The 3-Fold Product Space of Real Normed Spaces and its Properties

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Kazuhisa Nakasho
Yamaguchi University
Yamaguchi, Japan

Abstract

Summary. In this article, we formalize in Mizar [1], [2] the 3 -fold product space of real normed spaces for usefulness in application fields such as engineering, although the formalization of the 2 -fold product space of real normed spaces has been stored in the Mizar Mathematical Library [3].

First, we prove some theorems about the 3 -variable function and 3 -fold Cartesian product for preparation. Then we formalize the definition of 3 -fold product space of real linear spaces. Finally, we formulate the definition of 3 -fold product space of real normed spaces. We referred to [7] and [6] in the formalization.

MSC: 46B15 46B20 68V20
Keywords: 3-fold product spaces; linear spaces; normed spaces
MML identifier: $\overline{\text { PRVECT_4, }}$ version: 8.1 .11 5.68.1412

1. 3-Variable Function \& 3-Fold Cartesian Product

From now on v, x, x_{1}, x_{2}, y, z denote objects and X, X_{1}, X_{2}, X_{3} denote sets.

The scheme FuncEx3A deals with sets X, Y, W, Z and a 4 -ary predicate P and states that
(Sch. 1) There exists a function f from $X \times Y \times W$ into Z such that for every objects x, y, w such that $x, y, w \in W$ holds $P[x, y, w, f(x, y, w)]$ provided

- for every objects x, y, w such that $x, y, w \in W$ there exists z such that $z \in Z$ and $P[x, y, w, z]$.

Now we state the propositions:
(1) Let us consider non empty sets X, Y, Z, and a function D. Suppose $\operatorname{dom} D=\{1,2,3\}$ and $D(1)=X$ and $D(2)=Y$ and $D(3)=Z$. Then there exists a function I from $X \times Y \times Z$ into ΠD such that
(i) I is one-to-one and onto, and
(ii) for every objects x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ holds $I(x, y, z)=\langle x, y, z\rangle$.
Proof: Define $\mathcal{P}[$ object, object, object, object $] \equiv \$_{4}=\left\langle \$_{1}, \$_{2}, \$_{3}\right\rangle$. For every objects x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ there exists an object w such that $w \in \Pi D$ and $\mathcal{P}[x, y, z, w]$. Consider I being a function from $X \times Y \times Z$ into $\prod D$ such that for every objects x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ holds $\mathcal{P}[x, y, z, I(x, y, z)]$.
(2) Let us consider non empty sets X, Y, Z. Then there exists a function I from $X \times Y \times Z$ into $\Pi\langle X, Y, Z\rangle$ such that
(i) I is one-to-one and onto, and
(ii) for every objects x, y, z such that $x \in X$ and $y \in Y$ and $z \in Z$ holds $I(x, y, z)=\langle x, y, z\rangle$.
The theorem is a consequence of (1).

2. 3-Fold Product Space of Real Linear Spaces

Let E, F, G be non empty additive loop structures. The functor $E \times F \times G$ yielding a strict, non empty additive loop structure is defined by the term (Def. 1) $(E \times F) \times G$.

Let e be a point of E, f be a point of F, and g be a point of G. One can verify that the functor $\langle e, f, g\rangle$ yields an element of $E \times F \times G$. Let E, F, G be Abelian, non empty additive loop structures. Observe that $E \times F \times G$ is Abelian.

Let E, F, G be add-associative, non empty additive loop structures. One can verify that $E \times F \times G$ is add-associative. Let E, F, G be right zeroed, non empty additive loop structures. Note that $E \times F \times G$ is right zeroed.

Let E, F, G be right complementable, non empty additive loop structures. Let us note that $E \times F \times G$ is right complementable.

Now we state the propositions:
(3) Let us consider non empty additive loop structures E, F, G. Then
(i) for every set x, x is a point of $E \times F \times G$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, and
(ii) for every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}, y_{2}, y_{3}\right\rangle=\left\langle x_{1}+y_{1}\right.$, $\left.x_{2}+y_{2}, x_{3}+y_{3}\right\rangle$, and
(iii) $0_{E \times F \times G}=\left\langle 0_{E}, 0_{F}, 0_{G}\right\rangle$.

