
                          Braga Goncalves, I., & Radford, A. N. (2022). Experimental evidence
that chronic outgroup conflict reduces reproductive success in a
cooperatively breeding fish. eLife, 11, [e72567].
https://doi.org/10.7554/eLife.72567

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.7554/eLife.72567

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via eLife Sciences
Publications at  https://doi.org/10.7554/eLife.72567 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.7554/eLife.72567
https://doi.org/10.7554/eLife.72567
https://research-information.bris.ac.uk/en/publications/8f04391e-8a80-4bc3-a1bd-06b2f58cdc53
https://research-information.bris.ac.uk/en/publications/8f04391e-8a80-4bc3-a1bd-06b2f58cdc53


Braga Goncalves and Radford. eLife 2022;11:e72567. DOI: https://doi.org/10.7554/eLife.72567  1 of 21

Experimental evidence that chronic 
outgroup conflict reduces reproductive 
success in a cooperatively breeding fish
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Kingdom

Abstract Conflicts with conspecific outsiders are common in group- living species, from ants to 
primates, and are argued to be an important selective force in social evolution. However, whilst 
an extensive empirical literature exists on the behaviour exhibited during and immediately after 
interactions with rivals, only very few observational studies have considered the cumulative fitness 
consequences of outgroup conflict. Using a cooperatively breeding fish, the daffodil cichlid (Neol-
amprologus pulcher), we conducted the first experimental test of the effects of chronic outgroup 
conflict on reproductive investment and output. ‘Intruded’ groups received long- term simulated 
territorial intrusions by neighbours that generated consistent group- defence behaviour; matched 
‘Control’ groups (each the same size and with the same neighbours as an Intruded group) received 
no intrusions in the same period. Intruded groups had longer inter- clutch intervals and produced 
eggs with increasingly less protein than Control groups. Despite the lower egg investment, Intruded 
groups provided more parental care and achieved similar hatching success to Control groups. Ulti-
mately, however, Intruded groups had fewer and smaller surviving offspring than Control groups 
at 1- month post- hatching. We therefore provide experimental evidence that outgroup conflict can 
decrease fitness via cumulative effects on reproductive success, confirming the selective potential of 
this empirically neglected aspect of sociality.

Editor's evaluation
This paper experimentally investigates the fitness consequences of intergroup conflict in social fish. 
It finds that groups that face frequent territorial intrusion suffer costs in terms of both fertility and 
number of surviving offspring, despite behavioral compensation through increased parental care. 
These results provide clear and compelling evidence that intergroup conflict leads to lower fitness, 
and are therefore of substantial interest for understanding social evolution, where the importance of 
between- group competition has long been debated.

Introduction
In social species, conspecific outsiders often challenge groups and their members for resources and 
reproductive opportunities (Birch et al., 2019; Braga Goncalves and Radford, 2019; Kitchen and 
Beehner, 2007; Radford, 2008; Thompson et al., 2017). This ‘outgroup conflict’—conflict with one 
or more outsiders, of which ‘intergroup conflict’ (that between two groups) is a subset—is theorised 
to be a driving force in the evolution of territoriality, social structure, group dynamics, and cooperation 
(Bowles, 2009; Gaston, 1978; Rusch, 2014; Wrangham, 1980). Empirical research in non- human 
animals has traditionally focussed on aggressive outgroup contests, such as factors determining which 
individuals participate, their level of contribution, and who wins (Arseneau- Robar et al., 2016; Green 
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et al., 2020; Kitchen and Beehner, 2007), as well as the immediate fitness costs arising from loss of 
life, breeding position, or territory (Goodall, 1986; Morris- Drake et al., 2022; Spong et al., 2008). 
Recently, studies have begun to explore the effects of outgroup conflict beyond periods of active 
confrontation, documenting short- term behavioural changes (e.g. increased within- group affiliation) 
in the aftermath of single interactions with rivals (Birch et al., 2019; Braga Goncalves and Radford, 
2019; Mirville et al., 2020; Preston et al., 2020; Radford, 2008). However, the cumulative build- up 
of threat posed by outsiders is also likely a potent stressor (Eckardt et  al., 2016; Samuni et  al., 
2019) and may disrupt within- group relationships (Anderson et al., 2020; Hellmann and Hamilton, 
2019), potentially generating long- term fitness consequences even in the absence of immediate 
direct effects from individual aggressive contests (Braga Goncalves et al., 2022; Morris- Drake et al., 
2022). Three observational studies have found associations between outgroup conflict and reproduc-
tive success, beyond the direct death of offspring during aggressive interactions: greater intergroup 
conflict during pregnancy was associated with improved foetal survival in both crested macaques 
(Macaca nigra) and banded mongooses (Mungos mungo) (Kerhoas et al., 2014; Thompson et al., 
2017), but with longer inter- birth intervals and reduced infant survival in chimpanzees (Pan troglo-
dytes verus) (Lemoine et al., 2020). However, to test a causal link between outgroup conflict and 
reproductive success—that is to rule out potential confounding explanations associated with natural 
observations—experiments are needed.

Here, we use the daffodil cichlid (Neolamprologus pulcher), a model species for the study of soci-
ality, to test experimentally the reproductive consequences of chronically elevated outgroup conflict. 
N. pulcher is a highly territorial, cooperatively breeding fish species native to Lake Tanganyika. In the 
wild, groups comprising a breeding pair and 0–20 subordinates of both sexes (Wong and Balshine, 
2011) defend territories from predators, heterospecific competitors, and conspecific intruders 
(Desjardins et al., 2008; Taborsky and Limberger, 1981), with multiple small, contiguous territo-
ries often clustered together (Taborsky, 1984). Although individuals develop dear–enemy relation-
ships with neighbours (Frostman and Sherman, 2004; Sogawa et al., 2016), aggressive disputes at 
shared borders are common (Balshine et al., 2001) and intruding neighbours can be attacked by all 
group members (Balshine- Earn et al., 1998). Single intrusion events are known to cause short- term 
changes in within- group behavioural interactions (Braga Goncalves and Radford, 2019; Bruintjes 
et al., 2016; Taborsky, 1985). Crucially, N. pulcher is a highly tractable experimental system—they 
are easily maintained in captive conditions, where groups display natural behaviour and breed regu-
larly (Heg and Hamilton, 2008; Jindal et al., 2017; Wong and Balshine, 2011)—allowing controlled 
manipulations and detailed monitoring over extended periods.

