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Abstract
The popularization of Hadoop as the the-facto standard platform for data analytics in the context of Big Data applications

has led to the upsurge of SQL-on-Hadoop systems, which provide scalable query execution engines allowing the use of

SQL queries on data stored in HDFS. In this context, Kubernetes appears as the leading choice to simplify the deployment

and scaling of containerized applications; however, there is a lack of studies about the performance of SQL-on-Hadoop

systems deployed on Kubernetes, and this is the gap we intend to fill in this paper. We present an experimental study

involving four representative SQL scalable platforms: Apache Drill, Apache Hive, Apache Spark SQL and Trino. Con-

cretely, we analyze the performance of these systems when they are deployed on a Hadoop cluster with Kubernetes by

using the TPC-H benchmark. The results of our study can help practitioners and users about what they can expect in terms

of performance if they plan to use the advantages of Kubernetes to deploy applications using the analyzed SQL scalable

platforms.
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1 Introduction

In the last years, Hadoop has become the standard platform

for Big Data applications by providing a cost-effective,

open-source, and scalable solution [1]. Core components of

Hadoop architecture are HDFS (Hadoop Distributed File

System) and Yarn (Yet Another Resources Negotiator); the

former allows to store large volumes of data, and the latter

provides resource management and scheduling to run jobs.

Hadoop clusters do not require specific hardware, and they

can be installed on-premise or on-cloud by using providers

such as AWS or Azure.

Although Hadoop can store both structured and

unstructured data in HDFS, many users prefer to use SQL

as the base language of data analytics applications to query

structured data sources. As a consequence, some SQL-on-

Hadoop systems have emerged, such as Apache Hive [2],

Apache Impala [3], Trino [4] (formerly known as Presto),

Apache Drill [5], or Apache Spark-SQL [6]. These systems

are built on top of scalable query engines able to exploit the

features of Hadoop to execute SQL queries on large

amounts of data effectively.
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29071 Málaga, Málaga, Spain

3 Ericsson, Andalusia Technology Park, C/Severo Ochoa

55-Building 2, 29590 Málaga, Spain

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03718-9(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03718-9&amp;domain=pdf
https://doi.org/10.1007/s10586-022-03718-9


In this context, the deployment, scaling, and manage-

ment of applications on Hadoop clusters are significant

issues that have to be addressed. One of the most widely

used systems for coping with these tasks is Kubernetes [7],

an open-source platform for managing containerized

workloads, services, and applications. Originally devel-

oped by Google, Kubernetes’ features include service dis-

covery, load balancing, horizontal scaling, storage

orchestration, and self-healing.

Analyzing the performance of SQL scalable systems

deployed on Kubernetes is a study that, as far as we are

concerned, has not been done so far, so in this work, we

intend to fill this gap. This paper focuses on evaluating the

performance of four representative SQL-on-Hadoop sys-

tems (namely Drill, Hive, Spark SQL, and Trino) by

deploying them in a cluster on Kubernetes. Our main goal

is to assess the systems’ performance on Kubernetes with

the TPC-H benchmark. We are also interested in investi-

gating the potential limitations or difficulties of adapting

the selected systems on Kubernetes.

The main contributions of this paper are summarized as

follows:

• A review of the literature for SQL scalable systems and

their performance in query execution in Big Data

ecosystems.

• An analysis of the requirements, limitations, and

problems encountered in deploying the selected SQL

engines on Kubernetes.

• Definition of a clean experimentation methodology to

ease the reproducibility of the reported results.

• A comparison between the systems and the evaluation

of the impact in performance from working with

Kubernetes using the TPC-H benchmark.

• A repository hosted in GitHub containing the adapted

TPC-H queries for the four analyzed systems and

scripts for the automatic deployment and execution on

Kubernetes.

The rest of the paper is organized as follows: Sect. 2

includes works related to the main topics of this paper,

including comparative studies on scalable SQL-on-Hadoop

systems and the use of Kubernetes on similar systems.

Section 3 provides an in-depth look at different technolo-

gies covered in this work, such as the structure of Kuber-

netes, the auto-scaling capabilities of Kubernetes or the

characteristics of each SQL system used. Section 4 con-

tains the methodology, experimental setup, experiments,

analyses, obtained results, and evaluation. To conclude the

paper, Sect. 5 offers some conclusions on these topics and

interesting lines for further research.