Proof: For every set x, x is a point of $E \times F \times G$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ by [5, (7)].
(4) Let us consider add-associative, right zeroed, right complementable, non empty additive loop structures E, F, G, a point x_{1} of E, a point x_{2} of F, and a point x_{3} of G. Then $-\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle-x_{1},-x_{2},-x_{3}\right\rangle$.
Let E, F, G be non empty RLS structures. The functor $E \times F \times G$ yielding a strict, non empty RLS structure is defined by the term
(Def. 2) $(E \times F) \times G$.
Let e be a point of E, f be a point of F, and g be a point of G. Let us note that the functor $\langle e, f, g\rangle$ yields an element of $E \times F \times G$. Let E, F, G be Abelian, non empty RLS structures. One can check that $E \times F \times G$ is Abelian.

Let E, F, G be add-associative, non empty RLS structures. Let us note that $E \times F \times G$ is add-associative.

Let E, F, G be right zeroed, non empty RLS structures. Let us observe that $E \times F \times G$ is right zeroed. Let E, F, G be right complementable, non empty RLS structures. One can verify that $E \times F \times G$ is right complementable.

Now we state the propositions:
(5) Let us consider non empty RLS structures E, F, G. Then
(i) for every set x, x is a point of $E \times F \times G$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, and
(ii) for every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}, y_{2}, y_{3}\right\rangle=\left\langle x_{1}+y_{1}\right.$, $\left.x_{2}+y_{2}, x_{3}+y_{3}\right\rangle$, and
(iii) $0_{E \times F \times G}=\left\langle 0_{E}, 0_{F}, 0_{G}\right\rangle$, and
(iv) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of G and for every real number $a, a \cdot\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle a \cdot x_{1}\right.$, $\left.a \cdot x_{2}, a \cdot x_{3}\right\rangle$.
Proof: For every set x, x is a point of $E \times F \times G$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$. For every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}, y_{2}\right.$, $\left.y_{3}\right\rangle=\left\langle x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right\rangle$.
(6) Let us consider add-associative, right zeroed, right complementable, non empty RLS structures E, F, G, a point x_{1} of E, a point x_{2} of F, and a point x_{3} of G. Then $-\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle-x_{1},-x_{2},-x_{3}\right\rangle$.
Let E, F, G be vector distributive, non empty RLS structures. Let us observe that $E \times F \times G$ is vector distributive.

Let E, F, G be scalar distributive, non empty RLS structures. Let us observe that $E \times F \times G$ is scalar distributive.

Let E, F, G be scalar associative, non empty RLS structures. Let us observe that $E \times F \times G$ is scalar associative.

Let E, F, G be scalar unital, non empty RLS structures. Let us observe that $E \times F \times G$ is scalar unital.

Let E, F, G be Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty RLS structures. One can verify that $\langle E, F, G\rangle$ is real-linear-spaceyielding. Now we state the proposition:
(7) Let us consider real linear spaces X, Y, Z. Then there exists a function I from $X \times Y \times Z$ into $\Pi\langle X, Y, Z\rangle$ such that
(i) I is one-to-one and onto, and
(ii) for every point x of X and for every point y of Y and for every point z of $Z, I(x, y, z)=\langle x, y, z\rangle$, and
(iii) for every points v, w of $X \times Y \times Z, I(v+w)=I(v)+I(w)$, and
(iv) for every point v of $X \times Y \times Z$ and for every real number $r, I(r \cdot v)=$ $r \cdot I(v)$, and
(v) $I\left(0_{X \times Y \times Z}\right)={ }^{0} \prod\langle X, Y, Z\rangle$.