To investigate the cumulative effect of elevated outgroup conflict on reproductive rate, invest-
ment (in eggs and parental care) and output, we simulated intrusions by neighbours at territorial 
borders in two long- term, laboratory experiments. We predicted that because repeated territorial 
intrusions are likely stressful and may destabilise social groups (Arseneau- Robar et al., 2016; Morris- 
Drake et al., 2022), there would be effects on breeding and investment decisions as parents are 
selected to respond to prevailing ecological (environmental and social) conditions (Carlisle, 1982; 
McGinley et al., 1987; Roff, 1992). For instance, organisms faced with prolonged challenging condi-
tions may maximise survival at the cost of other functions such as reproduction (Beldade et al., 2017; 
Jørgensen et al., 2006; Love and Williams, 2008; Schreck et al., 2001), so we predicted a nega-
tive impact of outgroup conflict on reproductive rate in terms of spawning likelihood, latency to 
spawn, number of clutches produced, and inter- clutch interval. Female fish can modify egg investment 
depending on current intrinsic (e.g. maternal state and stress) and extrinsic (e.g. ecological) factors 
(Faria et al., 2018; McCormick, 1998; Schreck, 2010), with trade- offs between egg number and 
quality apparent in stressful conditions (Faria et al., 2018). So, we predicted an effect of outgroup 
conflict on egg number, size (weight and volume), and nutritional (lipid and protein) content. Parental 
care extends the opportunity for adjustment of reproductive investment, allowing compensation for 
lower offspring quality (Carlisle, 1982; Clutton- Brock, 1991) and poorer environmental conditions 
(Östlund and Ahnesjö, 1998). So, we predicted an effect of outgroup conflict on clutch visits and egg 
caring effort. Since maternal and early- life stress, initial egg size and quality, and parental care can 
all influence offspring characteristics (Bell et al., 2016; Boogert et al., 2013; Jonsson and Jonsson, 
2014; McCormick, 1998), we predicted that outgroup conflict would directly or indirectly have a 
negative effect on reproductive output in terms of offspring survival, behaviour, and size.

https://doi.org/10.7554/eLife.72567
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Results
In both our experiments (which used different fish), 30 tanks with breeding shelters were arranged 
linearly in triplets: the end ‘focal’ tanks (one for each of two treatments: 10 ‘Intruded’ and 10 ‘Control’ 
tanks per experiment) contained a dominant pair and a subordinate; the middle tank contained a 
dominant pair who comprised the shared neighbours used as intruders (Figure  1A). Within each 
triplet, the same- sex dominants in all tanks and the subordinates in focal end tanks were size matched 
(using standard body length) at the start (see Materials and methods). In Experiment I (the longer of 
the two experiments; see below), focal individuals in the two treatments remained size matched at 
the end of the study, in both standard length (paired t- test, dominant male [DM]: t9 = 0.10, p = 0.920; 
dominant female [DF]: t9 = 1.67, p = 0.130; Wilcoxon signed- rank test, subordinate: V = 15.5, n = 12, 
p = 0.343) and body mass (paired t- test, DM: t9 = 0.64, p = 0.540; DF: t9 = 0.11, p = 0.914; Wilcoxon 
signed- rank test, subordinate: V = 18, n = 12, p = 0.156).

Each week in both experiments, Intruded groups experienced several 10- min territorial intrusions 
by one of their neighbouring individuals (mean ± standard error [SE] intrusions per week, Experi-
ment I: 4.8 ± 0.1; Experiment II: 3.9 ± 0.3); both neighbouring individuals were used for intrusions 
pseudo- randomly (see Materials and methods). During intrusions, the focal group and the intruder 
were physically separated by a transparent partition that precluded adversaries from injuring each 
other and cannibalism of focal group young by intruders. Focal groups typically respond to the pres-
ence of intruders with aggressive behaviours, including attacks (rams and bites) and displays (aggres-
sive postures, frontal displays, and fast approaches); intruders reciprocate with aggressive displays 

Figure 1. Experimental setup and timelines. (A) Experimental setup showing a linearly arranged tank triplet, with size- matched experimental groups 
(Intruded and Control) at the ends and the tank with the neighbour pair at the centre. The female neighbour is presented in the Intruded group tank to 
illustrate an intrusion along the border of the resident group’s territory. (B) Timelines show measures of general reproductive behaviour (orange), egg 
and parental- care investment (green), and reproductive output (purple).

https://doi.org/10.7554/eLife.72567
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and attacks, but also with submissive postures and displays and by turning away from the focal group 
(Reddon et al., 2015; Sopinka et al., 2009). Control groups did not receive intrusions but did expe-
rience the same procedural disturbances as Intruded groups, in terms of the placement and removal 
of barriers (see Materials and methods). The aim of Experiment I was to assess the effects of chronic 
outgroup conflict on reproductive rate, parental care of eggs, hatching success, and offspring survival, 
behaviour, and size. So, following the first three intrusions (and equivalent time in Control groups), 
we allowed each group to raise all clutches produced over a 13- week period (Figure 1B). Experiment 
II was a complement to Experiment I, aiming to assess how chronic outgroup conflict impacts repro-
ductive investment in terms of egg size and nutritional content (Figure 1B); these are measures that 
can only be obtained by removing clutches. We therefore collected the first clutch produced by each 
group following 13 days of treatment, which represents approximately half of a reproductive cycle 
(Jindal et al., 2017); the experiment ended for a focal group once that clutch was collected. For 
all response measures analysed, we provide in the main text the effect of treatment (Intruded and 
Control) and, where significant or near- significant, the interaction between treatment and treatment 
duration, as the factors of core interest. Full model outputs including all tested variables (significant or 
not) are detailed in the Supplementary files.

Defensive behaviour
To assess whether the presence of a neighbour in their territory was perceived as an intrusion, we 
recorded defensive behaviour by focal groups in Experiment 1. Intruded groups exhibited 4.5 times 
more defensive actions than Control groups at the start of the study (Wilcoxon signed- ranked test: V 
= 0, n = 20, p = 0.002; Figure 2A); this difference persisted until the end of the experiment (4.7 times 
more defence; paired t- test: t9 = 4.33, p = 0.002; Figure 2A). Our protocol was therefore likely to have 
elevated the perceived level of outgroup conflict throughout the experimental period, as intended. 
Within the Intruded treatment, dominant individuals but not subordinates, increased their defensive 
efforts between the start and the end of the study (Wilcoxon signed- ranked test, DF: V = 4.5, n = 20, 
adjusted- p = 0.043; paired t- test, DM: t9 = 3.50, adjusted- p = 0.020; subordinates: t5 = −0.05, p = 
0.963; Figure 2B); this pattern was not driven by any significant changes in intruder responsiveness 
to the focal group (t9 = 0.55, p = 0.594). Greater defensive efforts by dominant individuals at the end 
of the study may be a by- product of age- or size- mediated behavioural changes—a positive effect 
of body size on defensive efforts has been documented in at least dominant males in this species 
(Ligocki et al., 2019)—or may have been due to the presence of offspring that need safeguarding 
from intruders (Dyble et al., 2019).