2 Related work

The interest in scalable SQL-on-Hadoop systems has led to

research works to benchmark and compare them. One of

the first studies was presented in [8], which compared Hive

and Impala on the TPC-H [9] and TPC-DS [10]
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benchmarks on a 21 node cluster summing up 240 pro-

cessing cores. Also, in 2014, [11] analyzed the perfor-

mance of Hive, Impala, Presto, and two nowadays

extinguished systems, Stinger and Shark, on clusters

composed of up to 100 nodes and using some queries and

datasets taken from the TPC-DS benchmark. In [12], the

systems Impala, Spark SQL, and Drill were analyzed and

compared by using a cluster of virtual machines deployed

on Amazon EC2; two benchmarks were used, WDA [13]

and TPC-H. The study presented in [14] includes Drill,

HAWQ [11], Hive, Impala, Presto, and Spark; the bench-

mark is TPC-H, and the cluster contains four worker nodes

having eight cores each. TPC-H and TPD-DS plus TPCx-

BB1 are the subjects of analysis in [15], who used them to

compare Hive, Spark SQL, Impala, and Presto on a cluster

of five nodes with 16 cores, 64 GB of memory, and 1.2 TB

of SSD disk each.

All these studies perform similar analyses in the sense

that the target systems many of SQL scalable systems

tested on Hadoop clusters by using some TPC benchmarks.

However, none of them considers the possibility of

deploying them using Kubernetes. In this sense, we can

mention the work of C. Zhu, B. Han, and Y. Zhao, which is

focused on comparing Spark on the bare metal and

Kubernetes [16]; however, this study considers a set of four

Spark applications (word count, sort, k-means, SQL join)

and it does not focus on a deep analysis of the Spark SQL

engine. A similar case can be found in [17], which presents

a study of four Spark schedulers, including Mesos,

Kubernetes, Yarn, and stand-alone.

3 Technologies

This section describes the technologies covered in the

paper: Kubernetes and the SQL-on-Hadoop systems Drill,

Hive, Spark SQL and Trino.

3.1 Kubernetes

Kubernetes (https://kubernetes.io.) is an open-source

platform that provides mechanisms for deploying, main-

taining, scaling, and healing containerized applications. It

does so while offering high availability and orchestration

capabilities, controlled by the Kubelet service, perfect for

production-ready applications, where minimizing comput-

ing resources and reassuring its uptime is crucial. In this

sense, migrating the systems considered in this work to

Kubernetes brings a means for automated scaling, limiting

resource consumption, fault tolerance, and an efficient way

of deploying and configuring the platform.

Some key concepts and elements related to Kubernetes

are enumerated next:

• Nodes are the physical or virtual machines where

everything will run and is controlled by the Kubelet

process. By default, there are two types of nodes, a

master and the workers. The master contains by default

a taint (Kubernetes term for a ‘‘mark’’) that disallows

most deployments to run on it, to guarantee that it has

enough free resources to fulfill its duties as the master

node.

• Pods are the minor deployable units of computing in

Kubernetes. They are composed of one or more

containers, running in one of the supported container

runtime environments like Docker or directly on

containerd, with shared storage and network resources

and context. The workers and master nodes’ containers

are defined as pods by other workload resources.

• ReplicaSets are in charge of maintaining a stable set of

Pods running at any time, using replicas to guarantee

high availability. They create and delete Pods to reach

the desired number with the help of a pod template.

• Deployments are a high-level concept that manages and

provides declarative updates for Pods and ReplicaSets

at a controlled rate.

• StatefulSets manage the deployment and scaling of a set

of Pods, guaranteeing their ordering and uniqueness and

maintaining their identifier across any rescheduling.

This is useful for having unique network identifiers,

graceful deployment, and stable and scaling persistent

storage.

• Persistent Volumes and Persistent Volume Claims (PV

and PVC respectively) define the dynamic for storage

management in Kubernetes. A PV is a piece of storage

that can be manually or dynamically provisioned by

defining a StorageClass. PVs are regular volumes that

have a lifecycle independent of any Pod bound. PVs can

be supplied from many sources, including but not

limited to NFS, Azure Disk, or Amazon EBS. Mean-

while, PVCs are requests for storage by users, which

can specify size and access modes.

Figure 3.1 shows all the elements enumerated above and

relates them in a diagram that represents the general

structure of Kubernetes.

