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Abstract—A class of continuous predefined-time controllers
is designed in this paper. The control structure is built
upon a class of comparison functions, whose features allow
to analyze the predefined-time convergence property in the
Lyapunov framework. Rather than providing exact predefined-
time convergence to the equilibrium point, the proposed
controller guarantees uniform predefined-time ultimate predefined
boundedness of the solutions, i.e., the capability of setting an
arbitrarily desired ultimate bound and an arbitrarily desired
convergence time, through an appropriate selection of the
controller parameters. Moreover, for a class of second-order
systems, an additional analysis is carried out to show finite-gain
input-output stability. The reliability of the proposed scheme is
highlighted through numerical simulations in a representative
example.

Index Terms—Predefined-time convergence; Lyapunov-based
methods; Robust control; Sliding-mode control

I. INTRODUCTION

Several industrial applications like batch processes control
and monitoring, faults isolation, among others, demand the
satisfaction of time-response constraints to satisfy safety,
regulatory or quality standards. To cope with this time-response
requirements, the notion of finite-time stability has attracted a
lot of attention during the last 50 years [1]–[4]. On the same
line, the recent fixed-time stability concept, which is a stronger
form of finite-time stability since it allows to eliminate the
lack of boundedness of the settling-time function, has given
solution to some sophisticated control problems [5]–[8].

Even though fixed-time stability is per se a significant
conceptual advantage over finite-time stability for some
applications, in turn, it presents the difficulty that is not
straightforward to tune the system parameters to achieve a
desired fixed time. To overcome this drawback, a class of
dynamical systems that exhibit the property of predefined-time
stability has been studied within the last six years [9].

Predefined-time stability is a promising and useful property,
which brings advanced stability features to the closed-loop
system response, such that, after an arbitrary user-prescribed
time, the system state is stabilized, providing a high degree of
certainty on the system behaviour. Due to its exciting features,
several predefined-time control schemes have been developed
for first-order systems [9], [10], for second-order systems [11],
[12], for systems subject to nonholonomic constraints [13], for
robotic manipulators [14], [15], among others.

All the mentioned works on predefined-time controller design
make use of discontinuous high-frequency control terms to deal

with nonvanishing disturbances and guaranteeing predefined-
time exact convergence to the equilibrium point. However, such
discontinuous control terms might deteriorate the components
of a real physical system due to high-frequency oscillations,
or might even be impossible to implement due to a limited
actuator response. In this scenario, one may opt for sacrificing
the exact convergence in order to obtain a continuous controller.

In this sense, this paper is devoted to the design of
continuous predefined-time controllers which guarantee the
uniform predefined-time ultimate predefined boundedness of
the solutions, i.e., the capability of setting an arbitrarily desired
ultimate bound and an arbitrarily desired convergence time,
through an appropriate selection of the controller parameters.
The control structure is built upon a novel class of comparison
function, whose features allow to analyze the predefined-time
convergence property in the Lyapunov framework. Moreover,
for a class of second-order systems, an additional analysis
is carried out to show finite-gain input-output stability. The
behaviour of the proposed class of controllers is illustrated
through a representative numerical simulation example of a
two-link planar manipulator.

II. PRELIMINARIES

A. Notation

We use the following notation throughout the paper: R stands
for the set of real numbers; moreover R+ = {x ∈ R : x > 0},
R≥0 = {x ∈ R : x ≥ 0} and R̄+ = R+ ∪ {∞}. For
x ∈ Rn, xT denotes its transpose, ||x|| =

√
xTx its norm,

and Br(x) = {y ∈ Rn : ||y − x|| < r} its r−vicinity. The
function x → bxeh is defined as bxe = |x|hsign(x) for any
x ∈ R if h > 0, and for any x ∈ R \ {0} if h ≤ 0. θ′(z) = dθ

dz
denotes the first derivative of the function θ : R→ R.

B. A vector power function and some properties

The following is a vector extension of the odd power function
bxeh.

Definition 1 ( [12]). Let h ≥ 0. For x ∈ Rn \ {0}, define the
function

|bxe|h =
x

||x||1−h
.

