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Abstract
Financial time series forecasting certainly is the case of a predictive modeling process with many

challenges, mainly because the temporal structure of the data. Genetic programming, as a particular
variation of genetic algorithms, can be used to as a feature engineering, importance and selection process all
at once, it can provide highly interpretable symbolic features that have low colinearity among them and yet
high correlation with a target variable. We present the use of such method for generating symbolic features
from endogenous linear and autoregressive variables, along with a Multi-Layer Perceptron, to construct
a binary predictor for the price of Continuous Future Contracts of the Usd/Mxn intra-day exchange rate.
The proposition of this work is three fold, first is stated a variation to formulate the classical regression
problem of forecasting a continuous value, into a classification problem of forecasting a discrete and binary
value, also, in order to address the feature engineering step, the use of Genetic Programming is proposed
for producing non linear variables highly correlated with a target and highly uncorrelated with each other,
and finally, variations on the performance metrics and Folds of data to perform the training process are
implemented. The results are presented for a Logistic regression and a Multi-Layer Perceptron applied to 6

years of historical prices for the UsdMxn Financial Future contract.
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1 Introduction

In recent years there has been an increase attention on the development of Machine Learning
(ML) methods, some industries or types of applications are more prone to knowledge
disemination than other. For instance, there is an inclination to associate ML advances as
image recognition algorithms become more capable, the main public cases the progress on self
driving cars, and medical diagnosis. Such wide and standard view of the cannonical problems
ML can solve do tend to influence theoretical definitions, techniques and also physical devices
offering like the Graphical Processing Unit as an almost pre-defined technology for Image and
Video processing, at least in the general public and academic progress sense.

The Financial Machine Learning (FML) case is when applying ML to a financial type of
problem, whether is credit scoring, risk modeling, investment decisions, and sometimes even is
referred to applications on fraud detection. The main characteristic of this type of application is
that must of the time the process in interest to model is an stochastic process, or at least, is a
process which is fundamentally unknown since such type of data is generated in a market setting,
that is, in the confluence of a lot of people making decisions about the future. Moreover, such
fundamental process not only is unknown but it changes over time, hence the predominance of
time series data as the main type for the source of information. In addition to that, as for the
case of investment decisions and price modeling, for such stochastic and temporal structured
and changing type of process, for which never would be known its probability distribution,
there would be only one sample to use at any given time which is the pricet.

Whenever time series data is involve, there is a set of known tests, considerations and
properties of the data that can be conducted in order to characterize such data, so a forecasting
goal is very common on FML. A particular characteristic, though, for the case of price data over
time is in the challenge of the predictive modeling process, and one particular challenge is the
Feature Engineering (FE), specially for the case where endogenous variables are used it will
almost certain that colineality will be present among features. Another kind of phenomena
is in the temporal significance of past data to forecast future data, since the price formation
process can be stochastic by nature, the magnitud and sign of any regressor or feature needs to
be questioned constantly.

Feature Engineering (FE) is a decisive part of any regressive forecasting approach, yet for the
case of Financial Time Series forecasting it poses an extra layer of difficulty, mainly because the
temporal structure of the data in the form of temporal autocorrelation. Moreover, when such
time series represents the price of a financial asset, by definition it is only a realization of a ever
unknown process that often times is considered to have a stochastic nature.
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In this work will be presented a particular convention about how to represent genetic
programs, a statistical description, transformations and measurements. Also, it is included
the formulation of hypothesis, the definition of the experiments that were conducted, the
project code structure and the deployment of the computational resources used to generate
the results. Hence, in order to perform the experiments, then predictive modeling process was
conducted and then a list of proceadures to extract, synthesize and present the resulting data.
The proposition of this work is, from one parte, the formulation of the classical regression
problem of forecasting a price change as a classification one, in the sense that the labeling
criteria for the target variable will be of a binary class consisting on the sign operation for the
open and close price difference within a time period. Also, in order to address the feature
engineering step, we propose the use of Genetic Programming to produce non linear variables
highly correlated with a target and highly uncorrelated with each other. Another important
aspect was the experiment design, parallel processing and data visualization functions.

The organization of this work is as follows: In chapter 2 is mentioned the relevant aspects of
ML applied to finance, chapter 3 the feature engineering process with endogenous variables and
genetic programming, after that some core definitions on to learning process and information
sparsity are mentioned in chapter 4. The implementations aspects of the data and the methods
are specified in chapter 5, which produced the results included in chapter 6. Finally some of the
programming codes developed for core process are included in chapter 7.



2 Financial Machine Learning

Contents
2.1 The OHLC characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The OHLC plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

In general terms there can be two types of formulations for the forecasting problem when
dealing with Financial Time Series data (FTS), the regression formulation is commonly used
as a default, which the objective is to forecast a quantitative value, however, there is also the
case of the objective definition beign the forecasting of only the sign of the change of such value
in the future. In both cases, it can be done for a number of periods in the future or only for 1

period. One particular type of process that is of special consideration for the case of FML is the
importance of one aspect of the learning process, under the context of ML. That is the learning
aspect of the predictive modeling process, its beacuse a very simple to state very hard to solve
problem.
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Figure 2.1: Historical OHLC prices data

The value of a financial asset can be considered as a continuous variable but the price of it
as a discretization of such value, and the frequency of sampling can be defined according to a
time criteria but there are other labeling considerations 1. For this work, each time based sample, 1

has 6 values that are always known:

• Timestamp: The date and time for each interval.

• Open: The first price of the interval.

• High: The highest price registered during the interval.

• Low: The lowest price registered during the interval.

• Close: The last price of the interval.

• Volume: The total amount of contracts or transactions during the interval.

2.1 The OHLC characterization

Let Vt be the value of a financial asset at any given time t in a continuous matter, from
which it can be formulated a discrete representation St if there is an observable transaction
Tst. Similarly, a set of discrete prices observed during an interval of time T of n = 1, 2, ..., n
units of time, will define {ST}n

T=1, which in turn will be characterized by the prices
OHLCT : {Opent, Hight, Lowt, Closet}.

2.2 The OHLC plot

A common visualization for such type of discrete prices representation is the candlestick plot, as
shown in “Fig. 2.1” it represents 4 time series, OHLCT : {Opent, Hight, Lowt, Closet}T

t=1. Such
frequent representation also provides a visual component to empircally detect missing values,
though, is infrequent to encounter such situations for publicly traded financial assets, and even
less infrequent for cryptocurrencies since by definition its price fluctuate 24 hours a day, 365

days a year.



3 Feature Engineering

Contents
3.1 Classification type of problem . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Measurement of explanatory capabilities . . . . . . . . . . . . . . . . . . . . 18

3.3 Target Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Explanatory Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Linear Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Autoregressive Variables . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Genetic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Key aspects for implementation . . . . . . . . . . . . . . . . . . . 22

The Feature engineering process refers to the considerations and methods used in order to
generate, measure importance and select, a potential set of explanatory variables, such variables
will be used as inputs in a regression or classification model. In this chapter is included
information about how this process was implemented and the special considerations for the
Financial Machine Learning case.
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3.1 Classification type of problem

In general terms, for a regression problem the target variable is defined as ŷ ∈ R, and for a
classification problem as ŷ ∈ {0, 1} in a binary setting or ŷ ∈ {0, 1, ..., N} for the multi-class
case. At the most basic level, the understanding of feature engineering will depend on the
definition of the target variable and the goals or requirements of the problem formulation. For
this particular work, the problem setting is stated as a binary classification problem, further
details are explained in the Chapter chapter 5 .

3.2 Measurement of explanatory capabilities

The usefulness of an explanatory variable can be assesed with the proposal of a metric, which
can be chosen according to the problem setting and the types of both explanatory and target
variables. One of the common choices to measure a relationship between two variables is the
correlation among them, the pearson correlation is a widely used metric.

ρ(x, y) =
E
[
(x− µx)(y− µy)

]√
E [(x− µx)2] E

[
(y− µy)2

] (3.1)

And although it does represent the relationship between two variables, it fails when such
relationship is non-linear because probability distributions among variables could differ on
important statistical aspects such the simmetry, skeness and kurtosis of the distribution, which
leads to have a non-representative mean and therefore the operation x− µx or y− µy will have
different magnitud.

3.3 Target Variable

There is a common way to define a target variable for regression in financial mahcine learning,
commonly the price return is calculated, either with discrete or continuos form:

rt =
pricet+1 − pricet

pricet
, rt = ln

(
pricet+1

pricet

)
(3.2)

This convention has two main implications in the Financial Machine Learning context: First,
by including in the formulation a normalization term, implicitly, a differentiation is being made,
and therefore an undesired effect will be present wich according to 1 can be in the form of 1 Lopez de Prado, M. M.

(2018). Advances in Fi-
nancial Machine Learning.
Wiley

memory loss that results, moreover, the second implication actually is a consequence of the first,
the timeseries data will be closer to be stationary according to Augmented Dickey-Fuller test,
and even that having a stationary series is useful for most autoregressive models, that is at the
cost of losing its memory that lead to information loss. Although in the author proposes an
alternative fractional differentiation operation, in this work only the difference between opent and
closet is used, and for the non-stationarity of data it will be the model’s task to correct.

Let OHLC : {Opent, Hight, Lowt, Closet}T
t=1 ∀t ∈ T, where T is known as the granularity or

f requency of measuring the prices, commonly for fixed intervals are 1 minute, 5 minutes, 1

hour, 4 hours, 1 day, 1 week. By using this notation, one can state that within a single day of
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information, T = Day, then t = 1, 2, ..., 1440 will represent all the minutes elapsed during the
day, therefore:

{OHLC}1440
t=1 : {Opent, Hight, Lowt, Closet}1440

t=1 (3.3)

Having defined the previous, next the sign operation is perform in order to extract the price
direction in that particular t ∀ T, using Opent and Closet, with that, a binary target variable will be
used, therefore a classification problem is now in principle formulated. The following is the
final formulation for the target variable that will be used in the rest of this work.

ŷt = sign {Closet −Opent} (3.4)

3.4 Explanatory Variables

In a financial time series data, and particularly one that is sampled as OHLC data, there can be
discrete calculations that represents continuous information discounted in the period.

3.4.1 Linear Variables

In this work is proposed the following as discrete variables to serve as proxy to capture different
aspects of the price behavior, the following are the four linear variables with which next
transformation will be performed:

• Direction: Magnitud of the price change, if taken only the sign, is taken as price direction.

COt = Closet −Opent (3.5)

• Volatility: Metric that represents the volatility, since it discounts the highest price minus the
lowest price registered in the same time interval.

HLt = Hight − Lowt (3.6)

• Micro-Uptrends: Since the prices are observed within a fixed time interval T, to calculate
a micro-trend means to extract the magnitud of the price movement from the highest price
Hight to the Opent price, as an uptrend, and from Opent to the lowest price Lowt as a
downtrend.

HOt = Hight −Opent , OLt = Opent − Lowt (3.7)

Further transformations will be applied to this fundamental calculations of the prices within
the period T. Such calculations are the following.

3.4.2 Autoregressive Variables

Using the linear variables and a set of operations of autoregressive nature, the second set of
exaplanatory variables is formed. The autoregressive operations used are, moving average,
differences and cumulative values. An important aspect of such calculations is the proposition
of a memory value to perform such operations. From an autoregressive perspective, one can take
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into consideration the usage of systematic time series analysis, box-jenkins is an excelent tool
in principle, and although it is not used in order to define a predictive model, it does provide
useful concepts of serial correlation or auto-correlation in a variable and its lagged values. In the
context of endogenous variable engineering, using a single source of information, in this case
the OHLC data. The variable auto-correlation will be calculated with original series, yt and yt−1

(which is a lagged version of yt. By considering the first definition in 3.1, sample correlations of
order k = 1, 2, ..., T can be obtained using the following expression with the measured series
yt ∀ t = 1, 2, ..., T.

