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Unsupervised text classification: a contractual risk detection approach

Abstract
Enterprise contracting process tends to be tedious when there is thousands of active contracts to manage.

The aim of this work was to implement an automatic indexing and information retrieval method in order to
classify the semantic structure within contract documents into two classes, risk and non-risk legal language,
on the basis of terms contained in new documents further called queries. The technique implemented is term
frequency as the transformation procedure for each of the documents and singular-value decomposition to
represent such transformations into a set of optimized number of factors. Queries are analyzed as vectors
formed from the linear combination of the terms and compared to known documents class with cosine values
to determine the nature of the legal language (as risk or non-risk). The result of this work shows that the
class detection is possible using the proposed methodology with high relative percentage of accuracy.
Keywords: Natural language processing, contracting, classification.
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1 Introduction

1.1 Business problem

The company, IBM, has a contract management system that provides
several solutions; among them, there is one that stores original
documents/contracts along with some metadata. However, these
documents are often in the form of scanned files, preventing a machine
to directly "read" the plain text from them. The solution to this
particular problem was to use a tool to "translate" the scanned files to
machine readable plain texts; this tool is called an Optical Character
Recognition (OCR).

Different from number-related objects, plain texts do not have an
underlying structure beyond how they were originally written. In this
sense, the models to encode and preprocess plain texts must be capable
of interpreting the subjacent semantic structure. Hence, at the output of
the OCR system, an entity detection tool classifies short pieces of texts
according to some predefined categories such as names, legal entities,
place, quantity expressions, among others.

Finally, the outcome from the above process is a set of enriched
phrases (pieces of text) per document.

The problem, and the matter of this document, is to identify if
each of the enriched phrases is related or not to certain topics, which
are based on the business input. In particular, the topic that IBM
is interested in is Contractual risk, and the categories that are to be
identified are:

• Contractual risk related to the topic based on the business input.

• No contractual risk in particular.

It is worth to mention that this classification is being carried out
manually by lawyers, who are experts in the matter and manage to
label 210 phrases building the data set utilize in this thesis.
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1.2 State of the art and motivation

Contracting is a common activity in today’s global marketplace. It is
so common, that firms often struggle to manage it because of the large
number, the great diversity, and significant complexity of contracts
that are operated at the same time with both, local and international
parties 1. 1 B. Rich. How ai is changing con-

tracts. https://hbr.org/amp/2018/02/

how-ai-is-changing-contracts, Febru-
ary 2018

Traditionally, all the contracting issues are handled by a team
of specialized lawyers, who draft, execute, and improve not only
the contracts themselves but also the contracting processes and the
agreements that these contracts govern. This means that the operation
of contracts requires hundreds of hours of specialized manpower, which
traduces in high costs and does not guarantee the absence of errors. In
fact, it has been estimated that firms lose between 5% to 40% of the
value on a given deal, due to errors in drafting contracts 2. 2 KPMG. Supply chain capacity manage-

ment – the key to value. https://home.

kpmg/au/en/home/insights/2017/03/

supply-chain-capacity-management.

html, March 2017

Recent technological developments in the areas of data science
and artificial intelligence allow to come up with solutions that help
companies to overcome the challenge of handling a nonuniform large
number of contracts. For instance, study3 how relevant features 3 I. Androutsopoulos I. Chalkidis and

A. Michos. Extracting contract elements.
International Conference on Artificial Intel-
ligence and Law, (2):19–28, 1 2017; and
I. Chalkidis and I. Androutsopoulo. A
deep learning approach to contract ele-
ment extraction. 30th International Con-
ference on Legal Knowledge and Information
Systems, (1):155–164, 1 2017

in contracts can be automatically extracted using linear classifiers
such as logistic regression and support vector machines, and a deep
learning approach; schemes for automatic segmentation and tagging
of contracts are developed in4; the study conducted in 5 propose an

4 J. Parapar I. Hasan and R. Blanco. In
proc. of the 19th int. conf. on database
and expert systems application. In
Segmentation of legislative documents using
a domain-specific lexicon, 19, pages 665–
669, Turin, Italy, 6 2008; and E. L.
Mencia. Artificial intelligence and law. In
Segmentation of legal documents, 12, pages
88–97, Barcenola, Spain, 6 2009

5 Nguyen L. Nguyen T. and Tojo S. et al.
Recurrent neural network-based models
for recognizing requisite and effectuation
parts in legal texts. Artif Intell Law, (26):
169–199, 2018

automatic recognition algorithm of requisite and affectation parts in
legal documents using and comparing several neural network schemes.
However, there is a lack of research studies concerning contractual risk
detection, although it has been identified as a relevant application of
artificial intelligence in contracting 6.

