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Self-assembled microstructures with localized graphene domains in an 
epoxy blend and their related properties 

Suihua He a, Hartmut Stadler b, Xuankai Huang c, Xiang Zheng d, Guanjie Yuan d, Martin Kuball d, 
Miriam Unger b, Carwyn Ward a, Ian Hamerton a,* 

a Bristol Composites Institute, Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical, Engineering, Queen’s Building, University of Bristol, 
University Walk, Bristol BS8 1TR, UK 
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A B S T R A C T   

Locating nanoparticles in selected areas via the mixing of two immiscible polymers is widely studied for 
achieving nanocomposites with next-level performance, however, the formation of a phase-separated domain 
constructed with nanofillers from entirely miscible molecules is rarely achieved in the literature. Here we 
demonstrate a method to fabricate a self-constructed bi-continuous phase structure with localized amine- 
functionalized graphene nanoplatelets (A-GNPs) in a liquid processable multi-component epoxy blend. Atomic 
force microscopy infrared spectroscopy (AFM-IR) was employed to identify the compositions of the phase- 
separated microdomains formed during self-assembly by A-GNP in the multi-component epoxy blend, with 
incorporating 1-(2-aminoethyl) piperazine (AEPIP) found to be the driving force for the formation of the gra-
phene microdomains. Nanoindentation measurements show that a Young’s modulus of 6.3 GPa for the graphene 
domain was achieved, which is nearly twice that of the epoxy resin (3.2 GPa). Transient thermoreflectance re-
sults indicate that the thermal conductivity of nanocomposite with phase-separated graphene domain reached 
0.48 W/mK, exhibiting a significant enhancement (70%) when compared to epoxy resin, while maintaining 
excellent dielectric properties. Overall, this study provides a simple and effective route to fabricate phase- 
separated microstructure with nanoparticles from a liquid processable nanocomposite blend, which shows the 
great potential of this promising new approach to fabricate nanocomposite films with excellent performance for 
microelectronics applications.   

1. Introduction 

The rapid development of electronic devices used in cutting-edge 
fields such as the aerospace industry and 5G technology, has led to de-
mands for advanced packaging materials with better performance, 
longer lifetimes, and higher reliability. To solve the issues raised by the 
increase of power density in smaller, more densely packed microelec-
tronic devices, dielectric polymer composites with high thermal con-
ductivity and low crosstalk are considered to be promising candidates 
[1-3]. Thermoset epoxy resins with crosslinked molecular architectures 
have been regarded as one of the ideal polymer matrices for the fabri-
cation of microelectronic packaging materials, due to their reliable 
mechanical properties, high dielectric strength and low dielectric loss 

properties, thermal stability and easy processing [2,4]. However, further 
improvements in the design and development of dielectric polymer 
nanocomposites with tailored properties are needed to fulfil the re-
quirements of the aforementioned applications and the addition of 
nanofillers to polymer matrices has been widely reported as one of the 
most effective approaches for the preparation of nanocomposites with 
multi-functional properties [5-8]. 

Compared with carbon nanotubes (CNTs), graphene, which has a 
higher surface-to-volume ratio and a lower production cost [9], exhibits 
excellent thermal and mechanical properties; emerging to be the desired 
filler for high-performance epoxy-based nanocomposites [10,11]. 
However, the full potential of these composites has yet to be fully 
realized, due in part to the difficulties of dispersing carbonaceous fillers 
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in polymer matrices[12,13]. In order to form a highly efficient filler 
conductive network, the structural design of the composites with the 
selective distribution of nanoparticles is considered to be one of the most 
promising techniques offering the potential to fabricate spontaneously 
organized nano-micro scale structures [5,14,15]. The distinct properties 
of the nanoparticles can be integrated into assemblies of the nano-micro 
domain, which leads to novel superstructures with unique combinations 
of properties. 

Selective localization of nanoparticles in shaping the final properties 
of thermoplastic (TP)/ thermoset (TS) systems has been widely studied 
in the past decade. There are now a number of reports illustrating the 
preparation of multifunctional epoxy/thermoplastic composites by 
incorporating self-assembling nanofiller networks within a specific 
continuous domain [15-17]. Zhang et al. [15] prepared epoxy/poly-
ethersulphone (PES) nanocomposites through the incorporation of gra-
phene nanoplatelets (GNPs) to yield a self-assembled filler network via 
reaction-induced phase separation (RIPS); the resulting composites 
exhibited almost a 3.5-fold enhancement in thermal conductivity when 
compared to the pure epoxy, or 52% compared to the epoxy/GNP 
composite containing no PES. 

