

# The 3-Fold Product Space of Real Normed Spaces and its Properties

Hiroyuki Okazaki Shinshu University Nagano, Japan Kazuhisa Nakasho Yamaguchi University Yamaguchi, Japan

**Summary.** In this article, we formalize in Mizar [1], [2] the 3-fold product space of real normed spaces for usefulness in application fields such as engineering, although the formalization of the 2-fold product space of real normed spaces has been stored in the Mizar Mathematical Library [3].

First, we prove some theorems about the 3-variable function and 3-fold Cartesian product for preparation. Then we formalize the definition of 3-fold product space of real linear spaces. Finally, we formulate the definition of 3-fold product space of real normed spaces. We referred to [7] and [6] in the formalization.

MSC: 46B15 46B20 68V20

Keywords: 3-fold product spaces; linear spaces; normed spaces

MML identifier: PRVECT\_4, version: 8.1.11 5.68.1412

#### 1. 3-Variable Function & 3-Fold Cartesian Product

From now on v, x,  $x_1$ ,  $x_2$ , y, z denote objects and X,  $X_1$ ,  $X_2$ ,  $X_3$  denote sets.

The scheme FuncEx3A deals with sets  $X,\,Y,\,W,\,Z$  and a 4-ary predicate P and states that

- (Sch. 1) There exists a function f from  $X \times Y \times W$  into Z such that for every objects x, y, w such that  $x, y, w \in W$  holds P[x, y, w, f(x, y, w)] provided
  - for every objects x, y, w such that  $x, y, w \in W$  there exists z such that  $z \in Z$  and P[x, y, w, z].

Now we state the propositions:

- (1) Let us consider non empty sets X, Y, Z, and a function D. Suppose dom  $D = \{1, 2, 3\}$  and D(1) = X and D(2) = Y and D(3) = Z. Then there exists a function I from  $X \times Y \times Z$  into  $\prod D$  such that
  - (i) I is one-to-one and onto, and
  - (ii) for every objects x, y, z such that  $x \in X$  and  $y \in Y$  and  $z \in Z$  holds  $I(x, y, z) = \langle x, y, z \rangle$ .

PROOF: Define  $\mathcal{P}[\text{object}, \text{object}, \text{object}] \equiv \$_4 = \langle \$_1, \$_2, \$_3 \rangle$ . For every objects x, y, z such that  $x \in X$  and  $y \in Y$  and  $z \in Z$  there exists an object w such that  $w \in \prod D$  and  $\mathcal{P}[x, y, z, w]$ . Consider I being a function from  $X \times Y \times Z$  into  $\prod D$  such that for every objects x, y, z such that  $x \in X$  and  $y \in Y$  and  $z \in Z$  holds  $\mathcal{P}[x, y, z, I(x, y, z)]$ .  $\square$ 

- (2) Let us consider non empty sets X, Y, Z. Then there exists a function I from  $X \times Y \times Z$  into  $\prod \langle X, Y, Z \rangle$  such that
  - (i) I is one-to-one and onto, and
  - (ii) for every objects x, y, z such that  $x \in X$  and  $y \in Y$  and  $z \in Z$  holds  $I(x, y, z) = \langle x, y, z \rangle$ .

The theorem is a consequence of (1).

## 2. 3-FOLD PRODUCT SPACE OF REAL LINEAR SPACES

Let E, F, G be non empty additive loop structures. The functor  $E \times F \times G$  yielding a strict, non empty additive loop structure is defined by the term (Def. 1)  $(E \times F) \times G$ .

Let e be a point of E, f be a point of F, and g be a point of G. One can verify that the functor  $\langle e, f, g \rangle$  yields an element of  $E \times F \times G$ . Let E, F, G be Abelian, non empty additive loop structures. Observe that  $E \times F \times G$  is Abelian.

Let E, F, G be add-associative, non empty additive loop structures. One can verify that  $E \times F \times G$  is add-associative. Let E, F, G be right zeroed, non empty additive loop structures. Note that  $E \times F \times G$  is right zeroed.

Let E, F, G be right complementable, non empty additive loop structures. Let us note that  $E \times F \times G$  is right complementable.