Reproductive rate
In Experiment I, repeated territorial intrusions did not significantly affect the likelihood of spawning 
(McNemar test: χ2

1 = 0.36, p = 0.547), the latency to first spawn (linear mixed model [LMM]: χ2
1 = 

1.02, p = 0.312; Supplementary file 1a) or the number of clutches produced (Wilcoxon signed- rank 
test: V = 15, N = 10, p = 0.396). However, Intruded groups had inter- clutch intervals that were 40% 
longer than Control groups (LMM: χ2

1 = 3.89, p = 0.049; Supplementary file 1b; Figure 3A). This 
finding aligns qualitatively with previous work on N. pulcher, where higher neighbour densities were 
associated with greater spawning latencies (Taborsky et  al., 2007), and with studies on different 
species documenting how various chronic stressors may negatively impact fish reproductive rates (Ali 
and Wootton, 1999; Mileva et al., 2011). Longer inter- clutch intervals likely result in fewer breeding 
attempts per season in the wild, which is why inter- birth interval is a life- history trait commonly used 
to assess female reproductive success across taxa (Clutton- Brock et al., 1984).

Investment in eggs
In Experiment I, there was a near- significant effect of the interaction between treatment and treatment 
duration on clutch size (LMM, parameter estimate [PE] = 0.85, 95% confidence interval [CI] = −0.04 to 
1.70, χ2

1 = 3.55, p = 0.059; Supplementary file 2). Against our expectation, Intruded females showed 
a tendency to produce larger clutches over time (i.e. with longer exposure to outgroup conflict), rela-
tive to Control females (Figure 3B). As conditions that reduce the probability of future reproductive 
success may select for increased current reproductive investment (Carlisle, 1982; McGinley et al., 

https://doi.org/10.7554/eLife.72567
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1987; Olofsson et al., 2009), it is possible that the repeated territorial invasions adversely impacted 
the perceived expected future reproductive success of at least the dominant females.

Experiment II allowed us to consider how increased outgroup conflict affected egg size and nutrient 
allocation because we removed clutches for detailed assessment. There was no significant effect of 
treatment on egg weight (LMM: χ2

1 = 0.85, p = 0.356; Supplementary file 3a). However, egg volume 
was affected by the interaction between treatment and treatment duration (χ2

1 = 4.34, p = 0.037; 

Figure 2. Defensive actions. (A) Group defensive actions displayed per 10- min trial, towards a transparent partition 
(blue) or the intruding female neighbour (red) in weeks 1 and 11 of Experiment I (N = 20 groups). (B) The number 
of defensive actions displayed by the dominant female (DF, N = 10), dominant male (DM, N = 10), and subordinate 
(S, N = 6) towards the intruding female neighbour during weeks 1 (green) and 11 (yellow) of Experiment I. Boxplots 
show medians, 25% and 75% quartiles, and whiskers representing 95% confidence intervals; dots are raw data, with 
lines connecting matched groups (A) or repeated measures on individuals (B).

The online version of this article includes the following source data for figure 2:

Source data 1. Number of group defensive actions displayed per 10- minute trial, towards a transparent partition 
(Control treatment) or the intruded female (Intruded treatment) in weeks 1 and 11 of Experiment I (n = 20 groups); 
and number of defensive actions displayed by the dominant females (DF, n = 10), dominant male (DM, n = 10), 
and subordinate (S, n = 6) per 10- minute trial, towards the intruding female neighbour during weeks 1 and 11 of 
Experiment I.

https://doi.org/10.7554/eLife.72567
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Supplementary file 3b; Figure 3C): females who took longer to spawn produced eggs with larger 
volume in the Control treatment (PE = 0.05, 95% CI = 0.02–0.09, χ2

1 = 7.30, p = 0.007), but there 
was no significant effect in the Intruded treatment (PE = 0.009, 95% CI = −0.019 to 0.037, χ2

1 = 0.51, 
p = 0.474). There was no significant treatment difference in egg lipid content (χ2

1 = 0.07, p = 0.797; 
Supplementary file 3c). However, egg protein content was affected by the interaction between treat-
ment and treatment duration (χ2

1 = 18.50, p < 0.001; Supplementary file 3d; Figure 3D): mean egg 
protein content decreased with treatment duration in the Intruded treatment (PE = −0.97, 95% CI = 

Figure 3. Effects of chronically elevated outgroup conflict on reproductive rate and egg investment. Effects of chronically elevated outgroup conflict 
(red) relative to control conditions (blue) on: (A) inter- clutch interval (N = 21 intervals); (B) clutch size (N = 34 clutches); (C) egg volume (N = 15 clutches); 
and (D) egg protein content (N = 15 clutches). All panels depict predicted means and associated 95% confidence intervals; dots are raw data.

The online version of this article includes the following source data for figure 3:

Source data 1. Inter- clutch intervals (days, n = 21 intervals); clutch size (number of eggs, n = 34 clutches); volume of eggs (mm^3, n = 15 clutches); and 
egg protein content (micrograms, n = 15 clutches), of clutches produced by Control and Intruded groups.

https://doi.org/10.7554/eLife.72567


 Research article      Ecology

Braga Goncalves and Radford. eLife 2022;11:e72567. DOI: https://doi.org/10.7554/eLife.72567  7 of 21

−1.65 to −0.30, χ2
1 = 6.30, p = 0.012), but did not change significantly in the Control treatment (PE 

= 0.41, 95% CI = −0.47 to 1.30, χ2
1 = 0.99, p = 0.320). Previous work on N. pulcher described a posi-

tive correlation between time taken to produce a clutch and mean egg size (Taborsky et al., 2007). 
Outgroup conflict thus had an increasingly (across the period of intrusions) disruptive effect on this 
relationship, as well as causing a progressive decline in egg quality, at least with respect to protein 
content. It is possible that the much higher egg concentrations of protein cf. lipids made it easier to 
detect an effect in just the former, but reductions in just egg protein content have also been reported 
in female eastern fence lizards, Sceloporus undulatus, exposed experimentally to elevated gluco-
corticoids during egg production (Ensminger et al., 2018). Protein is often the most abundant dry 
constituent of eggs (Blaxter, 1969), provides amino acids for tissue growth and energy via catabolic 
processes (Blaxter, 1969), and has been found to be positively correlated with fertilisation, hatching 
success, and early- life survival (Kamler, 2005).