Since limx→0 |bxe|h = 0 for h > 0, it is considered that
|b0e|h = 0. Therefore, the function |bxe|h is continuous for
0 < h < 1 and discontinuous in x = 0 for h = 0.



Proposition 1 ( [12]). Let ε > 0. The continuous
approximation of the unit vector complies to:

(i) x
||x||+ε = |bxe|0 − ε|bxe|0

||x||+ε .

For h > 0, the function |bxe|h fulfills:
(ii) |b−xe|h = − |bxe|h;

(iii) |bxe|0 = x
||x|| , for x 6= 0;

(iv) |bxe|1 = |bxe| = x.
Furthermore, for h1, h2 ∈ R, it follows:
(v) |bxe|h1 ||x||h2 = ||x||h1 |bxe|h2 = |bxe|h1+h2 , and

(vi)
∣∣⌊xT ⌉∣∣h1 |bxe|h2 = ||x||h1+h2 .

C. On predefined-time ultimate boundedness

Consider the following system:

ẋ = f(t,x;ρ), x(t0) = x0, t0 ∈ R≥0 (1)

where x ∈ Rn is the system state, the vector ρ ∈ Rl stands for
the tunable parameters of (1). The function f : R≥0 × Rn →
Rn is continuous, and such that the solutions of (1) exist
and are unique. Thus, Φ(t,x0, t0) denotes the solution of (1)
starting from x0 ∈ Rn at t = t0.
Remark 1. Working with parametrized system (1) means we
consider a control system

ẋ = g(t,x,u), (2)

where the input u ∈ Rm is specified as a feedback function of
the state x with tunable control parameters ρ, i.e., u = φ(x;ρ),
with φ : Rn → Rm. Replacing u = φ(x;ρ) in (2) eliminates
u and yields the parametrized autonomous dynamics (1), with
f(t,x;ρ) := g(t,x,φ(x;ρ)).

When dealing with systems subject to nonvanishing
perturbations, we do not know if the origin is an equilibrium
point of (1) (i.e., if f(t,0;ρ) = 0). Hence, we cannot study the
stability of the origin as an equilibrium point of (1). Instead, we
may expect that if the perturbations are “small”, the solutions
of (1) will also be “small” eventually. This notion is formally
defined below.

Definition 2 (Uniform ultimate boundedness [16]). The
solutions of (1) are said to be uniformly ultimately bounded
if there exists b0 ∈ R+, and for every a ∈ R+ there is some
T = T (a) such that

||x0|| < a⇒ ||Φ(t,x0, t0)|| ≤ b0, ∀, t ≥ t0 + T.

Example 1 ( [16]). Consider the scalar system

ẋ = −x+ δ sin t, x(t0) = a, a > δ > 0,

where x ∈ R is the system state. One can easily see that this
system does not have any equilibrium points.

Moreover, if one takes some b0 ∈ (δ, a), it can be shown
(see [16]) that

|Φ(t, a, t0)| ≤ b0, ∀t ≥ t0 + T (a)

where T (a) = ln a−δ
b0−δ . This is, the solutions are uniformly

ultimately bounded.

Having Definition 2 and Example 1 at hand, some issues
can be noticed:
• in general, the bound b0 of the solutions is implicitly

restricted by the bound of the perturbation terms;
• often, the time T (a) grows with no upper bound as the

number a, which is related with the norm of the initial
condition, grows.

On the other hand, from a controller designer point of view,
it would be desirable to be able to:
(i) assign an arbitrary bound b to the solutions of the system,

and
(ii) set an arbitrary upper bound Tc for the time when the

solutions must enter to the region bounded by b;
all of this through an appropriate selection of the tunable
parameters ρ of system (1).

Hence, to distinguish the case when the desirable properties
(i) and (ii) are met, the notion of uniform predefined-time
ultimate predefined boundedness is formally defined below.

