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Abstract

In this paper we present a tableau system for deontic logics with the operator of
explicit permission. By means of this system the decidability of the considered
logics can be proved. We will sketch how these logics are semantically defined by
means of relating semantics and how they provide a simple solution to the free
choice permission problem. In short, these logics employ relating implication and
a certain propositional constant. These two are in turn used to define deontic
operators similarly as in Andersonian-Kangerian reduction, which uses different
intensional implications and constants.
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1. Introduction

The present paper provides a decidability method for the logics proposed
in [8]. The intuitive justification along with an axiomatic system for these
logics are presented there in details. Here we will just sketch the motivation
behind the system.

The logical framework in question focuses on three central ideas. First,
it provides an analysis and a solution to the problem of free choice per-
mission. Secondly, it introduces the idea of deontic legitimisation in the
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context of permission. Finally, it employs the idea of an Andersonian-
Kangerian reduction in order to define permission(s). These three elements
are put together in the proposed analysis of explicit free choice permission
via relating semantics. The resulting framework allows for a fine-grained
understanding of permission, which is both an explicit permission and a
free choice permission.

Free choice permission (see [10, p. 166-167], [9, p. 206—-218]) can be
expressed in the following way:

P(p V) D (Py A PY) (FCP)
As an example, consider:
You may have tea or coffee.
By means of such a permission we usually offer somebody a choice:
You may have tea and you may have coffee.

that can be entailed by (FCP).

However, in Standard Deontic Logic (SDL), i.e., a counterpart of normal
modal logic D with operator of obligation interpreted as necessity and the
operator of permission interpreted as possibility not only (FCP) is not valid
but cannot be added without the cost of getting a contradictory system, a
trivial system, in which any formula is valid:

1. O(pV —p) Classical logic, Necessitation Rule
2. O(pV —p) =—=P~(pV —p) Definition of O
3. O(pV —p) D =P=(pV —p) Classical logic, 2, Modus Ponenes
4. =P=(pV —p) 1, 3, Modus Ponenes
5. O(=(pV —p)V(pV -p)) Classical logic, Necessitation Rule
6. O(=(pV—p)V(pV-p)DPH{PV-pV(EV-p) Axiom (D)
7. P(=(pV-p)V(pV -p)) 5, 6, Modus Ponens
8. P(=(pV—-p)V(pV-p)D(P=(pV-p)APpV-p)) (FCP)
9. P-(pV —p)AP(pV —p) 7, 8, Modus Ponens
10. P—(pV —p) Classical logic, 9, Modus Ponens
11. L Classical logic, 4, 10
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Of course, the apparent mismatch between the formalism and our linguistic
intuitions has led to many suggested solutions to the problem of free choice
permission (see, for example, [9]).

Concerning the latter two central themes, the solution presented in
[8] combines Andersonian-Kangerian [1, 2, 17] reduction of the permission
operator to a special constant and an intensional relation between some
permitted states of affairs or actions and their normative justification. To
capture the idea that a state is relevant to the permissions that are issued,
the notion of legitimisation is employed. Legitimisation can be understood
as a kind of normative justification (for a general justification logic see
[4]). Legitimisation is understood as a general relation between actions,
events, or states of affairs that normatively justifies one of them on the
basis of another one. For instance, taking the partner’s last name when
getting married legitimises one’s usage of this surname henceforth. Paying
for a chocolate bar legitimises one in walking out of the store with the
mentioned bar and eating it. And being explicitly permitted to have tea or
coffee legitimises one (at least) in opting for tea (or coffee). A relation in
which an explicit permission is the legitimating argument is a special case
of legitimisation in general.

As a formal tool for defining the properties of legitimisation relating
semantics is used. The semantics [12, 15] has been earlier successfully ap-
plied in the area of relatedness logic [7], connexive logic [16], and in the
context of deontic logic [14], with a specific focus on obligations and pro-
hibitions rather than permissions. The approach introduced in [8] employs
the framework to (explicit) free choice permission.

The present paper is of a technical nature. We introduce tableaux
adequate to the family of systems from [8]. In section 2 we reproduce the
given formal framework along with the definition of permission using notion
of legitimisation. In section 3 we present the main results of the paper: the
tableau systems, and in section 4 we summarise our contribution and point
out some directions for future research.