Investment in parental care
In Experiment I, repeated territorial intrusions had an increasingly positive effect on parental- care 
behaviour, as measured from the number of clutch visits (as a proxy for protection effort) and the 
combined number of egg- fanning and egg- cleaning events (as an estimate of caring effort) (Supple-
mentary file 4). The time spent on such activities was similarly affected (Supplementary file 5) but 
we present just the results relating to the number of events here. The number of clutch visits was 
affected by the interaction between treatment and treatment duration (generalised linear mixed 
model [GLMM]: χ2

1 = 5.17, p = 0.023; Supplementary file 4a; Figure 4A): clutch visits increased over 
time in the Intruded treatment (PE = 0.01, 95% CI = 0.003–0.20, χ2

1 = 5.77, p = 0.016), but did not 
change significantly in the Control treatment (PE = −0.001, 95% CI = −0.008 to 0.005, χ2

1 = 0.13, p = 
0.719). Similarly, the number of care behaviours performed was affected by the interaction between 
treatment and treatment duration (GLMM: χ2

1 = 4.54, p = 0.033; Supplementary file 4b; Figure 4B): 
caring behaviour increased over time in the Intruded treatment (PE = 0.02, 95% CI = 0.008–0.031, 
χ2

1 = 8.82, p = 0.003), but did not change significantly in the Control treatment (PE = 0.004, 95% 
CI = −0.004 to 0.011, χ2

1 = 0.85, p = 0.356). Our results contrast those of studies that have shown 
reductions in parental (Vitousek et al., 2014; Vitousek et al., 2018) and alloparental (Mares et al., 
2012) care in response to immediate or short- term stressful situations but, as effects became evident 
over the course of the experiment, it is possible that acute and chronic stressors elicit opposing 

Figure 4. Effect of chronically elevated outgroup conflict on parental- care investment and hatching success. Effects of chronically elevated outgroup 
conflict (red) relative to control conditions (blue) on: (A) number of clutch visits (N = 33 clutches); (B) number of clutch caring (cleaning and fanning) 
events per 10 min observation (N = 33 clutches); and (C) offspring hatching success (N = 21 clutches). All panels depict predicted means and associated 
95% confidence intervals; dots are raw data.

The online version of this article includes the following source data for figure 4:

Source data 1. Number of clutch visits (n = 33 clutches) and number of clutch caring evens (n = 33 cutches) provided to; and offspring hatching success 
(n = 21 clutches) of, clutches produced by Control and Intruded groups.

https://doi.org/10.7554/eLife.72567
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behavioural responses. The increased parental care in the Intruded treatment may have at least partly 

compensated for lower relative egg investment (see above) because there was no significant treat-

ment difference in hatching success (χ2
1 = 0.08, p = 0.782; Supplementary file 6; Figure 4C). Similar 

hatching success does not, however, necessarily equate to similar offspring quality (Botterill- James 
et al., 2019).

Figure 5. Effect of chronically elevated outgroup conflict on reproductive output. Effect of chronically elevated outgroup conflict (red) compared to 
control conditions (blue) on: (A) number of offspring surviving to 1 month (N = 32 clutches); (B) latency to first movement of offspring post- stimulus (N 
= 21 clutches); (C) mean offspring standard length (N = 24 clutches); and (D) mean offspring dry weight (N = 24 clutches). All panels depict predicted 
means and associated 95% confidence intervals; dots are partial residuals (A) or raw data (B–D).

The online version of this article includes the following source data for figure 5:

Source data 1. Number of offspring surviving to 1- month post hatching (n = 32 clutches); latency for first movement of offspring post- stimulus (n = 21 
clutches) in a startling stimulus test; mean offspring standard length (n = 24 clutches); and mean offspring dry weight (n = 24 clutches), from clutches 
produced by Control and Intruded groups.

https://doi.org/10.7554/eLife.72567
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Reproductive output
The absolute number of offspring surviving to 1 month in Experiment I was affected by the interac-
tion between treatment and treatment duration (LMM: χ2

1 = 13.31, p < 0.001; Supplementary file 
7; Figure 5A): the number of surviving young decreased with more exposure to outgroup conflict 
(Intruded groups; PE = −1.82, 95% CI = −2.50 to −0.99 χ2

1=9.70, p = 0.002), but there was no signif-
icant change over time in the Control treatment (PE = 0.01, 95% CI = −0.49 to 0.52, χ2

1 = 0.003, 
p = 0.956). The result was about 1.8 fewer offspring surviving to 1 month per experimental day in 
the Intruded treatment relative to the Control treatment. Neither food competition nor heterospe-
cific predation can explain the lower offspring number in the Intruded treatment because all tanks 
were provided daily ad- lib food and there were no predators in our laboratory setting. Adults in the 
Intruded treatment may have displayed filial cannibalism (Jindal et al., 2017), but we are not aware of 
reports of within- group fry or juvenile cannibalism in this species. Alternatively, low early- life survival 
may have resulted from stress effects on parents that reduced the quality of offspring (Anderson 
et al., 2020; Beldade et al., 2017; Love and Williams, 2008; McCormick, 1998), stress transmission 
between group members that were particularly detrimental to young (Noguera et al., 2017), the 
direct early- life experience of outgroup conflict on offspring (Jonsson and Jonsson, 2014) or any 
combination of these factors.

To investigate offspring behaviour, we placed 5–10 1- month- old young from Experiment I clutches 
in a novel environment (20 × 20 cm container). Following a 30- min settling period, there was no signif-
icant treatment difference in offspring baseline activity level (proportion of active individuals, LMM: χ2

1 
= 1.69, p = 0.194; Supplementary file 8a) or mean nearest- neighbour distance (χ2

1 = 0.11, p = 0.754; 
Supplementary file 8b). After this undisturbed period, we assessed the response to a startle stim-
ulus; normally, on detecting danger, young N. pulcher swiftly sink to the bottom and remain motion-
less (Taborsky, 1984; Watve and Taborsky, 2019). Treatment had no significant effect on offspring 
latency to freeze immediately post- stimulus (χ2

1 = 0.06, p = 0.806; Supplementary file 8c). However, 
latency for the first offspring to move post- stimulus was affected by the interaction between treat-
ment and treatment duration (χ2

1 = 4.84, p = 0.028; Supplementary file 8d; Figure 5B): post- stimulus 
latency to move decreased over time in the Intruded treatment (PE = −0.35, 95% CI = −0.68 to −0.07, 
χ2

1 = 5.43, p = 0.020) but there was no significant change in the Control treatment (PE = 0.29, 95% CI 
= −0.20 to 0.78, χ2

1 = 1.49, p = 0.223). The speed of return to activity is thought to determine vulner-
ability to predation, because prey movement enhances detection and attack rates by predators (Lima 
and Dill, 1990; Middlemis Maher et al., 2013).