ρ(k) =
E [(yt − µ)(yt+k − µ)]√

E [(yt − µ)2] E [(yt+k − µ)2]
(3.8)

In the context of financial time series, whenever an autocorrelation criteria is used directly
to generate endogenous variables within the same base variable, it is of special use the partial
auto-correlation, since, by definition, it measures the linear dependence of one variable after
removing the effect of other varaible(s) that affect both variables, that is, it measures the linear
dependence or effect of yt−2 on yt after removing the effect of yt−1 on both yt and yt−2.

Each partial autocorrelation could be obtained as a series of regressions of the following
form:

ŷt = φ21ŷt−1 + φ22ŷt−2 + εt (3.9)

The estimate of φ22 will give the value of the partial auto-correlation of order 2. So, in order to
extend the regression with k lags, the estimate of the last term will give the partial autocorrelation
of order k. Extensive study on time series auto-correlation, partial auto-correlation and more
properties can be consulted in this work2. One important property on both the autocorrelation 2 George E.P. Box,

Gwilym M. Jenkins,
G. C. G. M. L. (2015).
Time series analysis,
forecasting and control

and partial autocorrelation functions that is useful to the feature engineering process, is that the
correlation between any two values of the series change as their separation in measured time
changes.

For the autoregressive features, fundamental operations used were moving average: MAt,
lag: LAGt, standard deviation: SDt and cumulative sumation: CSUMt. This operations where
applied to the past linear features. For values of k = 1, 2, ...K, with K as the memory proposed
as a parameter. Therefore, we define the following autoregressive transformations to apply to
{OL}t−k, {HO}t−k, {HL}t−k, {HLV}t−k, {COV}t−k, {VOL}t−k

MAt → µt+k
t =

n

∑
i=1

xi
n

, SDt → st+k
t =

√
∑n

i=1(xi − x)2

n− 1

LAGt → ∆t+k
t = ∆t , CSUMt →

t+k

∑
t

xt:k (3.10)
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Figure 3.1: A Tree Representation of a Genetic Programm

3.5 Genetic programming

Genetic programming, as a particular variation of genetic algorithms, can be used as a feature
engineering, importance and selection process all at once, it can provide highly interpretable
symbolic features that have low colinearity among them and yet high correlation with atarget
variable. It is considered as a derivation or special case of Genetic Algorithms, one difference
of particular interest for FE is: The output of the process are equations generated from a
combination of symbolic operations that can be represented as trees, i.e. the mathematical
complexity of the programm can be characterized by the dept and the breadth of its three
representation, a generic example is shown in Figure 3.1, which is formed by choosing from a
set of possible symbolic operations i.e. summation, exponentiation (wich would have an arity of
two), other examples are inverse, logarithm operations (arity of 1).

Such programs will be evaluated with a fitness metric, which for this work two were used,
the pearson correlation:

ρ(x, y) =
E
[
(x− µx)(y− µy)

]√
E [(x− µx)2] E

[
(y− µy)2

] (3.11)

Although Pearson in its basic formulation is a simple yet robust metric, it does represent
the relationship between two variables, it fails when such relationship is non-linear because
probability distributions among variables could differ on important statistical aspects such the
simmetry, skeness and kurtosis of the distribution. Because of such cases do exist, it was used
the Spearman correlation, which is a special case of Pearson but for ranked variables:

rs = ρrgX ,rgY =
cov(rgX , rgY)

σrgX σrgY

(3.12)

Spearman is a metric to capture the long term and monotonic correlation, and Pearson for
the short term linear correlation. As shown in Figure 3.2, there are different cases of correlation
between a candidate explanatory variable and the target variable, in the variety of such cases
is the use of using Pearson or Spearman as fitness metric. In case A is presented a perfect
linear correlation, B and E is a close to linear but with outliers and monotonically increasing
relationship, C is non linear monotonically increasing but les outliers, D and F are the hardest
cases since represent non linear and no correlation, respectively.
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Figure 3.2: Utility cases for Pearson and Spearman Correlations and their generated values

Spearman is a metric to capture the long term and monotonic correlation, and Pearson for
the short term linear correlation. As shown in the left plot of Figure 3.2, there are different cases
of correlation between a candidate explanatory variable and the target variable, in the variety
of such cases is the use of using Pearson or Spearman as fitness metric. In case A is presented
a perfect linear correlation, B and E is a close to linear but with outliers and monotonically
increasing relationship, C is non linear monotonically increasing but les outliers, D and F are
the hardest cases since represent non linear and no correlation, respectively.

3.5.1 Key aspects for implementation

Programs do not have a boundary in complexity, that is, as a tree representation, they can be
grown indefinitely only to reaching two conditions: 1) Number of generations reached and 2)
Metric goal reached. In order to produce somewhat explainable features a parsimony coefficient
will be useful. The library offers the specification of such parsimony coefficient by adding a
multiplier to the chosen final metric of every program, a number between [0, ∞), so the more
evolved a program the more penalized will be its fitness metric and the less likely to be chosen
as part of the final "Hall Of Fame" set of programs.

In the right plot of Figure 3.2 are shown 8 examples in their histogram form, though the
output can be of n_features, which in principle will be the most correlated programs to the
target variable and the least correlated amongst them, such correlation metric is the same and is
specified as the metric parameter. This kind of output is useful since it provides a set of Genetic
Programmed Features that captures an indirect relationship, whether linear or monotonic, that
can then be exploited by a predictive model.

The implementation was through the SymbolicTransformer method of the gplearn python
package. It looks to maximize the absolute correlation between the generated feature with the
target, it can be chosen a correlation metric like Pearson product-moment correlation coefficient
or the Spearman rank-order correlation coefficient.
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The contents of this chapter are focused to the learning aspect of Machine Learning,
first, approached from a comparisson perspective between optimization and learning. Then
is mentioned a common but undesired phenomena as overfitting is. Next, a widely used
technique as cross-validation is studied from different perspectives, from an operational and
methodological perspective, through the considerations of its use for the case of financial
machine learning, going through the analysis of previous works on CV techniques, a
compositional and probabilistic perspective to finally arrive at the role of information sparsity.
This chapter can be viewed as the prelude to the definition of a method particularly focused for
Efficient Financial Machine Learning.
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4.1 Optimization vs Learning

From an optimization perspective, given an objective function, the goal is to search for
parameters that minimize or maximize the evaluated objective function, this is done by
performing as much iterations as possible, always using the same data set. Given this setting, an
optimization algorithm can be chosen just by taking into account the mathematical characteristics
of the objective function, like convexity, and in most cases, any number of iterations could be
performed without any other restriction besides time and computation resources.

In Machine Learning, however, the learning process is rather different, one important
consideration is to conduct the optimization not with the solely purpose of finding the values for
the parameter vector that produces the lowest (highest) value in case of minimizing (maximizing)
the objective function, but to also to consider testing such values with an out-of-sample data,
in order to validate that the result will not differ too much between in-sample data and out-
of-sample data. If performance with new data is not taking into account during the learning
process, the values found for the parameter vector, using in-sample data, will be prone to
produce a perfect fit, or more commonly known an "over-fit", such situation is in principle
useful for inference but not for prediction. Moreover, optimizing the parameter vector, using
only in-sample data, beyond a certain point could lead to a higher error in the generalization
capabilities of the model and predictions when new data arrives will be sub-optimal in the best
case.

4.2 Objective Function, Cost Function, Loss Function

In Machine Learning literature is common to find that most optimization problems are phrased
in terms of minimizing f (x), and that maximization may be accomplished by minimizing
− f (x). This work1 does refers explicitly to the objective function as the function to minimize or 1 Ian Goodfellow,

Yoshua Bengio, A. C.
(2016). Deep Learning.
MIT Press

maximize, and the terms cost function or loss function are used interchangeably for the case
where the goal is to minimizing the objective function.

in 2 also loss and cost function are used interchangeably for both supervised and unsupervised
2 Hastie, T., Tibshirani,
R., and Friedman, J.
(2008). The Elements
of Statistical Learning.
Springer

learning predictive and classification models, and also, for methods used for parameter
estimation like the Expectation-Maximization (EM) algorithm. Even though is not explicit,
it is consistent with the notion that an objective function is the general objective to minimize
or maximize, loss or cost function terms are used for the minimization case. A concept that is
present in this work, and does have a strong but somewhat implicit relation with optimization
is the Additive property, where for the case of Additive models the content is explicitly stated
with the term but for objective function, as it is common, is implicitly referred through concepts
like regularization term in cost functions. We define Objective function, cost function and loss
function. The cost function does involve grouping all the loss functions which are calculated
using individual data points errors. This definition is useful since the objective function
addresses the learning problem directly but not so the stability problem.

A machine learning model learns to minimize an objective function, so we will call it a cost
function, and do that by averaging the loss function of every point in training, for example in
the case of logistic regression. We take advantage by using the additive property of a linear
function, particularly in the case of defining a cost function to be minimized at the learning level
but to choose candidate parameters using a profit function, a compound cost-profit function of
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the whole modeling process is defined.

4.3 Considerations to avoid over-fitting

A common consideration to avoid over-fit a prediction model with in-sample data is to have
an out-of-sample data, which is used to validate the generalization capabilities of the model.
Nevertheless, one important assumption of having two sets of data is the expectation of the
generating process, that is, it is crucial that the out-of-sample data is generated from the same
process than the in-sample data, i.e. the validation data (out of sample data) is expected to come
from the same probability distribution than the train data (in sample data). One approach to
guarantee such condition is the ’held-out’ method, which consists to separate the original data
set in a train subset and a validation subset, 80% and 20% or 70% and 30%, respectively, are two
commonly used proportions.

When data separation is used, learning is performed using training data to produce both
an evaluation of the cost function and a calculation of a performance metric. If done correctly,
towards more iterations occur, the evaluated cost function with train and validation data starts
to improve along with the performance metric, but when out-of-sample performance metric
begins to diverge from the expected behavior, i.e. begins to rise when expected to fall or vice
versa, at this point the model stopped to learn in a general way, starts to over fit the in-sample
data, and so the learning process must be terminated (even though the evaluated cost function
continues to improve).

By not taking measures to control for over-fitting, there are situations where an infinite
number of solutions, i.e. any convex combination of irrelevant attributes, provide 0 error in
training data than a more coherent and process related solution that uses relevant attributes.3 3 Aggarwal, C. C. (2020).

Linear Algebra and Op-
timization for Machine
Learning. Springer4.4 Cross-validation method

A widely used method to attend the latent problem of over-fitting is cross-validation (CV), such
method is a generalization of a held-out method, because the main elements of a CV process is
to split the data set in sub data sets and perform calculations on them. The purpose of CV is to
prevent over-fitting, but also, it provides a mechanism to determine the generalization error of a
ML algorithm. There are many ways to define how the splits will be performed:

4.4.1 Predominant Variants

• held out method: The data set is divided into two sets: Training set and testing set, normally,
the training set is comprehended with a range of 70%-80% of the data, and the testing set
the complementary left data, in this case around 30%-20%. The result of this scheme is a
2x1 vector of performance metrics, each of the 2 is the measurement of how well the model
performed in the particular sub-set.

• held out method + validation set: This is very much the same as the held out method with
the additional split of a validation set, which is placed at the end of the data. Typically, the
proportions are set in the ranges of: train set (70%-80%), test set (15%-20%), validation set
(5%-15%). The result of this scheme is also similar to the previous scheme, with the addition
that a third performance metric is generated, the one corresponding to the validation sub-set.
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• k-Fold: This is perhaps the most common scheme for the CV, it consists in defining a priori a
K number as the number of equally sized sub-data sets (folds) in which the data set will be
partitioned. The elements that contains each of the folds could be randomly chosen from
the whole set, or, sequentially chosen when shuffling the data is prohibited, like the case of
time series data. Then, k-1 folds are used as training set and 1 as test set, this is done k times,
each of which is a permutation of the folds keeping the proportion of k-1 for training and 1

for testing. The result of this scheme will be a kx1 array of performance metrics.

The held out method with or without validation set is a particular case of k-fold scheme, the
main difference being that k = 2 or k = 3 respectively, and, that the fold size is not equal
among sub-data sets.