Similarly, Jin et al. [16] used boron nitride nanosheets (BNNSs) to 
develop an effective and facile method to force the construction of a 
three-dimension thermal conductive pathway in BNNSs-NH2/epoxy/ 
polyetherimideternary blends via RIPS. The resulting nanocomposites 
displayed an impressive 83% enhancement in through-plane thermal 
conductivity (from 0.18 to 0.33 W m− 1 K− 1) with a modest (1 wt%) 
BNNSs-NH2 loading. However, the lower thermal stability and high 
viscosity of the resulting blends caused by the high molecular weight of 
the TP used in the blend limit their potential applications to those where 
infusion processing is not commonly used. Additionally, while modern 
epoxy blends containing TP films and particles may display high fracture 
toughness, this usually comes at the expense of matrix stiffness. For 
example, a composite prepared from a third-generation toughened 

epoxy prepreg HexPly M21/HexTow IM7 displays a compression after 
impact value of 30 J = 298 MPa, and interlaminar shear strength of 110 
MPa, with a cured dry Tg of 195 ◦C, but the compression properties 
remain relatively modest (modulus 148 GPa, strength 1790 MPa) [18]. 

Selective localization of nanofillers in TS blends is rarely achieved 
and consequently, very few literature examples show the successful 
development of phase-separated structures via RIPS in TS/TS blends, 
although the use of benzoxazine (BOX)/cyanate ester (CE) [19], BOX/ 
bismaleimide (BMI) [20-23] and BOX/epoxy resin blends have been 
reported. Wang et al. [20] fabricated BOX/BMI blends with bi- 
continuous phase structures via the use of an imidazole initiator and 
found that both the phase separation and phase morphology were 
determined mainly by the viscosity parameters of blends. Zhao et al. 
[24,25] investigated the RIPS behaviour in BOX/epoxy resin systems 
and found that realizing sequential polymerization of the epoxy resin 
and BOX either by increasing the initial molecular weight of epoxy resin 
or by adding imidazole achieved a phase-separated structure. However, 
this additional level of complexity means that TS/TS blends are rarely 
studied in detail and a systematic study of the mechanism of phase 
separation behaviour in TS/TS systems with selective localization of 
nanofillers remains largely unexplored. 

Recently, Huang et al. [26] reported that the selective location of 
multiwall CNTs (MWCNTs) in the continuous domain of an epoxy 
nanocomposite blend dramatically improved the measured electrical 
properties of epoxy composites (with an ultra-low percolation threshold 
of ~ 0.032 wt% MWCNT) while maintaining excellent tensile strength 
(37 ± 1.28 MPa) and modulus (2.88 ± 0.14 GPa). Although the re-
searchers offered much insight into the structure, properties, and phase 
behaviour of TS/TS blends, the study relied heavily on imaging (trans-
mission electron microscopy, TEM, scanning electron microscopy, SEM, 
and optical microscopy) [27,28] and thermal analysis techniques such 
as dynamic mechanical thermal analysis [29]. Whilst offering powerful 
evidence to characterize the resins and identify the phase behaviour and 

Fig. 1. Fabrication process and structure of phase-separated domain with A-GNP, a) A-GNPs dispersed in RS-MH137 via ultra-sonication and c) AEPIP incorporated 
in the mixture before mixing with Epoxy blend for fabricating nanocomposite films. b, d) Corresponding optical images of the films fabricated by the multi- 
component blend of Epoxy/MH137/A-GNPs and Epoxy/MH137-AEPIP/A-GNPs, respectively (Scale bar: 100 μm). e) AFM images and virtual details of final opti-
cally reconstructed morphology. f) Corresponding SEM image of the cross-section. 
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selective localization of MWCNT in the TS/TS system, the study lacked 
direct evidence about the chemical distribution of each component at 
the molecular level and this forms the impetus for the current study. 

Atomic force microscopy-infrared (AFM-IR) spectroscopy is a hy-
phenated analytical technique, that has emerged recently, and combines 
the high spatial resolution of AFM with the chemical analysis capability 
of conventional IR spectroscopy [30,31]. Specifically, in polymer sci-
ence, it is believed that the application of AFM-IR could play an 
important role in understanding the mechanism of the heterogeneity 
structure in the polymer blends [32-35]. In the present work, we propose 
a facile and widely applicable methodology for preparing a nano-
composite film with self-assembled nanofiller domains, exhibiting high 
thermal conductivity and mechanical properties while maintaining 
excellent dielectric properties. Specifically, we report the use of AFM-IR 
spectroscopy to identify the chemical distribution of a self-assembled 
phase domain with selective localization of amine-functionalised GNPs 
(A-GNPs) during the cure of a liquid processable commercial epoxy 
blend for investigating the plausible mechanisms, which might enable 
the controlling of the phase structure with selective localization of 
nanofillers in TS systems. 

