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The theory of critical slowing down states that a system displays increasing relaxation times as it approaches
a critical transition. These changes can be seen in statistics generated from timeseries data, which can be used
as early warning signals of a transition. Such early warning signals would be of value for emerging infectious
diseases or to understand when an endemic disease is close to elimination. However, in applications to a variety
of epidemiological models there is frequent disagreement with the general theory of critical slowing down,
with some indicators performing well on prevalence data but not when applied to incidence data. Furthermore,
the alternative theory of critical speeding up predicts contradictory behaviour of early warning signals prior to
some stochastic transitions. To investigate the possibility of observing critical speeding up in epidemiological
models we characterise the behaviour of common early warning signals in terms of a system’s potential surface
and noise around a quasi-steady state. We then describe a method to obtain these key features from timeseries
data, taking as a case study a version of the SIS model, adapted to demonstrate either critical slowing down or
critical speeding up. We show this method accurately reproduces the analytic potential surface and diffusion
function, and that these results can be used to determine the behaviour of early warning signals and correctly
identify signs of both critical slowing down and critical speeding up.

1. Introduction bifurcation is approached, leading to longer return times. Alternatively
CSD can be understood through the shape of the potential surface,
which becomes flatter around the steady state, indicating a weakening
of the dynamic forces pulling the system back to equilibrium. This effect

becomes apparent in timeseries data through an increase in variance

Complex systems that exhibit critical transitions, characterised by
a sudden shift in the state of the system, can be found in fields
ranging from climate change (Dakos et al., 2008; van der Bolt et al.,
2018) to finance (Guttal et al., 2016; Jurczyk et al., 2017) to epi-
demiology (O’Regan and Drake, 2013; Brett et al., 2020). By their
nature, critical transitions have a major impact on a system’s behaviour.

and autocorrelation as the system approaches the bifurcation, as well
as in the behaviour of various other statistical indicators.

Substantial effort has been devoted to identifying both generic and
model-specific methods for detecting impending critical transitions.
One such method is that of early warning signals (EWSs) (O’Regan
and Drake, 2013; Scheffer et al., 2009; Wissel, 1984; Southall et al.,
2020): summary statistics which monitor features of a timeseries that
are known to change as the system approaches a ‘tipping point’.

EWSs arise from the theory of critical slowing down (CSD). The
key concept of CSD is that as a system approaches a critical transition
caused by a zero-eigenvalue bifurcation it becomes slower to recover
from small perturbations away from its steady state (Scheffer et al.,
2009; Wissel, 1984). CSD can be explained by the size of the dom-
inant eigenvalue of the system, which decreases towards zero as the
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One important application of EWSs is to understand when a disease
is approaching the point at which it can cause a major outbreak. In
the wake of the COVID-19 pandemic there has been renewed attention
in developing techniques such as these for identifying possible future
pandemics before they become uncontrollable. Conversely, it is also
necessary to robustly detect infections of potential concern, while
avoiding undue false alarms. To develop EWSs with such characteristics
requires a detailed understanding of their behaviour in various different
types of models and situations. This paper aims to develop our under-
standing of the underlying reasons for the variety of EWS behaviours
we observe in different models and data.
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Fig. 1. Four features of the potential surface are displayed: the depth of the surface at its local minimum (), the distance to the border of the basin of attraction (b), the ratio

of these (p), and the steepness of the potential surface at its local minimum (4).

Although originally applied to saddle-node bifurcations (Schef-
fer et al., 2009), CSD has also been observed in other situations in
which systems undergo critical transitions without crossing a bifur-
cation (Dakos et al., 2015; Boettiger et al., 2013; Kéfi et al., 2013),
and for systems undergoing a Hopf bifurcation (Bury et al., 2020) and
transcritical bifurcations (O’Regan and Drake, 2013; Southall et al.,
2020). It is important to note that CSD theory is not applicable to
all critical transitions. In particular CSD would not be expected prior
to a purely stochastic transition between a system’s existing steady
states (Boettiger and Hastings, 2013). Dakos et al. provide a detailed
description of the various causes of critical transitions and in which of
these CSD can be observed (Dakos et al., 2015). We focus on situations
in which a critical transition is induced by a slow change in some
underlying parameter which itself approaches a ‘critical threshold’.

