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Abstract—The backstepping design of a controller which
stabilizes a class of second-order systems in predefined-time is
studied in this paper. The origin of a dynamical system is said to
be predefined-time stable if it is fixed-time stable and an upper
bound of the settling-time function can be arbitrarily chosen a
priori through an appropriate selection of the system parameters.
The proposed backstepping construction is based on recently
proposed Lyapunov-like sufficient conditions for predefined-
time stability. Different from other approaches, the proposed
backstepping design allows the simultaneous construction of a
Lyapunov function which meets the conditions for guaranteeing
predefined-time stability. A simulation example is presented to
show the behavior of a developed controller, and to show its
advantages against similar schemes.

Index Terms—Backstepping, Fixed-time stability, Lyapunov
design, Predefined-time stability, Second-order systems.

I. INTRODUCTION

The notions of Lyapunov and asymptotic stability have been
widely studied for more than 100 years [1]. So it is not for less
that several engineering problems have found their solutions,
and some nature phenomena have been modeled and explained
using these concepts.

On the other hand, several sophisticated industrial
applications as batch processes control and monitoring, faults
isolation, among others, demand the satisfaction of time-
response constraints to satisfy safety, regulatory or quality
standards. Nature itself presents us with some phenomena, like
dry friction, which cannot be adequately modeled using the
smooth fields associated with the mentioned types of stability.
In this sense, the notion of finite-time stability has attracted a
lot of attention during the last 50 years [2]–[4].

However, systems exhibiting the finite-time stability property
generally have a settling time which, although finite, is
unbounded as a function of the initial condition. A desired
characteristic is to eliminate this boundlessness condition, for
instance in estimation [5], [6], control [7], [8] or real-time
optimization problems [9]. With this in mind, a stronger form
of stability, called fixed-time stability has been studied in [10]–
[13]. For systems showing the fixed-time stability property, the
settling-time function is bounded.

Although conceptually the notion of fixed-time stability has
some advantages over the concept of finite-time stability, it
cannot be guaranteed in general that the convergence time can

be arbitrarily selected through the system tunable parameters.
Therefore, to surmount this difficulty, a new concept, called
predefined-time stability, has been studied in [14], [15]. For
systems presenting the predefined-time stability property, an
upper bound of the settling-time function can be arbitrarily
chosen through a suitable selection of the parameters of the
system.

In this sense, controllers which induce the predefined-
time stability on first-order systems [14]–[16], second-order
systems [17]–[19] and non-holonomic systems [20] have been
studied. In particular, for second-order systems, in [18] a time-
based switching scheme is proposed to avoid some singularity
issues and in [19], the controller is constructed under the block
control procedure. Nevertheless, none of these approaches
allows the construction of a Lyapunov function of predefined-
time stability for systems whose order is greater than one.

Taking this into account, this paper presents a modified
backstepping controller design for the predefined-time
stabilization of a class of second-order systems, allowing,
in turn, the simultaneous construction of a Lyapunov
function of predefined-time stability for this class of systems.
This controller also provides robustness against matched
perturbations; namely, the closed-loop system is robust, even
insensitive, in the presence of such perturbations. Given that
predefined-time stability is a stronger form of finite-time (fixed-
time) stability, it is not possible to induce it without using
non-smooth control signals and, because of this reason, the
standard backstepping procedure fails [21]. That is why a
supplementary variable is defined, and the backstepping scheme
is modified. The proposed construction relies on recently
introduced Lyapunov-like sufficient conditions for predefined-
time stability [16]. Simulation examples are presented to show
the behavior of a developed controller, and to compare its
performance against similar schemes [12].

II. PRELIMINARIES

A. Notation
We use the following notation throughout the paper:
• R is the set of real numbers; R+ = {x ∈ R : x > 0};

R≥0 = {x ∈ R : x ≥ 0}; R̄+ = R+ ∪ {∞}.
• For x ∈ Rn, xT denotes its transpose; ||x|| =

√
xTx;

Br(x) = {y ∈ Rn : ||y − x|| < r}.



• The function x→ bxeh is defined as bxe = |x|hsign(x)
for any x ∈ R if h > 0, and for any x ∈ R\{0} if h ≤ 0.

• θ′(z) = dθ
dz and θ′′(z) = d2θ

dz2 denote the first and the
second derivative, respectively, of the function θ : R→ R.