2. Experimental section 

2.1. Materials 

Component A, RS-M135 (PRF Composites, UK) is an epoxy resin 
produced from bisphenol A diglycidyl ether (DGEBA) (CAS No. 25068- 
38-6) with a number average molecular weight, Mn < 700 g/mol. 
(70–90 % w/w) and containing an added proportion of 1,6-hexanediol 
diglycidyl ether (DEGH) (CAS No. 16096-31-4) as a reactive diluent. 
Component B, RS-MH137 (PRF Composites, UK), is a curing agent that 
contains (a) 3-aminomethyl-3,5,5-trimethylcyclohexylamine (or iso-
phorodiamine, IPDA) (CAS No. 2855-13-2) 35–50 % w/w, and (b) pol-
yoxypropylenediamine (CAS No. 9046-10-0) (denoted POPD) 50–70 % 
w/w. Component C, 1-(2-aminoethyl) piperazine (AEPIP) (CAS No. 140- 
31-8) was purchased from Sigma Aldrich. The chemical structure of the 
main components used appears in Fig. 1. Amine-functionalized gra-
phene nanoplatelets (A-GNPs) with a mean diameter of 2 μm and 
thickness under 4 nm were purchased from Cheap Tubes Inc., USA and 
used as reinforcement in this study (Fig.S1a). According to the manu-
facturer, these GNPs were produced by mechanical exfoliation process 
and then surface modified with > 7% primary amino (NH2) functional 
groups (the corresponding IR spectrum shown in Fig.S1b). All the ma-
terials in this study were used as received without further purification. 

2.2. Sample preparation 

To process the materials in the present study, the A-GNPs (3 wt%) 
were dispersed in a blend containing the three curing agents in a spec-
ified appropriate ratio by sonication probe in a water bath at room 
temperature for 1 h. Before the mixing process was commenced, the neat 
epoxy was degassed via a vacuum line at 25 ◦C for 10 mins. The ratio of 
epoxy resin to total curing agent was maintained at a 10:3 wt ratio for all 
samples. 

As shown in Fig. 1, two types of reinforced sample were made, first 
blendwas composed of a mixture of components A and B to fabricate a 
composite blend; second blend was cured by incorporating a mixture of 
curing agents with components B and C in a 7:3 wt ratio. The blends 
were then mixed by using a mechanical stirrer for 10 mins at 1000 rpm. 
Finally, the epoxy/A-GNPs composite films were fabricated by repeated 
spin-coating followed by a post-cure process. Briefly, the epoxy/A-GNPs 
mixture was spin-coated on a glass substrate with a rotation speed of 
1500 rpm for 1 min. The (nano)composites films were kept at room 
temperature for 60 mins before a post-cure process (60 ◦C for 4hrs) was 
employed. 

2.3. Characterization 

2.3.1. Imaging characterization of phase structure 
The distribution and dispersion of the GNPs in the epoxy matrix on a 

larger scale were studied using an optical transmission microscope 
(Zeiss Axio Imager 2, Carl Zeiss MicroImaging GmbH, Jena, Germany). 
Representative images were captured on the microscope and then pro-
cessed using ImageJ.(https://imagej.net/downloads). Atomic Force 
Microscopy (AFM) images were collected using a Dimension XR (Bruker, 
Santa Barbara) with an Icon scanner, operating in peak force tapping 
mode (nominal spring constant 0.4 N/m, peak resonant frequency of 2 
kHz). AFM images were thresholded in order to obtain binary images 
and evaluate the characteristics of different domains and only height 
images were recorded. AFM images were processed by Gwyddion 
(version 2.59, http://gwyddion.net/), and the 3D topology images, and 
a virtual detail of cross-section were generated accordingly. Scanning 
electron microscopy (SEM) micrographs (TM3030Plus, Hitachi) were 
gathered under an acceleration voltage of 15 kV after samples were gold 
sputter coated. Transmission Electron Microscopy (TEM) micrographs 
were obtained on a Tecnai T12 (Thermo-Fisher) electron microscope at 
an accelerating voltage of 120 kV. The transverse sections of samples for 
electron microscopy were cut via an Ultracut E ultramicrotome. Sections 
were 80 nm thick and supported on grids coated with a pioloform film. 

2.3.2. Spectroscopy characterization 
Bulk infrared spectra were acquired using a PerkinElmer Spectrum 

100 FTIR spectrometer (Beaconsfield, UK). The spectrum range was 
4000–600 cm− 1, and 16 scans were acquired and co-added for each 
measurement. Spectrum software was used for the collection and anal-
ysis of IR spectra. 