Now we state the propositions:

- (3) Let us consider non empty additive loop structures E, F, G. Then
  - (i) for every set x, x is a point of  $E \times F \times G$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ , and

- (ii) for every points  $x_1$ ,  $y_1$  of E and for every points  $x_2$ ,  $y_2$  of F and for every points  $x_3$ ,  $y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$ , and
- (iii)  $0_{E\times F\times G} = \langle 0_E, 0_F, 0_G \rangle$ .

PROOF: For every set x, x is a point of  $E \times F \times G$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$  by [5, (7)].  $\square$ 

(4) Let us consider add-associative, right zeroed, right complementable, non empty additive loop structures E, F, G, a point  $x_1$  of E, a point  $x_2$  of F, and a point  $x_3$  of G. Then  $-\langle x_1, x_2, x_3 \rangle = \langle -x_1, -x_2, -x_3 \rangle$ .

Let E, F, G be non empty RLS structures. The functor  $E \times F \times G$  yielding a strict, non empty RLS structure is defined by the term

(Def. 2) 
$$(E \times F) \times G$$
.

Let e be a point of E, f be a point of F, and g be a point of G. Let us note that the functor  $\langle e, f, g \rangle$  yields an element of  $E \times F \times G$ . Let E, F, G be Abelian, non empty RLS structures. One can check that  $E \times F \times G$  is Abelian.

Let E, F, G be add-associative, non empty RLS structures. Let us note that  $E \times F \times G$  is add-associative.

Let E, F, G be right zeroed, non empty RLS structures. Let us observe that  $E \times F \times G$  is right zeroed. Let E, F, G be right complementable, non empty RLS structures. One can verify that  $E \times F \times G$  is right complementable.

Now we state the propositions:

- (5) Let us consider non empty RLS structures E, F, G. Then
  - (i) for every set x, x is a point of  $E \times F \times G$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ , and
  - (ii) for every points  $x_1$ ,  $y_1$  of E and for every points  $x_2$ ,  $y_2$  of F and for every points  $x_3$ ,  $y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$ , and
  - (iii)  $0_{E \times F \times G} = \langle 0_E, 0_F, 0_G \rangle$ , and
  - (iv) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G and for every real number a,  $a \cdot \langle x_1, x_2, x_3 \rangle = \langle a \cdot x_1, a \cdot x_2, a \cdot x_3 \rangle$ .

PROOF: For every set x, x is a point of  $E \times F \times G$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ . For every points  $x_1, y_1$  of E and for every points  $x_2, y_2$  of F and for every points  $x_3, y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$ .  $\square$ 

(6) Let us consider add-associative, right zeroed, right complementable, non empty RLS structures E, F, G, a point  $x_1$  of E, a point  $x_2$  of F, and a point  $x_3$  of G. Then  $-\langle x_1, x_2, x_3 \rangle = \langle -x_1, -x_2, -x_3 \rangle$ .

Let E, F, G be vector distributive, non empty RLS structures. Let us observe that  $E \times F \times G$  is vector distributive.

Let E, F, G be scalar distributive, non empty RLS structures. Let us observe that  $E \times F \times G$  is scalar distributive.

Let E, F, G be scalar associative, non empty RLS structures. Let us observe that  $E \times F \times G$  is scalar associative.

Let E, F, G be scalar unital, non empty RLS structures. Let us observe that  $E \times F \times G$  is scalar unital.

Let E, F, G be Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty RLS structures. One can verify that  $\langle E, F, G \rangle$  is real-linear-space-yielding. Now we state the proposition:

- (7) Let us consider real linear spaces X, Y, Z. Then there exists a function I from  $X \times Y \times Z$  into  $\prod \langle X, Y, Z \rangle$  such that
  - (i) I is one-to-one and onto, and
  - (ii) for every point x of X and for every point y of Y and for every point z of Z,  $I(x, y, z) = \langle x, y, z \rangle$ , and
  - (iii) for every points v, w of  $X \times Y \times Z$ , I(v+w) = I(v) + I(w), and
  - (iv) for every point v of  $X \times Y \times Z$  and for every real number r,  $I(r \cdot v) = r \cdot I(v)$ , and
  - (v)  $I(0_{X\times Y\times Z}) = 0_{\prod \langle X,Y,Z\rangle}$ .