B. Class K1 and class W functions

Inspired in the class-K functions in [22, Definition 1] and [23,
Definition 4.2], the class-K1 functions are defined as follows:

Definition 1. A scalar continuous function κ : R≥0 → [0, 1)
is said to belong to class K1, denoted as κ ∈ K1, if it is strictly
increasing, κ(0) = 0 and κ(r)→ 1 as r →∞.

It follows directly from the definition that K1 functions are
bijective. In fact, κ ∈ K1 is injective because it is continuous
and strictly increasing and its image is κ(R≥0) = [0, 1), thus
it is surjective. Thus, since every class K1 function is bijective,
their inverses exist.

Definition 2. A scalar continuous function ω : R≥0 → [0, 1)
is said to belong to class W , denoted as ω ∈ W , if:
(i) ω ∈ K1 is twice differentiable in R+,

(ii) ω′(r) > 0 for r > 0 and ω′(0) ∈ R̄+, and
(iii) ω′′(r) < 0 for all r > 0.

Example 1. Let 0 < q < 1. Some examples of class W
functions are:
(i) ω(r) = 1− exp(−rq);

(ii) ω(r) = 2
π arctan(rq); and

(iii) ω(r) = rq

rq+α , with α > 0.

C. On predefined-time stability

Consider the following autonomous system:

ẋ = f(x;ρ), x(0) = x0, (1)

where x ∈ Rn is the system state, the vector ρ ∈ Rl stands
for the tunable parameters of (1). The function f : Rn → Rn
may be discontinuous, and such that the solutions of (1) exist
and are unique in the sense of Filippov (see [24] and [25,
Proposition 5]). Thus, Φ(t,x0) denotes the solution of (1)
starting from x0 ∈ Rn at t = 0. Moreover, the origin x = 0
is the unique equilibrium point of (1).
Remark 1. Usually, the parameters of a given dynamical
system are not tunable, but they have fixed numerical values
instead. On the other hand, in control or observation problems,
for example, we consider systems of the form

ẋ = g(x,φ(x;ρ)), (2)

where ρ are tunable parameters of which function φ depends.
The functions φ : Rn → Rm and g : Rn × Rm → Rn may
represent:
• in control design: φ stands for the feedback control input

to be designed, and g represents the closed-loop dynamics
of the tracking error x;

• in observer design: φ represents the feedback error
injection to be designed, whereas g represents the
dynamics of the estimation error x.

In any case, we may study the properties of (2) as if we were
studying the properties of the autonomous system (1), defining
f(x;ρ) := g(x,φ(x;ρ)).

Definition 3 ( [26]). The origin of (1) is said to be
• Lyapunov stable if for any x0 ∈ Rn, the solution

Φ(t,x0) is defined for all t ≥ 0, and for any ε > 0,
there is δ > 0 such that for any x0 ∈ Rn, if x0 ∈ Bδ(0)
then Φ(t,x0) ∈ Bε(0) for all t ≥ 0;

• asymptotically stable if it is Lyapunov stable and
Φ(t,x0)→ 0 as t→∞, for any x0 ∈ Rn;

• finite-time stable if it is Lyapunov stable and for
any x0 ∈ Rn there exists 0 ≤ T < ∞ such that
Φ(t,x0) = 0 for all t ≥ T . The function T (x0) =
inf {T ≥ 0 : Φ(t,x0) = 0, ∀t ≥ T} is called the settling-
time function of (1);

• fixed-time stable if it is finite-time stable and the settling-
time function of (1), T (x0), is bounded on Rn, i.e. there
exists Tmax such that supx0∈Rn T (x0) ≤ Tmax <∞

Example 2. Consider the system (1) having the form

ẋ = − 1

ρ1
bxeρ2 − ρ1 bxe2−ρ2 , (3)

where x ∈ R is the state of the system, ρ = [ρ1, ρ2]
T ∈ R2

is the vector of tunable parameters of (3), which comply to
ρ1 > 0 and 0 < ρ2 < 1. Using [12, Lemma 1], one can easily
show that the origin of (3) is fixed-time stable. Moreover,
from [27, Theorem 1], the settling-time function of (3) satisfies

sup
x0∈R

T (x0) =
B (1/2, 1/2)

2ρ
−1/2
1 ρ

1/2
1 (1− ρ2)

=
π

2(1− ρ2)
>
π

2
.

This example shows that the convergence time for system (3),
whose origin is fixed-time stable, cannot be reduced arbitrarily
no matter how the parameters ρ are tuned. The case when
the convergence time can be arbitrarily assigned through an
appropriate tuning of the system parameters ρ corresponds
to the notion of predefined-time stability, which is defined as
follows:

Definition 4. The origin of (1) is said to be predefined-time
stable if it is fixed-time stable and for any Tc ∈ R+, there
exists some ρ ∈ Rl such that the settling-time function of (1)
satisfies

sup
x0∈Rn

T (x0) ≤ Tc.