Definition 3 (Uniform predefined-time ultimate predefined
boundedness (UPTUPB)). The solutions of (1) is said to
be uniformly predefined-time ultimately bounded with
predefined bound if for any Tc, b ∈ R+, there exists some
ρ = ρ(Tc, b) ∈ Rl such that

||Φ(t,x0, t0)|| ≤ b, ∀t ≥ t0 + Tc,

for any x0 ∈ Rn.

D. Class K1 and class W functions

Inspired in the class-K functions in [17, Definition 1] and [16,
Definition 4.2], the class-K1 functions are defined as follows:

Definition 4 (K1 functions). A scalar continuous function
κ : R≥0 → [0, 1) is said to belong to class K1, denoted as
κ ∈ K1, if it is strictly increasing, κ(0) = 0 and κ(r)→ 1 as
r →∞.

Remark 2 (Invertibility of K1 functions). K1 functions are
bijective. In fact, let κ ∈ K1:
• it is injective (one-to-one) because it is continuous and

strictly increasing;
• its image is κ(R≥0) = [0, 1), thus it is surjective (onto).

Thus, since every class K1 function is bijective, their inverses
exist. Moreover, since K1 functions are increasing, they are
homeomorphisms.

The next lemma states some useful properties of class-K∞
and class-K1 functions, which will be used in the next section.

Lemma 1. Let α ∈ K∞ (see [17, Definition 1]) and
κ1, κ2 ∈ K1. Then, κ1 ◦ α ∈ K1, and κ−11 ◦ κ2 ∈ K∞.

Proof. The composition of increasing functions is increasing.
Moreover, note that (κ1 ◦ α)(0) = κ1(α(0)) = κ1(0) = 0 and
(κ−11 ◦ κ2)(0) = κ−11 (κ2(0)) = κ−11 (0) = 0. Finally, since κ1
is an homeomorphism,

lim
r→∞

(κ1 ◦ α)(r) = κ1

(
lim
r→∞

α(r)
)

= 1,



and

lim
r→∞

(κ−11 ◦ κ2)(r) = κ−11

(
lim
r→∞

κ2(r)
)

=∞.

Often, control design tasks require functions to meet certain
properties like continuity, differentiability or some smoothness
property. In this sense, class W ⊂ K1 are defined as follows:

Definition 5. A scalar continuous function ω : R≥0 → [0, 1)
is said to belong to class W , denoted as ω ∈ W , if ω ∈ K1 is
differentiable in R+, ω′(r) > 0 for r > 0 and ω′(0) ∈ R̄+.

Example 2. Let 0 < q < 1. Some examples of class W
functions are:
(i) ω(r) = 1− exp(−rq);

(ii) ω(r) = 2
π arctan(rq); and

(iii) ω(r) = rq

rq+α , with α > 0.

III. LYAPUNOV ANALYSIS FOR UPTUPB

Lyapunov analysis can be used to show UPTUPB of the
solutions of (1), even if there is no equilibrium point at the
origin. Sufficient conditions are stated in the following theorem:

Theorem 1. Let V : Rn → R≥0 be a continuous, positive
definite and radially unbounded function and ω ∈ W . If for
any Tc, µ ∈ R+, there exists some ρ ∈ Rl, such that the
time-derivative of V along the trajectories of (1) satisfies

V̇ (x) ≤ − 1

Tc

1

ω′(V (x))
, for ||x|| ≥ µ, (3)

then, for any x0 ∈ Rn the solution Φ(t,x0, t0) of (1) satisfies

||Φ(t,x0, t0)|| ≤ b = κ−11 (κ2(µ)), ∀t ≥ t0 + Tc,

where κ1, κ2 ∈ K1. This is, the solutions of (1) are uniformly
predefined-time ultimately bounded with predefined bound.

Moreover, if V (x) = α(||x||), with α ∈ K∞, then b = µ in
the above inequality.