4.4.2 Considerations for Financial Machine Learning

There are various considerations on how to implement it. This work 4 mentions particular 4 Hastie, T., Tibshirani,
R., and Friedman, J.
(2008). The Elements
of Statistical Learning.
Springer

considerations for implementing it and the problems of not performing it correctly, though,
doesn’t addresses the case of financial time series, in which case is widely known that time
series data is known to have time structural relationships and therefore shuffling observations is
not recommended.

Acording to this work5 even without shuffling the data, there are other reasons for why 5 Lopez de Prado, M. M.
(2018). Advances in Fi-
nancial Machine Learning.
Wiley

K-Fold cross-validation fails when used in financial machine learning, one of those is because
the assumption that the data across the folds is assumed to be observations drawn from a i.i.d
process, other caveat is that the each of k sub-sets in which the whole data set is divided, after
used as a testing set, later will be used k-1 times as a training set, which in the context of FML
leads to something known as leakage of information. Also, that despite the challenges of a
correct implementation, in Financial Machine Learning, the use of a CV schemes can be found
in two types of processes: model development, and backtesting of a model or bag of models.
Practitioners who worked previously in other non-financial data are particularly prone to use
the K-FOLD CV scheme, thus, incur in violations of the temporal structure of time series data,
or, leakage of information between sets which leads to a sub-optimal learning process that
produces poor out-of-sample results because a generalization error.

During a CV scheme, the previously cited work suggests that a fix number of observations
of the data is to be embargoed from proceeding data set, whenever a preceding data set is
present. However, this approach is problematic with varying granularity of the price information,
since the "memory" of the price when measured in different time frames could be granularity
dependent, e.g. the actual daily price could have memory of the past week when using daily
prices, but not when using intraday prices. The proposition is that there can be used a unit
number that represents the "memory" of the time series, a more explicit way to state that
embargo must be applied. A calculation of the ACF and PACF result a conceptually strong
candidates to produce such ’memory’ in the price for any granularity. Finally, it is not necessary
to perform embargo at the first fold since it has no preceding information, but to all of the other
folds it is.

One particular effect of implementing embargo is its impact of data dropping, i.e. the
performance metrics must be adjusted accordingly, one such case is accuracy metric, since
the available data as "ground truth" is diminished in comparison with the predicted values,
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so it requires a double check of the amounts of data and sub data set divisions. Other effect
is in generating unintentionally a synthetic imbalance when using a classification approach
for predictive the next day return for example. Even though there are some caveats and
extra considerations, this pre-processing techniques for financial machine learning applies to
fundamentally any price granularity, because it is treated as a time series by its own, i.e, auto
correlation could be present in any financial time series data, from seconds to monthly data.
Hence, leakage of information could be present and embargo is a candidate data pre-processing
technique to be implemented, despite the granularity of prices.

4.4.3 Performance among models with K-Fold CV

Machine learning algorithms are often compared with other algorithms, but also, to different
versions of themselfs. One of the standard measures is a Prediction Error (PE) metric, for the
case of classification problems it is often referred to the accuracy of the prediction. The Expected
Prediction Error (EPE) is then the expected value of the prediction error over training sets,
calculated on the same model with different conditions or different models ideally in equal
conditions. Fundamentally, when the probability distribution of the process that generates the
data is unknown, then PE and EPE cannot be analytically computed, or known for that matters.
Arguably, when the amount of data used in the traning pahse is large enough, a hold-out set
can be separated in order to test the model and PE can be estimated by the mean error on all the
sub-sets used, and, by having various means of the different experiments conducted, variance
estimates of those means can be computed to asses statistical significance of the difference in
performance between models.

This work6 mentions that the hold-out techinque does not account for variance during the 6 Yoshua Bengio, Y. G.
(2004). No unbiased esti-
mator of the variance of
k-fold cross-validation.
Journal of Machine Learn-
ing Research

training process with the traning set, so it may be inappropiate for algorithm comparison, also
that it is not efficient enough for small sample sizes. When it comes to K-Fold cross validation,
it referes to it as a computer intensive method to estimate PE or EPE, and although it is not
conclusive, the work states that even though cross-validation provides an unbiased estimate for
the EPE, the variance may be very large.

µ̂ =
1
n

n

∑
i=1

ei =
1
K

K

∑
k=1

1
m ∑

i∈Tk

ei and θ =
1
n2 ∑

i,j
Cov(ei, ej) (4.1)

Where µ̂ is proposed as identically distributed (dependent) variables that can be characterized
by its expectation E[µ̂] and its variance Var[µ̂] = E[µ̂2]− E[µ̂]2. In terms of the data at hand,
such term is used to express the means of the value ei across k sub-datasets. An important
contribution in the formulation of this work is that by using a symmetry argument over
permutations of the K samples, many distributions on ei and pairwise distributions on (ei, ej)

are identical and as a result the covariance matrix Σ has only 3 possible values, thus, estimating
covariances among sub-samples cannot be reduced to that of estimating a single variance
parameter but a linear combination of three moments:
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θ =
1
n2 ∑

i,j
Cov(ei, ej)

=
1
n

σ2 +
m− 1

n
ω +

n−m
n

γ (4.2)

where:
ei, ej: variables representing a measure of interest for PE.
m, n: Size of the block and nth-block counter, respectively.
σ2: The average variance of errors in training sets.
ω: The within-block covariance.
γ: The between-blocs covariance.

In the cited work it has been shown in the work that under the conditions of their formulation
there is no universial unbiased estimator of θ. That the values of ω and γ cannot be proved to
be negligible compared to σ2, more over, that the contribution to the variance of µ̂, due to ω

and γ can be of the same order than σ2, thus suggesting that the estimators of θ should indeed
take into account the correlations among ei.

4.4.4 A logical perspective

From a logical perspective, when arguing about the validity of implementing CV as a way to
have several data sets that came from the same distribution, the principle of compositionality is
useful. Taken from a programming language perspective this principle is in deed an important
aspect of denotational semantics, it states that the denotation of a program is constructed from
denotations of its parts. Even though is unclear if it has ever been explicitly formulated in an
academic work, it is commonly referred to as the Frege’s Principle, attributed to Gottlob Frege7. 7 Pelletier, F. J. (1999).

Did frege believe frege’s
principle? Journal of
Logic, Language, and In-
formation

Conversely is also widely accepted in the scientific community that implicit references of this
principle are present in previous work done by George Boole 8. Aside the naming convention,

8 Boole, G. (1958). An in-
vestigation of the laws
of thought: On which
are founded the mathe-
matical theories of logic
and probabilities. Dover

from a mathematical perspective, this principle applies in the following sense: Consider the
expression "1 + 2 = 3". Compositionality means that in this example, the meaning for "1 + 2 = 3"
can be stated in terms of the meanings of "1", "2", "3", "+" and "=".

A not so intuitive example of data coming from different process is the case of the price of
a financial asset that is negotiated at two or more different exchanges. When the same asset
presents different prices among two or more different exchanges then the participants of the
market take advantage of that and perform actions that leads to a reduction in the difference
between prices, so an adjustment is made. Although for the last argument to be right there
must be high market efficiency, an argument that is not short of questioning nor that lacks
universality, such situation provide evidence to the statement that there can be situations where
the data is fundamentally coming from the same process but from two different measurements
that could lead to statistically different probability distribution. There can be another kind of
processes that does not generates such situation, in image recognition, it is expected to have
different images of the same object, and different images of different objects, nevertheless, the
objects are expected to have the same molecular composition, sufficiently invariant features, and
other fundamental properties that does guarantee the data is coming from the same process.
Take for example image recognition task and the data is hand written digits, even though among
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different cultures the handwritten digit for ’7’ could have many variations, fundamentally, it
can be thought as sufficiently invariant since is coming from the same thought process. The
act of writing numbers with digits will stay invariant over a relatively short period of time and
among a relatively large group of humans.

4.4.5 A probabilistic perspective

For the case where there is a guarantee that the data used by the model captures suficiently well
fundamental aspects of is geneterating process, that the collection procedure of such data stays
invariant, and no other action directly or indirectly related to the modeling process, alters the
data itself, still is not guaranteed that all the collected data comes from the same distribution,
which would imply that the probability distribution of such data generating process is stationary
over time. In the other hand, in Machine Learning literature there already exists other concepts
similar to compositionality, and are in fact similar enough to it that provide a utility benchmark
for it. Linear additivity of cost functions, linear combination of non linear features, layers in
deep neural net, etc. The problem is that those are applied to the some parts of the modeling
process, not to the data exposition process for the model, i.e. to the i.i.d assumption and on the
use of CV at the learning stage of the modeling process.

As stated in 4.4.3, one can use an iterative technique for exposing the model with different
sub-samples obtained from a singular global sample, and with the precautions of the financial
tieme series case 4.4.2 it could be attainable to achieve a decent result. yet what it is hard to
prove is the ability of the model to perform in three particular types of scenarios: 1) using
unseen data with a seen by the model probablity distribution, 2) using unseen data with an
unseen by the model probability distribution, 3) using unseen data with an unknown probability
distribution by the scientist who is conducting the modeling process. When a model performs
well within the first scenario is classified as a model capable of Out-Of-Sample generalization,
that means, the model will have no problem to predict new data as long as it comes from the
same probability distributlossion. For the second case, when new data is coming from an unseen
by the model probability distribution, performing well will mean that the model is capable of
Out-Of-Distribution generalization. The last scenario is beyon the scope of this work since it
means to be able to define and train such a model that can demostrate general intelligence.

One particular aspect of the data separation for the learning process is the aspect of the
probability distribution among sub-samples, and as stated in 4.4.3, there are some characteristics
of the expected prediction error and its variance given a cros-validation process, the most
important one beign that there is no close form to guarantee an unbiased estimador for the
variance of the error, yet, a linear combination of 3 elements are at hand for a practical way
of dealing with it. As for 1) The variance of the EPE estimation is the average variance of
errors, 2) the within block covariance comes from the dependece of test errors since all come
from a common training set, 3) the between blocks covariance is due to dependence among
subsets and the fact that test block appears in all trainings. To address 3 directly and 2 indirectly,
the following considerations are implemented: Select pseudo-independent, or, within block
divergente in distribution samples, using embargo according to an autocorrelation coefficient
(though it only takes into account linear auto correlation). A less stable 1) could be an effect,
but only in the case where Ho of similar variance is rejected for mu variance. Aside the
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particularities, the basic notion is that the data among data-sets may be statistically similar
enough to justify the validity of performing CV of some type and have useful results. Next is
presented an useful similarty metric between samples.

DKL(P||Q): Kullback-Liebler Divergence, which for continuous random variables, P and Q,
used to asses the Relative Entropy between the two, is denoted by:

DKL(P||Q) =
∫ ∞

−∞
p(x)log

( p(x)
q(x)

)
dx (4.3)

where:
P, Q: Continuous random variables of unknown distribution.
p, q: Empirically adjusted Probability Density Functions (PDF) for P and Q.

Two important aspects of DKL are, it is a distribution-wise asymmetric measure which means
DKL(P||Q) 6= DKL(Q||P) and does not satisfy the triangle inequality which means that the
following statement does not hold9 D(P, Q) ≤ D(P, R) + D(R, Q), where P, Q and R are 9 Refer to code snippet

7.1.2 for the proof by
counterexample

probability distributions, given that it does not hold in one case, it doesn’t hold in all cases.
Hence, because of these two characteristics, DKL can not be considered as a distance metric.

4.5 Models performance

A common tool for model performance diagnostic is the Receiver Operating Characteristic
(ROC) curve, which is a graphical plot that illustrates a particular aspect of a binary classifie, its
ability to correctly classify samples for the cases where a probabilistic output is produced, as its
discrimination threshold is varied. From the generation of the ROC curve, another important
metric also exclusive of binary classification, is the Area under the curve (AUC) since it captures
the extent to which the curve captures the threshold value for producing the binary output from
the probabilistic model prediction, a higher AUC indicates the model had trained sufficiently
well, similarly, a score of 0.5 is no better than random guessing. but a score of 0.9999 would be
too good to be true and will indicate overfitting the utilized samples.