Example 3. Let the system (1) of the form given in [10], [12]

ẋ = −bρ1 bxeρ3 + ρ2 bxeρ4eρ5

= − (ρ1 |x|ρ3 + ρ2 |x|ρ4)
ρ5 sign(x),

(4)

where x ∈ R is the state of the system, ρ =
[ρ1, ρ2, ρ3, ρ4, ρ5]

T ∈ R5 is the vector of tunable parameters
of (4), which comply to ρ1, ρ2, ρ5 > 0 and 0 < ρ5ρ3 < 1 <
ρ5ρ4. The origin of (4) is fixed-time stable, by [12, Lemma 1].
Moreover, given Tc ∈ R+, there exist ρ1 = ρ2 = Γ(1/4)4

4πT 2
c

,
ρ3 = 1, ρ4 = 3 and ρ5 = 1

2 , such that the settling-time
function of (4) satisfies (see [27, Theorem 1]) supx0∈R T (x0) =



Γ(1/4)2(
Γ(1/4)4

4πT2
c

)1/2

Γ(1/2)(3−1)

= Tc. Thus, the origin of system (4)

is predefined-time stable.

The following Lyapunov-like theorem provides sufficient
conditions for a system to present the predefined-time stability
property.

Theorem 1. Let κ ∈ K1 be differentiable in R \ {0}, and
V : Rn → R≥0 be a continuous, radially unbounded and
positive definite function. If for any Tc ∈ R+, there exists
some ρ ∈ Rl, such that the time-derivative of V along the
trajectories of (1) satisfies

V̇ (x) ≤ − 1

Tcκ′(V (x))
, for x ∈ Rn \ {0} , (5)

then the origin of (1) is predefined-time stable. Moreover, if (5)
is an equality, then supx0∈Rn T (x0) = Tc.

Proof. Let Tc ∈ R+. Then, by hypothesis, there exists some
ρ ∈ Rl such that (5) holds. Given that function V is a
continuous, positive definite and radially unbounded function,
the origin ofsystem (1) is asymptotically stable [23].

Now, consider the function W : Rn → [0, 1), defined by
W (x) = κ(V (x)). Hence, using (5), the time-derivative of
W (x) along the trajectories of (1) satisfies Ẇ (x) ≤ − 1

Tc
for x ∈ Rn \ {0} . Thus, let Φ(t,x0) be a solution of (1)
and let w(t) ≥ 0 be a function that satisfies ẇ = − 1

Tc
, and

W (x0) ≤ w(0). Hence,

w(t) =

{
w(0)− t

Tc
if 0 ≤ t ≤ Tcw(0)

0 if t > Tcw(0),

and W (Φ(t,x0)) ≤ w(t) (it is an equality only if (5) is an
equality) by the comparison lemma [23]. Thus, W (Φ(t,x0)) =
0 for t ≥ TcW (x0), implying that the trajectories of (1)
reach the origin in finite time, and the settling-time function
satisfies supx0∈Rn T (x0) ≤ supx0∈Rn TcW (x0) = Tc. Hence,
by Definition 4, the origin of system (1) is predefined-time
stable. Moreover, if (5) is an equality, then supx0∈Rn T (x0) =
supx0∈Rn TcW (x0) = Tc.

III. PREDEFINED-TIME BACKSTEPPING CONTROLLER FOR
SECOND-ORDER SYSTEMS

A. Problem statement

Consider the generic class of second-order dynamical
systems

ẏ = f(y) + g(y)(ū+ d), (6)

where y ∈ R2, ū ∈ R, f , g : R2 → R2 are smooth vector
fields, and d ∈ R is a matched term which stands for all
external perturbations and uncertainties.

Under the assumption that
span {(∂g/∂y)f(y)− (∂f/∂y)g(y), g(y)} is a non-singular
distribution whose dimension is equal to 2, system (6) can be
transformed into [28]

ẋ1 = x2

ẋ2 = u+ ∆,
(7)

where [x1 x2]
T

= x ∈ R2 is the state, u ∈ R is the control
input and ∆ ∈ R is an unknown but bounded perturbation term
of the form supt∈R≥0 |∆(t)| ≤ δ, with 0 ≤ δ < ∞ a known
constant.

