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Summary. In this article, we formalize in Mizar [1], [2] the 3-fold product
space of real normed spaces for usefulness in application fields such as engineering,
although the formalization of the 2-fold product space of real normed spaces has
been stored in the Mizar Mathematical Library [3].

First, we prove some theorems about the 3-variable function and 3-fold Car-
tesian product for preparation. Then we formalize the definition of 3-fold product
space of real linear spaces. Finally, we formulate the definition of 3-fold product
space of real normed spaces. We referred to [7] and [6] in the formalization.
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1. 3-Variable Function & 3-Fold Cartesian Product

From now on v, x, x1, x2, y, z denote objects and X, X1, X2, X3 denote
sets.

The scheme FuncEx3A deals with sets X, Y , W , Z and a 4-ary predicate P
and states that

(Sch. 1) There exists a function f from X × Y ×W into Z such that for every
objects x, y, w such that x, y, w ∈W holds P [x, y, w, f(x, y, w)]

provided

• for every objects x, y, w such that x, y, w ∈ W there exists z such that
z ∈ Z and P [x, y, w, z].

c© 2021 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)241

https://sciendo.com/journal/forma
https://orcid.org/0000-0003-1110-4342
http://zbmath.org/classification/?q=cc:46B15
http://zbmath.org/classification/?q=cc:46B20
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/prvect_4.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


242 hiroyuki okazaki and kazuhisa nakasho

Now we state the propositions:

(1) Let us consider non empty sets X, Y, Z, and a function D. Suppose
domD = {1, 2, 3} and D(1) = X and D(2) = Y and D(3) = Z. Then
there exists a function I from X × Y × Z into

∏
D such that

(i) I is one-to-one and onto, and

(ii) for every objects x, y, z such that x ∈ X and y ∈ Y and z ∈ Z holds
I(x, y, z) = 〈x, y, z〉.

Proof: Define P[object, object, object, object] ≡ $4 = 〈$1, $2, $3〉. For eve-
ry objects x, y, z such that x ∈ X and y ∈ Y and z ∈ Z there exists
an object w such that w ∈

∏
D and P[x, y, z, w]. Consider I being a func-

tion from X × Y × Z into
∏
D such that for every objects x, y, z such

that x ∈ X and y ∈ Y and z ∈ Z holds P[x, y, z, I(x, y, z)]. �

(2) Let us consider non empty sets X, Y, Z. Then there exists a function I
from X × Y × Z into

∏
〈X,Y, Z〉 such that

(i) I is one-to-one and onto, and

(ii) for every objects x, y, z such that x ∈ X and y ∈ Y and z ∈ Z holds
I(x, y, z) = 〈x, y, z〉.

The theorem is a consequence of (1).

2. 3-Fold Product Space of Real Linear Spaces

Let E, F , G be non empty additive loop structures. The functor E ×F ×G
yielding a strict, non empty additive loop structure is defined by the term

(Def. 1) (E × F )×G.

Let e be a point of E, f be a point of F , and g be a point of G. One can
verify that the functor 〈〈e, f, g〉〉 yields an element of E × F × G. Let E, F , G
be Abelian, non empty additive loop structures. Observe that E × F × G is
Abelian.

Let E, F , G be add-associative, non empty additive loop structures. One
can verify that E × F ×G is add-associative. Let E, F , G be right zeroed, non
empty additive loop structures. Note that E × F ×G is right zeroed.

Let E, F , G be right complementable, non empty additive loop structures.
Let us note that E × F ×G is right complementable.

Now we state the propositions:

(3) Let us consider non empty additive loop structures E, F , G. Then

(i) for every set x, x is a point of E × F ×G iff there exists a point x1
of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉, and
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(ii) for every points x1, y1 of E and for every points x2, y2 of F and
for every points x3, y3 of G, 〈〈x1, x2, x3〉〉 + 〈〈y1, y2, y3〉〉 = 〈〈x1 + y1,
x2 + y2, x3 + y3〉〉, and

(iii) 0E×F×G = 〈〈0E , 0F , 0G〉〉.
Proof: For every set x, x is a point of E × F ×G iff there exists a point
x1 of E and there exists a point x2 of F and there exists a point x3 of G
such that x = 〈〈x1, x2, x3〉〉 by [5, (7)]. �

(4) Let us consider add-associative, right zeroed, right complementable,
non empty additive loop structures E, F , G, a point x1 of E, a point x2
of F , and a point x3 of G. Then −〈〈x1, x2, x3〉〉 = 〈〈−x1, −x2, −x3〉〉.