To distinguish each phase from one another and thus to further un-
derstand the chemical distribution in the phase-separated domain in 
such ternary films, atomic force microscopy-infrared (AFM-IR) spectral 
measurements were performed on a NanoIR3 system (Bruker Nano 
Surfaces & Metrology, Santa Barbara, USA Cooperation) operating with 
top-down illumination and equipped with two pulsed tuneable lasers 
(Fast Spectra OPO and Fast Spectra QCL) to cover the wavenumber 
range from 3600 to 2700 cm− 1 and 1800–800 cm− 1, respectively. The 
experimental configuration is shown schematically in Fig.S2 along with 
the measurement principle of the photothermal AFM-IR technique. In 
addition to the IR spectra, the AFM-IR provides IR images, the so-called 
chemical mapping, with which the individual components can be 
identified [32,33,36]. The ratio of AFM-IR maps at different wave-
lengths is often used for chemical analysis to cancel the possible 
nonchemical effects on the IR signal response such as the sample stiff-
ness and different thermal expansion coefficients [37]. In this work, a 
contact cantilever was used for data acquisition, which was operated in 
contact AFM mode (resonance-enhanced AFM-IR mode). Scans were 
performed at wavelengths wavenumbers of 2932 cm− 1, 2802 cm− 1, 
1512 cm− 1, and 1456 cm− 1; ratio images were created from the indi-
vidual scans. The individual scans are put into ratio and the height 
images of the individual measurements are subtracted/correlated. All 
the images generated were subsequently analysed using Analysis Studio 
software (Anasys InstrumentsBruker Nano Surfaces and Metrology, 
Santa Barbara, CA, USA). 

2.3.3. Properties measurements 
Mechanical properties. Nanoindentation tests were performed 

using a Hysitron TI Premier nanoindentation with Berkovich diamond 
tip under load control at room temperature. Each composite sample was 
subject to one set of nanoindentation test. For each sample, at least five 
indents were performed at different domains on the surface. The loading 
rate and maximum loading were 500 nN/s and 5mN, respectively. The 
unloading rate was set equal to the loading rate. The loading time, 
holding time, unloading time, and maximum indentation force (Pmax) 
are 10 s, 20 s, and 10 s for all testing samples. The separation distance 
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between each nanoindentation point was 100 μm. The relative elastic 
modulus (Er) was obtained for each set of data of indented samples. 
Young’s Modulus E was calculated from the following equations [38]: 

1
Er

=
1 − v2

E
−

1 − vi
2

Ei
(1) 

where Ei (1140 GPa) and νi (0.07) are the elastic moduli and Pois-
son’s ratio of the diamond indenter [39], and ν = 0.34 is the Poisson’s 
ratio of the epoxy resin [40]. 

Thermal properties. Transient thermoreflectance (TTR) measure-
ments were conducted to access the thermal conductivity of the thin 
composite films. The samples were coated with 145 nm of Au on a 10 nm 
Cr adhesion layer as a transducer. A 532 nm probe laser (spot size ~2 
μm) was used to monitor the reflectivity, while a 355 nm nanosecond- 
pulsed pump laser (spot size ~85 μm) was used to periodically heat 
the sample surface [41]. The experimental configuration and principle 
of TTR measurement are described in Ref. [42]. The thermal conduc-
tivity of different samples was fitted by the properties of materials, as 
summarised in Table S1. Specific heat of the composite films was 
measured by using a Netzsch differential scanning calorimeter (DSC 
204F1). 

Scanning Probe Microscopy (SThM) measurements were carried out 
on a Nano-IR2 system (Bruker, Santa Barbara, CA, United States) via the 
SThM mode with a scan rate of 0.2 Hz per line, which is a mode where a 
special AFM tip is scanned across the sample surface in the contact mode 
by using a resistive thermal probe. As the tip changes temperature due to 
variations in the thermal conductivity or temperature of the sample in 
contact with the tip, the resistance of this element changes. This resis-
tance change is monitored by the hardware using a Wheatstone bridge 
circuit and can be output to the controller to generate an image. The 
design and specific information about the bridge configuration are re-
ported in Ref. [43]. Then the voltage applies to the resistive thermal 
probe, balances the Wheatstone bridge and measures a voltage that is 
characteristic of the resistance of the probe. Thus, the SThM image 
shows the change in output voltage for the two domains due to their 
differences in thermal conductivity. The electrical resistivity of the 
probe is 600 O and the heating voltage is 2 V. 