The objective is to design a feedback control input u = u(x)
such that (7) is predefined-time stable.

B. Controller construction

We will construct the controller in two steps following the
backstepping procedure.

Step 1: consider the Lyapunov function candidate V1(x1) =
|x1|. Then, the time-derivative of V1 along the trajectories
of (7) is

V̇1(x1) = sign(x1)x2, for x1 6= 0. (8)

The variable x2 is used as a virtual control input to stabilize
x1. To this end, let

s = x2 − v1(x1), (9)

where v1(x1) = − sign(x1)
ρ1ω′(|x1|) , with ω ∈ W , and ρ1 > 0.

Hence, replacing (9), (8) becomes

V̇1(x1) =sign(x1)v1(x1) + sign(x1)s

=− 1

ρ1ω′(|x1|)
+ sign(x1)s, for x1 6= 0. (10)

Note that if s = 0, then (10) takes the form of (5) (see
Theorem 1).

Step 2: now, inspired in [12, Theorem 2], consider the
function

sd = x2 +
⌊
bx2e2 − 2 bv1(x1)e2

⌉1/2

. (11)

The following proposition states that sd vanishes in the same
set and has the same signum as the function s in (9).

Proposition 1. The variables s and sd, in (9) and (11),
respectively, satisfy:
(i) ssd ≥ 0;

(ii) ssd = 0 if and only if s = sd = 0.

Proof. Given that the function b·eh is increasing, we have that

sd ≥ 0⇐⇒x2 ≥ −
⌊
bx2e2 − 2 bv1(x1)e2

⌉1/2

⇐⇒bx2e2 ≥ −bx2e2 + 2 bv1(x1)e2

⇐⇒bx2e2 ≥ bv1(x1)e2

⇐⇒x2 ≥ v1(x1)

⇐⇒s = x2 − v1(x1) ≥ 0.

Hence, proposition (i) is proved. Moreover, proposition (ii)
follows from identical steps, but replacing the inequality symbol
“≥” by the equality symbol “=”.

Considering the above, let

V2(x1, sd) = |x1|+ |sd| = V1(x1) + |sd| (12)



be a Lyapunov function candidate. Its time-derivative along
the trajectories of system (7) is

V̇2(x1, sd) = V̇1(x1) + sign(sd)ṡd

= − 1

ρ1ω′(|x1|)
+ sign(x1)s

+ sign(sd)

[
u+ ∆

+
|x2| (u+ ∆)− s |v1(x1)v′1(x1)x2|∣∣∣bx2e2 − 2 bv1(x1)e2

∣∣∣1/2
]

(13)

for x1, sd 6= 0. Thus, the control input u is designed as

u = v2(sd)− ρ2sign(sd)− s
+ 2 |v1(x1)| v′1(x1)sign(sd), (14)

where v2(sd) = − sign(sd)
ρ1ω′(|sd|) , and ρ2 ≥ δ.

Using the fact that sign(s) = sign(sd) (see Proposition 1),
and replacing (14) in (13), it yields

V̇2(x1, sd) = − 1

ρ1ω′(|x1|)
− 1

ρ1ω′(|sd|)
+ 2 |v1(x1)| v′1(x1)

+ sign(x1)s− (k + 1) |s| − ρ2 + ∆sign(sd)

−
|x2|

ρ1ω′(|sd|) + (k + 1) |x2| |s|∣∣∣bx2e2 − 2 bv1(x1)e2
∣∣∣1/2

+ 2 |v1(x1)| v′1(x1)
|x2| − x2sign(sd)∣∣∣bx2e2 − 2 bv1(x1)e2

∣∣∣1/2 .
Note that:

(i) v′1(x1) = ω′′(|x1|)
ρ1(ω′(|x1|))2 ≤ 0;

(ii) sign(x1)s ≤ |sign(x1)s| = |s| and x2sign(sd) ≤
|x2sign(sd)| = |x2|;

(iii) ∆sign(sd) ≤ |∆| ≤ δ ≤ ρ2.
Taking (i), (ii) and (iii) into account, the time-derivative of

V2 along the trajectories of (7) satisfies

V̇2(x1, sd) ≤ −
1

ρ1ω′(|x1|)
− 1

ρ1ω′(|sd|)
, for x1, sd 6= 0.

(15)
From (15), the origin of system (7)-(14) is asymptotically

stable. Moreover, for V2(x1, sd)) = |x1|+ |sd|, there are some
choices of ω ∈ W (see Proposition 2 in the Appendix) for
which (15) satisfies

V̇2(x1, sd) ≤ −
1

2ρ1ω′(V2(x1, sd))
(16)

for x1, sd 6= 0.