We return to the understanding of CSD as a flattening of the
potential surface. Fig. 1 shows a section of a potential surface around a
steady state, located at the local minimum of the potential surface. Four
features of the potential surface are marked on the figure, correspond-
ing to different measures of the system’s resilience (Dakos et al., 2015).
h describes the height of the potential surface at its local minimum. »
describes the distance to the border of the basin of attraction, that is the
distance from the local minimum of the potential surface to the nearest
local maximum. These two features approximate the distance to the
system’s tipping point in parameter space and state space respectively.
p describes the ratio between these (p = h/b) as an approximation to
the steepness of the potential surface, while 4 describes the steepness
(second derivative) of the potential surface at its local minimum.

CSD is characterised by a shrinking of the basin of attraction and
a flattening of the potential surface as the underlying parameter ap-
proaches its critical threshold. Hence 4, p and 4 would all be expected
to decrease as the critical transition is approached.

CSD has been observed both in empirical data (Harris et al., 2020;
Drake and Griffen, 2010) and in EWSs derived from analytic mod-
els (O’'Regan and Drake, 2013; O’Regan and Burton, 2018). However
there are also many cases in which the behaviour of EWSs does not
match the statistical signatures associated with CSD in both theoretical
models (O’Regan and Burton, 2018; Dakos et al., 2012; Schreiber, 2003;
Schreiber and Rudolf, 2008; Boerlijst et al., 2013) and real data (Guttal
et al., 2016; Carpenter et al., 2011; Rozek et al., 2017). The expansion
of EWSs to systems beyond standard bifurcation models, including
stochastic systems in which a critical transition is made increasingly
likely due to a slow parameter change (Titus and Watson, 2020), has
added to the need for a more detailed understanding of the behaviour
of EWSs.

Recently Titus and Watson proposed a possible explanation of un-
expected EWSs behaviour through an alternative theory called critical

speeding up (CSU) (Titus and Watson, 2020). The key difference is that
the potential surface is assumed to become steeper rather than flatter
as the critical transition is approached. Referring to Fig. 1, this corre-
sponds to an expected increase in p and A, combined with a decrease
in b and constant or decreasing 4. As these changes occur in the shape
of the potential surface, the system makes smaller, yet more frequent,
excursions from the steady state until eventually leaving the narrowing
basin of attraction. As with CSD the critical transition is approached
by moving a model parameter towards a critical threshold, although
in the case described by Titus and Watson the threshold cannot be
attained as it requires a division by zero in the underlying model. The
critical transition is not induced purely by noise, however, but also
by the changing shape of the potential surface which results in such
a transition becoming increasingly likely. The expected behaviour of
EWSs are therefore reversed as the system becomes faster, not slower,
to return to equilibrium. For example, variance and autocorrelation are
both expected to decrease under CSU, whereas CSD predicts that they
would both increase.

Although the concepts of CSD and CSU are clearly distinct and
predict opposite EWSs behaviours, identifying which, if either, phe-
nomena a system experiences may not be straightforward. Faced with
EWSs whose behaviour deviates from the predictions of CSD there are
various possible explanations (Southall et al., 2020; Dakos et al., 2015;
Boettiger and Hastings, 2012). Issues may arise from the calculation
of EWSs (Dessavre et al., 2019), from the type of data used (Boettiger
and Hastings, 2012), from assumptions about the nature of the tran-
sition (Boettiger et al., 2013), or because a system experiences CSU
rather than CSD (Titus and Watson, 2020). In order for EWSs to provide
meaningful information it is vital to have a good understanding of
how these signals are expected to behave in the context of a particular
application.

Here we present a situation-specific method for understanding the
behaviour of EWSs. This approach, which we refer to as an ‘equation-
free method’ (EFM) operates by reconstructing the potential surface
and noise process from timeseries in which the underlying parameter is
fixed (Dyson et al., 2015; Yates et al., 2009). EWSs can be approximated
from the features of the potential surface and noise at steady state. The
chosen parameter value is then changed and the process is repeated
to give an understanding of how EWSs change as the system moves
towards the critical transition. This approach provides fresh insight into
the complex behaviour of EWSs while also giving valuable information
about the changing shape of the potential surface and its impact on a
system’s dynamics. We demonstrate the EFM on a case study, which we
adapt from a classic epidemiological model, designed to demonstrate
either CSD or CSU depending on the choice of a fixed model parameter
n. This case study shows how the behaviours of EWSs may deviate from
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Table 1

Common EWSs expressed in terms of the steepness of
the potential surface at the fixed point (1), the value
of the diffusion function at the fixed point (¢), and
the location of the fixed point (X).