An application deployment on Kubernetes is defined

through YAML manifests called ‘‘charts’’, which are col-

lections of versioned, pre-configured application resources

as a single unit. In order to make chart installation’s

transparent for users, there exist package managers like

1 http://www.tpc.org/tpcx-bb.
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Helm2 which we have used for the deployment of the SQL

systems introduced in the following section.

Deploying scalable SQL systems on Kubernetes brings

the additional benefit of being able to allow Kubernetes to

handle the auto-scaling of the cluster according to the load

they are under at any given time. It allows the systems to

consume little resources when the SQL system is idle but

scale up rapidly and automatically whenever the load is

increased, for example, when a group of users use the

system concurrently.

This feature provided by Kubernetes can be a powerful

cost-saving method, especially when deploying the SQL

systems on the cloud, where you are billed by the resources

you are consuming at any given time. By setting a target

resource usage percentage, e.g.: aiming to keep the nodes

at 75% load, Kubernetes adds or subtracts pods to the

deployment of the SQL system. By increasing or decreas-

ing this target usage, the scaling will be done more or less

aggressively, providing more flexibility for different use

cases.

As an example use case to benefit from this feature, we

can imagine a system where users from different time

zones query the underlying SQL scalable system. This

event causes the load on the SQL system to spike when the

users of the most populated time zones are active while

having lower loads close to inactivity during the rest of the

hours. In that context, Kubernetes would automatically

scale the number of pods on the SQL system to handle the

load at any given time.

3.2 SQL scalable systems

Four SQL scalable systems have been selected as the most

relevant from reviewing related works, namely Trino,

Hive, Spark, and Drill. Next, a brief description of them is

given:

• Trino (https://trino.io/) is an Apache 2.0 licensed, dis-

tributed SQL query engine, which was forked from the

original Presto3 project. It was designed from the

ground up for fast queries against any amount of data. It

supports any data source, including relational and non-

relational sources, via its connector architecture.

• Apache Hive (https://hive.apache.org) is an open-

source project that provides a SQL-like query engine. It

is developed in Java and facilitates reading, writing, and

managing large datasets residing in HDFS storage. The

framework can be projected onto the stored data, pro-

viding a command-line tool and a JDBC driver to

connect users to Hive.

• Apache Spark (http://spark.apache.org) allows query

execution using a subset of SQL on a variety of data

sources. Its scalable processing engine, is particulary

suitable if the resulting data is analyzed using Spark’s

data frames or machine learning APIs after performing

SQL queries.

• Apache Drill (https://drill.apache.org/) is a SQL query

engine designed to analyze data stored in Hadoop and

non-relational databases, including MongoDB and

Hbase. It can scale from laptops to 1000-node clusters

and has symmetric architecture where all nodes are

equal.

3.3 Deployment on Kubernetes

Some of the previously introduced SQL systems were not

initially designed for Kubernetes. However, except for

Hive, they have adopted support for it. Due to the nature of

these complex deployments, most enterprises and organi-

zations decide on their use on the cloud, avoiding

managing such systems’ deployment in local clusters.

Therefore, although they exist, the official guidelines for

deploying systems on Kubernetes are still incomplete, a

work in progress or lacking in information, and the com-

munity around them is rather small. Some organizations

and other third parties also maintain non-official guidelines

for the deployments, often used internally and leading to

some of them being better maintained than official ones.

These Helm charts are shared in repositories like

artifacthub.io4.

A summary of the selected charts is included in Table 1.

The Spark and Trino charts are well maintained, allowing

both internal and Kubernetes resource configurations to be

easily made. The chart for Drill, albeit official, has not been

updated to the latest versions of Drill and presents some

issues that caused the system’s configuration a demanding

task, as it does not follow the standard good practices, i.e.,

defining Kubernetes resource limits. As far as we are

concerned, this is the only publicly available deployment

for Drill on Kubernetes. We did not find any operational

deployment of Apache Hive on Kubernetes. However,

starting from 2018, DataMonad released its engine called

MR3 (MapReduce 3), which allows Hive to be run on

Kubernetes5. This deployment is extraordinarily complex

and required several weeks of investigation as the official

MR3 documentation offered little detail on its deployment.

We did find several issues regarding their repositories and

updates, which further complicated our experience. The

number of parameters and files to modify was

2 https://helm.sh/.
3 https://prestodb.io

4 https://artifacthub.io/.
5 https://www.datamonad.com/.
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overwhelming regarding its configuration and fine-tuning.

