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A B S T R A C T   

Automatic fall detection is one of the most promising applications of wearables in the field of mobile health. The 
characterization of the effectiveness of wearable fall detectors is hampered by the inherent difficulty of testing 
these devices with real-world falls. In fact, practically all the proposals in the literature assess the detection 
algorithms with ‘scripted’ falls that are simulated in a controlled laboratory environment by a group of volun
teers (normally young and healthy participants). Aiming at appraising the adequacy of this method, this work 
systematically compares the statistical characteristics of the acceleration signals from two databases with real 
falls and those computed from the simulated falls provided by 18 well-known repositories commonly employed 
by the related works. The results show noteworthy differences between the dynamics of emulated and real-life 
falls, which undermines the testing procedures followed to date and forces to rethink the strategies for evaluating 
wearable fall detectors.   

1. Introduction 

World Health Organization (WHO) has estimated that around 684 k 
mortal falls occur each year in the world, while 37.3 million falls require 
medical attention [1]. Most severe falls are suffered by adults older than 
65 years. Roughly-one third of people aged over 65 fall each year and 5 
% of these accidents result in a fracture [2]. 

A prompt assistance of the fallers is a key factor to reduce the medical 
consequences of falls. ‘Long lies’ (i.e. higher than 60 min) are linked to 
different co-morbidities (ranging from dehydration to pneumonia or 
hypothermia) and they have been found to increase up to 50 % the 
probability of dying within six months after the accident [3 4]. In such 
context, it comes as no surprise that the design of cost-effective and 
automatic alerting Fall Detection Systems (FDSs) has gained much 
research attention in recent years, becoming one of technologies with 
more potential in the field of telecare applications and, especially, the 
remote monitoring of biosignals. The numbers of research articles and 
patents on automatic FDSs have rocketed since 2010 (see the biblio
graphic study in [5] for a numerical analysis of this growth). Besides, the 
global market of Fall detection Systems is expected to be valued at US$ 
600.0 Mn before 2030, expanding at a compound annual growth rate 
(CAGR) of approximately 4 % between 2019 and 2029 [6]. 

FDSs can be contemplated as an instance of Human Activity Recog
nition (HAR) systems. FDSs are binary pattern recognition systems ori
ented to permanently supervise the human actions so that a spurious 
movement caused by a fall can be discriminated from ordinary routines 
or ADLs (Activities of Daily Living). As soon as an accident is suspected, 
the FDS must issue an alerting message (SMS, email, phone call, app 
notification, etc.) to a remote caregiver (medical or nursing staff, user’s 
relatives, etc.). 

FDSs have been traditionally classified into two general groups. On 
one side, the operation of Context-Aware Systems (CAS) is grounded on 
the measurements of a set of sensing nodes (pressure sensors, micro
phones, cameras, radars, ultrasonic or infrared sensors, etc.) located on a 
predefined area (typically at home) around the person to be monitored. 
CAS solutions normally involve higher installation and maintenance 
expenditures as well as a fine adjustment and adaption of the tracking 
equipment to the particularities of the user’s environment. In addition, 
the action of contextual detectors is restricted to a very particular zone, 
which could be only acceptable for certain setups (e.g. a nursing home). 
In fact, according to certain studies [7], between 28 % and 38 % of falls 
of the elderly occur out of their homes. 

Contrariwise, wearable FDSs can be used regardless of the user’s 
location since they base their detection decisions on signals acquired by 
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sensors (mostly inertial measurement units –IMUs-) that are directly 
transported or worn by the patient. As abovementioned, when compared 
to CASs, wearable FDSs benefit from a higher ease of installation, more 
cost-efficiency and a simpler design and configuration [8]. Although 
other sensors (mainly gyroscopes but also occasionally magnetometers 
or even heart rate or electromyography -EMG- sensors) have been in
tegrated in some prototypes, accelerometer is, by far, the most used 
sensor in the research of wearable fall detectors [9]. By virtue of the 
massive adoption of cellular technologies, wearable fall detectors can be 
easily endowed with long-range wireless connection interfaces that 
enable them to operate ubiquitously, as long as that radio coverage of 
the transmission standard is guaranteed. Wearable architectures thus 
provide a greater freedom of movement than context-aware solutions, at 
least in metropolitan settings where a mobile connection is almost al
ways available. Furthermore, wearable detectors can benefit from the 
constantly declining prices of microelectromechanical systems as well as 
from the widespread popularity of certain personal devices (e.g. 
smartwatches, sport-bands, etc.). As a matter of fact, the review report 
presented by Xu et al. in [9] shows that the number of FDSs using 
cameras has greatly decreased since 2014, while the use of accelerom
eters in the research of FDSs is clearly expanding. On the contrary, 
concerns related to ergonomics and, more specifically, the autonomy of 
the battery-powered components of the fall detector can hinder the real 
use of transportable FDSs. 

A crucial and very debatable aspect in the development of any FDS 
(either contextual or wearable) is the testing or validation of the 
detection algorithm. Obviously, a systematic evaluation of an FDS with 
actual falls of the target public (mainly the elderly) is inherently prob
lematic. As pointed out by Khan & Hoey in [10], an experimental testbed 
aimed at monitoring real-life falls from older adults normally implies a 
complex setup that requires elevated operational costs, long-term fa
cilities, the collaboration of external institutions, strict ethics clearance 
and significant time investment, as well as extensive computing re
sources for data analysis and an arduous process of data logging, 
extraction and labeling. Furthermore, even among frequent fallers, falls 
are extremely rare events when compared with other typical routines or 
ADLs. Thus, recording the inertial signals provoked by an actual fall is a 
laborious and time demanding operation. It has been estimated [11] that 
collecting 100 falls requires a monitoring time of 100,000 days (or a year 
if a population of 300 persons is employed). 

By reason of these difficulties to obtain the inertial measurements 
produced by real falls, the vast majority of works on fall detectors have 
been traditionally evaluated using ‘synthetic’ datasets, i.e. samples 
generated under laboratory conditions, in a controlled testbed in which 
a group of volunteers simulate o ‘mimic’ falls. Nonetheless, these 
emulated falls respond to a very limited series of artificial and well- 
structured actions, in which the experimental subject is instructed to 
fall abruptly on a surface (which is usually cushioned) by following very 
rigid mobility patterns. The study carried out in this article tries to assess 
the adequacy of this testing procedure, as long as the dynamics of real 
falls may substantially differ from those exhibited by these simulations. 

The paper is structured as follows: after this introduction, the pre
cedents and review of the related literature are commented in Section 2. 
Section 3 describes the utilized datasets and the features considered for 
the characterization of the movements. Section 4 shows the obtained 
results and discusses them with respect to some previous findings of 
other works. Finally, the main conclusions are recapitulated in Section 
5. 

2. Related works 

Currently, the wearable market offers a diversity of commercial off- 
the-shelf devices, explicitly conceived as fall detectors (see the reviews 
in [12,13,14] or [5]). These products, which typically adopt the form of 
a wristband or a pendant and normally also integrate a ‘panic’ button, 
are oriented to home monitoring scenarios, as their networking 

architecture is supported by a short-range base station located in the 
vicinity of the user. To avoid this limitation (and the additional costs of 
the landline connection required by the base-station), some recent high- 
end smartwatches, such as Samsung Galaxy Watch3 [15] or Apple 
Watch (since Series 4) [16], natively incorporate applications to detect 
falls. However, in all cases, the manufacturers do not give any specific 
detail about the procedure with which the application was validated or 
about the actual effectiveness of these commercial solutions to cope with 
real falls (and still less with falls of older people). 