Proof: Set $C_{1}=$ the carrier of X. Set $C_{2}=$ the carrier of Y. Set $C_{3}=$ the carrier of Z. Consider I being a function from $C_{1} \times C_{2} \times C_{3}$ into $\Pi\left\langle C_{1}\right.$, $\left.C_{2}, C_{3}\right\rangle$ such that I is one-to-one and onto and for every objects x, y, z such that $x \in C_{1}$ and $y \in C_{2}$ and $z \in C_{3}$ holds $I(x, y, z)=\langle x, y, z\rangle$. For every points v, w of $X \times Y \times Z, I(v+w)=I(v)+I(w)$. For every point v of $X \times Y \times Z$ and for every real number $r, I(r \cdot v)=r \cdot I(v)$.
Let E, F, G be real linear spaces, e be a point of E, f be a point of F, and g be a point of G. Note that the functor $\langle e, f, g\rangle$ yields an element of $\Pi\langle E, F$, $G\rangle$. Now we state the proposition:
(8) Let us consider real linear spaces E, F, G. Then
(i) for every set x, x is a point of $\Pi\langle E, F, G\rangle$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, and
(ii) for every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}, y_{2}, y_{3}\right\rangle=\left\langle x_{1}+y_{1}, x_{2}+y_{2}\right.$, $\left.x_{3}+y_{3}\right\rangle$, and
(iii) ${ }^{0} \prod_{\langle E, F, G\rangle}=\left\langle 0_{E}, 0_{F}, 0_{G}\right\rangle$, and
(iv) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of $G,-\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle-x_{1},-x_{2},-x_{3}\right\rangle$, and
(v) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of G and for every real number $a, a \cdot\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle a \cdot x_{1}\right.$, $\left.a \cdot x_{2}, a \cdot x_{3}\right\rangle$.
Proof: Consider I being a function from $E \times F \times G$ into $\Pi\langle E, F, G\rangle$ such that I is one-to-one and onto and for every point x of E and for every point y of F and for every point z of $G, I(x, y, z)=\langle x, y, z\rangle$ and for every points v, w of $E \times F \times G, I(v+w)=I(v)+I(w)$ and for every point v of $E \times F \times G$ and for every real number $r, I(r \cdot v)=r \cdot I(v)$ and ${ }^{0} \prod_{\langle E, F, G\rangle}=I\left(0_{E \times F \times G}\right)$.

For every set x, x is a point of $\Pi\langle E, F, G\rangle$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$. For every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}, y_{2}, y_{3}\right\rangle=\left\langle x_{1}+y_{1}\right.$, $\left.x_{2}+y_{2}, x_{3}+y_{3}\right\rangle \cdot{ }^{0} \prod_{\langle E, F, G\rangle}=\left\langle 0_{E}, 0_{F}, 0_{G}\right\rangle$. For every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of $G,-\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle-x_{1}\right.$, $\left.-x_{2},-x_{3}\right\rangle . I\left(a \cdot\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right)=I\left(a \cdot x_{1}, a \cdot x_{2}, a \cdot x_{3}\right)$.

3. 3-Fold Product Space of Real Normed Spaces

Let E, F, G be non empty normed structures. The functor $E \times F \times G$ yielding a strict, non empty normed structure is defined by the term
(Def. 3) $(E \times F) \times G$.
Let e be a point of E, f be a point of F, and g be a point of G. One can verify that the functor $\langle e, f, g\rangle$ yields an element of $E \times F \times G$. Let E, F, G be real normed spaces. Let us note that $E \times F \times G$ is reflexive, discernible, real normed space-like, scalar distributive, vector distributive, scalar associative, scalar unital, Abelian, add-associative, right zeroed, and right complementable and $\langle E, F, G\rangle$ is real-norm-space-yielding.

Now we state the propositions:
(9) Let us consider real normed spaces E, F, G. Then
(i) for every set x, x is a point of $E \times F \times G$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, and
(ii) for every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}, y_{2}, y_{3}\right\rangle=\left\langle x_{1}+y_{1}\right.$, $\left.x_{2}+y_{2}, x_{3}+y_{3}\right\rangle$, and
(iii) $0_{E \times F \times G}=\left\langle 0_{E}, 0_{F}, 0_{G}\right\rangle$, and
(iv) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of G and for every real number $a, a \cdot\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle a \cdot x_{1}\right.$, $\left.a \cdot x_{2}, a \cdot x_{3}\right\rangle$, and
(v) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of $G,-\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle-x_{1},-x_{2},-x_{3}\right\rangle$, and
(vi) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of $G,\left\|\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right\|=\sqrt{\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}+\left\|x_{3}\right\|^{2}}$ and there exists an element w of \mathcal{R}^{3} such that $w=\left\langle\left\|x_{1}\right\|,\left\|x_{2}\right\|,\left\|x_{3}\right\|\right\rangle$ and $\|\left\langle x_{1}\right.$, $\left.x_{2}, x_{3}\right\rangle \|=|w|$.