As there were no references or blogs for debugging, which

made the task time-consuming.

4 Experimentation

In this section, the selected benchmark, the followed

methodology, and the performed experiments are described

in detail.

4.1 The TPC-H Benchmark

The Transaction Processing Performance Council6 (TPC)

is a non-profit consortium that defines standard benchmarks

for different systems, such as TPC-C, TPC-DS, TPCx-HS,

etc. In this work, we will use TPC-H [18].

The TPC-H is a decision support benchmark that con-

sists of a suite of business-oriented ad-hoc queries, whose

data model and query workload is complex enough to serve

as a reasonable set of analytic tasks. It illustrates decision

support systems that examine large volumes of data with

Table 1 Summary information on the selected SQL engines

Trino Hive on MR3 Spark Drill

SQL support ANSI SQL compliant HiveQL ANSI SQL compliant ANSI SQL compliant

License Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0

Initial release 2019 2018 2014 2012

Current release 363, October 2021 1.3, August 2021 3.1.2, June 2021 1.17.0, December 2019

Fig. 2 The TPC-H schema

6 Transaction processing Performance Council: tpc.org.
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complex queries. The first version was released in 1999 and

has been updated throughout the years. For this work, the

considered version is 3.0.0 from February 2021.

The DBGen software package from TPC was used to

produce the data to populate the database. This package

can be downloaded free of charge from the TPC Website.

The complete table schema defined in the official TPC-H

specification can be observed in Fig. 2, along with each

table’s columns, rows, their respective foreign keys and

their relationship with other tables. It can be seen that

tables lineitem, orders, and partsupp are the tables with the

most number of rows. Note that most tables’ size depends

on the scale factor constant (SF); this will be discussed in

Sect. 4.2.

Table 2 presents a summary of each query’s clauses and

operations, which facilitates the interpretation of the

results. In the table, we can observe several queries that

read data from several tables, like Q2, Q5, Q7, Q8, and Q9,

making them moderately resource-intensive queries. Most

of them present aggregation functions and group by and

order by clauses. The eligible substitution parameters for

the queries followed the ones defined by Yuntao Jia7.

4.2 Methodology

To describe the ability of the different systems to improve

subsequently executed queries due to caching or similar

optimization techniques, they were executed a total of 5

times per SQL system. Every system was evaluated in an

isolated fashion, without external workloads or interfer-

ences. For evaluating the system’s ability to scale to dif-

ferent volumes of data, three different scale factors (10,

100, and 300 GB) were considered for the benchmark. The

data was stored in an external HDFS cluster under the same

network in TBL format, partitioned in files of 10 GB. A

series of Bash scripts allowed all systems to be indepen-

dently deployed, ensuring a clean state for each execution.

These scripts deploy, define the TPC-H schema accord-

ingly to the specific platform and execute the queries a

given number of consecutive times. After each query has

been executed, the schema is discarded, and the cluster’s

memory is cleansed to avoid caching. The system’s output

is written to files, then parsed to extract the execution times

for visualization.

For measuring the performance of Trino, its Hive

Metastore connector has been used, along with the

deployment of Hive, where the TPC-H tables are created.

The same procedure with the Metastore was followed for

Table 2 TPC-H queries

characterization
Query Avg Count Min/Max Sum From Group by Oder by Nested queries

Q1 3 1 4 1 � �
Q2 1 5 � �
Q3 1 3 � �
Q4 1 2 � � �
Q5 1 6 � �
Q6 1 1

Q7 1 5 � � �
Q8 3 7 � � �
Q9 1 6 � � �
Q10 1 4 � �
Q11 3 3 � � �
Q12 2 2 � �
Q13 1 2 � � �
Q14 2 2

Q15 1 2 � � �
Q16 1 3 � � �
Q17 1 1 2 �
Q18 2 3 � � �
Q19 1 2

Q20 1 4 � �
Q21 1 4 � � �
Q22 1 1 2 � � �

7 https://issues.apache.org/jira/browse/hive-600.
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Fig. 3 Boxplots of the computing times obtained when performing the TPC-H queries using a 100 GB scale factor

Cluster Computing

123



Hive, using the beeline JDBC driver for querying the

tables. For Spark, Python scripts with the Pyspark library

were produced. These scripts read and lazily create the

tables in memory to execute the queries. Finally, a view for

each table was created for Drill to query the data. The

schema for each table had to be implicitly declared as the

TBL format does not provide column names and types.