4.6 Generalization Error

There is an important difference between the challenge of fitting the training data from the
challenge of learning patterns that generalize to new data. One part of the solution to define a
machine learning algorithm that generalize well, might be the use of prior beliefs about what
kind of function should be fitted. As mentioned in 10, the local constancy prior is among the 10 Ian Goodfellow,

Yoshua Bengio, A. C.
(2016). Deep Learning.
MIT Press

most widely used as implicit prior. It states that the function the algorithm learns remains
sufficiently invariant, or locally constant, within a small region. On the other case, prior beliefs
can be explicitly incorporated also, such is the case of probability distributions over parameters
of the model, for example, the probability distribution from where to extract samples in order
to initialize a model’s weights.

Perhaps another way of understanding generalization is the one mentioned in 11, and is that 11 Sutton and Barto
(2018). Reinforcement
Learning: An Introduc-
tion, volume 2. MIT
Press

the purpose of the learning process is not to expect to find a value function that has zero error
for all cases, but only an useful approximation that balances the errors among all tested cases
and possible future ones too. Moreover, if the learning process focuses on learn completely
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every sample, which would be the case of the Stochastic Gradient Decent algorithm, then such a
balance of samples and errors in samples simply would not be found.

In FML applications, there is a common assumption that is at the very least testable, and is that
of the manifold hypothesis, which states that probability distribution over non sequential data
like images and sequential data like sounds and tests, is highly concentrated. The cannonical
example for text data is that there is a very low, almost zero, probability of getting a meaningful
language text by picking letters uniformly at random, that means the distribution of natural
language sequences occupies a very little volumen in the total space of sequence of letters.
Despite of any number of assumptios related to the learning space and its properties, in general,
there are two main goals that can be distinguished as fundamental to Machine Learning in
general. 1) To represent a high dimensional function efficiently and 2) Such estimated function
to generalize sufficiently well to new data. Both of these tasks are directly related with the
following formulations.

4.6.1 Out-Of-Sample Generalization

The capacity of the model to correctly predict samples extracted from the same probability
distribution that generated training samples.

4.6.2 Out-Of-Distribution Generalization

The capacity of the model to correctly predict samples extracted from different probability
distribution, and keep a reasonable performance also on samples from the same probability
distribution.
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In this chapter is described aspects of the data used, the nature of the generating process, a
particular convention about how to represent such data, a statistical description, transformations
and measurements for information sparsity. Also, it is included the formulation of hypothesis,
the definition of the experiments that were conducted, the project code structure and the
deployment of the computational resources used to generate the results. Hence, in order to
perform the experiments, there were 4 types of methods implemented: First two are, data
preparation and project infrastructure, after that the predictive modeling process was conducted
and then a list of proceadures to extract, synthesize and present the resulting data.
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5.1 Data preparation

The data used was historical prices of a particular financial contract called Future contract,
which is a special contract which entitles two parties to pact in the present the future price
of a particular asset. Data was collected from: 2009-01-02 00:00 (EST) to 2021-02-19 16:00:00

(EST), having a total of 3,120 days, and for each day 5 values: Open price, Highest price, Lowest
price, Close price and Total volume of contracts traded. Beside the price information, no other
information was used in this work, therefore, it can be considered as the case of predictive
modeling where only endogenous variables are used.

For the complete dataset, that is, the historical prices in 8-hour interval from 01-01-2009 to
01-01-2013, a train, validation, test split criteria was implemented. The proportions for such
divisions on sub-datasets was the following:

• Train & Validation sets: Splited according to a Semester (calendar), and 80%-20% criteria.

• Test set: All prices for year 2021, this data set will be used only once at the very end of the
experiment.

Since the original data was acquired from a private vendor and since the time granularity
of the acquired data set was by minute, an hourly grouping code snipet was necessary to
implement and execute, so the final OHLCV data will be expressed in 8 Hour time period.

5.1.1 Futures (Financial Contracts)

The Future contracts are also known as derivatives, since the price of such contract derives
from the market value of the underlying asset that will be exchanged in the future between
the parties. For this work it was used the Future contract of the exchange rate between United
States Dollar and the Mexican Peso, such Future is trader in the Chicago Mercantile Exchange,
part of the Chicago Mercantile Exchange Group. In reggard to Future contracts, there is one
particularity, since such contracts have a public and previously stablished experiation date,
whenever there is the need to have large historical information of such contracts, a continuous
adjustment is necessary, and for the data used in the work the criteria used was to continuosly
join contracts and adjusting the value for price missalignments by using a short moving average.
The following are the principal characteristics of the data:

• Individual (monthly-labeled) contracts

• Dates from: 2009-01-02 00:00 (EST) to 2021-02-19 16:00:00 (EST)

• Contracts with every month of the years between 2009 and 2021

• Prices are in intervals of 1 minute.

• For every interval, Open, High, Low, Close and Volume (contracts)

5.1.2 OHLCV Data

It is sufficient to say that every asset has a value and whenever two parties agreed on what
that value is and exchange the asset between them, then is considered that a price formation
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has occurred. Thus, fundamentally, the value of an asset can be considered as a continuous
variable but the price of it as a discretization of such value, since such discretization occurs at a
time based transaction between the two parties, the amount of transactions occurred at a time
interval is often reffered as the liquidity of the asset in the venue where it has been exchanged.
Similarly, since such time interval is in practice always known, it can be defined as one of a
fixed or variable length, and in either case its corresponding volumen of transactions can be
therefore calculated as long as the time interval is defined. For each time based sample 6 values
are always known, which are the following:

• Timestamp: The date and time for each interval.

• Open: The first price of the interval.

• High: As the highest price registered during the interval.

• Low: as the lowest price registered during the interval.

• Close: The last price of the interval.

• Volume: The total amount of contracts traded during the interval.

Such characteristical way of representation information in finance is called OHLCV data, and
is often visually represented in a graph called OHLCV Candlesticks, where such term is derived
from the ancient japanese candlesticks. The following is the complete history of prices presented
in a candlestick graph.

Figure 5.1: Historical OHLC prices
.Also known as a candlestick plot, it is a standard visual representation of financial time series data of the form

OHLCT : {Opent, Hight, Lowt, Closet}.
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5.1.3 Discretization of the asset value

Let Vt be the value of a financial asset at any given time t in a continuous matter, from
which it can be formulated a discrete representation St if there is an observable transaction
Tst. Similarly, a set of discrete prices observed during an interval of time T of n = 1, 2, ..., n
units of time, will define {ST}n

T=1, which in turn will be characterized by the prices
OHLCT : {Opent, Hight, Lowt, Closet}. The following operations are used to define four aspects
of the dynamic of the discrete prices, in an interval of time, as representing the continuous value
of a financial asset:

• micro-volatility: → HLt

As a measurement of volatility, HLt = Hight − Lowt, represents the complete range of prices
observed during the time interval T

• micro-trend: → COt

As a formulation for the directional movement, COt = Closet −Opent, represents both the
magnitud and the direction of the value VT , represente as prices, during the T interval of
time.

• micro-uptrend: → HOt

Starting at t = 0, the greatest positive difference in discrete prices can be characterized with
HOt = Hight −Opent.

• micro-downtrend: → OLt

Starting at t = 0, the greatest negative difference in discrete prices can be characterized with
OLt = Opent − Lowt.

5.1.4 Price data scaling

It is frequent that different scales are used with which calculations with prices are expressed,
one of the most common is by expressing such quantities in Points In Percentage (PIP), and
such scaling involves a multiplication factor to be used after the arithmetic calculation is done.
For instance, suppouse the following operation:

1. COT for T = H8, (8 hour period of time).

2. COT = CloseT00:00 −OpenT07:59

3. Suppouse that: CloseT00:00 = 21.1075 and that OpenT07:59 = 21.1050

4. Then coT = 0.0025, which numercally is correct but practically is not used that way

5. Therefore a multiplication factor Mpip is a pre-defined scalar value.

6. COT = coT ∗Mpip

For the rest of this work, values for all the calculations will be expressed in PIPs, by applying
the multiplication factor of 10, 000, with no other reason that following the common multiplier
for the given financial asset under study, which is UsdMxn.
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5.2 Project structure

One key process that was conducted was the Fold Analysis, as an iterative process that was
parallelized in a computing cluster, the complete code is included in section 7.2.

5.2.1 Python dependencies

The following is a list of packages and the required version that this project rely upon, these are
included in the requirements.txt file.

• Data and calculations

– pandas >= 1.1.4

– numpy == 1.19.2

– h5py == 2.10.0

– datetime >= 4.3

• Models and Tools

– scikit-learn >= 0.23

– gplearn >= 0.4.1

– deap >= 1.3.1

– tensorflow == 2.4.1

– statsmodels >= 0.12.2

Visualizations

– rich >= 9.5

– jupyter >= 1.0

– matplotlib >= 3.4.1

– seaborn >= 0.11.1

– plotly >= 4.12

– chart_studio >= 1.1.0

5.2.2 Systems dependencies

There were used two machines for this project, a local machine (referred as T490) and the
cluster machine (referred as ludwig). Research, rapid prototyping and core development was
performed at T490, complete results generated for a variety of experiments was conducted at
ludwig. The following are the general system specifications for both machines:

• T490:
Ubuntu 20.04 LTS, Intel I7 10th gen 1.7GHz 8 cores, 32gb RAM, 512Gb SSD.

• ludwig:
Ubuntu 20.04 LTS, Intel Xeon E7-4820 2.00GHz 64 cores, 128gb RAM, 6.4T HDD.

5.2.3 Communication protocols

Conexion to ludwig, from T490, was performed using SSH protocol through a VPN in order to
connect remotely to the university network. Acces was performed through a Bash terminal and
through the vscode IDE.

Version Control:

In order to continuously saved the progress on the coding and to have it stored at the cloud, a
version control system was implemented through .git protocol. The public repository is located
in the following link: https://github.com/IFFranciscoME/Msc_Thesis
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IDE (vscode):

For python programming language, the Integrated Development Environment (IDE)1 used 1 There are other very
competitive and useful
options: pycharm, spy-
der, vim.

both at T490 machine and ludwig cluster, was Vistual Studio Code (vscode). An IDE is a
software application that provides comprehensive facilities to computer programmers for
software development, and normally consists of at least a source code editor, build automation
tools and a debugger, but in addition for the requirements of this project, a SSH connection
add-on was added, in order to have an interface to interact with ludwig operating system,
besides the bash terminal. As for the IDE itself, Visual Studio Code2 is a freeware source-code 2 Some of the features

include support for
debugging, syntax
highlighting, intelligent
code completion, snip-
pets, code refactoring,
and embedded Git.

editor made by Microsoft for Windows, Linux and macOS. Additional used extensions for
vscode are the following:

• vscode version: 1.56

• (extension): python 3.8x v2021.4.76

• (extension): ssh v0.51.0

• (extension): jupyter v2021.6.81

• (extension): pylance v2021.5.0

• (extension): reStructuredText v153.0

Figure 5.2: Visual Studio Code (vscode) Integrated Development Environment IDE
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5.3 Experiment Definition

In this section two experiments are defined, previous to that the notation of use also is stated.

5.3.1 Definitions and Notation

Xtrain, Xvalidation, Xtest: The sets of training, validation and test input vectors.

Ytrain, Yvalidation, Ytest: The sets of training, validation and test of a binary target variable.

A continuous random variable X that is gamma-distributed with shape α and inverse scale
parameter, or commonly known as inverse rate β, is denoted by:

f (x) =
βα

Γ(α)
xα−1e−βx for x > 0 α, β > 0 (5.1)

where:
Γ(α): The gamma function ∀ α ∈ Z+, i.e. defined for all positive integer numbers.

DKL(P||Q): Kullback-Liebler Divergence, which for continuous random variables, P and Q,
used to asses the Relative Entropy between the two, is denoted by:

DKL(P||Q) =
∫ ∞

−∞
p(x)log

( p(x)
q(x)

)
dx (5.2)

where:
P, Q: Continuous random variables of unknown distribution.
p, q: Empirically adjusted Probability Density Functions (PDF) for P and Q.