6 B. Rich. How ai is changing con-
tracts. https://hbr.org/amp/2018/02/

how-ai-is-changing-contracts, Febru-
ary 2018

The risk detection problem can be identified as a binary classification
problem, being the positive class fragments of contracts which involve
risk in some predefined sense, and being the negative class fragments
of contracts that do not involve risk. Several binary classification
algorithms such as Logistic Regression7, Support Vector Machines8,

7 T. P. Ryan. Modern regression methods.
1997

8 I. Steinwart and A. Christmann. Sup-
port vector machines. Springer Publishing
Company, Incorporated, (1), 2008

Random Forest 9, among others have been well studied and, to some

9 L. Breiman. Machine learning. https://
doi.org/10.1023/A:1010933404324, Jan-
uary 2001

extent, one can consider that binary classification a well-developed area
that has solved numerous applications showing great success. One
key ingredient behind this success is that the behavior in unknown
domains can be accurately estimated by quantitatively learning the
pattern from sufficient training examples10. Because of the technical

10 Y. Zhang and C Ling. A strategy to ap-
ply machine learning to small datasets in
materials science. https://doi.org/10.

1038/s41524-018-0081-z, January 2018

difficulties mentioned before, in particular, the need for a great amount
of time of specialized manpower to perform risk analyses over a set of
contracts, the training data set for the risk detection problem is small.
This undesired property negatively impacts the performance of the
conventional binary classification algorithms because:

https://hbr.org/amp/2018/02/how-ai-is-changing-contracts
https://hbr.org/amp/2018/02/how-ai-is-changing-contracts
https://home.kpmg/au/en/home/insights/2017/03/supply-chain-capacity-management.html
https://home.kpmg/au/en/home/insights/2017/03/supply-chain-capacity-management.html
https://home.kpmg/au/en/home/insights/2017/03/supply-chain-capacity-management.html
https://home.kpmg/au/en/home/insights/2017/03/supply-chain-capacity-management.html
https://hbr.org/amp/2018/02/how-ai-is-changing-contracts
https://hbr.org/amp/2018/02/how-ai-is-changing-contracts
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/s41524-018-0081-z
https://doi.org/10.1038/s41524-018-0081-z
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(i) The algorithms tend to over fit the small training data.

(ii) Numerical optimization algorithms may not converge.

(iii) The effect of the outliers is amplified.

(iv) Among others.

1.3 Objectives

In this sense, the main objective of this thesis is to address the
contractual risk detection problem using the latent semantic analysis
method.

This main objective involves the following specific objectives:

1. To carry out an exploratory data analysis of the data set of contracts.

2. To train different binary classifier structures for risk detection over
the data set contracts.

3. To develop a latent semantic model for risk detection.

4. To propose a metric to evaluate the considered risk detection
schemes.

5. To select the best scheme according to the proposed metric.

1.4 Document organization

The rest of the thesis is organized as follows. Next Section 2 shows the
pre-analysis and data exploration of the corpus. Section 3 exposes the
mathematically preliminaries along with the proposed risk detection
solution. Finally, performance classification tables and results are in
Section 4, and main conclusions are discussed in Section 5.





2 Data Description and Exploratory
Data Analysis

In this Section the corpus is analyzed with a information retrieval tool
called Term Frequency analysis and then those results being processed
with a graphics engine in order to visualize it.

2.1 Problem description

Plain text itself is not an analyzable data unit, therefore it needs to be
interpreted in order to be used as an input for a statistical model. In
this sense, it has been transformed such that words within the phrases
were weighed regarding their frequency of appearance in the phrases
and documents.

Even do the selection of the transformation method is an on-going
discussion within Natural Language Processing (NLP) community of
scientists, mathematicians and practitioners in general, the standard
transformation method is the Term Frequency - Inverse Document
Frequency (TF-IDF). This is a method that measures the relevance of a
word in a document within a collection of documents; it is composed by
two main calculations: (i) the frequency of a given word in a document,
and (ii) the inverse document frequency is the logarithm of the number
of documents in the collection by the number of documents containing
that given word.

These two calculations weighs, words by words, in each of the
documents of the collection providing a fair transformation of the
text into vectors of weights. TF tends to give a bigger weight to high
frequency words like ‘the’ since it is counting the appearances of the
words within a document, but IDF intends to offset that weight by
penalizing the weight of the high frequency words and giving more
weight to words with low appearance through the different documents.
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2.2 Data description

The data-set consists of 210 clauses from already signed commercial
contracts for which an expert lawyer already had reviewed and
classified each of them correctly within two classes risk and no-risk.
(see table 2.1).

name description
text Clause contract paragraphs.
class Binary risk classification. labels: [’no-risk’, ’risk’]

Table 2.1: Metadata table

2.2.1 Evaluation data

The data was splitted into two sets, training (70%) and testing (30%),
both created form the original data-set with a random sample keeping
a balance of the classes in each of the splits.

risk no-risk total phrases
training 73 73 146

testing 32 32 64

Table 2.2: Train and test split for
evaluation purposes

2.3 Text Mining

Unlike a conventional data descriptive analysis, one cannot use the
same type of methods for text. Nonetheless the goal is similar. We may
ask:

• What is the frequency of words’ usage?