Early warning signal General form

2

Variance <
22
Coefficient of variation c
XV24
. . O'Z
Index of dispersion —
24%
Lag-1 autocorrelation et
Decay time %

the typical patterns associated with CSD and CSU, and how the EFM
can be used to explain why these behaviours occur. We also discuss
the applicability of the EFM to experimental data: while it offers a
framework for calculating EWSs on unevenly spaced data and without
requiring moving averages or data detrending, both of which pose
problems when calculating EWSs directly from timeseries, it requires
large volumes of data and is not proposed as a means to calculate EWSs
in real time.

2. Methods

To clarify the relationship between the behaviour of the potential
surface and the behaviour of EWSs, we derive analytic expressions for
five common EWSs in terms of features of the potential surface and the
system’s noise.

As in Titus and Watson (2020) we assume that the dynamics of a
stochastic process X are controlled by a smooth potential function V'
plus some noise, modelled by the stochastic differential equation

dx, = -V'(X,)dt + D(X,)dW,, W

where (W, : t > 0) is a standard Weiner process. We assume that this
system has a stationary or quasi-stationary state denoted x, defined
as a local minimum of V (the potential, with V/(x) = 0), around
which X fluctuates. By considering the linearisation of the dynamics
around x (for example by linearising in the corresponding Fokker—
Planck equation), we obtain an Ornstein—Uhlenbeck process describing
the fluctuations (Y = X — x) around this point (O’'Regan and Burton,
2018; Dakos et al., 2012). We denote the steepness of the potential
surface at the steady state by 1 := V" (%) (as in Fig. 1) and the value
of the diffusion function at the steady state by ¢ := D(x), giving the
following stochastic differential equation for the fluctuations

dy, = -1Y,dt + o dW,. 2)

Analytic expressions for various statistics commonly used as EWSs are
already established for this simpler process (Gardiner et al., 1985) and
are displayed in Table 1. These expressions are given solely in terms
of the steepness of the potential surface (1), the value of the diffusion
function at the fixed point (¢) and the location of the fixed point ().
Note that they do not rely on other features of the potential surface,
such as the precise width and depth of the basin of attraction. The
expressions in Table 1 correspond to the behaviour of EWSs calculated
on a system at its steady state. A similar approach to deriving the
behaviour of EWSs is taken in O’Regan and Burton (2018) and Titus
and Watson (2020).

As underlying parameters are varied the values of 4, o and ¥ may
also change. For a system that experiences CSD, characterised by a
flattening of the potential surface, A will decrease. This leads to the
increase in autocorrelation that is typically associated with CSD. For
systems experiencing CSU the opposite effect occurs: as A increases, the
autocorrelation decreases.
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If ¢ is assumed to remain constant then CSD and CSU will lead
to the expected increase and decrease in variance respectively. How-
ever, in models with multiplicative noise and in real-world complex
systems, ¢ could increase or decrease as the critical transition is ap-
proached (O’Regan and Burton, 2018). From this we see that the
potential surface alone is insufficient to fully understand the behaviour
of EWSs, as many also depend significantly on .

If the drift and diffusion functions (—V’/(X) and D(X) respectively)
in Eq. (1) are known then these can be used to compute X, 4 and ¢
directly. In the case that these equations are not known we present
an ‘equation-free’ method to approximate the values of %, 4 and ¢
from timeseries data and therefore understand the behaviour of various
EWSs. The following method is adapted from Dyson et al. (2015), Yates
et al. (2009). A similar method has also been presented in Friedrich
et al. (2000) and Rinn et al. (2016), the latter of which also describes
an R package for their implementation.