Let E, F , G be non empty RLS structures. The functor E ×F ×G yielding
a strict, non empty RLS structure is defined by the term

(Def. 2) (E × F )×G.

Let e be a point of E, f be a point of F , and g be a point of G. Let us
note that the functor 〈〈e, f, g〉〉 yields an element of E × F ×G. Let E, F , G be
Abelian, non empty RLS structures. One can check that E ×F ×G is Abelian.

Let E, F , G be add-associative, non empty RLS structures. Let us note that
E × F ×G is add-associative.

Let E, F , G be right zeroed, non empty RLS structures. Let us observe that
E × F × G is right zeroed. Let E, F , G be right complementable, non empty
RLS structures. One can verify that E × F ×G is right complementable.

Now we state the propositions:

(5) Let us consider non empty RLS structures E, F , G. Then

(i) for every set x, x is a point of E × F ×G iff there exists a point x1
of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉, and

(ii) for every points x1, y1 of E and for every points x2, y2 of F and
for every points x3, y3 of G, 〈〈x1, x2, x3〉〉 + 〈〈y1, y2, y3〉〉 = 〈〈x1 + y1,
x2 + y2, x3 + y3〉〉, and

(iii) 0E×F×G = 〈〈0E , 0F , 0G〉〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈〈x1, x2, x3〉〉 = 〈〈a · x1,
a · x2, a · x3〉〉.

Proof: For every set x, x is a point of E × F ×G iff there exists a point
x1 of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉. For every points x1, y1 of E and for every
points x2, y2 of F and for every points x3, y3 of G, 〈〈x1, x2, x3〉〉+ 〈〈y1, y2,
y3〉〉 = 〈〈x1 + y1, x2 + y2, x3 + y3〉〉. �
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(6) Let us consider add-associative, right zeroed, right complementable,
non empty RLS structures E, F , G, a point x1 of E, a point x2 of F , and
a point x3 of G. Then −〈〈x1, x2, x3〉〉 = 〈〈−x1, −x2, −x3〉〉.

Let E, F , G be vector distributive, non empty RLS structures. Let us observe
that E × F ×G is vector distributive.

Let E, F , G be scalar distributive, non empty RLS structures. Let us observe
that E × F ×G is scalar distributive.

Let E, F , G be scalar associative, non empty RLS structures. Let us observe
that E × F ×G is scalar associative.

Let E, F , G be scalar unital, non empty RLS structures. Let us observe that
E × F ×G is scalar unital.

Let E, F , G be Abelian, add-associative, right zeroed, right complementa-
ble, scalar distributive, vector distributive, scalar associative, scalar unital,
non empty RLS structures. One can verify that 〈E,F,G〉 is real-linear-space-
yielding. Now we state the proposition:

(7) Let us consider real linear spaces X, Y, Z. Then there exists a function
I from X × Y × Z into

∏
〈X,Y, Z〉 such that

(i) I is one-to-one and onto, and

(ii) for every point x of X and for every point y of Y and for every point
z of Z, I(x, y, z) = 〈x, y, z〉, and

(iii) for every points v, w of X × Y × Z, I(v + w) = I(v) + I(w), and

(iv) for every point v of X×Y ×Z and for every real number r, I(r ·v) =
r · I(v), and

(v) I(0X×Y×Z) = 0∏〈X,Y,Z〉.
Proof: Set C1 = the carrier of X. Set C2 = the carrier of Y. Set C3 =
the carrier of Z. Consider I being a function from C1×C2×C3 into

∏
〈C1,

C2, C3〉 such that I is one-to-one and onto and for every objects x, y, z
such that x ∈ C1 and y ∈ C2 and z ∈ C3 holds I(x, y, z) = 〈x, y, z〉. For
every points v, w of X × Y × Z, I(v + w) = I(v) + I(w). For every point
v of X × Y × Z and for every real number r, I(r · v) = r · I(v). �

Let E, F , G be real linear spaces, e be a point of E, f be a point of F , and
g be a point of G. Note that the functor 〈e, f, g〉 yields an element of

∏
〈E,F,

G〉. Now we state the proposition:

(8) Let us consider real linear spaces E, F , G. Then

(i) for every set x, x is a point of
∏
〈E,F,G〉 iff there exists a point x1

of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈x1, x2, x3〉, and
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(ii) for every points x1, y1 of E and for every points x2, y2 of F and for
every points x3, y3 of G, 〈x1, x2, x3〉+ 〈y1, y2, y3〉 = 〈x1+ y1, x2+ y2,
x3 + y3〉, and

(iii) 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G, −〈x1, x2, x3〉 = 〈−x1,−x2,−x3〉, and

(v) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈x1, x2, x3〉 = 〈a · x1,
a · x2, a · x3〉.