As it refers to the scientific literature on FDSs, almost all researchers 
are obliged to follow a ‘laboratory’ approach for the collection meth
odology of activity samples for the test phase. Thus, the evaluation 
datasets are generated by a group of participants that perform specific 
structured movements (ADLs and falls) in laboratory premises [17]. 
During these ‘scripted’ and preset experiments, the signals collected by 
the sensors (in the form of time series) are saved in a dataset of traces 
(manually identified as ADLs or falls), which are used to evaluate the 
performance of the movement classifiers in an ‘offline’ way. 

Besides, although fall detectors are mainly conceived and intended 
for seniors, the involvement of older people (who are more vulnerable to 
falls) in any of the stages of the design, deployment or assessment of fall 
detection systems is extremely rare (see the scoping review by Thilo 
et al. in [18]). Young and healthy adults constitute the study population 
in most works on wearable FDSs, while older people are basically only 
considered to evaluate systems intended for fall risk screening (refer to 
the paper by Bet et al. in [19] for a more detailed study on this topic). 

Already in 2014 a review paper on FDS authored by Chaudhuri et al. 
[20] drew attention to the fact that only 7 % of the projects proposing 
wearable fall detectors (4 out of 57) were tested in a real-world setting. 
The review of 2013 by Schwickert et al. [21], published a year earlier, 
provided a similar viewpoint: 90 of the 96 analyzed studies on FDSs 
were exclusively based on simulated fall data. Since then, the approach 
to evaluate FDSs has not changed significantly. In fact, recent states-of- 
the-art still bring to light and criticize the lack of real world testing of 
FDSs in actual application scenarios with older people [22 23 24]. Just a 
small group of works on wearable FDSs have validated their proposals in 
real long-term monitoring scenarios. Table 1 reviews those existing 
works, portraying the characteristics of the experimental subjects and 
the achieved long run results of the detector: percentage of detected 
falls, sensitivity and number of false alarms (see the scoping review by 
Bradley et al. in [25] for a deeper comparative analysis of some of these 
papers). 

A group of these works correspond to pilot studies in nursing homes 
or care facilities, while in other articles the users are directly tracked in a 
home environment. In all the studies recapitulated in the table, the 
participants wore a single mote (mostly on the waist) except in the work 
by Aziz, where a sub-group of the volunteers transported four acceler
ometers (on both ankles, chest and waist). In almost all cases, the 
research is oriented to evaluate ‘in-the-wild’ the prototype developed by 
the authors. By contrast, the work by Bloch et al. [26] presented a study 
describing the results of a commercial accelerometer-based domotized 
detector applied to ten older persons with risks of falling in geriatric 
facilities. 

In all the works in the table the detection algorithm is focused on the 
accelerometer signals, although in some papers they combine this in
formation with the measurements of a gyroscope [27 28], orientation 
sensor [29] or magnetometer. The algorithms are normally imple
mented on a specific tracking wearable, although in the study by Harari 
et al. in [27] the participants (selected from a group of frequent fallers) 
were monitored while transporting a FDS implemented as an app on a 
smartphone (placed in a waist pouch). 

Table 1 excludes those long-term monitoring experiences involving 
non wearable FDSs purely based on ambient sensors (radars, presence 
sensors, etc.) or video-cameras, such as those presented by Debard [39 
40], Liu [41], Rezaee [42], Skubic [43] or Stone [44]. However, in some 
of the surveys mentioned by the table, the wearable solution is also 
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complemented by a contextual or context-aware device (e.g. peripheral 
infrared detection system in the study by Bloch et al., a vision-sensor in 
[29] and a Kinect sensor in [32]). 

In one of these works the use of emulated falls is not completely 
discarded. As a result of the scarce numbers of collected falls (only 2), 
the authors in [37] use a ‘synthetic’ dataset (FallAllD) to complement 
the evaluation of the proposed detector (which is tested in an offline way 
against the measurements collected during the long term monitoring). 

In other cases, the algorithm is refined and re-reconfigured as the 
ongoing monitoring of the participants progresses and some errors are 
detected. Specifically, in the analysis provided by Scheurer [38], the 
study was divided into two phases. The results of the first phase were 
used to revise and fine-tune the parameters of the employed threshold- 
based algorithm so it could adapt to the particularities of the target 
population. 

These works reveal that a not negligible percentage of false alarms 
are due to accidental drops or misuse of the detecting devices (in 
particular when the participants put them down). For example, 
Chaudhuiri et al. highlight in [28] that the sensitivity of the commercial 
detector employed in their analysis plummeted from 94 % (achieved by 
the vendor with 59 volunteers mimicking falls in a laboratory setting) to 
25 % (1 out of 4 real falls) when it was tested in long term experiments in 
a real scenario. 

The table does not include those studies that analyzed the behavior 
of FDSs when tested in an offline manner against the data collected 
during long term monitoring. In this vein, the study by Godfrey et al. in 
[45] presents the results of a HAR system, trained with the measure
ments from healthy subjects, when it was evaluated with the seven day 
accelerometer data gathered from a participant with low scores for 

balance self-efficacy. During the week under observation the subject 
suffered a fall, which was correctly identified (in an offline manner) by 
the proposed detector. Similarly, in [46], Hu et al. recruited five 
community-dwelling older adults who were asked to wear on the chest 
an inertial measurement unit (a SHIMMER mote) during two weeks. The 
participants, who maintained a journal or log of their activities, reported 
20 falls (a very high value if we consider the size of the population and 
the observation period). In the obtained traces, the falls were manually 
identified and labelled and then used to assess a threshold-based de
tector. As in the work by Godfrey, the inertial data gathered during the 
falls were not made publicly available. 

An offline evaluation of a FDS is also considered by Soaz et al. in 
[47]. Authors employ a subset of a database with more than 100,000 h of 
real-life accelerometry recordings. Though, as just one real fall is 
included in the original data, the dataset is completed with falls and fall- 
like activities simulated by young volunteers. 

Similarly, Table 1 does not incorporate either those works that have 
utilized the real falls harvested in the FARSEEING project. For years this 
well-known dataset (which is described in more detail in the next sec
tion) has been practically the only repository containing real falls far 
used to systematically parametrize and benchmark FDSs. See, for 
example, the evaluation of the architectures proposed by Bagalá [11], 
Bourke [48], Chen [49], Palmerini in [50] or [51], Yu [52] or Alizadeh 
[53]. 

As it refers to the other repository used in our article (FFFStudy -Free 
from Fall Study- dataset, which is described in section 3), Clara 
Mosquera-Lopez et al. [36] developed three variants of a FDS which 
were tested with this dataset of real falls. Owing to the scarcity of falls, 
the proposals (which combined a thresholding approach and several 

Table 1 
Articles that evaluated wearable fall detectors through online long term montoring of subjects in a real scenario.  

Reference Number of 
Monitored 
Subjects 

Scenario Age 
(years) 

Sensor 
Position 

Total 
monitoring time 
(equivalent 
days) 

Type of FDS Number of 
detected falls/ 
total falls 

Sensitivity Number of 
false alarms 

Aziz et al.  
[30]1 

9 
10 

Nursing 
home 

76 to 94 
56 to 75 

Chest, waist 
ankles 
Waist 

8.9 
7.16 

Machine learning 
model (SVM) 

1/1 
7/9 

100.0 % 
77.7 % 

10 
26 

Barralon et al. 
[31] 

20 Domestic 55 to 82 Waist ≈800 (approx.) Threshold-based n.i.2 93.4 % 53 

Bloch et al.  
[26] 

10 Nursing 
home 

83.4 ±
7.5 

Chest (thorax) ≈1400 
(approx.) 

