of XZAh, isomorphic to VJ\]}Ih via the map induced by 1//,:1 oY.

55



CHAPTER 2. MODELS AND INTEGRAL DIFFERENTIALS OF HYPERELLIPTIC CURVES

Recall the definition of ¢ in (2.1), which induces the glueing map between V]{ll and VA}/LIh' Since

the following diagram

Klx*,y, (e +wio) ™1 —2 KL,y Ty sn e+ wpo) ]

l}//l \L‘l/h

Kleth, y* 0, T (@ + wpio) ™) —— KL,y Ton Ge + wino) 1]

is commutative, then the surjectivity of
h ! h !
OX(VMh)®Z OX(VMI) > OX(VMh ﬁVMZ)

follows from the separatedness of X ZA".

2.5.9 Properness

In this subsection we prove that C is proper. By [EGA, IV.15.7.10], it remains to show that Cs is
proper. From [Liu4, Exercise 3.3.11], we only need to prove that the 1-dimensional subscheme I'¢
is proper for every t = s; A 5;. Indeed every other component is entirely contained in a model C}",
which is proper (see §2.5.5). Let t =55 A s; for some A,l =1,...,m,with h #l. Foranyo=1,...,m
such that s, c t, let t, be the unique child of t with s, € t, < t. Then I'; is equal to the glueing of

the schemes
RITS,(X,Y,Z) 1]

(Fo(X,Y,2),Z,7)

Spec , M = MthUa ,O’Mkao,O’

and

RITS,(X,Y,Z) "]
, M=Myvo, ,,,
(Fo(X,Y,2),Y,n) to TV
for all o such that s, c {, through the isomorphism (2.4) and the glueing maps in the definition of

Spec

CZ"’. In particular, for any o as above there exists a natural birational map s, : I'i--+X Fueo which
is defined as the identity morphism on the dense open X Fio = I'in égj".

Let D/k be a normal curve, let P € D and let D \ {P} £, I't be a non-constant morphism
of curves. We want to show that g extends to D. For every o as above, X Flo is proper, so the
birational map

8o:= soog:D\{P}"%XFivo

extends to a morphism g,:D — X oo I
— S Sw, SWw,
P,:=g,(P)e (XFIUO nev ) =5, (rthA )

for some o such that s, c t (we will later show this is always the case), then there exists an
open neighbourhood U of P, such that U < (X Fuo nCOZ)") and so solg,1 e is an isomorphism. Since
P e g }U), the map

o

s U U -
S
g"lggl(U) ( "ls;I(U))

g,' ) U s;UU) =Ty,
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induces an extension D — I’y of g.

Suppose that P, ¢ X o N (?LA"" for any o such that s,  t. From §2.5.5 we have

R

2.9 Po Sy =S >
2.9) €M =BPeC o (XY, 20T (X + 140), Zo70)

where M = M L% 0> and the product runs over all [ # o such that t =5, As;. In particular P, is
a point of each irreducible component of X FUo by Lemma 2.5.17. Let h # o such that X +u,
vanishes at P,. Let ¢ be the generic point of D and let &, = g,(¢), &, = g1,() be generic points of

X v and X pwn respectively. Then the birational maps s, and s, give
t

Xy k(&)
5o - Peo
D~{P) =T = k(D) g
Ry _ bgy,
X £(5)

where we denote by ¢, and ¢, the homomorphisms between function fields induced by g, and
g1. The vertical isomorphism is induced by the map

RITS,(X,Y,Z)'1  RITH(X,Y,Z)]

(Fox,Y,2),2)  (Fl(X,Y,2),2Z)

which sends (see §2.5.3 and Lemma 2.5.7)
X+ugh— X -THX,Y,Z)™ +upp =X (1 +upX 1) +uon =X.
But the rational function X + u, vanishes at P,, while X does not vanish at P by (2.9). This

gives a contradiction, as g,(P) =P, and g,(P) =Py,

2.5.10 Genus

Suppose Z = {s1,...,5,} = Z’é‘m, and C has an almost rational cluster picture and is y-regular.
In the previous subsections we proved that C/Og is a proper regular model of C. Let te Zg’l be
a proper cluster. In this subsection we want to describe the genus of the components I'y of Cg
introduced in §2.5.6.

Proposition 2.5.21 Let te Zgh. Then T'¢ is isomorphic to the smooth projective 1-dimensional

scheme given by

YD‘ = H X - uwswh)ft,wh(X)
setW

where Uy, = =5 mod 7, and ws is any rational centre of s.

In particular,
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1. if D=1, then T\ =P};

2. if Dy =2 and t is iibereven, then Ty is the disjoint union of two Ps over some quadratic

extension of k;
3. in all other cases, I'y is a hyperelliptic curve of genus g(t).

Proof. The first part of the proposition follows from Proposition 2.5.18.

For the second part of the statement note that if D¢ = 1 then the result follows. Suppose
D¢=2. Then p # 2 as C is y-regular. Note that since X = Z‘gm, the proper clusters in =%
correspond to the proper clusters in Zrcat. Recall the definition of { given in Definition 2.4.13. Let
R(X) = Toeiw (X — Tapoiop) oy, (X

Suppose t is iibereven. Then all its children are (proper) rational cluster by Lemma 2.3.30

since they are even and p # 2. In particular b; = 1 by Lemma 2.3.18 and so e, € 2Z and { =1V = &
since it equals the set of odd rational children. Moreover, t = Us <t sproper §, and so ft_wh € k. Thus
h(X)€k.

Now suppose h(X) € k. Then ¥ = & and t = Us;<( 5, where s runs through all children s € =% of
t. The non-proper clusters in =W are of the form {w;} for some [ =1,...,m. If {w;} <t, then t=5;,
but in that case t would not equal the union of its children in %. Hence t has no non-proper
children. It follows that { =17 and t equals the union of its proper rational children. In particular,
t has two or more children in Zrcat, s0 by =1, by Lemma 2.3.18. But then { is the set of odd children
of t as €, € 27, and so all rational children of t are even.

It only remains to prove that if A(x) ¢ &, then the genus of I'; is g(t). Since ~(X) is a separable
polynomial, we need to show that
[t~ Tgesmt ool

by

It suffices to prove that if s € Zlgt is a non-proper rational child of t different from {wj}, then

degh =

by =1 and s € . Suppose s = {r} is such a rational cluster. Since r € t, we have v(r —wp) = py.
Suppose v(r —wyp) > pt. Then s € igh, as s <t and r # wy. But this contradicts our choice of W.
Then p¢ = v(r —wy) € Z and so by = 1. It follows that t is the set of odd children of t. Thus set. [

2.5.11 Minimal regular NC model

Suppose the base extended curve Cg»r is y-regular and has an almost rational cluster picture.
Consider the model C/Og»r constructed before with X = nggr. In this subsection we study what
components of Cs have to be blown down to obtain the minimal regular model with normal
crossings.

Recall [Dok, §5]. Let Zgnr = Zlg‘;m and fix a proper cluster te Zglf’( .- Suppose first t # 5, A5
foralll =1,...,m with [ # h. Equivalently, t has at most one proper child in Xg»-. Then I'i = X P
and can be seen entirely in COLAUh. In particular, if I'y can be blown down then F f”‘ is a removable or

contractible v-face (see [Dok, Theorem 5.7]). By Lemma 2.4.3, we find
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. F,i” " is removable if and only if t = R with a child in Zg» of size 2g + 1.

o Fi” * is contractible if and only if either |t| =2 and 62—‘ — pt € Z or t has a proper rational child

5 € Xgnr, of size 2g, and 3 — gp€ Z.

Recall Definition 2.4.19. Note that Ftw * is removable if and only if t is removable. In this case,
F twh can be ignored for the construction of Cg”‘ (for any A since t =R), and so t can be ignored for
the construction of C.

Assume now Fz” k contractible. We want to understand when I’y can be blown down. First
consider the case |t| =2 and % — pt € Z. Then I'¢ intersects other components of Cs in 2 points (as
V" gives two chains of P's and the v-edges V;"* and L{’" give no component in CK’; ). To have
self-intersection —1, I't has to have multiplicity > 1. It follows from Lemma 2.5.16 that p: ¢ Z, as
% — pt € Z. Moreover, by Lemma 2.3.12, one has p¢ € %Z. Therefore ¢; is odd and the multiplicity

of I'y is 2. Let r :=r» and consider
t

n nr nr41
St=—>—=>+-> L > vy (si—p¢+
VSt do  ds dr " doet Yt( t— Pt PP(t))

given by Vtw”. If I'¢ can be blown down then d; = 1. Since yis¢ = —% +2p¢, we have dg =2. In
particular d; = 1 if and only if pi — pp() = Z—g - % > 1 (see also [Dok, Remark 3.15]). Thus if
[t| =2, then I'y can be blown down if and only if p¢ ¢ Z, €, odd, pp) < pt — % Note that this is case
(1) of Definition 2.4.19.

Second consider the case |t| = 2g + 2 with a proper rational child s of size 2g and % —gpte”Z.
The argument is very similar to the previous one. If I't can be blown down then it must have
multiplicity > 1 and this implies p¢ ¢ Z again by Lemma 2.5.16. From Lemma 2.3.12 it follows
that (|t| - [s])pt € Z, so pt € %Z. Then m =2 and

vler) e 1
T_E (g"‘l)pthZ\Za
so v(cy) odd. Let r:= T'yh and consider

n nr _ Nr+1
8= — > = > > L >
¥ do di dr  dr+1

=7Ys(ss— ps + pp)

given by Vﬁwh. If I'¢ can be blown down then d, = 1. Recall that e¢; —|s|ps = € — |s|p¢. Then
Ys(Ss—ps+p1) = —% +(g+1)py, so dry+1 =2. In particular d, =1 if and only if p; — p¢ = Z—g - % > %
Thus if t has size 2g + 2 and has a unique proper rational child s € Zg»-, then I'y can be blown
down if and only if |s| = 2g, p( € Z, v(cy) odd, ps = p¢+ % This is case (2) of Definition 2.4.19.

Finally, if [t| =2g + 1, t has a proper child s € Zg»- of size 2g and % —gpt€Z,then p e Z, as
(Itl = IsDp¢ € Z. It follows that e € Z and so m = 1. This implies the self-intersection of I'; is not
—1, since it intersects the rest of C; in at least two points as before. Hence in this case I'y can
never be blown down.

Now assume there exists [ # h such that t = 55 A 5;. Then t is not minimal. Let t;,t; € Zgnr

be such that s; €t} <t and s; € t; <t. Suppose I'y irreducible. If |[t| < 2g (or, equivalently, t is not
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the largest non-removable cluster), then I'; intersects at least other 3 components of C; (given
by t,1;, and P(t)). So it cannot be contracted to obtain a model with normal crossings. A similar
argument holds if there exists o # [ such that s, A 55, = t: at least 3 components (given by t;, {;
and t,) intersect I'y, so blowing down I't would make the model lose normal crossings. Assume
then [t| > 2g and s, Asj, # t for all o # [. Then I'y intersects at least other 2 components of C; given
by Vt:”’ and Vt'l”l . Firstly, if I'¢ can be blown down, then m > 1. But p{ = pj; € Z. Then m is at
most 2. If m¢ =2 then D¢ = 1, that implies ¢; odd and I'y = P! by Proposition 2.5.21. It also follows
S{€ %Z\Z. If t is odd then this implies that Vtw" gives a P! intersecting I'y. Since that would be a
third component intersecting I'y, the cluster t has to be even. Hence t =R and |t| = 2g + 2. Then
et is odd if and only if v(cy) is odd, as pi € Z. Now, L{"* gives some P's intersecting XFf’h c CZ”’;.
All these Pls are not in CZ”; (and so in Cy) if and only if t; Ut; = t. In particular, t; and t; are
either both even or both od’d. If t;, is even, then yy, =2, and so the component given by Vt':h has
multiplicity at least 2. The self-intersection of I't could not be —1 in this case. Assume t;, is odd.

Letr:= Tyh and consider
th

no _ni nr _ Nr+l Pt —Pt)
sp, =—2>L>...5>0 s =y |8 — 20 T8
Yusu =g, 7 4, 4 dr T ( t 2
given by th". We want d, = 1. Since
Pt — Pt €t | Itpl-1 1
Y’Lh(sfh_ h2 ):_E-i- h2 ptEQZ\Z,

. .o Py, —Pt n , 1
we have d,;1 = 2. As before d, = 1 if and only if —5— = d—g - % =5

and similarly for t;. Thus if
t has two or more rational children and I'; is irreducible then it can be blown down if and only
if v(cy) is odd and t = R is union of its 2 odd rational children t;, and t;, satisfying py, = p¢+1,
py, = p¢+ 1. This is case (3) of Definition 2.4.19.

Suppose now I'y reducible. By Proposition 2.5.21 the cluster t is iibereven, ¢ is even and I'¢ is
the disjoint union of I’y = Pl and Ff =~ P!, As before, both Iy and Ff intersect at least other two
components (given by the proper children of t). But then neither I'; nor I'{ has self-intersection
—1,asm¢=1.

We have showed that, for a rational cluster t € Zg»-, an irreducible component of I'; can be
blown down if and only if t is contractible. Moreover, in this case, ['¢ is irreducible. It remains
to show that after blowing down all components I't where t is a contractible cluster, no other
component can be blown down. First note that if t is a contractible cluster, then m¢{=2 and I';
intersects one or two other components of multiplicity 1 at two points in total. If it intersects
only one component, then after the blowing down, the latter will have a node and will not be
isomorphic to P1. If Ty intersects two components and those intersect something else in C,, then
they will not have self-intersection —1 also when I'; is blown down. Therefore suppose that one of
those two does not intersect any other component of C,. If we are in case (1) or case (2), it is easy
to see that this never happens. Indeed, in those cases, Ty intersects non-open-ended chains of Ps.

Then without loss of generality assume to be in case (3) and that I'y, is the component that can
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be blown down once I't has been contracted. This implies s; = t; and p;, = p¢+ 1. Then b, =1
and €, = €¢ +|s3]. Since both €; and s are odd, we have €, € 2Z. So D, =2 and §j, is the set of
rational children of s,. Hence g(sp) = {%J = 1 since |s;| = 3. But then I';, cannot be blown

down.

2.5.12 Galois action

Consider the base extended hyperelliptic curve Cg»-/K"". The rational clusters of Cgrr and their
corresponding rational centres are then over K™". Denote Zgn = Z?,:m- For any proper cluster
5€ Xk, let Gs = Stabg, (s), K = (KS)G5 and %; be the residue field of K;. Let Zlg:; =1{51,...,5m}
be the set of rationally minimal clusters of Cgnr. Fix a set W ={w1,...,w,} < K™ of corresponding
rational centres. By Lemma A.1.1, we can assume this choice to be Gg-equivariant, i.e. for
any o € Gk, one has o(w;) = wy, if and only if o(s;) = s;,. We can also require that wj, € s, if

n

spNKs, # . Similarly, for any proper cluster t€ Zg»\Z5"" , fix a rational centre wy in such a

i
K
way that wg) = o(wy) for any 0 € Gg. Set ws, :=w, foranyo=1,...,m.

Lemma 2.5.22 With the choices above, for any h =1,...,m, the set of proper clusters in Za’;n

r

coincides with izh

gnr’

Proof. Suppose by contradiction that there exists a non-proper cluster {r} =se Zgl’; o With r Z wp,.
Note that r € 55, and so s < s5,. Recall that since s is a cluster centred at wy, it is cut out by the disc
D={xeK |v(x—wy)= p;y"}, with pg* = v(r—wp) > ps, - This implies that wy, ¢ R, otherwise w, € 5
and |s| = 2. In particular, wy, ¢ s5. For our choice of wy, it follows that s, N K, = &. Therefore

r ¢ K;;, and so there exists o € G, such that o(r) # r. Since w;, € K;;, we have

v(o(r)—wp) =v(o(r —wp)) =v(r—wp) = pg".

But then o(r) € 5, and so |s| = 2, a contradiction. O

Assume that Cgnr is y-regular and has an almost rational cluster picture. By the previous
lemma, from the set of rational centres W we can construct the proper regular model C/Ognr of
Cgnr as previously presented in this section. In this subsection we show how the Galois group
Gal(K™/K) acts on the Ognr-scheme C. Moreover, we describe the induced action of G, on the
special fibre Cs/k%, and give defining equations for the principal components of Cs compatibly with
the action.

For any I = 1,...,m, recall the notation f;(x) = f(x +w;) € K™ [x] and C*/K™ : y? = fi(x).
Fix 0 € Gg. Let [,h = 1,...,m such that o(s;) = s,. Then o(f;) = f5. Now, let t € Zg{m be a
proper cluster. Then o(t) € ZZ}”{ .. and p¢ = pg(y). It follows that most of the quantities attached
to t, such as those of Definition 2.4.6, are the same for o(t), e.g. €; = €5(t). In particular, if M
is a matrix associated to t then M is associated to o(t) as well. So U(.F]ZM) = f]}‘fl. Finally, as

o([Toz1(x+ wi) 1Y) = [Toxzn(x+ whe)~ ! we also have U(Tzlv[) = TZIf,I.
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. . g . . .
Hence the natural K" -isomorphism C** — C%! induces Ogrr-isomorphisms of schemes

(2.10) cerey,  CnLEy,  unSUL.
Via the glueing morphisms (2.4), these maps describe the action of G on C.

We want to study the action of G, on the special fibre of C more in detail. Let 0 € Gal(K™/K)
and let 6 € G, corresponding to o via the canonical isomorphism Gal(K™ /K) = Gy,. Let [,h and
t as above. In §2.5.6 we described closed 1-dimensional subschemes composing COZ’,ZS and the
morphisms induced by the glueing maps. Recall the polynomials introduced in Definition 2.5.12.
From (2.10) we get

0(8Y 1) =82 w» 0&tw)=8owwn 08 ILlfz)Zghle(ht)-

From the equality (2.7) we obtain 6(fiw,) = fo(t,w,- Note that the previous relations can also be

recovered directly from the definitions.
Lemma 2.5.23 Let wy¢ be the rational centre of t fixed above. Then

(1) twe [tw, € RAX];

cey — _— - o _— —_— wi—w
(1) Stw,=8tw, ond [ (X)) = fruw, (X + Uy uw,) where Uy, = ;[pt L mod 7;

Proof. For any rational centre w of t, let u¢, = cf [I;esnt(w —r) as in Definition 2.5.12. Note that

ut,w/nv(“"w) is independent of w since
v((we—r)—(w—-r)) =vwi—w) = py>v(we—r)

for any r e R\t. Then g, = 8tw,. If 0 € Gal(k®/ky), i.e. 0 € Gal(K™"/Ky), then

5'(gt,w£) = 5'(gt,wl) = 8tw, = 8tw-

In particular gy, € k(X1

Since ut,w/ﬂ”(“"w) is independent of w we also have

Feaoi X8 = Fro (X + W) ).

Suppose pt € Z. Then b¢ =1 and so the equality above implies M(X )= E(X + U aw,)- Suppose
p € Z. Then v(w —wy) > p¢ for any rational centre w of t as v(w —wy) € Z and v(w —wy) = py.
Hence 7y, = 0. Thus fi, (X% = fi0,(X?), which implies fi ., (X) = fru0,(X) = fiuw, (X + U
If 6 € Gal(k%/ky), i.e. 0 € Gal(K™V'/K}), then

(Fiaw ) X) = 6(fr10)X + @) = Fraoy X +Tmuon) = fraw (X)),
and so fi,, € k(X]. O
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Remark 2.5.24. Note that the polynomials fi ., 8¢, and ggh,wh equal the polynomials ﬁ, gt and
ggh given in Definition 2.4.21.

LetV = Vth and consider the subscheme Xy x Py of C,; given by V, where Py is a chain of
Pls and Xy : {gtw, = 0} over G, s. If 55, < t, then the glueing map U]};I — UIZVI induces the identity
Prl Xy = Xyu. Define X( € Gy ps given by giw, = 0. By Lemma 2.5.23, ¢, : X, = Xyo, for
o = h,l, and this isomorphism is compatible with the Galois action and the glueing maps, i.e.
UO(p}‘l, = (/)%/ oo and (p}(,l ° (/)’(, = ¢€, as morphisms on Xj.

When Vj = Vow " we can consider the subscheme Xy, x Py, given by Vo, where Py, is a chain of
Pls and Xy, : {gs,.;, = 0} over Gy, ;. Since Xy, x Py, is never glued to any other component there
is no need to choose a different model for it.

Let L = Ll,:” and consider the subscheme XZV x 7, given by L, where Py, is a chain of P's and
X{V : {m =0} over Al.. If 55,  t, then the isomorphism (pﬁl :X{‘%h = Xz‘ful given by the glueing
map U ]"‘4 — UIZV[ is induced by the ring isomorphism £5[X] — £5[X], sénding X—X+uy,uw,
mod 7. Define X:V c A}es given by ft_m = 0. By Lemma 2.5.23, the map

Whp—Wi
TPt

where Uy, ., =

X — X + Uy, induces an isomorphism ¢7 : X tW = X{VZ,O , for 0 = h,l, compatible with the Galois

action and the glueing morphisms, i.e. oo c[)ﬁ = gbf: oo and gbl}fl o ¢I’j = (/)2 as morphisms on X,YV
Recall the definitions of ¥ and Gew, S A}cs given in Definition 2.5.15 and the definition of {

given in Definition 2.4.21. Note that by Lemma 2.5.22,
V= {se X U{D} s <\ {{r} e Zgor | P& W)

Fixc¢=0,...,b¢—1 such that 1/b¢—cp¢ € Z. For any rational centre w € K"" of t define ft,w e RS[X,Y]
by

frwX =] (X - uwsw)lﬁ““‘ﬂ(xx
setW
where Uy, = 5% modn (ws =w; if s =@). Let L=L{", F =F and M = M. It follows
from Lemma 2.5.17 that the scheme Ffﬁ”l =Xrn UZZVI is given by YDt = ft,wl(X ) as a subscheme of
G, % Ais. We then obtain 5(ft,w,) = fg(t),wh from the action (2.10) of o on U]lw.

Lemma 2.5.25 With the notation above,

() Ffiw, €RdX];

(i) Frw (X = fra (X +Uuaw,) where Uy, = “t mod 71;

Proof. If s € {, then o(s) € (o(t) and 0(Uw,w) = Uw,. 0w for any rational centre w of t. Hence

fAt,wt € kX] and 6(ft,wl) = fg(t),wh by Lemma 2.5.23(i),(iii). Since %y 0w, = Uw,w, — Yww,;,» Lemma
2.5.23(ii) implies fi 1, (X) = fiuw, (X + Upu))- O

Define I'"* € Gy, x Ais given by YPt = f .. Suppose s, < t, and let (,bi‘l T =T be the

isomorphism coming from the glueing map U ]’f/[ — Uzlv[ induced by the ring homomorphism
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X — X + Uy, ;. By Lemma 2.5.25, the map X — X +%,,, induces an isomorphism ¢{ : T’ =T,
for o = h,l, which is compatible with the Galois action and the glueing maps, i.e. o (,bf = ¢>{ o
and (/)fZ 0</>f = ¢i as morphisms on Ff“. Therefore I'¢ is isomorphic to the smooth completion of
I, and so it is given by Y2t = f(X), where f(X) = [1,{(X — Ww,w)ftw (X) is the polynomial
given in Definition 2.4.21.

2.6 Integral differentials

Let C be a hyperelliptic curve of genus g = 1 defined over K by a Weierstrass equation y? = f(x). It
is well-known that the K-vector space of global sections of the sheaf of differentials of C, namely
HO(C,Qé/K), is spanned by the basis

w={E a1

Let C be a regular model of C over Ok and consider its canonical (or dualising) sheaf wc/o, . The

d d —1d
s ends)

free Ox-module of its global sections H(C ,Wc/0,) can be viewed as an Og-lattice in H occ ,Q(lj x)
(see [Liu4, Corollary 9.2.25(a)]). The aim of this section is to present a basis of H(C ,WC/0g) AS
an Og-linear combination of the elements in w under the assumptions of Theorem 2.4.22. Note
that by [Liu4, Corollary 9.2.25(b)] the problem is independent of the choice of model C but it does
depend on the choice of the equation y2 = f(x) since the basis w does. Throughout this section let
C and C/Og be as above.

If C is A,-regular, [Dok, Theorem 8.12] gives an Og-basis of H(C ,wc/og ), as required. We

rephrase it in terms of rational cluster invariants, by using results of §2.3 and Lemma 2.4.12.

Theorem 2.6.1 Suppose C has an almost rational cluster picture and is y-regular, and all proper
clusters s € ¢ have same rational centre w € K. Let 51 c --- € 5, =R be the proper clusters in Zg"t.

For every j=0,...,g -1, define
i;j:=min{i €{1,...,n}|2(j + 1) <|s;[}

and
ej = %esij -+ l)psij-
Then the differentials
1 =nLefJ(x—w)jZ—;C j=0,...,8-1,

form an Og-basis ofHO(C,wc/oK).

Proof. Let C¥ : y2 = f(x +w) be the hyperelliptic curve isomorphic to C through the change of
variable y — y, x — x + w. By Corollary 2.3.25 and Lemma 2.4.12, the curve C% is A,-regular.
Since ig"t consists of the proper clusters in 2%, Lemma 2.4.3 and [Dok, Theorem 8.12] implies
that

”J:nLeJJxJZ_; j:(),..-,g_l;
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form an Og-basis ofHO(C,a)c/oK) as a lattice in HO(Cw,Qéw/K) (that is if C is regarded as a model

of C¥). Changing variables concludes the proof. O

Suppose now C has an almost rational cluster picture and is y-regular. Let Zg‘in be the set of
rationally minimal clusters and let W ={w; | s € ngin} be a corresponding set of rational centres,
such that all clusters in igs are proper. For every proper cluster t € X', choose a minimal cluster
st and set w¢ := ws. Consider the regular model C/Og of C of Theorem 2.4.18, constructed in
§2.5 by glueing the open subschemes Cg’ of Cy for w € W. We want to describe the canonical
morphism C — C. Write W ={w1,...,w,} asin §2.5. Forany h=1,...,m, let te Zg’h be a proper

cluster and let M be a matrix associated to t. Let C¥% : y? = f(x + wy) and
¥ - fla+wy) Y Y™ 27 FlX Y, Z).
Then, on the affine chart X the projection C — CK’Z is induced by

R M K[(x/)il,(yl)il] - K[xil’yil]

—_

FLX.Y.2) (0P —f@+wp) (P —f@)

where (X,Y,Z) = (x',y',m)e M and (x',y’) = (x —wy,, y). In particular it follows that (X,Y,Z) =
(x—wp,y,z)e M and so

x—wp XMy ma zms X
y |=|xmeymezne | =y oML
T X183y 23 7133 VA
For a proper cluster te Z‘"Cat recall the definitions of I'y and m;.

Proposition 2.6.2 Let te Z‘g"t be a proper cluster. Then®

ordr, (x —ws) = mypy,

Ordrtg—i = —mi (%Et— Pt — 1) -1.
for every proper cluster s € Zz?t, sct

Proof. Let g(x,y) = y%> - f(x). Let W = {w1,...,w,} as above. Let & = 1,...,m such that wj = ws.
Let F=F'", V =V/", M = My and let X,Y,Z be the transformed variables (X,Y,Z) = (x -
ws,y,m) e M. Define H(X,Y ,Z)=n—X"3Y ™32 and G(X,Y,Z)=g((X,Y,Z)e M~1). We have

FI}&(X,Y,Z) =Y WZ " G(X,Y,Z),

where nz = meq, since ordz(y2) = mqe¢ for Lemma 2.5.2. Write F = .7-"}(,[.

5If I'¢ is reducible, say I'y = ryu F:, with ordr, () we mean min{ordr;(-),ordrz(-)}
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Note that d(x —ws) = dx and (gy,,),(x —ws) = g, (x), where g, (x,y) = g(x + ws,y). Then, by
[Dok, 8.71,
{(x —wy)gl, = m11X Gl + m1sY Gl +m13Z Gl

y8y =ma1XGy + meaY Gy, + mo3ZG,,

from which it follows that

! ! ! !/
mi11y8y —ma1(x —ws)g, = (m11mag — ma1m12)Y Gy —(mo1mig —miimes)ZG,

=1m33Y Gy —ma3ZG,,.
We will show later that this quantity is non-zero. Moreover,

I’)~’L33Yg§/ - ﬁl23Zg/Z =Y z"z (n~133Y]:1’, - n~’L23Z.Fé +(ny + nz)f) .

Recall that X = (x —ws)™ty™21 ™31, Then % = mllxiﬁﬁ + m21d7y. Furthermore, as 0 = dg =

gydx + g\ dyin Qc/k, we have

ax _ (_mn _ma1 g—;)dx— dx

! !/
=— " |m —moi(x —ws) )
X \x-ws v & (x—wq)yg, ( Y&y mal ek

Therefore

dx dX

(2.11) 9 = ~ / = ! '
20x —ws)y2  XYnvZnz (m33Y]:Y—m23Z]:Z+(ny+nz)]:)

Let S = Spec Og. Considering X ! as an independent variable, the scheme

. OklY,Z,X1,X]
(FH,X-X1-1)

U = Spe

defines a complete intersection in Aé. Furthermore, U is an open subscheme of CX”L N Xy that
restricted to Ag \{TZ’fl(X ,Y Z) =0} equals U{l‘/[. In particular, U is integral. From §2.5.5 it follows
that Uy = U n{Z = 0} is a dense open subset of Xz. Recall that X is an open subscheme of T';.
Hence it suffices to prove the proposition for Uy instead of I'y ([Liu4, Lemma 9.2.17(a)]). Since X

and Y are units and Z vanishes to order 1 on Uy, Lemma 2.5.2 implies that
(2.12) ordy, (x —w;) =g =mp¢  and ordy,y =rize = m5.

Recall that U is integral and that U, is isomorphic to an open subscheme of C. Then Uy, is
smooth. Hence, by [Liu4, Corollary 6.4.14(b)], the sheaf wc/o, is generated on U by £ ~1dX where

Fy Fy Fi,
£:=|Hy Hj Fj |=-nXY 'Z7 (hssY Fy —ho3ZFy),
0 0 X

if £ is non-zero. Suppose it is; we are going to prove it later. Thus, as 7 =0 on U, from (2.11) and
(2.12) we have

dx -
OrdUtZ =m¢(dec+pe) +migs—nz—1=me(-Fec+pe+1)—1.

66



2.6. INTEGRAL DIFFERENTIALS

It remains to show that £ does not equal 0 on U. Suppose it does. Then from the computations
above, it follows that mnyg’y —mai(x —ws)g), =0 in K(C). Since mg; equals either 1 or 2 by

Lemma 2.5.2, it follows that there exists a non-zero ¢ € K, such that
m11ygy, —ma1(x —ws)g, +cg =0

(c € K from degree analysis). Then cf(x) = ma1(x—ws)f’ (x). Note that mo7 is non-zero as char(K) #

2. But then a contradiction follows since f is a separable polynomial of degree = 3. O

In the following two theorems we describe a basis of integral differentials of C. We use
Definitions/Notations 2.3.1, 2.3.3, 2.3.2, 2.3.8, 2.3.9, 2.3.26, 2.4.6, 2.4.10 in the statements.

Theorem 2.6.3 Let C/K be a hyperelliptic curve of genus g = 1 defined by the Weierstrass equation
y2 = f(x) and let C/Og be a regular model of C. Suppose C has an almost rational cluster picture

and is y-regular. For i =0,...,g — 1 choose inductively proper clusters s; € Zg“t so that

€s;, i €t i—1
Pp— 12 f—
€= 9 - § st/\si _margi{ 9 —Pt— 2 st/\t},
j=0 teX j=0

where if 5 and s' are two possible choices for s; satisfying s' < s, then choose s; = s. Then the

differentials

dx

i—-1
_ leil
s =gt ||(x Ws.)—,
i _ 515y

Jj=0

form an Og-basis ofHO(C,wC/oK).

Proof. Since H(C ,wc/oy) is independent of the choice of regular model, we consider C to be the
model described in Theorem 2.4.18 and constructed in §2.5.

We first show that the differentials y; are global sections of wc/o, . It suffices to prove they are
regular along all components I'y, where te Zrcat proper. Indeed for the construction of C and the
definition of the e;’s, the differentials u; are regular along all other components of Cs by Theorem
26.1.Fixi=1,...,g—1andlet j=0,...,i—1. Let te Zlg‘t be a proper cluster. If 5; =t then

ordr,(x — ws;) = mip = MPs; At
by Proposition 2.6.2. If t C 5; then wy is a rational centre of 5,. Hence
v(we—wsg;) = nrlei?min{v(r —wy),v(r —ws )} =min{p¢, ps;} = Ps; = Ps;at-
Therefore Proposition 2.6.2 implies

ordr,(x — ws;) = minfordr, (x — wy),ordr (w¢ — ws,)}

= min{mpt, miPs;ath = MtPs At
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Ifs;  tand tZ s; then from Lemma 2.3.18 it follows that
ordr, (x — ws,) = min{mp¢, MmPs;at} = MPs;At-
as Pt > Ps;at- Thus we have proved that
(2.13) ordr, (x — ws,) = mpPs;at, where the equality holds if t £ 5.

Hence it follows from Proposition 2.6.2 that

i-1
ordr, u; = Tnt([eiJ + ) Psjnt—

ﬂ+,ot+1)—1.
j=0

2

But - -
€¢ =z €¢ =
le;] = {E —pt— Z ,Osj/\tJ > 9 P Z Ps;nt—1,
7j=0 j=0

then ordr, y; > —1, that implies ordr, u; = 0, as required.

Now we need to show that the differentials y; span H 4 ,Wc/og), 1.e. the lattice they span
is saturated in the global sections of w¢/o, . Suppose not. Then there exist I <{0,...,g -1} and
uj € O for i € I such that the differential %Zie 7 U;l; is regular along I', for every proper cluster
te Zrcat. First we want to show that for any iy,i2 =0,...,g —1 with i1 < ig, one has s;, ¢ 5;,.
Suppose by contradiction that s;, C 5;,. Then

i ig—1 i9—1 ig—1
€jy = 2 ~Psi Z Psjns;; =€iy ~Ps; — Z Psjnsi; Zej; - Ps; — Z Psjnsi,
J=i1+1 J=i1+1
€s;, i1-1 ig—1 55;2
= 9 Psiy T Z Psjins;, —Psip ~ Z )OsJ/\sl2 Z Psins;, = €ig-
J=0 Jj=i1+l
Therefore
€t iz—l 6 lz 1
max{E‘Pt_ Z st/\t} =ej, = ~Ps;; — Z Psjns;,
J=0

texpt
and this means that s;, is a possible choice for the i-th cluster 5i,. But 5;, C 5;,, so the ig-th
cluster should have been s;,, a contradiction.
Let Iy = I be the set of indices i such that y; :=e; — |e;] is maximal. Let io = min/( and let
T'o= 5L . Since s;, ¢ 5;, for all j=0,. —1, from (2.13) it follows that

101

m:.= OI‘drO ;Iuio = TMs;Yio +m5i0 (eiO +p5lo + Z p5j’\5z0) 1

2
= _mgioyio -1< 0.

Furthermore,
1 esio 1
Ordro ;,ul = _msiOYi + msio (ei - 7 + Psio + Z Pﬁj/\sio) -1
Jj=0

=—mg, Yi—1=-ms v, —1=m,

foralliel. LetJ:={iel| ordr0 i =m}. Then J # & since ig € J. The order of the differential

= Ly csuip; along T'o must be >m. Let i € I. From the computations above i € J if and only if
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() ordr,(x—ws;) = Ms; Ps;g As; for all j=0,...,i—1. Equivalently, if 5; O 5;, for some j <7, then

v(w5i0 - ij) = pﬁio NS
€s; . .
(i) e; = —*— Ps;y — Z‘ Op5 Asi, . In particular, if 5; € 5;,, then 5; = 5;,.
(iii) y; =7vi,. Equivalently, i € I,.

Therefore J € Iy, ig = mindJ and
|.eLJ - |_ei0J =e;i—~Yi _eio +Ylo =e; _eio == Z pﬁj/\ﬁio5
J=to

for all i € J. Hence

—Zululz Nzo(z l_[(x wsj)

i-1
e ied nZJ io Psjrsig j=ig
and since ordr, % Ki, = m <0 we must have

(2.14) ordro(z leu— 1_[ (x —wg; ) > 0.

ied gri=ioPsjreig j=ig

For any j <ie€J, with ig < j we have s, ¢ 5;,. Therefore either 5; =5;, or 5;As;, 2 5;,. In the

latter case,

ordr,(x — wsio) = Mg, Ps;) > Mes, Ps;ns;, = ordr,(x — wsj).

It follows from (2.14) that

(x_w ; )ﬁz
ordro( ;}WT?’) >0,
1€ ‘o

Ws;~

where J; ={jellig<j<iands;#5s;},vi=u;[ljey, ps MZO EOX and B; = Hig,...,i — 1\ J;|.
To find a contradiction, we will use the explicit descrlptlon of a dense open affine subset of I'y.

