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Summary. The goal of this article is to clarify the relationship between
Riemann and Lebesgue integrals. In previous article [5], we constructed a one-
dimensional Lebesgue measure. The one-dimensional Lebesgue measure provides
a measure of any intervals, which can be used to prove the well-known relation-
ship [6] between the Riemann and Lebesgue integrals [I]. We also proved the
relationship between the integral of a given measure and that of its complete me-
asure. As the result of this work, the Lebesgue integral of a bounded real valued
function in the Mizar system [2], [3] can be calculated by the Riemann integral.
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1. PRELIMINARIES

Let us consider a non empty set X and a partial function f from X to R.
Now we state the propositions:

(1) (i) rngmax;(f) C rng f U {0}, and

(i) mgmax_(f) C mg(—f) U{0}.
(2) If f is real-valued, then —f is real-valued and max,(f) is real-valued
and max_(f) is real-valued. The theorem is a consequence of (1).

(3) If f is without —oo and without 400, then f is a partial function from
X to R.
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(4) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. Suppose f is
simple function in S. Then

(i) max(f) is simple function in S, and
(ii) max_(f) is simple function in S.
Proor: Consider F' being a finite sequence of separated subsets of S such
that dom f = (Jrng F' and for every natural number n and for every
elements z, y of X such that n € dom F and z, y € F(n) holds f(x) =
f(y). For every natural number n and for every elements z, y of X such
that n € dom F' and x, y € F(n) holds (max4(f))(z) = (max4(f))(y)-
For every natural number n and for every elements x, y of X such that
n € dom F and x, y € F(n) holds (max_(f))(x) = (max_(f))(y). O
Let us consider real numbers a, b. Now we state the propositions:
(5) Suppose a < b. Then
(i) (B-Meas)([a,b]) =b— a, and
(ii) (B-Meas)([a,b]) = b — a, and
(iii) (B-Meas)(]a,b]) = b — a, and
(iv) (B-Meas)(Ja, b]) =
) (
i) (
) (

— a, and

(v) (L-Meas)([a,b]) = b—a, and
(vi) (L-Meas)([a,b]) =b— a, and
(vii) (L-Meas)(]a,b]) = b — a, and

(viii) (L-Meas)(]a,b]) =b—a.

(6) Suppose a > b. Then

(i) (B-Meas)([a,b]) =0, and
(ii) (B-Meas)([a,b[) =0, and
(iii) (B-Meas)(]a,b]) =0, and
(iv) (B-Meas)(Ja,b]) =0, and
(v) (L-Meas)([a,b]) = 0, and
(vi) (L-Meas)([a,b]) =0, and

(vii) (L-Meas)(]a,b]) =0, and
(viii) (L-Meas)(]a,b]) = 0.

(7) Let us consider an element A; of the Borel sets, an element As of L-Field,
and a partial function f from R to R. If A = A, and f is Aj-measurable,
then f is As-measurable.
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(8) Let us consider real numbers a, b, and a non empty, closed interval subset
A of R. Suppose a < b and A = [a,b]. Let us consider a natural number
n. If n > 0, then there exists a partition D of A such that D divides into
equal n.

Let F be a finite sequence of elements of the Borel sets and n be a natural
number. One can check that the functor F'(n) yields an extended real-membered
set. Now we state the proposition:

(9) Let us consider real numbers a, b, a non empty, closed interval subset A
of R, and a partition D of A. Suppose A = [a, b]. Then there exists a finite
sequence F' of separated subsets of the Borel sets such that

(i) dom D = dom F', and
(i) Urmg F = A, and

(iii) for every natural number k such that k € dom F holds if len D = 1,
then F(k) = [a,b] and if len D # 1, then if k& = 1, then F(k) =
[a, D(k)[ and if 1 < k < len D, then F(k) = [D(k —" 1), D(k)[ and if
k =len D, then F (k) = [D(k —' 1), D(k)].