2. Formal language and semantics
Let us now reproduce the basic tenets of the formal framework intuitively

and informally sketched above. The language consists of the propositional
variables p1,pa,ps...; the (deontic) propositional constant permit; the
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classical propositional operators: — (negation), A (conjunction), V (disjunc-
tion), D (material implication), relating implication: —Y, and brackets.
The set of propositional variables is denoted by Var. The set of formulas
of the language is defined in the standard way and denoted by For.

Except for permit and —"% all operators are standard and understood
classically. The intended meaning of permit is the combined content of all
permissions that are issues with the proviso that at least one permission
is issued. The connective —"% is a non-classical implication whose role
is to express the normative relation between its arguments. Technically,
it is a member of the family of relating operators discussed in [13] and
[12]. Tts formal meaning is given by its semantics which is shown and
explained below. We read the sentence ¢ —"V 9 as follows: ‘if ¢, then
that legitimises ¢’.

The operator of permission is then defined in the following way (4
stresses that the permission is explicit):

Pty := (¢ =" permit) A (-p D permit). (PT)

Definition (P1) says that ¢ is permitted (PT¢) iff (1) if ¢ then permit,
that legitimises ¢ and (2) if -, then still permit. These conditions express
the thought that no matter whether ¢ is true or not (in the latter case - is
true), a permission has been issued, i.e. permit is true, and this legitimises
. Exploiting the classical understanding of — and D, and assuming that
—"% is closed under Modus Ponens, (P*) might be reduced to the following
definition, which will be used henceforth:

Py := (¢ =" permit) A permit. (Def PT)

Various constraints can be imposed on it, and in turn shape the given
system. The following three choice conditions discussed in [8] are at the
basis of the formalisation:

PT(p V) D (PTo AP o) (FCP-I)
P*(p V) D PT(pAt) (FCP-1I)
Pt (e V) D =P (pA). (FCP-I1I)

Informally, (FCP-I) states the basic free choice property. Namely, that
if ¢ V 1 is permitted then both ¢ and ¢ are permitted. (FCP-II) and
(FCP-III) are alternative extensions of that property concerning the con-
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junction of ¢ and 1 that can be construed as a joint realisation of them.
(FCP-II) states that under assumption that ¢ V v is permitted so is the
conjunction of ¢ and ¢ and (FCP-III) — the opposite: that it is not true
that their conjunction is permitted.

After applying the definition (Def P*) to (FCP-I)—(FCP-III), we reduce
them to the following schemas:

(((p V) =" permit) A permit)
O (((¢ =" permit) A (¢ =% permit)) A permit) (RFCP-I)

(((p V1) =" permit) A permit)
O (A1) =Y permit) A permit) (RFCP-II)

(((p V) =Y permit) A permit)
D —=(((p Ap) =% permit) A permit). (RFCP-III)

The semantics proposed in [13] and [12] is used to interpret the meaning
of the constants of this language formally. To begin with, a model is an
ordered pair (v, R) such that:

e v: VarU {permit} — {1,0} is a valuation of propositional variables
and permit

e R is a binary relation defined on For x For.

Note that in a given model, (v,R), v(permit) = 1 or v(permit) = 0,
so a permission has or has not been issued. The relation R in the model
involves pairs of sentences that are related by legitimisation.

The truth conditions for formulas are as follows. Let 9t = (v, R) and
¢ € For. ¢ is true in M (M | ¢) iff for any 3, x € For (M £~ » means
that ¢ is false):

v(p) =1, if p € VarU {permit}
M= o, if o=

M = and M E x, ifo=vAyx

M =1 or M= x, fe=9Vx

M~ or M E x, ifo=1v >y

(M B~ ¢ or M = x) and Rap (2, X), if p =1 =" x.
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When 9t = (v, R), we will sometimes write von (Ron) instead of v (R).
According to the definition of truth in model, the classical connectives
have a standard meaning. The constant permit is true in the model when
v(permit) = 1. The relating implication ¢ —¥ 9 is true in the model when
the predecessor ¢ is false or the successor v is true, and both arguments
are related, i.e.: R(p, ). The intended reading we have given to ¢ —"%
1 is: ‘if ¢, then 1 that legitimises ¢’. In this situation, the relation R
from the model is the converse of legitimisation. It is assumed in [8] that
legitimisation is irreflexive and transitive. Thus, for all ¢,v,x € For we
have:

~R(¢, ) (Ir)
(R(g, 1) and R(%, x)) == R(p, x)- (Tr)