For the sake of reproducibility, the developed scripts for

automated deployment, TPC-H schema definition, and

queries are also available in the GitHub repository of the

paper.

4.3 Experimental setup

The system used for the performed experiments is a seven-

node Kubernetes cluster with CentOS 7. Each node is a

virtual machine provided with 12 virtual Intel Xeon Sky-

lake processor cores at 2.10 GHz and 64 GB of RAM. The

data were stored in a separated HDFS cluster, connected to

the main Kubernetes cluster through a 10 gigabit network,

leaving the Kubernetes nodes solely for processing

purposes.

On the Kubernetes cluster, the taint that blocks the

scheduling of pods on the master node has been removed,

allowing the use of all seven nodes for the SQL system

clusters.

The Kubernetes pod configurations for all systems were

fine-tuned during the experiments, so that the maximum

performance could be extracted from all of them while

harnessing the processing capabilities of the hardware. The

maximum memory for the pods was set to 62 GB and the

number of CPU cores was set to 11 for requests and 12 for

limits, leaving 2 GB and 1 core left for OS requirements.

4.4 Performance evaluation

As commented previously, we have consecutively executed

each TPC-H query on every platform. In this section, we

first analyze the results obtained when using the scale

factor of 100 GB; after that, we extend the study to cover

the systems’ performance including the 10 GB, 100 GB,

and 300 GB scale factors to determine whether the

observed behaviors of the first analysis hold when using

different data sizes.

4.4.1 Results with 100 GB scale factor

The computing times using the 100 GB scale factor are

summarized in Fig. 3, which shows a boxplot chart per

query. At first glance, we can observe that the dispersion of

the times is low in most of the cases except for Query 1.

Drill and Spark are very consistent (the boxes are almost

plain), while Hive and Trino show significant differences in

some particular queries (e.g, queries 3, 7, 9, and 18).

Regardless of the scale factor, we did not manage to exe-

cute Query 2 due to memory issues on Drill.

A performance ranking would be led by Trino, which is

the fastest system for most queries, followed by Drill,

Spark, and Hive. Although the number of runs is five, the

fact that the boxplots do not overlap (with the exception of

Query 1), allows us to claim that the differences are

significant.

To have an insight on the quantitative performance of

the four systems, we provide the mean and speed-up of the

query computing times in Table 3. The speed-ups are

computed as the highest execution time divided by the

current system computing time [14], so a speed-up of 1.0 in

the table means that the system is the slowest in the cor-

responding query. The best results are highlighted in

boldface, and it can be seen that Trino has the best fig-

ures in 20 out of the 22 queries; the exceptions are queries

number 11 (Drill is faster) and 17 (Spark is faster). The

table also includes the average values of all the columns, so

we can globally observe the relative differences among the

systems. Thus, Trino is the fastest system with an average

speed-up of 3.05, followed by Drill with 2.21, Spark with

1.79 and Hive with 1.09 being the slowest system.

About the performance of Spark, it is worth noting that

roughly 15 to 20 seconds of the Spark execution time is

spent on the Spark session initialization, which imposes a

mandatory overhead in each execution. The relative influ-

ence of this penalization depends on the data size and the

total computing time. This issue is analyzed in next section.

4.4.2 Scalability analysis

Once we have analyzed the TPC-H queries computing

times, our interest is to determine whether the observed

behavior persists when we scale the data size down (10 GB

scale factor) and up (300 GB scale factor).

To summarize all the results in a single chart, we present

in Fig. 4 a swarm plot for the execution times for each

query, system, and scale factor. The lower limit of the

y-axis is always 0.0 and the upper limit is highest time.

If we focus on the 10 GB data and compare them against

the 100 GB ones, we can see that, in most of queries, the

distances between the points corresponding to both datasets

with Drill, Spark, and Trino are similar, so their rank does

not change (i.e., Trino is the fastest, Spark is the slowest,

Drill is remains in the middle). This is not the case for

Hive, as its times with the 10 GB data are lower that the

ones of Spark in many queries.