Proprietary: 
Commercial device 
(Vigi’Fall) 

5/8 62.5 % 25 

Chaudhuri 
et al. [28] 

16 Nursing 
home 

n.i.2 n.i.2 1452.6 Proprietary: 
Commercial device 

1/4 25.0 % 83 

Feldwieser  
[32] 

28 Domestic & 
outdoors 

66 to 89 Waist (frontal 
pelvis region) 

1225.7 n.i.2 10/15 66.6 % 4592 

Gietzelt et al.  
[29] 

3 Domestic 81 to 92 Waist (belt) 108 Threshold-based 2/9 22.2 % [1.3–2.4] per 
user/day 

Harari et al.  
[27] 

23 Domestic 22 to 70 Waist ≈2070 (approx.) Threshold-based +
Machine learning 
model 

27/37 73.0 % 45 

Huq et al.  
[33] 

29 Domestic Up to 94 Huq ≈5220 (approx.) Threshold-based n.i./14 n.i. 456 

Kangas et al.  
[34] 

16 Domestic 88.4 ±
5.2 

Waist 645.8 Threshold-based 12/15 80.0 % 748 

Lipsitz et al.  
[35] 

62 Nursing 
home 

86.2 ±
8.1 

Pendant 
around neck. 

9300 Proprietary: 
Commercial 
Philips device 

17/89 19.1 % 111 

Mosquera- 
López et al.  
[36] 

25 Domestic 33 to 76 Waist 1400 Threshold-based +
Machine learning 
model 

50/54 92.6 % 0.65 per day 

Saleh et al.  
[37]2 

16 Nursing 
home 

>80 Wrist /(9 
subjects) or 
neck (7 
subjects) 

400 Threshold-based 
Machine learning 

2/2 100.0 % [3.5–11] per 
day 
[0.04–0.32] 
per day 

Scheurer et al. 
[38] 

20 Domestic 86.2 ±
6.7 

Waist 125 Threshold-based 25/31 80.6 % 61  

1 The study analyzes the data from two experiments with different volunteers and monitoring conditions. 
2 n.i.: not indicated in the article. 
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machine learning techniques) were refined with the data of a well- 
known dataset of emulated falls (SisFall, also used in this work). The 
best performing method yield 92 % sensitivity and a rate of 0.65 false 
alarms per day. 

In other works with a similar goal, the long-run test of the detectors 
concluded without any fall of the subjects under observation. Thus, the 
sensitivity of the movement classifier could not be calculated. For 
example, the fall detection method proposed by Angela Sucerquia et al. 
in [54] and parameterized according to SisFall dataset (also described in 
section 2), was assessed during several days on three older adults. 
During this period, all the participants developed their daily routines 
(including activities as cooking, washing clothes, reading, traveling by 
bus, climbing on stairs). No falls occurred but the system produced 16 
false alarms. This is also the case of two studies authored by Bourke et al. 
in [55] and [56]. In the first one, five elderly subjects were tracked 
during 833 h while wearing a custom designed vest that integrated a 
garment with a fall detector. No falls were recorded but the system 
produced 42 fall-alerts. In the second article, 52.4 h of continuous 
normal activities were collected with a waist-worn accelerometer 
transported by ten healthy older adults. The captured dataset was 
inputted to a threshold-based FDS under different parameter configu
rations. The detection process resulted in three false positives. A 
smartwatch-based FDS was used by Van et al. [57] in a trial study with 
three senior volunteers for a period of about one month. No falls 
occurred but 83 false positives were registered (1.153 per person and 
day). 

In this respect, in almost all the related literature, the capacity of 
FDSs to avoid false alarms has been traditionally evaluated by 
computing the specificity (or its complementary, the false positive rate), 
a typical quality metric in binary decision systems which, in the case of 
fall detectors, describes the percentage of actual ADLs (or -at least- non- 
falls events) which are correctly identified. When a ‘synthetic’ dataset is 
used for the evaluation, specificity can be straightforwardly estimated as 
there is a finite number of non-falls activities that the volunteers were 
asked to execute, following a predefined schedule that imposes the types 
of ADLs to be performed. However, this metric can be very misleading 
since it entirely relies on the nature of ‘non-falls’ (a slippery and 
controversial concept) included in the test repository. Furthermore, it is 
not clear how the specificity can be used as a guideline to quantify the 
performance of the system in a real scenario of permanent user moni
toring. Due to the high numbers of ADLs or ‘non-falls’ that are daily 
performed, even an apparently high specificity may entail a high rate of 
false alarms. For example, as it is pointed out by Saleh [37], if the FDS 
has to produce one detection decision per second (86,400 decisions/ 
day), a specificity of 99.99 % implies the generation of eight false pos
itives per day. In this regard, the False Positive Rate over Time (FPRT) or 
frequency of false positive (calculated per day or per hour) [25] should 
be preferred to characterize the effectiveness of the detector to 
circumvent incorrect alerting messages. Nonetheless, this metric cannot 
be properly estimated in laboratory conditions. 

Precision is another interesting alternative to specificity aimed at 
characterizing the reliability of the detector when an alerting message is 
generated. In the case of an FDS, precision defines the ratio between the 
number of correctly generated alarms and the total number of emitted 
alarms. As the review presented in Table 1 evince, the precision ach
ieved by the classifiers when applied in long-term real conditions and 
realistic settings is always below 50 % (in some studies, below 1 %). For 
practical purposes, these data suggest that when an alarm occurs there is 
a very high probability that it is triggered by a misclassification of a non- 
fall or conventional movement. This undoubtedly undermines the con
fidence of the target public (whether they are healthcare institutions or 
individuals who require being monitored from their homes) in this type 
of assistive technologies. Even in nursing homes, false alarms are un
desirable time-consuming events that provoke the disturbance of both 
the caregivers and the comfort and privacy of the patients. 

In any case, the analysis of this literature about real-life pilots reflects 

the stark contrast between the good performance traditionally achieved 
when the detectors are evaluated with datasets of simulated falls (almost 
always with sensitivities above 90–95 % [5]) and the extreme under
performance of the proposals in scenarios of long-term monitoring of 
end users. Consequently, it is legitimate to ask whether the use of pro
grammed falls emulated by volunteers has any practical value for the 
research on FDS. 

A fall has been formally defined as ‘an unexpected event in which the 
participants come to rest on the ground, floor, or lower level’ [58], or as 
‘an involuntary change from standing, walking, bending, reaching, etc. 
to no longer being supported by both feet, accompanied by (partial or 
full) contact with the ground or floor’ [59]. According to these defini
tions, falls are intrinsically unintentional acts, which would question any 
attempt to substitute them by voluntary actions. 

The work by Kangas [60] (also discussed in [61]) was perhaps the 
first study that compared the dynamics of real falls and simulated falls 
specifically created to evaluate FDSs. The actual falls were gathered by 
attaching a wireless prototype sensor to the waist of 16 older adults 
(recruited in Sweden and Finland and with average age of 88.4 ± 5.2 
years) during 6 or 2 months (depending on the experimental subjects). 
According to the analysis of the authors (which was mostly qualitative), 
some characteristics in the acceleration patterns of the real-life falls 
resemble those of the movements emulated in the laboratory. For 
example, both accidental and ‘self-inflicted’ falls may show a typical 
sequence of ‘stages’ including a pre-impact and impact phase. These 
authors also detected the existence of evident divergences. For example, 
the high pre-impact velocity towards the ground of mimicked falls is not 
always present in real-life falls. However, it must be noted that the study 
was based on only five real falls. In addition, in order to reduce con
sumption and extend the battery lifetime of the sensors, the sampling 
frequency was kept to a very low value (6.5 Hz) until the free-fall phase 
was suspected (by setting an inferior threshold of 0.75 g to the accel
eration components). This value of the sampling rate (below 15–20 Hz) 
may result insufficient to properly characterize the human mobility 
during a fall [62 63]. 