Two important aspects of DKL are, it is a distribution-wise asymmetric measure which means
DKL(P||Q) 6= DKL(Q||P) and does not satisfy the triangle inequality which means that the
following statement does not hold3 D(P, Q) ≤ D(P, R) + D(R, Q), where P, Q and R are 3 Refer to code snippet

7.1.2 for the proof by
counterexample

probability distributions, given that it does not hold in one case, it doesn’t hold in all cases.
Hence, because of these two characteristics, DKL can not be considered as a distance metric.
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5.3.2 Main Computations Process

Previously to present the experiments definition, and despite the complete code and processes
list is not explicitly included in this document, is useful to mention the common functions that
all experiments depend upon. A Fold-Process was defined as the sequential execution of other
elaborated functions, this was parallelized through a parallel processing library for python
programming language, and executed in the ludwig computational cluster. This particular
process was applied to variations of Fold size and the execution conditions.

1. Fold formation:

Data division is performed with the specification for Train, Validation split proportion.

2. Embargo

An imputation of data between Train and Validation splits is performed

3. Data Scaling

Scaling the data is an important part, not only for the predictive models but to the Genetic
Programming process aswell, therefore a scaling operation to all data, except target variable,
is performed.

4. Feature Engineering

First linear features are generated, then used as inputs to generate the Autoregressive features,
and with both types, then the Genetic Programming process is conducted in order to finally
generate Symbolic Features.

5. Data Profile

Taking Linear, Autoregressive and Symbolic Features as inputs, a Data Profiling process is
conducted in order to generate an statistical description of them.

6. Hyperparameter Optimization

For this part a Genetic Algorithm method was utilized, lists of hyperparameter values were
defined for each model.

7. Model Evaluation

Finally, for every training and optimized model an evaluation phase is conducted, which
consists in generating common performance metrics for classification tasks.

Details on the execution results on the execution of this process, were logged and stored in
independent log files. A detailed version of a cyle can be consulted in.
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5.3.3 Divergence in Probability Distribution

There can be repeated information among sub-samples.

• Hypothesis:
Ho = Probability distribution of yt is equal among subsamples.

• Experiment:
Define and populate the Information matrix, as defined in 5.5.2

• Implementation:
For details about the implementation, refer to

• Data:
Resulting data is the following

• Hypothesis testing:
Given the observed data,

The OOS Generalization refers to a particular desired capability for any Machine Learning
Model, which for this particular experiment is defined by the difference between the Prediction
Error (PE) metric, calculated for each of two separate sub-samples, train and test, and whose
empirical probability distributions had an Relative Entropy metric equal or below a pre-defined
threshold.
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5.4 Model Definition

The models utilized in this work were choosen with a particular purpose, to have a fairly simple
model and to have a fairly complicated model, and that according to the model’s capacity, but
also to a core fundamental characteristic, its known capabilities to capture non-linearities and
ease of train in computational and time resources.

5.4.1 Model 1: Logistic Regression

• Architecture: Endogenous variables as inputs, default weights initialization, binary-
crossentropy as cost function, elastic net type of weights regularization in cost function.

• Parameters: Coefficients weights.

• Hyperparameters: Lambda (Reg), C (Reg)

• Weights initialization: By defualt with a vecor of random numbers sampled from a standard
normal distribution, calculated by default at the utilized library, sklearn.

• Regularization: Additioned to the cost function elasticnet.

5.4.2 Model 2: Feedforward multilayer perceptron

• Architecture: from 1 to 3 hidden layers, backprogation learning algorith, Minibatch scheme,
binary crossentropy cost function, 3 types of regularization (weights, biases, neurons
activation or dropout), L1, L2 or Elasticnet regularization.

• Parameters: Neurons weights, Biases values.

• Hyperparameters: # hidden layers, # neurons per layer, activation function per layer, batch size,
epcohs, learning rate for optimizer, regularization factors.

• Weights initialization: Xavier-uniform criteria as published in this work 4 4 Glorot and Bengio
(2010). Understanding
the difficulty of training
deep feedforward
neural network. Journal
of Machine Learning
Research, 9:249–256

• Regularization: Weight activity, Bias activity, Neurons dropout5

5 Srivastava, N., Hinton,
G., Krizhevsky, A.,
Sutskever, I., and
Salakhutdinov, R.
(2014). Dropout: A
simple way to prevent
neural networks from
overfitting. Journal
of Machine Learning
Research, 15:1929–1958
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5.5 Predictive Modeling Process

The contents of this section refer to each of the parts of the conducted predictive modeling
process, such process was conducted in order to generate data for the hypothesis previously
stated in 5 The sections are:

1. Subsamples formation:

Several subsamples were created, train, validation, test data was splitted in groups named
folds, each of which contains a train, validation sets, and a global test set.

2. Feature Engineering:

Since the only data used was endogenous time series variables, special considerations were
implemented to prevent unwanted effects like high multicolinearity, information leakage and
scale of magnitudes.

3. Information Sparsity Assesment:

One of the 3 principal propositions of this work is to perform an assestment of the information
sparsity for each of the folds, hence the importance of implementing special considerations
in this regard.

4. Model Definition, Training and Performance:

Another important proposition is the models definition, hyperparameters to optimize, search
space and optimization method. Models tested were logistic regression with elasticnet
regularization and a multilayer perceptron with backpropagation. Also it was used genetic
programming as a fundamental process for feature engineering, importance and selection.
Simiarly, genetic algorithms for hyperparameter and execution conditions optimization was
implemented.

5. Experiment definition and execution:

In general, two types of tests were done, an Out-of-sample generalization error and a
Out-of-distribution generalization error.

A more detailed content for each of the steps for the predictive modeling process is included
in the chapter 5

5.5.1 1. Sub-samples formation

Where the sub-samples were created according to the mentioned criterias for historical data
split, that is, by taking the complete historical data set and setting appart test (year 2021) and
using the remaining data to split into train and validation according to temporal criteria, next is
presented the complete list6: 6 For simplicity, 22 days

for each month, for
all months in a year,
is considered for this
calculation

• 80%-20%: sub-sample size (3168), total subsamples (2).

• Bi-Yearly: sub-sample size (528), total subsamples (6).

• Yearly: sub-sample size (264), total subsamples (12).
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• Semesterly: sub-sample size (396), total subsamples (24).

• Quarterly: sub-sample size (198), total subsamples (48).

Figure 5.3: Temporarily structured data Folds (T-Folds)
.Different values are proposed for the Fold size, T, in order to define {ST}n

T=1, such that Xtrain, Xval , ytrain and yval

are formed with data from OHLCVT : {Opent, Hight, Lowt, Closet, Volumet}.

5.5.2 2. Information Sparsity Assesment

The information sparsity is an important aspect of the learning process, also its a core proposition
of this work, in the sense that sparse information could lead to a sustained performance, lower
variance and lower use of computational resources. As it was mentioned in 4, the elements and
their sequence of use is the following:

1. Information assesment:
The empirical Probability Distribution Function (PDF), of the target variable yt, is utilized as
a statistical descriptor of information at each Fold.

2. PDF Aproximation Method:
To approximate empirically the PDF, the generalized gamma distribution and the methods of
moments will be used.

3. Information Metric:
Kullback-Liebler Divergence (KLD) between probability distributions.

4. Sparsity criteria
The definition of a threshold value for the KLD.

5. Sparsity Matrix
In order to asses the individual contribution of each Fold, an information sparsity matrix is
created.

sin(es.3)
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5.5.3 3. Feature Engineering, Importance and Selection

For each sub-sample, a special consideration was taken. Since these are time series data, and
as mentioned in 5. The main to beign, 1) shift the target variable in order to predict yt+1 with
Xt data. 2) calculate and implement embargom

t=1 as an embargo constant that represents the
memory information in the price data that could be leaked from yt=1 to Xt=2. That is, in order
to prevent that information from target variable in fold 1 is leaked in the explanatory variables
in fold 2. Additionally, as defined in 3, the following implementations where performed:

Linear and Autoregressive Variables

For the autoregressive features, fundamental operations used were moving average: MAt,
lag: LAGt, standard deviation: SDt and cumulative sumation: CSUMt. This operations where
applied to the past linear features. For values of k = 1, 2, ...K, with K as the memory proposed as
a parameter. Therefore, we define the following autoregressive transformations to apply to a
number of linear variables {OL}t−k, {HO}t−k, {HL}t−k, {HLV}t−k, {COV}t−k, {VOL}t−k

MAt → µt+k
t =

n

∑
i=1

xi
n

, LAGt → ∆t+k
t = ∆t

SDt → st+k
t =

√
∑n

i=1(xi − x)2

n− 1
, CSUMt →

t+k

∑
t

xt:k

Target Variable

The target variable is the sign operation of the difference between opening price and closing
price. Since this is a discretization of a continuous variable, such transformation results in
formulating a regression problem as a classification one, for this particular work, a binary
classification.

ŷt = sign {Closet −Opent} (5.3)

Symbolic Variables

This are the ones generated by the Genetic Programming process, which was conducted after
the linear, autoregressive and target variables were formed, along with the fitness metrics. The
parameters used to conduct the process are the following:

Symbolic operations were: ’sub’, ’add’, ’inv’, ’mul’, ’div’, ’abs’, ’log’, ’sqrt’, initial population
of 12000, tournament size was 3000, for the Hall of Fame size a 30 size was chosen along with 5

generations to produce. This process generated 30 symbolic features which started to be formed
with an initial size between 4 and 10 elements, half for depth and half for breadth. A parsimony
coefficient was added to the fitness function in order to discourage excesive complexity as it
can be the case for an heuristic method. The probabilities for the core operations in the genetic
combination part were: 0.4 for crossover, 0.5 subtree mutation, 0.05 for hoist and point mutation.

More details are included in the chapter 3.
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5.5.4 4. Model Fitting and Performance Evaluation

The problem formulation is that of a classification type, starting by the definition of target
variable yt as a binary variable derived from COn

t=1, and the vector of explanatory variables Xt

derived from OHLCVt : {Opent, Hight, Lowt, Closet, Volumet}n−1
t=0 which was previously defined

in 3.

Cost function
The binary cross-entropy or logloss cost function was utilized for both of the implemented

models.

J(w) = − 1
m

m

∑
i=1

[
yi log(pi) + (1− yi) log(1− pi)

]
(5.4)

where:
m: Number of samples.
w: Model weights.
yi: The i-th ground truth (observed) output.
pi: The i-th probabilistically forecasted output.

The models utilized for this work were chosen with a particular objective, to implement a
very simple model with regularization, as a statistical learning approach for the problem. And
also, to implement a not so simple model that represents the machine learning approach. That
was the case for a logistic regression and an artificial neural network, respectively.

Regularization
One shared component for both models is elasticnet7 regularization criteria is one of the form: 7 Zou, H. and Hastie, T.

(2005). Regularization
and variable selection
via the elastic net. Jour-
nal of the Royal Statistical
Society, 67:301 – 320

Reg(J(w)) = J(w) + C
λ

m

n

∑
j=1

∥∥wj
∥∥

1 + (1− C)
λ

2m

n

∑
j=1

∥∥wj
∥∥2

2 (5.5)

Where:
L1: Also known as Lasso
L2: Also known as Ridge
C: A coefficient to regulate the effect between L1 and L2.

Note on simmetry when using integers as clases, if use -1, 0, +1, they have a simmetry at 0

ant apparently that causes numerical instability in the output of the cost function (for the case
of cross-entropy)
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5.6 Exploration cases definition

Because of the way the project was formulated, specially in the computational sense, there can
be defined several experiments, each of which with a unique combination of conditions, for this
work two were defined as the following:

5.6.1 Case 1: Held-out Fold (H-Fold)

This is the most simple, and often used 80%-20% data division, it was defined specifically for
that reason, in order to have it as a cannoincal approach to compare with any other proposition.
The following is a visual representation of the H-Fold data division:

Figure 5.4: OHLCt prices for the held-out method
.