Dielectric properties. The broadband frequency dielectric charac-
teristics of the composites were measured using a Solartron SI 1260 
impedance analyzer (Advanced Measurement Technology, Inc, UK) in a 
frequency range of 102 to105 Hz. All the samples have a layer of silver 
coated on both surfaces to serve as electrodes. The samples were 
considered as plane capacitors and described by parallel resis-
tor–capacitor (RC) circuit systems. The complex dielectric constant (ε*) 
was calculated as follows: 

ε* = ε’ − jε’’ (2) 

where ε’ and ε’’ correspond to the real and imaginary parts of the 

complex dielectric constant, respectively. ω = 2πf is the angular fre-
quency, and the dielectric loss tangent (tan δ) was defined as 

tanδ =
ε’’

ε’
(3)  

3. Results and discussion 

3.1. Self-assembled microdomains 

Fig. 1 schematically depicts a facile procedure involving the chemi-
cal structures depicted for fabricating the phase-separated structure 
with localization of A-GNPs in the continuous domain. The material 
prepared is a very simple and liquid processable multicomponent com-
mercial epoxy blend containing A-GNPs as the reinforcing particles. 
Normally, a nanocomposite with well-dispersed nanosheets in the epoxy 
matrix would be fabricated (as shown in Fig. 1a), abbreviated as Ho-
mogeneous. Fig. 1b shows the corresponding distribution of nanosheets 
in the epoxy matrix. The resin blend containing AEPIP (Fig. 1c) formed a 
bi-continuous phase-separated microdomain with a width in the range 
of 10–40 μm (Fig. 1d), abbreviated as Separated. AFM images (Fig. 1.e) 
and SEM image (Fig.S3) demonstrate the topology and morphology of 
the phase-separated microstructure that is constructed in the epoxy 
nanocomposite film containing amine-functionalized graphene nano-
particles (A-GNPs). The smooth surface is epoxy-rich, while the domain 
with the rippled surface is characterized by the presence of graphene 
nanosheets, which suggests that during the polymerization the nano-
sheets aggregate to form a dense domain. Finally, a 3D structured 
composite film with a thickness of 20 to 30 μm was fabricated (Fig. 1.f). 
It is worth noting that the irregular thickness observed in these films is 
not a function of the spin coating process but is due to the mechanism of 
morphology development in the nanocomposite films. It arises from an 
interrelated series of steps involving polymerisation kinetics, miscibility, 
and nanomaterial assembly. A full discussion of the mechanism would 
be the subject of a subsequent manuscript. 

The morphology of the phase-separated domains was analysed by 
TEM, revealing the fine details of the nanosheets embedded in the ma-
trix (Fig. 2). It is clear that a resin domain and graphene domain are 
produced; the latter containing aggregated nanosheets. In the graphene 
domain, some individual nanosheets (which are transparent, being 
formed by only a few layers of graphene) could be seen, which indicates 
that the graphene domain is not a big agglomeration of nanosheets but 
constructed by a numbers of individually dispersed graphene nano-
sheets. This might be due to the fact that a secondary phase separation 
would normally present in the microdomain [44]. It should be noted 
that a large agglomeration of nanoparticles would suppress the excellent 
properties of nanofillers, while the graphene domain that contains high- 
performance resin reinforced with a high amount of individual graphene 
might offer excellent multifunctional properties [13]. 

Fig. 2. TEM images (cross-section) of the phase-separated domain. Scale bars, 10 µm (a), 5 µm (b) and 500 nm (c). (Red line distinguishing the nanocomposite films 
with the underneath support film.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2. Chemical distribution characterization 

Selective localization of nanofillers in phase-separated structures in 
TS/TS systems is rarely reported and the mechanism remains largely 
unknown due to the complicated copolymerization between different 
components during the curing process. Therefore, the photothermal 
AFM-IR technique, a rapidly emerging technique that accesses a spatial 
resolution compositional mapping on the nanoscale, was used to 
investigate the chemical distribution of different samples, which might 
provide essential evidence for studying the mechanism of the phase 
behaviour of this multi-component blend. Bulk IR spectra were obtained 
via conventional FTIR spectroscopy for identifying the chemical struc-
ture of each component before accessing the chemical differences of 
each domain by AFM-IR. As seen in Fig. 3a, although component B and C 
are both amine reagents, a significant difference could be discerned in 
the region of 2710–2810 cm− 1, which is assigned to the stretching vi-
bration of the C-H bond of the N-CH2 group in AEPIP. As the epoxy resin 

is mainly formed by the DGEBA, even though there is no obvious IR peak 
for identifying the DEGH and hardeners, the distinct vibration of the 
aromatic ring in the 1512 cm− 1 of DGEBA can be utilized as the spectral 
signature of the epoxy resin in the blend. 

Fig. 3b presents an AFM height image of the RM135/RS-MH137 
(Homogeneous) blend with A-GNPs. A smooth surface with some 
small features (nanofillers) could be observed, which reveals that the 
topology of the blend with homogeneously dispersed A-GNP is 
completely different from the one with a phase-separated structure. 
There are no obvious phase behaviour could be seen in this blend, and 
the chemical map constructed by the ratio of IR absorption images at 
1456 cm− 1 (C-H bending) /1512 cm− 1 confirming that no heteroge-
neous chemical structure could be discerned at the microscale. However, 
chemical analysis in sub-micro to nanoscale should be accessed, as many 
researchers have previously reported that phase-separated nanodomains 
were constructed in the binary polymer blends, such as block- 
copolymer/TS [45], rubber/TS [46] as well as TS/TS [19,47] blends. 