Proof. Let Tc, µ ∈ R+. Then, there exists ρ ∈ Rl such that (3)
holds. Since V is continuous, positive definite and radially
unbounded, there exist α1, α2 ∈ K∞ such that [16, Lemma
4.3]:

α1(||x||) ≤ V (x) ≤ α2(||x||). (4)

Now, consider the function W (x) = ω(V (x)). From (3),
the time-derivative of W along the trajectories of (1) satisfies

Ẇ (x) ≤ − 1

Tc
, for ||x|| ≥ µ. (5)

On the other hand, from (4), the function W satisfies
κ1(||x||) ≤ W (x) ≤ κ2(||x||), where κi = ω ◦ αi ∈ K1

for i = 1, 2 (see Lemma 1).
Note that ||x|| < µ ⇐⇒ κ2(||x||) < κ2(µ) ⇒

W (x) < κ2(µ), i.e. the set {x ∈ Rn : ||x|| < µ} ⊆
{x ∈ Rn : W (x) < κ2(µ)}, or equivalently
{x ∈ Rn : W (x) ≥ κ2(µ)} ⊆ {x ∈ Rn : ||x|| ≥ µ}. Hence,
inequality (5) holds for W (x) ≥ κ2(µ). This implies that
the set {x ∈ Rn : W (x) ≤ κ2(µ)} is positively invariant,

since the derivative Ẇ (x) is negative in its boundary
{x ∈ Rn : W (x) = κ2(µ)}.

Now, we show that all trajectories starting in the
set {x ∈ Rn : W (x) ≥ κ2(µ)}, must enter the set
{x ∈ Rn : W (x) ≤ κ2(µ)} within at most Tc time units.
Let Φ(t,x0, t0), with x0 ∈ {x ∈ Rn : W (x) ≥ κ2(µ)},
be a solution of (1). From (5) and using the comparison
lemma [16], it follows that

W (Φ(t,x0, t0)) ≤W (x0)− t− t0
Tc

,

for t ∈ [t0, t0 + Tc(W (x0)− κ2(µ))]. Hence,
W (Φ(t,x0, t0)) ≤ κ2(µ) for all t ≥ t0 +Tc(W (x0)−κ2(µ)),
and consequently for all t ≥ Tc.

Furthermore, note that W (x) ≤ κ2(µ) ⇒ κ1(||x||) ≤
κ2(µ) ⇐⇒ ||x|| < κ−11 (κ2(µ)). Hence, ||Φ(t,x0, t0)|| ≤
κ−11 (κ2(µ)), ∀t ≥ t0 + Tc.

Moreover, if V (x) = α(||x||), then α1 = α2 = α, and
κ1 = κ2 = ω, and the result follows.

Theorem 1 is of paramount importance since it allows to
analyze and show the UPTUPB property without the need of
finding the explicit solution. Moreover, it will be very useful
for designing a class of continuous predefined-time controllers
in the next section.

IV. CONTINUOUS PREDEFINED-TIME CONTROLLERS

A. Problem statement
Consider the following affine control system:

ẏ = g(t,y) +B(t,y) (u+ δ(t,y)) , y(t0) = y0, (6)

where y ∈ Rn is the system state, u ∈ Rm is the control
input, δ : R≥0 × Rn → Rn is a matched disturbance vector
that includes plant parameter variations and external unknown
perturbations, and the functions g : R≥0 × Rn → Rn and
B : R≥0 × Rn → Rn×m are continuous and such that
rank B(t,y) = m for all (t,y) ∈ R≥0 × Rn.

Objective (O): to design a control input u such that the
closed-loop solutions of (6) reach a vicinity with arbitrary
desired radius b ∈ R+ of the manifold

x(t,y) = 0, (7)

in an arbitrarily selected time Tc ∈ R+ and remain there for all
t ≥ Tc. The mapping x : R≥0 × Rn → Rm in (7) is assumed
to be smooth.

To meet objective (O), consider the time derivative of
x(t,y):

ẋ = σ(t,y)g(t,y) + σ(t,y)B(t,y) (u+ δ(t,y)) +

∂x(t,y)

∂t
, (8)

where σ(t,y) = ∂x(t,y)
∂y . Then, assuming that x(t,y) is

selected such that rank [σ(t,y)B(t,y)] = m, for all (t,y) ∈
R≥0 × Rn, the control input u can be chosen as

u = −[σ(t,y)B(t,y)]−1
[
σ(t,y)g(t,y) +

∂x(t,y)

∂t
− v

]
,

(9)



where v ∈ Rm is a virtual control input to be designed.
Substituting (9) in (8), results in

ẋ = v + ∆(t,y), x(t0,y0) = x0, (10)

where ∆(t,y) = σ(t,y)B(t,y)δ(t,y), is assumed to be such
that ||∆(t,y)|| ≤ δ0+δ1 ||x||p, with δ0, δ1 ∈ R≥0 and p ∈ R+

are known constants.