• What are the most important ones?

• How do we measure the importance?

These questions drive us to convert the unstructured dataset into
a structured form in order to make the data handling easier. This
conversion can be made with a Tidy structure implemented in R 1, 1 J. Silge and D. Robinson. Text mining

with r. https://www.tidytextmining.

com/tfidf.html, January 2020

which is a reliable and easy to implement tool. Furthermore, since it
also provides a solution for TF-IDF, we will use it for the rest of the
analysis. When in comes to natural language we use words with a
certain distribution in such we use a set of words with more frequency
than others and for contracts is not the exception. We can see this
behavior in the Figure 2.1, where we can observe that a small set of
words is less frequently used than other words.

The frequencies of the x-axis in Figure 2.1 show how often words
are being used in this collection of documents. On the other hand, we
want to see what words are these and how frequent are they used in

https://www.tidytextmining.com/tfidf.html
https://www.tidytextmining.com/tfidf.html
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Figure 2.1: Shows the Frequency of
unique words per risk class.

each document. For this goal we analyzed the documents with TF-IDF.
Such analysis determines the relevance of each of the words given the
appearance in each document.

Figure 2.2: Tf-Idf calculation over
contract collection.

The graph in Figure 2.2 helps to identify the most important words
for each of the classes. Some of those words are company names
which make sense given the pre-defined risks, also another verbs and
businesses-related words such as ‘tradename’, ‘claim’ and ‘gpj’ are good
indicatives of the context of the text. A similar analysis but with two
adjacent words are the Bi-grams. Figure 3 shows the most important
bi-grams on this data set.

Just like word importance, bi-gram also provides insight of the
relevance of how words appear in this collection. Although the
differences between some of the bi- grams in Figure 2.3 are not obvious
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Figure 2.3: Bi-grams by TF-IDF impor-
tance.

we still can conclude that some pair of words are quite important when
they come together, for instance the pairs "trademark tradename" and
"copyright logo" are very good examples of it, since this collection of
documents is publicity related topic then one can say this bi-grams are
relevant for the semantic meaning.

2.4 Section conclusions

It can be concluded that TF-IFD is a fair method to represent our
unstructured data into a vector like structure for further analysis, since
it captures the relevance of the words usage along the collection of
documents.



3 Latent Semantic Classifier

This Section consists in three topics, the mathematical backgrounds 3.1;
definitions and theorems, the proposed methodology 3.2 to detect risk
in the contracts and a Python code 3.3 example implementation.

3.1 Mathematical preliminaries

3.1.1 Basic definitions and notation

We begin defining the core objects for all the developments in this
thesis.

Definition 1 (Term). A term t is simply a word.

Definition 2 (Document). A document d is some text, i.e., a collection
of terms. It may be a phrase, a paragraph, or a complete writing.

Definition 3 (Corpus). A corpus is a collection of documents.

Throughout this document, the following notation is prevalent:

(i) D = {d1, . . . , dn} is the set of all the documents. Moreover, n = |D|
is the number of total documents.

(ii) Td =
{

td
1, . . . , td

md

}
is the set of terms belonging to the document d.

Moreover, md = |Td| is the number of terms in document d.

(iii) T =
⋃

d∈D
Td = {t1, . . . , tm} is the set of all the terms in all the

documents. Moreover, m = |T | is the number of total terms. This
set will be often referred to as the vocabulary, since it contains all
the terms.

3.1.2 Term frequency - inverse document frequency

The central problem of analyzing natural language is how to measure
the meaning of a given document. Often, that is achievable by assigning
importance or weight to each of the words in the document.

A very powerful and widely used tool for weighting terms in
different documents was proposed and discussed in Spärck et al.
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(1961)1. This proposed weighting method balances the relation of 1 Spärck Karen. A statistical interpreta-
tion of term specificity and its application
in retrieval. (1):11–21, 1 1972

terms in a certain collection of documents considering both:

(i) The exhaustivity of a document, defined as the number of terms it
contains.

(ii) The specificity of a term, defined as the number of documents
where it appears.

Measuring the exhaustivity of the documents and the specificity of
the terms allow to define a weighting factor for each term in each
document that balances the number of times that the term appears
in the document with the frequency of the term in the whole set of
documents. Formally:

Definition 4 (Term Frequency). Given a document d ∈ D and a term
t ∈ T , we define the term frequency, denoted by t f (t, d), as the number
of times that the term t shows up in the document d divided by the
total number of terms in the document.

Definition 5 (Inverse Document Frequency). Given a document d ∈ D
and a term t ∈ T , we define the inverse document frequency, denoted
by id f (t, d), as

id f (t, d) = log
(

n
∑n

i=1 I(t ∈ Tdi
)

)
,

where I(·) stands for the indicator function and n the number of
documents. Hence, the denominator ∑n

i=1 I(t ∈ Tdi
) is equal to the

number of documents where the term t appears.