Fig. 3. a) FTIR spectrum of each component, b) AFM image and c) Chemical map of the Homogeneous blend (obtained by constructing a ratio of IR absorption 
images at 1456 cm− 1/1512 cm− 1) (Scale bar: 10 μm). 

Fig. 4. a, c) AFM image and b, d) Chemical map (ratio of IR absorption images at 1456 cm− 1/1512 cm− 1) of the Separated blend, e) AFM-IR absorption spectra 
obtained at locations indicated in a). (Green circles highlight the graphene dispersed in the blend.) (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Fig. 4 depicts the chemical differences of the Homogeneous blend 
that are visible at the sub-micron level. In addition to the heterogeneous 
chemical distribution that is evident, in Fig. 4e, the recorded AFM-IR 
spectra of the colour-coded locations highlight that there are epoxy- 
rich (blue) and curing agent-rich (yellow) domains within the blend at 
the sub-micron scale. It should be noted that the AFM-IR spectrum of 
each domain is consistent, which means that with photothermal AFM-IR 
it is possible to map unambiguously the distribution of the different 
chemical components on the nanoscale. In Fig. 4d, the high-resolution 
chemical map clearly shows the dimensions of each domain and it ap-
pears that the epoxy domain is the continuous domain with curing 
agent-richinclusions; similar phase behaviour of epoxy blends contain-
ing hard and soft phases has previously been reported [47,48]. In 
addition, the random distribution of graphene highlighted in Fig. 4d 
implies that the selective localization of A-GNP would not be induced by 
the formation of this heterogeneous nanostructure. This could be 
because the dimension of the nanofiller is bigger than the phase- 
separated domains or the domains are too small, and thus a large 

amount of attraction points disturbs the localization of the nanofillers. A 
similar phenomenon was observed by Wang et al. [49], where the phase- 
separated nanodomains in carboxy-terminated butadiene acrylonitrile/ 
epoxy blends did not influence the localization of graphene. 

In this work, A-GNP has been identified in the phase-separated 
microstructure and, as shown in Fig. 5a, the dark and light domains 
are clearly highlighted. The Homogeneous blend displays distinct epoxy 
and hardener-rich domains whereas the epoxy blend containing AEPIP 
(Component C) shows a homogeneous distribution of epoxy and curing 
agents (Fig. 5b). Conversely, when the chemical map turns to the ratio of 
2802 cm− 1/ 2932 cm− 1 (C-H stretching of asymmetric methylene), it 
can be seen that the graphene (dark) domain is displaying much stronger 
absorptions than the resin (light) domain at 2802 cm− 1. Comparing the 
AFM-IR spectra to FTIR reference spectra of each component (Fig. 3a), it 
could be confirmed that the graphene domains contain more AEPIP than 
the resin domain. This indicates that the nanosheets are selectively 
located in the domain with a higher amount of AEPIP, meaning that 
AEPIP is the driving force behind the formation of this phase-separated 

Fig. 5. a) Optical image and Chemical map of the Separated blend (obtained by constructing a ratio of IR absorption images at b) 1456 cm− 1/1512 cm− 1 and c) 2932 
cm− 1/2800 cm− 1, d) AFM-IR absorption spectra obtained different domains. 

Fig. 6. Component distribution in the phase-separated structure.  
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graphene domain. It is therefore confirmed that the the graphene 
nanosheets migrate to the AEPIP-rich region and aggregate to form a 
dense column through the thickness (Fig. 1f). Furthermore, as shown in 
Fig. 5d, a significant chemical contrast could be seen between the dark 
and light domain in the region of 3300 to 3500 cm− 1, which is assigned 
to the N-H stretching of the primary amine and the O-H stretching from 
the hydroxyl groups formed by the curing reaction of epoxy and hard-
eners. This implies that the epoxy (light) domain contains more primary 
amine groups and epoxy oligomers would be extruded by the aggrega-
tion of the graphene domain. 

This high-resolution AFM-IR mapping allows the composition of 
each domain to be identified, which provides critical indications for 
investigating the mechanism of selective localization in phase-separated 
structures in thermoset blends. The composition distribution is sche-
matically shown in Fig. 6, the dark domain is constructed by graphene 
nanosheets, AEPIP and epoxy resin, while the light domain is formed by 
the epoxy resin with IDPA and POP. Most importantly, it is worth noting 
that the addition of graphene could make the unexpected phase sepa-
ration by incorporating AEPIP in a commercial multi-component 
become visible without the necessity for an etching process; it is well 
known that the phase separation extent in TS/TS blending systems is 
normally very low and the contrast between two phases is too ambig-
uous to be observed. This provides an effective way for investigating the 
morphological evolutions of phase separation in TS systems, which is an 
important issue to understand the roles of each component in the phase 
separation and realize the preparation of TS/TS blends with different 
selective localized nanofiller in a controllable manner [50]. Work is 
continuing to conduct further exploration for having a comprehensive 
understanding of this phase behaviour. 