Let W ={w1,...,wn,} be the set of rational centres of the rationally minimal clusters for C fixed

at the beginning of the section. Let w; € W such that wy = Ws, and let L = LZZ ,M=Mpo, and

consider

RIT(X,Y,Z) ]
C
(Fp(X,Y,2),Z)

Ul n{Z =0} = Spec Ty,

dense open subscheme of I'y. From Lemma 2.5.2,

— Bi
> l)i—(x Wh) =) viXﬁi/bﬁ"O,

i PP ied

which is a unit since the polynomial F ]’l‘/I(X ,Y,Z)in {Z = 0} is of the form Y2-G(X) or Y —G(X) for
some non-constant G(X) € K[X] (for more details see Lemma 2.5.17). This gives a contradiction

and concludes the proof. O
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Assume now Cg-- has an almost rational cluster picture and is y-regular as in Theorem 2.4.22.
Since |Z¢| is finite, there exists a finite unramified extension F/K such that Cr has an almost
rational cluster picture and is y-regular. Denote by O the ring of integers of F'. Let Zr = Z‘g‘; Fix
a rational centre w; € F for every rationally minimal cluster s € Zg. For all non-minimal proper
clusters t € X choose a rational centre w¢ = w; for some rationally minimal cluster s € t. In this

setting the next theorem gives a basis of integral differentials of C.

Theorem 2.6.4 Let C/K be a hyperelliptic curve of genus g = 1 defined by the Weierstrass equation
y2 = f(x) and let C/Ox be a regular model of C. Suppose there exists a finite unramified extension
F/K such that Cg has an almost rational cluster picture and is y-regular. For i =0,...,g —1 choose

inductively proper clusters s; € Zr so that
€5, < {e . i-1 }
eji=—— As; =MAX{— — p¢— AELS
i 2 j;opij\sl 22X\ Pt J;)ng/\t

where if 5 and s' are two possible choices for s; satisfying ' < 5, then choose s; = 5. Let f € O 7 such
that Trp/k(B) € O. Then the differentials

dx

i-1
: 2y’

pi = mted -TrF/K( [[G- ws,-))
j=0
form an Og-basis ofHO(C,wc/oK).

Proof. First note that without loss of generality we can suppose F/K Galois. Moreover, since F/K
is unramified, Gal(F/K) = Gal(j/k), where f is the residue field of F, and so the existence of f is
guaranteed by the surjectivity of Trj;. Let C be the minimal regular model of C over Og. By
[Liu4, Proposition 10.1.17], the base extended scheme Cp,, is the minimal regular model of Cr
over Op. Let pg yens pg_l be the basis of integral differentials of Cg given by Theorem 2.6.3.

Suppose g, ..., u;,_l is a basis of integral differentials of Cr that, for any ¢ € Gal(F/K) and
any j=0,...,g -1, satisfies
(2.15) U(N})ZH}+ Z '/lij,u’i,

O<i<j

for some A;; € Of (depending on o). Note that ,ug ,...,,ug_l is in fact such a basis. We want to

prove that, for any j =0,...,g — 1, the differentials

(2-16) ”67”'7/’1'_,]'_]_7TrF/K(ﬁIJ_,]')’IJ",j+]_’"':/J',g—]_

still form a basis of H(Cr, wcg/0,) satisfying condition (2.15). From equation (2.15) it follows that

Tre(Bu)= Y, o(Bow) =TrrrBu;+ Y Ay,
oeGal(F/K) i<j

for some /lgj € Or. Since Trp/k(B) € O, the differentials in (2.16) form a basis of HO(Cp,wcF/OF)
satisfying condition (2.15).
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Since ,ug yen ,,ug_l satisfies (2.15), by induction it follows that

Trpk(Bul),. .. ,TrF/K(ﬁﬂg_l)
is a basis of H O(CF,wCF/OF). Proposition A.2.2 concludes the proof. O
We conclude this section with an application of Theorem 2.6.3.

Example 2.6.5 Let p be a prime number and let a € Zp, b € Z; such that the polynomial
x?+ax+b is not a square modulo p. Let C be the hyperelliptic curve over Qp of genus 4 described
by the equation y2 = f(x), where f(x) = (x® + ap*x® + bp®)((x — p)? — p1). We have already shown
in Examples 2.3.32 and 2.4.24 that C satisfies the hypothesis of Theorem 2.6.3 and has rational

cluster picture

(@99000),000,)

We choose rational centres for the minimal clusters t3 and t4: w¢, = 0 and w¢, = p. Since R =tz Aty,
we can set either wy = wy, or we = wy,. Let us fix wg = wy, = 0. Then to choose s¢,51,52,53 as in

Theorem 2.6.3 we draw the following table:

€t €t €t 1 €t 2
ot €¢ E_pt E_Pt_.oso/\t E—Pt—j;),osj/\t E—Pt—j;)st/\t

4 25 19 11 1

ts — 11 — — — —
3 6 6 6 2
11 29 7 1 5
g | — | 17 — - - -
3 6 6 6 6

7 5 3 1

R 1 9 — — — —
2 2 2 2

The numbers in red indicate that sy = t4, 51 = 59 = t3 and s3 = R. Thus the differentials

po=p*

4 dx

2y

— 3.y — )% = (- )" — (- )2 %%
, M1=p°-(x p)zy, 2 =p-(x p)x2y, p3 =(x—p)x %

form a Z,-basis of H (e ,w¢/z,), for any regular model Clz, of C.
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CHAPTER

A GENERALISATION OF THE TORIC RESOLUTION OF CURVES

et & be a perfect field and let Cy be a smooth curve in the torus an »- Extending the toric
resolution of Cy with respect to its Newton polygon, we explicitl}; construct an explicit
model over % of the smooth completion of Cy. Such a model exists for any smooth projective
curve and can be described via a combinatorial algorithm using an iterative construction of
Newton polygons. The content of this chapter can be found in the paper A generalisation of the

toric resolution of curves [Mus2], submitted for publication.

3.1 Introduction

Let U be any smooth affine curve defined over a perfect field £. Up to isomorphism there exists a
unique smooth projective curve C/k birational to U, called the smooth completion of U. In this
chapter we study the problem of finding explicit models of C over k, i.e curves C isomorphic to C
over k. More precisely, we present an algorithm to construct a model over % of smooth projective
curves which are birational to a smooth curve Cy < G?n 5+ In fact, every smooth projective curve is
the smooth completion of a curve Cy as above (Corollai’y B.1.4). Note that a curve is not required

to be connected in this work (see conventions and notations in §3.1.4).

3.1.1 Overview

When it exists, a Baker’s model of a smooth projective curve C/k is an explicit model of C over
k. It is constructed via a toric resolution of a smooth curve Cy c Grzn,k’ birational to C. A Baker’s
model helps in studying the geometry of C. For example, it gives combinatorial interpretations
of the genus, the gonality, the Clifford index and the Clifford degree [CC]. Let us give a brief

description of this model.
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For any C and Cy as above, let f =3} ; ez cijxiyj € k[x*!,y*1] be a Laurent polynomial
defining Cj : f = 0 in the torus an ;- Let A be the Newton polygon of f. A classical construction
associates a 2-dimensional toric vs’n"iety Ta to the integral polytope A. The Zariski closure C; of
Co in Ty is called the completion of Cy with respect to its Newton polygon. It is an easy-to-describe
projective curve, whose C is a dense open. The construction of C; from Cy is said toric resolution
on Ta. If Cq is regular, it is isomorphic to C and is said a Baker’s model of C. A smooth projective
curve does not always admit a Baker’s model (see Appendix B.2). Its existence is closely related
to another interesting property: the nondegeneracy.

For any face A of A (of any dimension) let fi =Y. j)ez2n1 Cij x'y/. The Laurent polynomial
f is nondegenerate if for every face A of A the system of equations f} = x% = y%—’;‘ =0 has no
solutions in (£*)?. The nondegeneracy of f has a geometric interpretation in terms of C;. From
the explicit description of C1, there is a canonical way to endow the subset C1\C¢ with a structure
of closed subscheme. We say C; is outer regular if C1\Cj is smooth. One can prove that f is
nondegenerate if and only if C; is outer regular. This is a sufficient condition for the regularity of
Ci.

A smooth projective curve C is said nondegenerate if it admits an outer regular Baker’s model.
Nondegenerate curves have several applications. They have turned out to be useful in singular
theory [Kou] and in the theory of sparse resultants [GKZ], as well as for studying specific classes
of curves [Mik],[BP],[KWZ]. Over finite fields, nondegenerate curves have also been used in
p-adic cohomology theory [AS], in the computation of zeta-functions [CDV] and in the study of
the torsion subgroup of their own Jacobians [CST]. Unfortunately, nondegenerate curves are rare,
especially for high genera [CV1]. In fact, recall that even a Baker’s model may not exist.

Let C/k be any smooth projective curve. In this chapter we construct an explicit model C,
of C over k&, called generalised Baker’s model (Definition 3.7.1), extending the classical toric
resolution without losing the connection with Newton polygons. Every smooth projective curve
C has a generalised Baker’s model and it can be constructed from any smooth curve Cy c G%m B
birational to C. Similarly to the classical case, the subset C,,\C¢ will naturally be equipped with ’a
structure of closed subscheme. We say that C,, is outer regular if the subscheme C,\Cy is smooth.
Although not all smooth projective curves are nondegenerate, they always have an outer regular
generalised Baker’s model (Corollary 3.7.8). Let us describe our approach briefly.

For any smooth curve Cy c ng, 5> We construct a sequence of proper birational morphisms of

curves
Sp+1 S Sn-1 S1
(3.1) . ™ Cpy1 —Cp, —...—Cyq,

where C; is the completion of Cy with respect to its Newton polygon. The curves C,, are birational
to Co and explicitly constructed over an algebraic closure k/k via an iterative construction of
Newton polygons. We also describe the action of the absolute Galois group Gal(k/k) on C,, x1, k.

Note that since C is projective, the curves C,, will be projective as well. If C}, is regular, for some
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n, then it is a model over % of C. Such C,, is what we call a generalised Baker’s model of C. Thus

the following theorem is a key result of the current chapter.
Theorem 3.1.1 (Theorems 3.5.10, 3.7.7) For a sufficiently large n, the curve C,, is outer regular.

From the explicit construction of an outer regular generalised Baker’s model one can also
describe the set C(E)\Cq(k). The result that is obtained extends the known one for nondegenerate
curves. We will state them in §3.1.3, in the case of geometrically connected curves. In the next
subsection we discuss one of the main motivations of this work: the study of regular models of

curves over discrete valuation rings.

3.1.2 Models of curves over discrete valuation rings

Let K be a complete discretely valued field with ring of integers O and residue field k. Let C/K
be a projective curve. A model of C over Ok is a proper flat scheme C — Spec O of dimension
2 such that its generic fibre C, = C xo, K is a model of C over K. The study of regular models
over Og of geometrically connected smooth projective curves C is of great interest in Arithmetic
Geometry. The understanding of such models is essential for describing the arithmetic of C
and leads to the computation of important objects, such as Tamagawa numbers and integral
differentials.

Let Coc an’K be an affine curve given by f(x,y) =0 and let C; be the completion of Cy with
respect to its Newton polygon A. Via a toric resolution approach, [Dok] constructs a model of C;
over Og, denoted Ca. This is an innovative result, able to construct regular models of curves over
discrete valuation rings in cases that were previously hard to tackle (such as the case of curves
with wildly potential semistable reduction). However, this approach has two major limits. First,
it can construct a model of a smooth projective curve C only if C admits a Baker’s model. Second,
although we are mainly interested in regular models, CA may be singular. Let us discuss more in
detail this second aspect.

The scheme Cp is given as the Zariski closure of Cg in a toric scheme Xs. The ambient space
X5 is constructed from A, taking into account also the valuations of the coefficients of f. The
connection of Cp with toric resolution of curves goes beyond its generic fibre. Let CZ‘?‘; be the
reduced closed subscheme with the same underlying topological space of the special fibre Ca s of
Ca. Then CZ‘fg can be decomposed in principal components X and chains of P1s. The components
X are the completions of curves Xp c an » With respect to their Newton polygons. One can see
that if all Xz are outer regular, then Ca is,regular. Thus the fact that not every projective curve
has an outer regular Baker’s model is the main obstruction for the regularity of Ca.

Therefore the existence of outer regular generalised Baker’s models, subject of this chapter,
has the potential to extend Dokchitser’s result to construct regular models of all smooth projective
curves. Although such an extension is highly non-trivial, in [Mus1] we can already see an implicit

application of generalised Baker’s model towards that goal. Let us spend a few lines explaining
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why. In [Mus1] the author constructs a regular model C over O for a wide class of hyperelliptic
curves C/K as follows. Let C : y? = h(x) be a hyperelliptic curve in this class. One considers
smooth curves Cj’ < an K for w e W <K, given by y2 = h(x + w) and so birational to C. For each
w € W, let Cav be the model of C constructed from C{’ by [Dok]. The regular model C is then

obtained by glueing regular open subschemes Caw of Caw, containing all points of codimension

red
A% s

Cs =C x oy k, birational to Xr. The regularity of C follows from the fact that I'; is an outer regular

1. In particular, for any principal component Xz of C there exists a closed subscheme I'¢ of
generalised Baker’s model of the smooth completion of Xz (this can be checked by comparing
the description of I'y in [Mus1, §5] and the construction in §3.8 of an outer regular generalised

Baker’s model for curves given by superelliptic equations).

3.1.3 Outer regular generalised Baker’s model

Let % be a perfect field with algebraic closure k. Let f € k[x*!,y*'] such that Co:f =01is a
geometrically connected smooth curve over G;“‘n I and let A be the Newton polygon of f. If f is
nondegenerate, then the completion C; of Cy with respect to A is outer regular. In particular, C;
is a Baker’s model of the smooth completion C of Cy. From C; we can describe the points in C\C|

in an elementary way as follows.

Definition 3.1.2 For any edge ¢ of an integral 2-dimensional polytope P, consider the unique
surjective affine function ¢* : 72 — Z given by ¢*|, =0, ¢*|p = 0. Write ¢*(i,j) = ai + bj + ¢, for
some a,b,c € Z. Then the primitive vector (a,b) € Z2 will be called the normal vector of ¢.

We also extend this definition to segments P, considered as integral 2-dimensional polytopes

of zero volume. In this case P has two edges, equal to P itself, with opposite normal vectors.

Notation 3.1.3 For any primitive vector = (f81,02) € 72 fix 6p=1(61,62)€ 72 such that 61B2 —
021 = 1. Note that 65 can be freely chosen, and depends (only) on f.

For any edge ¢ of A:
(1) Consider its normal vector = (f81,02) € Z? and 6p=1(61,02)€ 72

(2) Via the change of variables x = X1Y Pt y = X%V P2 let f, € k[X,Y ] such that X { f,, Y 1 fo,
and
flx,y)=X"XY"™ . fi(X,Y),

for some nx,ny € Z.

Define the curve Cy: f¢(X,Y) =0 in G, x A} = Spec k[X*!,Y]. Note that C,nG2 , = Co. The
completion of Cy with respect to A is

ci=U ¢,
JA=to 1A

where the curves C, are glued along their common open subscheme Cy.
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Let P1 =lpconifr}, where £ runs through all edges of A. For any f, € Py define f|, € k[X] by
fle(X) = fo(X,0). It is easy to see that f is nondegenerate if and only if |, has no multiple roots
in £* for any edge ¢ of A. Then from the description of C; we have the following result.

Theorem 3.1.4 ([Dok, Theorem 2.2(3)]) Suppose f nondegenerate. There is a natural bijection
that preserves Gal(k/k)-action,

CRNCo(R) > | | i(simple) roots of flg in ™).
feeP:

If f is not nondegenerate, or, equivalently, if C; is not outer regular, we can construct from
C; an outer regular generalised Baker’s model C,, of C, that always exists. Then the explicit
description of C,, can be used to obtain a more general version of Theorem 3.1.4 capable to
describe the points in C\C( unconditionally.

First we are going to define finite indexed sets P,, of polynomials in 2[X,Y ], forallne Z,. A
polynomial in P, will be denoted by f, for an edge ¢ of some 2-dimensional polytope. However, if
n = 2 then fy € P, will be indexed not only by ¢ but also by a polynomial of P,_; and a non-zero
element of 2. For any f, € P,,, define f|, € k[X]1by f|,(X) = f¢(X,0). Let P; be as above. Forne 7,

we recursively construct the set P, 1 from P, via the following algorithm.
Algorithm 3.1.5 For any f, € P, and any multiple root a € k* of f|, do:
(1) Rename the variables of fy from X,Y to x,y.
(2) Let frq€ Elx, y] given by frax,y)=Ffe(x+a,y)
(3) Draw the Newton polygon A¢q of frq.

(4) For any edge ' of Ao with normal vector B = (B1,P2) € Z%, consider 65 = (61,02) € 72,
previously fixed.

(5) Through the change of variables x = XO'YP1, y = X%2Y P2 let fpr = (frq)r € RIX, Y1 such that
X{fe, Y{fr, and
foale,y) =X"XY™ - fp(X,Y),

for some nx,ny € Z.
(6) Define Py g = Uecon,, {fr}, where ¢' runs through all edges of Ay 4 with normal vector in Z_%.

Then

Pn+1 = I_l P[,aa
fe.a

where f; runs through all polynomials in P, and a runs through all multiple roots of fl¢ in k*.
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For every n € Z., one can inductively define an action of Gal(%/k) on P,, with the following
property: for any o € Gal(k/k) and f, € P,, the polynomials o - f, and f7 are equal. Note that this
property is not enough to describe the action since P, is an indexed set.

Let o € Gal(k/k). If f; € P1, then define o - f, = f¢. Let fo € P41 for n € Z,.. From Algorithm
3.1.5 it follows that f = (f¢ )¢ for some fy € P, and some multiple root a € k> of fl,. By
inductive hypothesis o - f¢ is an element f4() of P,, and o(a) is a multiple root of f|;(s). Moreover,
fo),o@ = fZa' Hence the Newton polygon A;(¢) (q) coincides with Ay ,. In particular, it has an

edge o(¢") with normal vector equal to the one of ¢’. Then define

o fo:=fower = (fo0),0(a)ae) € Pni1.

Iterate Algorithm 3.1.5 until P, .1 = &, i.e. for all f, € P,, the polynomials /|, have no multiple

roots in £*. The procedure terminates. Define
P=Piu---uP,.

Note that the Galois action on P; for all 1 <i < n induces an action on P. For any o € Gal(k/k)

and f, € P, let f5(¢) € P be the element o - f,. We can now generalise Theorem 3.1.4.
Theorem 3.1.6 There is a natural bijection

C(E)\Co(k) XL | | {simple roots of fls in k*},
feeP

that preserves Gal(k/k)-action, where o € Gal(k/k) takes a simple root r € k* of fl, to the simple
root a(r) € K of flo(e).

Theorem 3.1.6 is proved at the end of §3.7.

Example 3.1.7 Let f = (x2 +1)2+y—y3 e F3[x*1, y*11and let Cy: f =0 in G?n,[FB. Note that Cy is
regular. By [CV2, Proposition 3.2], the smooth completion C of Cy is not nondegenerate. Hence
Theorem 3.1.4 cannot be used. We want to describe the points in C\C¢ via Theorem 3.1.6. First
compute the set P via Algorithm 3.1.5. One has P = P; U P2, where

* P; consists of 3 polynomials f¢,, f¢,,fr,, Wwhere f|,, = (X2 +1)7?, fle, = X3+Xx2%2-1, fleg =

—X +1, up to some power of X;

* Py consists of 2 polynomials f,, fe,, satisfying fr, = f5(¢,), where o is the Frobenius auto-

morphism; furthermore, f1s, = fls; = =X + 1, up to some power of X.

Thus Theorem 3.1.6 shows that C\C| consists of one point coming from ¢4, ¢5 with residue field

[Fg, one point coming from ¢ with residue field Fg97 and one [F3-rational point coming from /3.
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3.1.4 Outline of the chapter and notation

For the most part of the chapter we will assume % = k. In §3.2 we define toric varieties T,
attached to primitive integer-valued vectors v. The charts of the curves C,, in the sequence (3.1)
will be the Zariski closures of dense opens of Cj inside T,. In §3.4 we show how to construct the
sequence (3.1) recursively and explain its connection with Newton polygons. We also prove the
properties of the curves and the morphisms in (3.1) previously listed in §3.3. Section 3.5 gives
the definition of generalised Baker’s model and outer regularity over algebraically closed base
fields. We prove some crucial results and present interesting consequences. In §3.6 we see the
construction developed in previous sections from a more general point of view. This will be useful
to tackle the case of non-algebraically closed base fields, treated in §3.7. Finally, §3.8 and §3.9
consist of applications of our construction. In §3.8 we discuss the case of superelliptic equations.

In §3.9 we show an explicit and non-trivial example of a generalised Baker’s model.

Conventions and notations
* Throughout, £ will be a perfect field, algebraically closed in §3.2-3.6.

* An algebraic variety X over k, denoted X/k, is a scheme of finite type over Spec k. Let Cx
be the sheaf of stalks of meromorphic functions on X ([Liu4, Definition 7.1.13]). We denote
by k(X) the set of global sections of Kx, i.e. 2(X) = HO(X,Kx). It will be called the ring of
rational functions or function ring of X. It extends the notions of field of rational functions or

function field of integral varieties.

* Let X/k be an algebraic variety. Since % is perfect, X is smooth if and only if it is regular. In
this context we will then use the words smooth, regular, non-singular interchangeably. We
will denote by Reg(X) the open subset of regular points of X and by Sing(X) the closed subset

of singular points of X.

* A morphism X — Y between two algebraic varieties X,Y defined over k2 will always be a

morphism of k-schemes, unless otherwise specified.

* Abirational map f : X-->Y between algebraic varieties X,Y over k is a k-rational map ([EGA,
1.7.1.2]) that comes from an isomorphism from a dense open U € X onto a dense open VCY.
If such a map exists, we say that X is birational to Y. A birational morphism is a morphism

which is (a representative of) a birational map ([Liu4, Definition 7.5.3]).

* A curve is an equidimensional algebraic variety of dimension 1. We will denote by G, the

affine algebraic group G,, » = Spec k[xi—'l, y*1] whenever £ is algebraically closed.

* Given aring A and an ideal I of A we identify the ideals of A/I with the ideals of A containing
I. Furthermore, sometimes we refer to an element a € A as an element of A/l omitting the

class symbol.
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* Finally, the set of natural numbers will contain 0, i.e. N= 7.

3.2 Ambient toric varieties and charts

Let % be an algebraically closed field, n € Z,, A = k[xi—'l,...,x;—;l,yﬂ] and G2 = Spec A. Let

v=1,...,Un,Un+1) EZ" 1 be a primitive vector. Define the affine function ¢, : 7"l 7 given by

(pv(ilw--:in,j) =v1i1+ o+ Ul +Uns1].

+1 +1 yJ_rl]‘

For any i = (i1,...,in,J) € Z"*!, denote by x’ the monomial xil ---xf{‘yj of k[xT",...,x5

For any monomial x’ define ord,(x’) = ¢,(i). For f € A, with f # 0, expand
f :Zcixi, c;,eR”,
i
and set ord,(f) = min; ord,(x?). We have just defined a map ord, : A* — Z, which naturally
extends to a valuation ord, : Frac(A)* — Z.

Definition 3.2.1 Given a primitive vector w € 7" we say that a matrix M € SL,1(Z) is

attached to w if its last row is w.
Fix a matrix M = (a;;) attached to v. It gives the change of variables

(xl,.“,xn’y) — (Xllln ___Xgnlel,.“’X?I(rH-l) -~-X%"("+1)YU"+1)
=(X1,...,Xn,Y)e M,
(X1, X0, Y) = (1,000 20, 0) s ML

For any f € A*, denoting by F € k[X}!,...,X; 1, Y*11* the Laurent polynomial given by
F(Xq,...,X,,Y)=f(Xq,...,X,,Y)e M),
note that ord,(f) = ordy (F). We get an embedding
AT pxE L xEL Yy opxE L XH Y]=R,

from which we define the affine toric variety T, = Spec R — G%l. Since v is the last row of M, the
toric variety T, only depends on v up to isomorphisms that restricted to G”,,;’l equal the identity.
Furthermore, up to isomorphism, the closed subvariety T, = Spec RA(Y) =G, of T, only depends
on v as well.

Now let I be an ideal of A defining a curve Co; = Spec A/l in Gﬁfl. We denote by C, 1 the
Zariski closure of Co ; in T,. Then C,, 1 is determined by v and I, up to isomorphisms that preserve
Co,1. Recall that C, 1 = Spec R/Z, where 7 is the inverse image of I under the embedding R — A
above. Suppose 7 c R is an ideal such that A/I =~ R[Y 1/ JR[Y '] via M. Then J defines Cur
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if and only if it equals its saturation with respect to Y, i.e. 7 =Y : 7, or, equivalently, if the
image of Y in R/ is a regular element.
Fmally, let f=f1¢€ k[x1 1 y*1] defining a smooth curve Cy:f =0in 032 = Spec k[x1 1 y*1]. For

alli= ,n,let g; € klx] 1 y*11 and denote f; = x; — g;. Then
k[xl ,y+1]g2 ‘8n ~ k[xl 7x2 bR gl’yil]
(f) (fl,fZ,---,fn)
+1 ,,+1
Let T be the tuple (g2,...,8,) and I the ideal (f1,...,f,). Define Co r = Spec M, an

f)
affine open of Cy. Then T gives an open immersion Co 1 — G”m+1 with image Co 1. Let v € 7" be

a primitive vector. Denote by C, 7 the curve C, ; (closure of Cy s inside T,). We will often identify
Co,r with the dense open image of the immersion Co 7 =Co;— C, 7.
Let Cy as above. For any m € Z, define
Qn ={(,T) |v € Z™*" is a primitive vector and T € k[xF*, y*1 1™ 1},
If a=(v,T)€Qp, for some m € Z,, denote by Cy o, Cq, respectively the curves Co 7, Cy 1 intro-

duced in the previous section. Furthermore, we set C, = Co o = Cop when a = 0. Define
Q={a€llnez,Qm | Co,q is dense in Co}.

If a = (v,T) € Q, denote by C, the scheme-theoretic intersection of C and T, in T,. Note that, up
to isomorphism, C, only depends on a.

From the open immersions with dense images Co 4 — Cg4, Co,o — Co, we have natural
birational maps sqq : Cq--*Cy, for all a,a’ € QLI{0}. Denote by U,y the largest (dense) open of
Cy such that s, comes from an open immersion Uy — Cy . Note that Co 4 N Co o embeds in

Ugq via the canonical open immersion Co 4 — Cj.

Definition 3.2.2 Let me Z, and c€ Z. Let v = (v1,...,Um,Um+1) € Z™*! and B = (1, B2) € Z2 be

primitive vectors. Define the primitive vector

Bocv=(1P2,v2P2,  ,Um B2, B1+ P2, Um+1P2) € Z™ 2,
Ifge k[xfl,...,x,il,yﬂ], define fogv = Bogrd,(g) U-

Definition 3.2.3 Let m € Z, and a € Q,,. Write a = (v,T) where T = (g9,...,&8m). Fix g €
klx1,...,xm,yl and let g,,+1 € k[x1 ,¥*1] be the unique Laurent polynomial such that g,,+1 =g

mod (fo,...,[m), where f; = x; — g;. For any primitive vector e N x Z, , define

,Bog a = (ﬁ Ogv:(g2,-~-,gm,gm+1)) € Qm+1'

Note that for any «,a’ € Q,,, polynomials g,g’ € k[x1,...,xm,y], and primitive vectors 3, €
NxZ,,if foga=p oga' then a=a'

Definition 3.2.4 Let m e Z,. Given a € Q,, and y € Q, 41, we will write a <y if there exists a
polynomial g € k[x1,...,%n,y] and a primitive vector f € N x Z, such that y = fog, a. Endow Q

with a structure of partially ordered set by extending < by transitivity.
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3.3 Baker’s resolution

Let % be an algebraically closed field and let f € k[xi—“l, y*1] be a Laurent polynomial defining a

smooth curve Cy: f =0 over G%l. We will construct a sequence

2L 2 0 2 B 0y
of proper birational morphisms of projective curves over k, birational to Cy. Such a sequence will
be called a Baker’s resolution of Co (Definition 3.6.2). Each curve C,, will be explicitly described
and inductively constructed via Newton polygons. In particular, the curve C; is the completion of
Co with respect to the Newton polygon A of f. In §3.5 we will show how to use Baker’s resolution
to desingularise C1, by finding a regular curve C,,, model over % of the smooth completion of Cy.

For any n € Z,, we aim to construct the projective curve C,, as follows:
Construction 3.3.1 We will define a finite subset X, c Q. Then
C,:= UaEZn CouCy,

where the glueing morphisms are given by the birational maps sqq/, for a,a’ € X, L{0}. More
precisely, the chart C, is glued with Cy along U, via the isomorphism Uy — Uy induced
by sqq. In fact, for our choice of X, the opens U, will be as small as possible, i.e. C,NCy =
Co,a NCo,u, for any a,a’ € Z,, L{0}, a # &'

Furthermore, for any a = (v,T) € X,,, we construct:

(a) Anideal a, = (Fa,...Fp) c k[X*,... X2l Y], and a matrix M, € SL,,,1(Z) attached to v

defining an isomorphism

klarts o2ty ) v, RIXGE, . XL Y
(f2,---,fm) B (‘F27"‘7fm) ’

where fi=x;—g;and T =(g2,...,8m)-

(b) A positive integer j, < m such that there is an embedding

CRIXTL,.L XY
T (Fayes Fm)

— k(X ,Y),
taking X; — X; and Y — Y. Moreover, Y is not invertible in R,.

(c) A polynomial F, € k[X; ,Y], not divisible by Y, such that

RIXEL,.. XELY]
(]:lly]:za""]:m) '

C, = Spec
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The ideal a, equals its saturation with respect to Y by (b). Therefore (a) implies that a, is
uniquely determined by M.

The homomorphism in (b) induces an injective ring homomorphism

R, RIXFL,.. X:LY]
Y) (FzpeesFm,Y)

- k(Xja)’

taking X; — X . Let D, be its image. Then Dy, is a localisation of £[X; 1, isomorphic to R,/(Y).
More precisely, if ¢1,...,¢, are the images of X1,...,X,, in k(X;,), then D, = k[Xja,tfl,...,tfll_l].
Then, from (c), there exists a non-zero polynomial f|, € k[X; ], given by f|o(X,) = Fo(X},,0),

such that
RIXE,. XELY] D,

(JT-.GHIQ)"':-FWL;Y) - (fla)'
The closed subscheme C, of C, will be identified with Spec D,/(f|a). As a set, it is finite and
equals Cy\Co,q.

Finally, note that the injective homomorphism in (b) and the description of C, in (c) give an

open immersion Cy — Spec k[X; ,Y1/(Fy).

3.4 Construction of the sequence

+

Let £ be an algebraically closed field and let f € k[xi—'l, y*11 be a Laurent polynomial defining a

smooth curve Cy : f = 0 over G2,.

3.4.1 Completion with respect to Newton polygon

In this subsection we give a description of the curve C1, completion of Cy with respect to its
Newton polygon, with the properties of 3.3.1. We will show that C, = Cy for all but finitely many
a € Q1 c Q. Defining 21 € Q as the subset of those exceptional elements, the curve C1 will be the
glueing of C,, a € 1, along the common open Cy.

Let v = (a,b) € Z% be any primitive vector and a = (v,()) € Q1. Fix a matrix M, = (¢ ¢) € SLy(2)
attached to v and define ¢, : 22 — Z by ¢,(i, /) = ai + bj — ord,(f). Via the change of variables
given by M, we get

fUXL,Y)e M) =X YYD F(X1,Y),  where F, € k[X1,Y1.

Then ordy (F,) =0 and so C, = Spec k[XI—rl,Y]/(}"a).

Note that Coq = Co. Let fl, € k[X1] given by f1a(X1) = Fo(X1,0). Recall that the scheme
C, =Spec k[XI—'l]/(fla) equals C4\Cy 4 as a set. Therefore C, = C) if and only if f|, is invertible
in k[X ;—'1]. Expand f =3} ;c; jxi y7. Let A be the Newton polygon of f. It follows that

i
fla=X7- Y X7
@,/)ep,;1(0)
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Hence f|q is not invertible in £2[X '] if and only if ¢, 1(0)n A = edge.
Then we can explicitly construct X1 as follows. For every edge ¢ of A consider its normal
vector vy € Z2 (see Definition 3.1.2). Define 21 = {(vs,(0) € Q1 | ¢ edge of A}. The next result follows

from the computations above.

Proposition 3.4.1 Let v be the normal vector of an edge ¢ of A and let a = (v,()) € Z1. Let
(i0,J0),.--,(i1,J1) be the points of ¢ N 72, ordered along ¢ counterclockwise with respect to A. Then

l
fla=X¢-Y ¢;.;, X5,  forsomedeN.
r=0

Glueing C, for any a € X gives the curve C1. Note that C; is the Zariski closure of Cg in

Uw,0)ez, Tv (Where the toric varieties T, are glued along their common open ng).

Remark 3.4.2. Consider the toric surface Ta of A. It is a complete algebraic variety. Then
Uw,0)es, Ty is a (non-proper) subscheme of Ty. Nevertheless the curve C; is also the Zariski

closure of Cy in Ty (see [Dok, Remark 2.6]). Thus it is projective.

Remark 3.4.3. Note that for any a € 1, the points on Cy\Cy are not visible on any other chart of

C1. Indeed for any a,a’ € X1, where a # a’, consider the birational map
Saa’ : Coq = Spec k[X 1 YU(F,)--+Spec kXL, YW Fo) = Cy

given by the matrix M, = M M ;,1. Since the lower left entry of M, is non-zero, the largest
open U,y of C, for which s,o comes from an open immersion Uy — Cy is Ugy = D(Y) < Cy,

i.e. the image of Cy in Cy. Thus C,NCy =Cy for any a,a’ € 1 U{0}, a # a'.

3.4.2 Inductive construction of the curves

Until the end of the section let n € Z,. and suppose we constructed a finite subset X, cQ and a

projective curve C, as in 3.3.1. In particular, C,, = Uges, Ca U Co.

Remark 3.4.4. Let a € Z,,. Recall Cg , is smooth as so is C. Therefore Sing(C,) € C4\Co . Then,
as an easy consequence of the Jacobian criterion, any singular point of C, is the image of a
singular point of C, under the closed immersion C, — Cj. This fact can be observed by comparing
the Jacobian matrices of Cy, defined in 3.3.1(c), and Cy = Cy N{Y = 0}, at points of C4\Co 4 = C,.

In particular, if C, is singular then C, is singular for some a € 2.

Let @ € 2, and fix S,, < Sing(C,). Via the immersion C, — C,, given by the closed immersion
C, — C, and the inclusion C, < C,,, the points in S,, will be identified with their images in C,,.
In this subsection we will construct a finite subset X, .1 < Q2 defining a curve C,,;1 as indicated in
3.3.1. Then, in §3.4.4 we will define a proper birational morphism s, : C, .1 — C,, with exceptional

locus s;,1(S, NSing(Cp)).
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Let m € Z, such that a € Q,,. Write a = (v,T), where v e Z"*1 and T € k[xfl,yil]’"—l. Let

M, € SL;,+1(Z) be the matrix attached to v fixed by 3.3.1(a), defining a change of variables
1. Xm, y) =(X1,.. .. Xm,Y) e M.

Note that we have changed the notation for the variable Y to Y for avoiding confusion later. Let
ag = (Fo,..., Fn) ckIX7L,..., XL V1be the ideal in 3.3.1(a) and F, € k[X,,Y ] be the polynomial

in 3.3.1(c) so that _
RIXEL, .. X1 Y]

(FasFo-s Fm)

C, = Spec

Denote A, = k[X}!,..., X1,

Fix a point p € S,,. Recall Cy, = Spec D o/(f|a), where D, is a (non-trivial) localisation of 2[X jal
and f|q € kX, ]1is non-zero. There exists some irreducible Q_p € D, such that (Q_p) is the maximal
ideal of Op_,. Then flq € (Gp)?. We choose G, € k[X;,] monic of degree 1. Consider p as a point
of Cp,. Then p € Co\Coq. In particular, p ¢ Co, since ConCy = Co . For any G, € k[X;, ,Y]such
that g}, = Q_p mod Y, the ideal (G,Y)+a, is the maximal ideal of Oc,,p- We fix a choice of Gp such
that Qp -GpeYk[Y]and Gp 1 Fa.

Remark 3.4.5. Note that such a choice of Gp is always possible. Indeed, if degy(F,) is the degree
of F, with respect to Y, it suffices to define

G, =G, + T dear(Fo)+1

On the other hand, Gp = Q_p is often admissible and better for computations. For instance, if Cg is

connected, then we can always choose G, = G,,.
Lemma 3.4.6 Consider the principal open set Up, = D(g},) of Co. Then U, is dense in C,.

Proof. As a consequence of 3.3.1, we saw that there is a natural open immersion

Cq — Spec k[X;,, Y W(Fo).

a?