Proof: Consider I being a function from E×F ×G into
∏
〈E,F,G〉 such

that I is one-to-one and onto and for every point x of E and for every
point y of F and for every point z of G, I(x, y, z) = 〈x, y, z〉 and for
every points v, w of E × F × G, I(v + w) = I(v) + I(w) and for every
point v of E × F ×G and for every real number r, I(r · v) = r · I(v) and
0∏〈E,F,G〉 = I(0E×F×G).

For every set x, x is a point of
∏
〈E,F,G〉 iff there exists a point x1 of

E and there exists a point x2 of F and there exists a point x3 of G such
that x = 〈x1, x2, x3〉. For every points x1, y1 of E and for every points x2,
y2 of F and for every points x3, y3 of G, 〈x1, x2, x3〉+〈y1, y2, y3〉 = 〈x1+y1,
x2 + y2, x3 + y3〉. 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉. For every point x1 of E and
for every point x2 of F and for every point x3 of G, −〈x1, x2, x3〉 = 〈−x1,
−x2,−x3〉. I(a · 〈〈x1, x2, x3〉〉) = I(a · x1, a · x2, a · x3). �

3. 3-Fold Product Space of Real Normed Spaces

Let E, F , G be non empty normed structures. The functor E×F×G yielding
a strict, non empty normed structure is defined by the term

(Def. 3) (E × F )×G.

Let e be a point of E, f be a point of F , and g be a point of G. One can
verify that the functor 〈〈e, f, g〉〉 yields an element of E × F × G. Let E, F ,
G be real normed spaces. Let us note that E × F × G is reflexive, discernible,
real normed space-like, scalar distributive, vector distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, and right complementable
and 〈E,F,G〉 is real-norm-space-yielding.

Now we state the propositions:

(9) Let us consider real normed spaces E, F , G. Then

(i) for every set x, x is a point of E × F ×G iff there exists a point x1
of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈〈x1, x2, x3〉〉, and



246 hiroyuki okazaki and kazuhisa nakasho

(ii) for every points x1, y1 of E and for every points x2, y2 of F and
for every points x3, y3 of G, 〈〈x1, x2, x3〉〉 + 〈〈y1, y2, y3〉〉 = 〈〈x1 + y1,
x2 + y2, x3 + y3〉〉, and

(iii) 0E×F×G = 〈〈0E , 0F , 0G〉〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈〈x1, x2, x3〉〉 = 〈〈a · x1,
a · x2, a · x3〉〉, and

(v) for every point x1 of E and for every point x2 of F and for every
point x3 of G, −〈〈x1, x2, x3〉〉 = 〈〈−x1, −x2, −x3〉〉, and

(vi) for every point x1 of E and for every point x2 of F and for every
point x3 of G, ‖〈〈x1, x2, x3〉〉‖ =

√
‖x1‖2 + ‖x2‖2 + ‖x3‖2 and there

exists an element w of R3 such that w = 〈‖x1‖, ‖x2‖, ‖x3‖〉 and ‖〈〈x1,
x2, x3〉〉‖ = |w|.

Proof: For every set x, x is a point of E × F ×G iff there exists a point
x1 of E and there exists a point x2 of F and there exists a point x3 of G
such that x = 〈〈x1, x2, x3〉〉. For every point x1 of E and for every point x2
of F and for every point x3 of G and for every real number a, a · 〈〈x1, x2,
x3〉〉 = 〈〈a ·x1, a ·x2, a ·x3〉〉. Consider v10 being an element of R2 such that
v10 = 〈‖〈〈x1, y1〉〉‖, ‖z1‖〉 and (prodnorm(E × F,G))(〈〈x1, y1〉〉, z1) = |v10|.
Consider v20 being an element of R2 such that v20 = 〈‖x1‖, ‖y1‖〉 and
(prodnorm(E,F ))(x1, y1) = |v20|. �

(10) Let us consider real normed spaces X, Y, Z. Then there exists a function
I from X × Y × Z into

∏
〈X,Y, Z〉 such that

(i) I is one-to-one and onto, and

(ii) for every point x of X and for every point y of Y and for every point
z of Z, I(x, y, z) = 〈x, y, z〉, and

(iii) for every points v, w of X × Y × Z, I(v + w) = I(v) + I(w), and

(iv) for every point v of X×Y ×Z and for every real number r, I(r ·v) =
r · I(v), and

(v) 0∏〈X,Y,Z〉 = I(0X×Y×Z), and

(vi) for every point v of X × Y × Z, ‖I(v)‖ = ‖v‖.