Definition 6 (Term Frequency - Inverse Document Frequency). Given
a document d ∈ D and a term t ∈ T , we define the term frequency -
inverse document frequency (tf-idf), denoted by t f − id f (t, d), as

t f − id f (t, d) = t f (t, d)id f (t, d).

Although the TF-IDF execution can be somewhat complex, there
already exist several robust implementations incorporating solutions
to some practical issues. One of these implementations comes in the
Python’s scikit-learn library under the Tfidf-vectorizer2 wrapper function, 2 F. Pedregosa, G. Varoquaux, A. Gram-

fort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011

which executes the tf-idf over a corpus and returns a term-document
matrix A ∈ Rm×n , whose entry i, j, Ai,j = t f − id f (ti, dj), is the tf-idf
representation of the term ti ∈ T in the document dj ∈ D.

Remark 1. In general, the matrix A ∈ Rm×n described above will be a
tall matrix, i.e. m > n, since there will be more terms than documents.
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3.1.3 Latent semantic indexing

In Subsection 3.1.2, we studied a methodology to represent a corpus
into a matrix with real entries. This approach already gives us
a mathematical representation of a corpus in the term-document
matrix A ∈ Rm×n; naturally, one associates the rows of the matrix
A to the terms, and the columns of the matrix A to the documents.
However, these representations of terms and documents have two major
drawbacks:

(a) In this form, these representations of terms and documents are
over-fitted to the sample corpus they were obtained from.

(b) It is easy to realize that the mathematical representation of any
of the terms is a n-dimensional vector, whereas the mathematical
representation of any of the documents is a m-dimensional
representation. Hence, it is not possible to establish comparisons of
a term with a document, which is a desired feature, for instance, in
information retrieval engine applications.

The latent semantic indexing (LSI)3 helps to overcome 3 Scott Deerwester, Susan T. Dumais,
George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by
latent semantic analysis. JOURNAL
OF THE AMERICAN SOCIETY FOR
INFORMATION SCIENCE, 41(6):391–407,
1990

these drawbacks, making use of the well-known singular-value
decomposition (SVD) factorization.

The following theorems and remarks formalize the concepts and
some results around the SVD and their relation with the latent semantic
indexing.

Theorem 1 (Existence of the SVD). 4 Let A ∈ Rm×n, with m > n, be a 4 A. Jepson and F. Flores-Mangas.
The singular value decomposition.
http://www.cs.toronto.edu/~jepson/

csc420/notes/introSVD.pdf, 2011

matrix of rank k ∈ N. There exist a matrix U ∈ Rm×k with orthonormal
columns (UTU = Ik, with Ik ∈ Rk×k the identity matrix), a matrix
V ∈ Rn×k with orthonormal columns (VTV = Ik), and a diagonal matrix
Σ = diag(σ1, σ2, . . . , σk) ∈ Rk×k, with σ1 ≥ σ2 ≥ · · · ≥ σk > 0, such that:

A = UΣVT =
k

∑
i=1

σiuivT
i ,

where ui, vi are the i-th columns of U and V, respectively.

Remark 2 (Solution to drawback (b)). Using Theorem 1, we can always
decompose the term-document matrix into a terms matrix T0 ∈ Rm×k,
a documents matrix D0 ∈ Rn×k, and the singular values matrix
Σ0 = diag(σ1, σ2, . . . , σk) ∈ Rk×k, with σ1 ≥ σ2 ≥ · · · ≥ σk > 0, as

A = T0Σ0DT
0 . (3.1)

In this setting, the rows of T0 constitute k-dimensional
representations of each term, and similarly, the rows of D0 are k-
dimensional representations of each one of the documents. Hence,

http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf
http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf
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this solves the drawback (b) mentioned before. On the other hand,
these representations are still overfitting the sample corpus.

Theorem 2 (Optimal low-rank approximation). 5 Let A ∈ Rm×n, with 5 S. Boyd and S. Lall. Singular value
decomposition. http://ee263.stanford.
edu/lectures/svd-v2.pdf, August 2015

m > n, be a matrix of rank k ∈ N, and consider the SVD A = UΣVT =

∑k
i=1 σiuivT

i described in Theorem 1. Then, the solution to the optimization
problem

minÂ∈Rm×n

∣∣∣∣A− Â
∣∣∣∣

2
such that rank(Â) ≤ p

is A = UpΣpVp = ∑
p
i=1 σiuivT

i , where Up ∈ Rm×p is the matrix formed
by the first p columns of U, Vp ∈ Rn×p is the matrix formed by the first p
columns of V and Σp = diag(σ1, σ2, . . . , σp) ∈ Rp×p.