Since G, € k[X,,Y], the image of U, is the open subset V,, = D(G,) of Spec k[X,_,Y I/(F,). Note
that if V) is dense, then U, is dense in C,. In fact, V), is dense in Spec k[X ja,Y]/(}“a) since
Gt Fa O

Write T'=(go,...,&m). From 3.3.1(a) recall the isomorphism

Rlxrtxgts ot v v, A Y1)
(f27"'9fm) aa ’

where f; =x; —g; forall i =2,...,m. Let g, € klx1,...,%,y] such that

xixmy” -gp(xl,...,xm,y):Gp((xl,...,xm,y)-M;I).
We fix a canonical choice of g, by requiring ord,g, =0, and ord,,(g,)=0foralli=1,...,m.
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Definition 3.4.7 We say that g, € klx1,...,%,,,y] is related to Qp by M, if it is defined as above.
Note that it is uniquely determined by G p and M.

Define ap =(0,1) 0z, a € Qpy 41 (Definition 3.2.3). Fix a choice of a matrix My, € SLp,+2(Z)
attached to (0,1)og, v such that the change of variables

(xla"'yxm7xm+11y) = (Xla---me,Xerl,Y)‘Map

restricts to the change of variables given by the matrix M, on the subring k[xi—rl, ... ,x,ﬁl, y*1] of

Elxil,...,xEL | y*'] and gives the equality
(3.2) Xm+1—8p =X£l1"'X;lleordU(gp)(Xm+1_g~p)7

for some n1,...,n,, € Z. In particular,

+1 1 1y M, gl yil B
(3.3) G B S U AN i e, TS U —k(Xj,,Y).
(f2,~-afm:xm+1_gm+1) aa+(Xm+1_gp) “

where g,,+1 € k[xi—’l,yil] is the unique polynomial so that g,,+1 =g, mod (f2,...,fn).
Remark 3.4.8. Such M, is constructed as follows. Via M, write
gp :Xfl .. .er:leordu(gp) . Gp
for some n1,...,n, € Z. Then
* The (m + 1)-th row of My, is the vector (0,...,0,1,0);

* The (m + 1)-th column of M,, is the vector (n1,...,ny,1,0rd,(gp));

¢ The submatrix of M ap obtained by removing the (m + 1)-th row and the (m + 1)-th column
equals M.

This construction is unique. Indeed, the (m + 1)-th column is fixed by the equality (3.2), while
all other columns are fixed by the fact that M, defines the same change of variables of M, on
k[xil xil il]

T XmHy Tl

Lemma 3.4.9 With the notation above

RIXEL,. L XELXEL Y]
Cq, = Spec = Mmoo mil
(‘7:&7]:27 -:]:m’Xm+l_gp)

Furthermore, Co,q, is dense in Co, i.e. ap €, and the birational map sq,q comes from an open

immersion Sq,a :Cap — C, with image D(Gp) c Cy. Finally, Sa,a induces C'ap =~ Co\{p}.
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Proof. First note that Co,ap c Co,q. Considering Co o as an open subscheme of C,, then Co,ap
equals D(gp) NCo,q ©Cq. Then Co 4, is dense in Cy o by Lemma 3.4.6. It follows that Co 4, is
dense in Cy since so is Co 4. In other words, a, € 2. The ring homomorphism
o AplY] AKXV
Aa T (]:a)+ul1 (.Fa;Xm+1_g~p)+aa _'Aap
is injective by Lemma 3.4.6 and induces the birational map sg 4 if Co, = Spec Ao, from (3.3).
The injectivity implies that Y is a regular element of Aap since Y is a regular element of A, by
definition of Cy. This concludes the proof by definition of Cy, . O

Now consider the lexicographic monomial order X; > X1 >Y on k[X ja,X m+1,Y1 and
compute the normal form Fu, of F, by X1 — Gp with respect to >. In other words, the
polynomial F, ), is the remainder of the complete multivariate division of F, by Xmi1— Gp.
Note that F, , € E[Xmi1,Y], as Gp - g‘p e YE[Y] and g‘p € k[X, ] of degree 1.

Let B € Z2 be any primitive vector. Fix a matrix M g € SLa(Z) attached to . Then Mg
gives an isomorphism between k[X*!  Y*1] and k[X*!

m+1’ m+1’

Km+1,Y)=Xme1,Y)e M g- This transformation lifts to

Y *1] through the change of variables

~ - I, oM
(3.4) AplXEL 72 A xEL Y e,

m+1° m+1°

where I, € SL,,(Z) is the identity matrix of size m. Since € Z2, the isomorphism (3.4) restricts

to a homomorphism
I, GBMﬁ

A [XE Y]

Am[Xm+1,Y] m+1°
Let = (p1,B2) and let (51,62) be the first row of Mg, so 6126261 =1.Set A, +1 = Am[X:—;LlH].
Denote by F2,...,Fm,Gp € Ap+1[Y] the images of Fo,... ,fm,g”p under I, ® Mg, respectively. Let

Fms+1= anlJrlYﬁl -Gp, image of Xppi1— Gp. Then we get the homomorphism

Am[Y] - Am[Xm+1aY] IneMg ApalY]

(3.5) = = .
0o aa+(Xm+1_gp) (f2a---,fm+1)

Note that since B2 > 0 then
gng‘p modY, and Fi=F; modY foranyi=2,...,m,

where F; is the unique polynomial in A,, such that F; = F; modY.

Let y = fog, @ € Qyy11. By definition, Co = Co,q,. Therefore y € ) by Lemma 3.4.9. Let a, be
the ideal of A, +1[Y] generated by Fo,..., 1 and set My = (I, eBMﬁ)-Map € SL,,+9(Z). Note
that the matrix My is attached to oz, v. Let Fy € k[ Xp+1,Y ], with ordy (Fy) = 0, satisfying

Fap(Xms1,Y)e Mp) =X X Y™ - Fy(Xm+1,Y),

for some nx,ny € Z. Note that

Rl oatl ] Map RIXGL XELXEL P In®Mp X XL Y

m+1’

(f27~--afm+1) - (fz,...,./;'m,Xm+1—(jp) - (]'—27~~~7-7:m+1) ’

(3.6)
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where f,11 = Xm+1— gm+1. In particular, the ideal a, and the matrix M, satisfy 3.3.1(a) for y.
With j, = m +1 we are now going to show 3.3.1(b) for y.
Recall from 3.3.1(b) there is an injective homomorphism R, — k(X ,Y) taking X;, — X,
and Y — Y. Since Gp - _C’;p e YE[Y] and _C’;p € k[X;, 1 monic of degree 1, we have
Al X1, Y1 X, VX 1]

- = J 2 =2 k(X1 Y).
ot Emi1-0p)  Emr1-0p) i

Then we can construct the following commutative diagram

Ay RIXELXEL YE by

m+1’

a, FornFmrFrd) > kXms1,Y)

(3.7) I,,L@MﬁT TMﬁ

RIX{L XELXE Y& 5
] > ;~ m: m y~ k X Y
(ForrFm-Xms1-Gp) > k(Xmi1,Y)

given by the matrix Mg. Therefore the homomorphism i, is injective and takes X1 — X1
andY — Y.

Lemma 3.4.10 With the notation above, there is an isomorphism

RIXEL,.. . X2 Y] RXEL ]
(‘Fz"'-7fm+17Y) B m+1o

taking X 11— Xm+1. The images of X1,..., X in k[Xilﬂ] lies in k.

Proof. Recall that for every i =2,...,m there exists a (unique) Laurent polynomial F; € A, such
that F; =F; modY. Since F.+1 = g‘p modY and F; = F; modY for anyi=2,...,m, we have

RIXE,. X2 Y] RIXE,LXEL YT Du(x+1 1= prx*L ]
(ForsFma,Y) 7 (FopeesFn,Gp,Y) — (Gp) mAlT T m+14
and the isomorphisms take X,,+1 — X;,+1, as required. O

Proposition 3.4.11 With the notation above, there is an injective homomorphism

AmslY]

R, :=
y:
ay

— k(Xm+1,Y)

taking X1 — Xmy1 and 'Y — Y. Furthermore, Y Ry is prime ideal.

Proof. Lemma 3.4.10 shows YR, is a prime ideal as R,/(Y) = k[X:—;Llﬂ] is an integral domain.

From (3.7) we have
ApialY] _ Apaly*

ay Gy
taking X;4+1 — Xm+1 and Y — Y. Therefore it suffices to show that the ideal a, of A, +1[Y]

equals its saturation ay : Y with respect to Y. Suppose not. Consider the primary decomposition

| R (X a1, Y)

of ay,
ay=qiN---Ngs, PiZ\/E-
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Recall that the primary decomposition of a, : Y consists of all the q;’s which do not contain any
power of Y. Hence there exists some i = 1,...,s such that p; 2(Y) + a,. Moreover, we can choose i
such that p; is a minimal prime ideal over a,, i.e. p; € Min(ay). Then, by Krull’s height theorem,
the height of p; is at most m (the number of generators of a,), and so ht((Y) + a,) < m. But

Am+1[Y] _

di =
M Wyra,

by Lemma 3.4.10. This gives a contradiction, since

ht((¥) +ay) +dim G = dim A1 [Y1=m +2,
from the regularity of A,,1[Y]. O

Proposition 3.4.12 Let f€ 72 and y = og, @ as above. Then

EIXEL ... X Y]

m+1’

C, =Spec .
Y p (]:}’,]:27'”9]:m+1)

Proof. The isomorphism in (3.6) implies that Cy, ~ Spec A(’”#[f;] via M. Then from the defini-
tion of C,, it suffices to show that Y is a regular element of R,/(F)), where Ry, = A, +1[Y V/ay. From
Proposition 3.4.11 there is an injective homomorphism Ry — k(X,+1,Y), taking Xp, 11— Xpn41
and Y — Y. Moreover, YR, is a prime ideal. Therefore if Y is a zero-divisor of R,/(F)) then
Fy€YR,, as Ry is an integral domain. But this is not possible as Y is not invertible in R, and

we chose fy such that ordy (F,) = 0. Thus Y is a regular element of R,/(F)). O
Notation 3.4.13 Lety = fiog, a, with f € 72 primitive. We have defined:
* ay=(Fg,...,Fm+1) and My = (Mg eBIm)~Map for some matrix Mg attached to f;

o jy=m+1,R,=k[X,. . Xt YVa,;

m+1°

M
o Fy€klXmi1,Y], with Y { Fy, satisfying Fop = X*

m+1Y* - Fy, and f|y € k[ X, +1] given by
fly(Xm+1) = Fy(Xm+1,0)-

With the notation above, y satisfies the properties (a), (b), (c) of 3.3.1 by (3.6) and Propositions
3.4.11, 3.4.12.

Define Gg, € k[X; ], Gs, € k[X,,,Y]and gg, € klx1,...,%m,y] by

g_sn: H g_p’ g~sn: H g~p’ gSn= H gp~

PESH PES, PES,

Then Q~sn =Gg, modY and gg, is related to g"sn by My, ie xj--x,y"-gs, = an via M. Define

@=(0,1)og, a. Analogously to what we did for a; in Remark 3.4.8, we can uniquely construct a
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matrix My € SLy,;1+2(Z) attached to (0,1)ogg v in such a way that the change of variables given by

M restricts to the change of variables given by M, on (x1,...,%,,y) and

Smi1— g8, = X; - X T 0ED Ry~ Cs,) via Mo,

In particular, denoting by gm+1 € klx¥!, y*!] the unique polynomial such that gm,4+1 = g5
1 n

mod (fo,..., fm) one has

Rlefl, . xfl yt Ma AplXEL T

(3.8) —k(X;,,7).

(for- s fmsXms1—8m+1)  da+Xma1-Gs,)
Remark 3.4.14. The construction of M is given by Remark 3.4.8 by replacing M, with Ms, g,
with gg,, and Gp with g~sn.

Lemma 3.4.15 With the notation above

RIXEL,. XELXEL Y]

m+1’

(fa,f%n-;]:-MaXm-%—l_GSn)'

C; = Spec

Moreover, Cy g is dense in Cy, i.e. @ € Q, and for any p € S, the birational maps saa,Saa,>Sa,a
induce a commutative diagram of open immersions
s
Cs * Cq
Sdap\L (/S(apa
C

ap
where sz, has image D(Gsn) c Cq. Finally, sgq induces Cg =C\S,.
Proof. First note that Co g =pes, Co,a,- Then Co 4 is a dense open of Cp by Lemma 3.4.9. The

ring homomorphism

A = AnlXEL Y1 RWGM  RalGgll  ALIXEL Y _A-
ap ™ (-Fa1Xm+1_g~p)+aa - (Fa) ('Fa) - (-Fa;Xm+l_g~Sn)+aa o a

is injective by Lemma 3.4.6 and induces the birational map Saa, if Spec A5 = C; from (3.3) and
(8.8). Since Y is a regular element of Ag, by Lemma 3.4.9, then Y is a regular element of A.
This proves Cz = Spec A4 by definition of Cy and gives the required commutative diagram again
by Lemma 3.4.9. O

Notation 3.4.16 Define
* ag=ag+Xms1-Gs,)c k[Xil,...,X,Jfll,X,ilJrl,Y] and M; as described in Remark 3.4.14;
* ja=Ja Ra=RalX;} 1 V(Xni1-Gs,) and D = DolGg'T;
* Fa=Fqand fla = fla-

With the notation above, & satisfies the properties (a), (b), (c) of 3.3.1.
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Definition 3.4.17 For any p € S,, let
X, ={y=Pog, a|BeZ? primitive, and Coy C Cy} c Q,

and Zg, =Upes, Zp- Define

A ~. A

2,=Z,Mal, £,=%,uf@), Zpi1=Zg,UZ,.

Recall that for any y,y’ € QLI{0} we have a canonical way to glue the curves Cy, C,s through

the birational maps sy,. Then

Coii= UJ CyuCo.
Y€Zn+l

We also define the following curves.

Definition 3.4.18 For any p € S,, define

c,=U¢c, C.=U Ce.
YeZ, a’ein

Then Cy+1 = Upes, Cp UCaUC, UCy.

3.4.3 The role of Newton polygons

Let p € S,. In this subsection we show that Newton polygons can be used to obtain an explicit
description of the set X,. We want to find all primitive vectors € 72 such that Co,y € Cy, where
Y =Pog, a.

Let B = (B1,B2) € Z2 be a primitive vector and let y = Pog, a. Recall that fl,(X;+1) =
Fy(Xim+1,0). Hence £, # 0 since YJ[]-"Y, Note that Dy = k[Xri;Llﬂ] by Lemma 3.4.10. Therefore
Cy =Cy, if and only if f|y is invertible in £[X :fllJrl]. Since through the change of variables given
by Mg

fa’p = X:;’l‘i'lYordﬂ(Fa,p) ) fY’
from the Newton polygon A, , of F, , one can see whether f|, is invertible in £[X :_;11+1] or not.
Let ¢ : Z2 — Z be the affine function defined by

P(i, j) = Pri + Poj —ords(Fa,p).

Then f1|, is not invertible in k[X :L]:l—l] if and only if ¢»~1(0) N Aq,p = edge. Thus X, consists of all
elements fo, a such that fe 72 is the normal vector of some edge of Aq,p. All these elements
are distinct as immediate consequence of Definition 3.2.3. Furthermore, note that this description

shows that X, is finite and non-empty as Xomatl ]-"a,p(X'erl,O) but X1 {Fap-
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Proposition 3.4.19 Let € 72 be the normal vector of an edge ¢ of the Newton polygon Aq,p of
Fap- Let y = pog, a. Expand Fop =1 ; cin'anYj, where c;; € k. Let (i, jo),...,(i1,j1) be the

points of £ NZ2, ordered along ¢ counterclockwise with respect to Aq,p. Then

!
d
fl}/ = Xm+1 Z cirer;’L+1
r=0
for some d € N.
Proof. Let (61,02) be the first row of M. It is easy to see that

b1i+69j+d’
fly= 2 cinml: 2 for some d' € Z,
(i,))et

with 611 +69j +d’ = 0. Note that (i,,j,) = (ig,j0) + r(B2,—pP1). Therefore, for d = d'+(81i9+062j0),
the proposition follows since 6182 — 0201 = 1. O

3.4.4 Inductive construction of the morphisms

In this subsection we want to construct a birational morphism s, : C,+1 — C,. In §3.4.5 we will

prove that s, is proper with the exceptional locus s,1(S, N Sing(C})).

Remark 3.4.20. Let p € S,. Similarly to the classical case (Remark 3.4.3), for any y,y' € Z,, y #Y/,
one has C,nC, = Cy,y. More precisely, the birational map s, : Cy-->C, has domain of definition

Co,y giving an isomorphism Cyy — Co y'.

Remark 3.4.21. Let p € S,,. For any primitive vector g€ 72, if y = o g, @ then from (3.5) we obtain

the homomorphism of rings

Am[Y] N Am[Xm+1,Y] IneMs Api1lY]
(fa)‘i'a(x (fa,Xm_;,]_—gp)‘i‘ﬂa (fy)+ay

(3.9)

that induces a birational morphism Cy — C,. In fact, from the definition of M, we see that it

agrees with s, : C,--»C, as rational map.

Lemma 3.4.22 Let p €S, and y = fog, a for some primitive f € Z%. Then syq : Cy — Cy restricts
to an isomorphism Cy y — D(g},) NCo,a € Cqaand syq(Cy\Coy) < {p}.

Proof. Lety=pfog, a for some € 72 . The first part of the lemma follows from Remark 3.4.21
and (3.4). The morphism sy, is induced by the ring homomorphism taking Y — Xf,f +1Yﬁ2, with
Mg = (gi gz) Recall

Cy\Coy=C,={Y =0} C,.

Since g‘p = Fm+1 modY, the morphism s, takes C_'Y into the closed subscheme {C;p =0} of C,.
This concludes the proof as {g'p =0} ={p}. O
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Let p € S,,. Considering p as a point of C, denote by U, , the open subscheme D(Gp)mCo,a of
Cy. Recall that Cy , is dense in C, by definition. Hence Lemma 3.4.6 implies that U, j, is dense.
Let Cy p = Uy p U{p} as subset of C. We want to show that C, ;, is dense and open in Cy. From
the density of Uy, it follows that C, , is dense and that V), := C4\U, ; is a finite set of closed
points of Cy. Thus Cq p, complement of V, \{p}, is open in C,.

Definition 3.4.23 For any p € S,, we define C, j, to be the dense open subset U, , U{p} of Cq,

equipped with the canonical structure of open subscheme.

Let p € S;,. By Remark 3.4.20 and Lemma 3.4.22, the maps syq : Cy — Cq, for ye 2, glue to a

morphism Cp, — Cyq p.

Definition 3.4.24 For any p € S,, define s, : C, — Cy ), as the glueing of the morphisms
Sya:Cy—Cq, forall ye Z,.

Lemma 3.4.25 The morphism s, :Cp, — Cq p, is separated.

Proof. Consider the open immersion t, : Cy , — C. By [Liu4, Proposition 3.3.9(e)] it suffices to
prove that 1, os, is separated. Since C|, is affine, we only have to show that C), is separated over
Spec k by [Liu4, Exercise 3.3.2]. Let A, , be the Newton polygon of 7, . Recall from §3.4.3 that

A [XEL Y]

C,=|]Cg with C, = Spec mtl’” v = fo, a,

3 LBJ Prent S Fr I A
where f runs through all normal vectors in Z2 of edges of A, , and the curves C pog,a are glued
along their common open Co 4, = Co go @ To avoid confusion, if y = fog, @, rename the variables
Xm+1,Y of Oc,(Cy) to Xp,Yp. Since closed immersions are separated and separated morphisms
are stable under base changes it suffices to prove that the toric variety g Spec k[X;'l,Yﬁ] cTa,,

is separated. This follows from the classical theory on toric varieties. O

Lemma 3.4.26 The morphism s, induces an isomorphism s;l(U a,p) = Uap. In particular, sp is

birational.
Proof. This result immediately follows from Lemma 3.4.22 as X, # <. O
Lemma 3.4.27 The morphism s, :Cp, — Cq p is proper.

Proof. By Lemma 3.4.25, the morpshism s, is separated. We will then prove the lemma via the
valuative criterion for properness. Let R be a discrete valuation ring with field of fractions K. We

want to prove that any commutative diagram

Spec K L} Cp

//\(
Lol

Spec R SLLEN Cap
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can be filled in as shown. Let 7 be a uniformiser of R and let w = (1) be the closed point of Spec R.
Since Cy p =Ugq,p U{p} and sl_,l(Ua,p) — Uy,p is an isomorphism by Lemma 3.4.26, we can assume
p = tg(w). Indeed, if not, then s;l is defined on the open dense neighbourhood U, ) of ¢,(w),
that therefore contains the image of ¢,. Moreover, ¢, can be supposed not constant, otherwise
Spec R — C,, can be defined as the constant morphism of image ¢,((0)).

Recall that the injective homomorphism R, — k(X_, Y), given by 3.3.1(b), induces an open
immersion Cy — Spec(*X,a,Y(F,)). In particular, the local ring Oc, ,, equal to Oc, , »,
isomorphic to the localisation of Z[X ja,Y]/(]:a) at the prime ideal (GP,Y) = (Q_p,Y). From the local

homomorphism

is naturally

.- k[XjuE 2 ])(g‘p,ﬁ ~ Oca,p,p tfx_w) R

we observe that ord,(G ) >0, ord,(Y) > 0. We want to show that neither Y nor Qp are taken to 0
by 7. Note that ker(r) C (GP,Y), since t, is not constant. Hence it suffices to prove that 7(Y) = 0 if
and only if T(Qp) =0.

Suppose 7(Y) = 0. Then 7(f|,) = 0 and T(Gp) = r(g_p). Recall that g‘p is a factor of f|,. Let
hp € k[X;,1with G, 1R, such that fly = hp(G,)™, for some m, € Z... Note that 7(h ) is invertible
ash, ¢ (GP,Y). Since 7(f|,) =0 and R is reduced, it follows that T(Gp) =0.

Suppose T(Gp) =0. Let Hy € E[Y] be the normal form of F, by Gp with respect to the lexi-
cographic order on k[Xja,Y] given by X; > Y. Note that T(Hp) =0 as 1(Fy) =0, but H, #0 as
QNP {1 Fa- Recall that Gp - g'p e YE[Y]. Since g'p is a degree 1 factor of f|, and Fy — flq € (Y), one
has H, € YE[Y]. Write Hp = Yt.-H, for t € Z, and H ¢ YE[Y]. Note that 7(?) is invertible as
H ¢ (Gp,Y). It follows that 7(Y) = 0 since R is reduced and 7(#,) = 0.

Hence ord”(gp),ord”(Y) € Z, and so the affine function
$:7>—27, (,j)—ord,G,Y’

is a non-trivial linear map with a rank 1 kernel spanned by some primitive vector (82,—f1) €
ZyxZ-.Set p=(f1,PB2) and y = fog, a. Then

Am+1[Y]

C, = Spec L -
YRR e,

and Cy, < C) from the definition of C}, (also when y ¢ Z). Hence

AplXEL Y]

m+1

i
S Fp+a,

K
(3.10) T o
) ~

where the ring homomorphism on the right, inducing the map
Sp
S'ya :C')/ - Ca’p — Ca,
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is given by Y — X ,‘;2 . lYﬁ2 for Mg = (gi 22) € SLo(Z). To conclude the proof it suffices to show that

the commutative diagram (3.10) can be filled in as shown. Recall
Fns1=X20, YP -G, eaq,.

Then o
ord; (Xpm+1) = ord(GH2 ¥ P1) = ¢((Ba, ~f1)) = 0

and so ord,(Y) >0 as S € Z2. Thus (3.10) can be filled in as shown. O
Lemma 3.4.28 If p € S, is a regular point of Cp, then s, is an isomorphism.

Proof. As p is a regular point of codimension 1, the ring Oc, , , is normal. Therefore there
exists a normal integral open subscheme U < C, ; containing p. Since s, is proper birational by
Lemma 3.4.27, then so is sg7 :s;l(U ) — U. In particular, s;l(U) is integral. It follows from [Liu4,
Corollary 4.4.3]) that sy is an isomorphism. Thus s, is an isomorphism, since s;l(Ua,p) —Uap

is an isomorphism by Lemma 3.4.26. O

Proposition 3.4.29 For any y € 2,41, the curve Cy y is dense in Cp1.

Proof. For any y € X,,1 recall that Co  is dense in its closure Cy. Therefore Co =Uyes,,, CoyUCo
is dense in Cy+1 = Uyes,,, CyUCo. Fix y € Z,,11. It suffices to show that Cy y is dense Cy. But this
holds as y € Q. 0

Definition 3.4.30 Define a surjective function v, : £,+1 U{0} — 2, L {0} by ¥,(0) = 07Wn|in =
ids ,Yn(Zns1\2,) = {a).

Let y € Z,,+11{0} and denote ay = ¥,(y). Then the birational map Sya, has domain of definition
C,. Indeed, it is trivial when y =0 or y € 5, while it follows from Remark 3.4.21 if y € Zg, and
from Lemma 3.4.15 if y = a.

Theorem 3.4.31 There exists a unique morphism s, :C,+1 — C, extending the birational maps

Sya :Cy--*Cq for y' € 2,1 U{0}, @' € Z,U{0}). In particular,
. R A
snlc,:Co==CoSCh, snlg :Cn=CrcChy,
and snlc, :Cp S, Cop<sCy, forany peS,.

Proof. For any y € .1 U{0} let ay = y,(y). We observed that the birational maps sy, have

domain of definition Cy, and so define morphisms

SyaY
sy:Cyp— Cay cC,.

Note that sylc,, is an open immersion. This fact is trivial when y € 3, L {0} and follows from
Lemmas 3.4.15 and 3.4.22 otherwise.
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Recall the definition of the dense open Uy, of C, for any y,y’ € QL{0}. We want to show
that for any y,y’ € 2,1 1 {0} and any a’ € X, U{0} the maps s, and syo : C)-->Cy < C, agree
on the intersection of their domains of definition. Let D be the domain of definition of s/
Then D2Uy . Let U=DNCy < Cpy1and Ug=CoyNCoy NCoq. Since Coyy NCoor Uy, one
has Uy € D. Hence Uy is an open of U, dense by Proposition 3.4.29. Now, U is reduced, C,, is
separated and sy|y, = sy«'lu, by definition. Therefore [Liu4, Proposition 3.3.11] implies the two
maps coincide on U, as required.

Thus the morphisms s, glue to a morphism s, : C,+1 — C, and s, extends the birational

maps syq : Cy-->Cgq for y' € Z,,1 U{0}, @’ € Z, L {0}. Then the uniqueness follows. O

Definition 3.4.32 Define s, : C;,,+.1 — C,, to be the birational morphism of k-schemes of Theorem

3.4.31. We call s, the morphism resolving S, (although s;l(S ») 1s not necessarily non-singular).

Remark 3.4.33. Let v,y € 2,41 U{0} and a’ € £, U{0}. Suppose there exist open subschemes
Vo cCy,UycC,y, Uy < Cy such that s, restricts to isomorphisms Uy — V', Uy — V. Since s,
extends the rational maps syq/, Sy/¢’, the map sy, is defined on U, and induces an isomorphism
Uy — Uy This implies that the opens Uy, U,  are glued, and so are equal in Cj,+1.

It follows that if U;,Us are opens of Cp41 such that s,|y, and s,ly, are open immersions,

then s, |y,uu, 1s an open immersion.

3.4.5 Geometric properties

In this subsection we will show that X, 1 and C, . satisfy all remaining properties of 3.3.1, i.e.
C, is a projective curve and C,NC, = Co,NCq,y for any y,y € Z, ;1 U{0}, y # Y'. Furthermore,
we will prove that the morphism s, defined in Theorem 3.4.31, is a proper birational morphism
with exceptional locus s;l(S » N Sing(C,)).

Consider the principal open D(Gg, ) = C,. Note that

(3.11) U={Cy|a' €2,}U{Co} U{Cqp | peSy}uiD(Gs,)}
is an open cover of C,,.

Lemma 3.4.34 The morphism s, :C,+1 — C,, is surjective.

Proof. We want to show that every open in the cover (3.11) is contained in the image of s,.
Recall s44(C3) = D(Gs,,) by Lemma 3.4.15. Moreover, the morphism s, : C, — C, , is surjective
by Lemma 3.4.22 as X, # @. Then the lemma follows from Theorem 3.4.31. O

Lemma 3.4.35 For any p €S, we have
s;l(p)ZCp\Co,ap, and s,_ll(Ca,p):Cp,
Furthermore, the morphism s;l(Cn \S,)— C,\S, induced by s, is an isomorphism.
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Proof. Let pe S,. Lemma 3.4.22 shows that
5,1 (0)= U (C)\Coy) =Cp\Coa,,
Y€Zp
where the last equality holds as Cp, = Co,q, for all y € Z,. Moreover, p ¢ s,(Cy) for any q € Sy,
q #p, and also p ¢ s,(Cg) by Lemma 3.4.15. Recall p ¢ Cy. In particular, p ¢ Cy for any a’ € 3,
since Cq NCy < Cq (from our assumptions on C,). Then s;l(p) = s;l(p) by Theorem 3.4.31.
Let Us, = C,\S,. We want to show that s;l(Usn) — Ug, is an isomorphism. From above

S,_LI(USH) = én L-JCO U Cdy

as Coy € Cy for any y € Zg, . Note that s,| ¢, S nlc, and s,|c, are open immersions by Theorem
3.4.31. Thus s,‘ll(Ugn) — Ug, is an isomorphism from Remark 3.4.33 and Lemma 3.4.34.

Recall that Cy , \{p} = U, < Usg, and s;l(Ua,p) = Coﬂp by Lemma 3.4.22. Moreover, s,
induces an isomorphism Cy 4, — Uq p by Lemma 3.4.26. Since s;l(USn) — Ug, is an isomorphism,
$,1(Cap) =5,1(Cap) = Cp. O

Theorem 3.4.36 The morphism s, : Cp41 — C, resolving S, < Sing(C,) is a surjective proper
birational morphism with exceptional locus contained in s;l(S »)- In particular, the curve C, 11 is

projective.

Proof. First recall s, is surjective by Lemma 3.4.34. Consider the open cover (£ of C,, introduced
in (3.11). As properness is a local property on the codomain, if s;l(U ) — U is proper for any
U elU, then s, is proper. Lemma 3.4.35 implies that s;l(U) — U is an isomorphism except when
U =Cgy,p for some p € S,. But s;l(Ca,p) =C, for any p € S;, again by Lemma 3.4.35. Hence
Lemma 3.4.27 implies that s, is proper. It follows that the curve C, .1 is complete, and then
projective, since so is C,,.

Proposition 3.4.29 implies that Cy is dense in C1. Let Ug, = C,\S,, dense in C,,. Since
Cyc s;l(Usn ), the isomorphism s;l(USn) — Ug, implies that s, is birational with exceptional

locus contained in s, 1(S,). O

Lemma 3.4.37 Let s, : Cp,.1 — C,, be the morphism resolving S,, < Sing(Cy). Let p € S,,. Then
p € Reg(C,) if and only if the exceptional locus of s, is contained in s;l(S 2 \Mp). In that case, C_'y
is regular for all y € Z,.

Proof. If p € Reg(Cy) then s, : Cp, — Cy  is an isomorphism by Lemma 3.4.28. Then the excep-
tional locus of s,, is contained in s,‘ll(Sn \{p}) by Lemma 3.4.35 and Theorem 3.4.31.

Suppose the exceptional locus of s, is contained in s;l(S 2 \{p}). In particular, there exists
an open neighbourhood U of p such that s;l(U) — U is an isomorphism. This implies that
sp :Cp — Cq p is an isomorphism by Theorem 3.4.31 and Lemma 3.4.35. Recall £, # . Let ye £,
so that y = fog a with f€ 72. Asin §3.4.2, write

AnlY] An[XE Y]
Co=Spec =1 =Spec tmrlt ]
@ TP Fora. TP T (Fyra,
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Consider the morphism sy, : C, — C, induced by the ring homomorphism taking Y —-X :Zf +1Yﬁz,
where = (f1,02) and 61,62 € Z such that 5102 — 5261 = 1. Recall that s,,(C,\Co,) = {p} by

Lemma 3.4.22. As s, is an isomorphism, s, is an open immersion. In particular,
(3.12) s Uay): Oc,WUay) — O, (Cy)

is an isomorphism, where Ugy = sy4(Cy). In fact, Uyy = Cq . Then p € Uy, and mp, = (Gp,f’) +ag
is the maximal ideal of O¢,(Ugy) corresponding to p. Recall F, 41 = Xf; +1Yﬁ1 -Gp € ay. Then
m,Oc, (Cy) < (Fy,Y) + ay, which implies the equality, since mp(’)cy(CY) has to be maximal. It

follows that the ring isomorphism (3.12) induces

Dy AnlYIg, vy, - AnlX; 1 Y1E Yore, Dy
(g_p) (gp,Y)+aa (Fy,Y)+ay (f|y)

Therefore C’y = Spec D, /(f],) = Spec k, and so is regular. In particular, the point w = s;l(p) is a
non-singular point of C,, ;1 (Remark 3.4.4). Thus C,, is regular at p, as w is not in the exceptional

locus of s,,. O

Proposition 3.4.38 Let s, :Cp, .1 — C; be the morphism resolving S,. Then S, c Reg(C,) if and

only if s, is an isomorphism. In that case, (_7}, is regular for all y € Zg, .
Proof. The proposition follows from Lemma 3.4.37. O

Recall from 3.3.1 that C, nC,» = Co,, N Cy, for any y,y’ € X, {0}, y #y'. We now want to

show this fact is true for X, .1 as well.
Proposition 3.4.39 For any v,y € £,.1U{0}, if y #Y/, then
CY n Cy' = CO,Y n CO,y’-

Proof. Let y,y' € Z,4,1U{0}, y #7'. Recall s,1(Co) = Co and that s, restricts to the identity
Coy — Cy. Hence it suffices to show that

Sn(C)/) N Sn(Cy’) = sn(CO,y) N Sn(CO,Y’)'

Consider the open D(Gsn) cCqpandletU,g, = D(Gsn)ﬁco,a- If both y and ' belong to ¥, LI{0},
we can conclude by the hypothesis on C,, (see 3.3.1), since s,(Cz) = D(Gsn) and s,(Coq)=Uggs,
by Lemma 3.4.15. Then assume y € X, for some p € S,,. Lemma 3.4.22 shows that 5,(Cy) =Cq
and s,(Co,y) =Uqp. If ' € X, as well, then Co, = C, NCy = Cy, from Remark 3.4.20. If y' € X,
for some q €8S, ¢ # p, then

sn(Cy)Nsp(Cy)=CopNnCoq=UgpnUgq=5,(Coy)Nsn(Coy).
If y' = a, then
$n(Cy)N$,(C3)=CapND(Gs,) =UapnUgs, =5n(Coy) N$x(Coa).
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Finally, suppose Y’ € 3, L{0}. Note that Ugp=CapnCoq. Then
Sn(Cy) N Sn(cy’) = Ca,p N Cy’ = Ua,p n CO,}/’ = Sn(CO,y) N sn(CO,y’),

as CqnCy =CoqnCo,y from the inductive hypothesis on C,. O

3.5 A generalised Baker’s model

Let £ be an algebraically closed field. Let f € k[xi—’l, y*1] be a Laurent polynomial defining a
smooth curve Cy : f =0 over G%l. Let A be the Newton polygon of f and let C; be the completion

of Co with respect to A.

Definition 3.5.1 Let Cy and C; as above. A simple Baker’s resolution of Cy is a sequence of

proper birational morphisms of £-schemes

Sn+1 Sn Sn-1 S1
(3.13) . » Cpy1—>Cp — ...>»Cq

where the curves C,/k are constructed from subsets 2, < Q as described in 3.3.1 and the maps

s, are the morphisms resolving sets S, < Sing(Cy), for some a € 2,,.

We have showed how to construct simple Baker’s resolutions of Cy recursively for any choice
of sets S, < Sing(C,), @ € Z,,. We want to prove that for any simple Baker’s resolution of Cy, the

sets S, are eventually empty. Thus simple Baker’s resolutions can be used to desingularise C;.

Definition 3.5.2 Recall % is supposed algebraically closed. Let C/k be a smooth projective curve.
A smooth curve C/k is a generalised Baker’s model of C if there exist a smooth curve Cq c G%w

birational to C, and a simple Baker’s resolution

Sn+1 Sn Sp-1 S1
. » Chy1>»Cp —» ... Cy

of Cy so that C = C,, for some n € Z,. In this case we say that C is a generalised Baker’s model of
C with respect to Cy. Note that C is a model of C over k, i.e. C = C, by Lemma B.1.3.

For the remainder of the section we fix a simple Baker’s resolution of Cy
Sn+1 Sn Sp-1 S1
. Chi1—>»C, —» ... Cy
where the maps s, are the morphisms resolving S,, < Sing(C,), a € Z,,.

Theorem 3.5.3 There exists h € Z.. such that S,, c Reg(C,) for all n = h.

Proof. Let n € Z, and consider s, : C,,.1 — C, resolving S,. As birational morphism between
projective curves, s, is finite ([Liu4, Lemma 7.3.10]). By Theorem 3.4.36 we have an exact
sequence of sheaves

0—-0¢, —s,0¢,,,—Sph—0,
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where S, is a skyscraper sheaf with support contained in S,,. Denote the arithmetic genus of a
curve X/k by p,(X). Then we get

(3.14) Pa(Cri1) = pa(Cp) —dimy, H(C,, S).

