

A Jordan Canonical Form for nilpotent elements in arbitrary ring.

Miguel Gómez Lozano, Esther García, Guillermo Vera de Salas and Rubén Muñoz Alcázar

Abstract:

In this paper we give an inductive new proof of the Jordan canonical form of a nilpotent element in an arbitrary ring. If a \in R is a nilpotent element of index n+1 with von Neumann regular a^n , we decompose a=ea+(1-e)a with ea \in eRe \approx M_n(S) a Jordan block of size n+1 over a corner S of R, and (1-e)a nilpotent of index <n+1 for an idempotent e of R commuting with a. This result makes it possible to characterize prime rings of bounded index n with a nilpotent element a \in R of index n and von Neumann regular a^{n-1} as a matrix ring over a unital domain.

Introduction:

Von Neumann regular elements: An element $a \in R$ is said to be von Neumann regular if there exists $b \in R$ such that aba=a.

Nilpotent Last regular element: A nilpotent element $a \in R$ of index n+1 is said to be last regular if a^n is von Neumann regular.

Rus-inverse: Given a nilpotent last regular element $a \in R$ of index n+1, we said that $b \in R$ is a Rus inverse of a if $a^n b$ $a^n = a^n$, $ba^n b = b$ and $ba^k b = 0$ for every $0 \le k \le n-1$.

Lemma[1]: Let R be a ring and let a \in R be a nilpotent last regular element of index n+1. Then there exists b \in R a Rus-inverse of a.

Theorem[2]: Let R be a ring and let a \in R be a nilpotent last regular element of index n+1. Let b be a Rus-inverse of a. Then there exists n+1 nonzero orthogonal idempotents e_k , with k=1,...,n+1 in R (depending on b) such that if $e = \sum e_k$

- ² ea=ae,
- $a^n e = a^n$,
- ² (1-e)a is nilpotent of index less than n+1,
- ² \$eRe ≈ $M_n(e_1 R e_1)$, and if e_{ij} are the matrix units of the matrix ring eRe, ea=eae = $\sum e_{k+1,k}$ (a Jordan Block)
- ² For every $s \in \{1,2,..., n\}$, a^s is unit-regular in eRe: taking $d = \sum e_{k,k+1} + e_{n+1,1}$, then $(ea)^s d^s$ $(ea)^s = (ea)^s$ and d^s is invertible in eRe.

In the matrix representation of ea on item (d) we have that $e_{1,n+1}$ =eb=be is a Rus-inverse for ea with associated idempotent e.

Theorem: Let R be a ring and a \in R be a nonzero nilpotent element of index n such that for every s \in N, a^s is von Neumann regular. Then there exists a family u_i with i=1,...k, of nonzero orthogonal idempotents that commute with a and such that $a = \sum u_i a_i$, and every u_i a is a nilpotent block-element of index n_i with $n=n_1 > n_2 > > n_k$ associated to the block-idempotent u_i .

Theorem: Let A be a unital algebra over a field F and let a be an algebraic element in A such that its minimal polynomial $m_a(X)$ totally decomposes in F[X] as $\prod (X-\lambda_i)^{k_i}$ where $\lambda_i\neq\lambda_j$ if $i\neq j$. Suppose that $(a-\lambda_i)^{k_i}$ is von Neumann regular for every $k_i\leq n_i$, i=1,...,k. Then there exists a family of orthogonal idempotents $\{v_s\}$ where s=1,...,k and families of orthogonal idempotents $\{u_{s,i}\}$ where $\{u_{s,i}\}$ and $\{u_{s,i}\}$ associated to the block-idempotent $\{u_{s,i}\}$.

Remark: In general, neither the Rus-inverse nor the associated idempotent in [1] and [2] are unique: If $M_n(F)$, and $a = e_{1,2}$ the element $b = e_{2,1}$ is a Rus-inverse for a and a is a block-element with associated block-idempotent $e = e_{1,1} + e_{2,2}$ the element $b' = e_{2,1} + e_{3,1}$ is another Rus-inverse for a and \$a\$ is a block-element with associated block-idempotent $e' = e_{1,1} + e_{2,2} + e_{3,2}$

Definition: We say that a nilpotent last regular element a \in R of index n+1 is block-maximal if one of its associated block-idempotents belongs to the center of R, i.e., if there exists a Rus-inverse of a such that the idempotent built in [1] is central.

Proposition: Al central block-idempotents associated to a block-maximal element coincide. If a \in R has maximal index of nilpotence, then it is block-maximal

maximal index n. Then

- ² Any Rus-inverse of a gives rise to the same (central) idempotent e and R=eRe \oplus (1-e)R(1-e). Moreover, eRe \approx M_n(S), where S is a ring without nonzero nilpotent elements.
- ² If R is von Neumann regular, eRe \approx M_n(S), where S is abelian regular.
- ² If R is indecomposable, eRe \approx M_n(S), where S is a unital ring without nilpotent elements.
- ² If R is prime, eRe \approx M_n(S), where S is a unital domain.
- ² If R is indecomposable and von Neumann regular, eRe $\approx M_n(S)$, where S is a division ring.

In any case, as soon as R is indecomposable, e=1 and a is a block-element.

The proof of this theorem is algorithmic, so it provides a method to compute the Jordan canonical form of any nilpotent matrix:

Let $A \in M_n(F)$ nilpotent of index m.

- ² A^{m-1} is von Neumann regular and there exists B \in M_n(F) with A^{m-1}B A^{m-1} = A^{m-1}
- ² B'= B A^{m-1} B satisfies A^{m-1} B' $A^{m-1} = A^{m-1}$ and B' A^{m-1} B'=B'
- ² If consider D=1-B A^{m-1} and B"=DB' we have

 $A^{m-1}B''$ $A^{m-1} = A^{m-1}$, B'' A^{m-1} B'' = B'' and B'' A^{m-2} B'' = 0

² If we consider B with

 $A^{m-1}B A^{m-1} = A^{m-1}$, $B A^{m-1} B = B$ and $B A^k B = 0$ for k = s+1,...,m-2And consider $D = 1 - A^{m-1-s}B A^s$ and B' = DB we have $A^{m-1}B' A^{m-1} = A^{m-1}$, $B'A^{m-1} B' = B'$ and $B' A^k B' = 0$ for k = s,...,m-2

Note that: If B is a Rus inverse for A, the dimension of $Im(e_{1,1})$ where $e_{1,1}$ is the idempotent B A^{m-1} is the number of Jordan Block of size m and for any element of a base $\{v_1,...,v_k\}$ of $Im(e_{1,1})$

 $\{v_s, A v_s, ..., A^{m-1} v_s\}$ is a Base of each Jordan Block of size m

Reterences:

[1] E. García, M. Gómez Lozano R. Munóz and G. vera de Salas, "A Jordan canonical form for nilpotent elements in an arbitrary ring" Linear Algebra and its Applications, Volume 581, Pages 324-335

OTHER NOTIONS

Von Neumann regular: A ring R is said to be an von Neumann regular if every element of R is von Neumann regular.

Abelian Regular: A ring R is said to be an abelian regular ring if R is von Neumann regular and every idempotent of R is contained in the center of R.