We thus only consider models with relations that meet these two con-
ditions. The schemas (FCP-I)—(FCP-III) in turn help to capture different
variants of free choice permission. Taking into account that R is the con-
verse of legitimisation we can transform them, respectively, in a rather
straightforward manner. For all ¢, € For we have:

R(yp V9, permit) = (R(p, permit) and R(¢), permit)) (R1)
R(p V9, permit) = R(p A 1), permit) (R2)
R(p V¢, permit) = ~R(p A ¢, permit). (R3)

The following fact is proved in [8]:

Fact 2.1. Let (v,R) be a model. Then:
(1) if R satisfies (R1), then (v, R) = (RFCP-I)
(2) if R satisfies (R2), then (v, R) = (RFCP-II)
(3) if R satisfies (R3), then (v, R) = (RFCP-III).

It is worth noting that the converse implications of fact 2.1 are false. To
prove this, it suffices to consider models with false permit.

Let ™ be the powerset of {1,2,3}, the empty set excluded. The fol-
lowing seven classes of models can be defined: M,,, where z € 7 and M,
contains all relations satisfying the (Ré) condition, where i € x. Moreover,
all relations in the models are irreflexive and transitive, as we assumed
earlier. The logic FEm,, where z € T, is determined in a standard way
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as the semantic consequence relation defined on the Cartesian product of
the powerset of For and For by the appropriate class of models M;. Thus,
O Enr, ¢ iff for all models M € M, if for all x € &,9 | x, then
M = 1. Consequently we obtain the logics in which our variants of free
choice permission occur (by fact 2.1), two of which do not behave well. We
mean the logics defined by the classes of models: Emy, , ., and FEwmy, ;-
This is because conditions (R2) and (R3) remain in a logical conflict: from
Pt(p V) (aka. ((pVi) —" permit) A permit) in these logics we can
conclude anything. The conflict is explained by another fact proved in [8]:

Fact 2.2. Let =m, be a logic determined by such a class of models M,
that 2,3 € z. Let ¢, 9, x € For. Then: ((¢V) =¥ permit) Apermit =y,
X-

Fact 2.2 shows that examining only the logics defined in terms of the five
classes of models makes sense: M1y, M2y, My3y, Myq 23, My 3). Indeed,
since (FCP-I) is the basic free choice condition that we have considered,
we are mainly interested in models that include condition 1, i.e., My,
My 23, Myy 3y, that define basic, non-exclusive and exclusive free choice
permission respectively.

3. Tableau systems for the presented logics

When presenting tableaux, we will be guided by the strategy and results
presented in the articles [11], [15], and [14]. To define the tableau systems
for the given five logics, we need to define some additional notions.

The language of the tableau systems is the language of For extended
by auxiliary expressions. The set of auxiliary expressions (formally: Ae) is
the least set X such that: if ¢, € For, then p r ¢, T ) € 3. Expressions
of the form ¢ r ¥ and ¢ ¥ ¥ are supposed to represent relations in the
tableau language and state that ¢, are or are not related, respectively.
The set of tableau expressions is set Ex = For U Ae.

In addition, we need the notion of tableau inconsistency. Let ¥ C Ex.
Y is tableau inconsistent (for short: t-inconsistent) iff at least one of the
following conditions is satisfied: there is ¢ € For such that ¢,—p € ¥ or
there are ¢,1 € For such that o r ¥, p ¥ ¢p € X. X is tableau consistent
(for short: t-consistent) iff ¥ is not t-inconsistent.
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R Y Ry LYY (my) 22

2 Celv - |
R oy Ry TP (g, @AY
) eraTeere T T Y =T
(Rﬁv)M (RﬁD)M (Rﬁ%w)M

—p, @, @, | pT Y

Figure 1. Rules of logical connectives

We propose a set of tableau rules constructed with expressions Ex. The
expressions in the numerator of a given rule will be called input, and ex-
pressions in the denominator will be called output. Some rules can have
more outputs than one; see, for example, the rule (R-_w) in Figure 1.
The standard elimination rules for the classical connectives and the rule
for relating implication are introduced in the mentioned figure. The set
containing all these rules along with the rules (Ry,) and (Rry) in Figure 2
will be denoted TR. The remaining tableau rules in Figure 2 are optional —
used only for some of the considered systems. By TR,, where z C {1, 2,3},
we denote the set of tableau rules TRU {(Rp;): ¢ € z}.

