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Abstract—In this paper, the one leak insulation issue in a
water pipeline is addressed through a Time-Delayed Neural
Network. This scheme is an alternative to better computing
performance since conventional model-based methods usually
have high workloads due to the complexity of the mathematical
model of the pipeline compared to the speed of the dynamics of
leakage. Besides, the design of the neural network could offer
an improved time efficiency by using the parallel architecture of
some electronic systems such as the FPGA.

The current proposal is based on a scheme in which a
mathematical model of the pipeline is used to generate synthetic
training data. These training data are obtained using different
leak sizes and leak positions and are also corrupted by random
noise in order to emulate the actual data pipe. Finally, to show
the potential of this method, some results are presented using
real-noise databases from a pipeline prototype. Finally, only the
flow and pressure sensor at both ends of the aqueducts are used
for procedure following the classic leak diagnosis hypothesis.

Index Terms—Artificial Neural Network, Pipelines, Leak
Isolation, Dynamic Systems.

I. INTRODUCTION

Pipelines are widely used for the distribution of liquids in
many areas: the petroleum industry, drinking water distribution
systems, mining, to name but a few. For this reason, the design
of techniques and algorithms for detecting and isolating leaks
in real-time is an active study issue, given the undesirable
effects of significant losses of water or oil. For instance, in
recent years, the issue of illegal extraction of oil derivatives
such as diesel and gasoline from distribution pipelines has
increased, leading in significant economic losses for the
Mexican oil company (PEMEX).

Leaks can be detected and located using external equipment
such as acoustic devices, electronic audio sticks, tracer
gas methods, infrared thermography, ultrasonic methods,
electromagnetic techniques, among others. These external
techniques are useful, but generally, involve specialized users,
and it is also necessary to use such sophisticated hardware
throughout the pipeline and sometimes even to empty it.

An alternative technique for detecting leaks is using
computing algorithms that apply a mathematical pipeline
model to predict the size and place of the leak, i.e., a model-
based leak detection system. In general, these methods use
the measurement of the flow and pressure heads upstream and
downstream of the pipe.

Several works on model-based methods have been suggested
to reduce economic losses and environmental pollution. It
is appropriate to mention [1] as a pioneer in this field. In
that reference, a discrete model of water dynamics is used
to predict the flow and the head at each interior point of
discretization. Thus, an estimate of the coefficient of friction
can also be obtained. As a standard hypothesis, the steady-
state head and flow conditions at the ends of the pipe are used
to estimate the leakage intensity and the leakage location.

More recent works can be mentioned. Notably, in [2], a
leak detection an isolation algorithm based on [1] has been
implemented and tested with accurate results and under steady-
state conditions. In [3], the authors propose an approach where
the leak location is done by a hybrid technique based on real-
time transient modeling method and negative pressure wave.
The work presents successful results in locating gas pipeline
leak. The work [4] deals with the leak isolation problem in
plastic pipelines; for this case, the proposed algorithm uses
a robust exact differentiation method for state variables and
leak parameters. As the main feature of the previous results,
the authors improve the leak detection accuracy taking the
temperature variation into account. The reference [5] shows
a detection method for a pressurized liquid ammonia pipeline
with a leak. Here, the proposed approach consists of a leak
indicator together with the one-dimensional steady-state flow
model in order to detect the leak. Experiments on different leak
positions and ratios from liquid R22 and ammonia pipelines
are carried out to validate this method.

Although these works have been designed and tested either
in pilot plants or in a simulation setting, the dynamics of
the pipeline is generally fast, making the sample time to be
smaller and therefore increasing the need for complicated and
costly computing devices. In order to prevent this scenario,
this note proposes a leak diagnosis system based on a neural
network since these structures are naturally appropriate to
specific electronic devices such as the FPGA. This suitable
hardware is widely employed to accelerate software such as in
the field of artificial intelligence (training and implementation
of neural networks and machine learning algorithms) and
massively parallel computing applications, [6].

The paper continues as follows: Section II provides the
neural network fundamentals. Section III describes the pipeline



mathematical model in order to generate the synthetic data
useful to train the net. The proposed neural network scheme
is presented in Section IV. Section V simulation results are
presented an discussed. Finally, Section VI concludes the
paper.

II. PIPELINE MATHEMATICAL MODEL

This section is organized into two parts. The first
part describes a couple of Partial Differential Equations
and the corresponding leak model, which describes the
pipeline dynamics. In the second one, a finite-dimensional
approximation is obtained from a space discretization, useful
to apply a model-based leak detection algorithm.