PROOF: Define P[natural number, set] = if len D = 1, then $3 = [a, b] and
iflen D # 1, thenif §; = 1, then $2 = [a, D($;)[and if 1 < $; < len D, then
$2 = [D($1 —'1),D($1)[ and if $; = len D, then $2 = [D($1 —' 1), D($;)].
For every natural number £ such that k& € Seglen D there exists an element
x of the Borel sets such that P[k, z] by [4, (5)]. Consider F' being a finite
sequence of elements of the Borel sets such that dom F' = Seglen D and
for every natural number k such that k& € Seglen D holds P[k, F'(k)]. For
every objects z, y such that  # y holds F(x) misses F(y). For every
natural number k such that & € dom F' and k # len D holds |Jrng(F'[k) =
[a, D(K)[. Urmng F = A. O
Let us consider real numbers a, b, a non empty, closed interval subset A of
R, a partition D of A, and a partial function f from A to R. Now we state the
propositions:

(10) Suppose A = [a,b]. Then there exists a finite sequence F' of separated
subsets of the Borel sets and there exists a partial function g from R to R
such that dom F' = dom D and |Jrng F' = A and for every natural number
k such that k& € dom F holds if len D = 1, then F(k) = [a,b] and if
len D # 1, then if k = 1, then F(k) = [a, D(k)[ and if 1 < k < len D, then
F(k) =[D(k—'1),D(k)[ and if k = len D, then F(k) = [D(k —'1), D(k)]
and ¢ is simple function in the Borel sets and domg = A and for every

real number x such that x € dom g there exists a natural number k such
that 1 <k <lenF and x € F(k) and g(x) = inf rng(f[ divset(D, k)).
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PRrOOF: Consider F' being a finite sequence of separated subsets of the Bo-
rel sets such that dom F' = dom D and Jrng F' = A and for every natural
number £ such that k£ € dom F' holds if len D = 1, then F(k) = [a,b] and if
len D # 1, then if k = 1, then F(k) = [a, D(k)[ and if 1 < k < len D, then
F(k) =[D(k—"1),D(k)[ and if k = len D, then F(k) = [D(k —'1), D(k)].
Define Plobject, object] = there exists a natural number k& such that

1 <k<lenF and $; € F(k) and $2 = inf rng(f| divset(D, k)). Consider g
being a partial function from R to R such that for every object z, 2 € dom g
iff € R and there exists an object y such that P[z, y] and for every object
x such that = € dom g holds P[z, g(z)]. For every natural number k£ and
for every elements x, y of R such that k € dom F' and z, y € F(k) holds
g9(z) =g(y). O

Suppose A = [a,b]. Then there exists a finite sequence F' of separated
subsets of the Borel sets and there exists a partial function ¢ from R to R
such that dom F' = dom D and |Jrng F' = A and for every natural number
k such that k& € dom F holds if len D = 1, then F(k) = [a,b] and if
len D # 1, then if k = 1, then F(k) = [a, D(k)[ and if 1 < k < len D, then
F(k) =[D(k—"1),D(k)[ and if kK = len D, then F(k) = [D(k —' 1), D(k)]
and ¢ is simple function in the Borel sets and domg = A and for every
real number z such that z € dom g there exists a natural number k such
that 1 <k <lenF and z € F (k) and g(z) = suprng(f[divset(D,k)).
PRrOOF: Consider F' being a finite sequence of separated subsets of the Bo-
rel sets such that dom F' = dom D and [Jrng F' = A and for every natural
number £ such that k£ € dom F' holds if len D = 1, then F(k) = [a,b] and if
len D # 1, then if k = 1, then F(k) = [a, D(k)[ and if 1 < k < len D, then
F(k) =[D(k—"1),D(k)[ and if k = len D, then F(k) = [D(k —'1), D(k)].

Define Plobject, object] = there exists a natural number k£ such that

1 <k<lenFand$;, € F(k)and $3 = suprng(f|divset(D, k)). Consider g
being a partial function from R to R such that for every object z, 2 € dom g
iff € R and there exists an object y such that P[z, y] and for every object
x such that = € dom g holds P[z, g(z)]. For every natural number k and
for every elements x, y of R such that k € dom F' and z, y € F(k) holds
g9(z) = g(y). O

Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, a finite sequence
F of separated subsets of S, a finite sequence a of elements of R, and
a natural number n. Suppose f is simple function in S and F' and a are
representation of f and n € dom F'. Then

(i) F(n)=0, or
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(ii) a(n) is a real number.