Remark 3 (Solution to drawback (a)). Now, from (3.1) and applying
Theorem 2 we obtain the best least squares fit and low rank
approximation of the term-document matrix A, Â as:

A ≈ Â = TΣDT ,

where the matrices T ∈ Rm×p, Σ ∈ Rp×p, and D ∈ Rn×p are the
truncated versions of the matrices T0, Σ0, and D0, respectively.

This operation helps us deal with the drawback (b) mentioned before,
since in the approximation the corpus sampling errors and unimportant
details are thrown away. This, of course, heavily depends on the
selection of the hyper parameter p.

Remark 4. [On the selection of p] The low rank p should be large
enough to capture all the important semantic structure of our data
(contracts), and small enough to avoid fitting unimportant details for
information retrieval.

In an ideal setting, there is an evident difference between the
magnitude of the top singular values of the term-document matrix
A with the rest. In this case, the intuitive choice is to set p equal to
the number of "big values". In a less ideal setting, which is the most
common situation, this difference is not that evident and the selection
of p is not direct. A rule of thumb is to choose p such that the sum of
the top p singular values is at least x% (70%, 80%, 90%) of the total
sum of all the singular values.

Now, we have a methodology to represent both, terms and
documents, in a reduced p-dimensional space. This methodology
is possible because of the existence of the SVD (Theorem 1) and the
optimal low-rank approximation (Theorem 2). The unique piece that
is left for a complete information retrieval engine is the capability
of comparing any pair of terms, documents and queries. These
comparisons can be carried out with the (cosine of the) angle between
the vector representation of the corresponding items.

http://ee263.stanford.edu/lectures/svd-v2.pdf
http://ee263.stanford.edu/lectures/svd-v2.pdf
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Definition 7. Let x, y ∈ Rp be two vectors. Then, we define the angle
between x and y as the angle −π ≤ θ < π that satisfies

cos(θ) =
xTy

||x|| ||y|| .

A well-known result of the SVD is that although the singular values
matrix is unique, the other matrices may not be. However, the non-
uniqueness that these matrices are subject to is very special, and it is
described rigorously in the following theorem:

Theorem 3 (Uniqueness of the SVD). Let A ∈ Rm×n, with m > n, be
a matrix of rank k ∈ N, and consider the SVD A = UΣVT described in
Theorem 1:

(a) The singular values σ1, σ2, . . . , σk are unique and, for distinct positive
singular values, the corresponding columns of U and V are also unique up
to a change of signs of both columns.

(b) For any repeated singular values, the corresponding columns of U and
V are unique up to any rotation/reflection applied to both sets of columns.
This is, if σi = σi+1 are two repeated singular values, then the columns
[ui, ui+1] → [ui, ui+1]W and the columns [vi, vi+1] → [vi, vi+1]W may
suffer rotations/reflections according to some orthogonal (rotation) matrix
W.

Remark 5 (Non-uniqueness of SVD does not affect LSI). Let xT =

[x1, . . . , xj, xj+1, . . . , xp] and yT = [y1, . . . , yj, yj+1, . . . , yp] be the row-
vector LSI representations of some terms, documents, a term and a
document, or a document and a term.

On the other hand assume that the singular values j and j + 1
are repeated, i.e. σj = σj+1. Then, by Theorem 3, the row
vector representations x and y may not be unique. Let x̄T =

[x1, . . . , [xj, xj+1]W, . . . , xp] and ȳT = [y1, . . . , [yj, yj+1]W, . . . , yp] be the
alternative representations to x and y, where W is an orthogonal matrix.

First of all, note that (WWT = I2, since W is orthogonal):

x̄T ȳ =
p

∑
i=1;i 6=j,j+1

xiyi + [xj, xj+1]WWT [yj, yj+1]
T

=
p

∑
i=1;i 6=j,j+1

xiyi + [xj, xj+1][yj, yj+1]
T

=
p

∑
i=1

xiyi

= xTy.

Similarly, following the above steps with x̄ in quality of ȳ, we would
have obtained ||x̄|| = ||x||.
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Hence, the non-uniqueness exhibited by the SVD factorization (see
Theorem 3) does not affect the angle between the representations (see
Definition 7).

3.1.4 Querying the LSI representation

We showed how to obtain a representation of both, the terms and the
documents, of an original indexed corpus of documents. However, this
is not the purpose by itself, but to be able to compute the comparison
of a new document with the current ones.

Let q ∈ Rm be the TF-IDF representation of the new document (or
query). Assuming that the LSI representation is a correct model for this
document also, we have that q = TΣdq. Thus, the representation of the
query in the latent semantic space is given by

dq = Σ−1TTq ∈ Rp. (3.2)

This dq is just like a row of the documents matrix D, and can be used
for comparison with the terms or other documents.

3.2 Latent semantic classifier

In this section we describe the complete procedure to carry out the
Latent semantic classifier.

1. Get the corpus of the phrases (documents) corresponding to the n
contracts’ pieces that have been previously tagged with risk label.