Let r be the number of irreducible components of Cy. For any n, recall there is a natural open
immersion Cy — C, with dense image. Therefore the curve C,, is reduced and has r irreducible
components X1,...,X,.Leti=1,...,r and let X; be the normalisation of X;. Then HO(X;, OXL() =k
as k is algebraically closed ([Liu4, Corollary 3.3.21]). Hence p,(X ;) = 0. Therefore p,(C,)=1-r
by [Liu4, Proposition 7.5.4]. It follows from (3.14) that (p,(Cp))sez, is a decreasing sequence
in Z bounded below by 1 —r. Hence it is eventually constant, i.e. there exists - € Z, such that
Pa(Cni1) = pa(Cp) for all n = h. From (3.14), we have H(C,,,S,) = 0, that implies S, = 0, as it is
a skyscraper sheaf. Hence O¢, =s,Oc,,. It follows that s, is an isomorphism since it is affine.
Thus Lemma 3.4.38 shows that S,, c Reg(C,,) for any n = h. O

Remark 3.5.4. Let n€Z.. In Remark 3.4.4 we noticed that any singular point of C,, is the image
of a point in Sing(C,) under the immersion C, — C,,, for some a € X,,. Therefore if C,, is singular,

we can choose S, € Sing(C,), a € £, such that S,, N Sing(C,,) # @.

Theorem 3.5.5 Let N ={n€Z. |C, is singular}. Suppose S,, NSing(C,) # & for all n € N. Then
N is finite. In other words, there exists h € 7 so that C,, is regular for all n = h. In particular, for

any n = h, the curve C, is a generalised Baker’s model of the smooth completion of C\.
Proof. The result follows from Theorem 3.5.3. O

Remark 3.5.6. The arithmetic genus of the curve C1 is p,(C1) = |A(Z)|, where |A(Z)| is the number
of internal integer points of the Newton polygon of C( ([Dok, Remark 2.6(d)]). Therefore it can be
explicitly computed. Equation (3.14) gives a recursive way to calculate the arithmetic genus of
the following curves C,,.

By choosing the sets S, as in Theorem 3.5.5, we would eventually compute the genus g of the
smooth completion of Cy. Furthermore, if 4 € Z, is as in Theorem 3.5.5 then g < |A(Z)| - h. Hence

the number of steps needed to desingularise C; via a simple Baker’s resolution is < |A(Z)|.

Lemma 3.5.7 Forany neZ,,

C.\Co= |_| Cy\CO,y: |_| C_'y.
YEZ, Y€EZ,

Proof. From 3.3.1, for any y,y’ € £, {0}, one has C,nC, = CoyNCy, . This implies that if y € X,
then C,nCo =Co,y and C, NCy < Cy for every y' € Z,,, ¥’ #v. The lemma follows. O

Theorem 3.5.8 There exists h € Z, such that S,, = forall n=h.
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Proof. By Theorem 3.5.3 there exists A’ € Z, such that S, cReg(C,) foralln=h'. Let n = h'. For
any I' € X, let N(I') be the number of points of C, \Cy which are singular on C_'y for some yeT.
Note that by Lemma 3.5.7, one has N(I') = ¥.yer N({y}).

Let a € 2, such that S, < Sing(C,). Since Cy embeds in C, via s, and S, = C4\s,(Cg) by
Lemma 3.4.15, we have N(Z,)) = N(Z,)) — |S,|. On the other hand, N(Zg,) = 0 by Proposition
3.4.38, as S, cReg(C,). Hence

N(E,41)=N(Es,)+N(E,) =N(E,) - 1Sn < N(Ep).

Then N(Z,),>n forms a decreasing sequence bounded below by 0. Thus it is eventually
constant, i.e. there exists 4 € Z, such that N(Z, 1) = N(Z,) for all n = h. But we saw above that
this happens only if S,, = . O

Definition 3.5.9 For any n € Z,, the curve C,, is said outer regular if C”y is regular for any y€ X,,.
In other words, C,, is outer regular if the closed subset C,\C¢ of C,,, equipped with the structure

of closed subscheme coming from Lemma 3.5.7, is regular.
Note that from Remark 3.4.4, if C,, is outer regular, then it is regular.

Theorem 3.5.10 Suppose S,, # < for all n € Z, such that C, is not outer regular. Then there
exists h € Z so that for all n = h the closed subschemes C_',, are regular for all y € Z,,. In particular,

the curve Cy, is an outer regular generalised Baker’s model of the smooth completion of C\.
Proof. The result follows from Theorem 3.5.8. O

Corollary 3.5.11 Every smooth projective curve defined over an algebraically closed field k admits

an outer regular generalised Baker’s model.

Proof. By Corollary B.1.4, for any smooth projective curve C there exists a smooth curve Cy c G?n
birational to C. Construct a simple Baker’s resolution (3.13) of C¢ recursively by choosing S, # @

whenever C,, is not outer regular. Theorem 3.5.10 concludes the proof. O
Lemma 3.5.12 Let n€ Z,. For any y € ¥, we have a natural bijection
Reg(Cy) it {simple roots of f|y in k*}.

Proof. For any y € Z,, we have

k[X;!yl] 11, . . x
Reg(Spec ) ) — {simple roots of f|, in £"}.

We will prove by induction on n that Reg((:”y) = Reg(Spec k[inYl]/( f Iy)). If n =1, the statement
follows since D, = k[Xfyl] for all y € Z;. Suppose n >0 and y € ¥,41. Let s, : C,,41 — C;, be
the morphism resolving S, < Sing(C,), for a € XZ,,. By Definition 3.4.17 the result follows from
the inductive hypothesis except when either y=a or y € Zg,. If y € Zg,, then D, = k[XJJ.—'yl] by
Lemma 3.4.10, so C_'Y = Spec k[Xle]/(fly). If y = @, then CY =C,\S, by Lemma 3.4.15. Then
Reg(C,) = Reg(Cy). Thus Reg(C,) = Reg(Spec k[XJJFYl]/(fIY)) since jz =jq and flg = fla- O
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Theorem 3.5.13 Let n € Z.. Suppose C,, is outer regular. Then we have a natural bijection

CL(R\Cy(k) XL L] {simple roots of fly in k*}.
yez,

Proof. Lemma 3.5.7 shows that C,\Co = ycs, C_'y. Thus Lemma 3.5.12 concludes the proof. [

We conclude the section with the following two lemmas, proving that for any n € Z,, the unions
in Definition 3.4.17 are all disjoint. This fact is particularly useful in applications: together with
Proposition 3.4.39 it implies the points in C,\Cy y for y € Zg, u{@} are not visible on C,.

Recall the partial order < on Q given in Definition 3.2.4.

Lemma 3.5.14 Let n€ Z,. For any v,y' € £, neither y <y’ nory' >vy.

Proof. We are going to prove the lemma by induction on n. If n = 1 the result is trivial. Suppose
n >0 and let a € £, such that S,, < Sing(C,). Suppose by contradiction there exist v,y € .1
such that y < y'. By definition X, 1 = isn uZ,, where ign =2Xg, uf{a}. Let m € Z, such that
a € Qp,. Then a’ € Qpy4q for any @’ € £g . In particular, y and y’ cannot be both in £g . In fact, by
inductive hypothesis, either y € isn and y' € 3, or viceversa. Suppose YE isn. Then a <y <Yy
But this gives a contradiction since a,y’ € £,. Suppose ¥’ € £g . Then a is the unique element of
Q,, such that a <vy’. In particular, y < a. But y # a since y € £,,. Thus y < @, contradicting the

inductive hypothesis on Z,,. O

Lemma 3.5.15 Let n € Z, and let a € 3, such that S,, < Sing(C,). Then the sets 3, (@}, and b,

for p € S, are pairwise disjoint.

Proof. Let p € S,. First note that for every y € X, and 7' € Uges,\(p} ¢ U{@}, the images of Cy and
Cy under s, are different. Then y #y'. It remains to show that if ye X, u{a} and o’ € 3., then
y # a'. Note that y > a. Therefore if y = @’ then a’ > a, where both a and ' are elements of Z,,.
But this is not possible by Lemma 3.5.14. O

3.6 Simultaneous resolution of different charts

+

Let % be an algebraically closed field and let f € k[xi—’l, y*11 be a Laurent polynomial defining
a smooth curve Cy: f =0 over G%@. Let C1 be the completion of Cy with respect to its Newton
polygon. In the previous sections we showed that we can construct a sequence of proper birational
morphisms
Sn+1 Sn Sn-1 S1
.» Chi1—>»Cp — ... —>»Cq,
where the curves C,/k are constructed from sets X, € Q as described in 3.3.1 and the maps s,

are the morphisms resolving S,, ¢ Sing(éan) for a, €2,.
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Let n € Z.. Note that, once we have chosen the polynomials Gp for any p € S,,, the construction

of £,+1\2, only depends on @, and S,, by Lemma 3.5.15. Suppose a,+1 € 2,. Then
Zpt2 = z"Sn U ZS,LH ula,, @p+1t U(E, \Man, ans1]).

Thus X,.2 would have been defined in the same way if, instead of resolving S,, first and then
S,+1, we had resolved S,,;1 first and then S,,. In other words, the construction of Z,,, 9, and so of
C,+2, from X, does not depend on the order of resolution of S, and S,,;1.

In this section we will show that from our construction we can resolve points coming from
different charts simultaneously. More precisely, we will explain how to construct a sequence as
in §3.3 where the morphisms s, resolve finite sets of points S, S| lsex, Sing(C,). Note that by
Lemma 3.5.7 we can identify the points in S, with points of C,, via the immersions C, — C,,.

Suppose that, for some n € Z,, we have constructed 2, c Q and C,, as in 3.3.1. Let S,, €
Uges, Sing(C). Denote Sna=8n NC, for any a € 2,,. Consider the subset 2ns, ={la€Z,|Spa#
&} of Z,, and order its elements ag,a1,...,a,. For each i =0,...,h we can recursively construct the
morphism Sp4; : Cpyir1 — Cryj resolving S, o, S Sing(C’ai) as described in §3.4. Indeed ag € X,
and a; € 2,,4; since

a; € \Mag,...,ai—1} S Sneio1 for any i = 1.

Therefore from the observation made at the beginning of the section

h
Znthel = U an’ai ul{do,...,aptuE,\{ag,...,an})
=0
= U Gs,,ulahuE,\Z,s,)-
ann,sn

In particular, Z,,,5+1 is independent of the order chosen for the elements in X, 5 . This approach

eventually constructs a complete curve C,, ;1 and a surjective birational morphism

C Sn+hOSn+h—1°"08p C
n+h+l =™ Ln,

with exceptional locus equal to the inverse image of S, N Sing(C},). This morphism does not
depend on the order chosen for the elements @; of Z,, 5 . Indeed by Theorem 3.4.31 it is the unique

morphism extending the birational maps sy :Cy--*Cq for y € X, 441 U{0} and a € X, LI{0}.

Definition 3.6.1 We will say that s, 0---0s, is the morphism resolving the finite set S, <
Uges, Sing(C).

We can then redefine 2,1 :=2,,:4+1 and C, 11 := C,, 1541 to see that we can construct finite
subsets Z,, < Q and projective curves C,/k as described in 3.3.1 and a sequence of proper birational
morphisms

Sn+1 Sp Sp-1 S1
. » Chy1—>»Cp —» ... Cq,

where the maps s, : C,+1 — C,, are the morphisms resolving freely chosen S, S| lgex, Sing(C).
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Definition 3.6.2 Let Cy and C; as above. A Baker’s resolution of Cy is a sequence of proper

birational morphisms of 2-schemes

Sn+1 Sn Sp-1 S1
. Cpy1—>Cp — ... Cq

where the curves C,/k are constructed from subsets Z,,  Q as indicated in 3.3.1 and the maps s,

are the morphisms resolving sets S, S| lges, Sing(C).

Simple Baker’s resolutions are Baker’s resolution. In fact, from what discussed in this section,
Baker’s resolutions of Cj are just contraptions of simple Baker’s resolutions. Hence the results
in §3.5 extends to Baker’s resolutions. Let us explicitly restate Theorem 3.5.8 in light of the

terminology introduced in the current section as an example.

Theorem 3.6.3 For any Baker’s resolution of Cg given as in Definition 3.6.2, there exists he 7.
such that S, = @ for any n = h.

Baker’s resolutions are not really a new concept, but rather a more general point of view
which will be useful in the next section, where we tackle the case of a non-algebraically closed
base field.

3.7 The case of non-algebraically closed base field

In this section let % be a perfect field with algebraic closure k. Denote by G, the absolute Galois
group Gal(k/k). Let f € k[xz—rl, y*11 such that Cor : f =01is a smooth curve defined over an g et
Co=Cop xp k. In the previous section we showed how to construct a sequence of proper birz;tional
morphisms of Z-schemes

Sn+1 S Spn-1 S1
=5 Chp1 = Cp ... = Ch,

called Baker’s resolution of C, where the curves C,/k are equipped with canonical open immer-
sions i, : Co — C, such that s, 01,1 =1,. Suppose that for any n € Z, one has G < Aut(C,) and
spo0 =0osy, for all 0 € Gj,. Then, from the universal property of quotient schemes, one has an

induced sequence of proper birational morphisms of 2-schemes

L Cpp e O 2 2 Oy,
where the curves Cy, j, := C,/G}, are defined over k. Furthermore, the morphisms t, induce open
immersions t, ; : Cor — Cpp such that s, pot,41% =th . Infact, C, =C, %3, k and the quotient
morphism C, — Cp, , is the canonical projection. Then C, is smooth if and only if so is C}, ;..
The argument above motivates the subject of this section, which is constructing a Baker’s
resolution of Cy such that G, < Aut(C,) and s,, is Galois-invariant for any n € Z... The following

definition extends Definitions 3.5.2, 3.5.9 to the case of general perfect fields.
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Definition 3.7.1 Let C/k be a smooth projective curve. A curve C/k is a generalised Baker’s model
of C if C = C and there exists a smooth curve Co,k/k such that the base extended curve C x, % is a
generalised Baker’s model of C xj, & with respect to C’o,k x, k. Furthermore, a generalised Baker’s

model C of C is outer regular if C x}, k is outer regular.

Let us first describe a group action of G on Q. Let a = (v, 7)€ Q and 0 € G;. Let me Z.,.
+

such that a € Q,, and write T = (gg,...,g») for Laurent polynomials g; € l%[xll,yil]. Set T =
(89,---,8my) and define (v,T)? = (v,T7). Recall

l%[xi—'l,...,x,i;ll y*1]
(f1,f2,---sfm)

with f1 = f € k[xt!, y*'] and f; = x; — g; € klxit, y*1] for i = 2. Hence Co 40 = CJ . Then Cq oo is

dense in Cy and so a’ € Q. Thus the element a? is set as the image of @ under the action of o.

Co,« = Spec

The next lemma follows.

Lemma 3.7.2 Let 0 € G, and a € Q). Let m € Z, such that a € Q. If y = fog a, for some primitive
vector BeENx Z, and g € klx1,...,%m,y] then y° = Bogo a’.

We will show that if the morphisms s, resolve Galois-invariant sets of points for any n € Z,
the curves C, can be constructed from subsets X, < ) with the properties of 3.3.1 and the

following additional one:

(d) The action of G on Q restricts to Z,,. Furthermore, for any o € G;, and any a € Z,,, we have
Moo =My, jao = ja, Fao ng-

In particular, if (d) holds for n € Z., then G, < Aut(C,).

Suppose the set XZ,, defining C,, satisfies the additional property (d). Let a € Z,, and let me Z.,.
such that a € Q,,. Let 0 € G},. From (d) it follows that a” € Z,, and af = a4e, Rgo =RJ, Coqo =CY,
flae = f19. Hence D 4o = DY and so Cyo = CY.

Let p € Sing(C,). Recall g'p € k[X j.] is monic of degree 1 generating the maximal ideal of
Og, p- Since CY = Cqo, the ideal (GJ) is the maximal ideal of Ogo po- Therefore Gpo = GJ as
gg € k[X;,,] is linear and monic. Finally, the equality F,- = FJ implies that we can choose
Qpa = Gg Let gp € Elx1,...,%m,y] related to Gp by M,. If Gpa = Gg, then gg is the polynomial
related to Qpa by Mys = My; hence gpo = gg.

Now let S, € lges, Sing(C,) be a Gi-invariant set. Consider the morphism s, : C,.1 — C,
resolving S,. We want to show that we can construct the collection X, 1 defining C,,;1 in such a
way that it satisfies (d). Define S, , =S, n C, for any a € ¥, and Zns, ={la€Z, |8, # 3} Note

that since S, is Gp-invariant, so is X, g, . Moreover,
Sg,tx = {pg Ipe Sn,a} = Sn,a"
for any a € X2, and 0 € Gp.
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Let ye X, 1 and 0 € G. Assume Gpa = Gg forany peS,.If y¢ Z,, then for some a€Z, g,
either y =@ or y = fog a, for some p €S, o, and f€ Z% primitive. It follows from Lemma 3.7.2
that 1 equals either a® or fo g,0 @’ In particular, the matrix My-, the positive integer j,» and
the polynomial F,- have been defined in §3.4.2 even when y? ¢ Z,,,1 (see Notation 3.4.13, 3.4.16).

This allows us to state the following result.

Theorem 3.7.3 Consider the morphism s, : C,+1 — C,, resolving the Gp-invariant set S, <
Uges, Sing(C,). Suppose %, satisfies the additional property (d). Then X, 1 satisfies (d) if for all

o € Gy, one has
(1) Gpo =GY for all p € Sy;
(2) My=Myo forany y€Zyi1;
3) ordey (Fy) = ordeYU (Fye) for any y € Zp41.

Furthermore, if a1,...,ap € X, g, sothat X, g, = I_I?zle a;, then

h
i1 =G JEs,,, V@D UEN\Zns,)-
i=1

Proof. Assume (1), (2) and (3) and let 0 € G. Let y € £,,1\Z,. Then there exists a € £, g, such
thaty=aoryeZg, .

Suppose y = @ for some a € X, g,. Then y? = a° by Lemma 3.7.2 and so Y’ € Z,,1. Note
that j, = j,» and F, = Fyo. Indeed, jg = ja, Fa = Fa by construction, and jyo = joo = j, and
Fyo = Fao = Fg, where the last equalities follow from the fact that Z,, satisfies (d).

Suppose now that y € Zg, ,. Then y = o, a for some p € S, 4 and some primitive vector
B€7%. Lemma 3.7.2 implies that y7 = og,c a’. Let m € Z, such that a € Qy,. Note that j, = j0.
Indeed j, = m + 1 by construction, and similarly j,- =m +1 since a” € Q.

Now we want to show that }')‘,7 = Fyo. Let ap = (0, 1)ogp @, as in §3.4.2. Then (a,)? =(0,1) Og,0
a’ = (a%)po by Lemma 3.7.2. Since gg = gpo and My = M40, Remark 3.4.8 shows that M,, =
M(a’")pa- Recall that the matrix M, is obtained as the product (1,, ® Mg)- M, s for some matrix Mg
attached to §. Similarly, Mo = (I, ® M 23) -M (@), for some matrix M ;5 attached to g. It follows
that Mg = M}a as we are assuming M, = M.

We recall F, and F,- are constructed from F, ;, and Fyo ,o respectively, via the change of
variables given by M. Explicitly,

Mg
Ynz 'fy, faﬂ’po = Xn3

Mﬁ n
! 1
‘Fa’l’ =X m+1

m+1 Yy 'fY”’
for some n1,n9,n3,n4 € Z. Note that ]-'g’p = Fqo po since Gg = Gpa and FJ = Fao. Therefore .7:;7 =
(Fy)=ordx

To conclude the proof it only remains to show that (:'yo # & since this would imply y? € Zg

Fyo as ordy, (Fye) by assumption and ordy (F,) = ordy (Fy<) = 0 by construction.

m+1 m+1

We showed j,o = j,, Myo = My and Fyo = ]-"7‘,’, and so C’Ya = C'g. But é}’ # J since y € Xg, .. Thus
Cy #2. O
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Remark 3.7.4. Suppose X, satisfies (d). In this remark we show that conditions (1),(2),(3) of
Theorem 3.7.3 can always be obtained.

Let 0 € G,. We have already observed that we can choose the polynomials Qp, for pe S,,
satisfying (1). Let y € Z,,,1. If y € Z,,, then the equalities M, = M- and ordeY (Fy)= ordeYU (Fyo)
follow from the fact that Z, satisfies (d). Suppose y = & for some a € X, 5, . Assuming (1), the
equality M, = Mo follows from Lemma 3.7.2 and Remark 3.4.14. Furthermore, j, = j,» and
Fy =Fyo as jo = jy« and Fg = Fqo. Suppose y € Zg,  for some a € X, g, . Then y = fog, a for some
primitive € Z% and some p € S, o. Let m € Z, such that a € Q,,. In the proof of Theorem 3.7.3 we
showed that My =(I,, ® Mp)- M, and Myo = (I, @M’ﬁ) ‘M, for some matrices Mﬁ,M’ﬁ attached
to B that can be freely chosen. Therefore it suffices to choose Mg =M ;3 to have My = M,0. Finally,

the polynomial Fy is fixed up to a power of X , so we can easily require ordey (Fy) = ordeY” (Fyo).

Remark 3.7.5. The conditions of Theorem 3.7.3 are satisfied if
(1) Gp =G, for any p € Sy;

(2) for any primitive 8 € Z2, a fixed matrix M s € SLa(Z) attached to  is chosen whenever

choosing a matrix attached to § is required,
(3) there exists a € N such that ordey (Fy)=aforany y€ X, 1.

Note that point (2) implies that if y = fo g, & for some a € Z,, p € S;, o, and some primitive vector
Be Z%, then we use the fixed matrix Mg to construct M, = (I,, ® Mp) My, .

Let C1 be the completion of Cy with respect to its Newton polygon. From §3.4.1 we easily
see that y? =y and .7-"]‘,7 = F, for any y € Z; and any o € G;. Hence the set X1 c (2, defining Cj,
satisfies (d). Theorem 3.7.3 and Remark 3.7.4 show that we can construct Baker’s resolutions of
Co

2L g 2 0y 2 L 0,
such that for all n € Z, the sets X, satisfy the additional property (d). In particular, G < Aut(C,)
and X, is Gp-invariant. The Galois-invariance of X, makes the action on C,, easy to describe. Fix

such a Baker’s resolution.
Lemma 3.7.6 Let ne Z.. Then oos, =s,o0, for any o € Gy,.

Proof. Recall that s,, restricts to the identity on Cy. Then the two morphisms of 2-schemes g os,
and s, oo agree on Cy. But Cy is a dense open of Cj, 1, thus gos, =s, oo by [Liu4, Proposition
3.3.11]. O

Let n € Z,. Recall that for any 0 € G}, and y € Z,,, we have f|,« = f|7, as Z, satisfies (d).

Therefore there is a natural action of G on the set
Llyes, {simple roots of f1|, in k),

where the simple root r € £~ of f ly is taken to the simple root o(r) of f|yo.
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Theorem 3.7.7 Let f € k[xi—'l, y*11 be a Laurent polynomial defining a smooth curve Cor:f=0

over an p- Denote Co=Cop xp k. We can recursively construct a Baker’s resolution of C

Sn+1 Sn Sn-1 S1
. Cry1—>Cp —» ... Cq
where the maps s, are the birational morphisms resolving Gp-invariant sets S, S | ges, Sing(Cy)
(chosen arbitrarily) and the sets X,, defining the curves C,/k, satisfy the additional property (d).

For any such sequence:
(i) There exists h € Z, such that S,, = & for any n = h.

(ii) If Sing(Cy) < Reg(C,,) for all a € T, then the scheme-theoretical quotient C,/G}, is a gener-
alised Baker’s model of the smooth completion C of Cy .

(iti) If C, is outer regular, then there is a natural bijection

C(k)\Co (k) it || {simple roots of fly in k*},
YEZ,

preserving the action of the Galois group Gy,.

Proof. Theorem 3.7.3 and Remark 3.7.4 show that the sequence can be constructed recursively,
for any choice of Galois-invariant S, S | lses, Sing(Cy). Part (i) follows from Theorem 3.6.3. Part
(i1) is implied by Remark 3.4.4, Lemma 3.7.6 and the argument presented at the beginning of
the current section. Now assume C,, is outer regular, i.e. C, is regular for all a € X,,. Therefore
Lemma 3.5.12 shows that, for every y € X,,, from the definition C_'Y = Spec (]lp% we obtain a natural
bijective map

C, L {simple roots of f|y in £*}.

By part (ii), the smooth completion C of Cyj, is isomorphic to the quotient C,/Gj. Therefore
C %, k=C, and so C(k) = C,,(k). Since Co,k(l%) =~ Co(k) by definition, Lemma 3.5.7 implies part
(ii1). O

Corollary 3.7.8 Any smooth projective curve C defined over a perfect field k has an outer regular

generalised Baker’s model.

Proof. By Corollary B.1.4, for any projective smooth curve C/k there exists a curve Co/k as
in Theorem 3.7.7, birational to C. By Theorem 3.7.7 we can construct a Baker’s resolution of
Cox xrk

Sn+1 Sn Sp-1 S1
. Cpy1—>Cp — ... Cq

where s, are the birational morphisms resolving the Galois-invariant sets S, = [ ges, Sing(Cy)
and the sets X, satisfy the additional property (d). Furthermore, by Theorem 3.7.7(i) there exists
n € Z, such that S,, = @. It follows that C_'y is regular for all ye Z,,, i.e. C, is outer regular. Let
C =C,/G},. Thus C is an outer regular generalised Baker’s model of C. O
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In the next proof we will show how Algorithm 3.1.5 and Theorem 3.1.6 follow from previous

results.

Proof of Theorem 3.1.6. Suppose Cg}, is geometrically connected. We recursively construct a
Baker’s resolution of Co = Co 1, xp, k

Sn+1 Sn Sp-1 S1
. Chy1—>»C, —» ... Cy

where the morphisms s, resolve the sets S, = ges, Sing(Cy). In the construction, for any n € Z,,

we make the following choices:

(1) For any point p € S, choose Gp = g‘p. This is always possible, since Cy is connected (see
Remark 3.4.5).

(2) Every time we need to choose a matrix Mg € SLy(Z) attached to some primitive vector
B =(B1,B2) € Z2, choose Mg = (gi gz), where (61,82) = 63 (Notation 3.1.3).

(3) For any y € Z,,1\Z,, choose F, with ordeY (Fy)=0.

With the choices above, by Theorem 3.7.3 and Remark 3.7.5, the sets X, satisfy the additional
property (d) and the sets S, are Galois-invariant. Theorem 3.7.7(i) implies that there exists
n € Z, such that C, is regular for all @ € Z,,. In other words, C,, is outer regular. Let n be as small
as possible, i.e. such that Cp, is not outer regular for every A < n. By Theorem 3.7.7(iii) there is a

natural bijection preserving the action of the Galois group G,

C(k)\Cy (k) L || {simple roots of |, in £*},
YEZ,

where C is the smooth completion of Cg .

For any A <n recall Sj, o =S, N C, for any a € 33, and note that
Zns, =la€Zp|Spa# T ={aeZy| C, is singular},
as Spq = Sing(Cy). Define
Lp={dlaeZys,)UEs\Zhs,), and X = Usesys, ZSh 0

sothat X1 =27

of S;,, we have C’Y regular for any y € Z,\X; 5,. Now let a € X}, g, . Lemma 3.4.15 shows that Cqy

UZy. We are going to show that C_'y is regular for any y € ;. From the choice

is isomorphic to C4\S h,a- This is a regular scheme since Sy, o = Sing(C).

Now we want to describe the set Sj, for any & < n. Define 27 = X1. If 2 > 1, then C_'y is regular
when y € £,_;. Therefore X s, < X for all h <n.Now D, = k[X;.—'Yl] for all y € X} from §3.4.1
(case h = 1) and Lemma 3.4.10 (case h > 1). Hence the points in S bijectively corresponds to
non-zero multiple roots of f1,, y € ZZ. Furthermore, given y € =7, for any multiple root r € £* of
fly we have g'p, =X, —r, where p; is the point of S}, corresponding to r.

Let Pj,, P be the indexed sets of polynomials in £2[X,Y ] constructed in §3.1.3 via Algorithm
3.1.5. We are going to prove the following facts:
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(1) Py = Uyez; {Fy(X,Y)} for any h < n;
(i) U, P; =Uyes, (F(X,Y)} for any h < n;
(i) P =llyes, {(FH(X, Y}
where F,(X,Y) denotes the image of 5, under the isomorphism
IE[ij,Y] — k[X,Y], Xj—X,Y—-Y.

Note that (iii) concludes the proof of Theorem 3.1.6.
We prove (i) by induction on &. If 4 = 1, then X] = X1, and so the equality follows from §3.4.1.
Suppose i = 1. We want to show that

Ppi= || (F&X, V).
YEZ,

Let us recall the steps that have to be done to construct the polynomials F,, for y € Z;; L1 We

observed that the points in Sj correspond to non-zero multiple roots of f|, for a € Z;;. For any

a € X, and any multiple root a € k> of f|q do:
(1) Replace Y with Y in F, so that F, € k[X; ,Y].

(2) Denote by p, the point of Sj, corresponding to a. We noted that g'pa =X, —a. Since we chose
Gp, = Gp,, the normal form F, p, of Fo by Xn+1—Gp, with respect to the lexicographic
order given by X; > Xni1>Y is

Jra,pa(Xm+l,Y) = Jra(Xm+1 +a,Y)
(here m € Z, such that a € Q,,).
(3) Draw the Newton polygon A, ,, of Fy p,.

(4) Lety =pog, a for the normal vector € 72 of some edge of A, p,. From §3.4.3, we have
YE& zpa .

(5) The fixed matrix Mg = (gi gz) gives the change of variables

Xm+1,¥) = K1, Y) o Mp = (X0, VP X0 VP,

Via this transformation we define F, to be the unique polynomial in E[Xm+1,Y] such that

ordy,,,, fy = ordy Fy = 0, satisfying

m+1

~ ~ M
FapeZm+1,Y) L X Y™ F (X1, Y),

m+1

for some nx,ny € Z.
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(6) In fact, all elements y € X, equals fog, a with e Z2 normal vector of some edge of Ay p, .

+
h+1

knowing the polynomials Fg, foralla € X, g, < ZZ. Comparing it with Algorithm 3.1.5 we see
that Pp,1 = Uyez;+l{fy(X ,Y)} since Leex: {Fau(X,Y)} = Pj, by inductive hypothesis.

We now prove (ii) by induction on A. If A = 1, then (ii) follows from (i) as X1 = ZI by definition.
Suppose then & = 1. We want to show that I_I?:ll P; =|lyes, {FX,Y)} But Zp41 = Z;“Hl Uy, so,
by (i) and inductive hypothesis, it suffices to show that

The procedure presented here describes how to construct the polynomials 5, for all y € X

L] (/&Y= || (/R E, )L
yeZ, YEZh
But this easily follows from the definition of £}, since F; = F, for any a € Zg, n (Notation 3.4.16).
To prove (iii), first note that from (i), for any & < n the indexed set Py, is non-empty. Then (iii)
is implied by (ii) if for any f, € P,,, the polynomial f|,(X) = f,(X,0) has no non-zero multiple roots.
But this follows from (i) since C, is regular for any a € 2,, and so [ |y has no multiple roots in k>
forany yeX} as D, = k[Xfyl] in this case (Lemma 3.4.10). As already observed, this concludes
the proof of Theorem 3.1.6. O

3.8 Superelliptic equations

Let % be a perfect field and let % be an algebraic closure of k. Denote by G, the absolute Galois
group of k. As application of the construction presented in the previous sections, we consider a

curve Co in G?n , defined by an equation
y* = h(x),

for some polynomial % € k[x] and some s € Z, not divisible by char(k). By convention the poly-
nomial f(x,y) defining C will be y* — h(x). Denote by Cy the curve Cq, x k. Note that C is

smooth, but may be not connected, e.g. when A(x) is an s-th power. Expand

d .
h(x)= ) cixt, c; €k,

i:mo
where c,,, and ¢4 are non-zero. We want to study a Baker’s resolution of Cg

S O 30y S S0
as in Theorem 3.7.7, where the Galois-invariant sets S, which the birational morphisms s,
resolve are as large as possible, i.e. S, = gez, Sing(Cy). For the purpose of the construction of
the Baker’s resolution x; = x.
The Newton polygon A of f always has at least two edges: £1 with endpoints (mg,0), (0,s)

and normal vector gcd(mo,s)‘l(s,mo), and ¢ with endpoints (d,0), (0,s) and normal vector
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ged(d,s) 1(—s,—d). If h is a monomial then A is a segment, otherwise A is a triangle. In the
latter case, the third edge ¢ has endpoints (mg,0),(d,0) and normal vector (0,1). Construct the
completion C; of Co with respect to A, as described in §3.4.1. For any i = 1,2 let v; #(0,1) be the

normal vector of ¢; and set a; = (v;,()) € 1. From Proposition 3.4.1 it follows that
flai:Xik'(alX:l["'aO); l€Z+’ a07al€kxa

where char(k) 1 [. In fact, if i = 1 then [ = ged(mo,s), a; = —c¢m,, a0 = 1, while if i = 2 then
I =ged(d,s), a; =1, ag = —c4. In particular, f|,, has no multiple roots in Ex.

Suppose now that A is not a monomial. Let v =(0,1) be the normal vector of £ and let a = (v,())
be the corresponding element of X. Consider F, € k[X1,Y]. Note that since v = (0,1), we can
choose M, = (§9) and so F = £(X1,Y). In particular, f|q = f(X1,0) = —h(X1). Since Dy = E[X}'],
the singular points of C, correspond to the non-zero multiple roots of f|., or, equivalently, to
the non-zero multiple roots of ~. Hence S is the set of those points. If S1 = &, then C1 is (outer)

regular. We deduce the following lemma.

Lemma 3.8.1 If h has no multiple root in k>, then C1 is an outer regular (generalised) Baker’s

model of the smooth completion of C|.

Suppose S1 # . Construct the morphism s; : Co — C1 resolving S1. Let v and a as above.
Rename the variable Y of F, to Y, so that F, € 2[X1,Y]. Let p € S and let € 2* be the multiple
root of & corresponding to p. One has g‘p = X1 —r. Note that g‘p does not divide F,, so choose
Gp = g‘,,. Then

FapX2,Y)=FoXo+r,Y)=fXa+r,Y)=Y* - h(Xg+71).
It follows that the Newton polygon A, , of 7, , has a unique edge ¢, with normal vector in
Z%. Denoting by m, the multiplicity of the root r of 2, the endpoints of ¢, are (m,,0), (0,s) and
Br = ged(m +,8)"1(s,m,) is its normal vector. Let Yr=PBrog, , where g, is the polynomial related
to Gp by M. Define A ,(x) = h(x)/(x — )™ € k[x]. Then Proposition 3.4.19 implies

f| (XQ) :X* .(_angCd(mr,s) " 1)’
Yr 9 5

where a, = h,(r). In particular, since char(k){s, the polynomial f|,, has no multiple root in k*.
Therefore éyr is regular for any non-zero multiple root r of 4. Moreover, Cy is also regular as
Cs=~C,\S1. Recall the notation £; =3; U {a}, where $1=2;\{a}. Since

29 ={y; | r multiple root of A} U p
the schemes C_'y are regular for all y € 9. We obtain the following result.

Lemma 3.8.2 If h has multiple roots in k*, then C1 is singular, but Cs is an outer regular

generalised Baker’s model of the smooth completion of Cy.

Remark 3.8.3. Note that Cg =Uyes, Cy since Co < Cy for any y € Zy.

112



3.9. EXAMPLE

We want to give an explicit description of the curve C3, = C2/Gp, when h has multiple roots
in £*. First note that for any y € £; the polynomials defining the curves C, have coefficients in k.
Therefore G, < Aut(Cy) for all y € 31 and the charts C,/Gy, of Cy, easily follows. It remains to

describe the curve (Ugseg, Cy,, )/Gr for any non-zero multiple root r of .

Yo(r)
Let g € k[x] be the minimal polynomial of a multiple root € £* of h. Let m,, A, Br, vr as
above. Set s, = ged(m,,s). Note that ordg(h) =m,. If (gi 2;) is the matrix attached to 8, used for

the construction of C), then
RIXELXEL Y

Oc,, (Cy,) = :
T (=X R (X)), XY P - X 1)

Define g,,hg € klx] by gr(x) = gx)/(x —r), hg(x) = h(x)/g(x)™. Note that g,(X1) is invertible in
Oc,,(Cy,). Consider the homomorphism

RIXEL X5 Y] RIXEL X351 Y]

—_—

Or: ,
T =X he (X, XY P (X)) (- X5k (X)), X0 VP — Xy +7)

taking X1 — X1, X2 — X2-g,(X1)P2, Y — Y - g,(X1)7%2. Let Ag := Dom(¢,). Note that Spec A, =
Cy,, where yz = 5, 0g & € Q). Then ¢, induces an open immersion ¢ : Cy, — C,,. The glueing of

the open immersions (4, for o € G, gives an isomorphism

(UUEGk CYo(r)) = CYg ’

commuting with the Galois action. Since Cy, is defined by polynomials with coefficients in %, the

quotient Cy, /Gy, is easy to describe, as required.