Let A be a non empty, closed interval subset of R and n be a natural number.
Assume n > 0 and vol(A) > 0. The functor EqDiv(A4,n) yielding a partition of
A is defined by

(Def. 1) it divides into equal n.
Now we state the propositions:

(13) Let us consider a non empty, closed interval subset A of R, and a natural
number n. If vol(A) > 0 and len EqDiv(A,2") = 1, then n = 0.

(14) Let us consider real numbers a, b, and a non empty, closed interval subset
A of R. Suppose a < band A = [a, b]. Then there exists a division sequence
D of A such that for every natural number n, D(n) divides into equal 2".
PROOF: Define P[natural number, object] = there exists a partition D of
A such that D = $5 and D divides into equal 2%1. For every element n
of N, there exists an element D of divs A such that P[n, D]. Consider D
being a function from N into divs A such that for every element n of N,
P[n, D(n)]. For every natural number n, D(n) divides into equal 2". [J

(15) Let us consider a non empty, closed interval subset A of R, a partition
D of A, and natural numbers n, k. Suppose D divides into equal n and
k € dom D. Then vol(divset(D, k)) = volld)

n
(16) Let us consider a complex number z, and a natural number r. If z # 0,

then (")~ = (x=1)".

(17) Let us consider a non empty, closed interval subset A of R, and a sequence

T of divs A. Suppose vol(A) > 0 and for every natural number n, T'(n) =
EgDiv(A4,2™). Then 7 is O0-convergent and non-zero.
PRrROOF: For every natural number n, (67)(n) = 2 - (vol(4)) - ((2_1)n+1).
Define S(natural number) = (2~ 1)%1+1, Consider s being a sequence of real
numbers such that for every natural number n, s(n) = S(n). For every
natural number n, (67)(n) =2 - (vol(4)) - s(n). O

(18) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element E of S, a partial function f from X to R,
a finite sequence F' of separated subsets of S, and finite sequences a, =
of elements of R. Suppose f is simple function in S and E = dom f and
M(FE) < 400 and F' and a are representation of f and domz = dom F' and
for every natural number ¢ such that i € dom z holds (i) = a(i)-(M-F)().
Then [ fdM =} .

PROOF: max, (f) is simple function in S and max_(f) is simple function
in S. Define P[natural number, extended real] = for every object x such
that x € F($1) holds $2 = max(f(x),0). For every natural number k such
that k € Seglen a there exists an element y of R such that Pk, y]. Consider
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a1 being a finite sequence of elements of R such that doma; = Seglena
and for every natural number k such that k € Seglena holds Pk, a1 (k)].
For every natural number k such that & € dom F' for every object x
such that z € F(k) holds (maxi(f))(z) = ai(k). Define Qnatural
number, extended real] = $2 = a1($1) - (M - F)($1). Consider z; being
a finite sequence of elements of R such that domz; = Seglen F' and for
every natural number k such that k € Seglen F' holds Qlk, z1(k)]. Reconsi-
der r; = 21 as a finite sequence of elements of R. [ max (f)dM = Y ;.

Define P[natural number, extended real] = for every object = such that
x € F($1) holds $2 = max(—f(x),0). For every natural number k such
that k € Seglen a there exists an element y of R such that P[k, y]. Consider
as being a finite sequence of elements of R such that domas = Seglena
and for every natural number k such that k € Seglena holds Pk, az(k)].
For every natural number k& such that & € dom F' for every object x
such that z € F(k) holds (max_(f))(x) = a2(k). Define Q[natural
number, extended real] = $2 = a2($1) - (M - F')($1). Consider zy being
a finite sequence of elements of R such that domzs = Seglen ' and for
every natural number k such that k € Seglen F' holds Q[k, z2(k)]. Reconsi-
der r9 = x5 as a finite sequence of elements of R. f' max_ (f)dM =" xs.
For every object k such that k € domz holds z(k) = (r1 — r2)(k). O