When we observe in detail the descriptive videos that complement 
some public datasets, it is verified that, for the simulation of falls, the 
participants usually start from a stationary position and that, after the 
collapse, they tend to remain completely motionless on the ground. 
Similarly, when falling, volunteers avoid certain compensatory move
ments that are performed in real scenarios and that are oriented to 
cushion the impact, resulting in higher acceleration peaks when hitting 
the ground. This unrealistic behavior of the ‘false’ fallers discredits to 
some extent the validity of the simulations. 

In most existing datasets the types of emulated falls basically differ in 
very few aspects, namely the initial position of the faller (standing, 
sitting, lying), the direction of the movement (forwards, lateral, back
wards), and at best, the cause of the falls (tripping, slipping, fainting), 
which is almost always entirely simulated too. The fact is that the 
importance of the scenario and etiology of falls is normally under
estimated in many studies on FDSs. For example, the falls experienced 
by residents in caring centers may notably differ from independent 
home-dwellers living by their own [64]. Most falls occur in a forward 
direction [65 66 67] when the subject is transferring or hurrying for 
some reason [66]. Besides, falls of older adults are mainly caused by 
trips and slips (54 %) as well as loss of balance (23 %) [68]. Moreover, 
due to the variety of situations that cause falls and the strong di
vergences in the physical conditions of the fallers, the dynamics of actual 
falls may range from sudden collapses or violent impacts to more 
gradual descents or controlled ‘slumps’ [35]. In some cases, before 
hitting the floor, the faller may impact against another object (a wall, a 
bed, a desk, etc.). 

In this context, some researchers have been highly critical and 
skeptical on the evaluation of FDSs reliant on simulated falls. Emma 
Stack has widely and harshly criticized the use of ‘fake’ falls in [69], 
arguing that the focus should be on the study of real fallers and on the 
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circumstances that cause falls. Stack emphasizes that falls are, by nature, 
involuntary acts, and, consequently, that falls cannot be -by definition- 
‘performed’. The author even questions the very ethics behind the 
studies on FDSs. In her opinion, they should avoid the term ‘fall’ and 
replace it by the more accurate ’intentional fall events’. Even in that 
case, laboratory-generated and real ‘intentional’ falls diverge, as the real 
ones (e.g. those experienced by people trying to commit suicide) are 
executed from a greater height. In the same work, Stack states that one 
of the key problems in the research field of automatic FDSs is that there 
are very few studies that have compared the data from actual and 
simulated falls. To fill this gap, we offer in this work a thorough and 
systematic comparison between a broad range of statistical character
istics computed from the acceleration signals captured during both 
actual and emulated falls. For this purpose, we utilize a wide set of re
positories (totaling 18 datasets) of mimicked falls that have been 
commonly employed in the literature on FDSs, as well as two existing 
databases containing actual falls. 

3. Materials and methods 

3.1. Description of the employed datasets 

For our analysis, we select two repositories resulting from long-term 
monitoring campaigns in which the participants were tracked during 
their daily routines while transporting an inertial sensor. To the best of 
our knowledge, these are the only existing datasets with actual falls that 
are publicly available. In order to compare the dynamics of these real 
accidents with that of the emulated falls, we review and choose a group 
of repositories containing ‘synthetic’ falls, deliberately designed as tools 
to evaluate wearable FDSs. The following paragraphs summarize the 
basic metadata of the databases used for the comparison as well as the 
procedure with which they were generated. 

3.1.1. FARSEEING dataset 
To date, the FARSEEING project [70], funded by the European 

Union, has been the most noteworthy initiative to gather a long scale 
repository with inertial measurements of real-world falls. Between 
January 2012 and December 2015, the six institutions contributing to 
the project monitored with sensors from different vendors the physical 
activity of over 2,000 participants, including community-dwelling older 
people and different groups of patients at high risk of falling. 

During the project, more than 300 verified real-world fall events 
from 94 fallers with a mean age of 76.1 years were recorded. The whole 
dataset is not publicly available in Internet but at least the files con
taining the measurements of 22 falls can be accessed on request to the 
authors. These files are accompanied by a document that describes in 
detail the characteristics of the fallers and the circumstances of the falls. 

These 22 falls correspond to 15 users (8 females and 7 males), aged 
between 56 and 86. The gait impairment was clinically classified as 
mild, moderate, severe and complete for 3, 8, 2 and 2 subjects, respec
tively. Besides, 7 out of the 15 subjects had some type of cognitive 
disability. Similarly, vision impairments were also documented for 7 
subjects. 

Depending on the participant, two different models of sensing IMU 
(Dynaport Hybrid or Pal Technologies ActivPAL3) and sensor place
ments were considered, so the measurements were alternatively ob
tained at 20 Hz or 100 Hz on the back waist (L5 or fifth lumbar spine 
vertebrae) or on the thigh. All the published traces have a duration of 
1200 s and include the acceleration signals. Besides, those samples 
captured with the Dynaport Hybrid sensor also incorporated the infor
mation of the gyroscope. The exact moment in which each fall occurred 
was manually annotated and indicated in the documentation that ac
companies the released dataset. 

In all the samples (except in one, which is not documented), the 
subjects fell against the floor. The reported pre-fall activity for the 22 
falls was walking (eight falls), bending to pick up and object (three falls), 

standing (seven falls) and transferring from a sitting to a standing po
sition or vice versa (four falls). Just in one of the samples the faller was 
able to get up without help after the fall. Five out of the 22 falls resulted 
in injuries (scrapes, abrasions, bruises) of varying severity in different 
parts of the body (head and buttocks in one case, arm in two falls, back 
in one case and shoulder and thigh in another faller). Six falls required 
some type of medical intervention. 

As it refers to the place of the accidents, 12 falls were recorded in a 
rehabilitation clinic (one in a corridor, six in the patient’s room, four in 
the bathroom and one in the dining hall), one in a day care center and 
eight in the patients’ homes (one in the kitchen, one in the entrance, 
three in the corridor, two in the living or dining room and one in the 
cellar). The exact location of one of the falls is unknown. 

The FARSEEING repository is well known in the field of fall detectors 
and have been used by different studies. In a more recent work by Pal
merini et al. in [51], an extended version of FARSEEING with 143 falls is 
presented. However, this extended version of the repository is not 
publicly available yet. Also recently, another dataset, including 403 
annotated falls from 537 test subjects has been collected for the Fall
Sensing project [71]. Regrettably. the data have not been still 
undisclosed. 

3.1.2. FFFStudy dataset 
The Free From Falls (FFF) Study [36], developed by the Veterans 

Affairs Portland Health Care System and the Oregon Health & Science 
University, enrolled 34 people (aged between 33 and 76) with a 
confirmed diagnosis of multiple sclerosis but with the ability to walk at 
least 100 m with or without assistance and the ability to provide an 
informed consent and to adhere to the protocol of the monitoring 
campaign. The participants, who were monitored during eight weeks, 
were requested to carry on a belt (front waist) a MotioSens MotioWear 
sensor tag [72]. This wireless wearable sensing mote is capable of 
measuring and storing the IMU data as well as the user indoor or outdoor 
localization. 

After discarding five subjects for personal or technical problems and 
another four used to fine-tune and parametrize the model, a dataset with 
the acceleration measurements (sampled at 50 Hz) and localization in
formation (not employed in this study) captured from 25 subjects during 
8 weeks was generated. In the description of the dataset (publicly 
accessible in Internet), authors indicate that 54 falls –lasting less than 5 
s- were captured (all in indoor areas). However, from the log provided in 
the related documentation (which indicates the instant - within the 
collected traces- in which the falls occur), just 49 were retrieved. Apart 
from these data about the timing, the authors do not offer any further 
detail or contextual information of the falls (e.g. cause, medical status of 
the faller, activity previously performed before the accident, etc.). 