3.9 Example

Let Cof,: f=0c G,zn Fy with f = x‘{ +1+y2+y3. Note that Co , is smooth. Write Co = Cof, xF, Fg,
where Fg is an algebraic closure of Fa.
3.9.1 Construction of C;

The Newton polygon A of f is

0,3)

¢
0 2

X1
ls (4,0

We want to construct the completion C; of Cy with respect to A as explained in §3.4.1. For
any edge ¢; of A let B; be the normal vector of ¢;. Then §; =(1,0), B2 =(-3,-4), B3 =(0,1). Let
a; =(B;,0)eXq for i =1,2,3. Then X1 = {a1,a2,a3} and

Cl = Cal UCa2 UCag,
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where we omitted C¢ as Co c C, for every a € 2;. From Proposition 3.4.1 the polynomials /|4,
and f|,, are separable (up to a power of X1) and so the corresponding curves C,, and C,, are
regular. On the other hand, 1 € Fy is a non-zero multiple root of f|,,, so Cq, may be singular. Let
us compute the defining polynomial F,,. The identity matrix I € SLa(Z) is attached to 3, so we
fix My, =1. Via I we get

Fo, =Xt +1+Y2473,
Then C,, = Spec FolX il,Y]/(]-"ag) is singular. Thus C; is not smooth, having 1 singular point,

visible on Cl;.

3.9.2 Construction of Cy

Rename the variable Y of C,, to Y. Let p be the singular point of Cga;. Then g‘p =X +1. Choose
C;p = g‘p. We will construct the morphism s; : C9 — C; resolving the set S; = {p}. Note that
S1=Uges, Sing(Cy). Let @ = a3 and B = B3. Then

Gp (1,9 e M) =1 +1,

so gp = x1+ 1 €Falx1,y] is the polynomial related to Gp by M. Define g2 = g, and fo = x2 — g2.
Note that since S consists of a single point, we have le = Gp and gg, = gp. Then a, = a.
Compute ordg(g,) =0 and @ =a, = (0, 1)ogs1 a =1((0,0,1),(g2)). Then

Fol X1, X511
(fas,Xz +X1 + 1).

Cs=Cq, =Spec

The normal form of Fy, by X5 — G with respect to the lexicographic order given by X1 > X5 > Y is
Fap=Fo(Xa+1,Y)=X5+72+73.
The Newton polygon of F, j is
Y
0,3)
0,2)

04 i
o> X
| (4,072

There is only 1 edge, denoted ¢4, with normal vector in Z%. The normal vector of ¢4 is B4 =(1,2).
It follows that vy = B4 0 g, =1(0,1,2). Hence y4 = fs05, @ = (v4,(g2)) is the corresponding element
of Z,. Then Xy = {a1,a2,d3,y4}.

To check whether C,, is regular, compute F,. The matrix Mg, = (% %), attached to B4, defines
the change of variables Xo=X5Y,Y = X9Y?2, from which we get

Fap=X3Y*Fy,, Fro=X5+1+XY?,
Xg—gp = Fo, Fo=XoY +X1+1,
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where F3 is the generator of the ideal a,,. Therefore the curve

Fol X1, X51,Y]
(‘7:7’4) + Gy,

Cy, =Spec

is singular, and so is the projective curve Cg = Cy, UCy, UCg, UCy,. In the union we omitted Co,

as CocCy,.

3.9.3 Construction of C3

Let g be the singular point of C,. We now construct the morphism sg : C3 — Cg resolving S2 = {g}.
Let y = y4. Rename the variable Y of C, to Y. Choose Qq = g‘q = X9+ 1. By definition

My=(WeMp) Me,=(011)-(010)=(011). 2*=(g 2 7).

Then g, = x% + y € Folx1,x9, y] is the polynomial related to Gq by M,, as

G (@102, 0 M) =23y~ 1.

Let g3 = (x1+1)%+y be the Laurent polynomial in k[xi—’l, y*1] congruent to &q modulo f2. Compute

ordy,(g4) = 2. Then
}7 = Yq = (0’ 1) qu Y= ((O’ 1’2’2)7(g27g3))-

The normal form of F, by X3- Gq with respect to the lexicographic order given by Xo > X3 >Y is
Frq=X2+Xs+1Y2

The Newton polygon of F, ; is

e
0,2)%—(1,2)
— 25 %
20

There is only 1 edge, denoted ¢5, with normal vector in Z%. The normal vector of ¢5 is 5 =(1,1)

and so the corresponding element of %, is

Y5 =Ps50°g,7=(0,1,3,2),(g2,83)).

Hence X3 ={a1,a9,ds,74,Ys5}.
The matrix Mg, = G (1)), attached to f5, defines the change of variables X3=X3Y,Y =Y from
which we get
Frq=Y2Fy, Fys =X5+XsY +1,
X3—Gq:F3 F3=X3Y +Xo+1,
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and J2 = XoY + X7 + 1 is the image of the generator of a, under Mg,. Then a,, = (F2, F3) and

Fol X7, X5, X5, Y]
(}—Ys) + Gys

Cy, = Spec

is regular (even if f|,, is not separable). Therefore the curve
C3=CqUCuuUCszuUCy;uUC,y,

is regular as well, and is a generalised Baker’s model of the smooth completion of Cy. It is not
outer regular, since C_',,5 has a singular point. One more step is therefore necessary (and sufficient
by Proposition 3.4.38) to construct an outer regular generalised Baker’s model. Note that in the
description of C3 we omitted Co, as Co < Cq,. Finally, the polynomials defining the charts Cy,
Y € 23 have coefficients in Fg, so the construction of the generalised Baker’s model C3/Gy, of the

smooth completion of Cy f, easily follows.
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CHAPTER

REGULAR MODELS OF HYPERELLIPTIC CURVES

his chapter is based on the paper Regular models of hyperelliptic curves [Mus3], submitted
for publication. Let K be a complete discretely valued field of odd residue characteristic
and Og its ring of integers. We explicitly construct a regular model C over Og with strict
normal crossings of any hyperelliptic curve C/K : y% = f(x). For this purpose, we introduce the
new notion of MacLane cluster picture, that aims to be a link between clusters and MacLane
valuations.
The description of the special fibre of C, presented in Theorem 4.1.7, is being implemented in
MAGMA by T. Dokchitser.

4.1 Introduction

In this paper we construct regular models of hyperelliptic curves over discrete valuation rings
with residue characteristic different from 2. The understanding of regular models is essential to
describe the arithmetic of curves and for example finds application in the study of the Birch &

Swinnerton-Dyer conjecture over global fields.

4.1.1 Overview

Let K be a complete discretely valued field, with ring of integers Og. Given a connected smooth
projective curve C/K, a regular model of C over O is an integral regular proper flat scheme
C — Ok of dimension 2 with generic fibre isomorphic to C. The main result of this work can be
presented as follows:

Suppose that the residue characteristic of K is not 2. Let C/K : y? = f(x) be a hyperelliptic

curve. From the MacLane clusters for f we determine a regular model of C over Ok with strict
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normal crossings.

The MacLane clusters for a separable polynomial f € K[x] are a new notion we introduce
in this paper (see §4.1.2 for more details). It has connections with other objects used for the
study of regular models: clusters [D®M?2], rational clusters [Mus1], Newton polytopes [Dok],
and MacLane valuations [OW]. Like (rational) clusters, MacLane clusters define nice and clear
invariants from which one can give a result in a closed form. In fact, one can see that rational
clusters are MacLane clusters of degree 1. On the other side, the construction of our model can
be implemented from the algorithmic nature of the approaches based on Newton polytopes and
MacLane valuations.

The construction of the model presented in §4.5 generalises the one showed in Chapter 2. For
this reason, the author believes the approach developed in this chapter could be used to tackle

some even residue characteristic cases, as we did in Chapter 2.

4.1.2 Main result

Let K be a complete discretely valued field, with normalised discrete valuation vg, ring of integers
Ok, and residue field k. Let K be an algebraic closure of K, extend vk to K. Assume char(k) # 2.
Let C/K be a hyperelliptic curve, i.e. a geometrically connected smooth projective curve of genus

=1, double cover of [P’}{. We can fix a Weierstrass equation C : y2 = f(x) where
f@)=crllem(x—r)eKlx], crekK,
such that vg(r) > 0 for all r € fR.

Definition 4.1.1 Let © = Q U {oo}. Given a monic irreducible polynomial g € K[x] and an element
A€ Q, the discoid D(g, 1) is the set

D =D(g,\)={aeK |vg(ga)) = A} cK.

For any r € R, denote by D A r the smallest discoid containing D and r.
Define degD =min{d € Z, | D =D(g,A), degg = d}.

To each discoid we can associate a pseudo-valuation (Appendix C.1) vp : K[x] — Q defined by
vp(f) =infeep v (f ().
The map D — vp is injective. Therefore if v = vp denote D, =D and d, = degD.

Definition 4.1.2 A MacLane cluster is a pair (s,v) where s ‘R, and v = vp for some discoid D,
such that

1. s=DnR#3I;
2. if s =D'n R for a discoid D' C D then degD’ > degD.
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The degree of (s,v) is the quantity d,.

Definition 4.1.3 For any MacLane clusters (s,v),(t,w) we say:

(s,v) proper, if |s] > d,
t,w) s (s,v), if D, €D,
(t,w) is a child of (s,v), if (t,w) C (s,v) is a maximal subcluster

(s,v) degree-minimal, if (s,v) has no proper children of degree d,

We write (,w) < (s,v) for a child (t,w) of (s,v).

For the remainder of this subsection we also assume £ algebraically closed. This additional
condition is not necessary for the construction of the model but it simplifies the statement of
Theorem 4.1.7.

Let X be the set of proper MacLane clusters.

Notation 4.1.4 Let P c K[x] be the subset of monic irreducible polynomials. For any d € Z,
denote P~y ={g€P|degg <d}.

Definition 4.1.5 (4.6.1) Let (s,v) € Z. Define the following quantities:

Ay = maxgep_, min,esvg(g(r)), called radius

b, = denominator of 1,d,

e, =byd,

vy = vg(ep)+ Lren (Aup, o /dup, )

n, =1life,v, odd, 2 if e, v, even

my=2e,/n,

ty = |lsl/dy

py =1if ¢, is odd, 2 if ¢, is even

su = 2ty + Pody —Vy)

Yy =2 if t, is even and v,d,—|s|1, is odd, 1 otherwise
0, = 1if (s,v) is degree-minimal, 0 otherwise

pY =1if5, =1 and d, = min,«[K(r) : K1, 2 otherwise
O = —v,/2+ 1,

Y, =2if pg =2 and v,d, is an odd integer, 1 otherwise

Let¢,€7,0<¢,<b, such that ¢,A,d, — bl,, € Z. Define

o ={(t,w)eZ|(t,w)<(s,v) and % —lyvydy, ¢ 27},

.0 2-p0 .
Let cg =1if bp" —lyvyd, €27, and cg =0 otherwise. Define
ls|— X lt-do@-p9  _
U, = (t,w)<(s,v) v Dy + 15| +5UCS,
€y

where the sum runs through the proper children (t,w) of (s,v). The genus g(v) of a MacLane

cluster (s,v) € X is defined as follows:
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¢ Ifn, =1, then g(v)=0.
e Ifn, =2, then g(v) = max{[(u, —1)/2],0}.
We recall the following notation from Chapter 2.

Notation 4.1.6 (2.4.17) Let a €7, a,b € Q, with a > b, and fix Z_i € Q so that

n n n n .
aa="0>"s SIS Tl _gp with
do di dr  drs1

n; ni+1

= 1,
di diq1

and r minimal. We write P1(a,a,b) for a chain of P,les of length r and multiplicities ad1,...,ad,.
Denote by P(«,a) the chain Pl(a,a, laa — 1]/a).

The following theorem describes the special fibre of the regular model of a hyperelliptic curve
C/K with strict normal crossings we construct in §4.5, when % algebraically closed and char(k) # 2.
See Definition 4.6.1 and Theorem 4.6.3 for a more general statement which does not require %

algebraically closed.

Theorem 4.1.7 (Regular SNC model) Assume char(k) # 2. Suppose k algebraically closed. Let
C/K be a hyperelliptic curve. Then we can explicitly construct a regular model with strict normal

crossings C/Ox of C (§4.5). Its special fibre Cs/k is given as follows.!

(1) Every (s,v) € X gives a 1-dimensional closed subscheme T, of multiplicity m,. If n, = 2
and u, =0, then I', is the disjoint union of I';, = I]J’}le and I'} = [P’,i, otherwise I', is a smooth

integral curve of genus g(v) (write I'; =T} =T, in this case).

(2) Every (s,v) € X with n, =1 gives

1
—(1s1-% wes [6+du(pl-2)

€y (t,w)<(s,0)

open-ended P,les of multiplicity e, from T,

(3) Finally, for any (s,v) € Z draw the following chains of P}cs:

Conditions Chain From To
op=1 [P’l(dvyg,—sg) I') | open-ended
opy=1, pg/yg =2 [P’l(dv)fg,—sg) I} |open-ended
(5,0) < (t,w) PLUdoYo, 50,50 = B (o= $Au)) | Ty r;
(5,0) < (L), pulyy =2 | PUduyv,s0,80 — (o - §2Au)) | Ty T
(s,v) maximal [P’l(dvyv ,Sy) I') | open-ended
(s,v) maximal, py/yy =2 ﬂ:"l(dvyv,sv) F; open-ended

As we pointed out in §2.1, Theorem 4.1.7 is a generalisation of Theorem 2.1.7.

LThis theorem is being implemented by T. Dokchitser in MAGMA.
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4.1.3 Example

Let p # 2 be a prime number and let @Zr be the maximal unramified extension of Q, in @p. Let
f=@2-p)P-p®e@ plx] and C/Q}": y2 = f(x) a genus 2 hyperelliptic curve. We can represent the

set of MacLane clusters as

(R,v1)

(R, v2) 1
(000000 21

where the bullet points denote the roots of f, the circles are the proper MacLane clusters and the
superscripts and the subscripts are respectively the degree and the radius of the corresponding

cluster. In fact, there are two proper MacLane clusters:
(1) (R,v1), where D, = D(x,1/2);
(ii) (M,vg), where D, = D(x% - p,5/3).

Note that min,.cx[K(r): K] =6 since f is irreducible. We have

by | ey | Vo | np | my |ty | P Sy Yv | 6y Py Sy Y(v) &)
U1 2 2 3 2 2 6 2 12 1 1 2 -1 2 0
U9 3 6 10 2 6 3 1 =573 1 1 2 -10/3 1 0

By Theorem 4.1.7, the special fibre of the regular model C we construct is

2 2

where all irreducible components have genus 0. In fact, by computing the self-intersections of all

irreducible components, we see that C is the minimal regular model of C ([Liu4, Theorem 9.3.8]).

4.1.4 Related works of other authors

Let K be a discretely valued field of odd residue characteristic and let C/K be a hyperelliptic curve.
In this subsection we want to present previous works studying regular models of C, possibly
under some extra conditions. Note that some of the results cited below may apply to more general
curves and fields.

In genus 1 there is a complete characterisation of (minimal) regular models of C (see for
example [Sil2, IV.8.2] when the residue field of K is perfect). A description of all special fibre
configurations is also given by Namikawa and Ueno [NU] and Liu [Liu5] for genus 2 curves,
when K = C(¢).
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If C is semistable over some tamely ramified extension L/K, then [FN] describes the special
fibre of the minimal regular model of C with strict normal crossings. If, in addition, L=K is a
local field, in [D?M?] we can also see an explicit construction of the model itself.

T. Dokchitser in [Dok] shows that a certain toric resolution of C gives a regular model in case
of A,-regularity ([Dok, Definition 3.9]). This condition is rephrased in terms of clusters in [Mus1,
Corollary 3.25].

Finally, [Mus1] constructs the minimal regular model with normal crossings if C has almost
rational cluster picture. One can see that the latter condition is equivalent of requiring that all

MacLane clusters have degree 1.

4.2 MacLane valuations

In this section we summarise definitions and results on MacLane valuations. Our main references
are [KW], [Mac], [OS1] and [Riit].

Let K be a complete discretely valued field, with normalised discrete valuation vg, ring of
integers O and residue field k. Let K be an algebraic closure of K and let K* be the separable
closure of K in K. Let Gg = Gal(K*/K) be the absolute Galois group of K.

Let V denote the set of the discrete pseudo-valuation? v : K[x] — @ extending vg and satisfying
v(x) = 0. Let V be the set of valuations in V. In other words, V consists of those pseudo-valuations

v € V satisfying v1(co) = 0. We can equip V with a natural partial order:
vzw ifandonlyif v(g)=w(g) forall ge K[x].

The partially ordered set V has a least element vy, called Gauss valuation, defined by
vo(amxm+---+a1x+a0):miian(ai) (a; €K).

Note that vg is a valuation, i.e. vg € V.

Every v € V can be extended to a valuation K(x) — @, that will also be denoted by v.

Definition 4.2.1 For every v € V define

I'y  the valuation group of v
e, theindexI[I',:Z]

A, the residue ring of v

F, the residue field of v

Definition 4.2.2 Let v € V. For any g,h € K(x) we say that
* gis v-equivalent to h, denoted g ~, h, if v(g — h) > v(g).

* g is v-divisible by h, denoted % |, g, if there exists q € K[x] such that g ~, gh.

2See Appendix C.1 for more details.
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Let v e V. For any a €', define
Oy(a) ={g e Klx]|v(g) = a}, O;(a)={g € K[x]|v(g) > a}.
The graded algebra of v is the integral domain

Gr(v) = @ Ay(a), where A,(a)= Ov(a)/O;“(a).

acl’,

The canonical homomoprhism 2 — A, equips A, and Gr(v) with a k-algebra structure. There is a
natural map H, : K[x] — Gr(v) given by H,(0) = 0 and

Hy(g) = g +0; (v(g) € Ay(v(g)),
when g # 0. The map H, satisfies the following properties
1. f ~, g if and only if H,(f) = H,(g),
2. Hy(fg)=H,(f)H,(g),
for f,g € Kl[x]. Let U, < K[x]* be the multiplicative set
U, ={g € K[x]| H,(g) is a unit in Gr(v)}

and let P, < K(x) be the localisation of K[x] by U,. We extend H, to a map P, — Gr(v) by taking
8lu— H,(g)H,(u)™ 1 € Ay(v(gh)), for any g € K[x],u € U,. With a little abuse of notation we denote
the extended map again by H,,. The properties (1), (2) of H, hold for all f,g € P,.

Definition 4.2.3 We call H, : P, — Gr(v) the residue map of v.
For any a €T, let
Py(a)={geP,|v(g)=al, PS(a)={geP,|v(g)>al.

Note that H, induces a birational map P,(a)/P;(a) — A,(a).
Definition 4.2.4 Let v € V. A monic polynomial ¢ € K[x] is a key polynomial over v if

(1) ¢ is v-irreducible,i.e.if ¢ |, ab then ¢ |, a or ¢ |, b, for all a,b € K[x];

(2) ¢ is v-minimal,i.e. if ¢ |, a then dega = degd, for all a € K[x].
Denote by KP(v) the set of key polynomials over v.
Remark 4.2.5. Let v € V. Then KP(v) € Ogl[x] ((FGMN, Corollary 1.10]).
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Definition 4.2.6 ((Mac, Theorem 4.2]) Let v € V. Let ¢ € KP(v) and A € @, A > v(¢). Define a
pseudo-valuation w € V, denoted w = [v,v(¢p) = A, by

w(amd™+---+aip+ag) = miin(v(a,-) +iA) ai € Klx], dega; < degd.
We call w the augmentation of v with respect to (¢, ).
Remark 4.2.7. Let w =[v,v(¢) = A] be an augmentation of v. Then
(i) w > v by [FGMN, Propositions 1.7, 1.9].

(i1) A and deg¢ are uniquely determined by w, but not the key polynomial ¢ itself in general
(see [KW, Remark 2.7]).

Definition 4.2.8 A pseudo-valuation v € V is MacLane if it can be attained after a finite number

of augmentations starting with vg. Write
v=[vo,v1(p1) =A1,...,vm(Pm) =], meN,

where v; =[v;_1,vi(¢p;) = ;] is an augmentation of v;_; for any i =1,...,m, and v, = v. We will
call ¢, a centre of v and A, the radius of v.2
Let Vs < V denote the set of MacLane pseudo-valuations and let Vs < V denote the set of

MacLane valuations.

Remark 4.2.9. There are different equivalent characterisations for the sets Vs and Vjs (see [KW,
§2]). In fact,

(i) Vjs consists of those valuations v € V with residue field F, of transcendence degree 1 over £;
(ii) all infinite pseudo-valuations v € V are Maclane.

Notation 4.2.10 Let v € Vj;. Remark 4.2.7(ii) implies that the radius of v is uniquely determined
by v. We will denote it by A,,.

Definition 4.2.11 Let v € Vj;. An augmentation chain (of length m) for v is a tuple
(4.1) (P1,21), ., (P, Am)),
where v =[vg,v1(¢1) = A1,...,Um(Pm) = A1y ]. We say that (4.1) is

1. a MacLane chain if ¢;1 #,, ¢; forany i=1,...,m 1.

2. minimal if deg ;i1 >dege; foranyi=1,.... m—-1.

3By convention, if v = v(, then any monic integral polynomial of degree 1 is a centre of v and 0 is the radius of v.
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For any augmentation chain (4.1) we have

deg¢y | degepo | --- | degdpm,

by [FGMN, Lemma 2.10]. Ifit is a MacLane chain, then v(¢;) = A; forany i = 1,...,m. In particular,
I'y=MZ+---+A,Z.

Remark 4.2.12. Let v e V.
1. A minimal augmentation chain is a Maclane chain.

2. From any MacLane chain ((¢p1,11),...,(¢m, A1) for v, we can find a minimal augmentation
chain for v by removing the pairs (¢;,1;) with deg¢; = dege; 1, for i =1,...,m —1 ([Mac,
Lemma 15.1], [FGMN, Lemma 3.4]).

Notation 4.2.13 We will denote an augmentation chain (4.1) by
[vo,v1(p1) = A1,...,vm(Pm) = An ],
where v; =[v;_1,vi(¢p;)=A;]1foralli =1,...,m.
Definition 4.2.14 Let v € V) given by a MacLane chain
(4.2) [vo,v1(p1) = A1, ., Um () = Al
(a) The degree of v, denoted deguv, is the positive integer degp,,.
(b) If (4.2) is minimal, then m is said the depth of v.

The degree and the depth of v are independent of the chosen MacLane chain (4.2) by [FGMN,
Proposition 3.6].

Note that if v € Vy; then degv | deg¢ for any ¢ € KP(v).
Definition 4.2.15 Let v € V. A key polynomial ¢ € KP(v) is said
1. proper if v has a centre ¢, #, ¢.
2. strong if v =vg or deg¢ > degv.

Lemma 4.2.16 Let w € Vy;. A polynomial ¢ € K[x]is a centre of w if and only if ¢ € KP(w) and

degw = deg . Furthermore, if w = [v,w(¢p) = Al, then any two centres of w are v-equivalent.

Proof. Let v € Vy; such that w = [v,w(¢y) = A, ]. If ¢ € K[x] is a centre of w then ¢ € KP(w)
by [FGMN, Proposition 1.7(4)] and degw = deg¢ from Remark 4.2.7(ii). Conversely, suppose
¢ € KP(w) and deg¢ = degw. From the w-minimality of ¢ and ¢,,, one has w(¢) = 1,,. Hence

V(P —Pp) =w(Pp—Py) = Ay > v(dy).
Therefore ¢ ~, ¢,,. In particular, ¢ € KP(v) as deg¢p = deg oy, and so w = [v,w(¢p) = A, ]. Thus ¢ is

a centre of w. O
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Definition 4.2.17 Given a monic irreducible polynomial ¢ € K[x] and an element A € Q, the

discoid of centre ¢ and radius A is the set

D =D(p,V)={aeK |vg(p(a)) = A} cK.
Let Dk denote the set of discoids.
Remark 4.2.18. Let D = D(¢, ) be a discoid.

1. D is finite if A = co, while equals the union of the Galois orbits of a disc centred at a root of
¢ if 1 <oo ([Riut, Lemma 4.43]).

2. For any D' € Dk such that D nD' # & either D € D' or D < D’ ([Riit, Lemma 4.44]).
Definition 4.2.19 Given a MacLane pseudo-valuation v, define
D, ={aeK |vk(g(a)) =v(g) forall geKlx]}.
It is a discoid by the following lemma.

Lemma 4.2.20 If v = [vg,v1(¢p1), ..., Um-1(Pm-1) = An-1,Vm(Pm) = Al is @ MacLane pseudo-
valuation, then D, = D(¢dm, Am).

Proof. If v € Vy, then the lemma follows from [Riit, Lemma 4.55]. Suppose v is an infinite
MacLane pseudo-valuation. Then A,, = co. Clearly D, € D(¢,,Am). Let r € D(dm,Am), ie. ris
a root of ¢,,,. Let g € K[x]. We want to show that vg(g(r)) = v(g). If ¢, | g, then g(r) =0 and
v(g) = 00, 50 vk (g(r)) = v(g). If ¢, 1 g, then there is a sufficiently large A € Q such that w(g) = v(g),
with w = [v,-1,w(¢,) = Al. Since w € Vyy, we have D(¢pp,,A) = Dy,. But r € D(¢pp,, 1), and so
vk(g(r)) =w(g)=v(g). O

Theorem 4.2.21 The map Vy — Dk taking v — D, is well-defined, bijective, and inverts partial

orders, i.e. for any v,w € Vs we have
w=v ifanonlyif D, <D,.

Given a discoid D, then D = D, where v is the MacLane pseudo-valuation given by v(g) =
inf.cp vg(g(r)) for all g € K[x].

Proof. The result follows from [Riit, Theorem 4.56], [KW, Remark 2.3]. O

Lemma 4.2.22 Let v € Vy; and D, = D(g,A) the associated discoid. Then degv < degg and
v(g)= A
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Proof. Theorem 4.2.21 implies that inf,cp, vk (g(r)) = v(g). Then v(g) = A. It follows that
D, <D(g,v(g))=D(g,\)=D,.
Then D, = D(g,v(g)). Suppose degv > degg and let
[vo,v1(P1) = A1y, U () = Ay ]

be a MacLane chain for v. Then v,,—1 <v but v,;,—1(g) = v(g). Therefore D, C D, , <D(g,v(g)), a

contradiction. O

Remark 4.2.23. Lemma 4.2.22 shows that degv is the lowest positive integer such that D, =
D(g, 1) for some monic irreducible polynomial g € K[x] of degree degg = degv and some A € Q.

Proposition 4.2.24 Let v,w € Vs, with vo<w <v. Let
[vo,v1(p1) = A1,...,vn(Pp) = Ay

be a minimal MacLane chain for v. Then there exists m < n such that w =[vy—1,w(¢py) = 1], for

some Up—1(h) <A < Apy.

Proof. Let [vg,w1(w1) = 1,...,wn(Wy) = Uyl be a minimal MacLane chain for w. Then n = m by
[Riit, Proposition 4.35] and v,,—1 = w,,—1 by [Riit, Corollary 4.37]. Then w = [vp—1,w (W) = tm].
Since v, <v =w, either v, <w or w <v,, from Remark 4.2.18(2). Suppose by contradiction that
Um <w. Then m < n. Furthermore, v, =[Vym-1,0m (W) = An] and 1, < g, by [FGMN, Lemma
7.6]. Let r be a root of ¢p,,. Then r € D,. Since m < n, one has degy,, = degv,, < degv. Therefore
VE(W (7)) = v(yn) = Ay, by [0OS2, Corollary 2.8], giving a contradiction to w < v. Hence w < vyy,.
Thus [FGMN, Lemma 7.6] implies w = [v,—1, w(¢y,) = U] and p,, < Ay, as required. O

Lemma 4.2.25 Let v,w € V. Suppose w < v. Then Ay < A, and degw < degv. Moreover, if

degw = degu, any centre ¢ of v is also a centre of w.

Proof. The statement is trivial when w =vg. Suppose w > vg. Let ¢ be a centre of v. Consider a
minimal augmentation chain [vy,...,v,(¢,) = 1,1 for v, with ¢, = ¢. By Proposition 4.2.24 there
exist m < n and u,, <A, such that w =[v,;,—1,w(¢dy,) = unl. Then degw < degv and A, < A, by
[Riit, Lemma 4.21]. Furthermore, if degw = degv then n = m, since the key polynomials ¢; have

strictly increasing degrees. This concludes the proof as ¢, = ¢, = ¢ could be any centre of v. [

Lemma 4.2.26 Let v € V. For any monic non-constant g € K[x] of degree deg g < degv we have
v(g) < Ay, with v(g) = A, only if degg = degv.

Proof. We prove the lemma by induction on degv. Let
[vo,. .., Vm-1(Pm-1) = Am-1,Um(Pm) = Ayl
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be a minimal MacLane chain for v. Recall 1, = 1,,. If degv =1, then degg = degv. By definition
v(g) = min{v(¢dy,),v(g — Pm)} < Ay,. Suppose degv > 1. If degg = degv then v(g) < A, as above. If
degg <degv then v(g) =v,-1(8) < App-1 < Apy. O

Recall the following result from [FGMN].

Theorem 4.2.27 ([FGMN, Theorem 3.10]) Let v € V. For any monic non-constant g € K[x] one

has
v(g) - Ay

degg ~ degv’

and the equality holds if and only if g is v-minimal.

Lemma 4.2.28 Let g1,g2 € K[x] monic and non-constant. Then g1 - g9 is v-minimal if and only if

both g1 and g9 are v-minimal.

Proof. Suppose g1 is not v-minimal. Then there exists a € K[x], dega < deg g1 such that g1 |, a.
Hence g1g2 |, ags and deglags) < deg(g1g2). So g1-g2 is not v-minimal. Similarly for go. Suppose
both g1 and g9 are v-minimal. Theorem 4.2.27 implies that

v(g1-go)degv = (v(g1) +v(ge))degv = A, (degg1 +deggs) = A, deg(g1 - g2),
and so g1 - g9 is v-minimal. O

Lemma 4.2.29 Let v,w € V) satisfying w =v. Let g € Oglx] monic and non-constant. Suppose g

is w-minimal. Then g is v-minimal.
Proof. By [Riit, Remark 4.36] we can write
w =[vo,v1(P1) = A1,..., U Pm) = Am, .., Un(Pn) = An],

with v =v,,. Let i =m,...,n — 1. By recursion it suffices to show that g is v;-minimal if it is v;,1-
minimal. We can suppose g irreducible by Lemma 4.2.28. Since ¢; 1 is v;-minimal, by Theorem
4.2.27 we have

vi(g) - Ai_ viliv1) < Aiv1 vi+1(g).

degg deg¢; deg¢gir1 deggi1  degg

Therefore v;,1(g) > v;(g) that is equivalent to ¢;1 I, g by [Riit, Lemma 4.13]. [FGMN, Theorem

vi(¢ir1)
deg ;1

6.2] implies that v;(g) =degg- . But then Theorem 4.2.27 shows that g is v;-minimal. [

Lemma 4.2.30 Let v € Vs and let ¢ be a centre of v. Let g € K[x] monic, non-constant and

v-minimal. Then
(i) degv|degg.
(ii) g ~u PIe88/48Y for any w e Vyy, w <v.
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Proof. (i) follows from [FGMN, Lemma 2.10]. For proving (ii) we can suppose without loss of
generality that ¢ e KP(w) by Proposition 4.2.24 and Lemma 4.2.29. Equivalently, v = [w,v(¢) = 1]
for some 1€ Q, A > w(¢p). Let d = deg g/deg¢ and expand

d .
g=) a;¢’, where a; € K[x], dega; < deg¢,
j=0

and v(ag) = w(ag) = 0. Note that v(g) = v(¢?) by Theorem 4.2.27. Therefore

w(¢?) = v(g) - d(A - w()) < v(a;¢’) - d(A - w(P))
<v(a;¢)) - jA—w(@) = wla,¢’),

for all j <d. Thus g ~, ¢? as required. O
The following two results come from [OS2].

Proposition 4.2.31 (OS2, Proposition 2.5]) Let ¢ € Oglx] be a monic irreducible polynomial.

There exists a unique MacLane valuation vy over which ¢ is a strong key polynomial.

Proposition 4.2.32 ([0OS2, Proposition 2.7]) Let v € Vs and ¢ a proper key polynomial over v.
Let w =[v,w(¢p) = 1], for some A >v(¢p) and let r € D,. For any g € Klx] such that v(g) = w(g), we
have vg(g(r)) =v(g).

Lemma 4.2.33 Let v € Vjs given by a MacLane chain
[vo,v1(P1) = A1, o, Um-1(Pm-1) = Am-1,Um (Pm) = Am .
Suppose m > 0. The ramification index e,,,_, equals [I'g, (v): Z], where
[y,,(v)={v(a)|a€Klx],a #0,dega < degpn}.
In particular, it is independent of the chosen MacLane chain.

Proof. First note that if we restrict to minimal MacLane chains, the result is trivial. By Remark
4.2.12(2) it suffices to prove that if m > 1 and deg¢,,—1 =deg¢,,, thene, ,=e,, ,. We have

Um-1(Pm — Gm-1) = Am-1.
since Ppm—1 #v,,_; Pm- But deg(¢y, — Ppm-1) <degp, -1, so
Am-1=Vm-1(Pm = Pm-1) =vm-2(Pm —Pm-1) €Ty, _,.

Thus Iy, ,=T as required. O

Um-12
Definition 4.2.34 Let v € V) given by a MacLane chain
[vo,... ,Um—l((,bm—l) = Am—l,vm((,bm) =Aml

Define ¢, =e,, , if m >0, and €, = 1 otherwise.
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For any monic irreducible polynomial ¢ € K[x], define K = K[x]/(¢), finite extension of K. Let
Oy be the ring of integers of K, and k¢ the residue field. Recall deg¢ = ey fp, where ey and fy
are respectively the ramification index and the residual degree of the extension Ky/K.

Letve \A/M with centre ¢. Then [FGMN, Proposition 1.9(2)] shows that ey = [I'y(v) : Z], and so
ey = €, by Lemma 4.2.33. It follows that f, = deguv/ey is independent of the choice of the centre ¢.

Notation 4.2.35 Given v € Vj; with centre ¢, denote f, = fp.

Let f € K[x], v € V); and ¢ € KP(v). Write

d
f= Zat(pt, where dega; < degd.
=0
The Newton polygon, N, 4(f) of f is
Ny ¢(f) =lower convex hull({(¢,v(a;s)) | a; # 0} R2.

Notation 4.2.36 Let 1 € Q, 1 > v(¢) and w = [v,w(¢p) = A]. We denote by L,,(f) the intersection of
Ny ¢(f) with the line of slope —A which first touches it from below:

L(f):={(¢,u) € Ny o(f) | u+ At is minimal}.

Therefore if N, 4(f) has an edge L of slope —A then L, (f) = L, otherwise L,/(f) is one of the
vertices of N, 4(f).

Notation 4.2.37 Let 1 € @, A > v(¢p) and w = [v,w(¢p) = A]. If A < oo denote by (t%,u2),(t,,u,) the

two endpoints of L, (f) (equal if L, (f) is a vertex), where 0 <t,. If 1 = oo, set t2, =0, ug, = 00,
and denote by (#,,,u,) the left-most vertex of N, (f).

4.3 MacLane chains invariants and residual polynomials

Let f € K[x] and let —A be the slope of an edge L of the Newton polygon of /. From §2.2, given the
1-dimensional MacLane valuation v =[vg,v(x) = 1], there is a natural way to define a reduction
flv as flr. Our purpose is to extend this definition to compute reductions of polynomials with
respect to any MacLane valuation. Part of the current section can be found in [FGMN, §3].

Let v € Vs given by a MacLane chain
4.3) [vo,v1(p1) = A1, ..., 0a(r) = A1

Note that most of the objects and quantities we define in this section are attached to the MacLane

chain (4.3) rather than v itself, starting from the following data.
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Definition 4.3.1 Set v_1 =vg, 1_1 =7, pg =x, Lo =0 and for all 0 <i < n define
ei=eyley ,, hi=eydi,  fi-1="[fv/fo

Fix ¢;,¢;, such that £;h; + ¢}e; = 1, with 0 < ¢; <e;. Then inductively define

;= gbfinf;'_l.

i —hi
Yi=9; i_1»

Remark 4.3.2. Let 0<i <n. Then degv;;1 =e;f;degv; and v;(¢p,) €T, ;.
Lemma 4.3.3 For any 1<i<n and any j > i, we have
* vi(y;)=vi(y;)=0;
* vi(m)=v;(n;)= % So 7; is a uniformiser for v;.
Proof. The lemma follows by induction and the equality v ;(¢;) = v;(¢;). O

Notation 4.3.4 We will denote by b,,k,,¢,, ¢, the quantities e, hn,?p, ), respectively. They are

independent of the chosen MacLane chain for v.

Lemma 4.3.5 For any 0 <i < n—1 there exists a polynomial S; € K[x] such that S; ~,, m;.

Furthermore, there exists a polynomial S ; € K[x] such that v;(S ;.) = —v;(m;) and (S ;.)‘1 ~vies i

Proof. First note that if S; exists, then S; ~,,,, m; as v;(n;) =v;41(1;) by Lemma 4.3.3. Now we
prove the lemma by induction on i. When i = 0, we can choose S; =7 =7m; and S ; =71, Suppose
i > 0. Define S; € K[x] by

< ¢Sl i =0,
i= ,
prs;_ Tl if e <o.