Let us consider a non empty, closed interval subset A of R, a partial function
f from A to R, and a partition D of A. Now we state the propositions:

(19) Suppose f is bounded and A C dom f. Then there exists a finite sequence
F of separated subsets of the Borel sets and there exists a partial function
g from R to R such that dom F = dom D and [Jrng F' = A and for every
natural number k such that £ € dom F' holds if len D = 1, then F(k) =
[inf A,sup A] and if len D # 1, then if kK = 1, then F(k) = [inf A, D(k)|
and if 1 < k <len D, then F'(k) = [D(k—'1), D(k)[ and if k = len D, then
F(k) = [D(k—'1), D(k)] and g is simple function in the Borel sets and for
every real number x such that £ € dom g there exists a natural number k
such that 1 < k <len F and x € F(k) and g(z) = inf rng(f | divset(D, k))
and domg = A and [ ¢gdB-Meas = lower_sum(f, D) and for every real
number z such that z € A holds infrng f < g(x) < f(x).

ProOF: Consider a, b being real numbers such that a < b and A = [a, b].
Consider F' being a finite sequence of separated subsets of the Borel sets,
g being a partial function from R to R such that dom F = dom D and
Urng F' = A and for every natural number k such that & € dom F holds if
len D =1, then F(k) = [a,b] and if len D # 1, then if k = 1, then F(k) =
[a, D(k)[ and if 1 < k < len D, then F(k) = [D(k —"1), D(k)[ and if k =
len D, then F (k) = [D(k—'1), D(k)] and g is simple function in the Borel
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sets and domg = A and for every real number x such that x € domg
there exists a natural number k such that 1 < k < len F' and = € F(k)
and g(z) = infrng(f[divset(D, k)). Define H[natural number, extended
real] = $2 = infrng(f[divset(D,$1)) and $2 is a real number. For every
natural number k such that k € Seglen F' there exists an element r of R
such that H[k,r].

Consider h being a finite sequence of elements of R such that dom h =
Seglen F' and for every natural number k£ such that k& € Seglen F’ holds
Hlk, h(k)]. For every natural number k such that & € dom F' for eve-
ry object x such that = € F(k) holds g(x) = h(k). Define Z[natural
number, extended real] = $2 = h($;) - ((B-Meas) - F')($1) and $2 is a real
number. For every natural number k such that k € Seglen F' there exists
an element 7 of R such that Z[k,r]. Consider z being a finite sequence of
elements of R such that dom z = Seglen F' and for every natural number
k such that k € Seglen F holds Z[k, z(k)]. [ gd B-Meas = ) z. For every
object p such that p € dom z holds z(p) = (lower_volume(f, D))(p). For
every real number x such that z € A holds infrng f < g(z) < f(z). O

(20) Suppose f is bounded and A C dom f. Then there exists a finite sequence
F' of separated subsets of the Borel sets and there exists a partial function
g from R to R such that dom F = dom D and |Jrng F' = A and for every
natural number k such that k& € dom F' holds if len D = 1, then F(k) =
[inf A,sup A] and if len D # 1, then if £k = 1, then F(k) = [inf A, D(k)]
and if 1 < k <len D, then F(k) = [D(k—'1), D(k)[ and if k = len D, then
F(k) =[D(k—'1), D(k)] and g is simple function in the Borel sets and for
every real number x such that x € dom g there exists a natural number k
such that 1 < k <len F and = € F (k) and g(x) = suprng(fdivset(D, k))
and domg = A and [ gdB-Meas = upper_sum(f, D) and for every real
number z such that x € A holds suprng f > g(x) > f(z).

ProoF: Consider a, b being real numbers such that a < b and A = [a, b].
Consider F' being a finite sequence of separated subsets of the Borel sets,
g being a partial function from R to R such that dom F = dom D and
Urng F' = A and for every natural number k such that k € dom F holds
if lenD = 1, then F(k) = [a,b] and if len D # 1, then if & = 1, then
F(k) = [a,D(k)[ and if 1 < k < len D, then F(k) = [D(k —" 1), D(k)|
and if k = len D, then F(k) = [D(k —'1), D(k)] and g is simple function
in the Borel sets and dom g = A and for every real number z such that
x € domg there exists a natural number £ such that 1 < k£ < len F
and x € F(k) and g(z) = suprng(f|divset(D,k)). Define H[natural

number, extended real] = $5 = suprng(f|divset(D,$;)) and $2 is a real
number. For every natural number k such that £ € Seglen F' there exists
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an element 7 of R such that H[k,r].