We begin by taking an Euler-Maruyama discretisation (Kloeden and
Platen, 2013) to approximate Eq. (1) in discrete time-steps of length 6,
giving

X5 — X, = -V'(X))6 + D(X,)dW,, 3)

with dW, = (W, 5 — W)). For a specific value x in the range of the
process, assume X, = x and let x; be the position of the process at time
t + 6. We then rearrange Eq. (3) and average over many realisations
(denoted by (-)) to obtain

’ : X=X

V(X)Z(ISI_I>I(1)< 5 > @
As dW, has an expectation of zero, this part of the SDE vanishes in the
average. By repeating this process across the range of X we obtain an
approximation to the function V’(x). We then integrate with respect to
x to obtain the function V. This method is applied to timeseries data
by partitioning the range of the data into sections and approximating
V'(x) in each section, before linearly interpolating and integrating
numerically. These reconstructed potential surfaces can then be used
to approximate X as well as features of the potential surface b, h, p and
A

A visual representation of the implementation of this method is
provided in the supplementary material Section 1.

We may approximate the diffusion function D(X) in a similar way.
Squaring Eq. (3) gives

(X5 — X2 = V'(X,)? 8% = 2V (X,)D(X,)6dW, + D(X,)? (dAW,)%. (5)

Averaging both sides of this equation over many realisations as before,
then dividing by 6 gives

(= x, 1/2
D(x) = <§%<T">> ) (6)

In practical computation, where taking § — 0 is not possible and an
approximation to V' (x) has previously been calculated, an approximate
form for a small fixed 6 > 0 is given by

L 12
D(x)z<<(x%>—5v’(x)2) . %)

This provides an approximation to the value of the diffusion function
at the fixed point ¢ = D(x). Using the forms in Table 1, the behaviour
of the EWSs can now be obtained.

We demonstrate an application of this method to simulated time-
series for an adapted SIS model, capable of displaying either CSD or
CSU. During each realisation of the simulation the parameter values
are fixed, allowing us to reconstruct the potential surface and diffusion
function for these set parameters. We can then investigate how the
shape of the potential surface and behaviour of EWSs changes as the
critical transition is approached by comparing the results between the
different parameter values.
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Table 2
SIS model reactions.
Event Reaction Rate
Transmission S+1- 21 B/N
Recovery I- S b4

3. Case study: Adapted SIS model

The standard SIS model without demography can be described by
the following reactions, where S represents one susceptible individual
and I represents one infected individual (see Table 2).

The total population size (N = .S + I) remains constant as no new
individuals enter or leave the system, individuals only change their
classification. These two reactions lead to the following SDE, derived
in the supplementary material Section 2, where x(r) = % € R is the
proportion of the population that is infected at time ¢,

dx = (Bx(1 = x) — yx) di + fx(1 = x) +yx) dW,. ®

1
~
We refer to the terms preceding ds and dW, as the drift F(x) and
diffusion D(x) functions respectively,

F(x) = px(1 - x) —yx, (9a)

D(x) = Bx(1 = x)+yx). (9b)

¥
N

The mean field equation returns the standard non-dimensionalised ODE
for the SIS model (Van Kampen, 1992; Kermack and McKendrick,

1927),

‘2—); = fx(1 —x) —yx. (10)
While the shape of the potential surface is determined by the param-
eters # and y, the true parameter of interest is the basic reproduction
number given by R, = é The system undergoes a transcritical bifur-

cation at Ry, = 1 when the endemic steady state x = 1 — RLO collides
with the disease-free steady state, which becomes stable (Keeling and
Rohani, 2011).

To construct a model that demonstrates a variety of behaviours
corresponding to CSD and CSU we first consider § and y as some
specified functions of R,. To maintain the definition of R, we require
these functions to satisfy the relationship f(R,) = R,r(Ry), so need
only specify the form of y(R).