pre
(Rir) ST (Ry)

pry,Pry @V rpermit
- (RR1> . .
prx @ r permit, r permit

@ V1 rpermit @ V1 rpermit

R
(Rr2) @ A1 T permit

(Rrs3)

@ A rpermit
Figure 2. Rules of legitimisation relation

Now we define the notion of closure under the set of tableau rules TR,.
Let X, I' C Ex. The set I' is a closure of ¥ under the set of tableau rules
TR, iff (1) ¥ C T, (2) T is either t-inconsistent, or I' is such a minimal set
that for all tableau rules r in TR,, if an input of r is contained in I', so is
at least one output. Having a set of tableau rules TR,, we would finally
like to define the concept of tableau operation consequence. Formula ¢ is



Tableaux for Some Deontic Logics with the Explicit. . . 289

a tableau consequence of set of formulas ¥ in respect of TR, (formally:
Y >R, ¢) iff there exists such a finite ¥’ C ¥ that all closures of &' U {—¢}
under the set of tableau rules TR, are t-inconsistent.

In order to illustrate how the tableaux works we present a proof that
(FCP) is a tableau consequence of the empty set (see Figure 3).

To prove the metatheoretical relationships between tableaux and mod-
els, we need the notion of suitability. Let 9 = (v,R) be a model and
3 C Ex. M is suitable for X iff for all ¢, € For:

o if pe X, then ME o
e if pre € X then, Ron(e, 1))
e if T ¢ € X, then ~Ron(p,?).

LEMMA 3.1. Let ¥ C Ex and 9t = (v, R) € M, be suitable for . For any
tableau rule r € TRy, if r has been applied to X2, then M is suitable for the
union of X and at least one output obtained by the application of rule r.

PROOF: The proof of 3.1 is by inspection of the tableau rules. For the
rules from TR the proof is presented in [15]. For (Rgri) we assume that
@V r permit € ¥ and since 2 is suitable for 3, Rop(p V ¢, permit).
If the rule was applied, the output {¢ r permit,?¢ r permit} was ob-
tained. Since the model 9 satisfies the condition (R1), Rop(p, permit)
and Rgy (¢, permit), and by the definition of a suitable model, 9 is suit-
able for ¥ U {¢ r permit,¢ r permit}. The remaining cases (Rr2) and
(RRrs) are similar. O

Finally, to show completeness of the tableau system, we will introduce
the notion of generated model. Let TR, be a set of tableau rules. Let
Y C Ex be a t-consistent closure under TR,. A model generated by 3 (for
short: 3-model) is a model (vs, Ry) such that:

e for any ¢ € Var:

) 1, ifpeXx
v =
2T N0, ifpés

e for any ¢, € For:

Ry(p, ) iff prype X
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Now, we have another lemma:

LEMMA 3.2. Let TR, be a set of tableau rules and X be a t-consistent
closure under TR,. Then, there is a model M such that:

(1) MeM,

(2) for any ¢ € For, if o € X then M = .

PROOF: Again, the proof of 3.2 is made by inspection of the tableau rules
and by induction. As a model in the thesis we take X-model 9 = (vy, Ry).
For (1): Suppose that (Rr3) € TR,. So, 3 € x. Let ¢,v € For and Ron (¢ V
1, permit). By the definition of generated model, ¢ V ¢ r permit € 3.

1. ~(PT(p V) D (PTe A PTy))
2. ((¢ V) =" permit) A (=(¢p V ) D permit) (R-5), 1
3. =(((¢ =" permit) A (—¢ D permit)) A ((¢p —"% permit) A (=% D permit)))) (R-5), 1
4. (¢ V) =" permit (Rn), 2
5. —(¢ V 1) D permit (RA), 2
/\
6. —((¢ =" permit) A (—p D permit)) —((¢p =" permit) A (=1 D permit))) (R-n), 3
L R
L
6. =((¢ =" permit) A (—¢ D permit)) (R=A), 3
7. —(¢ —" permit) —(—¢ D permit) (R=A), 6
/\
8. (¢ V) permit (R_w), 4
9. @ V 1 r permit @ V 1 r permit (R_,w), 4
10. ¢ r permit ¢ r permit (Rp1), 9
11. % r permit % r permit (Rp1), 9
/\
12. == (@ V) permit —=(e V1Y) permit (R5), 5
13. ® @ @Trpermit ¢ T permit ¢ ¢ T permit (Ro_,w), 7
14. 8,12 ~—permit ® —permit @ —permit @ (Ro_w), 7
15. ® 10,13 ©® 10,13 ® 10,13 ¢ (R-5), 7
16. 12,14 8,14 12,14 —permit (R->), 7
17. —(¢ V) permit (R_,w), 4
18. @ V1 rpermit ¢ V 1 r permit (R_,w), 4
®
19. (o V) permit 16,17 (R5), 5
® ®
17,19 16,19

