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Abstract. Image classification has undergone a revolution in recent
years due to the high performance of new deep learning models. However,
severe security issues may impact the performance of these systems. In
particular, adversarial attacks are based on modifying input images in a
way that is imperceptible for human vision, so that deep learning image
classifiers are deceived. This work proposes a new deep neural network
model composed of an encoder and a Generative Adversarial Network
(GAN). The former encodes a possibly malformed input image into a
latent vector, while the latter generates a reconstructed image from the
latent vector. Then the reconstructed image can be reliably classified
because our model removes the deleterious effects of the attack. The
experiments carried out were designed to test the proposed approach
against the Fast Gradient Signed Method attack. The obtained results
demonstrate the suitability of our approach in terms of an excellent bal-
ance between classification accuracy and computational cost.

Keywords: Generative Adversarial Networks · Adversarial attack · Fast
Gradient Signed Method attack.

1 Introduction

Deep learning (DL) has been widely used during the last decade for many differ-
ent applications due to its exceptional performance. Particularly, Convolutional
Neural Networks (CNNs) have become a standard in most image processing
tasks, such as detection [1], segmentation [2], classification [3] or quality enhance-
ment [4]. These deep models outperform classical machine learning methods and
provide a powerful tool for scientists and entrepreneurs to develop new solutions.

However, there is a security breach in many existing DL models: perturbed
input samples that are imperceptible for humans may provoke wrong outputs
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by the networks. This tentative is called an adversarial attack. DL models learn
non-intuitive features that adversarial attacks are able to exploit by using ma-
nipulations of the inputs [5]. Focusing on the image classification domain, ad-
versarial examples, i.e., perturbed samples, are designed intentionally to cause
false predictions. Sometimes, these adversarial samples generated to disturb one
model can be transferred to another target model, which is used to perform what
is called a black-box attack [6]. On the other hand, when the adversary has access
to all the parts of the intrinsic model, this is referred to as a white-box attack
[7]. This paper intends to provide defense mechanisms for this type of attack.

Developing defense mechanisms is of paramount importance since attacks
can affect many real-world applications. For example, an adversary can mod-
ify traffic signs to cause accidents in autonomous vehicles [8]. Many defensive
methods for detecting adversarial samples and providing a correct classification
have been proposed. Thus, roughly, these approaches can be categorized into
two types: heuristic defenses and provable defenses. The former is only exper-
imentally validated, while the latter is theoretically proved. Creating heuristic
defenses is, somehow, easier than proving the effectiveness of a provable defense.
In this paper, we will focus on heuristic methods. Some of the most representa-
tive heuristic defenses are:

– Adversarial training: fast gradient sign method [9], projected gradient de-
scent [10], generative adversarial training [11].

– Randomization: random input transformation [12], random noising [13], ran-
dom feature pruning [14].

– Denoising: conventional input rectification [15], Generative Adversarial Net-
works (GANs) based input cleansing [16], auto encoder-based input denois-
ing [17].

Most of the incorrect classifications of adversarial examples are due to im-
perceptible modifications of the pixels of an image. This work intends to propose
a defensive algorithm to reduce the effect of adversarial attacks employing the
combination of a GAN-based input cleansing method and an autoencoder. GANs
were proposed by Goodfellow et al. [9], being a model composed of two networks:
a generator that learns a mapping between a latent space and a data distribution
and a discriminative network that distinguish the proper data. The idea of our
method is the use of an encoder to project the input image onto the latent space
and then feed the generative adversarial network. Thus, given an adversarial
example, the latent vector generated by the encoder would be associated with a
benign image learned by the GAN.

Therefore, the contributions of the paper are: 1) a new methodology of de-
fending against adversarial examples is proposed combining GANs and autoen-
coders, named as EGAN, 2) a practical framework for image classification is
implemented with a simple training procedure. The rest of the paper is orga-
nized as follows: in Section 2 is presented the theory of our proposal, Section 3
is devoted for the experimentation, and finally, the conclusions are presented in
Section 4.
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2 Methodology

In this section, our proposed deep learning model is presented. It is called Encod-
ing Generative Adversarial Networks (EGAN) because it contains a Generative
Adversarial Network (GAN) that produces an image from a latent vector, and
an encoder that produces a latent vector from an image. The encoder is a feed-
forward deep convolutional neural network.