Consider h being a finite sequence of elements of R such that dom h =
Seglen F' and for every natural number k such that & € Seglen F' holds
H[k, h(k)]. For every natural number k such that k& € dom F' for eve-
ry object x such that = € F(k) holds g(xz) = h(k). Define Z[natural
number, extended real] = $2 = h($;) - (B-Meas-F)($1) and $2 is a real
number. For every natural number k such that & € Seglen F' there exists
an element r of R such that Z[k,r]. Consider z being a finite sequence of
elements of R such that dom z = Seglen I and for every natural number
k such that k € Seglen F' holds Z[k, z(k)]. [ gdB-Meas = }_ z. For every
object p such that p € domz holds z(p) = upper_volume(f, D)(p). For
every real number z such that z € A holds suprng f > g(x) > f(x). O

Let us consider a non empty, closed interval subset A of R and a partial
function f from A to R. Now we state the propositions:

(21) Suppose f is bounded and A C dom f and vol(A4) > 0. Then there exists
a sequence F of partial functions from R into R with the same dom and
there exists a sequence I of extended reals such that A = dom(F(0)) and
for every natural number n, F'(n) is simple function in the Borel sets and
[ F(n)dB-Meas = lower_sum( f, EqDiv(A, 2")) and for every real number
x such that x € A holds infrng f < F(n)(x) < f(x) and for every natural
numbers n, m such that n < m for every element = of R such that z € A
holds F(n)(z) < F(m)(x) and for every element x of R such that z € A
holds F#u is convergent and lim(F#z) = sup(F#x) and sup(F#z) <
f(z) and lim F' is integrable on B-Meas and for every natural number n,
I(n) = [ F(n)dB-Meas and I is convergent and lim I = [ lim F'd B-Meas.
PROOF: Define P[natural number, partial function from R to R] = A =
dom $2 and $2 is simple function in the Borel sets and [ $5d B-Meas =
lower_sum( f, EqDiv(A, 2%1)) and for every real number x such that z € A
holds inf rng f < $2(x) < f(x) and there exists a finite sequence K of se-
parated subsets of the Borel sets such that dom K = dom(EqDiv(4, 2%1))
and Jrng K = A.

For every natural number & such that k£ € dom K holds if len EqDiv (A4,
2%1) = 1, then K (k) = [inf A,sup A] and if len EqDiv (A, 2%1) # 1, then if
k = 1, then K (k) = [inf A, (EqDiv(A4, 2%1))(k)[ and if 1 < k < len EqDiv(A,
2%1), then K (k) = [(EqDiv(4, 2%1))(k —'1), (EqDiv(A4, 2%1))(k)[ and if k =
len EqDiv(A4, 2%1), then K (k) = [(EqDiv(A4, 251))(k—'1), (EqDiv(A4, 251)) (k)]
and for every real number x such that z € dom$, there exists a na-
tural number k such that 1 < k < lenK and x € K(k) and $2(x) =
inf rng(f | divset(EqDiv(A4, 2%1), k)). For every element n of N, there exists
an element g of R-5R such that P[n, g].
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Consider F' being a function from N into R-5R such that for every
element n of N, P[n, F'(n)]. For every natural numbers n, m, dom(F(n)) =
dom(F'(m)). For every natural number n, F'(n) is simple function in the Bo-
rel sets and [ F'(n)d B-Meas = lower_sum( f, EqDiv(A, 2")) and for every
real number z such that x € A holds infrng f < F(n)(zx) < f(z). For
every natural numbers n, m such that n < m for every element x of R
such that x € A holds F(n)(z) < F(m)(x). For every element x of R
such that © € A holds F'#x is convergent and lim(F#x) = sup(F#z) and
sup(F#x) < f(z). Consider a, b being real numbers such that a < b and
A = [a,b]. Reconsider K = max(]infrng f|,|suprng f|) as a real number.
For every natural number n and for every set x such that € dom(F(0))
holds |F(n)(z)| < K. O

