

Temporal phase synchrony disruption in Dyslexia: anomaly patterns in auditory processing

Marco A. Formoso^{1,3}, Andrés Ortiz^{1,3}, Francisco J. Martínez-Murcia^{2,3}, Diego Aquino Brítez⁴, Juan José Escobar⁴, and Juan Luis Luque⁵

¹ Communications Engineering Department. ETS Ingeniería de Telecomunicación. University of Málaga
² Department of Signal Theory, Telematics and Communications. ETS Ingeniería de Telecomunicación. University of Granada
³ Andalusian Data Science and Computational Intelligence Institute (DaSCI)
⁴Department of Computer Architecture and Technology, University of Granada.
⁵Department of Developmental and Educational Psychology University of Málaga.

- **1. Introduction**
- 2. Methodology
- 3. Results
- 4. Conclusions

Introduction

- Developmental Dyslexia (DD) is a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling.
- Difficulties in word recognition and by poor spelling and decoding abilities.
- Neural representation of the sequential sounds of speech.
- Prevalence is between 5% 12% of the population.
- In children, it has effects in the self-esteem, could have an important social impact and eventually, may determine school failure.

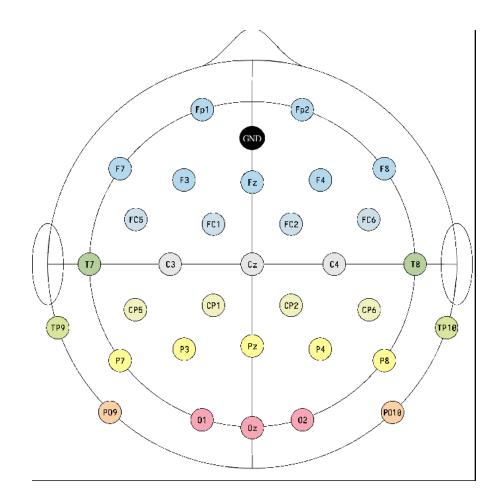
- Dyslexia (DD) is usually diagnosed by means of specifically designed tests to measure different behavioural variables in the reading process.
- Reading efficiency or the ability to split words.
- Tests are individually applied by specialists.

- Classical diagnosis methods are time-consuming and prone to error.
- Results of the tests depend on the motivation and the mood of the child.
- Usually children with specific difficulties are not correctly diagnosed.
- Most benchmarks are designed for readers, limiting the minimum age for the early diagnosis.
- Early diagnosis and prognosis to start an adequate and individualized intervention is decisive in the personal and intellectual development of the children.

• We assume that there should be differences in brain reaction/adaptation between the control and dyslexic groups when an auditory stimulus is applied.

Methodology

- 48 Children:
 - 32 skilled readers (17 males / 15 females)
 - 16 dyslexic readers (7 males / 9 females)
- The mean age of Control group was: 94 months control group and 95 months from dyslexic group.
- All Participants were Spanish native speakers.
- Dyslexic children had all received a formal diagnosis in the school.

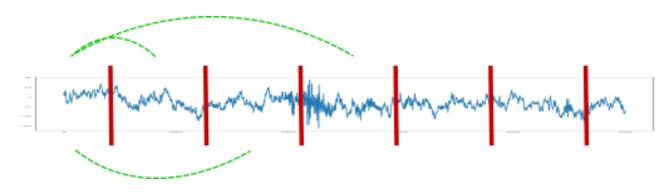


- We recorded EEG (500Hz sampling rate) signals using a 32 active electrodes while presenting auditory stimulus.
- White Noise Stimulus AM (5 minutes each): 4.8Hz, 16Hz, 40Hz, 40Hz, 16Hz, 4.8Hz
- EEG signals were pre-processed in order to remove artefacts related to eye blinking.
- These artefact were removed by blind source separation using Independent Component Analysis (ICA)
- EEG referenced to Cz channel

Methodology

$$PLI_{xy} = \left| \frac{1}{N} \sum_{t=1}^{N} sgn(imag(S_{txy})) \right|$$

• Cross-spectral density $S_{txy} = |A|$


$$S_{txy} = |A_x||A_y|e^{i\theta_x - \theta_y}$$

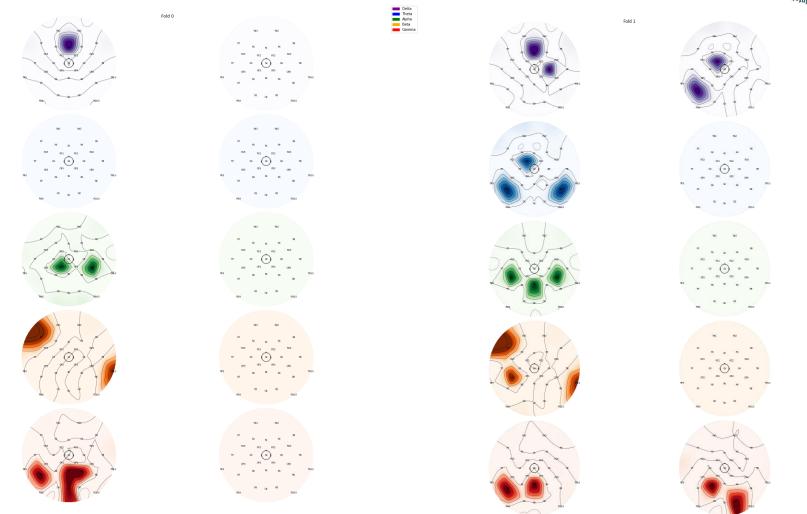
Methodology

- Band filter EEGs: Delta (0.5-4hz), Theta (4-8Hz), Alpha (8-12Hz), Beta (12-30Hz), Gamma (30-80Hz)
- Hilbert Transform
- Split the EEGs into 10 segments and apply PLI