2. Build the term-document matrix A ∈ Rm×n out of the corpus, via
the tf-idf vectorizer (m is the length of the vocabulary).

3. Perform the SVD decomposition of the term-document matrix
A ∈ Rm×n into the terms matrix T0 ∈ Rm×k, the documents matrix
D0 ∈ Rn×k, and the singular values matrix Σ0 ∈ Rk×k (k is the rank
of the term-document matrix A).

4. Perform the dimension reduction (selection of p ≤ k) according to
the ideas mentioned in Remark 4. Applying p-reduction to matrices
T0, D0 and Σ0, obtain matrices T ∈ Rm×p (consisting on the first p
columns of T0), D ∈ Rn×p (consisting on the first p columns of D0),
Σ ∈ Rp×p (consisting on the first p columns and first p rows of Σ0).

5. For each of new contract phrase with unknown risk label (query):

• Find the TF-IDF representation q for the query, restricted to the
vocabulary used while building A.

• Compute the representation of the query in the latent space, dq,
according to (3.2).
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• Calculate the cosine (see Definition 7) between dq and each of the
columns of the matrix D (representation of the documents in the
latent space).

• Find the document (column of D) with the highest cosine with
respect to dq, and assign the risk label tagged to document d to
the query dq.

3.3 Python Example:

The corpus on this example consist in 5 titles about human-computer
interaction (labeled c) and four titles about graph theory (labeled m).

1. Corpus of the phrases.

corpus = [

"Human machine interface for lab abc computer applications",

"A survey of user opinion of computer system response time",

"The EPS user interface management system",

"System and human system engineering testing of EPS",

"Relation of user perceived response time to error measurement",

"The generation of random binary unordered trees",

"The intersection graph of paths in trees",

"Graph minors IV Widths of trees and well quasi ordering",

"Graph minors A survey",

]

2. Build Term-Document matrix A out of the corpus.
Python’s Scikit Learn has a feature extraction set of tools useful for
this text application. The tf-idf vectorizer is the function that will
allow us to analyze the corpus.

Hence the term-document matrix A is constructed and defined by
passing the corpus to python’s tf-idf vectorizer function, here a sample
code of it:

```
A = tfidf_vectorizer(corpus)

```

And the view of term-document matrix A

```
print(A)

c1 c2 c3 c4 c5 m1 m2 m3

abc 0.3742 0.0000 0.00 0.0000 0.0000 0.0000 0.0 0.0000

and 0.0000 0.0000 0.00 0.3296 0.0000 0.0000 0.0 0.3029

applications 0.3742 0.0000 0.00 0.0000 0.0000 0.0000 0.0 0.0000

binary 0.0000 0.0000 0.00 0.0000 0.0000 0.4324 0.0 0.0000

computer 0.3161 0.3444 0.00 0.0000 0.0000 0.0000 0.0 0.0000

engineering 0.0000 0.0000 0.00 0.3902 0.0000 0.0000 0.0 0.0000

eps 0.0000 0.0000 0.42 0.3296 0.0000 0.0000 0.0 0.0000

error 0.0000 0.0000 0.00 0.0000 0.3717 0.0000 0.0 0.0000

for 0.3742 0.0000 0.00 0.0000 0.0000 0.0000 0.0 0.0000
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generation 0.0000 0.0000 0.00 0.0000 0.0000 0.4324 0.0 0.0000

```

3. SVD decomposition of the matrix A.

Python comes with a handy solution for SVD, scipy contains a
function called ’svd()’ that decomposes matrices using ’eigenvector
decomposition analysis’.

```
from scipy.linalg import svd

T, Sigma, DT = svd(A)

```

Here the size of matrices U, Σ, VT , output:

```
(41, 9) = (41, 41) (41, 9) (9, 9)

```

Sigma matrix’s diagonal contains d singular values. Note that matrix
Σ values are ordered.

```
print(Sigma)

[[1.3915 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

[0.0000 1.1785 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

[0.0000 0.0000 1.0683 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

[0.0000 0.0000 0.0000 1.0376 0.0000 0.0000 0.0000 0.0000 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.9600 0.0000 0.0000 0.0000 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.8697 0.0000 0.0000 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8346 0.0000 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7879 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6793]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

... ... ... ... ... ...

[0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000]

```

4. Dimension reduction.
In Python is easy to implement with scipy function over matrices.
k was 3 in this example and it can be observe that Ahat is a good
approximation of A considering the rank reduction.

```
k = 2

Sigma = Sigma[:k, :k]

DT = DT[:k, :]

d = A.T.dot(T[:,:k].dot(pinv(Sigma)))

```

5. Query latent space representation and cosine similarity between
each document in d and dq.
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```
print(d)