A. Pipeline Partial Differential Equation

Under the following assumptions: a straight-horizontal pipe
with constant cross-section area and without fittings, fluid and
wall duct being slightly deformable, convective changes in
velocity being neglected and the fluid density being constant,
then the fluid transient response can be described by a couple
of quasilinear hyperbolic partial differential equations (PDE’s)
as [7]:
Momentum Equation

∂Q(z, t)

∂t
+ gA

∂H(z, t)

∂z
+ µQ(z, t) |Q(z, t)| = 0 (1)

Continuity Equation

∂H(z, t)

∂t
+

b2

gA

∂Q(z, t)

∂z
= 0 (2)

where Q is the flow rate [m3/s], H is the pressure head [m],
z the length coordinate [m], t the time coordinate [s], g the
gravity acceleration [m/s2], A the cross-section area [m2],
b the pressure wave speed in the fluid [m/s], µ = f/2DA,
with D the inner diameter [m] and f the friction factor.

Leak model: One leak can arbitrarily appear at any position
z1 at any time tl > 0 (see Fig. 1) and it can be modeled as
follows [7]:

QL = λ
√
HL (3)

where the constant λ is a function of the orifice area and the
discharge coefficient [m5/2/s]; QL is the flow through the leak
and HL is the head pressure at the leak point [7].

Fig. 1. Discretization of the pipeline with a leak QL

This leak produces a discontinuity on the pipe changing the
mathematical model (1) and (2). Furthermore, due to the law
of mass conservation, QL must satisfy the next relation:

Qb = Qa +QL (4)

where Qb and Qa are the flows in an infinitesimal length
before and after of the leak, respectively.

B. Spatial Discretization of the Modeling Equations

In order to obtain a finite dimensional approximation of
from (1) and (2), those PDE’s are discretized with respect to
the spatial variable z, as in [8], [9], by using the following
relationships:

∂H(zi, t)

∂z
w
Hi+1 −Hi

∆zi
∀i = 1, · · · , n (5)

∂Q(zi−1, t)

∂z
w
Qi −Qi−1

∆zi−1
∀i = 2, · · · , n (6)

where Hi, Qi stand for H(zi, t) Q(zi, t), and ∆zi = zi+1−zi.
Assuming only two partitions in the pipeline as shown in Fig.
1, ∆zj (j = 1, 2) becomes the distance from the upstream
end until the leak position and from the leak position until
to the downstream end of the pipe, respectively. Notice that
∆z2 = L−∆z1 (for simplicity, ∆z1 = ∆z, so ∆z2 = L−∆z)
where L is the total length of the pipeline. The leak position is
assumed to be different from 0 and L in this description (i.e.
the leak position is neither at the beginning nor at the end of
the duct). Applying approximations (5) and (6) to equations
(1) and (2) together with (3) and (4), we get: Q̇1

Ḣ2

Q̇2

 =


−gA
∆z (H2 − u1)− f(Q1)

2DA Q1|Q1|
−b2

gA∆z

(
Q2 −Q1 + λ

√
H2

)
−gA
L−∆z (u2 −H2)− f(Q2)

2DA Q2|Q2|

 (7)

Here, the input vector is u = [Hin Hout]
T = [u1 u2]T , and

the output vector is y = [Q1 Q2]T = [Qin Qout]
T .

III. NEURAL NETWORK FUNDAMENTALS

In this section, a brief review of Time Delayed Neural
Network (TDNN) is presented as well as a short discussion
about the training process of the net.

A. Time Delayed Neural Network

An Artificial Neural Network can be defined as intercon-
nected processors massively (neurons), operate in parallel and
learn from their own experience [10]. Such interconnection is
known as “the network architecture,” and it is associated with
the learning process used to train the net.

The TDNN arise as an extension of Static Neural Networks
which are designed to explicitly includes time relationship
between input-output mappings. Specifically, in a TDNN, a
tapped delay line is given in the input followed by a multilayer
perceptron. Figure 2, shows the first hidden layer structure of
a TDNN (for more information see [11]).
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Fig. 2. Hidden layer structure of the Multilayer Perceptron

The TDNN has demonstrated excellent performance for
classifying a temporal pattern that consists of a sequence of
fixed dimensional feature vector such as phonemes [12] and
acoustic modeling [13]. For this reason, a neural network with
this architecture is profiled as a promising candidate to solve
the leak diagnosis problem.