Titus and Watson propose that the difference between CSD and CSU
is determined by the relationship between the width and depth of the
basin of attraction (Titus and Watson, 2020). As the width of the basin
of attraction depends only on R, and not on # and y individually, we
consider the depth of the potential surface,

h=—/ F(x)dx
0

:_ﬁ(R0)<R0— 1>2+ ﬁ(Ro)<Ro—1>3+
2 Ry 3 R,

y(Ry) { Ry —1\°
= R,.
6 R,

Based on this we choose y(R,) of the form:

Ry = =X '
Ya(Ro) = Ry—1 s

for values of n = 0, 1,2,3. Here n acts as a parameter that controls the
behaviour of the system on the approach to the critical transition. For
higher values of n the rate at which the depth of the basin of attraction
decreases as R, | 1 is slower, indicating the possibility of observing
CSU. Moreover, this form provides a potential surface with decreasing
steepness for n < 1 and increasing steepness for n > 1 (as R, | 1).
Further features of this potential surface are given in Table 3.

y(Ry) [ Ry — 1\
2 R,
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To allow a direct comparison between different values of n we
establish a starting value of R, = 1.5 from which R, is decreased
towards 1, then normalise y, and g, so that their values at R, = 1.5
are independent of n. We define the normalising factor K, = 3" and

()[R (R} (R
= (). o= (2) ().

so that for all values of n, y,(1.5) = 1, §,(1.5) = 1.5.

In this model the exhibited behaviour (CSD/CSU) will be controlled
by the value of n. We note that a result of requiring that g,(R()/7,(Ry) =
R, is that if time is rescaled by the recovery rate, then the model
dependence on n is removed and the dynamics correspond to the SIS
model. While this model provides a useful tool to study CSD and CSU,
their underlying causes and the differences between them, we do not
assert that this represents any particular real-world system, nor that a
system exists in which changing a given parameter would move the
behaviour from CSD to CSU.

The stochastic differential equation for disease prevalence (x € R)
is now

1 Ry \"
dx = (E)(Th) (Rox(l —x)—x) dr

1 Ry \"
+ \/(Tm)(ﬁ) (Rox(1 —x) +x) dw,. (12)

For n = 0 this model corresponds to the standard SIS model in Eq. (8).
For n > 0 the system no longer bifurcates, instead as R, is slowly
reduced towards 1 the system is driven towards a stochastic transition
to the disease free state. Despite this the system exhibits CSD for both
n=0and n=1. For n =2 and n = 3 the model instead exhibits signs of
CSU. We do not consider values n > 4, as this leads to the depth of the
potential surface growing to infinity as R, approaches 1. For all values
of n considered the critical transition is induced by the reduction of the
parameter R, towards its critical threshold.

The potential surface for the adapted SIS model is found by inte-
grating the negative of the drift function Eq. (9a) and substituting the
functions f(R,) and y(R,) to give

V,,(X)=—/F(x)dx,
_ afx_1(_ L
-2 (3-5(1-5;))
_(_1 Ry \'o of, Ry \™
() (R5) wo(=-3(gy) ) o

From Egs. (12) and (13) we analytically calculate features of the
potential surface and noise at the endemic steady state. These results
are summarised in Table 3.

The steepness of the potential surface (1) is increasing for n = 0, 1
and decreasing for n = 2,3. This indicates that the system experiences
CSD for n = 0,1 and CSU for n = 2,3. We refer to this change as the
CSD/CSU threshold for n. The behaviour of ¢ is notably different from
A, decreasing for n = 0 only. This highlights the fact that trends in
the noise of the process may not match trends in the steepness of the
potential surface as the critical transition is approached, hence it is vital
to understand these two features separately.

The location of the steady state, X, is decreasing for all values of n.
This indicates that the basin of attraction is becoming narrower, but
does not provide an indication of CSD or CSU. Similarly, a decrease
in h and b is observed for all values of n, again indicating that the
system is approaching a critical transition, but this trend also provides
no indication of whether the critical transition will be preceded by CSD
or CSU. p is decreasing for n = 0,1,2 and increasing for n = 3, so its
change in behaviour does not correspond to the CSD/CSU threshold.
Hence an increasing or decreasing trend in p is not a clear indicator of
CSsu.

The trends seen in the features of this model further motivate the
focus on recovering values of x, A and ¢ as a means to understand the
behaviour of a system on the approach to a critical transition.
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Table 3

Features of the potential surface and noise process for the adapted SIS model. x: the
position of the endemic quasi-steady state. & : the depth of the potential surface at . b:
the distance from x to the nearest edge of the basin of attraction. p: the ratio between
h and b, approximating the steepness of the potential surface. A: the steepness (second
derivative) of the potential surface at %. ¢%: the value of the diffusion function at
(squared). \ indicates a variable is decreasing as R, decreases towards 1, — indicates
it is constant and / indicates it is increasing. Entries for which variables are constant
or increasing are highlighted with a grey background.