Figure 3. A tableau proof of (FCP) (left branch)



Tableaux for Some Deontic Logics with the Explicit. . . 291

R
6. =((¢»p =Y permit) A (=7 D permit)) (R=A), 3
7. =(yp =% permit) —(—% D permit) (R=A), 6
/\
8. (¢ V) permit (R_,w), 4
9. @ V 1 r permit @ V 9 r permit (R_,w), 4
10. ¢ r permit @ r permit (Rp1), 9
11. % r permit % r permit (Rpr1), 9
/\ /\
12. == (¢ V) permit (e V) permit (R5), 5
13. ® 1 ) ¥ permit ) ) T permit 1) ) T permit (Ro_w), 7
14. 8,12 ~—permit ® —permit ®  —permit @ (R _,w), 7
15. ® 11,13 © 11,13 © 11,13 ¢ (R-3), 7
16. , 8,14 12,14 —permit (R=>), 7
17. =(p V) permit (R_,w), 4
18. @ V ¢ rpermit @ V ¢ r permit (R_,w), 4
®
19. —=(¢ V1) permit 16,17 (R>), 5
® ®
17,19 16,19

Figure 3 (continued). A tableau proof of (FCP) (right branch)

Since ¥ is a closure under TR,, o A¥ T permit € Y. Thus, by the definion
of generated model, ~R(p A ¢, r), since ¥ is t-consistent. Finally, the
model 9 belongs to the class of models satisfying the condition (R3). The
remaining cases are either similar ((Rr1), (Rr2)) or were already examined
in [15] ((R1y), (R1y)). For the point (2) we start from the atomic cases, using
the definition of generated model, and then we examine the decomposition
rules which was done in [13] and [15]. O

Now we can obtain the soundness and completeness of our tableau sys-
tems.

THEOREM 3.3. Let TR, be a set of tableau rules and XU{p} C For. Then,
YEm, ¢ iff EeTR, ¢

PROOF: Assume all the hypotheses. For ‘left to right’ suppose ¥ ¥rr, .
So, for any finite I' C 3 there is a t-consistent closure A of I' U {—¢} under
TR, such that ' U {-¢} € A. Hence, there is a t-consistent closure A’
of ¥ U {=¢} under TR, such that ¥ U {—-p} C A’. Otherwise, any such
a closure would contain some t-inconsistency. But by definition of closure
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this would mean that for some finite I' C ¥ no closure of I' U {—¢} under
TR, is t-consistent. As a consequence, by lemma 3.2, there is a A’-model
M € M, such that M = X U {-p}. Therefore, ¥ Fpm, .

For ‘right to left’ suppose X >Tr, . Hence, there is a finite I' C ¥ such
that any closure of T' U {—p} under TR, is t-inconsistent. Suppose that
there is a model M € M, such that 9t = ¥ and 9 = —¢. By definition
of a suitable model, 9 is suitable for I' U {—¢}. By lemma 3.1 there is
a closure T' U {—¢} under TR, for which 90 is suitable. However, such a
closure must be t-inconsistent. Thus in the closure either there is i) € For
such that 9 = ¢ and M £ ¢ or there are v,y € For such that Ry (¢, x)
and ~Rop (¥, x). Hence, for any model 0 € M,,, M = ¥ implies M |= .
Therefore, ¥ Em, ¢. O

4. Concluding remarks

The paper introduces tableau systems for the family of logics of free choice
permission introduced in [8].

The presented tableau systems constitute an effective decision proce-
dure for these logics, because all branches in proofs are of a finite length.

The formalism from [8] can be further developed in many directions. In-
cluding other normative notions into the system seems to be a natural step
here. Applying Andersonian-Kangerian approach, with violation con-
stant for prohibition and obligation would allow to reuse the legitimisation
relation for the purpose of understanding these notions. We believe that
the tableau approach proposed in the present paper can be quite naturally
applied to such extensions of the systems.
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