(22) Suppose f is bounded and A C dom f and vol(A4) > 0. Then there exists
a sequence F of partial functions from R into R with the same dom and
there exists a sequence I of extended reals such that A = dom(F'(0)) and
for every natural number n, F'(n) is simple function in the Borel sets and
| F(n)dB-Meas = upper_sum( f, EqDiv(A, 2")) and for every real number
x such that x € A holds suprng f > F(n)(z) > f(z) and for every natural
numbers n, m such that n < m for every element = of R such that x € A
holds F(n)(z) > F(m)(x) and for every element x of R such that z € A
holds F#x is convergent and lim(F#xz) = inf(F#x) and inf(F#z) >
f(x) and lim F' is integrable on B-Meas and for every natural number n,
I(n) = [ F(n)dB-Meas and [ is convergent and lim / = [ lim F'd B-Meas.
PROOF: Define P[natural number, partial function from R to R] = A4 =
dom $3 and $2 is simple function in the Borel sets and [ $2 d B-Meas =
upper_sum( f, EqDiv(A, 2$1)) and for every real number x such that x € A
holds suprng f > $2(z) > f(x) and there exists a finite sequence K of se-
parated subsets of the Borel sets such that dom K = dom(EqgDiv(4, 2%1))
and Urng K = A.

For every natural number & such that k£ € dom K holds if len EqDiv (A,
2%1) = 1, then K (k) = [inf A,sup A] and if len EqDiv(A, 2%1) # 1, then if
k = 1, then K (k) = [inf A, (EqDiv(A4, 2%1))(k)[and if 1 < k < len EqDiv(A,
2%1), then K (k) = [(EqDiv(4, 251))(k —'1), (EqDiv(A, 2%1))(k)[ and if k =
len EqDiv(4, 2%1), then K (k) = [(EqDiv(A4, 2%1))(k—'1), (EqDiv (4, 2%1)) (k)]
and for every real number x such that z € dom$, there exists a na-
tural number k such that 1 < k& < len K and x € K(k) and $2(x) =
sup rng(f| divset(EqDiv(A4, 2%1), k)).

For every element n of N, there exists an element g of R-5R such
that P[n,g]. Consider F being a function from N into R->R such that
for every element n of N, P[n, F((n)]. For every natural numbers n, m,
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dom(F(n)) = dom(F(m)). For every natural number n, F(n) is simple
function in the Borel sets and [ F'(n)d B-Meas = upper_sum( f, EqDiv(A4,
2™)) and for every real number z such that x € A holds suprng f >
F(n)(xz) > f(x). For every natural numbers n, m such that n < m for
every element x of R such that x € A holds F(n)(z) > F(m)(z). For
every element z of R such that © € A holds F#x is convergent and
lim(F#x) = inf(F#x) and inf(F#x) > f(x) by [7, (7),(36)]. Consi-
der a, b being real numbers such that a < b and A = [a,b]. Set K =
max(| inf rng f|, | sup rng f|). For every natural number n and for every set
x such that z € dom(F'(0)) holds |F(n)(x)| < K. O

2. PROPERTIES OF COMPLETE MEASURE SPACE

Now we state the propositions:

(23) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, an element E of S,
and a natural number n. Suppose £ = dom f and f is non-negative and
E-measurable and [ fdM = 0. Then M (E N GTE-dom(f, %H)) =0.

(24) Let us consider a non empty set X, a o-field S of subsets of X, a o-

measure M on S, a partial function f from X to R, and an element E
of S. Suppose E = dom f and f is non-negative and E-measurable and
J fdM = 0. Then M(E N GT-dom(f,0)) = 0.
PROOF: Define Plnatural number, object] = $2 = £ N GTE-dom(f, ﬁ)
For every element n of N, there exists an element y of S such that P[n, y].
Consider F' being a function from N into S such that for every element n
of N, P[n, F(n)]. For every element n of N, (M - F)(n) =0. O

(25) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, and an element E
of S. Suppose £ = dom f and f is non-negative and E-measurable and
[fdM =0. Then f =M (X +— 0)[E. The theorem is a consequence of
(24).