Immediately following the behavioural tests, we sacrificed the offspring to assess standard length 
and dry weight. Compared to Control individuals, Intruded offspring were 19% shorter (LMM: χ2

1 = 
4.85, p = 0.028; Supplementary file 9a; Figure 5C) and 30% lighter, though this was not statistically 
significant as a difference (χ2

1 = 2.89, p = 0.089; Supplementary file 9b; Figure 5D). The smaller 
size at 1 month of age indicates that outgroup conflict hinders early- life growth, despite unlimited 
access to food. Size in early life is considered a key determinant of survival (Ahnesjo, 1992; Candolin 
et al., 2022) due to, for instance, lower susceptibility to starvation (Marsh, 1998) and greater ability 
to escape predators (Ahnesjo, 1992), and of reproductive success in adulthood (Royle et al., 2005), 
although compensatory growth occurs in fishes (Eriksen et  al., 2015; Royle et  al., 2005). In the 
daffodil cichlid in particular, adult body size is a key determinant of lifetime reproductive success 
because it correlates positively with fecundity in females and with dominance acquisition in both sexes 
(Heg et al., 2011; Wong and Balshine, 2011).

Discussion
Our experimental results show that chronic elevation of outgroup conflict negatively affected inter- 
clutch intervals and investment in egg quality; whilst there was a compensatory positive influence 
on parental care, an increased outgroup threat ultimately resulted in fewer offspring of smaller size 
surviving to 1 month of age. Our findings are in- line with previous correlational work showing that 
greater levels of intergroup threat were associated with reductions in chimpanzee reproductive 
rate and offspring survival (Lemoine et al., 2020), but contrast the observational studies of crested 
macaques and banded mongooses that found a positive correlation between intergroup conflict 
and foetal survival (Kerhoas et  al., 2014; Thompson et  al., 2017). Tests of causal links between 
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outgroup conflict and reproductive success have previously been lacking due to the inherent difficul-
ties of carrying out long- term manipulations that allow cumulative fitness impacts to be assessed. We 
overcame this by using a model fish species that enables both extended manipulations in controlled 
conditions and the collection of behavioural and reproductive data (Wong and Balshine, 2011). In 
doing so, we demonstrated that chronic outgroup conflict likely negatively impacts the fitness of 
multiple generations: adults suffer reductions in current reproductive output, whilst the lower quality 
of surviving offspring means that they are potentially less likely to achieve dominance and thus direct 
reproductive success later in life (Royle et al., 2005; Wong and Balshine, 2011).

We uncovered outgroup- conflict effects in several aspects of reproductive investment and output 
that became stronger the longer the experimental treatment continued. These findings highlight that, 
to ascertain the full fitness consequences in social animals, it is important to consider both direct and 
indirect effects and to assess cumulative impacts in addition to those arising from single contests 
(Morris- Drake et al., 2022). Since outgroup conflict can be a potent social stressor, capable of stim-
ulating acute and chronic stress responses (Samuni et al., 2019), stress is a likely mechanism under-
pinning the reproductive consequences seen. Studies examining natural stress responses (Beldade 
et  al., 2017; Creel et  al., 2009), and experimental manipulations of glucocorticoids (Ensminger 
et  al., 2018; Eriksen et  al., 2015; McCormick, 1998), have demonstrated how stress can affect 
adult reproductive measures in ways similar to those uncovered in our work. For instance, chronic 
anemone bleaching and predation risk led to increased levels of stress hormones and reduced repro-
ductive rates in the anemonefish, Amphiprion chrysopterus, and in elk, Cervus elaphus, respectively 
(Beldade et al., 2017; Creel et al., 2009). Experimental increases in maternal cortisol levels nega-
tively impacted egg protein content of Eastern fence lizards and larval length of the coral reef fish 
Pomacentrus amboinensis (Ensminger et  al., 2018; McCormick, 1998). Higher rates of territorial 
defence have previously been associated with elevated cortisol levels in N. pulcher dominant females 
(Culbert et al., 2021), so treatment effects on maternal physiology could plausibly have contributed 
to the effects seen in our study. Likewise, early- life stressors can have long- lasting effects on offspring 
phenotypes and fitness (Antunes and Taborsky, 2020; Jonsson and Jonsson, 2014), so both direct 
and indirect effects may be important. Some of the fitness costs that we document here may also have 
been indirectly caused by outgroup conflict- mediated disruptions to within- group social relationships. 
Within- group aggression is promoted by the mere presence of neighbours in complex time-, rank-, 
and sex- dependent ways (Hellmann and Hamilton, 2019) and may be further dependent on the 
extent of interactions between residents and neighbours (Hamilton and Heg, 2005). Additionally, 
territorial intrusions can cause (at least) short- term changes to within- group social interactions (Braga 
Goncalves and Radford, 2019; Bruintjes et al., 2016). Cumulative effects of outgroup conflict are 
likely to have a wide influence, beyond reproductive success, and thus deserve further research atten-
tion moving forward (Morris- Drake et al., 2022).

There are obvious trade- offs in conducting captive versus field studies. In the context of cumulative 
outgroup- conflict consequences, long- term experimental manipulations are logistically and ethically 
challenging, which is why the few previous studies have reported only correlational data (Kerhoas 
et al., 2014; Lemoine et al., 2020; Thompson et al., 2017). Our captive experiments allowed for 
tight control of the environment and close monitoring of a variety of response measures, but consider-
ation is needed of the ecological validity of the intrusion regime. Whilst intrusions in the wild might be, 
on average, shorter than our 10- min experimental presentations, there are several reasons to believe 
that outgroup conflict could be more severe in natural conditions. In the wild, N. pulcher groups are 
often surrounded by several adjacent groups (Taborsky, 1984), so that territories are intruded from 
any direction by neighbours and outsiders from further afield. Therefore, intrusions likely take place 
several times daily, requiring continuous vigilance and quick behavioural responses, risking poten-
tial physical injury and leaving residents more vulnerable to predation (Balshine- Earn et al., 1998; 
Balshine et al., 2001; Hess et al., 2016). Our setup also precluded individuals from injuring each 
other, the intruder from committing infanticide, sneaking a breeding attempt or taking- over part 
or all the territory, and individuals from having to trade- off foraging time against vigilance efforts 
(due to plentiful food availability), all in the absence of predation. Thus, relative to wild conditions, 
our laboratory intrusions were likely longer but less frequent and came from only one pair of neigh-
bours, and posed relatively low threat to focal groups within an overall less challenging environment. 
Whilst we chronically increased the perception of outgroup conflict, allowing us to assess cumulative 
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indirect effects of outgroup conflict (beyond injury, death, and infanticide), our findings are potentially 
conservative. Ultimately, future field experiments are needed to confirm the causal impact of chronic 
outgroup conflict on reproductive success, but many challenges will need to be overcome first.