Proof: Reconsider X0 = X, Y0 = Y, Z0 = Z as a real linear space.
Consider I0 being a function from X0 × Y0 × Z0 into

∏
〈X0, Y0, Z0〉 such

that I0 is one-to-one and onto and for every point x of X and for every
point y of Y and for every point z of Z, I0(x, y, z) = 〈x, y, z〉 and for
every points v, w of X0×Y0×Z0, I0(v+w) = I0(v) + I0(w) and for every



The 3-fold product space of real normed spaces and its ... 247

point v of X0 × Y0 × Z0 and for every real number r, I0(r · v) = r · I0(v)
and 0∏〈X0,Y0,Z0〉 = I0(0X0×Y0×Z0).

Reconsider I = I0 as a function from X × Y × Z into
∏
〈X,Y, Z〉.

For every points g1, g2 of X0 × Y0 and for every points f1, f2 of Z0,
(prodadd(X×Y, Z))(〈〈g1, f1〉〉, 〈〈g2, f2〉〉) = 〈〈g1+ g2, f1+f2〉〉. For every real
number r and for every point g of X0 × Y0 and for every point f of Z0,
(prodmlt(X × Y,Z))(r, 〈〈g, f〉〉) = 〈〈r · g, r · f〉〉. For every point v of X ×
Y × Z, ‖I(v)‖ = ‖v‖ by [4, (11)]. �

Let E, F , G be real normed spaces, e be a point of E, f be a point of F ,
and g be a point of G. One can check that the functor 〈e, f, g〉 yields an element
of
∏
〈E,F,G〉. Now we state the proposition:

(11) Let us consider real normed spaces E, F , G. Then

(i) for every set x, x is a point of
∏
〈E,F,G〉 iff there exists a point x1

of E and there exists a point x2 of F and there exists a point x3 of
G such that x = 〈x1, x2, x3〉, and

(ii) for every points x1, y1 of E and for every points x2, y2 of F and for
every points x3, y3 of G, 〈x1, x2, x3〉+ 〈y1, y2, y3〉 = 〈x1+ y1, x2+ y2,
x3 + y3〉, and

(iii) 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉, and

(iv) for every point x1 of E and for every point x2 of F and for every
point x3 of G, −〈x1, x2, x3〉 = 〈−x1,−x2,−x3〉, and

(v) for every point x1 of E and for every point x2 of F and for every
point x3 of G and for every real number a, a · 〈x1, x2, x3〉 = 〈a · x1,
a · x2, a · x3〉, and

(vi) for every point x1 of E and for every point x2 of F and for every
point x3 of G, ‖〈x1, x2, x3〉‖ =

√
‖x1‖2 + ‖x2‖2 + ‖x3‖2 and there

exists an element w of R3 such that w = 〈‖x1‖, ‖x2‖, ‖x3‖〉 and ‖〈x1,
x2, x3〉‖ = |w|.

Proof: Consider I being a function from E×F ×G into
∏
〈E,F,G〉 such

that I is one-to-one and onto and for every point x of E and for every
point y of F and for every point z of G, I(x, y, z) = 〈x, y, z〉 and for
every points v, w of E × F × G, I(v + w) = I(v) + I(w) and for every
point v of E × F ×G and for every real number r, I(r · v) = r · I(v) and
0∏〈E,F,G〉 = I(0E×F×G) and for every point v of E×F ×G, ‖I(v)‖ = ‖v‖.
For every set x, x is a point of

∏
〈E,F,G〉 iff there exists a point x1

of E and there exists a point x2 of F and there exists a point x3 of G
such that x = 〈x1, x2, x3〉. For every points x1, y1 of E and for every
points x2, y2 of F and for every points x3, y3 of G, 〈x1, x2, x3〉 + 〈y1,
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y2, y3〉 = 〈x1 + y1, x2 + y2, x3 + y3〉. 0∏〈E,F,G〉 = 〈0E , 0F , 0G〉. ‖〈〈x1, x2,
x3〉〉‖ =

√
‖x1‖2 + ‖x2‖2 + ‖x3‖2. Consider w being an element of R3 such

that w = 〈‖x1‖, ‖x2‖, ‖x3‖〉 and ‖〈〈x1, x2, x3〉〉‖ = |w|. �

Let E, F , G be complete real normed spaces. Let us note that E ×F ×G is
complete.
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