3.3. Properties 

The observed phase-separated structure constructed with well- 
dispersed nanosheets, was expected to lead to a microstructure with 
superior mechanical and thermal properties. Consequently, nano-
indentation was used to measure the Young’s modulus along the bi- 
continuous microdomain. As shown in Fig. 7a, the unmodified epoxy 
resin displays the lowest modulus (3.2 GPa) and the average modulus of 
composite film with homogeneous dispersed A-GNP increases to 4.9 
GPa; this is attributed to the introduction of graphene nanosheets. The 
physical interlocking, covalent adhesion, and presence of high-density 
bonds between A-GNP and the matrix facilitate rapid transfer or ab-
sorption of energy, leading to a significant improvement in mechanical 
performance [51]. Most importantly, it should be noted that the samples 
that do not display the phase-separated microstructure possess relatively 
uniform modulus and hardness values along the indentation array, 
which is consistent with the composition distribution and polymeriza-
tion observed previously via AFM-IR. In contrast, the samples displaying 
the bi-continuous phase-separated morphology, show considerable 
heterogeneity in modulus and hardness values in different regions of the 
indentation array. Even though this specific phase-separated micro-
structure shows fluctuations in the value of mechanical properties, the 
average value is much higher than the other samples. 

The loading displacement curve and the displacement–time plot are 
illustrated in Fig. 7b and c, respectively, to further study the mechanical 
behaviour of the composites film with different phase morphology. With 
the incorporation of A-GNP, the load–displacement curve is shifted to 
the leftdue to the growth in stiffness of the nanocomposite film. Thus, 
the elastic modulus will increase with the increase in the required load 
to penetrate the surface. The total indentation depth of the dark (A-GNP- 

Fig. 7. a) Modulus variations along the indentation array. b) Representative load–displacement curves derived from nanoindentation tests. c) Nanoindentation creep 
deformation at a maximum load of 5000 μN. 
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rich) domain decreased by about 27% compared with the unreinforced 
epoxy film and by about 9% compared with the epoxy film reinforced 
with homogeneous dispersed A-GNP. These results demonstrate that the 
incorporation of A-GNP improves the load bearing capacity of the epoxy 
resin, and the dark domain presents an additional improvement due to 
the highly dense graphene microstructure. Similarly, as shown in Fig. 7c, 
there is a remarkable increase in the creep resistance, due to the 
confinement effect of the highly elastic graphene sheets that can effec-
tively prevent the deformation of the epoxy network and improve the 
load transfer mechanism. 

The mechanical properties of the different samples are summarized 
in Table.S2, from which it can be seen that the modulus of the resin-rich 
domain displays a similar value to the homogeneous sample and the 
graphene-rich domain reached 6.3 GPa, exhibiting a significant 
enhancement (97%) when compared to the unreinforced epoxy resin. In 
this particular case, in addition to the outstanding mechanical perfor-
mance of graphene sheets, the distinct A-GNP domain displays a supe-
rior modulus thanks to its highly dense A-GNP microstructure. 
Surprisingly, the samples containing the resin-rich domains display 
mechanical properties that are similar to the sample reinforced with 
homogeneously dispersed nanosheets, which might be due to the rein-
forcement of the sheets that remain in the light domain and the syner-
gistic confinement effect of the continuous graphene channels. 

The thermal conductivity of the epoxy/A-GNP nanocomposites was 
measured via TTR, which is a powerful technique normally used to 

measure the thermal conductivity of the materials used in the semi-
conductor industry [41,42]. As shown in Fig. 8, the nanocomposite film 
containing homogeneously dispersed A-GNPs shows an enhancement of 
only 30% compared with the unmodified epoxy film. It has been re-
ported that the covalent bonds between A-GNP and epoxy provide 
enhanced interface thermal conductance and vibrational coupling of 
phonons in the epoxy matrix, thus presenting an ideal choice for 
enhancing thermal conductivity of epoxy-based nanocomposite [11]. 
However, the perfectly dispersed graphene sheets decreased the possi-
bility of the interconnection of the graphene sheets, decreasing the 
contact interface and thus increasing phonon scattering, which are the 
major obstacles to the overall thermal conductivity. This could be 
confirmed by the significant enhancement (72%) of thermal conduc-
tivity that was observed for the nanocomposite film with a continuous 
graphene domain, which implies that the self-constructed graphene 
microstructure results in a decreased phonon scattering. In addition, the 
variations in the thermal conductivity between different regions in the 
phase-separated sample might be because the laser spot size (85 μm) is 
larger than the width of the graphene channel, and thus the area fraction 
of the dark and light domain was various between each measurement. 