Remark 3. In the following, Φy(t,y0, t0) will make reference
to a solution of system (6), whereas Φx(t,y0, t0) will make
reference to a solution of system (10). We include indices x
and y to avoid a possible confusion, since we will be working
with either sytems (6) and (10) and their solutions.

After the above analysis, objective (O) can be re-stated
formally as: to design a virtual control input v such that the
solutions of (10) satisfy the UPTUPB property.

B. Proposed solution

The design of the virtual control input v is summarized in
the following theorem:

Theorem 2. Consider system (10). If the virtual control input
is selected as

v = − 1

ρ1

|bxe|0

ω′(||x||)
− ρ2

x

||x||+ ρ3
− ρ4 |bxe|p , (11)

with ω ∈ W , ρ1 > 0, ρ2 > δ0, ρ3 > 0, and ρ4 ≥ δ1, then
the solutions of the closed-loop system (10)-(11) are uniformly
predefined-time ultimately bounded with predefined bound. In
fact, for any Tc, b ∈ R+, there exist some ρ1 > 0, ρ2 > δ0,
ρ3 > 0, and ρ4 ≥ δ1, such that the solutions Φx(t,x0, t0)
of (10) satisfy ||Φx(t,x0, t0)|| ≤ b, ∀t ≥ t0 + Tc, with
ρ3δ0
δ0−ρ2 = b and ρ1 = Tc.

Proof. Consider the Lyapunov function candidate V (x) = ||x||
and let Tc, µ ∈ R+. The time-derivative of V along the
solutions of the closed-loop system (10)-(11) satisfies

V̇ (x) =
∣∣⌊xT ⌉∣∣0 [− 1

ρ1

|bxe|0

ω′(||x||)
− ρ2

x

||x||+ ρ3
−

ρ4 |bxe|p + ∆(t,y)

]
≤ − 1

ρ1

1

ω′(V (x))
− ρ2 − ρ2

ρ3
||x||+ ρ3

−

ρ4 ||x||p + ||∆(t,y)||

≤ − 1

ρ1

1

ω′(V (x))
− ρ2 − ρ2

ρ3
||x||+ ρ3

−

ρ4 ||x||p + δ0 + δ1 ||x||p

≤ − 1

ρ1

1

ω′(V (x))
, for ||x|| ≥ ρ3δ0

δ0 − ρ2
.

This is, there exist ρ1 = Tc > 0, and ρ3δ0
δ0−ρ2 = µ such

that V̇ (x) ≤ − 1
Tc

1
ω′(V (x)) , for ||x|| ≥ µ. Hence, noticing that

V (x) = α(||x||) with α(r) = r ∈ K∞ and using Theorem 1,
the result follows.

It is worth to notice that the parameters related to the
predefined ultimate bound b, which are ρ2 and ρ3, are
completely independent from the parameter related to the
predefined convergence time Tc, which is ρ1.
Remark 4. In controller (11), the term ρ2

x
||x||+ρ3 mitigates

the effect of the nonvanishing part of the disturbance, bounded
by δ0, whereas the term ρ4 |bxe|p cancels the effect of the
vanishing part of the disturbance, bounded by δ1 ||x||p. In this
sense, both terms are relevant, but the second term is even
more important because:
• in absence of the first term ρ2

x
||x||+ρ3 , the UPTUPB

property would be lost, but at least the uniform ultimate
boundedness property would be mantained, ensuring some
robustness features;

• however, in absence of the second term ρ4 |bxe|p, the
whole disturbance must be bounded, δ0 + δ1 ||x||p ≤
δ̄, for the controller to maintain robustness properties.
Nevertheless, one can see that for the state far from
the origin the disturbance δ0 + δ1 ||x||p may exceed any
established bound δ̄.