Feature ‘ Expression Trend as R, | 1
| n=0 n=1 n=2 n=3
Endemic  steady | 1-— RL N N N N
state (%) 0
. Ry R\
Potential surface ik \ 7= N N N\ N
depth (h) m AT
Distance to 1- Ri N N N N
disease-free ~ state 0
(@]
Ratio (p = h/b) Ry R\ N N\ N\ 7
6K, \ R, -1
R R -1
Potential ~ surface ?0 ( R i I ) N N / /
steepness (1) m AT
R -1
Noise at endemic N2K (R 0 I ) N = / /
steady state (62) m Ao

Table 4
Analytic expressions of five common EWSs applied to the
adapted SIS model for general n. These expressions are derived
by substituting the values of 4, ¢ and % obtained from the
analytic SDE into the general form of the EWSs given in
Table 1.

Early warning signal Analytic expression

1

Variance

Ry
VR
Coefficient of variation 0
Ry—1
Index of dispersion 1
Ry -1

(&(&=))
exp| ——
Ky \Ry—1

K,, RO I-n
Ry \Ry—1

Lag-1 autocorrelation

Decay time

Substituting the analytic expressions above for X, 1 and o into the
general forms given in Table 1 we obtain analytic expressions for the
behaviour of EWSs for this adapted SIS model, presented in Table 4.
These expressions match those obtained using the linear noise approx-
imation performed on the SIS model by Southall et al. (2020) when
the system is at the endemic fixed point, substituting f(R,) and y(R,)
where needed.

We now present the results of the EFM applied to the adapted SIS
model. For each value of n, the potential surface and diffusion function
were reconstructed for five values of R, decreasing towards R, = 1.
The values of %, 4 and ¢ were then approximated to give insight into
the overall behaviour of the system (CSD/CSU/neither) as well as the
behaviour of EWS (increasing/decreasing/neither).

For each value of n the five potential surfaces are plotted in Fig. 2 to
demonstrate how the shape of the surface changes as R, decreases from
1.5 to 1.1. For all »n values the potential surfaces plotted for R, = 1.5
(front-most potential surface in each figure) are identical. Fig. 2 shows
how the potential surface becomes visibly flatter as R, decreases for
n = 0,1 and visibly steeper for n = 2, 3. Plots of the analytic equation for
the potential surface are given in red dashed lines for comparison. Solid
blue lines show the results of the EFM applied for each combination
of n and R,. In all cases there is an excellent fit between the analytic
equation and the potential surface from the EFM.
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The steady state, %, can be found by locating the minimum of the
potential surface. A was then estimated from the EFM by fitting a poly-
nomial function to a portion of the potential surface and calculating
the steepness of the polynomial at x. The EFM was also successful in
accurately approximating the drift function D(x). This approximation
was then used to estimate ¢ := D(x) for each pairing of R, and n values.

We now have three methods for calculating EWSs for this model:
the first method is the analytic expressions given in Table 4; the second
method is to substitute the approximations of x, 4 and ¢ from the EFM
into the general forms in Table 1; the third method is to calculate EWSs
directly on simulated timeseries in which R is slowly decreased. In
these timeseries R, is a linear function of time, given by

Ry(t)= 1.5 %; 14)
for + € [0,200], and to calculate EWSs we take outputs at integer
intervals. A comparison of the results of these three methods is given
in Fig. 3.

In the left column of Fig. 3 we compare analytic results (method
one) with results from the EFM (method two). In the top-left we show
the behaviour of lag-1 autocorrelation (Fig. 3a) and in the bottom-left
the behaviour of variance (Fig. 3b), with a clear match between the
two methods in both cases. This demonstrates the success of the EFM
in approximating x, 4 and ¢ and accurately predicating the behaviours
of these EWSs.