3.1.3. Datasets with emulated falls 
Currently, over 25 datasets with simulated falls and ADLs have been 

disclosed as public benchmarking resources for the research on wearable 
fall detectors (see [73] for an extensive review on this topic). Unfortu
nately, the generation of these traces did not follow a shared guideline. 
In fact, the only common characteristic is that they incorporate the 
measurements of an accelerometer transported by the volunteers during 
the experiments. In this respect, there is a strong heterogeneity not only 
as it refers to the typology or number of simulated falls, but also on some 
operational aspects such as the sampling frequency (which ranges from 
18 to 238 Hz) or the body location where the accelerometer was placed. 
As the position selected for the sensor in the two datasets with real falls 
was the waist, we selected those repositories in which there were traces 
gathered on that location or -at least- on the hip or thigh (which are in 
the vicinity of the waist). Thus, we discarded those datasets for which 
the accelerometer was placed on the wrist (DU-MD [74], HFID [75], 
SmartFall and Smartwatch datasets [76]), ankle (AnkFall [77]) or chest 
(CGU-BES [78]). In this regard, the performance and configuration of a 
wearable FDS strongly rely on the position of the sensor. Numerous 
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studies [79 80 81 8283] agree that the optimal location for an on-body 
inertial sensor intended for fall detection is the waist, trunk or chest (and 
to a lesser extent, thigh [84]) since they are closer to the center of mass 
of the human body (typically about 10 cm lower than the navel in a 
standing posture). Additionally, we also rejected SMotion dataset [85] 
(although it was collected with a sensor on the waist) since it only 
contains five mimicked falls. 

Following this screening based on the sensor placement, we finally 
chose 18 datasets for our research. In one of them, ADLs correspond to 
real life inertial measurements in free living conditions. However, all the 
falls in these repositories were scripted and simulated in laboratory 
conditions. In the rare cases where the volunteer group included older 
people, they were usually exempted from simulating falls for safety 
reasons. The basic characteristics of these repositories are synopsized in 
Table 2. The table also indicates the number of types and samples of 
ADLs provided by these databases although the study will be mainly 
focused on the dynamics of falls. Similarly, the table also indicates all 
the positions of the sensors used in the different testbeds. When a dataset 
contains the inertial measurements collected on different locations, our 
comparison will be limited to those captured on the waist, or, failing 
this, the hip or thigh (which is indicated in parentheses next to the re
pository name. 

3.2. Selection of statistical features 

In this subsection, we describe the statistics considered to compare 
the dynamics of real and emulated falls of the datasets under study. All 
the employed statistics are derived from the accelerometer measure
ments since (as shown in Table 1), acceleration is the only variable 
present in all the repositories and the only one provided by the datasets 
with real falls. As already mentioned, acceleration is by far the signal 
most massively used by the related studied to feed the classifier in 
wearable FDSs. The advantages of complementing the acceleration 
signals with other type of inertial data (in particular, the angular ve
locity collected by the gyroscope) to improve the detection ratio of is still 
a topic under debate [104]. 

Given the great heterogeneity of the measurement intervals of the 
movements offered by the databases, in order to define a common 
characterization framework, the statistical analysis of the acceleration 
will focus on an ‘observation window’ (or time interval) of fixed dura
tion. When the subject’s body collides with the floor, harsh and abrupt 
peaks of acceleration typically occur [105]. Hence, for each trace (or 
fall) in the datasets, the observation window will be centered around the 
instant where the maximum acceleration magnitude is detected. For the 
i-th measurement collected during a certain fall, this acceleration Signal 
Magnitude Vector (SMVi) of the acceleration is defined as: 

SMVi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
xi + A

2
yi + A

2
zi

√

(1) 

where Axi
, Ayi 

and Azi 
describe the x, y, and z triaxial components 

gathered by the accelerometer. From this series, the index (imax) of the 
sample in which the maximum SMV (SMVmax) takes place is found as: 

SMVmax = SMVimax = max{SMVj : j ∈ [1,N]} (2) 

where N indicates the total number of inertial measurements in the 
trace. 

Banos et al. have shown in [106] that an analysis interval of 1–2 s 
provides the best trade-off between recognition speed and effectiveness 
to identify most human activities. In this context, it has been stated that 
5–6 s is enough to recognize a fall pattern [107]. The unexpected and 
jerky movements caused by most falls usually last between one and three 
seconds [108]. In fact, the ‘critical phases’ of a ‘domestic’ fall, including 
the ‘free-fall’ period and the vertical shock against the ground, do not 
take more than 0.5–0.85 s [109 110 111]. In the related literature on fall 
detection, there are many examples of algorithms that base their 
detection strategies on analyzing the behavior of the inertial signals in 

particular temporal windows where a fall is suspected. To this effect, 
windows from 0.2 to 2 s have been considered although the most 
common values range between 0.5 and 1 s [76]. On that basis, we 
established an observation window (T) of 2 s around the maximum (1 s 
before and after the detected peak) for each trace to incorporate the 
most relevant components of the dynamics of the falls. In any event, very 
similar conclusions and results -not presented in this article for space 
reasons- were obtained when other sizes of the observation window (3 
or 4 s) were contemplated. As already noted, in the case of the datasets 
with actual falls (captured by long term monitoring programs), authors 
inform about the exact instant in which the subject experienced the real 
falls. Therefore, we used this information to locate the corresponding 
observation window of 2 s. 

All the measurements collected out of these observation intervals 
were ignored to calculate the statistics, which were computed just from 
the segments of the original series corresponding to the triaxial accel
eration components and acceleration magnitude measured in this time 
interval, which can be defined as: 
{

Axj ,Ayj ,Azj , SMVj : j ∈
[⌈

imax −
T
2
fs
⌉

,

⌈

imax +
T
2
fs
⌉]}

(3) 

where fs defines the sampling rate used to capture the trace and the 
operator ⌈x⌉ rounds the value of x to the lowest integer greater than x. 

For comparison purposes, we characterize the falls in all datasets by 
calculating fifteen statistical features, commonly used by the literature 
in HAR and FDSs (for both threshold-based and machine-learning ap
proaches). See, for example, the features employed by the detectors 
presented in [97 112113 80 114 115 116 90 117 118 119 120 54 121 
122] or the comprehensive review presented by Vallabh in [123] or by 
Xi in [124]. 

The selected features are analytically defined as it follows:  

1. The aforementioned peak or maximum (SMVmax) of SMVi, as a 
meaningful descriptor of the force of the impact against the ground.  

2. The minimum value achieved by the acceleration magnitude 
(SMVmin) before the peak, as a key element to describe the free-fall 
phase: 

SMVmin = SMVimin = min
{

SMVj : j ∈
[⌈

imax −
T
2
fs
⌉

, imax
]}

(4) 

where imin is the index of the sample where SMVmin is found.  

3. The mean Signal Magnitude Vector (μSMV), which informs about the 
average body motion intensity during the fall: 

μSMV =
1
NW

⋅
∑

⌈

imax+T2fs

⌉

j=

⌈

imax − T2fs

⌉
SMVj (5) 

where NW defines the number of acceleration samples contained in 
the observation window, computable as: 

NW = 2
⌈
T
2
fs
⌉

+ 1 (6)   

4. The standard deviation (σSMV) of SMVi, which describes the vari
ability of the acceleration during the observation window: 

σSMV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
NW − 1

⋅
∑

⌈

imax+T2fs

⌉

j=

⌈

imax − T2fs

⌉

(
SMVj − μSMV

)2

√
√
√
√
√
√
√
√
√
√

(7) 
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Table 2 
Characteristics of the employed datasets with emulated falls.  