We demonstrate that chronically increased outgroup conflict can reduce reproductive success, 
even in the absence of physical fights with rivals that may also result in injury, death, or loss of territory 
or breeding position (Goodall, 1986; Spong et al., 2008; Thompson et al., 2017), or cause offspring 
death (Dyble et al., 2019; Thompson et al., 2017). Outgroup conflict can clearly, therefore, influence 
fitness in myriad ways, lending support to the theory that it is likely a powerful selective force in social 
evolution with respect to, for example, group dynamics, social structure, and cooperation (Bowles, 
2009; Gaston, 1978; Wrangham, 1980). Given the widespread taxonomic occurrence of outgroup 
conflict, we advocate further experimental testing of what is arguably the most neglected aspect of 
sociality.

Materials and methods
Fish husbandry
We used a captive population of daffodil cichlids, N. pulcher, at the University of Bristol; work was 
approved by the University of Bristol Ethical Committee (University Investigator Number: UB/16/049 
+ UB/19/059). All fish groups were housed in 70 l tanks (width × length × height: 30 × 61 × 38 cm) that 
formed their territory (as in Braga Goncalves et al., 2021; Braga Goncalves and Radford, 2019). 
Each tank contained 2–3 cm of sand (Sansibar river sand), a 75 W heater (Eheim), a filter (Eheim Ecco 
pro 130), a thermometer (Eheim), two flowerpot halves (10 cm wide) that served as breeding shelters 
at the centre of the territory, an artificial plant and a small tube hanging close to the water surface 
to provide extra shelter for the subordinate in focal groups. Fish were fed twice daily: alternating 
between frozen brine shrimp, water fleas, prawns, mosquito larvae, mysid shrimp, bloodworms, cichlid 
diet, spirulina, copepods and krill in the mornings from Monday to Friday; and dry fish flakes in the 
evenings and weekends. Water temperature was maintained constant (mean ± SE, Experiment I: 26.9 
± 0.08°C, Experiment II: 26.7 ± 0.10°C) and room lights were set on a 13L:11D hour cycle (daylight 
from 7 am to 8 pm). Water quality tests (pH, nitrates, nitrites, conductivity, and ammonia) and 10% 
water changes were performed weekly to maintain water quality levels.

Experimental setup
In both experiments, we organised tanks in triplets (N = 10), positioned in a line with the short sides 
about 0.5 cm apart, so that neighbours could always see each other. In each triplet, the central tank 
housed a breeding pair that was a common neighbour to the two focal groups (each comprising 
a breeding pair and an adult helper) on either side. Groups of three, although at the low range of 
natural group sizes for this species, are common in nature (Balshine et al., 2001) and frequently used 
in laboratory studies (Braga Goncalves and Radford, 2019; Fischer et  al., 2017; Hamilton and 
Ligocki, 2012; Mileva et al., 2011; Zöttl et al., 2013). We formed groups separately (with different 
fish used for the two experiments) using standard procedures (Braga Goncalves and Radford, 2019) 
approximately 2 weeks prior to the start of each experiment. In Experiment I, the 20 focal groups 
included 12 with female helpers and 8 with male helpers; within a triplet, experimental groups had 
same- sex helpers. In Experiment II, the 20 focal groups all had female helpers. Female helpers were 
favoured because although all subordinates face increasing risks of eviction as they grow (Taborsky, 
1985), males are more likely to parasitise reproductive events resulting in eviction from the group 
(Dierkes et al., 1999) rendering groups less stable, and group size has been shown to affect egg 
parameters (Taborsky et al., 2007). To minimise same- sex aggression and to aid individual identifica-
tion, we ensured that each dominant was at least 5 mm larger than the same- sex subordinate in the 
focal group (mean ± SE size difference, Experiment I: 10.7 ± 1.0 mm; Experiment II: 22.4 ± 1.3 mm). To 
minimise potential size- difference effects between treatments, and control for the influence of female 
size on reproductive measures (Heg et al., 2011), we size- matched (in standard length) breeders in 
all tanks in a triplet to each other. At the start of Experiment I, focal- group dominant males were 55.2 
± 1.3 mm, dominant females were 53.4 ± 0.9 mm, subordinate males were 41.8 ± 0.9 mm and subor-
dinate females were 44.3 ± 1.3 mm long, while males were 59.3 ± 2.6 mm and females were 54.8 ± 
1.6 mm long in the middle- tank breeding pairs. At the start of Experiment II, focal- group dominant 
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males were 73.1 ± 1.3 mm, dominant females were 64.4 ± 0.8 mm and subordinate females were 41.8 
± 1.0 mm long, while males were 71.4 ± 2.7 mm and females were 63.6 ± 1.8 mm long in the middle- 
tank breeding pairs.

For each triplet, we randomly allocated (by flip of a coin) the side tanks to one of two experimental 
treatments, Control and Intruded; the central tank provided the intruders used in the Intruded treat-
ment. Experiment I spanned 13 weeks to allow for multiple spawning bouts; we destroyed clutches 
produced before groups had experienced at least three intrusions (Control = 1 clutch, Intruded = 
2 clutches) as groups would likely not have been significantly affected by treatments within such a 
short timeframe. In Experiment II, following eight intrusions during the first 13 days, the first clutch 
produced by each group marked the end of treatment for that group; 2 weeks represents approxi-
mately half the time of a regular breeding cycle (Desjardins et al., 2011; Jindal et al., 2017). Eleven 
clutches were destroyed during the initial 13 days of treatment (Control = 8 clutches, Intruded = 3 
clutches). Previous destruction of a clutch had no significant impact on egg dry weight (χ2

1 = 0.21, p = 
0.650), egg volume (χ2

1 = 0.05, p = 0.833), lipid content (χ2
1 = 0.16, p = 0.692), or protein content (χ2

1 
= 0.89, p = 0.345). Experiment II was run for 11 weeks to maximise the number of focal groups that 
produced a clutch.