Since Hive is the worst performing system at the data

scale factor of 100 GB, it can be intuited that its perfor-

mance may degrade as the data size grows. This fact is

Cluster Computing

123



confirmed when we take into consideration the 300 GB

scale factor data, as we observe that, excepting some

exceptions (queries 1, 2, and 6), Hive is by far the worst

performing system. To explain this behavior, we have to

take into account Hive’s architecture. Hive’s execution

engine used is Tez which, in contrast to other frequent

engines like MapReduce, does not write to disk at every

step of the execution. However, according to the MR3

documentation, it uses ‘‘hostPath volumes’’ at local direc-

tories to hold intermediate data to be shuffled between

worker pods. The more information, the higher the impact

on performance this write has in the execution times.

On the contrary, we find that the performance of Spark

improves when the size of the data grows. Thus, we

observe that Spark becomes the fastest system in queries 4,

5, 7, 9, and 19, and its computing times are similar to the

ones of Drill and Trino in queries 6, 8, 10, 12, 14, 16, 17,

20, and 22. We highlighted in the last section that Spark is

penalized by a startup time in the order of several seconds.

The results shown in Fig. 4 suggest that that overhead is

not linear, and its influence on the total computing time is

compensated when a high volume of data is processed.

An interesting case is query number 1, which presents

significant time reductions for 100 and 300 GB scale fac-

tors. From Table 2 we observe that it is the query with the

highest number of aggregation operations, three averages,

one count, and four sums with group and order by clauses.

An in-depth analysis of the benchmark from [19] suggests

that aggregation implementations that use hash-tables to

store group-by keys tend to spill to memory once these

tables exceed the CPU cache levels. The optimizer should

adopt a different approach that smoothes the cost to prevent

that costly event. As the aggregated keys are stored in

cache memory, subsequent queries experience a significant

reduction in time.

Table 3 Mean execution time

and speedup with respect to the

slowest system for each of the

TPC-H queries (100 GB scale

factor)

Query Drill Hive Spark Trino

Mean Speed-up Mean Speed-up Mean Speed-up Mean Speed-up

Q1 55.79 1.45 80.88 1.0 60.6 1.33 47.16 1.71

Q2 25.31 1.31 33.11 1.0 16.85 1.97

Q3 59.64 1.89 112.87 1.0 76.51 1.48 55.11 2.05

Q4 46.86 2.16 101.13 1.0 71.13 1.42 31.0 3.26

Q5 54.42 1.42 77.42 1.0 74.7 1.04 54.34 1.42

Q6 34.9 1.1 32.63 1.17 38.22 1.0 23.47 1.63

Q7 70.51 1.31 92.2 1.0 77.84 1.18 50.6 1.82

Q8 74.89 1.06 73.72 1.08 79.55 1.0 52.11 1.53

Q9 74.57 1.58 117.56 1.0 88.16 1.33 54.66 2.15

Q10 51.14 1.81 92.47 1.0 77.17 1.2 36.47 2.54

Q11 11.45 2.51 26.62 1.08 28.72 1.0 13.46 2.13

Q12 43.93 2.08 91.2 1.0 76.48 1.19 30.44 3.0

Q13 19.9 2.73 54.22 1.0 33.35 1.63 11.09 4.89

Q14 36.7 1.66 61.03 1.0 40.09 1.52 27.04 2.26

Q15 66.96 2.49 166.72 1.0 63.16 2.64 46.13 3.61

Q16 19.08 1.4 26.8 1.0 18.83 1.42 7.5 3.58

Q17 71.47 5.53 395.05 1.0 63.47 6.22 79.92 4.94

Q18 91.51 2.66 218.97 1.11 243.03 1.0 62.65 3.88

Q19 79.45 1.0 34.72 2.29 40.71 1.95 24.48 3.25

Q20 46.19 4.24 195.77 1.0 49.79 3.93 35.93 5.45

Q21 276.87 1.41 389.38 1.0 189.26 2.06 123.93 3.14

Q22 13.29 4.97 66.09 1.0 22.81 2.9 9.73 6.79

AVG. 61.88 2.21 115.13 1.09 70.3 1.79 40.64 3.05

The best results are highlighted in bold
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Fig. 4 Swarmplot of the computing times obtained when performing the TPC-H queries using different scale factors
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4.4.3 Discussion

The four systems present a similar architecture for exe-

cuting SQL queries. They consist of a master process and

the several distributed workers, except Drill, which con-

nects and syncs their workers through Zookeeper. Never-

theless, apart from their own local optimizations, policies

or strategies, they handle data reading in a different fash-

ion. Trino and Hive make use of the Hive Metastore for

creating the SQL tables, having this as an external

dependency, to which they connect through the JDBC

protocol using Beeline.