By inductive hypothesis, S;_1 ~, ;-1 and (S;_l)_1 ~y; T;—1. Therefore S; ~,, n;. Finally, [Riit,

Lemma 4.24] shows the existence of S’. O
Lemma 4.3.6 For any 0 <i <n, we have ¢; = yf" n?i and mwi_1 = yi_g" nlef".
Proof. The lemma follows from direct computation. O

Lemma 4.3.7 For any 0 <i < n, we have

T :(p;ni ---cprlnl ™ and nj”i :y;'” --~)/'1"1 -,
where
. 4’1-4 if j=0, o 1 if j=0,
m;= ) o and m;= o
[J[j+1"'[i if j>0. er--rej_1lj if j>0.
Note that

ey.

e; ,—himi_, —himy __h;m! i Cvi1 L himi himy_h;
’)/i:(pi '(/)i—]_ (/)1 T 0, (pi :')/i .'}/i_l ...')/1 't
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Proof. The proof follows by mathematical induction and Lemma 4.3.6. O

Let i =0,...,n. Recall the definition of the residue map H,, of v;. From [FGMN, Lemma 2.9]
a polynomial f € K[x] belongs to Uy, if v;_1(f) = v;(f). Therefore ¢;,7;,y, are units of P,,, for all
J=0,...,i—1. It follows that ¢;,n;,y; € P,,, domain of H,,. Denote

xi =H, (i), pi=H, (m;-1), y;i=Hy/(y;).

Note that by [FGMN, Lemma 2.9] the set of units A;i of A,, coincides with the image of the
canonical homomorphism A,, | —A,,.
We recall the following from [Riit, §4.1.3] and [FGMN, §3.4]. There exist a sequence of simple
field extensions
k=koSkiSkoc: - Ck,,

with k; ~ ky,, such that for all i = 0,...,n there are isomorphisms of k-algebras H,; 1Ay, — RilX]

One can see that H; is the unique homomorphism satisfying:
W) H;(y)=X;;

(i) H;(uw)=H;_1(u) wheni>0and u € A,, ,, where we canonically see u € A,, via A,, , — A,
and H;_1(u) € k; via the natural map k;_1[X;_1] — k; taking X;_1 to the generator of %;

over k;_1.

By [FGMN, Proposition 3.9], the canonical embedding A,, — [,, induces an isomorphism between
the field of fractions of A,, and [,,. Therefore we can consider the largest subring F',, « K(x) such

that the isomorphism H; lifts to a surjective homomorphism
H;:F,, — kX,

satisfying H;(f) = H;(g) if f ~,, g. In particular, P,,(0) < F,, and H; = H; oH,, on P,,(0). Further-

more, note that yi_l € Fy, from (i).
Definition 4.3.8 Let a €I';,. Define

(1) Fy,(a)=Fy, - Py,(a) < K(x).

(i) Hjq:Fo (@) — ki[XE given by H; o(f) = Hi(f/m;"%).
The map H; 4 in (ii) is well-defined since ni_l eF, (-a).

Definition 4.3.9 For 0<i<n and a €Iy, let ¢;(@),u;(a) € Z such that u;(a)e; +¢,(a)h; =e,,a,
with 0 < ¢;(a) < e;. Define

(@) @i@) =xVpti@ e A, (a);
(i) ci(a)="Liti(a@)-Cliui(a)eZ.
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Let ael'y,. Let R; o : 0y,(a) — k;[X;] be the map defined in [FGMN, Definition 3.13], where
we replaced the variable y with X;. By [FGMN, Theorem 4.1], we have A, (@) = ¢;(a)A,, and
R; 4 is the lift of the map

Rio: Ay (a)— ki[X;]

given by R; o(¢i(a)-a) = H;(a). Since e,;a = u;(a)e; +t;(a)h;, by Lemma 4.3.6, we have

;@ ci(a) _ tila) ui(a)
i Y =L

Therefore for any f € A,,(«) we have
(4.4) H; o) = X3 R; o).
We extend R; o through (4.4).

Definition 4.3.10 Let a €I'y,. The residual polynomial operator R;  is the map F,,(a) — k;[X iﬂ]
given by R; o(f) =X, ““ - H; o(f).

Remark 4.3.11. Let 0<i <n and a; =vi(¢;+1) = fie;A;. By [FGMN, Corollary 5.5(2)] the field
ki+1 is isomorphic to ;[ X;/(R; o,(¢;i+1)). Furthermore, k;41 = ki[Xiil]/(Hi,ai((l)iH)) by definition.

Notation 4.3.12 We denote by %, the field %,. In fact, it does not depend on the radius of v.
Definition 4.3.13 Let a €I',. For any f € F,(a), define f|, o € 2y [X]1Dby fly,o(X) = Ry o(f NX).

Let f € K[x]. Let a = v(f). Denote by N,(f) the Newton polygon N, , 4.. If n >0, consider
the edge L,(f) of N,(f). Let (t,u%),(,,u,) be the two endpoints of L,(f), with ¢ < ¢,. Note that
tg —th(a)=e, - Ltg/enj.

Definition 4.3.14 ([FGMN, Definition 3.15]) The reduction of f with respect to v is

£l, = f|v,a’ ifn=0,
T flow/X e if >0,

Remark 4.3.15. Note that f|, o and f|, do depend on the chosen MacLane chain for v.
Note that

(45) Hn’a(f)(X) — Xu‘g/enJ+C(a)f|v — Xt(v)/en—énevnilaflv.
Lemma 4.3.16 Expand f =Y ;a;¢!, dega; <degdy. If n >0, then

flo=Y Hn-1,4,(a: )X,
j=0

where tj =t9 + je, and a; = a -t A,
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Proof. There exists f' € K[x] such that f ~, f’ and f’ = Y ;a}¢,,, where either a}, =0 or a} = a;
and v(a}) = a —tA,. If a}, # 0, then (¢,v(a;)) € L,(f). Since

Lo(f)n(Zx 72-2) = (@, a—t0An) +(en, ~A0)Z,

we have ' =Y ;-0 a;j f{ It follows that

!/
a
tn(@) _un(a), [t/en] b
f/ = (pn “ HZ_](_x Yn Z evn_Jlaij ’Y{‘L-
J=0 nn—l
Therefore

o .
(4.6) f|v,a = f,|v,a = Xltv/enj Z Hn—l,a’j (a,tj)XJ'

7=0

Finally, note that a’tj =0 if and only if v(ay;) > ey,_, @;. Thus in (4.6) we can replace H;1,q, (a’tj)
with Hy,_1 o;(ay;). O

Example 4.3.17 Let f = (x® - 2p)? - px?(x3 — 2p) € Q,[x] (p # 2) and
v =vg =[vg,v1(x) = 1/3,v2(x3 —2p) =5/3]
The Newton polygon Na(f) is

vi(a;)

(1,3)

wlwt

1 20 °

1

Then mg = p, 711 =%, T3 = x,Y1 :x3p_ and k1 = ko =F. Since x° -2p :p_l(y1—2), then R171(x3 -

2p) = X1 —2. It follows that kg =F,[X11/(X1—2) ~F,. Via Lemma 4.3.16 compute

2

-px
5

flo :X+H1,5/3(—px2) =X+H1( "

) =X+H(-y;hH=Xx-27"

Proposition 4.3.18 ((FGMN, Corollary 4.9, Corollary 4.11]) Suppose n > 0. Following the nota-

tion above, we have:
(i) the j-th coefficient of fy,q is non-zero if and only if v,-1(as;) = a;;
(i) degfly,a = tu/by] and ordx(fly,a) = [£)/by);
(iii) degfl, = (t, —t9)/b, and f1,(0) #0;
(iv) fhly =fluhl, for all h € K[x].
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Proposition 4.3.19 ([FGMN, Corollary 4.10]) For non-zero f,h € K[x], the following conditions

are equivalent:
@) f~vh,
(i) v(f)=v(h)and fl, = hly,
(iii) Ly(f)=Ly(h)and fly = hly.
Lemma 4.3.20 ((FGMN, Lemma 5.1]) A polynomial f € Klx] is v-irreducible if and only if either
o 0=t,=1o0r
. tg =0and f|, is irreducible in k,[X].

Lemma 4.3.21 ((FGMN, Lemma 5.2]) Suppose n > 0. A monic f € Klx] is a key polynomial over v

if and only if one of the two following conditions is satisfied:
(1) degf =degv and f ~y ¢n;
2) tg =0, degf =t,degv and f|, is irreducible.

In case (2), degf = b,degv-degfly, Nn(f)=L,(f) and f|, is monic.

4.4 MacLane clusters

Let f € K[x] be a separable polynomial and let ¢ € K be its leading term. Assume f/cy € Ogl[x]
and write fR for the sets of roots of f in K. If C/K is a hyperelliptic curve, it is always given by an

equation y2 = f(x), where f € K[x] is as above.

Definition 4.4.1 A MacLane cluster (for f) is a pair (s,v) where s R, and v is a MacLane

pseudo-valuation such that
1. s=D,NnR#I;
2. if s = Dy, Nn*R for a MacLane valuation w > v then degw > degv.

If v is a MacLane valuation then (s,v) is said proper MacLane cluster. The degree of (s,v) is degv.
The degree, a centre and the radius of a MacLane cluster (s,v) are the degree, a centre and the

radius of v, respectively.

Remark 4.4.2. Let (s5,v) be a MacLane cluster. Note that by definition
(1) sis Gg-invariant,
(i1) v determines s.
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Definition 4.4.3 The MacLane cluster picture of f is the combinatorial data consisting of the
collection of all MacLane clusters for f together with their radii. We will denote by Z?’I the set of

all MacLane clusters for f.

Definition 4.4.4 We say that a MacLane pseudo-valuation v € Vj; defines @ MacLane cluster
(s,w)e =M if w=v (and s =D, NR).

Definition 4.4.5 We write (t,w) < (s,v) if w = v. If ({,w) C (s,v) is maximal, we write (t,w) < (s,v)
and v = P(w), and refer to ({,w) as a child of (s,v), and to (s,v) as the parent of (t,w). A proper
MacLane cluster (s,v) with no proper child of degree degv is said degree-minimal.

Lemma 4.4.6 Let (s,v),t,w) € Z}VI such that s Ct. Then (s,v) C (t,w).
Proof. Since s<D,nD, either D, CD, or D, <D,. But
D,NnR=sCt=D, NnRK,
soD, CD,. Thus w >v. O

[KW, Proposition 2.26] shows that the meet of any two MacLane pseudo-valuations v and w
exists; it will be denoted by v Aw. Hence v A w is the maximal MacLane pseudo-valuation < v and

< w. In other words, Vj; with < forms a meet-semilattice.

Lemma 4.4.7 Let (s,v), (t,w) € =M and s At = Dynp NR. Then (s At,v Aw) is the smallest MacLane

cluster containing (s,v) and (t,w).

Proof. We only need to show that (s A t,uv Aw) is a MacLane cluster. Suppose not. Then there
exists a MacLane valuation v’ > v Aw, with s At=D, NnR and degv’ < deg(v Aw). Then v’ £v or
v’ £ w, from the definition of v A w. Without loss of generality we can assume that v’ £ v.

Ifv £ v, then D,y ¢ D, and D, £ D, so D,,nD, = & by Remark 4.2.18(2). But this contradicts

D,nR=scsAt=DynfA.
If v <v’, then
scsutcsAat=DynNnRSD,NR=5.

But then s = D, nR, v’ > v and degv’ < deg(v Aw) < degv by Lemma 4.2.25, which contradicts
the definition of MacLane cluster for (s,v). O

Let F € K[x] be a monic irreducible factor of f. Let vy be the MacLane pseudo-valuation with
D,, =D(F,00) (Theorem 4.2.21). We also denote vg by v, where r € R is any root of F'. For any
non-empty Gg-invariant subset s € R, define g5 = [[,¢s(x —r) € K[x]. Then g5 | f. Let F1,...,F;,

be the irreducible monic factors of g,. Define v, € Vs by

Us =UVF; N AVUF,,.

m
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Lemma 4.4.8 Let v e Vy and let s =D, NR # @. Then v < vs. In particular, (s,v,) is « MacLane

cluster.

Proof. The set s is Gg-invariant, as so are D, and R. Let F1,...,F,, be the irreducible factors of
g5 as above. Let s; be the set of roots of F;. Note that D,,Fi =s; for all i. Then D, 2 U?ilDUFi =5.
Suppose w € Vs with s = D, N 9. Then DvF,— €Dy, so w < vg, for all i. By definition of v; we have
w < vs. Since w < v, for any w with s = D, N R, it only remains to show that s = D, nfR. Since
v < v, from above, we have

scD, NRSD,NR =5,

that implies D, NR =s. Thus (s,v,) is a MacLane cluster. O

Lemma 4.4.9 Let s =D, NR # &, for some v € Vy. Let
[00,01(h1) = A1, ..., Un(pn) = Ay ]

be a minimal MacLane chain for vs. Then there exists i =0,...,n such that v <v;, degv = degv;

and (s,v;) is a cluster. In particular, if (s,v) is a MacLane cluster, then v =v;.

Proof. Let w € Vs such that D,, R = 5. Then w < v, by Lemma 4.4.8. Proposition 4.2.24 implies
that w <v;, degw = degv; for some i =0,...,n.
The argument above holds in particular when w = v. It only remains to show that s =D, nA.
We have
s=D, NRcD,, NRcD,NR =5,

that implies s = D,, N R, as required. O
Proposition 4.4.10 The set Z?’I under the partial order 2 forms a rooted tree.

Proof. Let V;VI =weVylD,nR,v)e Z?’I }. By Remark 4.4.2(ii) there is a natural bijection from
V]f” to 2?4 taking v — (D, NR,v) inverting partial orders by definition. Hence it suffices to show
that VIM is a rooted tree. First note that V;"“’ # O since vp € VIM for any monic irreducible factor
F of f. Then V;VI is a rooted tree by [KW, Corollary 2.8] and Lemma 4.4.7. O

Lemma 4.4.11 Let (s,v) be a MacLane cluster. Then |s| = degv. Furthermore, |s| > degv if and
only if (s,v) is proper.

Proof. First note that v <vs; by Lemma 4.4.8. Then Lemma 4.2.25 implies
degv < degv; <mindegv, =min|Gg -r| < |s|.
res res

If |s| = degv, then s = Gk - r for some (any) r € 5, and degv = degvs. It follows from Lemma
4.4.9 that v =v; = v,. Hence (s,v) is not proper.
If (s,v) is not proper, that is v ¢ Vs, then v = v; = v, for some (any) r € s. In particular,

s =degv, =deguv. O
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Remark 4.4.12 (Alternative definition for MacLane clusters). Let Z be the set of pairs (s,n), where
neZ, and s =D,NR # & for some MacLane pseudo-valuation v of degree n. It follows from

Remark 4.2.18(2) and Theorem 4.2.21 that the map ZZ;’I — 2, taking (s,v) — (s,degv) is bijective.

Lemma 4.4.13 Let (s,v) be a MacLane cluster. Then A, = min,c; Vg (¢p(r)) for any centre ¢ of v.
Proof. Let A = min,¢;vg(p(r)). Since s € D, = D(¢,Ay), we have A = 1,. Suppose A > A,. Let

w =[v,w(¢p) = A]. Then w > v and degw = deg¢ = degv. But s =93 n D, for our choice of 1. This
contradicts the fact that (s,v) is a MacLane cluster (Definition 4.4.12). O

Notation 4.4.14 Let P c K[x] to be the subset of monic irreducible polynomials. For any d € Z,
denote by P<4 the set {g € P |degg <d}.

Lemma 4.4.15 Let (s,v) be a proper MacLane cluster. Then

Ay = max minvg(g(r)).
8€P<gegy TES

Proof. Let d =degv. By Lemma 4.4.13 we only need to show that 1, = maxgep_, min,c; vg(g(r)).
Suppose not. Then there exists a polynomial g € P4 such that A := min,c;vg(g(r)) > A,. Let
w € Vys such that D, = D(g, 1) (Theorem 4.2.21). Then s € D, n93. By Lemma 4.2.22 we have
degw < degg < degv and w(g) = A. Since s < D, nD,, either D, <D, or D,, C D, by Remark
4.2.18(2). If D, C D, then w > v and s = D, NfR, a contradiction, since (s,v) is a MacLane cluster.
So D, €D, that is v = w. Hence v(g) = w(g) = A > A,. This gives a contradiction since v(g) < A,
by Lemma 4.2.26. O

Lemma 4.4.16 Let v eV and s =D, nR. Then (s,v) € ZZ;’I if and only if

Ay = max minvg(g(r)).
8€P<gegy TES

Proof. One implication follows from Lemma 4.4.15. Suppose
Ay = MaXgeP_geq, min,c; vg(g(r)).

By Lemma 4.4.9, there exists a MacLane pseudo-valuation w = v with degw = degv such that
(s,w)e Z?’I . Let A, be the radius of w. Then Lemma 4.4.15 implies 1,, = A,,. But this is possible
only if w = v, by Lemma 4.2.25. O

Lemma 4.4.17 Let v # vg be a MacLane valuation, ¢ a strong key polynomial over v and A€ @,
A>v(p). Set w=[v,w(p)=Al, s=D, NR, t=D,NAR. If t# 3, then (s,v) is a MacLane cluster.

Proof. First note that tcs. Let g € K[x] be any monic irreducible polynomial of degree degg <
degv. Then degg < deg¢ and so w(g) = v(g). Hence Proposition 4.2.32 implies that

v(g) = w(g) = minvk(g(r)) = minvg(g(r)) = v(g).
ret res
As g was arbitrary, (s,v) is a MacLane cluster by Lemmas 4.2.26 and 4.4.16. O
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Lemma 4.4.18 Let (s,v) be a MacLane cluster and let (t,w) be its parent. Then v = [w,v(¢p) = A,]

for any centre ¢ of v.
Proof. The lemma follows from Proposition 4.2.24 and Lemma 4.4.17. O

Proposition 4.4.19 Let F € Og[x] monic and irreducible. Let v,w € Vs such that v < v, e.g.
when veVy and F € KP(v). Then

(v Aw)EF) = min{v(F), w(F)}
In particular, if v £ w, then w(F) = (v Aw)(F).

Proof. The first part of the statement follows from the proof of [KW, Proposition 2.26], defining
w Av. Suppose v £ w. If v =w, then (v Aw)F) =wF). If v £w, then v Aw <v <vp. This implies
v(F) > (v Aw)(F) by [KW, Lemma 2.22]. Thus (v Aw)(F) = w(F). O

Lemma 4.4.20 Let v € Vyy. Then

/lv/\vp Av/\v,

= degF - ——— = deg(v Av,)
u(f) UK(Cf)"'Fd;Flf 8 deg(v Avp) UK(cergﬂdeg(vAv")

Proof. Recall f/cy € Oklx]. Then f =cr-[Irep,rr F and the factors F in the product belong to
Oxlx]. It suffices to show that v(F) = degF - % for all F € PnOxklx]. Let F € PnOgklx]. By
Lemma 4.2.29, the polynomial F is w-minimal, for any MacLane valuation w < vg. In particular,

F is (v Avp)-minimal. Hence
(v AN UF)(F) _ Av/\vp

degF  deg(vAvp)

by Theorem 4.2.27. Since vy £ v, Proposition 4.4.19 shows v(F) = (v Avg)(F) and so concludes the
proof. O

4.4.1 Newton polygons

Let v be a MacLane valuation and ¢ € KP(v). Recall the definition of the Newton polygon N, 4(f).

Definition 4.4.21 The principal Newton polygon N <p( f) is formed by the edges of N, (f) with
slope < —v(¢).

For any edge L of NU_, (p(f ) with slope —A, define the MacLane valuation vy, = [v,vr(¢p) = 11.
Then L = L,, (f) (Notation 4.2.36). Denote by Az, the radius of vr,.

The aim of this subsection is proving the following result, that gives a correspondence between
MacLane clusters and edges of certain Newton polygons attached to f. It can be viewed as a
generalisation of Lemma 2.3.38. Since the statement of the theorem may be not easy to digest,
let us briefly present its main consequence. Let (s,u) be a degree-minimal MacLane cluster
with centre ¢. Suppose that v = vg or that v defines a MacLane cluster (e.g. ¢ is a strong key

polynomial over v). Then there is a 1-to-1 correspondence between the proper MacLane clusters
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(t,w) of degree degu satisfying v <w < u and the edges of the principal Newton polygon N ¢>( ).
Moreover, the radii of the MacLane clusters are the opposites of the slopes of the edges.
The generality of Theorem 4.4.22 allows us to use it as one of the key results to construct

proper MacLane clusters algorithmically from f (see Remark 4.4.31).
Theorem 4.4.22 Let v € Vyr and ¢ € KP(v).

(i) If (t,w') is a MacLane cluster with centre ¢' ~, ¢ satisfying w'(¢p) < oo, then Nv_,q)(f) has an
edge L of slope —w'(¢) and t,, = |t|/deg .

(it) Conversely, for every edge L of N;¢(f) there is a MacLane cluster (t,wy) with wy, = vy,
degwy, =deg¢, wr(Pp) = AL and |t| =t,, deg.

In case (ii), if there exists a proper (5,w) € Z];’I with w =[v,w(p)=A), A= g, then wy, =vy.
We first recall the following result from [FGMN].

Theorem 4.4.23 ([FGMN, Theorem 6.2]) Let F € Ogklx] be a monic irreducible polynomial and
reK aroot of F. Then ¢ |, F if and only if vg(p(r)) > v(¢p). Moreover, if this condition holds, one

also has:
1. Either F = ¢, or N (F) consists of one edge of slope —vg(¢p(r)).
2. d:=degF/deg¢p€Z, and F ~, $%.

Lemma 4.4.24 Let w = [v,w(¢p) = 1] be an augmentation of v. Let s, be the set of roots r of f
satisfying vg(p(r)) = A. Then |sy|/degd =t,, — tg,.

Proof. Without loss of generality we can suppose f monic. If 1 = co, then |5, = ordy(f) and the
equality |s)|/deg¢p =t — tgj follows from the definition of tgj, t,. Hence suppose A < co.

We first show the statement for f = F' irreducible. In this case either s = & or s, = ‘R.
Suppose s, = R, which means vg(¢p(r)) = 1 > v(¢) for any (some) r € R. Since F' # ¢ (otherwise
¢(r) = 0), Theorem 4.4.23 implies that L,,(F) = N, 4(F), tg} =0and t,, =degF/deg¢ = |s,|/deg .
Now suppose that L,,(F) is an edge of N, 4(F). So t,, = 1. We want to show 5, # J. Let ¢t = t,,.
Expand

d .
F=) a;d, aj€Klx],dega; <deg¢,aq #0.
j=0

By definition of L,,(f) we have w(ajgbj) > w(a;¢?) for all j. Therefore
v(aid’) = wlap’) — A —v(@) <wla;j¢’) - j(A—v()) = v(a;¢’)

for all j < t. In particular, v(ag) > v(F), so ¢ |, F. Theorem 4.4.23 then implies that —1 = —vg(¢p(r))
for any r € R. Therefore 5, # @.
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Let f € Oklx] be any monic separable polynomial. Write f = F---F;, with F'; € Og[x] monic
irreducible. Denote by 93, the set of roots of F; and by s, ; the elements r € R; satisfying
vg(p(r)) = A. Clearly s, = ;5,,;. Moreover, from [FGMN, Corollary 2.7], we have

Ly(f)=Ly(Fo)+---+Ly(Fy)

(see before [FGMN, Corollary 2.7] for a definition of +). The lemma then follows from the first
part of the proof. ]

Proposition 4.4.25 Let w = [v,w(¢p) = A] be an augmentation of v and let s = Dy, NR. Then
ty = |sl/deg .

Proof. By definition ¢, =Y 3= (¢, — t&,), where w' =[v,w'(¢) = A']. Lemma 4.4.24 implies

tudeggp= Y lsvl=| U su|=1sl,

A=A A=A

where s5); SR is the set of roots r of f satisfying vg(¢p(r)) = A'. O
Now we are ready to prove Theorem 4.4.22.

Proof of Theorem 4.4.22. (i). Let (t,w) be a cluster with centre ¢' ~, ¢ and w(¢) < co. In particular,
deg¢p =deg¢’. Let Ay = min,¢(vg(p(r)) = w(p). Consider the MacLane valuation w¢ = [v,w(¢) =
Ad. Then t < Dy, nR. By Remark 4.2.18(2) and Theorem 4.2.21, either w¢ > w or w¢ < w. By

definition of MacLane cluster we have w¢ <w. But then A < w(¢p). Thus At = w(¢). Furthermore,
tcDy, NRESD,NR=t,

and so t =D, NR. Then Lemma 4.4.24 implies that L, (f) is an edge of N, 4(f). The equality
tw, deg¢ = |t| follows from Proposition 4.4.25.
(ii). Let L be an edge ofN;¢(f). Let t=D,, n9A. From Lemma 4.4.24 and Proposition 4.4.25
it follows that
[t|=t¢,, -deg¢p and Hrl(_:itan(ﬁb(r)) =AL.

By Lemma 4.4.9 there exists a unique MacLane pseudo-valuation wy, = vy, such that degwy, =

degvr =deg¢ and (t,wy) is a cluster. In particular, wr(¢) = Af, as
AL =vrL(@®) =swr(P) = n;lgvi@(r)) =Ar.

there exists a proper MacLane cluster (s,w) with w = [v,w(¢) = 1], A = Ar. Then w = vy,
and so s € t. Furthermore, degwy, = degvy, = degw; hence, by definition of cluster, if s = t then
w =vr, =wr,. So suppose 5 C t. It follows from Lemma 4.4.6 that (s,w) C (t,wr). Since ¢ is centre
of w, Lemma 4.2.25 implies that ¢ is also a centre of wy,. But we have already showed wr.(¢) =1z,

SO0 wy, = vy, as required. O
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4.4.2 Residual polynomials

In this subsection we will see that there is a close relationship between certain children ({,w) <

(s,v) and multiple irreducible factors of f|,. We will need the following result.

Theorem 4.4.26 ((FGMN, Theorem 6.4]) Let v € Vs and let ¢ € K[x] be a proper key polynomial

over v. Every monic g € Oglx] factorises into a product of monic polynomials in Oglx]
g2=20-¢0"%[zrn,
Ah

where —A runs on the slopes of N ”, (p(g) and h € ky,,[X] runs on the monic irreducible factors of
8lw,, where wy =[v,wr(¢p) = Al. Let g = F1,...,Fs be the factorisation of g in monic irreducible
polynomials Fj € Og[x]. Then gg is the product of all F; such that ¢ 1, F;, while g, j, is the product
of all Fj with N, 4(F;) one-sided of slope —A and F;|,, = h! for some I. In particular,

deggo =degg —I(N, ,(g))degp,  deggan=by, ords(glw,) degh-degd,
where by, (Notation 4.3.4) equals the denominator of e, A.

Consider a MacLane valuation v. Assume v # vg. Let ¢, be a centre of v. By Proposition 4.2.31
there exists a unique MacLane valuation v’ over which ¢, is a strong key polynomial. Then
v =[v,v(¢y) = A,]. Let s = D, nR. We decompose

ordg, (f)

4.7) fler = fody [171ns
Ak

as in Theorem 4.4.26 with respect to the principal Newton polygon N, ({)U( ). Recall ¢, = e, and

b, equals the denominator of €,1,.

Lemma 4.4.27 If ¢ € KP(v) such that ¢, is a multiple irreducible factor of f|,, then N ”, ¢( ) has

an edge.

Proof. By Theorem 4.4.26 it suffices to show that f has a monic irreducible factor F' # ¢ that
v-divisible by ¢. Let h = ¢|,. Since f), nly = Rorde(fl) one has fa,.n 7 ¢. As f is separable, there
exists a monic irreducible factor F' of f) ; different from ¢. Thus ¢ |, F by [FGMN, Theorem
5.3]. O

Lemma 4.4.28 Let w = [v,w(¢) = Al be an augmentation of v. Suppose (t,w) is a proper MacLane
cluster. If ¢|, is irreducible®, then ordy, (f1,) > 1.

Proof. Let h = ¢l|,. Lemma 4.3.21 implies ¢ #, ¢, and

(4.8) degp =b,deghdegd,.

“Note that ¢|, is irreducible if and only if ¢ is not a centre of v, by Lemma 4.3.21.
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Then by Theorem 4.4.26 it suffices to show that degf), , > deg¢. Since ¢ #, ¢, one has w(¢p,) =1,
by [Riit, Lemmas 4.13,4.14]. Let r € t and let F' € Og[x] be the minimal polynomial of . Then

UK((Pv(r)) = w((Pv) = U((Pv) =A, > U,((Pv):

where the first equality follows from Proposition 4.2.32. Then either F' = ¢, or Ny ¢ (F') consists
of one edge of slope — 1, by Theorem 4.4.23. On the other hand

v (P(r)) = w(p) = 1 > v(¢).

Again by Theorem 4.4.23 we have F ~, ¢!, for some [ € Z,. In particular, F # ¢, and F|, = h' by
Propositions 4.3.19 and 4.3.18(iv). It follows from Theorem 4.4.26 that F' | f, . Thus [t| < degf), 1.
Then Lemma 4.4.11 concludes the proof. O

Theorem 4.4.29 Suppose (s,v) is a proper MacLane cluster with v # vy.

(i) Let h € ky[X] monic and irreducible such that ord,(f|,) > 1. There exists a proper child
(t,w) < (s,v) with centre ¢ such that ¢Pl, = h.

(ii) Conversely, for any proper child (t,w) < (s,v) with centre ¢ such that ¢|, is irreducible, one
has ordy, (f1y) > 1.

In either case, f), p|, = [Irei(x — 1) and ordy, (f1,) = [t/ degw.

Proof. Without loss of generality assume f monic. Let v’ € Vy; and ¢, € KP(v) as above and
consider the factorisation (4.7) of f.

(i). Suppose that the monic irreducible polynomial 4 € £,[X] is a multiple factor of f|,. Then
fa,nlo= ROrdn(fl) where ordy(f|,) > 1.

By [FGMN, Theorem 5.7] there exists ¢ € KP(v) such that ¢|, = h. Let 93, be the set of roots of
fa,,n and set
A =minvg(p(r)).
reth

Now ¢ is a proper key polynomial over v since ¢|, is irreducible. Then [FGMN, Theorem 5.13]
implies that ¢ |, F' for any irreducible monic factor F' of f) ;. Hence A > v(¢p) by Theorem 4.4.23.
Therefore w = [v,w(¢) = 1] is an augmentation of v. Let t = D, nfR. From the definition of 1 we
have 2, < t. The pair (t,w) may not be a MacLane cluster. However, by Lemma 4.4.9, we can find
a MacLane pseudo-valuation w’ = w with degw’ = degw such that (t,w’) is an MacLane cluster.
Let v be a centre of w'. Then v is a centre of w by Lemma 4.2.25. It follows from Lemma 4.2.16
that v € KP(v) and v ~, ¢. Hence v, = ¢p|, = h by Proposition 4.3.19. Therefore, by replacing ¢

with ¥ and w with w' if necessary, we can assume (t,w) is a MacLane cluster. Furthermore,
[t| = |Ry| =degfa,n>b,deghdegv =deg¢
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by Theorem 4.4.26 and Lemma 4.3.21. Lemma 4.4.11 implies that (t,w) is proper.

The MacLane cluster (t,w) may not be a child of (s,v). Suppose there exists a (proper) MacLane
cluster (t,w’) such that (t,w) C (t,w’) C (5,v). We want to show that ¢ is a centre of w’. Suppose
degw > degw’. Then for any centre ¢' of w’, deg¢’ < deg¢ and so w(¢’) = v(¢’). On the other hand,
w' >w and w'(¢) > v(¢'), so w(¢') = w'(¢p") > v(¢'), which gives a contradiction. Hence Lemma
4.2.25 implies that ¢ is also a centre of (t',w’).

(ii). Let (t,w) < (s,v) proper with centre ¢ such that ¢|, is irreducible. Then w > v. Proposition
4.2.24 and Lemma 4.4.17 implies that w = [v,w(¢) = A] for some A > v(¢), since (t,w) is a child of
(s,v). Lemma 4.4.28 concludes the proof of (ii).

In the proof of Lemma 4.4.28 we showed that |t| <degf), ¢|,- Then t =R, from above. Finally,
ordg, (fly) = [t//degw by Theorem 4.4.26 and (4.8). O

Proposition 4.4.30 Suppose —A, is the minimum slope of N, @ (f). Then (s,v) is not a degree-
minimal MacLane cluster if and only if b, =1 and f|, has a multiple factor h € k,[X] of degree
1

Proof. Suppose (s,v) is a degree-minimal MacLane cluster. Suppose that b, =1 and that f|,
has a multiple irreducible factor A € £,[X]. Theorem 4.4.29 implies that there exists a proper
child (t,w) < (s,v) with centre ¢ such that ¢|, = ~. Then deg¢ > degv. Hence degh > 1 by Lemma
4.3.21.

Now suppose (s,v) is not a degree-minimal MacLane cluster. Then there exists w > v with
degv = degw such that (t,w) is a proper MacLane cluster, for some t < ‘R. Proposition 4.2.24
implies that w = [v,w(¢) = A] for some ¢ € KP(v) and A > v(¢). In particular, w is also an augmen-
tation of v'. If ¢ ~, ¢, then

w(¢y) = min{d, v(dy — P} > Ao

Hence N, o (f) would have a slope —w(¢,) smaller than —A, by Theorem 4.4.22(i), contradicting

our assumptions. Hence ¢ #, ¢,. It follows that
Ay = v(y) = v(p—py) =0'(p— py) €Ty,

and so b, = 1. By Lemma 4.3.21 the polynomial ¢|, is irreducible and deg¢|, = 1. Therefore
ordg, (fly) > 1 by Lemma 4.4.28. O

Remark 4.4.31. In §4.3 we showed how to compute the reduction f|, algorithmically for any
v € V7, knowing a MacLane chain for v (see also [FGMN, §3]). Assume vg(r) > 0 for any r € R (in
the next section we will see that we can always require this condition for our purpose). Suppose
we know how to factorise polynomials in £[X], e.g. % is finite. Then we can algorithmically find
MacLane chains for all MacLane valuations defining MacLane clusters, starting from the Newton
polygon N, .(f) and using the results 4.4.22, 4.4.27, 4.4.28, 4.4.30, 4.4.29.

144



4.5. MODEL CONSTRUCTION

4.5 Model construction

Suppose char(k) # 2. Let C/K be a hyperelliptic curve of genus g = 1. We can find a separable
polynomial f = cf[[,em(x —7) € Klx], where vk(r) > 0 for any r € R, such that C/K : y2 = f(x).
Given any proper MacLane cluster (s,v) € Z?’I we want to fix a canonical choice of a MacLane
chain for v. It will be called cluster chain and defined in Definition 4.5.1. But first, let us fix a
centre for each proper MacLane cluster.

Let (s1,u1),...,(s,, ts) be all degree-minimal MacLane clusters for . Note that if r € 5; has
minimal polynomial F € K[x] of degree degp;, then F' is a centre of y; by Lemma 4.2.25, as
vr = ;. Choose centres y1,...,y, of ui,...,u, respectively, with the following property:

(4.9) If possible, choose 1; equal to the minimal polynomial
' of some root r € 5; of K-degree degp;.

Thanks to Lemma 4.2.25, for any proper MacLane cluster (s,v) € 2?4 we inductively choose a

centre ¢, as follows:
(i) If (s,v) is degree-minimal, that is (s,v) = (s;, u;) for some 1 <i <n, fix ¢, = ;.
(ii) If (s,v) has children of degree degv, choose one of them, say (t,w), and fix ¢, = ¢,.

Definition 4.5.1 Let (s,v) be a proper MacLane cluster. A cluster chain for v is MacLane chain
[vo,v1(h1) = A1, , Um(Pm) = A

for v, where {¢y, | (t,w) 2(s5,0)} = {P1,...,Pm}.

The next results show that every MacLane valuation defining a MacLane cluster has a unique

cluster chain (Lemma 4.5.2).

Lemma 4.5.2 Let (s,v) € Z?’I proper and let [vg,...,Um(Pn) = A1 be a cluster chain for v. Consider

the chain of proper MacLane clusters
(t1,w1) 2 (tg,w2) 2 -+ 2 (ts,ws) = (5,0)
satisfying:
(a) (t1,w1) 2, w) for any proper MacLane cluster (t,w) 2 (s,v).
(b) ¢y, #bu,,, forall 1<i<s.

(¢c) For any 1<i<s, the MacLane cluster ({;,w;) is the smallest MacLane cluster containing

(tir1,w;+1) and satisfying (b).
Then m =s, ¢; = ¢y, and v, =w;.
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Proof. Clearly {¢,, | (t,w) 2(5,0)} ={Pw,,-..,Pw,}, with the centres ¢, all distinct. By definition
of cluster chain m > s. However, if m > s, then ¢; = ¢; for some i < j. This is not possible, as
v(p;) = A; <Aj =v(¢;) by [Riit, Lemmas 4.21,4.22]. Hence m = s.