Simulated territorial intrusions
We selected the side of the focal Intruded tank where each intrusion took place (near or far from 
the neighbour tank) and the identity of the intruder (male or female neighbour) pseudo- randomly: 
by flip of a coin, but no more than four of the same side or sex in a row. In the wild, dominant indi-
viduals of both sexes undertake regular forays to nearby territories (Jungwirth et  al., 2015) and 
may, thus, return to their own territories from any direction. At the start of an intrusion (or equiva-
lent in the Control tanks), we slid down one transparent and one opaque flexible partition (0.75 mm 
white ViPrint) through single- channel PVC tracks glued to the long walls, 8 cm from the tank edge, 
creating a side compartment at the edge of the territory of the focal group (Braga Goncalves et al., 
2021; Braga Goncalves and Radford, 2019). Then, we netted out the pre- selected neighbour and 
placed it in the side compartment of the focal tank, obscured from view of the resident group for a 
5- min settling period. Brief handling experiences do not affect behaviour adversely in this species 
(Braga Goncalves and Radford, 2019; Mileva et al., 2009). After the settling period, we removed 
the opaque partition in the focal tank to reveal the intruder to the resident group for 10 min, a trial 
duration that falls comfortably with the range (5–20 min) often used in laboratory and field studies in 
this species (Desjardins et al., 2008; Jungwirth et al., 2015; Reyes- Contreras et al., 2019). At the 
end of the intrusion period, we replaced the opaque partition in the focal tank and placed another 
opaque partition between the focal and neighbour tanks, netted the intruder and transferred it back 
to the neighbour tank out of sight of the focal group. Concurrently, in the matching Control group, 
we conducted the same sequence of placement and removal of opaque and transparent partitions as 
in the Intruded tank, but in the absence of an intruder. To minimise the impact of human presence on 
the behaviour of the experimental subjects, the experimenter hid behind a curtain during the period 
that the intruder was visible to the resident group.

In Experiment I, we filmed (Sony Handycam HDR- XR520) two simulated intrusions, one at the start 
(week 1) and another towards the end (week 11) of the study, to assess how focal groups responded to 
the presence of a neighbour in their territory, and how their response changed over time. For consis-
tency, all filmed intrusions had the female neighbour as intruder placed on the side of the tank closest 
to the neighbour tank. Similarly, we filmed the behavioural responses of the Control groups to the 
presence of the transparent partition in their territory. Subordinate sample size was smaller (N = 12) 
at the end of the study due to deaths unrelated to the experiment (fish jumped out of tank) and evic-
tions (Control = 4, Intruded = 4). Following previously established protocols for this species (Reddon 
et al., 2015; Sopinka et al., 2009), we recorded using JWatcher (v1.0; Macquarie University, Sydney, 
Australia) the frequencies of aggressive behaviours, including attacks (rams and bites) and aggressive 
displays (aggressive postures, frontal displays, and fast approaches), directed at the intruder or the 
transparent partition by each group member. From the Intruded videos, we also recorded intruder 
responsiveness towards the focal group, by assessing proportion of time active and facing the focal 
group, as in Braga Goncalves and Radford, 2019.
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Reproductive rate
To assess the impact of outgroup conflict on the likelihood of spawning, latency to spawn, number of 
clutches produced, and mean inter- clutch interval (Experiment I), we scanned all focal tanks every day 
for new clutches.

Investment in eggs
To evaluate the impact of outgroup conflict on clutch size, we photographed all clutches in Experi-
ment I (N = 34) the day after they were laid and counted the numbers of eggs using ImageJ (version 
1.46r, National Institutes of Health, USA). Hatching success could only be assessed in a subset of 
clutches (N = 21) because the hatchlings of several clutches took cover on the sand or on the plant 
and could not be counted reliably.

To evaluate the impact of outgroup conflict on egg size and nutritional content, we separated 
from each clutch in Experiment II: (1) 10–12 eggs for assessment of egg size; (2) two samples of 6–11 
eggs for lipid analysis; and (3) two samples of 5 eggs for protein analysis. Two clutches (1 Control, 
1 Intruded) were laid over 2 days; we collected two samples for egg- size assessment from these 
clutches. Samples (2) and (3) were stored at −20°C until extraction.

Using the egg- size sample, we measured the length and width of each egg with a stereo micro-
scope (×2 magnification) and a graticule. We then calculated the effective diameter of each egg (i.e. 
the diameter if it were perfectly round) as the cube root of the length multiplied by the square of the 
width, and used the effective diameter to calculate the volume assuming a spherical shape (as per 
Coleman, 1984). We used all egg volumes from each sample in the analysis. After the eggs were 
individually measured, all eggs from the same clutch were placed together in a petri dish with wax 
paper and dried in a heating cupboard at 70°C for 48 hr, weighed twice (ME5, Sartorius, Göttingen, 
Germany), returned to the heating cupboard for another 24  hr and weighed twice again; all four 
measurements were used in the analysis.

To assess the total lipid content of eggs, we used the colorimetric sulfo- phosphato- vanillin method 
for microquantities (Alqurashi et  al., 2019). Briefly, we dried the samples at 70°C for 24  hr and 
weighed them twice to the nearest microgram (CPA26P, Sartorius, Göttingen, Germany). We trans-
ferred the samples into 15 ml round- bottom glass test tubes (16 × 150 mm) and crushed them with 
a glass rod before adding 10 ml of chloroform–methanol solution (1:1, vol/vol). We extracted 0.5 ml 
of supernatant from each sample into new test tubes and placed them in a dry bath (LSE single block 
digital; Corning Ltd, Barry, UK) at 100°C for 15 min to evaporate the solvent. After, we added 0.2 ml of 
sulphuric acid to the samples and placed them in the dry bath for a further 10 min. Once the samples 
had cooled to room temperature, we added 4.8 ml of vanillin- ortho- phosphoric acid 85% reagent 
(1.2 g/l), thoroughly mixed the samples for 30 s with a vortex mixer (Bibby Scientific, Stone, UK), and 
transferred 1 ml of the solution into 1 ml polystyrene semi micro cuvettes. Using a spectrophotometer 
(WPA Biowave UV/Vis; Biochrom Ltd, Cambridge, UK) at 525 nm, calibrated with a vanillin/phosphoric 
acid only blank, we took three absorbance readings from each sample and calculated their mean. The 
mean sample absorbance values were plotted against a standard curve to extrapolate their total lipid 
content (µg). The standard curve was prepared using eight serial dilutions of analytical soybean oil 
solution (0.917 g/ml, Sigma Aldrich) in methanol:chloroform (1:1).

To assess the total protein content of eggs, we used the Bradford method (Bradford, 1976) 
following specifications by Alasmari and Wall, 2020. The egg samples were transferred into 15 ml 
round- bottom borosilicate glass test tubes (16 × 150 mm) and crushed with a glass rod. We added 
0.5 ml of phosphate buffer (100 mM of monopotassium phosphate [KH2PO4], 1 mM of ethylenedi-
aminetetraacetic acid, and 1 mM of dithiothreitol dissolved in distilled water), mixed with an aqueous 
solution of potassium phosphate dibasic (K2HPO4) to achieve pH = 7.4 to dissolve the sample, followed 
by another 0.5 ml of buffer to clean the glass rod. After, we thoroughly mixed the samples for 30 s 
with a vortex mixer (Bibby Scientific, Stone, UK), we transferred 0.1 ml into new tubes, added 2.9 ml 
of buffer, and vortexed the new solutions for another 30  s to perform 1:30 dilutions. From these 
dilutions, we transferred 1 ml of the solution into a new tube, added 1 ml of Bradford reagent, and 
vortexed the resulting solution for 1 min. After waiting 5 min at room temperature, we transferred 
1 ml of the solution into 1 ml polystyrene semi micro cuvettes and read the absorbance values on a 
spectrophotometer at 595 nm, calibrated with a buffer and Bradford reagent- only blank. Each sample 
was measured three times and the mean value was plotted against a standard curve to extrapolate 
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the total protein content in the sample. The standard curve was prepared using eight serial dilutions 
of bovine serum albumin (1 mg/ml, Sigma) between 0 and 50 µl diluted in buffer to a total volume of 
1 ml. Protein content estimates were multiplied by 30 to express protein content per egg (µg).