• Fold size: 80% for training and 20% for validation

• Embargo criteria: fix number (5 lags)

• Inner data split: 0.20

• Data trasnformation: Pre-features scaling and Post-features Standarization

• Cost function: Binary cross-entropy (logloss)

• Fitness Metric: logloss in train set
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5.6.2 Case 2: Semester Folds (S-Fold)

This particular Fold size was defined with an a priori and application-based belief. There are
economic events that ocurr periodically in a quarterly and semesterly basis, since its the case of
a financial time series about the exchange rate between two economies, temporal modifications
can ocurr from period to period, thus structural changes can take place within different Folds.
The following is a visual representation of the S-Fold data division:

Figure 5.5: prices for the semester folds method

• Fold size: Semester

• Embargo criteria: memory according to argmax(ac f , pac f )

• Inner data split: 80% train and 20% validation within each fold.

• Data trasnformation: Pre-features scaling and Post-features Standarization

• Cost function: Binary cross-entropy (logloss)

• Fitness Metric: inverse weighted mean of accuracy, (Acctrain(0.20) + Accval(0.80))/2
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For each of the two Fold size cases defined in chapter 5 there were conducted two experiments,
and foreach of those experiments tests were conducted for both models defined in section 5.4
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6.1 Data Description

For input data, features and target variable it was conducted an Exploratory Data Analysis
(EDA) with three types of analysis: 1) Value distribution, 2) Correlation matrix with both
Pearson and Spearman coefficients, 3) Data table.

6.1.1 Value Distribution

A probability histogram with data values is ploted, the horizontal axis was scaled for
visualization purposes.

Figure 6.1: Value distribution for linear and autoregressive features: S-Fold

Figure 6.2: Value distribution for symbolic features: S-Fold

As it was expected, scale of engineered features is different among them. In Fig 6.1 can be
appreaciated that there is a bias towards lower or negative values, though other symmetric
empirical distribution can be observated. When for the case of symbolic features, there were
more dispersed Fig 6.2, but less symmetrical. One can think of this particular features
distribution as a diversification of variables whose empirical statistical moments varying
sufficiently well among them.
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Figure 6.3: Correlation between Linear and Autoregressive Features

Figure 6.4: Correlation between symbolic features

6.1.2 Correlation

Since the correlation matrix is symmetric only the lower triangle is shown, on the left in the
blues scale using ρ as the pearson correlation coefficient and on the right with green scale using
s as the spearman ranking coefficienModels performancet.

In order to have a visual overview on the relationship between the linear and autocorrelation-
based explanatory features, it was created a visualization plot for the correlation matrix, Figure
Figure 6.4 shows such correlation matrix using both Pearson and Spearman coefficients. The
Section chapter 3 includes details about benefits of using both metrics, the main one being to
have a statistical aproximate representation of local and global correlation in the two following
cases: BetweeModels performancen features and target variable, and Among features.

Similarly to linear and autoregressive, symbolic features were generated with pearson and
spearman coefficients as fitness metrics, then selected only unique genetic programs since there
can be configurations of parameters that produce identical or almost identical features.
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6.1.3 Feature Engineering

Feature Engineering of Endogenous Variables from simple variables transformed with PG can be
a useful process, both for inferring and forecasting, but it will depend on the following process
within predictive modeling. Genetic Programming provides a tool to make linear combinations
of non-linear variables. Being a heuristic method, ambiguity in design and implementation must
be tolerated, which will be based on "context" and which is a process that needs attention on its
own. In financial time series there is a high degree of collinearity between endogenous variables,
and the definition of the target variable plays a decisive role. By takingn into consideration
the Leakage of information stated in 1, an embargo operation was performed to each 6-month fold 1 Lopez de Prado, M. M.

(2018). Advances in Fi-
nancial Machine Learning.
Wiley

tested for all the years of historical prices. Such embargo criteria means to take out n data points
between every testing-training (in that order) intersections during Time Series Cross-Validation
techniques.

Direct and Indirect effects of Genetic Programming for Feature Engineering:
One of the most identifyable characteristic is that, since the heuristic nature of this process,

there is no assurance on its generality across samples, more specifically, across samples with the
same probability distribution and between samples with different probability distribution.
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6.2 Experiment

6.2.1 Definition

This experiment was conducted for both models, Logistic Regression with Elasticnet
Regularization and Multilayer Pereceptron. The objective was to test whether there is an
Out-Of-Sample generalization tests using In-Fold validation set. For this experiemnt, the results
after executing the fold process were filtered according to the following conditions:

• Condition 1: Accuracy in train set is above 70%

• Condition 2: Accuracy in validation set is above 70%

• Condition 3: Difference between Accuracy between train and val is below 10%

6.2.2 Execution

The process of hyperparameter search was conducted using a widely used heuristic method
for non-numeric search spaces, Genetic Algorithm does not depend on numerical values or
differentiable even continuous search spaces, like Gradient Based methods do depend. For
each S-Fold a 300 population was randomly created, the individuals are lists of one randomly
uniform choosen value for each hyperparameter, 5 generations are evolved using a fitness
metric selected from a list of different proposals involving logloss, accuracy and auc values.
Mutation and crossover between individuals provided the chromosome diversity component for
tested individuals and finally a 10 Hall Of Fame group was provided, all individuals were subset
of hyperparameters tested for the same model which weights were calculated with Gradient
Decent (logistic regression) and Mini-Batch Gradient Decent (Multi-Layer Perceptron).

6.2.3 Metrics for performance attribution

• Accuracy

– train (tr): Accuracy for training set

– val (vl): Accuracy for validation set

– diff: abs(acctr − accvl)

– mean: acctr+accvl
2 + ε

– weighted: acctr(0.80)+accvl(0.20)
2 + ε

– inv-weighted: acctr∗0.20+accvl∗0.80
2 + ε

• AUC

– train (tr): AUC for training set

– val (vl): AUC for validation set

– diff: abs(auctr − aucvl)

– mean: auctr+aucvl
2 + ε

– weighted: auctr∗0.80+aucvl∗0.20
2 + ε

– inv-weighted: auctr∗0.20+aucvl∗0.80
2 + ε

• Cost function

– train (tr): Binary logloss for train set

– val (vl): Binary logloss for validation set

– diff: abs(loglosstr − loglossvl)

– mean: loglosstr+loglossvl
2 + ε

– weighted: loglosstr∗0.80+loglossvl∗0.20
2 + ε

– inv-weighted: loglosstr∗0.20+loglossvl∗0.80
2 + ε



54

6.2.4 Models performance

The best performance for both models was found in different s of the S-Fold.

Metric ann-mlp logistic

Fold S-01-2012 S-01-2012

acc-train 0.915556 0.831111

acc-val 0.824561 0.736842

acc-mean 0.870059 0.78397

acc-diff 0.090994 0.09426

acc-weighted 0.448679 0.406130

acc-inv-weighted 0.421381 0.377849

auc-train 0.992491 0.930041

auc-val 0.840154 0.801791

auc-diff 0.152337 0.128249

auc-mean 0.916324 0.865917

auc-weighted 0.481013 0.452196

auc-inv-weighted 0.435312 0.413722

logloss-train 0.229070 5.833302

logloss-val 6.059520 9.089265

logloss-diff 5.830449 3.255963

logloss-mean 3.144296 7.461284

logloss-weighted 0.697581 3.242248

logloss-inv-weighted 2.446716 4.219037

Table 6.1: Performance metrics of best models
.
This values belong to the respective best individual found for each model, during the genetic algorithms optimization process.

The general results of the predictive modeling process are presented in Table 6.1. For both
models, this results are from the best global model according to the experiment definition,
and such global model is also the best local of its respective S-Fold from where it was trained.
Such training process was performed by implementing a genetic algorithm which formulated
hyperparameter sets as individuals and all the metrics reported as a result were also used
as fitness metric. In general terms, ann-mlp exhibited higher maximizeable metrics (acc, auc)
and lower minimizeable metrics (logloss). But there were two key aspects of special interest
for this work, that logistic regression present and can be valuable for the goal of Out-Of-Sample
generalization capabilities, mainly the hyperparameter stability in the form of a repeated
hyperparameter set among the best individuals found, lower difference in AUC values among
individuals within the winning S-Fold, and the model simplcity/explainability and faster
computation time for training.



results 55

For the Multi-Layer Perceptron, the configuration chosen as the best, according to the
experiment definition, was: s_01_20102.

• hidden layers: 2

• activations: ReLU (both layers)

• neurons per layer: 80 (both layers)

• regularization: None for activity, bias, ker-

nel activity

• weights initialization ’GlorotUniform’

• dropout: 0.10 rate for both hidden layers

• periods of repetition: None.

Figure 6.5: ROC curves of HoF at winning S-Fold

.
ROC curves and AUC calculated for the 10 best individuals in the Hall of Fame resulted from the genetic algorithms process,

training set (left) and validation set (right)

Figure 6.6: Prediction success and error for Multi-layer Perceptron

In Fig 6.6 can be appreciated the color indication of success (blue) and failure (red) of the
model classifying data during training. The grey candles are the ones either dropped because of
the embargo effect or to separate training from validation.

Particularities on Multi-Layer Perceptron:
A particular kind of regularization for Neural Networks is dropout, is applied to each hidden

layer (so it is not applied to the input and the output). One connection could be that getting the
dropped inputs and compare them to the statistical properties of the inputs in that particular
fold, whether they were pre-processed (scaled or normalized). This technique, does provided
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overfitting reduction since the winning hyperparameter set had dropout in both layers and it
was a 10% randomly choosen neurons dropped out, and in fact, it did had prevalence over other
regularization methods like elasticnet, all of this for a supervised learning task, as stated in this
work 2. 2 Srivastava, N., Hinton,

G., Krizhevsky, A.,
Sutskever, I., and
Salakhutdinov, R.
(2014). Dropout: A
simple way to prevent
neural networks from
overfitting. Journal
of Machine Learning
Research, 15:1929–1958

One advantage of having callback ïnstruction when implementing a Neural Network, is to set
a large number of epochs and let the learning process progress indefinitely until one condition
is reach, it could be a divergence of the learning algorithm which results in a NaN reporte
value therefore trigger the TerminateOnNaN callback, other reason is the unimprovement
of the accuracy metric for a continuous number of examples, and also a high divergence in
the similarity of distributions of the predicted values and the training values. More on the
divergence of the learning algorithm, the learning process is terminated for the entire batch
whenever the cost function presents a NaN value, possibly caused by a divergence of the
learning algorithm working on the search space of the cost function. This is implemented with
TerminateOnNaN function.

In reggards with monitoring accuracy rate dynamic under the definition of a logloss cost
function, this is done with EarlyStopping function. ReduceLROnPlateau: Reducing the learning
rate of the learning algorithm given an increasing rate of the divergence on the distribution of
the real value and the predicted value of the target variable.

In Fig 6.6 can be appreciated the color indication of success (blue) and failure (red) of the
model classifying data during training.
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For the Logistic Regression, the configuration chosen as the best, according to the experiment
definition, was:

• Regularization: Elasticnet

• Inverse of regularization strength (C): 1.5

• L1_ratio = 1.0 (Lasso)

• 61 of 191 features were turned to 0.

• hyperparameter set repetition: yes

• periods of repetition: s_01_2010, s_01_2012

Figure 6.7: ROC curves of HoF at winning S-Fold

.
ROC curves and AUC calculated for the 10 best individuals in the Hall of Fame resulted from the genetic algorithms process,

training set (left) and validation set (right)

Figure 6.8: Prediction success and error for Logistic Regression

In Fig 6.8 can be appreciated the color indication of success (blue) and failure (red) of the
model classifying data during training. The grey candles are the ones either dropped because of
the embargo effect or to separate training from validation.