As mentioned, Hive offers the worst performance as the

data grows in size since it performs I/O for shuffling when

executing queries. This behaviour is present across all

queries except for queries 1, 2 and 6, where the results

show that it provides a similar performance to its

competitors:

• Q1 queries only table ‘lineitem’, which from Fig. 2, it

can observed that is the table with the highest number

of rows and columns (6.000.000 rows and 16 columns).

This is reflected in the results from Fig. 3 and Table 3,

from where it can be seen that despite accessing to a

single table, it still is one of the queries that take a

significant execution time from the benchmark.

• Q2 queries tables ‘part’, ‘partsupp’, ‘nation’, ‘supplier’

and ‘region’. In spite of being several tables, they are

relatively small in size compared to ‘lineitem’ or

‘orders’. The table that has the highest number of rows

is ‘partsupp’ (800.000) but it does have the low number

of 5 columns.

• Q6, like Q1, only queries table ‘lineitem’. However, it

is computationally less costly since it does not perform

any aggregations other than a sum and has no group by

or nested queries that would increase its complexity.

From these observations we can extract that Hive works

well when there are not join operations or nested queries

with large data sizes. The only two queries that work with a

single table are queries 1 and 6, where, despite having to

query a large volume of data, it performs as well as its

competitors. In the case of query 2, where there are nested

queries, it is still able to perform well since most of the

tables are relatively small in size and do not create a large

overhead when writing the data into the hostPaths. In

contrast to the other systems, which do have the spill-to-

disk disabled, Hive’s degradation in performance appears

when the queries involve large tables with nested queries

since they result in a high I/O bottleneck.

Trino consistently outperforms (for SF of 100 GB) the

rest of the systems for almost every query as seen in

Table 3. In comparison to its competitors, it does not seem

to falter in any regard across the different aspects

considered in the benchmark, except for a single execution

in Q7 that crashed due to memory issues for SF of 100 GB

(seen in Fig. 3), proving to be fast and reliable in most

cases regardless of the type of query that is executed.

Following a different approach, Spark directly reads the

data from HDFS through the creation of views. It lazily

reads the data as required when executing queries. Drill can

infer the schema from the data when reading from HDFS

and also supports views. The latter approach was chosen

since a view had to be created for some queries anyways.

This resemblance in the way of handling the data can be

observed in queries 7, 10, 12, 13, etc. where, if we do not

consider the constant initialization time that penalizes

Spark, the execution times are significantly close. This

suggests that the performance for both systems in most

scenarios is similar. Nonetheless, it can be observed how

Drill struggles against Spark with SC of 300 GB in some

queries, e.g.: in Q21, which queries table ‘lineitem’ thrice,

being the query with the largest data size from the

benchmark. Regarding robustness, only Drill was not able

to execute query number 2, independently of the scale

factor.

5 Conclusions

This paper has compared four scalable SQL-on-Hadoop

systems combined with Kubernetes: Apache Drill, Apache

Hive, Apache Spark, and Trino. We have conducted not

only a performance study but we have also included and

discussed the deployment of the systems on Kubernetes,

which was far from trivial due to the lack of official doc-

umentation and rather reduced communities around them.

The experimentation is based on the TPC-H benchmark

queries, from which we have generated three datasets with

different scaling factors: 10 GB, 100 GB and 300 GB. Our

approach has been to analyze in detail the performance of

the systems on the 100 GB dataset and then proceed with a

scalability study including all three datasets. The TPC-H

benchmark showed that Trino is in general the fastest

system when working with the 10 GB and 100 GB data

sets. Apache Spark has a initialization overhead that affects

it negatively when the data size is not large enough, but

when this is the case (in our study, with the 300 GB data

set) it is the best performing system on many queries.

Hive’s computation times with smaller data sizes are

comparable to its peers, but Hive suffers as data sizes

increase, making it the worst scaling system by far. Drill

appears as stable system, in the sense that it usually is not

the best one but it is near the bests in most of the queries.

There are some lines for further research that emerge

after the study carried out. The first one is to conduct an in-

depth experimentation about the auto-scaling of the four
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SQL systems on Kubernetes to determine how it behaves in

certain scenarios, by setting a minimum and maximum

number of nodes and analyzing how the nodes are added on

the fly when the workload increases. We intend also to

compare the performance the SQL systems on Kubernetes

against a deployment of them on bare metal.
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