C. Application scenarios
We consider two representative scenarios:
1) Case 1: n = m: In this case, the variable x can be

selected as x(t,y) = y − yd(t). For this selection of x, the
control input (9) has the form

u = −[B(t,y)]−1
[
g(t,y)− ẏd(t)− v

]
. (12)

Hence, applying (12)-(11), the closed-loop solutions
Φy(t,y0, t0) of system (6) comply to ||Φx(t,x0, t0)|| =
||Φy(t,y0, t0)− yd(t)|| ≤ b, for all t ≥ t0 + Tc. This is,
the closed-loop solutions Φy(t,y0, t0) approximately tracks
the desired reference function yd : R≥0 → Rn after the desired
time Tc.

2) Case 2: n = 2m: In this case, we also assume that the
functions g and B in affine control system (6) are

g(t,y) =

[
y2

g2(t,y)

]
and B(t,y) =

[
0m×m
B2(t,y)

]
,

such that system (6) has the particular form

ẏ1 = y2

ẏ2 = g2(t,y) +B2(t,y)(u+ δ(t,y)),
(13)

where y =
[
yT1 yT2

]T ∈ Rn, y1,y2 ∈ Rm, g2 : R≥0×Rn →
Rm, B2 : R≥0 ×Rn → Rm×m and 0m×m is the m×m null
matrix.

For this case, the variable x can be selected as

x(t,y) = y2 − ẏ1,d(t) + ρ0 (y1 − y1,d(t)) , (14)

with ρ0 > 0 a parameter. For this selection of x, the control
input (9) has the form

u = −[B2(t,y)]−1
[
g2(t,y)− ÿ1,d(t)+

ρ0 (y2 − ẏ1,d(t))− v
]
. (15)



Hence, applying (15)-(11), the closed-loop solutions
Φy(t,y0, t0) =

[
Φy1(t,y0, t0)T Φy2(t,y0, t0)T

]T
, with

Φy1,Φy2 ∈ Rm, of system (6) satisfy

||Φx(t,x0, t0)|| =
∣∣∣∣Φy2(t,y0, t0)− ẏ1,d(t)+

ρ0∆Φy1(t,y0, t0)
∣∣∣∣

≤ b, ∀t ≥ t0 + Tc,

(16)

where ∆Φy1(t,y0, t0) = Φy1(t,y0, t0)− y1,d(t).
This behavior induces remarkable robustness properties, as

stated and proved below.

Proposition 2 ( [14]). Considering property (16), the following
holds for the zero-state-response (i.e., ∆Φy1(t0) = 0):

||∆Φy1||L2[t0,t]
≤ β

ρ0
+

b

ρ0

√
t− Tc, ∀t ≥ t0 + Tc,

where ||∆Φy1||L2[t0,t]
=
∫ t
t0
||∆Φy1(τ,y0, t0)|| dτ is the 2-

Lebesgue norm of the vector function ∆Φy1 and β > 0 is a
finite constant.

Proof. First note that Φy2 = Φ̇y1, from (13). Hence, the
solutions Φx and Φy of systems (10) and (6), respectively, are
related as (see (14)) Φx = ∆Φ̇y1 + ρ0∆Φy1.

To analyze the zero-state-response consider ∆Φy1(t0) = 0,
and take Laplace transform at either sides of the above equation.
This yields L{∆Φy1} = G(s)L{Φx}, with G(s) = 1

s+ρ0
.

Hence, using the Parseval Theorem for the system in steady-
state (s = jw) [16], ||∆Φy1||L2[t0,t]

≤ ||G(·)||∞ ||Φx||L2[t0,t]
,

where ||G(·)||∞ = supw∈R |G(jw)| = 1
ρ0

. Consequently, for
t ≥ Tc + t0 and using (16)

||∆Φy1||L2[t0,t]
≤ 1

ρ0

(∫ t

t0

||Φx(τ)||2 dτ
)1/2

≤ 1

ρ0

(∫ Tc

t0

||Φx(τ)||2 dτ

)1/2

+

1

ρ0

(∫ t

Tc

b2dς

)1/2

=
β

ρ0
+

b

ρ0

√
t− Tc

with β :=
(∫ Tc

t0
||Φx(τ)||2 dτ

)1/2
> 0 finite.