B. Supervised Training Frame Work

Achieving a desirable set of synaptic weights for a given
predefined network architecture requires a training process.
That process is generally based on an optimization scheme
to adjust the network parameters, mainly the weights, to a
set of input-to-output to be matched by the neural network
model; namely, a supervised learning scheme. The well-
known backpropagation algorithm based on a gradient descent
technique [11] has been widely applied for general neural
network training.

Like the quasi-Newton methods, the Levenberg-Marquardt
algorithm was designed to approach second-order training
speed without having to compute the Hessian matrix. When
the performance function has the form of a sum of squares (as
is typical in training feedforward networks), then the Hessian
matrix can be approximated as H = JT J and the gradient
can be computed as g = JT e, where J is the Jacobian
matrix that contains first derivatives of the network errors
with respect to the weights and biases, and e is a vector of
network errors. The Jacobian matrix can be computed through
a standard backpropagation technique (see [14]) that is much
less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approxima-
tion to the Hessian matrix in the following Newton-like update
(more information could be found in [11].):

wk+1 = wk −
[
JT J + ϕI

]−1
JT e (8)

IV. PROPOSED NEURAL NETWORK SCHEME

This section presents the proposed leak isolation process
(i.e., the task of determining the leak location ∆z). It is
carried out by the design of a TDNN described in section III.
400 neurons constitute the NN architecture in the input layer,
100 neurons in the hidden layer (with the logistic activation

function) and, finally, one neuron in the output layer (with
purelin activation function).

The 400 input layer is due to each input (remember that
the net inputs are the inlet and outlet flows and pressures -
Qin, Qout, Hin and Hout-) has 100 delays per inputs (a time
window of 0.3085 seconds, since the sampling time is the
3.085× 10−3 milliseconds).

A. Training the TDNN

Due to the difficulty in obtaining training data from a
real pipe (it is technically impossible to generate holes along
the whole pipe), the authors propose to generate synthetic
data directly obtained from the pipeline mathematical model,
equation (7). Such training data was generated as follows: The
pipeline was divided into 40 sections equally distributed, 40
sections of length. The first section at a distance of L/40,
the second of 2L/40, until covering the whole pipeline, this
division length is chosen arbitrarily by the designer. Then,
the leak magnitude search space was selected such that the
maximum value, λmax, induce a leak 10% of the nominal
flow. A leak bigger than this percent is considered as a failure
(a catastrophic breakdown of the systems ability to perform
a required function under specified operating condition [15])
and this topic is beyond the scope of this paper. In the same
way, the Search Space was divided in 40 section equally
separated, so, a vector of the form [λmax/40 2λmax/40 · · · ].
Now, the cross product between fictitious hole positions and
the vector of leak size, yield 1600 training data, enough to
obtain satisfactory results.

Finally, TDNN was trained with the well-known Levenberg-
Marquardt algorithm discussed in Section III-B. In order to
find an adequate number of hidden layers, the net is trained
varying its number until 110 hidden layers are reached. Figure
3 shows the overall accuracy of each network. From this
figure, we can see that having less than 70 hidden layers
(i.e., a shallow neural network) is not very helpful. The most
substantial improvement is obtained when 100 neurons to the
network hidden layer are added, and adding more neurons do
not have a significant impact on the accuracy of the network.

Fig. 3. Overall fault detection accuracy of neural networks with different
number of neurons in the hidden layer



B. Simulation Results

In order to test the proposed approach, the pilot water
pipeline designed at the CINVESTAV in Guadalajara, Mexico,
was considered. The pilot pipeline is equipped with two water-
flow (FT) and two pressure-head (PT) sensors at inlet and
outlet of the pipeline, a 5 HP centrifugal pump connected to
a variable-frequency driver fixed at 50 Hz, and three valves to
emulate the effect of a leak. Fig. 4 below depicts a schematic
diagram of the pipeline prototype (more information can be
found in [2]).

Fig. 4. Schematic diagram of the pipeline prototype

The main parameters of the pipeline system are shown in
Table I

TABLE I
PIPELINE PROTOTYPE PARAMETERS

Parameter Symbol Value
Length between sensors L 105.21 m
Internal diameter D 6.54 × 10−2 m
Friction factor f 2.062 × 10−2

Gravity acceleration g 9.81 m/s2

Pressure wave speed b 1435 m/s
Valve 1 distance ∆z1 30.92 m
Valve 2 distance ∆z2 43.64 m
Valve 3 distance ∆z3 62.99 m

Ten simulation tests were carried out to validate the
performance of the net. The scenario of each experiment
is as follows. The mathematical pipeline model (7) serves
to generate the synthetic data (The net inputs). When the
simulation starts, λ is equal to zero (since the pipeline is
no leaking) and ∆z = L/2 is fixed arbitrarily (the initial
condition of the system). The initial condition of the rest of
the states, Q1, H2 and Q3, were chosen such that the system
is in steady-state conditions. Table II shows such values.