Clearly v, = w,,. Suppose there exists i <m such that ¢; = ¢,. It follows that

Ai =vi(gi) = v(P;) = Ay = A,

a contradiction by [Riit, Lemma 4.21]. Therefore ¢,, = ¢, . Let 0 € S,,_1 be the permutation
such that ¢, = ¢g(;). For any i = 1,...,m — 1, either (t;,w;) is degree-minimal or there exists a
child (s',v") < (t;,w;) not containing (t;+1,w;+1) such that ¢, = ¢, by (c).

Suppose (t;,w;) is degree-minimal. Let
Ji=max{j=1,...,m|deg¢p;=degdpy,}.

Lemma 4.4.17 implies that v;, defines a proper MacLane cluster of degree degw; and so v;, = w;.
In fact, ¢p;, must equal ¢y, since (t;,w;) is degree-minimal, for our choice of centres. Therefore
o(i) = j; and so w; =vg().

Suppose (t;,w;) is not degree-minimal and let (s',v’) < ({;,w;) as above. Note that (s’,v’) does
not contain in (s,v) and (s’ As,v" Av) = (t;,w;). Hence w;(¢y,) = v(psi)) = Aoy by Proposition
4.4.19. It follows that

Dy, = D(¢pw,,wi(Pw,;)) = D(Pg(i), Aoi)) = D,y »

and so w; = vy(;) from Theorem 4.2.21.
We showed that w; = v4;) for any i =1,...,m —1. Since v; <--- <v, and w; <--- <wp, the

permutation ¢ must be the identity. O
Notation 4.5.3 Let (R, ws) denote the root of (Z¥,2) (Proposition 4.4.10).
Lemma 4.5.4 The pseudo-valuation wsy is a degree 1 MacLane valuation. Furthermore, wg; > vy.
Proof. Let w be the maximal element of

{w' eV | Dy NnR =R, degw’ =1}.

Note that the set is non-empty as vg belongs to it. If w is not a valuation, then |3| < 1 by Lemma
4.4.11, a contradiction. Hence (93, w) is a proper MacLane cluster and so wg; < w. But then w = wey

by definition of MacLane cluster since degw = 1. Finally,
Moy =minvg(r) >0,
reR
by Lemma 4.4.16, and so wsy; > vg. O

Lemma 4.5.5 Let (5,v) be a proper MacLane cluster. There exists a unique cluster chain for v.

Furthermore, v > vy.
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Proof. The uniqueness follows by Lemma 4.5.2. Moreover, v > vg by Lemma 4.5.4. We construct
a cluster chain of v recursively to prove the existence. First let (R, wg;) as above. Then wg =
[vg, wm(pm) = Al is a cluster chain for (R, ws). Now let (s,v) be any MacLane cluster different
from (R, wg;) and consider its parent (t,w). By recursion we can assume that w is equipped with

a cluster chain
[UO, “ee ,Um—l((,bm—l) = Am—l,vm((,bm) = Am]

So ¢, = ¢y from Lemma 4.5.2. If ¢, = ¢, then
[V0, -+, Um-1(Pm-1) = Am-1,0(Pm) = 4]
is a cluster chain for v. If ¢, # ¢p,, Lemma 4.4.18 implies that
[00,- -, Vm-1(Pm-1) = Am—1,Vm(Pm) = Am, V() = 4]

is an augmentation chain for v. Proving it is a MacLane chain would conclude the proof. Suppose
by contradiction that ¢, ~,, ¢,. Then deg¢, = deg,,. In particular, (t,w) is not degree-minimal.
As ¢, # ¢y, there exists a child (s',v") < (t,w) such that ¢, = ¢,. Hence (s As',v Av") = (t,w). Set

w' =[w,w'(¢py) = min{Ay, Ay, w(p, — Py},

Therefore w < w’ < v'. Moreover v(¢,,) = min{A,,w(¢, —¢,)}, and so v = w'. But then w <w’ <vAv’

which gives a contradiction. O

Thanks to cluster chains, the Newton polytopes needed for the construction of the model
can be defined without ambiguity. Let A =1,...,n and consider the MacLane valuation uj of the
degree-minimal cluster (s, up). Let

(4.10) [vo,v1(P1) = A1, .., Vm—1(Pm-1) = A1, Vm(Pm) = Ap ]

be a cluster chain for yj. Then ¢,, = wj. Denote ¢ = vj and v = v,,_1. Denote by €5, the ramifica-
tion index e, =€y, . Let g(x,y) = y2 — f(x) and expand

g=Zaij(piyj, aijEK[x],degai,j<deg<p.
i,Jj
Define the Newton polytopes
Ap, = convex hull ({(i,/): a;; #0}) © RZ,
Ay, =lower convex hull ({(i,/,v(a;;)) :a;; # 0}) cR?.
Consider the homeomorphic projection sj, : Ay, — Aj. Above every point P € Ay, there is a unique
point (P, fiz(P)) € Aj,. This defines a piecewise affine function fi;, : Aj, — R, and the pair (A, fiz)

determines A},. Let F' be any 2-dimensional (open) face of Aj, and let F = s (F). Define ¢ Fht R2 - R
to be the unique affine function coinciding with fi, on F. Let Ar = i ,(0,0) — 0F 4(1,0). Define
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A;Z c Ay, as the sub-polytope consisting of (the closure of) all 2-dimensional faces F' of A, with
AF > v(¢p). Clearly

A, =1lower convex hull({(i,0,u): (i,u) € N, ,(/)}U{(0,2,0)} < R®.

where N <l>( f) is the principal Newton polygon of f with respect to v,¢. The image of A}_L under
sp will be denoted by A, . The images of the 0-,1- and 2-dimensional (open) faces of the polytope
A,‘l under sj; are called h-vertices, h-edges and h-faces. Finally, a *-vertex, x-edge, *-face is

respectively an h-vertex, h-edge, h-face for some A =1,...,n.
Definition 4.5.6 Let G be a h-vertex, h-edge or h-face.
(a) Denote by G the inverse image of G under s;,.
(b) Denote by G the closure of G in R2.
(c) Denote by Gz the set of points P of G with e i, (P) € Z.
(d) Denote by G7z(Z) the intersection Gz N Z.

Finally, define the denominator of G, denoted dg, as the common denominator of ey, in(P) for
every P € G(2).

Let (s,w) be a proper MacLane cluster centre ¢,, = ¥. Lemma 4.5.2 implies that the cluster
chain for w is

[vo,v1(P1) =A1,...,Um-1(Pm-1) = Am—1,w(Wp) = 1]

where v;,¢;,A; are as in (4.10). Theorem 4.4.22 implies that there is a 1-to-1 correspondence
between proper MacLane clusters and *-faces. Given a proper MacLane cluster (s,w) we will

denote by F',, the corresponding *-face. If ¢, = w3, then Fy, is an h-face. Then F, has 3 edges:
(1) An h-edge, denoted L, linking the points (t?U,O) and (¢,,0).
(2) An h-edge, denoted V,,, linking the points (¢,,,0) and (0, 2).
(3) An h-edge, denoted VLS, linking the points (tg,,O) and (0, 2).

Definition 4.5.7 For any proper MacLane cluster (s,w) and any I = 1,...,n, define w; : R — R by

wi(x,y) =—wy)x — @3& w(f)

and w :R"*! — R by
W(x1,. .., %0, y) = —(WYx1 + - +w(yn)xn) — %y +w(f).

Finally define e = (T, : Z), where ', = w(Z"*1).
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Let (s,w) be a proper MacLane cluster with centre ¢, = y5. Then wj;, = 0, . We will denote

(sF,,vr,) = (5,w).

Definition 4.5.8 Let E be an h-edge. We say E is inner if E =V, for some proper MacLane
cluster (s,w) # (R, ws). In this case we say that E bounds F,, and Fp(,). In all other cases E is

said outer and bounds only the h-face whose it is an edge.

4.5.1 Matrices

Let (s,v) be a proper cluster with centre ¢, = v. Let
(4.11) [vo,v1(Pp1) = A1,..., vm-1(Pm—1) = A—1,Vm(Pm) = A, ]

be the unique cluster chain for v. Construct the invariants and the rational functions attached to
(4.11) in §4.3. Denote v_ =v,,_1. Recall e, =¢y,.
Let E be either L, or V,, or Vl? if (s,v) is degree-minimal. Let vg =[v_,vg(yy) =oco] if E = Vlf),

and vg = v otherwise.

Definition 4.5.9 Let o=1,...,n, 0 # h. Define y, g =y, if v, = ¢;, while

€, 1 v(y,)

—degy,/degy .
Yoy, " ifu, 2 ug,
Yo.E = .
Yo T, | otherwise,

ify,#¢pj,forall j=1,...,m.

Lemma 4.5.10 Let 0 =1,...,n, 0 # h. Then y, g is a well-defined element of K(x) satisfying
vr(Yo,g) =0 for any *-face F bounded by E.

Proof. Let F be any *-face bounded by E. Then (s,v) < (sg,vr). Lemma 4.5.2 implies that vp(¢;) =
v(¢;) for all j <m. So the statement is trivial if y, = ¢, for some j < m. Suppose y, # ¢;, for all
J<m. Then u, Zv. In particular, g, £ vr and so vr(¢p,) = (VF A 1,)(¢,) by Proposition 4.4.19.

Suppose vg < Uo. Then vr < i, and so ¥, is vp-minimal by Lemma 4.2.29. It follows that
degv | degw, by Lemma 4.2.30. Theorem 4.2.27 implies that

v(y,) Ay vr(Wo)  vr(yn)
= and

degy, degv degy, degv ’

since vg =v when F = F,. Therefore vz(y, 1) =0.

Suppose vg £ U,. First we want to show that
(4.12) VE A\ bo =VF A Uo-

Note that either vg A yy < vF or vg A g > vp since vg = vp. If E = VUO (and so v is degree-

minimal), then vg =v. If vg A yo < v, then (4.12) follows. Suppose vg A i, > v. Then p, >v and so
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Lo(wy) =v(yy) by Lemma 4.5.2. Furthermore, v, is a centre of vg A iy, < vg. But then Lemma
4.2.25 and Proposition 4.4.19 imply that

Ho(Wr) = (WE A o) Wh) = Appap, > Ao =v(Wp) = wo(yy),

a contradiction. If E # V2, then vg = v. Since v A i, < v defines a MacLane cluster by Lemma
4.4.7, we have v A iy < vp. Hence (4.12).
It follows from (4.12) and Proposition 4.4.19 that

(4.13) UE('(I/O) = (UE A ,Uo)(lljo) = (UF A ,uo)(WO) = UF(WO)-

Hence it suffices to show that v(w,) el By Proposition 4.2.24 write

VA Lo =[0a-1,v A to)e) = Ay,

for some a <m and A, < A,.

If v < u,, then v is degree-minimal. It follows that v A u, appears in the cluster chain for p,
va1 €Tv, , by Remark 4.3.2.

If v £ o, then v Ay, <v. By Lemma 4.4.7, the valuation v A u, defines a proper MacLane
cluster (s',v A up) 2 (5,v). Let (t,w) € ZZ;’I such that

by Lemma 4.5.2. Therefore v(y,) €T’

(5,v) S (t,w) < (5',v A o).

Since p, # w, if Y = Wyay,, then v Ay, appears in the cluster chain for y, by Lemma 4.5.2.

Therefore v(y,) el as above. Finally, if v, # Wyay,, then v A u, appears in the cluster chain

Um-1

for v again by Lemma 4.5.2. Since v A 4, <v, one has (v A ,)g) €T, , for any g € K[x]. In

particular, v(w,) el from (4.13). O

Um-1

Let E? be the unique affine function Z2 — Z with E}|g =0 and E}|r, = 0. Choose Py, P; € 7>
such that E;(Py) =0 and E;(P1)=1.

Definition 4.5.11 Define the slopes [sf ,sg ], at E to be
sT = 8gen (54(P1) — 54(Py)),

. {6E€h (@h(P1) - 4(Po)) if E inner, with (s,0) < (t,w),
32:

[sf -1] if E outer.

Let 6 = 0. Pick fractions ?Ti € Q such that

ni nit+1

no Nrg+1
E_"9 e > TE

S = =1.
17 do drg+1

= 3}23 , with

i div1
Let r =rg. Redefine n,,1 = -1, d,+1 =0 if E is outer.
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Write E = Py + VR, with 6v = (6ay,0ay,6a;)€ 72 x %Z primitive and such that (a,,a,) goes
counterclockwise along 0F,. Let o # h. By Definition 4.5.9 and Lemma 4.3.7, we can uniquely
write

Mmio |

Yo.E =Y,

coa Mo | 2 M(n+2)0
YR

Define v, € R™*2 by v, = (M 10, .-, Mn0,0,M(n+2)0)-

Now consider the embedding 5, : R — R"*2 given by
(xh7y7Z)H (07'"707xh707""0’y7z)7

Where xj, is the A-th coordinate in R"*2. Define v =1,(6v). Write P1 — Py = (by,b,) and define

=1 (d by, d; by, Ser ) € R"*2 for any i =0,...,r + 1. The vectors above define hyperplanes in
Rn+2’

Pri=viR+--+v,R+w;R i=0,...,r+1.

Let Mg,i € M,.2(R) be the matrix given by
Mg,i = (Vly «esVh-1, V;If’ Vh+1s--+) Vnaw[?, _w$+1)
where the vectors represent the columns of Mg i Then®

detMp; =TI} eo oo — = 1.

1

_niv1

Moreover, all entries of Mg’i are integers except possibly da, € Z and 5”;}1 S, rational

numbers in %Z. Pick %; with
k; = —ni(6ehaz)_1 mod .

This is possible as v is primitive in 72 x %Z. Let 7 €S, 42 be a permutation such that ¢, = ¥ ()
forallo=1,....mand t1(n+1)=n+1, 1(n+2) = n + 2. Define the vectors
R m—1 R v% m—1 )
VR=V,+ ) CoVi)as, wi=w;+ kig + ) covr(o)(é% +k;a,),
o=1 o=1

where ¢, =e,, ,¢,. The next lemma shows that they belong to 72,

Lemma 4.5.12 Write Z’” 1 CoVi(o) =(ai,...,an+2). Then

enl; €]+1 --Zm_l if j<m,
az;;) =40 ifm<j<n+1,

eply---0 =1 ifj=n+2.

m

In particular, vy,,w; € Z"*2.

5See Appendix C.2 for more details.
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Proof. Recall yg 1(0) =70 forany o=1,...,m. If j <m Lemma 4.3.7 implies

— D . m-— !
Qr(j) = Cje; Zo—j+1coh [€J+1 Co1

:evf Zo J+1evo—1(£oho)[‘[,. ---[’_

—_ . ! !

_[J(evj+zo:j+levo[ﬁ—1 0~ Xos j+1ev0 il )
/ _ / /

=0 (ev; +ev, Oyl evj)—evm iyl

where we used ¢,h, + e, =1. If m < j <n+1, then the 7(j)-th coordinate of v, is 0 for all
0=1,...,m—1;s0 a,;=0. Finally

_ -1 li li !
an+2—_zzl—1 cohogl"'go Z:,nl evoé Z:,nl €uy_ 1 "60_1

=ev Z’ 1 ]_,

m-—

as required. O

Define Mg ; = (v1,...,Vn,0;,—w;+1) € M(,+2)(Z), where the vectors represent the columns of
Mg ;. Note that det Mg ; = detMg ; = 1. Let us describe Mg ; as product of simpler matrices. Let

€1,...,Ento € R"*2 be the standard basis of R**2. Define «; = %eh and ¢ = Z;":_ll Co€1(0)- Define

n; n;
Th = (81""76}1—178}1 +6a2 '€,€h+1,«-~,5n,£n+l + ﬁ§,£n+2 - 6?; 6)’

T =(€1,...,€n,En41 +Ki,Eps2 —Kit1).

Then Mg ; = Mg ;*Th-T. Now we want to describe lejll It follows from before that Mili =
T 7,1 (M% )7!, where
T}:l = (517- s €R-1,€p _5a2 '57£h+17' cs€ny€n+l — %€7£n+2 + r(;te;l 5)7

-1 _
T —(51,---,5na£n+1_Ki75n+2+7<i+1),

It remains to describe (M% L.)_l. First note that the A-th, (n + 1)-th and (n + 2)-th columns of
(Mg i)_l are respectively

1 ((by/8,nis1ay —Sepdisiazby,niay —bepdiazby)),
1h((=b2/8,—njp1ax +8€pdir1aby, —niay, +6epd;azby)),

11((0,8€r,di41,6€pd,)).

Let o=1,...,n. Lemma 4.3.7 and Definition 4.5.9 imply that we can write

Q1o A(h-1)o Qpo |\ k4o | Qno | —Ago

(4.14) Wo YlE Y- 1,E v, 7/h+1E Yn,E T

for some unique a1o,...,Qno, Axo € Z. Let @y; = ayj/ep. Define

(@o1,...,00,,0,0), ifo#h

<1
)

(@n1by,...,Annby,bx,0) ifo=h

152



4.5. MODEL CONSTRUCTION

Finally, define

(4.15) W; :6ehdi((ﬁay—azby)dh1+d,[1,...
...,(ﬁay —azby)@nn + G, —ﬁax +azby,1).
From the definition of Mg ; it follows that
V1
gy = 5 |,

Wi+1
w;

where the vectors are the rows of the matrix. Lemma 4.3.7 gives an explicit of (Mg i)*l. Note also
that for the structure of 7-! and T, ! the 7(0)-th row of Mill coincides with the 7(0)-th row of
(M% L.)_l, when o > m. Define

Pyt = oiRy,
ray perpendicular to the hyperplane Pg ;.

Remark 4.5.13. Note that V;(y) = €7 for m <o =n.
Lemma 4.5.14 Suppose E is inner, with (s,v) < ({,w). Then 0| = 0 |E.

Proof. Recall that E =V,,. If F,, is an h-face, the result trivially follows, as E = VIB.
Suppose F, is not an h-face. By definition of cluster chain we have w = v_. The polynomial

digw = ng/g/;;) by Theorem 4.2.27. From Lemma 4.4.20 and Proposition

¥y, is w-minimal, hence
4.4.25 it follows that

n(ts,0) = 0(f) = gobs - Ao = W(f) = goabs - ho = W(F) = gtz - w(Yp) = Wy (ty, 0).

This concludes the proof since 75(0,2) = 0 = 14(0,2). O

Lemma 4.5.15 We have
o = ey 1),...,v(yy), 2L, 1),

Letr=rg. Then

R ew(w(tl/1),...,w(wn),@,l) if E inner, with (s,v) < (t,w),
o= {(—aydhl,...,—ay&hn,ax,O) if E outer.
Proof. Note that 6r, =6gdo and O € = e;. Recall if, ,, =0 and
Op(x,y) = —Avx—¥y+v(f).
Then since v and (b, b, 56’;—‘&0) generate I, (face of A},), we have
v(f)

_no_ ., _ — _ _TNo_ — v
(4.16) Sends @y a,by,=21, and Behdoax+asz— o
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By (4.14) and Lemmas 4.3.3 and 4.5.10, we have v(y,) = 1, @p, + @z, for any o =1,...,n. Hence
the description of @q follows from (4.16).
Suppose that E is inner, with (s,v) < (t,w). Then either w =v_ or w = [v_,w(yy) = 1, ]. In

either case, 0gd, 1€, = e;3. We have

B(x,y) = —wyp)x — %Ly +w(f).
Since iy |g = 01|z by Lemma 4.5.14 and 56’:2&1 = wp(P1)—wx(Po), the vectors v and (by, by, 5;;?,2;1)

generate the plane z = t,(x, y) in R%. Hence

Nril _ _ Nril _ _vr(f)
§€hdr+1ay azby - UF(Wh) and dendril Qy asz =5 -

Similarly to before, by (4.14) and Lemmas 4.3.3 and 4.5.10, we have vg(w,) = vp(wy)ap, + @y for
any o =1,...,n. The description of @,;1 follows, for E inner.
Finally, suppose that E is outer. Then n,.1 = —1 and d,+1 = 0. The description of &, follows

directly from the definition. O

4.5.2 Toroidal embedding

Let us start this subsection with the following notation.

Notation 4.5.16 Let A be a ring and let a1,...,a, € A*, for some n € Z,. For any matrix
M =(m;;) € SL,(Z) denote by (a1,...,a,)* M the vector

m m m m
(@™ ap™,...,a7 " an ™).

Denote by m .. and 7. the entries of Mg ; and Mili respectively. Note that 7 (,+1)(n+2) =0

and M, +92)(n+2) = 0. Then the coordinate transformation
(X].) s 7Xn7Y7Z) = (x1> s 7xn’y’7[) .ME,i’
@15ee 20,3, = (X100, X, Y, Z) e My,

gives the ring isomorphism

Mg, Og[X$L,... X1 v+l z+
K[xi—’l,...,x:—;l,yﬂ] = 1 L

(r— Xi"l('”z) ... X,T”(”+2) Y M+ 1n+2) Z U n+2)n+2) )

Define
OklXi!,.. XY, ,Z]

(- X;”Hn*Z) .. .XZW’”Z)Ym<n+1)(n+2>Zm(n+2>(n+z))

R =

For any h-edge E, define cones in R**1 x R,

0-dimensional cone o = {0},
1-dimensional cones o0g; = Pﬁj O=<isr+1),

2-dimensional cones 0g, i1 = 7351“ + 775;1 O=<i=<r).
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The set of all such cones from all E is a fan X from Appendix C.3. Recall

Pe;=viR+ - +V,R+0;R=m R+ + mpR+m R,
PE,i+1 =viR+ - +v,R+w; - 1R=m R+ ---+m*n[R{+m*(n+2)[R,

PeiNPri+1 =ViR+ - +VvR=m R+ -+ m,,R,

OE,i=Mn+2)+Re, OFi+1=Mn+1)«Ry,
OE,i,i+1 = M(n+1)«Re + 1M (n19)« Ry

The monomial exponents from the dual cone are

2
OZ,‘,i AZ"2 = m1Z+-+MmspZ +My+1)Z +Muyn+2)Z+,
\Y +2

v +2
0E,i,i+1 NnZ""= = maZ+---+my,Z+ m*(n+1)Z+ + m*(n+2)Z+.

The toric scheme
Ts=U To, Ty = Spec Oglo¥ N Z"*2],

geX

associated with = ([K2MS])) is then obtained by glueing Ty,:., = Spec R for varying E and i,

along their common opens. Note that
Ty, =SpecRIY ', Z7", T,,,=SpecRIY '], T,,, =SpecRIZ ']

Note that degw (1) =1 by Lemmas 4.5.4 and 4.5.2. Let

Klxllxi?,...,xit y*]

Co=S .
0= PP 2 (), 21— 91 (), .., n — W (@)

Then Cp < C. Furthermore it canonically embeds in T, via the isomorphism given by Mg ; and
the isomorphism given by

Klel[x7)

(%r0) = Y ()

We define C as the closure of Cy in T's. Then C is integral and also separated since so is T's.

Furthermore, C is flat by [Liu4, Corollary 3.10]. We will explicitly describe C and show it is a

proper regular model of C with strict normal crossing.

~K [x;—’(ll) .

4.5.3 Charts

Keep the notation of §4.5.1. From now on we suppose without loss of generality that the permuta-
tion 7 is the identity.

Let 1 <0 <h. By [Mac, Theorem 16.1] every polynomial g € K[x] can be uniquely written as a

sum

nis Nos

g:Zas.wl ...1//0 ,
S
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where as € K and nj; <degy;,1/degy; for any j <o. Let us € OIX{ such that as = us - 7°€@), Then

we denote by g@, the polynomial
g(o) — Zus . an(as) ‘x’111s ”'xzos € Klx1,...,%).
s
Consider Mg ;. Recall 1 (5+1)(n+2), M (n+2)(n+2) = 0. Define
nXy,...,.X,,Y,Z)=n —Xf“('”z’ . .X,'fl"(”*”Y’;‘("“)‘"*Z)Z’ﬁ‘"*?)("*?),

Via Mg ; we have the following isomorphism

Klxllxth,... it y*1] Mg Og[X3EL,.. X3yl z+1)
(yz_f(x),xl_WI(x),-,xn_Wn(x)) B (H;f].’"'yfn) ’

where F1,...,F, € OIX{[X;—'I,...,X:fl,Y,Z] satisfying Y { F;, Z { F;, and

Mg ;
Y2 fPay,.. ) 2 YPAZEFy (XY, X, Y, D),

i Mg ; ) ) .
xj—wg! Vr,xj ) 2 YW 2% F(X1, .., Xn,Y,Z) for2<j<h,
xj—u/;h)(xl,...,xh) :E’LY”Y,JZ"Z,J]-'j(Xl,...,Xn,Y,Z) forh<j<n,

for some ny j,nz j € Z. Then we define the affine Og-scheme

OklX$,.. XY ,Z]

Ug:=8
B =B T L A F)

In the next lemma we will describe the special fibre of Ug ;. In particular, we will show that it

has dimension 1. Then the next lemma implies that Ug,, =CN Ty, ;-

Lemma 4.5.17 If the special fibre of Ug ; is of dimension <1, then Ug; =Cn T,

E,ii+1°

Then it suffices
Suppose not. Then Ug; has an

Proof. By construction the generic fibre of Ug,; is isomorphic to C,N Ty, ,,,-

to show that Ug ; is the closure of its generic fibre in Ty, ;-

irreducible component U entirely contained in its special fibre. Since Og[X i—'l, o X ,fl,Y,Z] is
regular, dimU = 2 by Krull’s height theorem. O

4.5.4 Special Fibre

In this section we want to study the special fibre of Ug ;. Now, Ug,; © Ty, ., and the special fibre

of the latter has underlying reduced subscheme Z =0 if E is outer and i =r, or YZ =0 otherwise.

Notation 4.5.18 Let g € K[x¥',... xft, y*1]. Let G e O [XF1,... X Y*1,Z*1] given by
g((Xl,...,Xn,Y,Z)-ME}i) =0Xy,...,X,,Y,2).

Denote by ordz(g) [resp. ordy(g)] the integer ordz(G) [resp. ordy(G)].
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We want to study Ug; Nn{Z = 0}. Let wg; : K[x] — @ be the valuation given in (C.1). Then
ordz(x;) =wg ;(y;)ordz(n) forall 1< j<n.Let w; =v; for all j <h and wj =wg,,.

Lemma 4.5.19 Let ge K[x]. Forall 1<j<h,
ordz(g") = w;(g)ordz (n)

Proof. If wg; is MacLane then the equality follows from [Mac, Theorem 16.1]. Suppose wg ; is
not MacLane. Then (s,v) is maximal, E =V, and 1 <i <r. But then 2 =1 and degw; = 1. Expand
g=Y,a:y}, where a; € K. Then g = ¥, a,x}. It follows that

ordz (g(l))

= min (vg(a)ordz(m) +t-ordz(x1) = wg,i(g)ordz(m)
as ordz(x1) = wg ;(y1)ordz(n). O
Notation 4.5.20 For any G € Og[X*!,..., XY, Z] denote
Gy =G(X1,...,X,,0,2), Gz =G(X1,...,X,,Y,0),
and G = G(X1,...,X,,0,0).
Definition 4.5.21 Define po =7 € Ok. Let 1< j <h and recursively define p; € K[xfl, ... ,x;f'l] by

¢; U
bj :xjjpjj_1~ Then pj(Wl,“-,Wj):nj
Define IT; € Og[X3,..., X by

Mg ;
Y*Z*-II; ="pj.

Note that

(4.17) W1,...,Wn,y,m) e Mg ; = (71,...,}fh_1,w2a"y5“y7ti‘izl,...),

and that @,; =0, d,; = A; for any j < h.

Mgi e; —h; ...
Lemma 4.5.22 Let 1= j<h. Then X; ="' x7/p; "ifj<horE=L,.

Proof. When j < h, then X, = x7/ p]‘f{ from (4.17). If j = h, then X = xf“x yoay pfﬁ;. IfE =L,,
then wg ; =v. Since L, corresponds to the edge L,(f) ova__)u,h(f), onehasd=ep,ax=1,a,=0,

a, =—Aj. It follows that X; = xjjp_.hj

-1, 88 required. O

Lemma 4.5.23 Let 1<j<h. Then Il € OgX7',... X1
Proof. If o > h then m j, = 0 for j # o. The lemma follows. O

Recall the definition of the fields £, j = 1,...,h, given in §4.3. Note that k1 = k¢ since
degwi =1 (Remark 4.3.11). The ring homomorphisms ko[Xgl] — ko+1, 1 <0< j, taking X, to the

generator of k,.1 over k,, induce a surjective homomorphism
Rj:OkIXyh, . XL Y, Z]1 - kjIX,.. XY, Z).
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Lemma 4.5.24 Let 1< j<h and let g € Klx]. Fix a polynomial G € OIX([XI—'l,...,X:fl,Y,Z], Ytg,
Z 1§, such that
. Mg,
g(J)(xl,...,xj) =YW ZrIG(X,..., X, Y, Z),

for some ny,nz € Z. If either E =L, or j <h, then
Ri(Gz)=Y* - R;(I;))*" H;(g)X)
where a =v;(g).

Proof. We prove the lemma by induction on j. Suppose either E =L, or j<h, so that w; =v;.
Let j=1. Expand g =), asgbjl, where ag € K. Then gP(x1) = Y sasxj. Lemma 4.5.19 implies
that ordz(a sx:sl) =ngz if and only if (s,vk(as)) is a point of the edge L, (g) of the Newton polygon

S

Ny, (g). Therefore we can assume g(l)(xl) =) 520 at1+se1xil+ 1 where ¢1 = ¢t1(a1) and a1 = v1(g).

Then

(1)
8 Aty +se _
€y a1 = Z ulfsh1 (xiln h1)8+61(a1)7
D s=0 \ T

where u1 = u1(a1). Then we obtain the required equality by Lemma 4.5.22.
Now suppose j > 1. Expand
g=). asu/‘;, where degag <degy;.

=0

Note that gV = ¥, agj _l)xj. by definition. Similarly to before, by Lemma 4.5.19 we have that
ordy (a(sf‘”xj) = nz if and only if (s,v;_1(as)) is a point of the edge L, (g) of the Newton polygon
Ny, y;(8). Therefore we can assume

i -1 tjs
£ =T ) a0

where tj s =t;(a;)+se; and a; =v;(g). Then

. -1
g(]) 3 atj’s ( ej _hj)s+0j((1j)
ey . aj Ujs J j_l ’
j Pj-1
where u; s =uj;(a;)—sh;. Lemma 4.5.22 and the inductive hypothesis conclude the proof. O

Lemma 4.5.25 Let 1< j<h. Then ker(R;) = (fz,z,...,fj,z,n).

Proof. We prove the lemma by induction on j. Suppose j = 1. Since degwi =1, we have k1 =&,
and so ker(R;) = (). Let j > 1. It follows from Lemma 4.5.19 that

ordz(x;) = ordz (Wy)) > ordy (wy_l)).

Then Lemma 4.5.24 implies that
Rj-1(Fjz)=Rj-1(IL;_1)% - Hj_q o(y;),
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where a = v;_1(y;). Since k; ~ k;_1[X;_11/(Hj_1,(y;)) by Remark 4.3.11 and R;_1(Il;_1) is

invertible by Lemma 4.5.23, we have
ker(’Rj) = ker(Rj_l) + (ﬁj,Z)-
The inductive hypothesis concludes the proof. O

Let A < j<n. Then

ordz(x;) = ordz(wj.h))

by Lemma 4.5.19. Since mj; = 1 and mi,; = 0 for all 1 <0 <n, o # j, there exists a Laurent
polynomial 7; € Og[X7!,... ,X;fl,Y,Z] such that F; equals X; — 7; up to some unit. Let R = Ry,
and 7 =[]j<j<, T;. Denote F = F;. Lemma 4.5.25 implies that Ug ; N {Z = 0} is isomorphic to

ko[ XY, R(T2)
(R(F2))

Spec

Similar computations (using wg ;11 instead of wg ;) show that if i <r or E is inner, then Ug ;n{Y =

0} is isomorphic to _
ko X Z,R(Ty)

(R(Fy))

Spec
Let g(x,y) = y2 — f(x) and expand

g:Zajow;Ly", aj, € Klx], degaj, < degyy.
J,0

Then y2 - f® = Yio ay;_l)xhy". Recall the notation wg ;(y) from Appendix C.3. Let ¢; be the
plane with normal vector (wg ;(y),wg,;(y),1) and on which E lies. We have

(h-1),J

ordz(a'? x,;y") =ordz(y?~f®) ifand onlyif (j,0,v_(a},))€¢&;.

More precisely, (X;,,Y,Z) = (x,y,pr_1)* M with

Oay dibyit+kiay —dii1bi—kii10;
(4.18) M = day dibytkiay —dii1by—kiniay | € SL3(2Z).

n; n;
Sena, L+epkia, ——SL-eprkiaa;

Let ¢ : 72 — 72 given by
¢(s,t) =Po +(0ay,0ay)s +(d;by +kiay,diby, +k;a,)t.
Lemma 4.5.24 implies that, up to units, R(Fz) equals

> 2Hh—1,as,g(a¢(8,t))X}szYt’
(s,t)eZ

where a;; = 0a,s + zi%t +k;a,t. In particular, Ug; N {Z = 0} is of dimension 1, and similarly

Ug,;n{Y =0} when i <r or E is inner. It follows that the special fibre of Ug ; is 1-dimensional.
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4.5.5 Components
We want to describe Ug ; N {Z = 0} and Ug ; n{Y = 0} explicitly.

Remark 4.5.26. Let h < j <n such that v = u; A pp. Let (s;,u;) € (t,w) < (s,v). Lemma 4.2.30
implies that v is v-equivalent to (,bi, where d = degpuj/degw. Thus v |, is a power of ¢, |, by
Proposition 4.3.19.

Lemma 4.5.27 Let pi1, g €V such that gy = v # pe. Suppose ¢y, is a centre of yui and let ¢ € K[x]
be a centre of ug. If v # U1 A ug then ¢l is a unit.

Proof. Let w = 1 A u2. Then p1(¢p) = w(¢) by Proposition 4.4.19. Since w < y; and v < ug, either
w <v or w =v by Theorem 4.2.21 and Remark 4.2.18(2).

Suppose w < v. Proposition 4.2.24 implies that there exists w’' > w such that v = [w’,v(¢,) =
Azl In particular, w'(¢) = v(¢p). From [FGMN, Lemma 2.9] it follows that ¢ is v-equivalent to
some polynomial of degree < degv. Hence ¢|, is a unit by Proposition 4.3.19.

Suppose w > v. Then the polynomial ¢,, is a centre of w and so

deg¢/deg e,
@~y (pnegd) egd,

by Lemmas 4.2.29 and 4.2.30. Then ¢|, is a unit by Proposition 4.3.19. O
Lemma 4.5.28 Let h < j<n. If v # u A u; then yjl, is a unit.

Proof. The lemma follows from Lemma 4.5.27. O
Lemma 4.5.29 Let h<j<n.

1. Suppose E = L,,. Then, up to units, R('T},Z) equals v ;1,(X3), and, similarly, 72(7_},1/) equals
Vjly(Xy) when i <r.

2. Suppose E =V, or E =V?. Then T; is a unit. Furthermore, T,=T;z if i >0and T; =T,y if

i<r.

Proof. Suppose E = L,. Then Lemma 4.5.24 implies that R(’E)Z) equals ;],(X3) up to units.
Similarly for R(7;y) when i <r.
Expand

d
Y= Zath, a; €Klx],aq #0, degat<degWh-
t=0

Then w;h) =Y, a(th_l)xz.
Suppose (s5,v) maximal and E =V,. Then A =1 and degwj = 1. Lemma C.3.2 implies that

wgi(y;))=d -wg;(y1) forany i =0,...,r. In fact, forall i = 1,...,r we have

(4.19) wg,i (W — w1 > wg,i(y))
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since wg ;(y1) <wg,o(yp). Recall

Ol“dz(llf;n) =wg,i(yj)ordz(m)

from Lemma 4.5.19, and similarly, Ordy(tllg.l)) = wg,i+1(yj)ordy (n) when i < r. The inequality

(4.19 implies that 7; is a unit, 7, =7,z when i >0 and 7, =7,y when i <r.

Suppose E =V, inner. Then wg; is a MacLane valuation with centre y; and satisfying
v =2wg,; 2w. In particular, wg ;(y;) = wE,i(athZU)- Lemma 4.5.19 implies that 7, z is a unit if
and only if ¥y, ; is a unit. But then T;z =T} is a unit when i > 0 by Lemma 4.5.27. Similarly
T;y =7;is a unit when i <r.

Suppose (s,v) degree-minimal and E = VUO . Then wg ; is a MacLane valuation with centre
Y, and satisfying v <wg,;. In particular, wg () = wg,i(a 1//2(”) ). Similarly to the previous case,
Lemmas 4.5.19, 4.5.27 conclude the proof. O

Suppose E = Ly. Fix Py = (£,,0), P1 = (| 5% | ,1). Then
(4.20) sE = e, (Ao(Ltp/2) + 1) - 2L,

and sg = Ls}f —1J. The h-edge L, corresponds to the edge L,(f) of N,_y, (f). In particular, 6g = ey,
and v =(1,0,—Ap). Therefore, up to units,

R(Fz)=flo(Xp) forO<i<r,
R(Fy)=f1,(Xp) forO<i<r.
Fix
kj=[hnj+f;Lehdj(|_tv/2J+1), for j=0,...,r+1.