Basically, Proposition 2 says that controller (13)-(11) induces
finite-gain input-output stability of the tracking error ∆Φy1

with respect to bounded disturbances, where the sensibility and
performance of the tracking scheme can be tuned according to
the system requirements and hardware capabilities, by means
of the control parameters.

V. SIMULATION EXAMPLE

Consider a planar, two-link manipulator with revolute joints
as the one exposed in [18]. The longitudes and masses of
the links are l1 = 0.15 m, l2 = 0.07 m, m1 = 1.5 Kg and

m2 = 0.7 Kg. The manipulator is operated in the plane, such
that the gravity acts along the z−axis.

The model of the manipulator obtained via the Euler-
Lagrange formalism is

H(q)q̈ +C(q, q̇)q̇ = τ + d, (17)

where q, q̇, q̈ ∈ R2 are the (angular) position, (angular) velocity
and (angular) acceleration in the joint space, H(q) ∈ R2×2

is the (symmetric positive definite) inertia matrix, C(q, q̇) ∈
R2×2 is the Coriolis and centrifugal effects matrix, τ ∈ R2 is
the vector of control inputs and d ∈ R2 is a vector of unknown
but bounded disturbances.

Defining y1 = q, y2 = q̇ and u = τ , the model (17) can
be rewritten as (13), with g2(t,y) = −H(y1)−1C(y1,y2)y2,
B2(t,y) = H(y1)−1 and δ(t,y) = d. With the numerical
values in this example, ||B2(t,y)|| ≤ 600.

The purpose of this simulation example is to illustrate
the behavior of the controller (15)-(11), with ω(r) =
2
π arctan(r1/2). To this end, the disturbance vector, caused
by dry and viscous friction phenomena, has the form d =
0.2 + 0.1 sin(q̇). Taking this into account, the term ∆(t,y)
is uniformly bounded by ||∆(t,y)|| ≤ δ0 + δ1 ||x||, with
δ0 = 0.2× 600 = 120 and δ1 = 0.1× 600 = 60. The desired
reference signal is yd =

[
π
2 t− π − π

2

]T
.

The solutions Φx of system (10) must reach a vicinity of
radius b = 0.01 of the origin in at most Tc = 1 s. Hence, the
controller parameters are set to ρ0 = 10, ρ1 = 1, ρ2 = 240,
ρ3 = 0.01, and ρ4 = 60.

The simulations are conducted using the Euler integration
method, with a time step size of 1× 10−4.

The performance of the two-link manipulator system (17)
closed-loop by (15)-(11) is shown in Figs. 1-4. Fig. 1 shows
that the solutions Φx satisfy the UPTUPB property with the
selected bound b = 0.01 and time Tc = 1. The tracking of the
angular positions can be appreciated in Fig. 2, and the tracking
in real world coordinates can be seen in Fig. 3. Finally, the
continuous control torques are shown in Fig. 4.
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0 1 2 3 4
t

0.000

0.025
b=0.01

Fig. 1. Solutions Φx of (10) for the two-link manipulator system. The
UPTUPB property is satisfied.

VI. CONCLUSIONS

The design of a class of continuous predefined-time
controllers was carried out in this paper. The uniform predefined-
time ultimate predefined boundedness of the closed-loop
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Fig. 2. Tracking of the joint angular positions.
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Fig. 3. Tracking in cartesian coordinates. The end effector follows a
circumference with an approximate radius of 0.17m

solutions was demonstrated through a suitable Lyapunov-like
framework, which was also studied in this document. It was
also shown that for a class of second-order systems, the finite-
gain input-output stability property is achieved by the proposed
controller. Finally, all the mentioned features were highlighted
through a representative numerical simulation example.
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