Remark 2. The function V2(x1, sd) is continuously
differentiable everywhere except in the set S = S1 ∪ S2,
where S1 = {(x1, sd) : x1 = 0} and S2 = {(x1, sd) : sd = 0}.
Moreover, since ẋ1 = x2, the trajectories of (7) just cross
the manifold S1 and cannot remain on it, except at the origin
(x1, x2) = (0, 0). On the other hand, a sliding mode might

appear on the manifold S2, due to the controller structure (14).
If this is the case, note that system (7) would evolve according
to the reduced order equation ẋ1 = x2 = v1(x1), which is
predefined-time stable (see (10)).

All the above analysis is summarized in the next theorem.

Theorem 2. The origin of closed-loop system (7)-(14) is
predefined-time stable.

Proof. Let Tc ∈ R+. The time-derivative of the Lyapunov
function (12) along trajectories the closed-loop system (7)-
(14) satisfies (16). Hence, using Theorem 1, the origin of the
closed-loop system (7)-(14) is predefined-time stable and the
settling-time function complies to

sup
x0∈R2

T (x0) ≤ Tc = 2ρ1.

IV. SIMULATION RESULTS

To illustrate the effectiveness of the proposed control scheme,
consider the closed loop system (7)-(14), with the particular
selection of ω(r) = 2

π arctan(rq) for the controller (14).
In the simulation, the bounded perturbation term, which is

unknown to the controller, has the form ∆(t) = sin(10πt).
Moreover, the controller (14) parameters are set to q = 0.4,
ρ1 = 0.5 to ensure a convergence time of Tc = 1 (see
Theorem 2), and ρ2 = 2 ≥ 1 = δ ≥ |∆(t)|. It is worth
to mention that all the simulations are conducted using the
Euler integration method, with a fundamental step size of
1× 10−5 s.

In the first place, the predefined-time convergence property
is demonstrated simulating the closed-loop system (7)-(14)
for the following initial conditions: x(0) = [x0 x0]

T , with
x0 = 1, 10, 100, 1000.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

−4

−2

0

2

4

Tc=2ρ1=1
x1(t)
x2(t)

0.99 1.00 1.01
−0.05
0.00
0.05

Fig. 1. State variables x1(t) and x2(t) over time, for several initial conditions
of the form x(0) = [x0 x0]

T , with x0 = 1, 10, 100, 1000.

Fig. 1 shows the evolution of the state variables over time,
varying the initial conditions of the closed-loop system (7)-
(14) as mentioned. One can appreciate the convergence of the
variables to the origin before the predefined convergence time
Tc = 2ρ1 = 1.



In the second place, and for comparison purposes, we also
include the simulation of the fixed-time (predefined-time, in
fact) controller proposed in [12, Theorem 2], which has the
following form

u = −α1 + 3β1x
2
1 + 2k

2
sign(σ)−

⌊
α2σ + β2 bσe3

⌉1/2

(17)

where σ = x2 +
⌊
bx1e2 + α1x1 + β1 bx1e3

⌉1/2

.
In [12, Theorem 2], it is stated that the parameters should

be calculated as α1

2 = α2 = β1

2 = β2 = 64 to ensure a
convergence time of Tc = 1 s; moreover, the parameter k = 2.

Now, some advantages of the proposed scheme with respect
to the controller (17) are shown simulating both schemes with
the same the initial condition x(0) = [1000 0]

T .

0.0 0.5 1.0
t

−4

−2

0

2

4 x1(t)
x2(t)

0.0 0.5 1.0
t

−100

−50

0

50

100

Fig. 2. State variables x1(t) and x2(t) over time (left) and control input
signal (right) for the closed-loop system (7)-(14) with initial condition
x(0) = [1000 0]T .

0.0 0.5 1.0
t

−4

−2

0

2

4 x1(t)
x2(t)

0.0 0.5 1.0
t

−100

−50

0

50

100

Fig. 3. State variables x1(t) and x2(t) over time (left) and control input
signal (right) for the closed-loop system (7)-(17) with initial condition
x(0) = [1000 0]T .

Figs. 2-3 show the evolution of the state variables over time
and the control input signal for the controller schemes (14)
and (17), respectively. Two things may be noted here:
(i) the convergence time estimation for the mentioned initial

condition is the same for both schemes (Tc = 1 s);

however, the actual convergence time for the proposed
scheme is 0.48 s, whereas for the scheme proposed in
[12, Theorem 2] it is 0.45 s. This is, the convergence time
estimation with the proposed scheme is better.