PROOF: Set  $C_1$  = the carrier of X. Set  $C_2$  = the carrier of Y. Set  $C_3$  = the carrier of Z. Consider I being a function from  $C_1 \times C_2 \times C_3$  into  $\prod \langle C_1, C_2, C_3 \rangle$  such that I is one-to-one and onto and for every objects x, y, z such that  $x \in C_1$  and  $y \in C_2$  and  $z \in C_3$  holds  $I(x, y, z) = \langle x, y, z \rangle$ . For every points v, w of  $X \times Y \times Z$ , I(v+w) = I(v) + I(w). For every point v of  $X \times Y \times Z$  and for every real number v, v is the carrier of v. Set v is the carrier of v is the carrier of v. Set v is the carrier of v is the carrier of v. Set v is the carrier of v is the carrier of v. Set v is the carrier of v is the carrier of v is the carrier of v. Set v is the carrier of v. Set v is the carrier of v is the carr

Let E, F, G be real linear spaces, e be a point of E, f be a point of F, and g be a point of G. Note that the functor  $\langle e, f, g \rangle$  yields an element of  $\prod \langle E, F, G \rangle$ . Now we state the proposition:

- (8) Let us consider real linear spaces E, F, G. Then
  - (i) for every set x, x is a point of  $\prod \langle E, F, G \rangle$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ , and

- (ii) for every points  $x_1$ ,  $y_1$  of E and for every points  $x_2$ ,  $y_2$  of F and for every points  $x_3$ ,  $y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$ , and
- (iii)  $0_{\prod \langle E,F,G \rangle} = \langle 0_E,0_F,0_G \rangle$ , and
- (iv) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G,  $-\langle x_1, x_2, x_3 \rangle = \langle -x_1, -x_2, -x_3 \rangle$ , and
- (v) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G and for every real number a,  $a \cdot \langle x_1, x_2, x_3 \rangle = \langle a \cdot x_1, a \cdot x_2, a \cdot x_3 \rangle$ .

PROOF: Consider I being a function from  $E \times F \times G$  into  $\prod \langle E, F, G \rangle$  such that I is one-to-one and onto and for every point x of E and for every point y of F and for every point z of G,  $I(x, y, z) = \langle x, y, z \rangle$  and for every points v, w of  $E \times F \times G$ , I(v+w) = I(v) + I(w) and for every point v of  $E \times F \times G$  and for every real number r,  $I(r \cdot v) = r \cdot I(v)$  and  $0 \prod \langle E, F, G \rangle = I(0_{E \times F \times G})$ .

For every set x, x is a point of  $\prod \langle E, F, G \rangle$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ . For every points  $x_1$ ,  $y_1$  of E and for every points  $x_2$ ,  $y_2$  of F and for every points  $x_3$ ,  $y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$ .  $0_{\prod \langle E, F, G \rangle} = \langle 0_E, 0_F, 0_G \rangle$ . For every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G,  $-\langle x_1, x_2, x_3 \rangle = \langle -x_1, -x_2, -x_3 \rangle$ .  $I(a \cdot \langle x_1, x_2, x_3 \rangle) = I(a \cdot x_1, a \cdot x_2, a \cdot x_3)$ .  $\square$ 

## 3. 3-FOLD PRODUCT SPACE OF REAL NORMED SPACES

Let E, F, G be non empty normed structures. The functor  $E \times F \times G$  yielding a strict, non empty normed structure is defined by the term

(Def. 3) 
$$(E \times F) \times G$$
.

Let e be a point of E, f be a point of F, and g be a point of G. One can verify that the functor  $\langle e, f, g \rangle$  yields an element of  $E \times F \times G$ . Let E, F, G be real normed spaces. Let us note that  $E \times F \times G$  is reflexive, discernible, real normed space-like, scalar distributive, vector distributive, scalar associative, scalar unital, Abelian, add-associative, right zeroed, and right complementable and  $\langle E, F, G \rangle$  is real-norm-space-yielding.