Investment in parental care
To assess the impact of outgroup conflict on parental care, we filmed (Sony Handycam HDR- XR520) 
each focal group in Experiment I for 10 min on the morning after a clutch was laid, before they expe-
rienced an intrusion that day. Parental care at the egg stage, consisting of fanning and cleaning the 
eggs, aids embryonic development and survival (Taborsky, 1984). From the videos, we recorded 
the number of clutch visits (visits to within a body length of the clutch) and parental- care behaviours 
(egg- cleaning and clutch- fanning combined) displayed by all group members, as well as the total time 
spent in clutch visits and in parental- care behaviour.

Reproductive output
To assess the impact of outgroup conflict on offspring survival, we visually counted the number of 
surviving fry on the day that they reached 1- month post- hatching in Experiment I (N = 32 broods). 
To count offspring numbers in larger clutches reliably, we temporarily divided the tanks into three 
sections using transparent partitions and counted the number of offspring in each section separately. 
All counts were done twice to confirm totals; where values differed, we counted young a third time 
and either took the confirmed number of young or calculated the mean number from the three counts.

To assess the impacts of outgroup conflict on offspring activity levels and response to a sudden 
stimulus, we tested offspring at 1- month post- hatching. At this age, offspring actively explore the 
territory (i.e. swim around the tank) and, when they perceive a conflict, they sink to the substrate and 
remain immobile to blend with the sandy background (Taborsky, 1984; Watve and Taborsky, 2019). 
A sample of 5–10 offspring (N = 21 clutches) was transferred from their home tank to a test container 
(20 × 20 × 10 cm), filled with 3 l of water from their home tank, and left to settle for 30 min before 
the commencement of a trial. Each trial was filmed (Sony Handycam HDR- XR520) from above. After 
an initial 5 min undisturbed, pre- stimulus period, we released a small glass marble in a 60- cm plastic 
tube placed at a right angle relative to and touching the side of the container, so that the marble 
produced sudden vibrations and noise as it hit the container. We then filmed offspring behaviour for a 
5- min post- stimulus period. We calculated mean offspring activity level pre- stimulus by observing 3 s 
of film every 20 s and recording how many offspring were actively swimming during that period. We 
also took screenshots every 20 s during the 5 min pre- stimulus period, from which we measured the 
mean nearest- neighbour distance of the offspring. From the post- stimulus period, we recorded the 
latency for all individuals to become immobile in response to the stimulus and the latency for the first 
offspring to become active again.

After the startle- stimulus trials, we euthanised the offspring with an overdose of tricaine methane-
sulfonate (MS222, 12 ml/ 100 ml tank water) and stored them in a 30% ethanol freshwater solution, 
shown to be adequate for simultaneously preserving body tissues and minimising shrinkage (Gagliano 
et al., 2006). We measured offspring standard length (from the tip of the snout to the end of the 
caudal peduncle, ±0.01 mm) using Leica Application Suite (version 4.4.0 [Build:454], Leica Microsys-
tems Limited, Switzerland) connected to a camera (Greenough Stereozoom ×0.8 manual) mounted 
on a stereo microscope (EZ4 HD, eyepiece ×10/21B). Immediately after measuring the offspring, 
we dried them for 36 hr at 70°C before weighing them individually on a Mettler scale (AE260, Delta 
Range, ±0.1 mg). We then used the individual measurements to calculate mean offspring standard 
length and dry weight per clutch.

Statistical analyses
All statistical analyses were conducted using RStudio (version 1.2.5033, RStudio, 2020). In Experi-
ment I, we used paired t- tests or Wilcoxon signed- rank tests (depending on whether datasets met 
the assumptions of parametric testing or not, respectively) to assess intruder behaviour and defensive 
contributions between treatments and within individuals at the start and end of the study; the latter 
were adjusted using the Bonferroni–Holm sequential method (Dobson and Barnett, 2008; Holm, 
1979). We used a McNemar test and a Wilcoxon rank sum test to assess treatment differences in the 
likelihood of spawning and in the number of clutches produced, respectively.
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For all other analyses, we used mixed- effects models. We visually assessed model assumptions and 
performance using the package ‘performance’ (Lüdecke et al., 2021). Where appropriate, we fitted 
LMMs with Gaussian error distributions to the raw data (package ‘lme4’ version 1.1- 21, 99). Where 
datasets did not fit the assumptions of linear models, we fitted appropriate GLMMs where possible: 
a GLMM with negative binomial error distribution and log- link function (package ‘glmmTMB’ version 
1.1.2.3, Brooks et al., 2017) for the analyses of the number of nest visits and clutch caring events; and 
a GLMM with Gaussian error distribution and log- link function (package ‘lme4’ version 1.1- 21, Bates 
et al., 2015) for the analyses of time spent on clutch care. We log10- transformed latency to spawn to 
conform with linearity assumptions. The analysis of number of offspring to survive to 1 month of age 
included clutch size at laying as an offset. All models included tank- triplet identity and, where relevant, 
focal- group identity nested within tank- triplet identity as random factors to control for the shared 
neighbours within each triplet and for repeated observations for groups, respectively. Our main fixed 
factors of interest were treatment (Intruded and Control) and its interaction with treatment duration 
(covariate); we controlled for the effects of several covariates in different models as appropriate (full 
details of factors used in each analysis are provided in the Supplementary file 1).

In each model, we assessed term significance by comparing a model with and without the specific 
term using likelihood ratio tests (chi- square tests using R function ‘anova’; Dobson and Barnett, 2008). 
Non- significant interaction terms were removed to enable us to assess the effects of the main factors 
independently (Dobson and Barnett, 2008; Engqvist, 2005); the resulting final models contained all 
mains factors and significant interaction terms. The effects of significant interactions between treat-
ment and treatment duration were teased apart by analysing the effect of treatment duration on each 
treatment separately. In the main text, we provide significant PEs and associated 95% CIs or treatment 
effect sizes of the main factors of interest (i.e. treatment and its interaction with treatment duration); 
all PEs, CIs, and associated statistical outputs are provided in the Supplementary files.
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