(ii) The amplitude of the high frequency oscillations for the
proposed controller is ρ2 = 2 after the origin is reached,
whereas for the controller proposed in [12, Theorem 2] it
is α1+2k

2 = 66. This is, the control effort (measured with
the amplitude of the oscillations) needed by the proposed
controller after reaching the origin represents only 3.03%
of the control effort needed by the controller proposed in
[12, Theorem 2].

V. CONCLUSION

This paper was dedicated to the design of a controller
which stabilizes a class of second-order systems in predefined-
time, using a modified backstepping construction procedure.
Given that predefined-time stability is a stronger form of finite-
time (fixed-time) stability, the standard backstepping procedure
fails because of the non-smooth control signals. That is why
inspired in [12, Theorem 2] a new variable was defined, and
the backstepping procedure was modified.

Different from other approaches like [18], [19], the proposed
controller synthesis allowed, for the first time, the construction
of a Lyapunov function of predefined-time stability for second-
order systems.

Finally, a simulation example validated the theoretical results
showing the behavior of the proposed control scheme and its
advantages against the controller proposed in [12, Theorem 2].
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APPENDIX
SOME IMPORTANT INEQUALITIES

In this appendix, some important inequalities are reviewed.

Lemma 1 (L1). Let x1, x2 ∈ R and f, g : R→ R be two sim-
ilarly ordered functions (i.e., f and g are both non-decreasing,

or f and g are both non-increasing). Then, f(x1)g(x1) +
f(x2)g(x2) ≥ 1

2 (f(x1) + f(x2)) (g(x1) + g(x2)).

Proof. Since f and g are similarly ordered, the result follows
from he Chebyshev’s Inequality [29, Theorem 43].

Lemma 2 (L2). Let 0 ≤ q ≤ 1 and x1, x2 ∈ R≥0. Then,

xq1 + xq2 ≥ (x1 + x2)q.

Proof. Consider the function ε : R≥0 × R≥0 → R, defined
by ε(x, y) = xq + yq − (x + y)q. It is to be proved that
ε(x1, x2) ≥ 0. First of all, note that ε(x, 0) = ε(0, y) = 0 for
all x, y ∈ R+ ∪ {0}. Furthermore, since −1 ≤ q − 1 ≤ 0, the
partial derivatives ∂ε(x,y)

∂x = q
[
xq−1 − (x+ y)q−1

]
≥ 0 and

∂ε(x,y)
∂y = q

[
yq−1 − (x+ y)q−1

]
≥ 0 for x, y ∈ R+. Hence,

ε(x1, x2) ≥ 0 and the proof is concluded.

Now, we are ready to prove a subadditivity-like property for
the following functions having at hand the previous inequalities.

Proposition 2. Let 0 < q < 1
2 . The class W functions:

(i) ω(r) = 2
π arctan(rq), and

(ii) ω(r) = rq

rq+1 ,
satisfy 1

ω′(x) + 1
ω′(y) ≥

1
2

1
ω′(x+y) for x, y ∈ R≥0.

Proof. (i) Note that 1
ω′(r) = π

2q (1 + r2q)r1−q. Hence, using
Lemma 1 (L1) and Lemma 2 (L2), we have

1

ω′(x)
+

1

ω′(y)
=

π

2q
((1 + x2q)x1−q + (1 + y2q)y1−q)

≥ 1

2

π

2q
((2 + x2q + y2q)(x1−q + y1−q)) (L1)

≥ 1

2

π

2q
((2 + (x+ y)2q)(x+ y)1−q (L2)

≥ 1

2

π

2q
((1 + (x+ y)2q)(x+ y)1−q (2 ≥ 1)

=
1

2

1

ω′(x+ y)
.

(ii) Note that 1
ω′(r) = 1

q (1+rq)2r1−q . Hence, using Lemma 1
(L1) and Lemma 2 (L2), we have

1

ω′(x)
+

1

ω′(y)
=

1

q
((1 + xq)2x1−q + (1 + yq)2y1−q)

≥ 1

2

1

q
((1 + xq)2 + (1 + yq)2)(x1−q + y1−q)

(L1)

≥ 1

2

1

q
((2 + 2(x+ y)q + (x+ y)2q)(x+ y)1−q

(L2)

=
1

2

1

q
(1 + (x+ y)q)2(x+ y)1−q

(2 ≥ 1)

=
1

2

1

ω′(x+ y)
.