In the right column of Fig. 3 we compare analytic results (method
one) to the calculation of EWSs on simulated timeseries in which
R, is slowly decreased (method three). We refer to these as ‘time-
varying parameter’ timeseries, whereas the EFM uses ‘fixed parameter’
timeseries. For each of 200 Gillespie simulation realisations the value of
R, is slowly decreased from 1.5 to 1.1. EWSs are calculated between the
realisations at each timepoint. Again there is a good match between the
two methods. It should be noted that the time-varying parameter sim-
ulations pass through many more values of R, than the EFM, leading
to the comparison with analytic results appearing noisier. Overall our
results indicate that both the analytic expressions and the EFM results
accurately represent the behaviour of EWSs as the system approaches
a critical transition. Corresponding results for all EWSs are given in the
supplementary material Section 3.

4. Discussion

There are two main conclusions that can be drawn from this case
study: firstly, the EFM was successful in approximating the potential
surface, diffusion function and behaviours of EWSs; and secondly, the
behaviours of EWSs may deviate significantly from the typical patterns
associated with CSD and CSU.

A striking feature of the expressions for the five common EWSs
presented in Table 4 is that three (variance, coefficient of variation and
index of dispersion) are n-independent. This behaviour is supported by
the results in Fig. 3 of the EFM and simulations with time-varying R,,.
According to CSD/CSU theory all of variance, coefficient of variation
and index of dispersion should increase for n = 0,1 and decrease for
n = 2,3. This apparent contradiction can be explained by investigating
the expressions for the EWSs given in Table 1, where their behaviour is
explained in terms of %, A and . If the diffusion function is assumed to
be constant then the change in 4 leads to the expected increase (CSD)
and decrease (CSU) in variance (Scheffer et al., 2009; Titus and Watson,
2020). However, we present here a model where the change in the
shape of the potential surface is counterbalanced exactly by the change
in the level of noise around the fixed point, leading to n-independence
in these three EWSs. We conclude that, without additional information
describing the noise around the fixed point, the behaviour of variance
as an EWSs cannot be determined by the presence of either CSD or
CSU, and cannot be used to distinguish between these phenomena.
A similar conclusion can be reached for the coefficient of variation
and index of dispersion. This highlights the importance of including
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Fig. 2. Comparing analytic (red dashed) and EFM (blue) results for the potential surface for the adapted SIS model. There is an excellent fit between the two sets of results, hence
the EFM could be used to take approximate measures of the depth, width and steepness of the potential surfaces. 100 simulations have been run for each R, and n value.

realistic multiplicative noise when modelling any system with the goal
of studying EWSs. This also demonstrates the usefulness of the EFM: by
approximating %, 1 and ¢ the behaviour of EWSs are explained as well
as calculated.

As the behaviour of autocorrelation, and therefore decay time,
depends only on A these can be determined by the presence of CSD
or CSU alone, and can be considered characteristic of these phenom-
ena. One limitation of autocorrelation as an EWS is the need for
evenly spaced data points to be able to calculate autocorrelation either
over a moving window or between realisations. Interpolating existing
timeseries in which data points are not evenly spaced can introduce
artificial autocorrelation (Boettiger and Hastings, 2012), reducing the
reliability of autocorrelation as an EWS. The EFM offers an alternative
method for calculating autocorrelation from timeseries data, as there is
no requirement for evenly spaced data. Eq. (4) involves the average
direction of travel of a timeseries from a given point, but does not
require that the timeseries data be evenly spaced. Results shown here
for the EFM can also be obtained using timeseries with unevenly spaced
data.

The EFM may also offer a solution to other problems arising when
calculating EWSs directly on timeseries data. As discussed by Boettiger
and Hasting (Boettiger and Hastings, 2013) a system may have multiple
stable states and a timeseries may move between these. Calculating
EWSs on this timeseries over a moving window could show increasing
variance and autocorrelation preceding the movement between steady
states. This would not be an occurrence of CSD as there has been no
parameter change prompting this transition, the system is simply mov-
ing around its existing steady states due to the effects of stochasticity.
Observing only the EWSs calculated on the timeseries, such a situation
may be misinterpreted as it appears to confirm the theory of CSD. As
the EFM reconstructs the drift function at each point in the specified

range, multiple fixed points within this range could be identified. The
behaviour of EWSs at a particular fixed point is then established by
changing the parameter of interest and repeating the EFM, for example
in Fig. 2 the EFM is repeated for five different R, values decreasing
from 1.5 to 1.1. The EFM therefore ensures that changes in EWSs are
caused solely by changes to the underlying parameters, rather than
other influences within the timeseries.