Now we state the propositions:

- (9) Let us consider real normed spaces E, F, G. Then
  - (i) for every set x, x is a point of  $E \times F \times G$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ , and

- (ii) for every points  $x_1$ ,  $y_1$  of E and for every points  $x_2$ ,  $y_2$  of F and for every points  $x_3$ ,  $y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$ , and
- (iii)  $0_{E\times F\times G} = \langle 0_E, 0_F, 0_G \rangle$ , and
- (iv) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G and for every real number a,  $a \cdot \langle x_1, x_2, x_3 \rangle = \langle a \cdot x_1, a \cdot x_2, a \cdot x_3 \rangle$ , and
- (v) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G,  $-\langle x_1, x_2, x_3 \rangle = \langle -x_1, -x_2, -x_3 \rangle$ , and
- (vi) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G,  $\|\langle x_1, x_2, x_3 \rangle\| = \sqrt{\|x_1\|^2 + \|x_2\|^2 + \|x_3\|^2}$  and there exists an element w of  $\mathbb{R}^3$  such that  $w = \langle \|x_1\|, \|x_2\|, \|x_3\| \rangle$  and  $\|\langle x_1, x_2, x_3 \rangle\| = |w|$ .

PROOF: For every set x, x is a point of  $E \times F \times G$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ . For every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G and for every real number a,  $a \cdot \langle x_1, x_2, x_3 \rangle = \langle a \cdot x_1, a \cdot x_2, a \cdot x_3 \rangle$ . Consider  $v_{10}$  being an element of  $\mathcal{R}^2$  such that  $v_{10} = \langle \|\langle x_1, y_1 \rangle\|, \|z_1\|\rangle$  and (prodnorm $(E \times F, G)$ )( $\langle x_1, y_1 \rangle, z_1$ ) =  $|v_{10}|$ . Consider  $v_{20}$  being an element of  $\mathcal{R}^2$  such that  $v_{20} = \langle \|x_1\|, \|y_1\|\rangle$  and (prodnorm(E, F)) $(x_1, y_1) = |v_{20}|$ .  $\square$ 

- (10) Let us consider real normed spaces X, Y, Z. Then there exists a function I from  $X \times Y \times Z$  into  $\prod \langle X, Y, Z \rangle$  such that
  - (i) I is one-to-one and onto, and
  - (ii) for every point x of X and for every point y of Y and for every point z of Z,  $I(x, y, z) = \langle x, y, z \rangle$ , and
  - (iii) for every points v, w of  $X \times Y \times Z$ , I(v+w) = I(v) + I(w), and
  - (iv) for every point v of  $X \times Y \times Z$  and for every real number r,  $I(r \cdot v) = r \cdot I(v)$ , and
  - (v)  $0_{\prod \langle X,Y,Z \rangle} = I(0_{X \times Y \times Z})$ , and
  - (vi) for every point v of  $X \times Y \times Z$ , ||I(v)|| = ||v||.

PROOF: Reconsider  $X_0 = X$ ,  $Y_0 = Y$ ,  $Z_0 = Z$  as a real linear space. Consider  $I_0$  being a function from  $X_0 \times Y_0 \times Z_0$  into  $\prod \langle X_0, Y_0, Z_0 \rangle$  such that  $I_0$  is one-to-one and onto and for every point x of X and for every point y of Y and for every point z of Z,  $I_0(x, y, z) = \langle x, y, z \rangle$  and for every points v, w of  $X_0 \times Y_0 \times Z_0$ ,  $I_0(v+w) = I_0(v) + I_0(w)$  and for every

point v of  $X_0 \times Y_0 \times Z_0$  and for every real number r,  $I_0(r \cdot v) = r \cdot I_0(v)$  and  $0_{\prod \langle X_0, Y_0, Z_0 \rangle} = I_0(0_{X_0 \times Y_0 \times Z_0})$ .

Reconsider  $I = I_0$  as a function from  $X \times Y \times Z$  into  $\prod \langle X, Y, Z \rangle$ . For every points  $g_1$ ,  $g_2$  of  $X_0 \times Y_0$  and for every points  $f_1$ ,  $f_2$  of  $Z_0$ ,  $(\operatorname{prodadd}(X \times Y, Z))(\langle g_1, f_1 \rangle, \langle g_2, f_2 \rangle) = \langle g_1 + g_2, f_1 + f_2 \rangle$ . For every real number r and for every point g of  $X_0 \times Y_0$  and for every point f of  $Z_0$ ,  $(\operatorname{prodmlt}(X \times Y, Z))(r, \langle g, f \rangle) = \langle r \cdot g, r \cdot f \rangle$ . For every point v of  $X \times Y \times Z$ , ||I(v)|| = ||v|| by [4, (11)].  $\square$ 