Proof: For every set x, x is a point of $E \times F \times G$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$. For every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of G and for every real number $a, a \cdot\left\langle x_{1}, x_{2}\right.$, $\left.x_{3}\right\rangle=\left\langle a \cdot x_{1}, a \cdot x_{2}, a \cdot x_{3}\right\rangle$. Consider v_{10} being an element of \mathcal{R}^{2} such that $v_{10}=\left\langle\left\|\left\langle x_{1}, y_{1}\right\rangle\right\|,\|z 1\|\right\rangle$ and (prodnorm $\left.(E \times F, G)\right)\left(\left\langle x_{1}, y_{1}\right\rangle, z 1\right)=\left|v_{10}\right|$. Consider v_{20} being an element of \mathcal{R}^{2} such that $v_{20}=\left\langle\left\|x_{1}\right\|,\left\|y_{1}\right\|\right\rangle$ and $(\operatorname{prodnorm}(E, F))\left(x_{1}, y_{1}\right)=\left|v_{20}\right| . \square$
(10) Let us consider real normed spaces X, Y, Z. Then there exists a function I from $X \times Y \times Z$ into $\Pi\langle X, Y, Z\rangle$ such that
(i) I is one-to-one and onto, and
(ii) for every point x of X and for every point y of Y and for every point z of $Z, I(x, y, z)=\langle x, y, z\rangle$, and
(iii) for every points v, w of $X \times Y \times Z, I(v+w)=I(v)+I(w)$, and
(iv) for every point v of $X \times Y \times Z$ and for every real number $r, I(r \cdot v)=$ $r \cdot I(v)$, and
(v) ${ }^{0} \prod_{\langle X, Y, Z\rangle}=I\left(0_{X \times Y \times Z}\right)$, and
(vi) for every point v of $X \times Y \times Z,\|I(v)\|=\|v\|$.

Proof: Reconsider $X_{0}=X, Y_{0}=Y, Z_{0}=Z$ as a real linear space. Consider I_{0} being a function from $X_{0} \times Y_{0} \times Z_{0}$ into $\Pi\left\langle X_{0}, Y_{0}, Z_{0}\right\rangle$ such that I_{0} is one-to-one and onto and for every point x of X and for every point y of Y and for every point z of $Z, I_{0}(x, y, z)=\langle x, y, z\rangle$ and for every points v, w of $X_{0} \times Y_{0} \times Z_{0}, I_{0}(v+w)=I_{0}(v)+I_{0}(w)$ and for every
point v of $X_{0} \times Y_{0} \times Z_{0}$ and for every real number $r, I_{0}(r \cdot v)=r \cdot I_{0}(v)$ and ${ }^{0} \prod\left\langle X_{0}, Y_{0}, Z_{0}\right\rangle=I_{0}\left(0_{X_{0} \times Y_{0} \times Z_{0}}\right)$.