The calculation of EWSs directly on timeseries is also made more
challenging by the need to detrend data, since the method chosen can
then impact the reliability of the EWSs (Dessavre et al., 2019). When
only a single timeseries is used it is also necessary to calculate EWSs
over a moving window. This relies on the additional assumption that a
timeseries is ergodic, and thus that calculating EWSs over a moving
window is equivalent to calculation over multiple realisations. This
assumption, as well as the necessity to choose a moving window length,
raises additional difficulties (Boettiger and Hastings, 2012). While the
EFM offers an alternative approach it does not resolve these issues. The
EFM method requires a large volume of data and is not suitable for
calculating EWSs on a single timeseries. The challenges of detrending
and ergodicity are reduced when multiple realisations are available,
and in these circumstances, the EFM can be used to approximate the
potential landscape; offering additional benefits for understanding the
overall system and thus understanding the behaviour of EWSs.

It should be noted that the EFM is not proposed as a method for
calculating EWSs and detecting critical transitions in real time. This
is partly due to the requirement for fixed parameter timeseries, which
would not be available when monitoring a real system believed to
be approaching a critical transition. Additionally, multiple timeseries
with varying initial conditions are typically required for each param-
eter value to allow the system to fully explore its potential surface.
Furthermore, there must be sufficient data for the averages within the
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Fig. 3. The behaviour of lag-1 autocorrelation (a) and variance (b) for the adapted SIS system. Note that the figures on the right show results at significantly more values of R,.

EFM to accurately represent the drift and diffusion functions. Therefore
the EFM is best suited to systems which can be simulated, or where
experimental data is available for given parameter values. To satisfy
the assumptions of the EFM the underlying system must be a stationary
Markov process for each parameter value, as is the case in the example
provided here.

One drawback of the EFM is the need to select parameter val-
ues for which the potential surface and diffusion function should be
constructed. In this case study developed from the SIS model and in
other epidemiological situations, a critical transition commonly occurs
at R, = 1, with the precise definition of R, varying between models.
In broader applications identifying the parameter of interest and the

value at which a critical transition may occur requires some prior
understanding of the particular system.

There are various means by which investigation of the EFM could be
expanded. The case study presented here is a one-dimensional system.
Many complex systems, such as highly interconnected ecosystems,
require models in multiple dimensions. While the dynamics of some can
be reduced, expanding the EFM into multiple dimensions may improve
prospects for its applicability. It is worth noting that since the domain
of each variable must be divided into sections in which the drift and
diffusion functions are approximated, the computational cost of the
EFM would grow exponentially in the number of dimensions, likely
making it impractical for high-dimensional systems.
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The methodology of the EMF may also be further developed. The
EFM approximation of the drift function involves calculating the aver-
age direction of the travel of the system given its current position. In
Eq. (4) this is done by averaging the forward difference. Replacing this
forward difference with a central difference we obtain Eq. (15),

V'(x) =~ <—Xj+l ~ X > (15)
Tjp1 =Ty

where X is the vector of system states at times 7, with X; = x. This

adaptation to the EFM also accurately approximated the behaviour

of the potential surface, diffusion function and EWSs for evenly and

unevenly spaced data, but the full impact of such alterations is not

known.

The EFM is proposed primarily as a route to understanding how a
system changes as a critical transition is approached and therefore how
EWSs are expected to behave. There are various examples of systems in
which the behaviour of EWSs, especially variance, calculated on time-
varying parameter data deviates from the typical pattern of CSD. It is
crucial to understand why this occurs to ensure EWSs can be interpreted
correctly. Is there some issue arising from the method of calculation?
Does the system perhaps experience CSU rather than CSD? Does the
nature of the system’s stochasticity also change as the critical transition
is approached? The EFM offers an approach through which these highly
interconnected questions can be separated. When monitoring real time
data for signs of an impending critical transition practical calculation
and interpretation issues still remain, yet the EFM provides a route to
a clearer understanding of how the dynamics of a particular system
change and how EWSs should be interpreted.
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