0 1

c1 -0.153240 -0.262979

c2 -0.483566 -0.203803

c3 -0.384404 -0.360126

c4 -0.382031 -0.309861

c5 -0.294104 -0.212375

m1 -0.266416 0.193938

m2 -0.336110 0.378004

m3 -0.317850 0.479913

m4 -0.278377 0.455722

```

```
Q = ['Human computer interaction']

Q = tfidf_vectorizer(Q)

q = Q.T.dot(T[:,:k].dot(pinv(Sigma)))

```

```
print(q)

0 1

0 -0.142183 -0.172369

```

Figure 3.1: 2-D plot of document singular
vectors, rows of matrix V and matrix Vq.

Figure 3.1 shows the semantic space for the sample corpus reduced
to two dimensions, it can be seen that the query Human computer
interaction is closer to those the titles with label c which is expected.
The relationship between terms and documents is such that the
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rotational matrices from the SVD decomposition of the original matrix
A transforms the query vector semantic space closer to the equals.

3.4 Benchmark algorithms

Accuracy for contractual risk detection is important for the business,
bench-marking hence is relevant, various models where tested and
compared using the same test data set. The information retrieval
explained in (reference to cap 3.1) was the baseline for all of the bench
marking models as the information retrieval method.

Models selected for bench-marking are Random Forest and Neural
Network both heuristic methods briefly described in (make ref of sub
chap) and both models were trained with the fixed-size vectorized texts
as the inputs and the objective the vector with the risk classification.

3.4.1 Tree-based methods

This type of model partitions the data space into a set of rectangles,
and then it fits a model (like a constant) in each of the rectangles. Let’s
consider a regression problem with a response y and inputs x1 and x2, it
can be partitioned with parallel lines to the axes, that is, split at x1 = t1

then the region x1 ≤ t1 is a split at x2 = t2 and the region x1 > t3 is a
split at x1 = t3, the region x1 > t3 a split at x2 = t4. Resulting into five
regions R1, R2, ..., R5, (see Figure 3.2) such regression model predict Y
with constant cm in region Rm:

f̂ (x) =
5

∑
m=1

cm I {(x1, x2) ∈ Rm} (3.3)

Figure 3.2: Partition of a two-dimensional
feature space by recursive binary
splitting.

The problem is to choose the splitting variables and split points
efficiently and for that a minimization of the sum of squares criterion
∑(yi − f (xi))

2, the best ĉm is an average yi in the region Rm:

ĉm = ave (yi | xi ∈ Rm) (3.4)

However, finding the best partition(s) using this criterion is
computationally not feasible hence we seek the splitting variable and
the split point that solves:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (3.5)

where R1 and R2 are the pair of half-planes defined as:

R1(j, s) =
{

x | xj ≤ s
}

and R2(j, s) =
{

x | xj > s
}

(3.6)
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Now, the intention is to fit a tree based method but the target is a
classification (risk document or not), then the only changes needed in
the tree algorithm is the splitting criteria. For regression was squared-
error impurity measure. In a node m, representing a region Rm with
Nm let:

p̂mk =
1

Nm
∑

xi∈Rm

I (yi = k) (3.7)

The proportion of class k observations in mode m. Then classify
the observations in node m to class k(m) = argmaxk p̂mk(m), the
classification error E = 1− k(m) helps tree-growing however is not
sufficiently.

A purity measure is the Ginni index 6 a measure of total varias across 6 Gareth James, Daniela Witten, Trevor
Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning: With
Applications in R. 2014. ISBN 1461471370

the K classes. Small values of Ginni index indicates a note that contains
predominantly observations from a simple class.

G =
K

∑
k=1

p̂mk (1− p̂mk) (3.8)

3.4.2 Neural Networks

A neural network is a two-stage regression (or classification) model, for
K-class classification there are K target measurements yk, K = 1, ..., K
each coded as a 0− 1 for the kth class.

Zm are derived features created from linear combinations of the
inputs and then the target yk is modeled as a function of linear
combinations of the Zm as,

Zm = σ
(

α0m + αT
mX
)

, m = 1, . . . , M (3.9)

Figure 3.3: Partition of a two-dimensional
feature space by recursive binary
splitting.

Tk = β0k + βT
k Z, k = 1, . . . , K (3.10)

fk(X) = gk(T), k = 1, . . . , K (3.11)

The activation function σ(v) usually is the sigmoid where σ(v) =
1

(1+ε−v)
. Figure 3.4 is the plot of the sigmoid function.

Neural networks like in Figure 3.3 are often drawn with an additional
bias unit feeding every unit in the hidden and output layers and
captures the intercepts α0m and β0k in Zm and Tk.

Figure 3.4: Partition of a two-dimensional
feature space by recursive binary
splitting.

The output function gk(T) transforms the vector of outputs T. For
K-class this function is the softmax:

gk(T) =
eTk

∑K
`=1 eT`

(3.12)
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Fitting a Neural network we seek to estimate the unknown
parameters (often called weights with values that fit the training data
well. θ denotes all the weights which consist of,

{α0m, αm; m = 1, 2, . . . , M} M(p + 1) weights (3.13)

{β0k, βk; k = 1, 2, . . . , K} K(M + 1) weights. (3.14)

For classification we use either squared error or cross-entropy:

R(θ) = −
N

∑
i=1

K

∑
k=1

yik log fk (xi) (3.15)

With the softmax function and the cross-entropy error function, the