For the case of the Logistic Regression, the presented results are from the 10th in the S-01-2012

fold, and more interestingly, the exact same hyperparameter set was present in the HoF of
s-01-2010 fold, and although the performance metrics were no better, there were no radically
worst either as can be appreciated in Table 6.2:
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Metric logistic-1 logistic-2

Fold S-01-2010 S-01-2012

acc-train 0.7110 0.831111

acc-val 0.7121 0.736842

acc-mean 0.7115 0.78397

acc-diff 0.0010 0.09426

acc-weighted 0.3556 0.406130

acc-inv-weighted 0.3559 0.377849

auc-train 0.753409. 0.930041

auc-val 0.766668 0.801791

auc-diff 0.0132 0.760039

auc-mean 0.7600 0.865917

auc-weighted 0.3780 0.452196

auc-inv-weighted 0.3820 0.413722

logloss-train 9.9809 5.833302

logloss-val 9.9431 9.089265

logloss-diff 0.0378 3.255963

logloss-mean 9.9620 7.461284

logloss-weighted 4.9866 3.242248

logloss-inv-weighted 4.9756 4.219037

Table 6.2: Comparisson in performance of OOS generalization
.
This values belong to the respective best individual found for each model, during the genetic algorithms optimization process.

6.2.5 Results discussion

The embargo effect on sample data dropping:

As mentioned before, when using time series data in a predictive modeling process, it is very
likely to be the case that a temporal memory is present in one form or another, most likely in
serieal autocorrelation of the target variable, or colinearity when producing endogenous features.
Embargo, as a Information Leakage prevention technique, does provide a relevante and yet simple
conceptual tool, and most importantly, when is the case som sort of cross-validation technique is
applied, it might be the case results are sub-optimal in terms of generalization capabilities, since
subsampling its not beign effective in terms of data sepparation and sparse learning. However,
there is a potentially high cost related to the use of an embargo consideration, and that woul be
sample data dropping, because by definition embargo means to drop data, it will have a strictly
above zero data to drop, whether the time series do not present serial autocorrelation, or a
potentially high number when dealing intray day prices or setting a somewhat loose confidence
interval or statistical significance threshold to considera a significative lagged coefficient to be
used as the memory the data has.

Variation on AUC values:

Another performance tool is ROC and its respective AUC. Since the output of both models
has a probabilistic nature, variations of threshold produce ROC with which AUC then can be
calculated and thus one can count with a balanced evaluation of performance, considering the
sensitivity and specificity of the results in the model. Because of the binary classification and
probabilistic output models, all the previous metrics and analysis hold, it would not be the
case for the regression case or models that do not produce a probabilistic output as the case for
example of the Support Vector Machines Method.

Differences in AUC values, from the same model but with different hyperparameters,
can indicate many things, one useful point of view is that it indicates some aspects of the
optimization process, a potentially very irregular optimization spaces, a optimization algorithm
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Figure 6.9: Value distribution as information in-Fold visualization

.

that operated with a high degree of stochastic variations, and there are almost certainly more
perspectives and conjectures to be made about the variation of AUC and forms of the ROC
curves.

Difference in Accuracy:

One of the first intentions of predictive modeling, in the classification setting, is to have a
model and a hyperparameter set that produces high accuracy metric, both for training and
validation sets, as defined in this work, the difference of such metrics between training and
validation is the criteria to address the generalization capabilities of the tested models. However,
by taking alone this metric one could think, and specially for time series prediction, that the
sequence of events, in a temporal dimension, could play a relevant roll in future samples. This is
because accuracy is produced after the decision of the threshold value with which the sigmoid
output is expressed in its final class. Another key aspect is the class imbalance in the training
and validation sets, though, for the experiment conducted in this work in all the S-Folds was
approximately 50%-50% with a 2% to 5% variation among folds.

Similary and Generalization:

In this work there is a particular interest in the description of some aspects of the lelarning
process, one of them is the data sub-sampling and its relationship with the best hyperparameters
founded for each model. In subsection 4.4.5, a probabilistic perspective to address the learning
process was introduced, particularly, the notion of computing a similarity metric between
samples. And according to the experiment definition included in section 5.3, the empirical
probability distribution on each sample represents the criteria with which generalization is
assesed. On the results of executing the experiment, the following finding does provide evidence
in regard to various perspective related to generalization in the learning process.

For the implemented Logistic Regression model, there were two identical hyperparameter
sets that were chosen as the best in their respective S-Fold, as mentioned in subsection 6.2.4.
Both where considered as part of the Hall Of Fame of their respective traning process, and such
traning process was conducted with two folds that present both a visual simmilarity, as can be
appreciated in and a low KLD divergence value, which was 0.2247
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In order to generate the presented results, +3, 000 lines of python code were created specially
for this work. From complementary functions, to data ingestion and formating, parallel
processing, logging, results extraction and data visualization. In the next section only the most
relevant code snippets are included, the rest of the programmatic functionalities can be consulted
in the official Github repository, at: https://github.com/IFFranciscoME/Msc_Thesis, which
has a GPL V3.0 open source software license.

https://github.com/IFFranciscoME/Msc_Thesis
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7.1 Code snippets

7.1.1 Price Data Aggregation

1 def group_data():
2 """
3 Group price data according to files and the specified granularty
4 """
5 file_nom = ’M1’
6 main_path_g = ’files/prices/raw/’
7 abspath = path.abspath(main_path_g)
8 p_years_list = [’2007’, ’2008’]
9 r_data = {}

10 files = sorted([f for f in listdir(abspath) if isfile(join(abspath, f))])
11 # swap high with low since the original data is wrong
12 column_names = ["timestamp", "open", "high", "low", "close", "volume"]
13 for file in files:
14 data = pd.read_csv(main_path_g + file, names=column_names,
15 parse_dates=["timestamp"], index_col=["timestamp"])
16 data = data.resample("T").agg({’open’: ’first’, ’high’: ’max’, ’low’: ’min’,
17 ’close’: ’last’, ’volume’: ’sum’})
18 data = data.dropna()
19 years = set([str(datadate.year) for datadate in list(data.index)])
20 [years.discard(i) for i in p_years_list]
21 years = sorted(list(years))
22 for year in years:
23 data_temp = data.groupby(pd.Grouper(freq=’1Y’)).get_group(year + ’-12-31’)
24 file_name_base = ’files/prices/’ + file_nom + ’/MP_’ + file_nom + ’_’
25 data_temp.to_csv(file_name_base + year + ’.csv’)
26 r_data[’MP_’ + file_nom + ’_’ + year] = data_temp
27 return r_data

7.1.2 Proof by counterexample

1 from math import log
2

3 # -- Define three discrete probability distributions
4 # P(x) = {P(X = 0) = 1/2, P(X = 1) = 1/2}
5 # R(x) = {P(X = 0) = 1/4, P(X = 1) = 3/4}
6 # Q(x) = {P(X = 0) = 1/10, P(X = 1) = 9/10}
7

8 # Calculate KL Divergence
9 DKL_PQ = (1/2 * log((1/2) / (1/10))) + (1/2 * log((1/2) / (9/10)))

10 DKL_PR = (1/2 * log((1/2) / (1/4))) + (1/2 * log((1/2) / (3/4)))
11 DKL_RQ = (1/4 * log((1/4) / (1/10))) + (3/4 * log((3/4) / (9/10)))
12

13 # Print Individual Results
14 print(DKL_PQ)
15 print(DKL_PR)
16 print(DKL_RQ)
17

18 # Print counterexample result
19 print(DKL_PQ <= DKL_PR + DKL_RQ)



apendix 63

7.1.3 KL Divergence between Gamma distributions

1 def kldivergence(p, q):
2

3 import scipy
4

5 def compute_gamma_parameters(data):
6 """
7 Computes the parameters of gamma distribution by Methods of Moments.
8 """
9

10 mean = np.mean(data)
11 variance = np.var(data)
12 # sometimes refered in literature as k
13 alpha = mean**2/variance
14 # sometimes refered in literature as 1/theta
15 beta = mean/variance
16

17 return alpha, beta
18

19 def kl_divergence_generalized_gamma(alpha_1, beta_1, alpha_2, beta_2, p1=1, p2=1):
20 """
21 Computes the Kullback-Leibler divergence between two gamma distributions
22 """
23

24 theta_1 = 1/beta_1
25 theta_2 = 1/beta_2
26 a = p1*(theta_2**alpha_2)*scipy.special.gamma(alpha_2/p2)
27 b = p2*(theta_1**alpha_1)*scipy.special.gamma(alpha_1/p1)
28 c = (((scipy.special.digamma(alpha_1/p1))/p1) +
29 np.log(theta_1))*(alpha_1 - alpha_2)
30 d = scipy.special.gamma((alpha_1+p2)/p1)
31 e = scipy.special.gamma((alpha_1/p1))
32 f = (theta_1/theta_2)**(p2)
33 g = alpha_1/p1
34

35 return np.log(a/b) + c + (d/e)*f - g
36

37 a_p, b_p = compute_gamma_parameters(p)
38 a_q, b_q = compute_gamma_parameters(q)
39 kl = kl_divergence_generalized_gamma(a_p, b_p, a_q, b_q, p1=1, p2=1)
40

41 return kl
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7.2 Complete Fold Process

1

2 def fold_process(p_data_folds, p_models, p_embargo, p_inner_split, p_trans_function, p_fit_type):
3 """
4 Fold process to execute for every sub-sample, inside every experiment that will be conducted
5 for all models.
6 """
7

8 # -- Eembargo calculations
9 if p_embargo == ’fix’:

10 # Fixed memory derived from features calculations
11 memory = dt.features_params[’lags_diffs’]
12 p_data_folds, embargo_dates, memory = folds_embargo(p_folds=p_data_folds, p_mode=’fix’,
13 p_memory=memory)
14 elif p_embargo == ’memory’:
15 # Derived from max value from both PACF and ACF functions applied to first difference of ts data
16 p_data_folds, embargo_dates, memory = folds_embargo(p_folds=p_data_folds, p_mode=’memory’,
17 p_memory=None)
18 elif p_embargo == ’False’:
19 # Without embargo
20 memory = dt.features_params[’lags_diffs’]
21 p_data_folds, embargo_dates = p_data_folds, [’no embargo’]
22 else:
23 print(’Error in fold_process, invalid p_embargo parameter’)
24

25 # main data structure for calculations
26 memory_palace = {j: {i: {’e_hof’: [], ’p_hof’: {}, ’time’: [], ’features’: {}}
27 for i in list(dt.models.keys())} for j in p_data_folds}
28

29 # iteration info
30 iteration = list(p_data_folds.keys())[0][0]
31

32 if iteration == ’q’:
33 msg = ’quarter’
34 elif iteration == ’s’:
35 msg = ’semester’
36 elif iteration == ’y’:
37 msg = ’year’
38 elif iteration == ’b’:
39 msg = ’bi-year’
40 elif iteration == ’h’:
41 msg = ’80-20’
42 else:
43 msg = ’na’
44

45 # Construct the file name for the logfile
46 name_log = iteration + ’_’ + p_fit_type + ’_’ + p_trans_function + ’_’ + p_inner_split + ’_’ + p_embargo
47 # Base route to save file
48 route = ’files/logs/’ + dt.folder
49 # Create logfile
50 logger = setup_logger(’log%s’ %name_log, route + ’%s.txt’ %name_log)
51 logger.debug(’ ’)
52 logger.debug(’ ********************************************************************************’)
53 logger.debug(’ T-FOLD SIZE: ’ + msg + ’ ’)
54 logger.debug(’ ********************************************************************************\n’)
55

56 # cycle to iterate all periods
57 for period in list(p_data_folds.keys()):
58

59 logger.debug(’|| ---------------------- ||’)
60 logger.debug(’|| period: ’ + period)
61 logger.debug(’|| ---------------------- ||\n’)
62 logger.debug(’------------------- Feature Engineering on the Current Fold ---------------------’)
63 logger.debug(’------------------- --------------------------------------- ---------------------’)
64