Let us note G the Generative Adversarial Network:

X = G (z) (1)

where z ∈ RL is a latent vector, and X ∈ RN×M×Q is the generated image with
N rows, M columns and Q channels. The latent space dimension L is much
smaller than the size of the image, L ≪ NMQ. On the other hand, let E stand
for the encoder:

z = E (X) (2)

As seen, the encoder E performs the inverse operation of the Generative
Adversarial Network G. Now, let us assume that G has already been trained on
some distribution P (X) of images of interest. In our scheme, G is held fixed so
that their parameters are not changed during the training of the encoder E.

The encoder is trained by minimizing the loss function L given by the mean
squared error between the generated image X and its reconstruction X̂ by the
encoder:

X̂ = G (E (X)) (3)

L =
1

T

T∑
i=1

∥∥∥Xi − X̂i

∥∥∥2 (4)

where ∥·∥ stands for the Euclidean norm and T is the number of training images
Xi. Please note that in (4) it is assumed that the images are flattened prior to
the computation of the Euclidean norm.

The training algorithm for the encoder E reads as follows:

1. Draw T random latent vectors zi ∈ RL, for i ∈ {1, ..., T}.
2. Generate the T associated training images with the GAN: Xi = G (zi).
3. Adjust the trainable parameters of the encoder by stochastic gradient descent

on the loss function L (equation 4).
4. If the maximum number of epochs for the training of the encoder has been

reached, then halt. Otherwise, go to step 3.

In our experiments, the attack applied to the input images is called Fast
Gradient Signed Method (FGSM) which consists in propagating ∇X̃J(θ, X̃,Y)

, where X̃ is the input image, Y is the ground truth label for X̃, and θ stands
for the parameters of the attacked classifier, to yield the adversarial sample X:

X = X̃+ ϵ ∗ sign(∇X̃J(θ, X̃,Y)) (5)
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Fig. 1. EGAN methodology

where ϵ represents the step size in the direction that maximizes the loss, and
J(θ, X̃,Y) is the loss used to train the classifier. The higher the value of ϵ,
stronger the attack and the easier it is to see with the naked eye.

At test time, a (possibly malformed) test image X is provided. Then the cor-

responding reconstructed image X̂ is computed by (3). Finally, the reconstructed

image X̂ is passed on to a suitable image classifier.

Figure 1 shows a schema of the proposed method. First, given an adversarial
input image, the trained encoder produces a latent vector from that input image.
Then, the generator reconstructs the image from that latent vector. And finally,
this reconstructed image is supplied as input to the classifier in order to predict
its class.

The rationale behind our proposal is that the encoder learns to project an
arbitrary input image X onto a latent vector z that belongs to the support
of the probability distribution P (z) of the latent vectors associated with the
probability distribution of images P (X) that was learned by the GAN. This
way, if a malformed image from an adversarial attack is provided to the encoder,
then the encoder projects the image onto a latent vector that is associated with
a corrected image which belongs to the distribution of legitimate images learned
by the GAN.

It must be highlighted that our proposed EGAN model is both class-agnostic
and classifier-agnostic because the class labels are not used at any time, and
there is no flow of information from the image classifier to the EGAN at all. In
other words, the EGAN is a fully unsupervised neural model since the class label
information is never employed, neither directly nor indirectly. This enhances the
robustness of the EGAN as a defense against image classification attacks.

3 Experimental results

The experiment consists in compare different defense methods against a FGSM
adversarial attack, measuring the accuracy of the defense methods across the dif-
ferent values of ϵ (input variation) and the computational time used to complete
the experiment by applying these methods as preprocessors.
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3.1 Methods

The methods used in the comparison are:

– Original : No defense method used.
– DnCNN [18]: Convolutional Neural Network trained to predict the noise of

a certain sample. It is used for denoising and super-resolution.
– AutoEncoder [19]: Convolutional Neural Networks trained to encode and

decode an image, making the information pass through a bottleneck and
learning the significant features.

– APE-GAN [20]: Generative Adversarial Network trained to receive an ad-
versarial sample as input and generate a sample without the adversarial
modification.

– PixelDefend [21]: Auto-regressive Convolutional Neural Network trained to
predict the value of a pixel based on the previous pixels. This network is
used to make small changes on the (possibly malformed) sample.

– Defense-GAN [16]: Generative Adversarial Network trained to learn the
training samples distribution. Then various random latent vectors are gen-
erated and optimized to generate reconstructed samples.