TABLE II
INITIAL CONDITION OF THE MODEL

Parameter Symbol Value
Pressure Head upstream end Hin 20.74;m
Pressure Head downstream end Hout 10.56;m
Inflow Qin 9.00 × 10−3 m3/s
Outflow Qout 9.00 × 10−3 m3/s
Leak Pressure Head H2 15.41 m

Once the experiment begins, a leak was induced at 20
seconds. The position of the leak for each test are ∆z1 =
10 m, ∆z2 = 20 m, ∆z3 = 30 m, ∆z4 = 40 m,
∆z5 = 50 m, ∆z6 = 60 m, ∆z7 = 70 m, ∆z8 = 80 m,
∆z9 = 90 m and ∆z10 = 100 m.

Random noise was added to the system input to check
the algorithm robustness. Figure 5 shows the neural network
prediction expected values for the leak positions. As can be
seen, in all cases, the leak positions were well estimated,
despite the noise in the input measurements. It is essential
to point out that the prediction error increases when the leak
is near the ends of the pipeline. The maximum gap is around
three meters, less than 3% of the whole pipe; this is a very
acceptable error in this sort of problems regarding the pipeline
length and the fact that he input signals are corrupted by noise.

C. Real Time Experimental Results

In this section, the proposed LDI methodology is evaluated
off-line by using some database coming from the pilot
pipeline building at CINVESTAV previously mentioned. Three
experiments were carried out on three different databases in
order to assess the effectiveness of the method. The experiment
starts in a free-leak condition and at time tl ≈ 40 s a
leak is induced by opening the valve 1. The neural network
start once the leak is detected i.e. |Qin − Qout| > δ (
δ = 1.55 × 10−4 m3/s is chosen as the detection threshold
which was selected considering the noise variance of the flow
rate measurements). The Signal-to-noise Ratio or SNR (the
ratio of the signal power to the background noiseSNR) of
each input and output signal are shown in table III. The
SNR was calculated as the ratio of the signal power to the
background noise [16]:

SNR =
E
[
s2
]

σ2

where E [•] refers to the expected value and σ stands for the
standard deviation of the noisy signal.

TABLE III
SIGNAL-TO-NOISE RATION OF THE INPUT AND OUTPUT SIGNALS

Variable SNR
Hin 2.008 × 101

Hout 6.689 × 101

Qin 1.338 × 102

Hout 1.432 × 102



Figures 6 and 7 depicts the evolution of the neural network
inputs (upstream and downstream pressure head and flow
rate, respectively). The results of the LDI scheme are shown
through Figs. 8-10. Particularly, Fig. 8, Fig. 9 and Fig. 10,
depict the leak position estimation for experiment one, two,
and three (valve 1, 2 and 3) respectively. As can be seen, the
leak position in all three cases is well estimated despite signal
noise.

V. CONCLUSIONS

This paper addressed the problem of one leak isolation in a
water pipeline using TDNN. This approach is an alternative to
better computing performance application, as a neural network
structure can have better efficiency using the parallelism of
some electronic systems such as the FPGA.

The implemented model was trained only with flow and
pressure measurements at the inlet and outlet of the pipe.
Such training signals have been corrupted by random noise
in order to emulate an actual scenario. It should be observed
that synthetic data were produced by a simulator based on a
mathematical pipeline model.

Despite the presence of noise in the measurements,
the simulation results showed an outstanding network
performance. Finally, the TDNN algorithm performs a proper
leak position assessment using real-noise databases from a real
pilot system.

In the context of future work, two points should be
addressed: (i) the efficiency of the system will be tested in
the FPGA device and (ii) the extension of the strategy to the
location of two leaks.
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Fig. 5. Leaks position estimation, ∆z, for the benchmark experiments

Fig. 6. Pressure head at inlet an outlet of the pipeline.

Fig. 7. Flow rate at inlet an outlet of the pipeline.

Fig. 8. Leak position estimation, ∆z related to valve 1.

Fig. 9. Leak position estimation, ∆z related to valve 2.

Fig. 10. Leak position estimation, ∆z related to valve 3.