Reconsider $I=I_{0}$ as a function from $X \times Y \times Z$ into $\Pi\langle X, Y, Z\rangle$. For every points g_{1}, g_{2} of $X_{0} \times Y_{0}$ and for every points f_{1}, f_{2} of Z_{0}, $(\operatorname{prodadd}(X \times Y, Z))\left(\left\langle g_{1}, f_{1}\right\rangle,\left\langle g_{2}, f_{2}\right\rangle\right)=\left\langle g_{1}+g_{2}, f_{1}+f_{2}\right\rangle$. For every real number r and for every point g of $X_{0} \times Y_{0}$ and for every point f of Z_{0}, $(\operatorname{prodmlt}(X \times Y, Z))(r,\langle g, f\rangle)=\langle r \cdot g, r \cdot f\rangle$. For every point v of $X \times$ $Y \times Z,\|I(v)\|=\|v\|$ by [4, (11)].
Let E, F, G be real normed spaces, e be a point of E, f be a point of F, and g be a point of G. One can check that the functor $\langle e, f, g\rangle$ yields an element of $\Pi\langle E, F, G\rangle$. Now we state the proposition:
(11) Let us consider real normed spaces E, F, G. Then
(i) for every set x, x is a point of $\Pi\langle E, F, G\rangle$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, and
(ii) for every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}, y_{2}, y_{3}\right\rangle=\left\langle x_{1}+y_{1}, x_{2}+y_{2}\right.$, $\left.x_{3}+y_{3}\right\rangle$, and
(iii) ${ }^{0} \prod_{\langle E, F, G\rangle}=\left\langle 0_{E}, 0_{F}, 0_{G}\right\rangle$, and
(iv) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of $G,-\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle-x_{1},-x_{2},-x_{3}\right\rangle$, and
(v) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of G and for every real number $a, a \cdot\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle a \cdot x_{1}\right.$, $\left.a \cdot x_{2}, a \cdot x_{3}\right\rangle$, and
(vi) for every point x_{1} of E and for every point x_{2} of F and for every point x_{3} of $G,\left\|\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right\|=\sqrt{\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}+\left\|x_{3}\right\|^{2}}$ and there exists an element w of \mathcal{R}^{3} such that $w=\left\langle\left\|x_{1}\right\|,\left\|x_{2}\right\|,\left\|x_{3}\right\|\right\rangle$ and $\|\left\langle x_{1}\right.$, $\left.x_{2}, x_{3}\right\rangle \|=|w|$.

Proof: Consider I being a function from $E \times F \times G$ into $\Pi\langle E, F, G\rangle$ such that I is one-to-one and onto and for every point x of E and for every point y of F and for every point z of $G, I(x, y, z)=\langle x, y, z\rangle$ and for every points v, w of $E \times F \times G, I(v+w)=I(v)+I(w)$ and for every point v of $E \times F \times G$ and for every real number $r, I(r \cdot v)=r \cdot I(v)$ and ${ }^{0} \prod_{\langle E, F, G\rangle}=I\left(0_{E \times F \times G}\right)$ and for every point v of $E \times F \times G,\|I(v)\|=\|v\|$. For every set x, x is a point of $\Pi\langle E, F, G\rangle$ iff there exists a point x_{1} of E and there exists a point x_{2} of F and there exists a point x_{3} of G such that $x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$. For every points x_{1}, y_{1} of E and for every points x_{2}, y_{2} of F and for every points x_{3}, y_{3} of $G,\left\langle x_{1}, x_{2}, x_{3}\right\rangle+\left\langle y_{1}\right.$,
$\left.y_{2}, y_{3}\right\rangle=\left\langle x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right\rangle .{ }_{\prod\langle E, F, G\rangle}=\left\langle 0_{E}, 0_{F}, 0_{G}\right\rangle . \|\left\langle x_{1}, x_{2}\right.$, $\left.x_{3}\right\rangle \|=\sqrt{\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}+\left\|x_{3}\right\|^{2}}$. Consider w being an element of \mathcal{R}^{3} such that $w=\left\langle\left\|x_{1}\right\|,\left\|x_{2}\right\|,\left\|x_{3}\right\|\right\rangle$ and $\left\|\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right\|=|w|$.
Let E, F, G be complete real normed spaces. Let us note that $E \times F \times G$ is complete.

Acknowledgement: The authors would also like to express our gratitude to Prof. Yasunari Shidama for his support and encouragement.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[3] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81-85, 2007. doi $10.2478 / \mathrm{v} 10037-007-0010-\mathrm{y}$
[4] Artur Korniłowicz. Compactness of the bounded closed subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, Formalized Mathematics, 8(1):61-68, 1999.
[5] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011. doi 10.2478/v10037-011-0009-2.
[6] Michael Read and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics). Academic Press, 1980.
[7] Kôsaku Yosida. Functional Analysis. Springer, 1980.
Accepted November 30, 2021