3.2 Dataset

The dataset used is the MNIST database (Modified National Institute of Stan-
dards and Technology database) which is formed by handwritten digits images
and is divided into 60000 training images and 10000 testing images. It was cre-
ated from another dataset called NIST (National Institute of Standards and
Technology), where the training images and the testing images had a different
origin. The MNIST was created mixing these images, anti-aliasing and resizing
these images to 28x28 pixels.

3.3 Architecture and parameter selection

In our experiments, input images of size 28×28×1 are considered, i.e., N = 28,
M = 28, Q = 1; while the ϵ values used in the FGSM attack are from 0 to 1
where 0 means not modifying the input image and 1 means modifying the input
image completely.

Regarding the proposed architecture of the encoder E, it is based on the
GAN architecture called DCGAN [22], which introduces the use of convolutional
layers instead of fully connected layers, in both generator and discriminator
networks. This way, the encoder E is composed of four parts. The first part is a
convolutional block that comprises a 2D convolutional layer with 3×3 kernel size
that increases the number of channels to 100, followed by a batch normalization
layer, and a leaky ReLU layer. The second part contains 10 convolutional blocks,
each of them with a 2D convolutional layer with 3× 3 kernel size that keeps the
image size at 28×28×100, followed by a batch normalization layer, and a leaky
ReLU layer. The third part contains 11 convolutional blocks, each of them with
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a 2D convolutional layer with 3×3 kernel size, followed by a batch normalization
layer, and a leaky ReLU layer. Each convolutional block of the third part reduces
the image size by two pixels to a final size of 6 × 6 × 100. Finally, the fourth
part contains a flatten layer whose output is a vector of size 3600 × 1, followed
by a fully connected linear layer that outputs the latent vector z of size 30× 1.
Therefore, the dimension of the latent space is L = 30.

According to the classifier used to perform the experiments, it is a convolu-
tional neural network composed of 2 2D convolutional layers with 3 × 3 kernel
size. The first layer increases the number of channels to 20 and uses a stride of
2 while the second layer reduces the number of channels to 10 and uses a stride
of 3. The both of this layers are followed by a batch normalization and a ReLU
layer. After this the size of the data is 4 × 4 × 10. Then we use 2 linear layers
(the first followed by a ReLU layer) with 50 and 10 neurons respectively. Fi-
nally, a Log Softmax layer is applied to return the probabilities associated with
each class. This trained network classifies no attacked MNIST images with an
effectiveness of 99%.

3.4 Results

From a qualitative point of view, our proposed approach EGAN reconstructs
images affected by an FGSM adversarial attack, even for highest values of ϵ, as
can be observed in Figure 2.

Regarding the reconstructed images computed by the selected methods for
the comparison, Figure 3 summarizes the visual results for each class of the
considered dataset. As it is reported, EGAN, APE-GAN and Defense-GAN
offer a reconstructed image with practically no noise.

In order to compare quantitatively the performance of the selected methods,
the considered measure has been the accuracy (also known as detection rate).
This measure shows the percentage of hits of the system by providing values in
the interval [0, 1], where higher is better.

As it can be seen in Figure 4, most considered methods yield a high similar
performance for lower values of Epsilon (ϵ in equation 5). However, our proposal
EGAN is the best method for values of Epsilon higher than 0.25.

Moreover, without loss of generality due to the required computational time
of each method is the same independently of the value of ϵ, Figure 5 shows the
computational time against the accuracy performance for ϵ = 0.5. As it can be
observed, our proposal is much faster than methods like Defense-GAN, that have
a similar accuracy. On the other hand, faster methods such as APE-GAN do not
offer a good performance for higher values of ϵ. This way, the proposed approach
EGAN offers a good balance between computational time and accuracy.

4 Conclusions

This work proposes a methodology to reconstruct images that have been mod-
ified by applying a Fast Gradient Signed Method (FGSM) adversarial attack.
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Fig. 2. Original, FGSM adversarial and reconstructed images with EGAN

This new approach is based on a Generative Adversarial Network (GAN) and
an autoencoder. While the GAN produces an image from a latent vector, the
encoder performs the inverse operation of the GAN by producing a latent vector
from an image. Experiments by considering several well-known methods from
the literature indicate that the performance of the proposed approach in terms
of accuracy is suitable to face an adversarial attack. Additionally, the computa-
tional cost of the proposal is considerably more reduced than other methods of
the same kind with similar yielded accuracy.
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8 Pérez-Bravo et al.
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