Let E, F, G be real normed spaces, e be a point of E, f be a point of F, and g be a point of G. One can check that the functor  $\langle e, f, g \rangle$  yields an element of  $\prod \langle E, F, G \rangle$ . Now we state the proposition:

- (11) Let us consider real normed spaces E, F, G. Then
  - (i) for every set x, x is a point of  $\prod \langle E, F, G \rangle$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ , and
  - (ii) for every points  $x_1$ ,  $y_1$  of E and for every points  $x_2$ ,  $y_2$  of F and for every points  $x_3$ ,  $y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle$ , and
  - (iii)  $0_{\prod \langle E,F,G \rangle} = \langle 0_E, 0_F, 0_G \rangle$ , and
  - (iv) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G,  $-\langle x_1, x_2, x_3 \rangle = \langle -x_1, -x_2, -x_3 \rangle$ , and
  - (v) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G and for every real number a,  $a \cdot \langle x_1, x_2, x_3 \rangle = \langle a \cdot x_1, a \cdot x_2, a \cdot x_3 \rangle$ , and
  - (vi) for every point  $x_1$  of E and for every point  $x_2$  of F and for every point  $x_3$  of G,  $\|\langle x_1, x_2, x_3 \rangle\| = \sqrt{\|x_1\|^2 + \|x_2\|^2 + \|x_3\|^2}$  and there exists an element w of  $\mathbb{R}^3$  such that  $w = \langle \|x_1\|, \|x_2\|, \|x_3\| \rangle$  and  $\|\langle x_1, x_2, x_3 \rangle\| = |w|$ .

PROOF: Consider I being a function from  $E \times F \times G$  into  $\prod \langle E, F, G \rangle$  such that I is one-to-one and onto and for every point x of E and for every point y of F and for every point z of G,  $I(x, y, z) = \langle x, y, z \rangle$  and for every points v, w of  $E \times F \times G$ , I(v+w) = I(v) + I(w) and for every point v of  $E \times F \times G$  and for every real number r,  $I(r \cdot v) = r \cdot I(v)$  and  $0_{\prod \langle E, F, G \rangle} = I(0_{E \times F \times G})$  and for every point v of  $E \times F \times G$ , ||I(v)|| = ||v||. For every set x, x is a point of  $\prod \langle E, F, G \rangle$  iff there exists a point  $x_1$  of E and there exists a point  $x_2$  of F and there exists a point  $x_3$  of G such that  $x = \langle x_1, x_2, x_3 \rangle$ . For every points  $x_1$ ,  $y_1$  of E and for every points  $x_2$ ,  $y_2$  of F and for every points  $x_3$ ,  $y_3$  of G,  $\langle x_1, x_2, x_3 \rangle + \langle y_1, x_2, x_3 \rangle = \langle x_1, x_2, x_3 \rangle$ .

$$y_2, y_3 \rangle = \langle x_1 + y_1, x_2 + y_2, x_3 + y_3 \rangle.$$
  $0_{\prod \langle E, F, G \rangle} = \langle 0_E, 0_F, 0_G \rangle.$   $\|\langle x_1, x_2, x_3 \rangle\| = \sqrt{\|x_1\|^2 + \|x_2\|^2 + \|x_3\|^2}.$  Consider  $w$  being an element of  $\mathcal{R}^3$  such that  $w = \langle \|x_1\|, \|x_2\|, \|x_3\| \rangle$  and  $\|\langle x_1, x_2, x_3 \rangle\| = |w|.$ 

Let  $E,\,F,\,G$  be complete real normed spaces. Let us note that  $E\times F\times G$  is complete.

ACKNOWLEDGEMENT: The authors would also like to express our gratitude to Prof. Yasunari Shidama for his support and encouragement.

### References

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8-17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81–85, 2007. doi:10.2478/v10037-007-0010-y.
- [4] Artur Korniłowicz. Compactness of the bounded closed subsets of  $\mathcal{E}_{\mathrm{T}}^2$ . Formalized Mathematics, 8(1):61–68, 1999.
- Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51–59, 2011. doi:10.2478/v10037-011-0009-2.
- [6] Michael Read and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics). Academic Press, 1980.
- [7] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted November 30, 2021