Hence, to further correlate the local thermal properties directly with 
the microstructural heterogeneity features, SThM measurement was 
carried out to accomplish the microscopic thermoelectric conversion 
down to the submicron level. As shown in Fig. 8b, when the probe scans 
different phases, heat transfers from the probe to the sample, resulting in 

Fig. 8. TTR and SThM measurement of the epoxy/A-GNPs nanocomposites with phase-separated structure, (a) thermal conductivity, (b) SThM mapping, (c) cor-
responding AFM mapping (d) plot of topology and SThM variation along the array. 
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drops in its temperature and resistance, and thus a voltage drop between 
nodes A and B of the Wheatstone bridge. The phase with the lower 
sample thermal conductivity has a lower heat loss and thus a lower 
bridge voltage difference (Fig. 8b). The corresponding SThM image 
displays the hotter areas as dark because the greater the probe tem-
perature, the higher the resistance and the output voltage, resulting in a 
lower conductivity of those regions. Consequently, the greater voltage 
difference observed for the graphene domain indicates a higher sample 
thermal conductivity (Fig. 8d), implying that it is possible to image the 
local thermal conductivity variation of a phase-separated structure with 
a self-assembled graphene domain based on the bridge voltage via 
SThM. However, even though the flattest region was chosen for mea-
surement, the SThM images obtained with any AFM based scanning 
thermal technique are not quantitative due to the inevitable topo-
graphical effects [52]. The clear contrast between graphene-rich and 
resin-rich domains emphasized the importance of constructing a 
continuous conductive network to overcome the obstacle of enhancing 
the thermal conductivity of epoxy-based composites. Thus, TTR is pre-
sented as a powerful technique to access the thermal conductivity of the 
sample, while the function of the SThM images is to provide image 
contrast based on the correlated local thermal properties of the phases or 
components in micro-nano structured materials, which can be used to 
guide the design and optimization of thermoelectric materials with 
enhanced performance. 

Fig. 9 displays the frequency-dependent dielectric properties of the 
epoxy/A-GNPs nanocomposites, from which it is apparent that both the 
dielectric constant and dielectric loss tangent of the nanocomposites are 
slightly higher than those of the unmodified epoxy resin over the whole 
frequency range. This is closely associated with the electrical conduc-
tivity of the epoxy composites [53,54]. 

Compared to the pristine graphene sheets, A-GNPs exhibit lower 
electrical conductivity, which can be explained by the fact that the 
amine functionalization produces large amounts of sp3 hybridized car-
bon atoms due to the formation of the C-N bond [55], this results in a 
reduction in the conductivity due to the loss of delocalization. Even 
though the nanocomposite film with a continuous graphene domain 
presents a higher conductivity, the enhancement is negligible as the 
conductivity is still lower than the antistatic criterion of 10− 6 S/m, 
which means that the nanocomposite film with phase-structured gra-
phene domains is still an insulator. Additionally, a subtle difference in 
the low dielectric loss between different samples could be observed, 
which might be because the mobility of the charge carriers is inhibited 
by the secondary resin-rich microstructure within the graphene domain 
(Fig. 2). These results imply the potential practical application of this 
material, as the material with low dielectric loss can minimize heat 
generated under an electric field, which can finally prevent the ruin of 
the performance, and thus improve the lifetime and reliabilities of 
electric devices and apparatus [2]. 

4. Conclusions 

In this work, it has been demonstrated that nanoparticles could be 
successfully located in a bi-continuous microstructure from an entirely 
miscible blend. SEM, TEM, and AFM techniques were employed to 
exhibit this specialist phase morphology, confirming the construction of 
a dense graphene domain within a bi-continuous phase structure. 
Nanoindentation measurement shows that the graphene domain has a 
dramatic (97%) increase in Young’s modulus, meanwhile, the me-
chanical properties of the epoxy domain also exhibit a slight increase 
when compared to the unreinforced epoxy film. Similarly, TTR mea-
surement depicts that the thermal conductivity of composite film with 
continuous graphene domains shows an enhancement of 72%. In order 
to access the local thermal properties of different domains and their 
interfaces, SThM measurement was employed and obvious contrast be-
tween each domain could be discerned. Hence, a dielectric polymer 
composite with excellent thermal conductivity and mechanical proper-
ties was fabricated, which is very promising for microelectronic pack-
aging and thermal management application in new energy systems such 
as light-emitting diodes (LEDs) and solar cells. Most importantly, our 
investigation of chemical distribution via the AFM-IR technique provides 
consolidated evidence for confirming the localization of nanofillers in 
self-assembled microstructure is associated with the chemical difference 
in various phases, which provides essential clues to unlock the potential 
application of epoxy-based nanocomposites. 
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