Dataset Ref. No. Subjects 
(Females/ 
Males) 

Age range 
(years) 

Number of 
types of ADLs/ 
Falls 

Number of 
samples (ADLs/ 
Falls) 

Duration of the 
samples (s) 

Number of 
sensing 
points 

Number 
&type of 
Sensors1 

Positions of the sensing 
Points 

Type of 
device1 

Sampling 
rate (Hz) 

Accel. 
range (g) 

CMDFALL [86] 50 (20/30) 21 to 40 12/08 1000 (600/400) 450 s2 2 1 (A) Left wrist, left hip IMU 50 ±16 
Cogent Labs [87] 42 (6/36) 18 to 51 8/6 1968 (1520/448) [0.53–55.73] 2 2 (A,G) Chest, Thigh IMU 100 ±8 
DLR [88] 19 (8/11) 23 to 52 15/1 1017 (961/56) [0.27–864.33] 1 3 (A, G, M) Waist (belt) IMU 100 ±5 
DOFDA [89] 8 (2/6) 22 to 29 1/5 432 (120/312) 1.96–17.262 1 4 (A, G, O, M) Waist IMU 33 ±16 
Erciyes [90] 17 (7/10) 19 to 27 16/20 3302(1476/ 

1826) 
[8.36–37.76] 6 3(A, G, M) Chest, Head, Ankle, 

Thigh, Wrist, Waist 
IMUs 25 ±16 

FallAllD [91] 15 (7/8) 21 to 53 44/35 6605 (4883/ 
1722)3 

20 3 4 (A, G, M, B) Waist, Wrist, Chest IMU 238 ±8 

Gravity 
Project 

[92] 2 (n.i.)3 26 to 32 7/12 117 (45/72) [9.00–86.00] 2 1 (A) Thigh Wrist SP, SW 50 (SP), 157 
(SW) 

±16 

Graz UT OL [93] 5 (n.i.) n.i.3 10/4 2460 (2240/220) [0.18–961.23] 1 2 (A, O) Waist (belt bag) SP 5 ±2 
IMUFD [94] 10 (n.i..) n.i.3 8/7 600(390/210) [15–20.01] 7 3(A, G, M) Chest, Head, Left & right 

ankles, Left & right thighs, 
Waist 

IMU 128 ±16 

KFall [95] 32 (0/32) 24.9 ± 3.7 21/15 5075 (2729/ 
2346) 

[2.03–40.86] 1 A, G, O Waist (Low back) IMU 100 ±16 

MobiAct [96] 57 (15/42) 20 to 47 9/4 2526 (1879/647) [4.89–300.01] 1 3 (A, G, O) Thigh (trouser pocket) SP 87 (A), 100 
(G,O) 

±2 

SisFall [97] 38 (19/19) 19 to 75 19/15 4505 (2707/ 
1798) 

[9.99–179.99] s 1 3 (A, A, G) Waist IMU 200 ±16 

tFall [98] 10 (3/7) 20 to 42 MRLM4/8 10,909 (9883/ 
1026) 

6 s (all samples) 1 1 (A) Thigh (pocket), or Hand 
bag 

SP 45 (±12) ±2 

TST [99] 11 (n.i.) 22 to 39 4/4 264 (132/132) [3.84–18.34] s 2 1 (A) Waist, Wrist IMUs 100 ±8 
UMAFall [100] 19 (8/11) 18 to 68 12/3 746 (538/208) 15 s (all samples) 5 3(A, G, M) Ankle, Chest, Thigh, 

Waist, Wrist 
SP & IMU 100 (SP), 20 

(IMU) 
±16 

UniMiB 
SHAR 

[101] 30 (24/6) 18 to 60 9/8 7013 (5314/ 
1699) 

1 s (all samples) 1 1 (A) Thigh (left or right trouser 
pocket) 

SP 50 ±2 

UP-Fall [102] 17 (8/9) 18 to 24 6/5 559 (304/255) [9.409–59.979] 5 2 (A, G) Ankle, Neck, Thigh 
(pocket), Waist, Wrist 

IMUs Around 18 Hz ±8 

UR Fall 
Detection 

[103] 6 (0/6) n.i.3 

(over 26) 
5/4 70 (40/30) [2.11–13.57] 1 1 (A) Waist (near the pelvis) IMU 256 ±8  

1 A: Accelerometer, G: Gyroscope, O: Orientation Sensor, M: magnetometer, SP: Smartphone, IMU: (stand alone) Inertial Measurement Unit, SW: Smartwatch. 
2 For CMDFALL dataset, all the 20 programmed movements are executed in a continuous manner during 7.5 min. 
3 n.i.: not indicated in the article. 
4 MRLM: Monitoring of real life movements (subjects did not perform a set of predefined activities). 

E. Casilari and C.A
. Silva                                                                                                                                                                                                                     



Measurement 202 (2022) 111843

8

5. The skewness of SMVi (γSMV), which characterizes the symmetry of 
the distribution of the values of the acceleration magnitude: 

γSMV =
1

σ3
SMV ⋅NW

⋅
∑

⌈

imax+T2fs

⌉

j=

⌈

imax − T2fs

⌉

(
SMVj − μSMV

)3 (8)    

6. The ‘valley-to-peak’ time (tv-p), i.e. the duration of the interval 
elapsed between the acceleration minimum (SMVmin) and maximum 
(SMVmax), which is straightforwardly calculable as: 

tv− p =
1
fs
(imax − imin) (9)   

7. The duration of the free fall period (tff), computed as the time be
tween the last sample before the minimum and the first sample after 
the minimum in which the acceleration magnitude exceeded a 
certain decision threshold (Thff). In our analysis, this threshold was 
set up to a value of 0.9 g, slightly below the gravitational acceleration 
on Earth (1 g or 9.8 m/s2), which is the magnitude measured by the 
accelerometer at rest. 

The time of free fall period tff is calculated as: 

tff =
1
fs
(iff end − iff start) (10) 

where iff_end and iff_start respectively denote the indices of the last and 
first samples in the interval, defined as: 

iff end = min{j : j ∈ [imin, imax]⋀SMVj > Thff } (11)  

iff start = max{j : j ∈
[

imax −
T
2
fs, imin

]

⋀SMVj > Thff } (12)    

8. The mean absolute difference (μSMVdif f
) between two successive 

samples of the acceleration magnitude, which is estimated as: 

μSMVdiff =
1

NW − 1
⋅

∑

⌈

imax+T2fs

⌉

− 1

j=

⌈

imax − T2fs

⌉

⃒
⃒SMVj+1 − SMVj

⃒
⃒ (13) 

This parameter offers an insight into the brusque fluctuations of the 
acceleration during a fall [125]. As it is clearly influenced by the sam
pling rate used to generate the dataset (since it directly determines the 
time between consecutive samples), for comparison purposes all the 
sequences are resampled to a common frequency of 20 Hz before 
computing this feature.  

9. Number of peaks or local maxima (npeaks) detected during the 
observation window. This statistic may inform about the pres
ence of diverse impacts during the fall. A sample is considered to 
contain a peak when two conditions are met: 1) the acceleration 
magnitude of the acceleration measurement is higher than that of 
its two neighboring samples, 2) the acceleration magnitude sur
passes a predetermined threshold (Thpeak), which was fixed to 2 g. 
This value is coherent with those selected in threshold-based 
detection algorithms to discriminate a fall occurrence (e.g. 2 g 
in [60 126], 1.8 g in [36], or 2.25 g in [37]).  