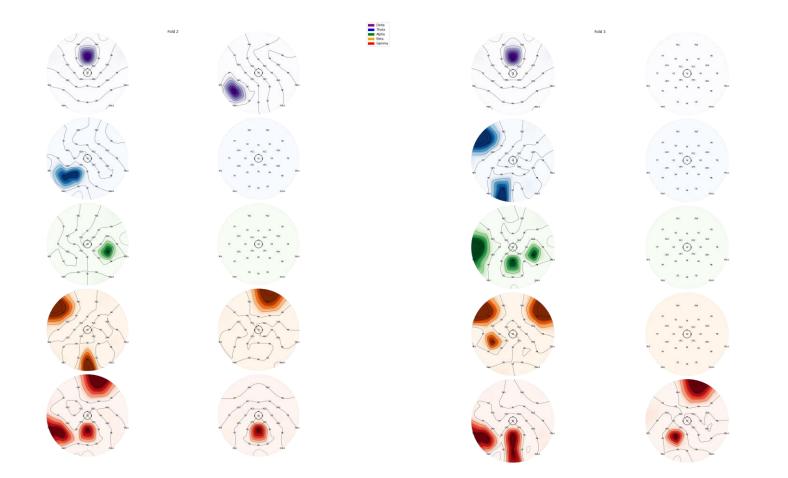
Methodology

Subject Dims = (#Bands, #Channels, #Segments - 1) = (5, 32, 9) **UP** Stim DOWN Stim Fold X Subject1 Subject1 Subject2 Subject2 Mask Stage Subject3 Subject3 Train ↓Test **OCSVM** SubjectN SubjectN Mask Shape = #Segments - 1 CTRL MASK DLX MASK Mask Applied at channel dim level Classification Stage Subject1 * DLX MASK Subject1 * CTRL MASK Subject1 * CTRL MASK Subject1 * DLX MASK Subject2 * DLX MASK Subject2 * CTRL MASK Subject2 * CTRL MASK Subject2 * DLX MASK Subject3 * DLX MASK Subject3 * CTRL MASK Subject3 * CTRL MASK Subject3 * DLX MASK SubjectN * CTRL MASK SubjectN * DLX MASK SubjectN * CTRL MASK SubjectN * DLX MASK Clasification Clasification

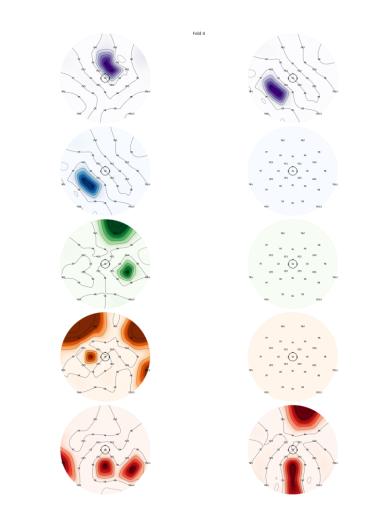
Methodology



Results


Delta Theta Apha Beta Gamma

Results



Results

Delta Theta Alpha Beta Gamma

Results

Band	Classifier	AUC	${\bf Sensitivity}$	Specificity	Accuracy
Alpha	KNN	$\textbf{0.76} \pm \textbf{0.15}$	0.82 ± 0.15	$\textbf{0.76} \pm \textbf{0.18}$	$\textbf{0.73} \pm \textbf{0.11}$
	SVM	$0.71 {\pm} 0.15$	$0.07 {\pm} 0.13$	$0.97{\pm}0.07$	$0.71 {\pm} 0.07$
Beta	KNN	$0.48 {\pm} 0.06$	$0.20{\pm}0.25$	$0.78 {\pm} 0.25$	$0.60 {\pm} 0.12$
	$_{\rm SVM}$	$0.54{\pm}0.13$	$0.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.71 {\pm} 0.05$
Delta	KNN	$0.50 {\pm} 0.13$	$0.20{\pm}0.27$	$0.89{\pm}0.17$	$0.69 {\pm} 0.11$
	$_{\rm SVM}$	$0.59 {\pm} 0.11$	$0.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.71 {\pm} 0.05$
Gamma	KNN	$0.66{\pm}0.13$	$0.47 {\pm} 0.45$	$0.79{\pm}0.18$	$0.67 {\pm} 0.05$
	$_{\rm SVM}$	$0.37 {\pm} 0.14$	$0.20 {\pm} 0.4$	$0.80 {\pm} 0.4$	$0.60{\pm}0.20$
Theta	KNN	$0.46 {\pm} 0.09$	$0.00 {\pm} 0.0$	$0.91{\pm}0.17$	$0.65 {\pm} 0.11$
	$_{\rm SVM}$	$0.54{\pm}0.09$	$0.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$0.71 {\pm} 0.05$

Conclusions and

Future Work

•We proposed a method to detect differences in how dyslexic children vs non-dyslexic adapt to auditory stimuli.

•Phase Lag Index is used to measure the differences in time and used to build a classification pipeline.

•The results show that the Alpha band carries enough information build a classifier with and AUC up to 0.76

•As a future work, a more intensive exploratory analysis of the rest of the stimuli is planned, as well as try other metrics others than PLI.