65 # ------------------------------------------------------------------------------- DATA PROFILING -- #
66 # dummy initialization
67 data_folds = {}
68 # ----------------------------------------------------------------------------- FEATURES SCALING -- #
69 # Feature metrics for ORIGINAL DATA: OHLCV
70 dt_metrics = data_profile(p_data=p_data_folds[period].copy(), p_type=’ohlc’, p_mult=10000)
71

72 # Original data
73 data_folds = p_data_folds[period].copy()
74

75 # Feature engineering (Autoregressive)
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76 linear_data = linear_features(p_data=data_folds, p_mult=10000)
77

78 # Feature engineering (Autoregressive)
79 autoregressive_data = autoregressive_features(p_data=linear_data, p_memory=memory)
80

81 # Target Variable shift to avoid information leakage
82 shifted_data = data_shift(p_data=autoregressive_data, p_target=’cod’)
83

84 # pre-feature scaling (Scale OHLCV based linear features)
85 fold_data_y = shifted_data[’cod_t1’].copy()
86 shifted_data.drop(’cod_t1’, inplace=True, axis=1)
87 fold_data_x = data_scaler(p_data=shifted_data, p_trans=’scale’)
88 fold_data = pd.concat([fold_data_y, fold_data_x], axis=1)
89

90 # -- Symbolic features (PEARSON) -- #
91

92 # feature generation
93 p_features = symbolic_features(p_data=fold_data.copy(), p_split=p_inner_split,
94 p_target=’cod_t1’, p_metric=’pearson’)
95

96 # print it to have it in the logs
97 df_log_p = pd.DataFrame(p_features[’sym_data’][’details’])
98 df_log_p.columns = [’gen’, ’avg_len’, ’avg_fit’, ’best_len’, ’best_fit’, ’best_oob’, ’gen_time’]
99

100 logger.debug(’\n\n---- Genetic Programming Metric: Pearson \n’)
101 logger.debug(’\n\n{}\n’.format(df_log_p))
102

103

104 # -- Symbolic features (SPEARMAN) -- #
105

106 # feature generation
107 s_features = symbolic_features(p_data=fold_data.copy(), p_split=p_inner_split,
108 p_target=’cod_t1’, p_metric=’spearman’)
109

110 # print it to have it in the logs
111 df_log_s = pd.DataFrame(s_features[’sym_data’][’details’])
112 df_log_s.columns = [’gen’, ’avg_len’, ’avg_fit’, ’best_len’, ’best_fit’, ’best_oob’, ’gen_time’]
113

114 logger.debug(’\n\n---- Genetic Programming Metric: Spearman \n’)
115 logger.debug(’\n\n{}\n’.format(df_log_s))
116

117 # -- Join Features
118 n_s_sym = s_features[’sym_data’][’best_programs’].shape[0]
119

120 ps_f = {’sym_data’: {’pearson’: p_features[’sym_data’], ’spearman’: s_features[’sym_data’]},
121

122 ’model_data’:
123 {’train_y’: p_features[’model_data’][’train_y’],
124 ’train_x’: pd.concat([p_features[’model_data’][’train_x’],
125 s_features[’model_data’][’train_x’].iloc[:,-n_s_sym:]],
126 axis=1),
127

128 ’val_y’: p_features[’model_data’][’val_y’],
129 ’val_x’: pd.concat([p_features[’model_data’][’val_x’],
130 s_features[’model_data’][’val_x’].iloc[:,-n_s_sym:]],
131 axis=1)}}
132

133 # -- Scale
134

135 for data in list(ps_f[’model_data’].keys()):
136 # just scale the features, not the target, of inner data-sets
137 if data[-1] == ’x’:
138 ps_f[’model_data’][data] = data_scaler(p_data=ps_f[’model_data’][data],
139 p_trans=p_trans_function)
140

141 # --------------------------------------------------------------------------- FEATURES PROFILING -- #
142

143 # objects to store features metrics
144 ps_metrics = {}
145

146 # for pearson based features
147 for data in list(ps_f[’model_data’].keys()):
148 if data[-1] == ’y’:
149 data_type = ’target’
150 else:
151 data_type = ’ts’
152 ps_metrics.update({data: data_profile(p_data=ps_f[’model_data’][data],
153 p_type=data_type, p_mult=10000)})
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154

155 # save calculated metrics
156 memory_palace[period][’metrics’] = {’data_metrics’: dt_metrics, ’feature_ps_metrics’: ps_metrics}
157

158 # ------------------------------------------------------------------ HYPERPARAMETER OPTIMIZATION -- #
159

160 logger.debug(’----------------- Hyperparameter Optimization on the Current Fold ---------------’)
161 logger.debug(’------------------- --------------------------------------- ---------------------\n’)
162

163 logger.debug(’---- Optimization Fitness: ’ + p_fit_type)
164 logger.debug(’---- Data Scaling Order: pre-scale & post-standard’)
165 logger.debug(’---- Data Transformation: ’ + p_trans_function)
166 logger.debug(’---- Validation inner-split: ’ + p_inner_split)
167 logger.debug(’---- Embargo: ’ + p_embargo + ’ = ’ + str(memory) + ’\n’)
168

169 logger.info("Feature Engineering in Fold done in = " + str(datetime.now() - init) + ’\n’)
170

171 # Save data of features used in the evaluation in memory_palace (only once per fold)
172 memory_palace[period][’features’] = ps_f[’model_data’]
173

174 # Save equations of features used in the evaluation in memory_palace (only once per fold)
175 memory_palace[period][’sym_features’] = ps_f[’sym_data’]
176

177 # cycle to iterate all models
178 for model in p_models:
179 # debugging
180 # model = p_models[0]
181

182 # Optimization
183

184 logger.debug(’---------------------------------------------------------------------------------’)
185 logger.debug(’model: ’ + model)
186 logger.debug(’---------------------------------------------------------------------------------\n’)
187

188 # verification of type of objective to optimize
189 # default to minimize in order to have an option for logloss
190 ob_type = ’min’
191 # maximize for auc and acc related metrics
192 if p_fit_type[0:3] == ’auc’ or p_fit_type[0:3] == ’acc’:
193 ob_type = ’max’
194 # if it is a difference between any of acc, auc and logloss, then choose to minimize
195 elif p_fit_type[-4:] == ’diff’:
196 ob_type = ’min’
197

198 # optimization process NEEDS TO INCLUDE MODEL OBJECT OR WEIGHTS FOR MLP for reproducibility
199 hof_model = genetic_algo_optimization(p_gen_data=ps_f[’model_data’],
200 p_model=dt.models[model], p_fit_type=p_fit_type,
201 p_opt_params=dt.optimization_params, p_minmax=ob_type)
202

203 # log the result of genetic algorithm
204 logger.info(’\n\n{}\n’.format(hof_model[’logs’]))
205

206 # --------------------------------------------------------------------- HOF MODEL EVALUATION -- #
207

208 # evaluation process
209 for i in range(0, len(list(hof_model[’hof’]))):
210 # i = range(0, len(list(hof_model[’hof’])))[0]
211 hof_eval = model_evaluation(p_features=ps_f[’model_data’], p_model=model,
212 p_optim_data=hof_model[’hof’][i])
213

214 # save evaluation in memory_palace
215 memory_palace[period][model][’e_hof’].append(hof_eval)
216

217 # save the parameters from optimization process
218 memory_palace[period][model][’p_hof’] = hof_model
219

220 # time measurement
221 memory_palace[period][model][’time’] = datetime.now() - init
222

223 logger.info("Model Optimization in Fold done in = " + str(datetime.now() - init) + ’\n’)
224

225 # -- ----------------------------------------------------------------------------------- DATA BACKUP -- #
226 # -- ----------------------------------------------------------------------------------- ----------- -- #
227

228 # Base route to save file
229 route = ’files/backups/’ + dt.folder
230

231 # File name to save the data
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232 file_name = route + period[0] + ’_’ + p_fit_type + ’_’ + p_trans_function + ’_’ + \
233 p_inner_split + ’_’ + p_embargo + ’.dat’
234

235 # objects to be saved
236 pickle_rick = {’data’: dt.ohlc_data, ’t_folds’: period, ’embargo_dates’: embargo_dates,
237 ’memory_palace’: memory_palace}
238

239 # print ending message
240 logger.debug(’---------------------------------------------------------------------------------’)
241 logger.debug(’--- FOLD PROCESS SUCCESSFULLY COMPLETED ---’)
242 logger.debug(’---------------------------------------------------------------------------------\n’)
243

244 # pickle format function
245 dt.data_pickle(p_data_objects=pickle_rick, p_data_file=file_name, p_data_action=’save’)
246

247 # print ending message
248 logger.debug(’---------------------------------------------------------------------------------’)
249 logger.debug(’--- FILE SAVED: ’ + file_name)
250 logger.debug(’---------------------------------------------------------------------------------’)
251

252 return memory_palace
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7.3 Example Log file

1 02:49:13: ********************************************************************************
2 02:49:13: T-FOLD SIZE: 80-20
3 02:49:13: ********************************************************************************
4

5 02:49:13: ------------------- Feature Engineering on the Current Fold ---------------------
6 02:49:13: ------------------- --------------------------------------- ---------------------
7

8 ---- Genetic Programming Metric: Pearson
9

10 gen avg_len avg_fit best_len best_fit best_oob gen_time
11 0 0 35.670667 0.012392 3 0.053620 NaN 213.483351
12 1 1 4.321250 0.031317 5 0.061275 NaN 347.172736
13 2 2 5.902333 0.035376 9 0.066252 NaN 392.495219
14 3 3 7.053417 0.036792 9 0.067901 NaN 383.876476
15 4 4 7.967250 0.037989 11 0.068575 NaN 382.414973
16

17 ---- Genetic Programming Metric: Spearman
18

19 gen avg_len avg_fit best_len best_fit best_oob gen_time
20 0 0 35.670667 0.012947 23 0.060528 NaN 428.632033
21 1 1 4.633000 0.027717 8 0.070882 NaN 444.987838
22 2 2 7.501833 0.033168 8 0.070882 NaN 326.433965
23 3 3 8.320750 0.033061 19 0.073454 NaN 806.265641
24 4 4 8.359750 0.033382 10 0.072698 NaN 512.382379
25

26 04:00:03: ----------------- Hyperparameter Optimization on the Current Fold ---------------
27 04:00:03: ------------------- --------------------------------------- ---------------------
28

29 04:00:03: ---- Optimization Fitness: acc-train
30 04:00:03: ---- Data Scaling Order: pre-scale & post-standard
31 04:00:03: ---- Data Transformation: standard
32 04:00:03: ---- Validation inner-split: 20
33 04:00:03: ---- Embargo: fix = 4
34

35 04:00:03: Feature Engineering in Fold done in = 1:10:49.147635
36

37 04:00:03: ---------------------------------------------------------------------------------
38 04:00:03: model: logistic-elasticnet
39 04:00:03: ---------------------------------------------------------------------------------
40

41 gen nevals avg std min max
42 0 500 0.543087 0.00118032 0.538812 0.544695
43 1 312 0.54417 0.000531619 0.54052 0.544695
44 2 341 0.544435 0.000420164 0.543177 0.544695
45 3 303 0.544435 0.000422409 0.543177 0.544695
46 4 313 0.54443 0.000432936 0.543177 0.544695
47 5 344 0.544394 0.000470226 0.543177 0.544695
48

49 07:31:40: Model Optimization in Fold done in = 1 day, 4:42:26.395536
50

51 07:31:40: ---------------------------------------------------------------------------------
52 07:31:40: model: ann-mlp
53 07:31:40: ---------------------------------------------------------------------------------
54

55 gen nevals avg std min max
56 0 500 0.539901 0.0132037 0.505029 0.605618
57 1 318 0.57144 0.0176039 0.518315 0.623838
58 2 337 0.596888 0.0222966 0.539002 0.645663
59 3 318 0.610567 0.0274275 0.520592 0.687607
60 4 317 0.628443 0.0392315 0.532549 0.732017
61 5 324 0.659759 0.0515914 0.530271 0.738091
62

63 10:10:58: Model Optimization in Fold done in = 2 days, 7:21:44.755592
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