10. The Signal Magnitude Area (SMA) [97]. This statistic, which is 
commonly employed to characterize the physical activity in HAR 

systems, is computed from the three acceleration components 
during the whole observation window: 

SMA =
1
NW

⋅
∑

⌈

imax+T2fs

⌉

j=

⌈

imax − T2fs

⌉

(⃒
⃒Axj

⃒
⃒+

⃒
⃒
⃒Ayj

⃒
⃒
⃒+

⃒
⃒Azj

⃒
⃒
)

(14)    

11. Energy (E). To describe the energetic and brusque movements 
caused by the falls, we also take into account the sum of the en
ergy approximated for the three acceleration axes during the 
observation window [122]: 

E =
1
fs

⋅
∑

⌈

imax+T2fs

⌉

j=

⌈

imax − T2fs

⌉

(
⃒
⃒Axj

⃒
⃒2 +

⃒
⃒
⃒Ayj

⃒
⃒
⃒

2
+
⃒
⃒Azj

⃒
⃒2
)

(15)    

12. The mean rotation angle (μθ) allows detecting the intensity of the 
alterations of the body orientation caused by falls [125]. This 
parameter is computed as the mean of the series of angles be
tween consecutive acceleration vectors: 

μθ =
1

NW − 1
⋅

∑

⌈

imax+T2fs

⌉

− 1

j=

⌈

imax − T2fs

⌉

(

cos− 1
[Axj ⋅Axj+1 + Ayj ⋅Ayj+1 + Azj ⋅Azj+1

SMVj+1⋅SMVj

])

(16) 

Again, as this parameter is strongly influenced by the sampling rate, 
before calculations, all the series in the datasets are resampled to a 
common frequency of 20 Hz.  

13. Gravity has a substantial effect on the acceleration component 
that is perpendicular to the floor plane. If the subject initiates the 
fall from an upright posture, subsequent movements most prob
ably result in a significant change of the acceleration components 
that are parallel to the ground plane. To characterize these 
changes relative to the initial position, we also compute the mean 
magnitude (μAp) of the vector generated by these two acceleration 
components: 

μAp =
1
NW

⋅
∑

⌈

imax+T2fs

⌉

j=

⌈

imax − T2fs

⌉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
AH1j

)2
+
(
AH2j

)2
√

(17) 

where the two variables (AH1j , AH2j ) represent the two components 
orientated in the horizontal plane before the fall. For each dataset, these 
components (x&y, x&z or y&z) obviously depend on the particular 
orientation with which the inertial sensing unit was attached to the 
volunteers’ waist (or hip or thigh).  

14. To characterize the acceleration signal in the frequency domain, 
we estimate the not-null frequency at which the maximum power 
spectrum of the acceleration magnitude is found (fmaxPS). For that 
purpose, the spectrum is calculated from the periodogram by 
using the Matlab pspectrum script [127]. To avoid the constant 
offset at 0 Hz introduced by the gravity in the body acceleration, 
the sequences of SMV are previously filtered with a high pass 
filter with a passband frequency of 0.2 Hz and a stopband 
attenuation of 60 dB. 
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15. During a regular activity, human acceleration presents a certain 
degree of self-correlation that can be disrupted by the jerky 
movements generated by a fall. To identify this loss of motion 
continuity, we employ the mean of the autocorrelation co
efficients (μR) of the magnitude of the acceleration, defined as: 

μR =
1

NW − 1
⋅
∑NW − 1

l=1
Rl (18) 

where Rl indicates the l-th lag value in the normalized series of the 
autocorrelation coefficients of SMV: 

Rl =
1

σ2
SMV ⋅NW

⋅

⎛

⎜
⎜
⎜
⎜
⎝

∑

⌈

imax+T2fs

⌉

− l− 1

i=

⌈

imax − T2fs

⌉

(
SMVj − μSMV

)(
SMVj+l − μSMV

)

⎞

⎟
⎟
⎟
⎟
⎠
for l

= 0, 1,⋯NW − 1
(19) 

As the correlation between two consecutive samples obviously also 
depend on the sampling rate, we also applied a resampling technique (to 
a common general value of 20 Hz) to all the series of the acceleration 
magnitude in the datasets before computing this feature. 

4. Results and discussion 

Table 3 (for features 1 to 8) and Table 4 (for features 9 to 15) show 
the mean and the 95 % confidence interval computed for the 15 statistics 
used to characterize the fall movements in the 20 datasets under study (2 
with real falls and 18 with emulated falls). For each feature, the two last 
rows in the tables indicate the number of ‘synthetic’ datasets in which 
the corresponding characteristic presents a significantly different mean 
(i.e. confidence intervals do not overlap) with respect to that computed 
for the actual falls of FFFStudy (second last row) and FARSEEING (last 
row) repositories. 

These two rows expose the remarkable discrepancy between the 
‘laboratory-generated’ and the real-life fall datasets, especially when 
comparing to the FFFStudy traces. Furthermore, for some statistics, 
there are statistically significant divergences between the mean value 
computed for FFFStudy and that obtained for almost all the synthetic 
datasets. 

A detailed analysis of the tables also leads to the following conclu
sions:  

- The simulated falls present a higher degree of abruptness and 
‘violence’, which is reflected in higher values of the maximum 
(SMVmax) and the average (μSMV) of the acceleration magnitude as 

Table 3 
Stastistical features (1 to 8) of the datasets (mean ± 95 % confidence interval).  

Dataset SMVmax(g) SMVmin(g) μSMV(g) σSMV (g) γSMV tv-p (s) tff (s) μSMVdiff
(g) 