neural network is exactly a linear logistic regression model in the
hidden units and all parameters are estimated by maximum likelihood.
The global minimizer of R(θ) is not desired instead a regularization
usually by a penalty term or simply by early stopping7. 7 T. Hastie, R. Tibshirani, and J.H.

Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and
Prediction. Springer series in statistics.
Springer, 2009. ISBN 9780387848846.
URL https://books.google.com.mx/

books?id=eBSgoAEACAAJ

3.5 Section conclusions

The Python example 3.3 was showed that the methodology proposed
to detect risk language in the contracts, along with the mathematical
backgrounds specially but not uniquely theorem 2 is feasible to
implement.

https://books.google.com.mx/books?id=eBSgoAEACAAJ
https://books.google.com.mx/books?id=eBSgoAEACAAJ


4 Results

4.1 Performance

The confusion matrix allows to visualize the performance for the
proposed methodology results, the matrix displays the frequency
distribution of the actual class value against the predicted class value,
such table is as follows:

Actual Class
Positive Negative

Predicted Class
Positive True Positive (TP) False Negative (FN)
Negative False Negative (FN) True Negative (TN)

This table shows the necessary information to inform the perfor-
mance of a classification prediction for our risk detection problem, in
our case, the models described in Chapter 3. For this purpose three
metrics are relevant from this matrix, precision, recall and F-1 score.

The precision metric is the ratio of correct positive predictions of the
total predicted positives, that is:

P =
TP

TP + FP
.

The recall metric, on the other hand is the true positive rate known
as sensitivity.

R =
TP

TP + FN
.

Lastly, the F-1 score metric is the harmonic mean between the recall
and the precision metrics:

F =
P · R

P + R
.

The confusion matrix below shows the predicted values of the
proposed methodology (see Section 3.2) over the training data and
the real values.
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Actual
no-risk risk

Predicted
no-risk 26 6

risk 3 29

Table 4.1: Frequency distribution of
predicted and the actual class of training
data.

From Table 4.1 one can see that 26 out of 32 no-risk classes and 29

out of 32 risk classes were predicted correctly, which shows a good
performance of the proposed methodology.

However, in order to have a measure to compare the performance
of all of the models implemented, precision, recall and F1-score was
applied. These metrics can be seen in Table 4.2 for each of the three
models:

Precision Recall F1-Score
Proposed methodology 0.95 0.95 0.95

Random Forest 0.86 0.86 0.86

Neural Net 0.85 0.85 0.85

Table 4.2: Frequency distribution of
predicted and the actual class of training
data.

4.2 Section conclusion

The business requires to have the lowest error possible when deciding if
a contract document could potentially affect the organization negatively,
so the confusion matrix properly shows the performance metrics that
the business is looking for, moreover, it does provides a fair score to
determine if the semantic structure defined by the factors from the SVD
decomposition are good enough to classify the contracts.



5 Conclusion

5.1 Conclusion and Future Work

The method proposed in section 3.2 was successfully applied over
commercial contract paragraphs to detect if the language analyzed is a
potential risk for IBM or not. Alongside in section 2.3 the exploratory
analysis showed that word frequencies for the contract language has a
similar distribution between those risk paragraphs and non-risk, where
many words occur rarely and few words occur frequently.

As proposed in benchmark algorithms (see section 3.4) two binary
classifiers were implemented with the purpose to compare a heuristic
approach for risk detection and to benchmark the performance of
the Latent Semantic Classifier method. Lastly the performance metrics
applied in chapter 4 and showed in table 4.2 as a percentage of accuracy
are determinant to select the best methodology for the contract risk
detection.

Results are encouraging, a NLP implementation requires a wide
variety of skills beyond of mathematics and statistics, it depends a lot
on software solution not only for pre-processing the data but also for
extraction and understanding however it is proven that Information
Retrieval is more than plausible. Risk detection for contracting is a
continuing and changing problem that will require further research in
the field of NLP however with the tools and procedures most frequently
used for this type of tasks it is concluding that detecting contractual
risk using a semantic information retrieval solution was successfully
achieved considering the lack of data and the transformation nuisances
of the text the accuracy reached by the LSI method is fair enough for
the business and for the purposes of this project.

Results are promising nonetheless there is work that could improve
legal language detection out of the scope of this work, first of all the
size of the corpus being relative small due to the cost of manually
classify the documents however an investigation for a none supervised
classification of the factors derived from the SVD reduction method
may prove if risk semantic detection could be done automatically thus
the cost of tagging the existing contract documents should reduce.
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