Then & = nj(6Eehaz)_1 mod 6, as required. Let i =0 and let M be the matrix of (4.18). Then

v(f)

e, 0 —0y
M_]' = d1evly dley¥+% dleh .
d()ev/lv doevT d()eh

Hence yzp,;e”v(f) =Y %4 Lemma 4.5.24 then implies that R, (Fz) equals
Y29 — Hy, o) (£ X)
up to units. The quantity n, := 2/dg equals 1 if e, v(f) is odd and 2 if e, v(f) is even. Recall
Hy,oip\()X) = X er=trenDp),

from (4.5). Note that tg =t,, if (s,v) has a child ({,w) with centre v} and tg =0 otherwise.
Suppose E =V,,. We can choose Py = (¢,,0), P1 = ( [t”z_lJ s 1) so that

s¥ = dgen(Ao(Ltp/2] + 1) - L),
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If (s,v) # (R, ws) and (s,v) < (t,w), then
s¥ = gen(Mw(lt,/2) + 1) - L),

while 312': = lel'J — 1] otherwise. Up to units

R(Fz)=X2 ~Hp_14(as,) for0O<isr,

R(Fy)=X> ~Hp_14(a;,) forO=i<r,
where b=Ez(Z)+1and a=v_(a;,). Let u =cf[[y¢qs(x — r'Ye K[x] and let u = u — ypq for some
q € K[x] such that degu;, < degyy. From Theorem 4.4.26, one has Hy_1 o(as,) = Hp-1,_(u,)(@n).

Suppose v =y and E = Vvo. Fix Py =(0,2), P1 =(1,1), so
s = ~0pen(Ao—*§),

and sg = Ls}f —1J. Then up to units

R(Fz) = X};b —Hp-1,0lap) for0O<isr,

R(Fy) =X, —Hp_1alap) for0<i<r,
where b=E7(Z)+1 and a = v_(atg). Let R, be the set of roots of 5. Let ul = cr Hr'em\mh(X—r') €

Kl[x] and let u?l =ul- v q for some g € K[x] such that degug < degwy. One has Hh—l,a(atg) =
Hh—l,v_(ug)(u?l)'

4.5.6 Regularity

If (s,v) has a proper child with centre ¢, # ¢, then ¢, is irreducible by Lemmas 4.5.2 and
4.3.21. Let E = L,. By Remark 4.5.26 and Lemmas 4.5.28, 4.5.29, the subscheme Ug ; N{Z =0} is

isomorphic to

ko[ X5 Y  Titw<ts.0)@uwlo (X)) 7!
(R(F2z))

where the product runs through all proper children of (s,v). Similarly for Ug ; n{Y = 0} when

(4.21) Spec

b

i<r.
Notation 4.5.30 We denote by I, the scheme Uz, on{Z = 0}.

Theorem 4.5.31 The model C/Ok is regular.

Proof. We want to prove that Ug ; is regular, for any h-edge E,h =1,...,n,and any i =0,...,rg.In
fact, for the definition of I, it suffices to show that the subschemes Ug ; n{Z = 0} and Ug ; n{Y =0}
are regular, where the latter is considered only if i < r. From the description given in §4.5.5 we
only need to consider the case E = L,, for some proper MacLane cluster (s,v) for f. Let r =rg.
For the explicit description of R(F7z) and R(Fy) it suffices to prove that all multiple irreducible
factors of f|, are of the form ¢, |, for some proper child (t,w) of (s,v). But this follows from
Theorem 4.4.29. O
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4.5.7 Properness

Let C™*4 be the underlying reduced subscheme of the special fibre of C. In the previous subsections
we showed that C;ed consist of 1-dimensional subschemes I', for each proper MacLane cluster
(s,v), closures of fv (Notation 4.5.30) in C, and chains of P!. In this subsection we will show that
I', is projective for any proper (s,v) € ZZ;’[ . By [Liu4, Remark 3.28] the properness of C will follow.

Let (s,v) be a proper MacLane cluster and recall the notation introduced in previous subsec-

tions. Let C, be the regular projective curve with ring of rational functions
kv(X)[Y]/(Ynu _th/e}l_ghehv(f)fb)-

From (4.21) we have a natural birational map I', --*C,, defined on the dense open I',. It extends
to a morphism ¢: 'y, — C, by [EGA, I1.7.4.9]. Zariski’s Main Theorem implies that : is an open
immersion, since I', is separated and regular. By point counting we can prove that ! is an
isomorphism.

Let é’v =u(1",). By Theorem 4.4.29 we have

ordy, |, (fl) = tl/degw,
for any proper child (t,w) < (s,v) with ¢, # ¢,. The set Cv(lé)\Co'U(lE) is finite and consists of:
(1) ged(ny,t%ey — Crenu(f) +deg(f1,)) points at infinity;
(2) ged(n,, tg/eh —lrenv(f)) points on X =0;
(3) ged(ny,|tl/degw) points on Y =0 (X # 0) for each proper child (t,w) < (s,v) with ¢, # ¢,
(1) Let E =V,. The scheme I', has (|[Ez(Z)| + 1) k-points in
Ugon{Y =Z=0}

not contained in I',. Note that |E 7(2)| equals 1 if ¢, and e, (v(f) — t,A,) are both even, while it

equals 0 otherwise. In fact,

(en ()~ toho)to) = (evv(f),tv/eh—fhehv(f))'( % lh)’

—hp ep

and so
Ez(2D)|+1= gcd(nv,tg/eh —lrepv(f)+deg(fly)),

since deg(f|,) = (£, — tg)/eh.
(2) Let E = VUO. Let ({,w) < (s,v) such that E =V, if (s,v) is not degree-minimal. Let U = UVUO,O

if (s,v) is degree-minimal and U = Uy, ;,+1 otherwise. The scheme I';, has (|[Ez(Z)| +1) k-points in
Un{Y =Z=0}
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not visible on I',. Note that |E7(Z)| equals 1 if tg and e (v(f) - tgxlv) are both even, while equals 0

otherwise. Similarly to the case above,

(€x@(F) = 194,),22) = (e,v(f), e, — Lhenv(F)) ( e, zh),

—hp ep
and so

|EZz(Z)| + 1 = ged(ny, tg/eh — lpepv(f)).

(3) Let (t,w) < (s,v) be a proper child such that ¢, # ¢,. Let E = V,,. The scheme I', has
(|IE2(2)| +1) k-points in

UE,()O{YZZ:O}

not visible on fv. Note that |E7(Z)| equals 1 if ¢, and e,(v(f)—t,1,) are both even, while it

equals 0 otherwise. Since #,, = |[t|//degw by Proposition 4.4.25, we can compute

|IEZz(2)] + 1 = ged(ny, [t/ degw).

Thus |T,(R)\T,(2)| = 1C,(E)\C,(E)|, and so Ty, = C,.

Remark 4.5.32. If k, is perfect, I', is a generalised Baker’s model of the curve I', N Gi , according
to [Mus2].

4.6 Main result

Let C/K be a hyperelliptic curve of genus g = 1. Choose a separable polynomial f € K[x] as in the
previous section so that C/K : y2 = f(x). Then vg(r) > 0 for every root r € K of f. Denote by R the
set of roots of [ as before. Consider the MacLane cluster picture of f and fix a centre ¢, for all
proper MacLane clusters (s,v) € Z?’I as we did at the beginning of §4.5. Denote by X the set of

proper MacLane clusters for f.

Definition 4.6.1 Let (s,v) € . Consider its cluster chain
[U07 Ul((;bl) = /117 cee avm—l((,bm—l) = /lm—la Um((pm) = Am]

Define the following quantities:
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b, =e,ley
by =lm

ky =km

fo =lky:kl
vy = v(f)

n, = 1life,v, odd, 2 if e, v, even

my=2e,/n,

t, =|sl/degv

py =1ift, is odd, 2 if ¢, is even

sv = 3(tu Ay + Pudy —Vp)

Yv =2if t, is even and €,(v, —t,1,) is odd, 1 otherwise
0, = 1if (s,v) is degree-minimal, 0 otherwise

pg =1if 6, =1 and degv = min,¢;[K(r) : K], 2 otherwise
sY =—v,12+2,

Yy, =2if pg =2 and €,V, is an odd integer, 1 otherwise

Define

5={(t,w) €T (t,w) < (s,0) and 24— — 0,v,e, ¢ 22},

_.0
Let cg =1if 26—1:” —lyvye, €27, and cg =0 otherwise. Define

0
v

ls|-% It|— (2~ pd)degv
_ (tLw)<(s,0) v Y fw 5yc

v
v wes fv

The genus g(v) of (s,v) is defined as follows:
e ifn, =1, then g(v) =0;
¢ if n, =2, then g(v) = max{|(u, — 1)/2],0}.

We say that (s,v) is iibereven if u, = 0.

Recall the definition of H,,,_1 4, for a €T from Definition 4.3.8(ii). Define g, € k,[y], and

Um-12
gdek,lylif6,=1,by
20 =yP —Hp 1 (@), u=ctllrems(x—7) mod ¢y,
I~ 0/,0
g =yP" —Hpy 1, @), u=crllresrm,(x—r) mod ¢y,

where ‘R, is the set of roots of ¢,.
Define f} € K[x] by
_0
Phflw= [ @-n),

r€\Utw)<(s,0) t

where the union runs through all proper children (t,w) < (s, v).
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Define f,, fy € ky[x] by

E(x) = Hm—l,vm_l(u)(u) : f;lv(x), u=cr [Trems(x—7) mod ¢y,
Fio@) = Folx) - 2% - Tl awes Prolo@0).

Finally, define the %,-schemes

* Xy:{fy=01CGpp,;

* Y, {g,=0tcGpp,;

¢ ¥9:{g0 =0} Gy, if (5,0) is degree-minimal.
Recall Notations 2.4.16, 2.4.17 from Chapter 2.

Notation 4.6.2 Let a,b € K[x], b #0. We denote by a mod b the remainder of the division of a
by b.

In the next theorem we describe the special fibre of the scheme C constructed in §4.5.

Theorem 4.6.3 (Regular SNC model) The scheme C — Og constructed in §4.5 is a regular model

of C with strict normal crossings; its special fibre C/k is described as follows:

(1) Every (s,v) € X gives a 1-dimensional closed subscheme T, of multiplicity m,. The ring of
rational functions of Ty is isomorphic to ky(x)y)(y™ — fo(x)). If ny =2, up, =0, and f, € k%,
then T’y = Pi LI [P’i , otherwise I'y, is irreducible of genus g(v).

(2) Every (s,v) € Z with n, =1 gives the closed subscheme X, x}, [P,i, of multiplicity e,, where
X, xp {0} Ty, (the Pis are open-ended).

(3) Every non-maximal (s,v) € Z, with (s,v) < (t,w), gives the closed subscheme

1 v degv
Yy, < P (ev)’vasvysv - %(Av - deggw/lw)),

where Y, xp {0} cT', and Y, xj, {oo} Ty,

(4) Every degree-minimal (s,v) € Z gives the closed subscheme Yl? Xp I]J’l(ev)/g, —sg), where Yl? X},
{0} c 'y (the chains are open-ended).

(5) Finally, the maximal element (s,v) € Z gives the closed subscheme Y, xp, [P’l(evyv,sv), where
Y, x3 {0} c Ty, (the chains are open-ended).

If T, is reducible, the two points in Y, xp {0} (and Yl? xp {0} if (s,v) is degree-minimal) belong to
different irreducible components of T',. Similarly, if (s,v) is not maximal with (s,v) < (t,w), and

I’y is reducible, then the two points of Y, x}, {oo} belong to different irreducible components of T'y,.
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Proof. The description of the special fibre of C follows from its explicit construction developed in
§4.5 (see especially §4.5.5). We highlight the key points.
(1) Each proper MacLane cluster (s,v) gives the 1-dimensional closed subscheme T, of Cs,

coming from the *-face F,,. The open subscheme I', (Notation 4.5.30) of I',, is isomorphic to

kv [XilaY, H(t,w)<(ﬁ,v)(¢w|v)_l]
(Yo _th/bv—fuevvvﬂv)

Spec

b

where the product runs through all proper children of (s,v). The multiplicity of ', in C; is given
by e,do, where d is the denominator of the slope s];“”. We noticed in §4.5.5 that n, = 2/dg. If

ny,=1,thenT, = IPIIe . Suppose n, = 2. We want to show that the ring of rational functions of I';, is
(4.22) Ry OIY VY™ = (X)),

If (s,v) is degree-minimal, then tg =2- p(v’ from (4.9). If (s,v) is not degree-minimal, then

there exists a child (t,w) < (s,v) with ¢,, = ¢,; in particular, tg =tw, fw=fv and so

tg/bv —lpepVy = fw;:gtlegv —lyVy€Ey.
Now let (t,w) < (s,v) with ¢, # ¢,. Theorem 4.4.29 implies that
ordy, |, (flv) = It//degw.
Note that ¢, = e, and f, degw = f,b, degv by Lemma 4.3.21. Then

. . It
delgw ¢27 if and only if fwlfvldl:gv —lyvyey € 27.

Let [vo,...,vp(¢p) = An] be the cluster chain for v. Let f5 = [1,e91s(x — 7). The Newton polygon
Ny,_1,¢,(fs) has only slopes > —A,. Then fs|, = uly, where u = f; mod ¢,.

The observations above, together with Proposition 4.3.18(iv), imply that (4.22) is the ring of
rational functions of T',,.

The subscheme given by (s,v) € X in (2) is the closure of
(4.23) UL, (U, n{Z =0}),

when E = L,. The subscheme given by (s,v) € Z in (3) or (5) is the closure of (4.23) when E =V,,.
Note that (V,)z(Z) +1 = p,/y,. The subscheme given by a degree-minimal (s,v) € X in (4) is the
closure of (4.23) when E = V. Note that (V))z(2) + 1 = p%/y". O

Remark 4.6.4. Let (s,v) € Z. Note that
(i) if ', is reducible then p,/y, = 2.
(i) if (s,v) < (t,w) and I'y, is reducible, then p,/y, = 2.

(iii) if (5,v) is degree-minimal and T, is reducible then p%/y9 =2.
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APPENDIX

RATIONAL CLUSTER PICTURE AND BASE EXTENSIONS

n this appendix we introduce two auxiliary results for Chapter 2. In §A.1 we study the
choice of a rational centre of a proper cluster. In §A.2 we show how the dualising sheaf
behaves under finite Galois extension of the base field. Note that this second result holds

for every geometrically connected, smooth, projective curve.

A.1 Rational centres over tame extensions

Let C/K be a hyperelliptic curve given by y? = f(x).

Lemma A.1.1 Let L/K be a field extension. Consider the base extended curve Cr/L and its
associated cluster picture Z¢c,. Let s € Z¢, be a proper cluster G = Stabg, (s), and K = (K 8)Gs. If
L/L N K, is tamely ramified, then s has a rational centre ws € LN K.

Proof. This proof takes ideas from [D?M?, Lemma B.1]. Let w; € L be a rational centre of s and
let ps = maxy,er min,cs v(r —w) be its radius. Recall the rationalisation st e Zg’; of s (Definition
2.3.11). Denote t = s™" and define G¢ = Stabg, (1). Since s < t we have G; < G¢. Furthermore,
Gal(K®/L) < G¢. Let Fs = LN K,. Then Gal(K®/F;) < G¢. Since L/F; is tamely ramified, we can
consider a maximal tamely ramified extension F! of F, extending L. Write F" for the maximal
unramified extension of F in Fst Fix a uniformiser 7; of F. Since L/F is tamely ramified and
ws € L, for a sufficiently large b fix a choice of {/ms such that ws € F{"({/ms). Write the v-adic
expansion of ws as

_ b t b t+1
Ws =Up\/TTs T U1V Ts +...

for a suitable ¢ € Z, with u; € F'". Define

w= Z ul\b/n_sl.

l<ep,xkbps
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We first show that w € FL. It trivially follows if w = 0. Suppose 0 # w ¢ F!, and that ug, {’/n_slo is
the lowest valuation term of the expansion which is not in F!. Let w' = Yl<ly Ul {’/n_gl. Note that
w'e F;f for our assumption on /g. As v(w — ws) = ps, we have v(ws —w') = v(w —w') = lo/er xb.
Since L < Fg, we have w; —w' € F; and so the denominator of /y/b is not divisible by p. But then
up, Y € F as u;, € F*" < Ft and /7, € FL.

Let D¢ = {x € K® | v(x—ws) = ps} be the smallest disc in K® cutting out t. Note that Stabg, (D) =
Gi. Since w € Dy, for 0 € Gal(K®/F ;) < G¢ we have o(w) € D¢ and so v(o(w) —ws) = ps. Therefore
the terms in the v-adic expansions of o(w) and w agree up to {/m, 7<% b5 (excluded). Furthermore,

if w € L, then w is a rational centre of s. Indeed, for any r € s one has
v(r —w) =min{v(r — ws),v(w — ws)} = ps.

We showed w € Fg It remains to prove that w € F, i.e. it is Gal(K®/F;)-invariant. Suppose not,
and that u; /7, ! is the lowest valuation term of the expansion which is not Gal(K®/F;)-invariant.
Note that the denominator of /b is not divisible by p since w € Fg If b 11, then there is some
element o of tame inertia of F; which fixes u; € F" and maps {’/n_sl to { \b/n_ﬁl, where { #1 is
a root of unity; this contradicts the fact that o(w) =w mod {’/n_geFﬁ’Kbps. If b |, then we must
have u; ¢ Fs. Then there exists some element o € Gal(F"/F;) so that o(u;) # u;; this contradicts

o(w)=w mod YT,eFx4P+ similarly to before. O
A.2 Dualising sheaf under base extensions

Let F/K be a finite Galois extension and let Of be the ring of integers of F'.

Lemma A.2.1 Let M be a flat Ogx-module and Mg := M ®0, Of. Then

M = Mgal(F/K) ={m e Mg |o(m)=m for every o € Gal(F/K)}.

Proof. As M is flat, the functor M ®¢, — is (left) exact. From the isomorphism Og = Ogal(F B it
follows that
M ®0k OK =M ®0g Ogal(F/K),

that is M = Mgal(F ) as required. O

Proposition A.2.2 Let C be a geometrically connected, smooth, projective curve of genus g =1
and let C be a regular model of C over Og. Denote by Cr and Co, the base extended schemes. Then
H'(Cr,wcpi0,) = H(C,wci0,) ®0, OF and

H'(C,wci0,) = H(Cr,wcp0,) 0 ).

Proof. The lemma follows from the following results: [Liu4, Proposition 10.1.17], [Liu4, Theorem
6.4.9(b)], [Liu4, Exercise 6.4.6], [Liu4, Corollary 5.2.27] and the previous lemma. O
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SMOOTH COMPLETION AND BAKER’S MODEL

he content of this appendix is particularly related to Chapter 3. In §B.1, as a corollary
of a more general result on varieties, we show that every smooth projective curve has a
dense open subscheme which is isomorphic to a smooth plane curve. In §B.2 we show that

not every smooth projective curve C admits a Baker’s model.

B.1 Birational smooth hypersurface of a variety

Let % be a perfect field. Recall that an algebraic variety Z over k, denoted Z/k, is a scheme
Z — Spec k of finite type.

Lemma B.1.1 Let Z/k be a geometrically reduced algebraic variety, pure of dimension n. Suppose
either n > 0 or k infinite. Then there exists a separable polynomial f € k(x1,...,x,)[y], such that
k(Z)=k(x1,...,x)Ly)(f).

Proof. Let Z1,...,Z,, be the irreducible components of Z. From [Liu4, Proposition 7.1.15], [Liu4,
Lemma 7.5.2(a)] it follows that k(Z) ~ @7, k(Z;). Let i = 1,...,m. As Z is pure, dimZ; =dim Z = n.
Since Z; is geometrically reduced and integral, it follows from [Liu4, Proposition 3.2.15] that
the field of functions k(Z;) is a finite separable extension of a purely trascendental extension
k(x1,...,%,). Hence there exists a monic irreducible separable polynomial f; € k(x1,...,x,)[y] such

that
k(Z;) = k(x1,...,2)y1(f3).

We want to show that we can inductively choose the polynomials f; above such that f;
and f; are coprime for all j <i. Suppose we have fixed fi,...,f;—1 for some i = 1, and let g; €

k(x1,...,x,)[y] be any monic irreducible polynomial such that £(Z;) = k(x1,...,x,)[y)/(g;). Since
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k(x1,...,x,) is infinite, there exists ¢ € k(x1,...,%,) such that 7.g; # f; for any j < i, where 7.g; is
the polynomial defined by 7.g;(y) = gi(y —¢). But 7.g; and f; are irreducible monic polynomials,

so ged(t.gi,fj) = 1. Moreover, 7.g; is separable and
k(x1,...,x)yW(g;) = k(x1,...,x)[y(zc8i)

via the map taking y — y — c¢. Then choose f; = 1. g;.
Thus assume ged(f;,f;) =1 for any i,j = 1,...,m. From the Chinese Remainder Theorem it
follows that

m

k(xl,,xn)[y] . k(x1>~"’xn)[y]
i@l (f) - (f) ’
where f =][", fi. O

KZ)=DrZ) =
i=1

The following result is a variant of [BMS, Theorem 5.7].

Theorem B.1.2 Let Z/k be a geometrically reduced, separated algebraic variety, pure of dimension
n. Suppose either n > 0 or k infinite. Then there exists a smooth affine hypersurface V in AZ”

birational to Z.

Proof. Lemma B.1.1 shows that there exists a separable polynomial f € k(x1,...,x,)[y] such
that k(Z) = k(x1,...,x,)[yl)/(f). Rescaling f by an element of k(x1,...,x,) if necessary, we can
assume that f is a polynomial in k[x1,...,x,,y] with no irreducible factors in k[x1,...,x,]. Hence
the total quotient ring of kl[x1,...,x,,yI/(f) is k(x1,...,x,)[yI/(f). It follows that there exists a
birational map Z--»Z,, where Z is the affine hypersurface defined by f(x1,...,x,,y) = 0. Let
A =Ekl[x1,...,x,,yI/(f) be the coordinate ring of Z. If Z( is smooth then we are done. Suppose Z
is not smooth. Then there exists A € J Nklx1,...,x,], where J < k[x1,...,x,,y] is the ideal defining
the singular locus of Zj.

The rest of the proof follows the spirit of [BMS, Theorem 5.7]. Expand f = Z?:o ciyt, where
c; € klxy,...,x,], and cg # 0. Via the change of variable (hc%)y’ =yweget f= Zfzoci(hcg)i(y’)i.
Dividing by cq, we define f' =1 +Z‘ii:1 cicf)_l(hcoy’)i and Z{, = Spec klx1,...,%,,y'V(f'). Then via
the homomorphism y — (hc(z))y’ we see that Z is isomorphic to the smooth dense open subvariety
D(hco) of Zo. Thus Zj, is a smooth affine hypersurface in AZ” birational to Z. O

Lemma B.1.3 If a smooth affine curve Cy/k is birational to a smooth projective curve C/k, then C
is isomorphic to the smooth completion of Cy. Equivalently, there exists an open immersion with

dense image Co — C.

Proof. Since C is complete and C( is smooth and separated (as affine), the birational map Cy-->C
uniquely extends to a separated birational morphism ¢ : Cy — C. Denoting by C the smooth
completion of C( note that ¢ decomposes into the canonical open immersion Cy — C and the
morphism 7: C — C extending the rational map given by 1. Therefore it suffices to prove that 7 is

an isomorphism.
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First note that 7 is proper by [Liu4, Proposition 3.3.16(e)] since C and C are complete. Fur-
thermore, both C and C are smooth, so they are geometrically reduced and have irreducible
connected components. For any connected component U of C there is a connected component U of
C such that 7 restricts to a morphism (7 : U — U. Note that 17 is a proper birational morphism,
as U is a closed subscheme of C and 7 is proper birational. Since both U and U are integral and
smooth of dimension 1, and so normal, [Liu4, Corollary 4.4.3(b)] implies that 7 : U — U is an

isomorphism. It follows that 7: C — C is an isomorphism. O

Corollary B.1.4 Every smooth projective curve C/k has a dense affine open which is isomorphic

to a smooth plane curve.

Proof. From Theorem B.1.2 there exists a smooth affine plane curve Cy birational to C. Then

Lemma B.1.3 concludes the proof. O

B.2 Existence of a Baker’s model

Let & be a perfect field. We say that a curve C/k is nice if it is geometrically connected, smooth
and projective over k. In this appendix we slightly extend some results in [CV1, CV2] for studying
the existence of a Baker’s model of a nice curve. Define the index of a nice curve C/k to be the
smallest extension degree of a field K/k such that C(K) # &.

Lemma B.2.1 Let C be a nice curve of genus 1. Then C admits a Baker’s model if and only if C

has index at most 3.

Proof. Suppose C has index at most 3. Then by [CV1, Lemma 4.1] the curve C is nondegenerate.
Hence C has an outer regular Baker’s model.

Suppose now that C admits a Baker’s model. Then there exists a smooth curve Cy — C defined
in Gﬁl L by f € E[x*!, y*1] such that the completion C1 of Cy with respect to the Newton polygon
A of f is regular. We follow the spirit of the proof of [CV1, Lemma 4.1]. Since the arithmetic
genus of C is 1 there is exactly 1 interior integer point of A. There are 16 equivalence classes of
integral polytopes with this condition (see [CV1, Appendix]). Then without loss of generality we
can assume A is in this list. Note that there is an edge ¢ < 0A such that #(¢ N Z2) < 4. Let v be
the normal vector of ¢ and a = (v,()) € 21. Then f|, has at most 3 roots in 2* by Proposition 3.4.1.
Therefore the splitting field K of f|, has degree < 3 over k. Furthermore, by definition C; has at

least one point defined over K visible on C,. Thus C1, and so C, has index at most 3. O

Remark B.2.2. The lemma above implies that there are nice curves which does not have a Baker’s

model. Indeed, if £ is a number field, [Cla] proves there exist nice curves of genus 1 of any index.

Theorem B.2.3 Let C be a nice curve of genus g < 3. If k is finite or C(k) # @ then C admits a

Baker’s model.
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Proof. The first theorem in [CV1] and [CV2, Proposition 3.2] show C is nondegenerate except

when C is birational to a curve Cj given in G , by
m,k

=@+ + @y +xyx+y+D+G+y+1)72 with k& =Fs, or
f(3)=(x2+1)2 +y_y3’ with & =F3.

Recall that if C is nondegenerate then it has an outer regular Baker’s model. Therefore it suffices
to show that in the two exceptional cases above the completion C; of the curve C( with respect to
its Newton polygon is smooth. We use the notation of §3.1.3.

Suppose & =Fy and Cq : f@ =0 over G?n,[FZ. Note that Cg is smooth. Denote f = f®. The

Newton polygon A of f is
y
(0,4)

¢
5 ;

X
¢1 (4,0)

where the normal vectors of the edges ¢1, ¢2, ¢35 of A are respectively f1 = (0,1), B2 = (1,0),
B3 =(=1,-1). Then by fixing 65, =(1,0), 6p, =(-1,-1), g, =(0,1) we have

fo.X,Y)=(X?+X+1?+X(X + DY +(XZ+X + DY 2+ Y4,

for every i = 1,2,3. Note that the points on Y =0 are regular points of Cy,. Thus C, is smooth for
any edge ¢ of A and so C1 is smooth.
Suppose k =F3 and Co : f® =0 over G?n Fy- Note that Cg is smooth. Denote f = f®. The

Newton polygon A of f is
Yy
(0,3)

¢
5 3
X
/1 (4,0)

where the normal vectors of the edges ¢1, ¢2, ¢35 of A are respectively f1 = (0,1), B2 = (1,0),
B3 =(-3,—4). We can choose 63, =(1,0) so that

fo, (X, Y)=(X2+1)2+Y -Y3.

The points on Y =0 are regular points of C,, and so C/, is smooth. Furthermore, up to a power
of X the polynomials f|s, and fl¢, equal X3+ X2 —1 and —X + 1 respectively. It follows that the
charts Cy, and Cy, of C1 are regular. Thus C; is smooth. O
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APPENDIX

PSEUDO-VALUATIONS AND AN EXPLICIT TOROIDAL EMBEDDING

n this appendix we cover some definitions and results for Chapter 4. In §C.1 we give the
definition of pseudo-valuation and of the associated objects. In §C.2 and §C.3, we explicitly

describe the toroidal embedding introduced in §4.5.2.

C.1 Pseudo-valuations

Let A be an integral domain (with identity). Let Q = Q U {oo}. The ordering and the group law on

Q are canonically extended to the set Q.

Definition C.1.1 A map v:A — @ is called pseudo-valuation (of A) if
(a) v(ab)=v(a)+v(b),
(b) v(a+b)=min{v(a),v(b)},

for any a,b € A. A pseudo-valuation v is said valuation if it also satisfies
(c) v(a)=ocif and only if a = 0;

we call it infinite pseudo-valuation otherwise.

Definition C.1.2 Let v: A — Q be a pseudo-valuation.

* The valuation group of a pseudo-valuation v : A — @, denoted Ty, is the subgroup generated
by the subset v(A)NQ of Q. Note that if Z < v(A), then I', =v(A)N Q.

® v is discrete if there exists e € Z, such that eI, = Z. If that happens, then e, = e is said

ramification index of v.
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e The valuation ring O, of a pseudo-valuation v: A — @ is the set of @ € A with v(a) = 0.

* The residue ring of v is the quotient of O, by the prime ideal O; consisting of the elements
a € A with v(a) > 0.

¢ Ifv is a valuation, the residue field of v is the residue ring of the valuation of Frac(A) that

v induces.

C.2 Explicit matrices

In this section we explicitly describe the matrices introduced in §4.5.1. Recall the notation of

§4.5.1. Suppose the permutation 7 equals the identity. Let m;., for j=0,...,h, be the quantities
defined in Lemma 4.3.7. Then
er  —hem| ... —hp_ym| O  —fpam| ... .. —Bnm} 0 0
0 e —hp_imly 0 —Bpamy .. .. —Bum,, 0 0
en-1 0 —Bpyamy_q o Pam)_; O 0
0 dax Bl e o -B,  diby —dii1by
R _
ME,I. 0 1 0 0 0 0
0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 Say 0 0 0 diby —dii1by
—himl —hgmy ... —hp_imy Sar —Ppiamfy ... ... Pomly gL -
where for any o=h +1,...,n we have
0 if yo > vg, , v(wol Ay if po > vg,
ﬁo = . ﬁo = .
€,0(W,) otherwise, 0 otherwise.
Therefore
e1
eg *
bvy dijwy —dji1wx
detngi = ep_1 -|6vy dijwy —dipqwy|=1
RO _Dit1
1 vz 56‘: 6l€,,
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C.3. MACLANE CLUSTERS FAN

Furthermore, T} and T equal respectively

1 dazcl ’Z{:Ul —Rizlcl igelvcl
n;cp_— n; Ch—
1 6azch_1 l5ehu 1 _ H($lgvh 1
1 By ki
1 T T8
1 1
1 1
and T,;l and T~! are respectively
1 —bazcy 7—’3":111 7’Li+€1vcl
n;cp_— n; Ch—
1 _6a2‘ch—1 _ lﬁehvl t+61€l)h 1
1 k ki1
, 1 B P
1 1
1 1

where all missing entries are Os.
Finally, the vectors ¥,, for 1 <o < n, first n rows of the matrix M% ;> are

hp-1mo

Br+1mo
b b EU .

(0,...,0, L, fer1me

sV 5
€o” Cupyg

Bnmo :
- B 0,0) if1so0<h,

Vo =1430,...,0,by,B, 1 by,..., Bpby, bz, 0)
(0,...,0,1,0,...,0) = ¢,

ifo=h,

ifh<o<n,

C.3 MacLane clusters fan

We want to show that the cones constructed in §4.5.2 form a fan. Let 2 = 1,...,n. Recall the

degree-minimal MacLane cluster (sp, up). Let
[UO,Ul((/)l) =A1,... s Um—l((/)m—l) = Am—lavm((/)m) =Aml

be the cluster chain for uj. Let ¢ € R, with ¢ > A,,_1 if m > 1. Define the valuation vj . : K(x) — ®
given on K[x]* by

vne(Xjciw)) = min; (vm-1(c))+jc), ¢;€Klx, deglc;) < deg(yy).

Note that when m =1, then degvy, = 1 and so vo(c;) = vk(c;).
Let (s,v) be a proper MacLane cluster with centre ¢, = v, and let E be the h-edge L,, V,, or
VUO if (s,v) is degree-minimal. Recall the notation of §4.5.1. Let r =rg and § = 6.

Lemma C.3.1 Foranyi=0,...,r+1, there exist a, f € Qxo, such that
W; = aldo + Pdri1.
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Proof. Ifi=0o0ri=r+1, the statement is trivial. Then assume 1 <i <r. Since nod; > n;dy and

nidr+1>nr;+1d;, there exist a;, 8; € Q.+ such that
ainido+ Pinidri1=ainod; + finr+1d;.
Define e = m, a=ea;, f=epP;. The lemma follows from (4.15). O
Lemma C.3.2 Let ceR and vy . : K[x] — R as above. If
(1) (s,v)<(t,w), E=V,, and w(yp)<c< Ay, or

(it) (s,v) maximal, E =V,, and ¢ < A, or

(iii) (s,v) degree-minimal, E = Vlf), and ¢ > Ay,
then vy (y;E)=0forany j=1,...,n, j#h.

Proof. Let j=1,...,n, j#h. Expand

d
V= Z CtU/Z, c;€Klxl, cq #0,degc; <degyy,.
=1

If j = 7(0) for some o < m, then vy, (V) = vy —1(y ). It follows from Lemma 4.3.3 that v, (v ) = 0.
Hence assume j # 7(0) for all o <m.

(i) Assume (s,v) < (t,w), E =V, and w(y}) < c < A,. Suppose y; =v. Lemma 4.5.10 implies
that cq =1 and v(y;) = v(wg) =dA,. Since ¢ < A, we have vy, .(y;) = dc, by definition. Then
Un,c(yj,E) = 0. Suppose u; # v. Therefore

v(y ;) =wy;) <vp () <vly;).

where the first equality follows from Lemma 4.5.10. Hence vy, (v, r) = 0.

(i) Assume (s,v) maximal, E =V,, and ¢ < A,. Then y; = v. Lemma 4.5.10 implies that ¢4 =1
and v(y;) = v(z//z) =dA,. It follows that vy, .(y;) = dc as ¢ < A,. Therefore vy (v, ) = 0.

(ii1) Assume (s,v) degree-minimal, E = VU0 ,and ¢ > A,. Recall the definition of vg. Then u; # vg
and vg(y;) = vy () = v(y;). It follows from (4.13) that vy (v ;) = v(y ;). Thus v, (y;£)=0. O

Lemma C.3.3 For any @ € 0g; ;+1\OE,i+1, there exists c € R, with ¢ > A,,,—1 if m > 1, so that
@ =e(pc(WY1),...,0p,(yy),C,1),
for some e € Ry, C €R. In particular,
(1) if (s,v) < (t,w) and E =V, then w(yy) <c < Ay;
(ii) if (s,v) maximal and E =V, then ¢ < A,;
(iii) if (s,v) degree-minimal and E = VUO, then ¢ > Ay;
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C.3. MACLANE CLUSTERS FAN

(iv) if E =L,, then c = A,.

Proof. From Lemma 4.5.15, the statement is true for @ = @¢. So suppose @ # @9. Lemma C.3.1
implies that @ = a@g + Bd,+1 for some a,F € R,. Let e € R, c € R as follows
_anoay+ pnriiay

e=adepdo + Boepdri1, c= —azb,.
e

From the definition of @9 and @&,,1 in (4.15) we have
o=e(c@p1+azt,...,Capn + Axn,C,1),

for some C € R. Furthermore, ¢ satisfies the inequalities of cases (i)-(iv) by Lemma 4.5.15. In

particular, ¢ > 1,,-1 if m > 1. From (4.14), Lemma C.3.2 concludes the proof. O

Remark C.3.4. Note that the element ¢ € R in Lemma C.3.3 is uniquely determined by the vector

@. Indeed, ¢ equals the division of the A-th coordinate of @ by its last coordinate.

Leti=0,...,r+1, with i <r if E is outer. Let ¢; = &fl—fd_ay —a,b,. We define the valuation

wg,; : Klx] — O by wg,i(8) =vp ¢, (g) for any g € K[x]*. In other words, wg ; is given on K[x]* by
(C.1) wg,i(¥Xja;v)) = min; (v_(a;) +jc;),
where a; € K[x], deg(a;) < deg(y}). In fact, wg ; is the MacLane valuation
wg,;i = [v-,wE,i(Wr) = 5 g ay —azby],
except possibly when (s,v) is maximal, E =V, and 1 <i <r. Lemma C.3.3 implies that
w; =bey_di(wg i(y1),...,wg,(y,),C,1),
for some C € Q. We denote C by wg ; ().

Theorem C.3.5 The set of cones X defined in §4.5.2 is a fan.

Proof. For any *-edge E let

rE
OE0rg+1= U OFEii+1-
=0

By Lemma C.3.1 it suffices to show that the set
Y={oog}u |J (OE0UOErc+1U0E0rz+1)

E x-edge

is a fan. But this follows from Lemma C.3.3. O
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