(26) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, partial functions f, g from X to R, and an element F;
of S. Suppose M is complete and f is Ej-measurable and f = g and
FEy; =dom f. Then g is Fj-measurable.

PrOOF: Consider E being an element of S such that M(E) = 0 and

fIE® = glE°. For every real number r, Ey N LE-dom(R(g),r) € S. O

(27) Let us consider a set X, a o-field S of subsets of X, and a o-measure M
on S. Then every element of S is an element of COM(S, M).
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(28) Let us consider a non empty set X, a o-field S of subsets of X, a o-

measure M on S, and partial functions f, g from X to R. If f =M ¢,
COM(M)
then f =4¢
B-Meas
a.e

(29) Let us consider partial functions f, g from R to R. Suppose f =27
Then f =L-Meas o

(30) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element E; of S, an element Ey of COM(S, M), and
a partial function f from X to R. If By = F» and f is Ej-measurable,
then f is Es-measurable. The theorem is a consequence of (27).

g. The theorem is a consequence of (27).

g.

(31) Let us consider an element E; of the Borel sets, an element Fs of L-Field,
and a partial function f from R to R. If By = E5 and f is Ej-measurable,
then f is Fo-measurable.

(32) Let us consider a set X, a o-field S of subsets of X, and a o-measure M
on S. Then every finite sequence of separated subsets of S is a finite sequ-
ence of separated subsets of COM(S, M). The theorem is a consequence
of (27).

(33) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. If f is simple
function in S, then f is simple function in COM(S, M). The theorem is

a consequence of (32).

(34) Let us consider a set X, a o-field S of subsets of X, and a o-measure M
on S. Then () is a set with measure zero w.r.t. M.

(35) Let us consider a set X, a o-field S of subsets of X, a o-measure M on
S, and an element E of S. Then M (E) = COM(M)(E). The theorem is
a consequence of (34).

(36) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. Suppose f is simple
function in S and f is non-negative. Then /M(a;)dx = /COM(M)(w)dx.

f !
Proor: Consider F' being a finite sequence of separated subsets of S, a,
being finite sequences of elements of R such that I and a are representation
of f and a(1) = Og and for every natural number n such that 2 < n and
n € doma holds O < a(n) < 400 and domz = dom F' and for every
natural number n such that n € domx holds z(n) = a(n) - (M - F)(n)

and /M(x)dx =) . f is simple function in COM(S, M). Reconsider
f

F) = F as a finite sequence of separated subsets of COM(S, M). For every
natural number n such that n € domx holds z(n) = a(n) - (COM(M) -
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Fy)(n). O

(37) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, a partial function f from X to R, and an element F
of S. Suppose F = dom f and f is E-measurable and non-negative. Then
[T fdM = [T fdCOM(M).
ProOF: Consider F' being a sequence of partial functions from X into
R such that for every natural number n, F(n) is simple function in S
and dom(F'(n)) = dom f and for every natural number n, F(n) is non-
negative and for every natural numbers n, m such that n < m for every
element x of X such that € dom f holds F(n)(x) < F(m)(x) and for
every element x of X such that z € dom f holds F'#x is convergent and
lim(F#x) = f(x). Reconsider g = F(0) as a partial function from X to
R. For every element = of X such that 2 € dom g holds F#zx is convergent
and g(z) < im(F#x).

Consider K being a sequence of extended reals such that for every na-
tural number n, K (n) = [* F(n)dM and K is convergent and suprng K =
lim K and ["gdM < lim K. Reconsider E; = F as an element of COM(S,
M). f is Eq-measurable. For every natural number n, F'(n) is simple func-
tion in COM(S, M) and dom(F(n)) = dom f. For every natural number
n, K(n) = [/ F(n)dCOM(M). O

(38) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and a partial function f from X to R. Suppose f is
integrable on M. Then

(i) f is integrable on COM(M), and
(ii) [ fdM = [ fACOM(M).
The theorem is a consequence of (27), (37), and (30).

3. RELATION BETWEEN RIEMANN AND LEBESGUE INTEGRALS

Let us consider a non empty set X, a o-field S of subsets of X, a o-measure
M on S, an element F of S, and partial functions f, g from X to R. Now we
state the propositions:

(39) If (E =dom for E=domg)and f =M g then f—g =M (X +— 0)E.
PRrOOF: Consider A being an element of S such that M(A) = 0 and
f1AC = glA°. For every element x of X such that x € dom((f — g)[A®)
holds ((f — g)1A%)(z) = (X — 0)[E)[A°)(z). O

(40) If E=dom(f —g) and f —g =M (X +— 0)|E, then f|E =M g|E.
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PRrROOF: Consider A being an element of S such that M(A) = 0 and
(f —g)lA° = ((X —— 0)]E)[AC. For every element = of X such that
v € dom((f1E)14°) holds ((f1E)1A%)(z) = (g1 )] 4°)(x). O

(41) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, an element F of S, and a partial function f from X
to R. Suppose E = dom f and M(E) < 4oc and f is bounded and E-
measurable. Then f is integrable on M.

(42) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, and partial functions f, g from X to R. Then f =M ¢
if and only if max (f) =M max, (¢) and max_(f) =2 max_(g).
PRrOOF: Consider E; being an element of S such that M(E;) = 0 and
maxy (f)[E1¢ = max4(g)[E1°. Consider Ey being an element of S such
that M(E2) = 0 and max_(f)[E2° = max_(g)[E2°. Set E = E; U Es.
For every element x of X such that z € dom(f[E°) holds (f|E°)(z) =
(91E°)(x). O

(43) Let us consider a non empty set X, and a partial function f from X to
R. Then

(i) max: (R(f)) = R(max. (f)), and
(i) max_(R(f)) = R(max_(f)).

(44) Let us consider a non empty set X, a o-field S of subsets of X, a o-
measure M on S, partial functions f, g from X to R, and an element E
of S. Suppose M is complete and f is integrable on M and f =M g and
FE =dom f and F = dom g. Then

(i) g is integrable on M, and
(i) [fdM = [gdM.
The theorem is a consequence of (26), (43), and (42).

(45) Let us consider a partial function f from R to R, and a real number a.
Suppose a € dom f. Then there exists an element A of the Borel sets such
that

(i) A={a}, and

(ii) f is A-measurable, and
(iii) f[A is integrable on B-Meas, and
(iv) [ flAdB-Meas = 0.

(46) Let us consider a partial function f from R to R, and a real number a.
Suppose a € dom f. Then there exists an element A of the Borel sets such
that
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(i) A={a}, and

(i)

(i)

(iv) | fTAdB-Meas = 0.

The theorem is a consequence of (45).

f is A-measurable, and
fTA is integrable on B-Meas, and

(47) Let us consider a partial function f from R to R. Suppose f is integrable
on B-Meas. Then

(i) f is integrable on L-Meas, and
(ii) [ fdB-Meas = [ fdL-Meas.
(48) Let us consider a partial function f from R to R. Suppose f is integrable
on B-Meas. Then
(i) f is integrable on L-Meas, and
(ii) [ fdB-Meas = [ fdL-Meas.
The theorem is a consequence of (38).

(49) Let us consider a non empty, closed interval subset A of R, an element
A of L-Field, and a partial function f from R to R. Suppose A = A; and
A Cdom f and f [ A is bounded and f is integrable on A. Then

(i) fis Aj-measurable, and
(ii) f[A; is integrable on L-Meas, and
(iii) integral f [ A= [ flAdL-Meas.
The theorem is a consequence of (46), (30), (48), (21), (22), (17), (3), (25),
(29), (40), (26), (41), (38), and (44).

(50) Let us consider real numbers a, b, and a partial function f from R to
R. Suppose a < b and [a,b] C dom f and f [ [a,b] is bounded and f is

b
integrable on [a, b]. Then /f(q:)da; = /f[[a, b] d L-Meas. The theorem is

a consequence of (49).
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