FFFStudy 3.494 ±
0.427 

0.487 ±
0.055 

1.054 ±
0.012 

1.054 ±
0.012 

4.012 ±
0.529 

0.249 ±
0.069 

0.081 ±
0.020 

0.216 ±
0.023 

FARSEEING 4.561 ±
1.086 

0.287 ±
0.072 

1.116 ±
0.045 

1.116 ±
0.045 

2.735 ±
0.541 

0.250 ±
0.079 

0.142 ±
0.045 

0.329 ±
0.052 

CMDFALL (Hip) 4.389 ±
0.127 

0.409 ±
0.018 

1.143 ±
0.012 

1.143 ±
0.012 

3.299 ±
0.140 

0.409 ±
0.024 

0.295 ±
0.055 

0.319 ±
0.009 

CogentLabs (Thigh) 4.061 ±
0.159 

0.310 ±
0.021 

1.120 ±
0.007 

1.120 ±
0.007 

2.330 ±
0.116 

0.254 ±
0.014 

0.092 ±
0.008 

0.304 ±
0.010 

DLR 5.218 ±
0.484 

0.362 ±
0.040 

1.127 ±
0.025 

1.127 ±
0.025 

3.784 ±
0.474 

0.386 ±
0.070 

0.288 ±
0.138 

0.370 ±
0.035 

DOFDA 6.369 ±
0.276 

0.317 ±
0.014 

1.137 ±
0.011 

1.137 ±
0.011 

4.125 ±
0.153 

0.347 ±
0.022 

0.446 ±
0.057 

0.414 ±
0.013 

Erciyes 4.204 ±
0.233 

0.243 ±
0.007 

1.076 ±
0.007 

1.076 ±
0.007 

2.865 ±
0.038 

0.208 ±
0.005 

0.309 ±
0.008 

0.298 ±
0.012 

FallAllD 5.839 ±
0.188 

0.290 ±
0.014 

1.121 ±
0.006 

1.121 ±
0.006 

4.044 ±
0.154 

0.420 ±
0.023 

0.189 ±
0.037 

0.348 ±
0.012 

GravityPro (Thigh) 1.456 ±
0.068 

0.046 ±
0.007 

0.343 ±
0.019 

0.343 ±
0.019 

1.860 ±
0.200 

0.704 ±
0.049 

1.840 ±
0.101 

0.157 ±
0.009 

UTOL 0.392 ±
0.050 

0.071 ±
0.009 

0.186 ±
0.022 

0.186 ±
0.022 

0.824 ±
0.088 

0.477 ±
0.030 

1.397 ±
0.042 

0.041 ±
0.005 

IMUFD 6.349 ±
0.299 

0.270 ±
0.019 

1.315 ±
0.016 

1.315 ±
0.016 

2.738 ±
0.134 

0.499 ±
0.035 

0.351 ±
0.087 

0.450 ±
0.015 

KFall 4.685 ±
0.034 

0.207 ±
0.005 

1.083 ±
0.002 

1.083 ±
0.002 

3.146 ±
0.028 

0.235 ±
0.007 

0.286 ±
0.012 

0.328 ±
0.003 

MobiAct (Thigh) 2.651 ±
0.022 

0.320 ±
0.011 

1.076 ±
0.004 

1.076 ±
0.004 

1.553 ±
0.050 

0.344 ±
0.017 

0.169 ±
0.022 

0.287 ±
0.005 

SisFall 6.646 ±
0.129 

0.261 ±
0.006 

1.111 ±
0.004 

1.111 ±
0.004 

4.235 ±
0.063 

0.254 ±
0.008 

0.222 ±
0.011 

0.360 ±
0.005 

tFall (Thigh) 2.621 ±
0.022 

0.241 ±
0.009 

1.027 ±
0.005 

1.027 ±
0.005 

1.278 ±
0.040 

0.266 ±
0.012 

0.186 ±
0.013 

0.294 ±
0.005 

TST 6.008 ±
0.253 

0.257 ±
0.021 

1.095 ±
0.008 

1.095 ±
0.008 

4.381 ±
0.215 

0.260 ±
0.032 

0.170 ±
0.021 

0.372 ±
0.013 

UMAFall 4.641 ±
0.288 

0.324 ±
0.021 

1.103 ±
0.010 

1.103 ±
0.010 

3.264 ±
0.180 

0.279 ±
0.022 

0.250 ±
0.021 

0.379 ±
0.017 

UniMiB (Thigh) 2.790 ±
0.017 

0.267 ±
0.007 

1.013 ±
0.003 

1.013 ±
0.003 

1.726 ±
0.033 

0.223 ±
0.007 

0.312 ±
0.011 

0.272 ±
0.003 

UPFall 3.397 ±
0.113 

0.309 ±
0.016 

1.080 ±
0.008 

1.080 ±
0.008 

2.136 ±
0.103 

0.296 ±
0.016 

0.329 ±
0.032 

0.313 ±
0.010 

UR 7.177 ±
0.763 

0.317 ±
0.058 

1.248 ±
0.039 

1.248 ±
0.039 

4.678 ±
0.535 

0.314 ±
0.066 

0.115 ±
0.041 

0.405 ±
0.040 

Datasets with a significantly different mean with 
respect to FFFStudy 

16 18 18 18 12 7 16 18 

Datasets with a significantly different mean with 
respect to FARSEEING 

11 4 6 6 11 5 11 5  
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well as in the Signal Magnitude Area (SMA) or in the variations be
tween successive samples (μSMVdif f

) derived from the SMV. 
- The number of acceleration peaks (npeaks), the variability of the ac

celeration module around the mean (described by the deviation 
σSMV) and the required energy (E) is also greater in the emulated 
falls.  

- The phases of free fall (tff) and the interval between the valley and 
the peak of the acceleration (tv-p) are clearly longer in the simulated 
falls (longer values of tv-p and tff). 

- The mean body rotation angle (μθ) and the importance of the ac
celeration components horizontally oriented at the beginning of the 
movement (μAp) are also higher in the series corresponding to the 
simulations.  

- Simulated falls do not seem to characterize properly the behavior in 
frequency of the real falls (fmaxPS) or the correlation of the series 
corresponding to the acceleration module (μR). 

These clear differences could be justified by the fact that fake falls 
ignore the main feature of real falls: their intrinsically unexpected and 
involuntary nature. As might be expected, these disagreements suggest 
that the simulated movements respond to more structured processes in 
which a greater acceleration is deliberately exerted to the motion by the 
participants and for which it is easier to detect the typical phases in 
which a fall (supposedly) can be discomposed. This inconsistency among 

the datasets can be justified by the fact that, in a simulation scenario (in 
which, among other circumstances, cushioning elements are normally 
used), the volunteers do not perform the compensatory movements 
aimed at reducing the damage of the accidents. These movements, 
present in most real falls, may instead explain some reduction in the 
force and speed of the impact. In turn, as these compensatory actions 
notably rely on the physical state of the subject and on the type of fall 
(much more variable in practice than those contemplated in the lab 
testbeds), the real falls tend to display a greater irregularity. In fact, for 
most of the statistics, there is a greater divergence between the FFFStudy 
and FARSEEING datasets than that existing between the other re
positories. The use of shock-absorbing components (which clearly 
reduce the fear of executing rapid movements against the floor during 
the simulations) and the physical conditions of the participants (young 
people with much greater elasticity and mobility than the subjects of 
real falls) can also contribute to the greater energy and acceleration that 
are measured in the fake falls. 

In any case, the FARSEEING data may be affected by their small 
sample number and by the fact that it includes traces captured at two 
different points on the body with sensors from different vendors. By the 
same token, when justifying the differences between the datasets, we 
cannot forget that the participants in the FFFStudy database present a 
very particular pathology (multiple sclerosis) and that in the datasets 
with faked falls, the age of the volunteers is far inferior to most of the 

Table 4 
Stastistical features (9 to 15) of the datasets (Mean ± 95 % confidence interval).  

Dataset npeaks SMA (g) Energy μθ(deg) μAP(g) fmaxPS (Hz) μR 

FFFStudy 1.204 ±
0.275 

1.526 ±
0.034 

2.510 ±
0.132 

13.413 ±
1.472 

0.640 ±
0.051 

4.288 ±
1.100 

− 0.153 ±
0.041 

FARSEEING 3.364 ±
0.849 

1.639 ±
0.072 

3.489 ±
0.571 

25.094 ±
3.473 

0.774 ±
0.081 

2.651 ±
0.936 

− 0.141 ±
0.052 

CMDFALL (Hip) 2.419 ±
0.152 

1.675 ±
0.018 

3.037 ±
0.080 

17.862 ±
0.566 

0.780 ±
0.017 

2.943 ±
0.260 

− 0.136 ±
0.011 

CogentLabs (Thigh) 3.185 ±
0.196 

1.592 ±
0.014 

3.116 ±
0.089 

18.827 ±
0.529 

0.694 ±
0.017 

1.905 ±
0.216 

− 0.155 ±
0.012 

DLR 2.143 ±
0.407 

1.669 ±
0.039 

2.661 ±
0.131 

16.947 ±
1.343 

0.782 ±
0.043 

3.375 ±
0.629 

− 0.150 ±
0.028 

DOFDA 2.311 ±
0.116 

1.644 ±
0.018 

4.330 ±
0.186 

20.298 ±
0.454 

0.767 ±
0.016 

2.725 ±
0.214 

− 0.196 ±
0.012 

Erciyes 1.217 ±
0.024 

1.445 ±
0.012 

4.204 ±
1.396 

11.985 ±
0.169 

0.676 ±
0.008 

0.086 ±
0.020 

− 0.180 ±
0.005 

FallAllD 4.335 ±
0.275 

1.615 ±
0.012 

3.375 ±
0.077 

19.591 ±
0.585 

0.757 ±
0.014 

2.957 ±
0.211 

− 0.183 ±
0.010 

GravityPro (Thigh) 0.083 ±
0.086 

0.594 ±
0.033 

0.445 ±
0.039 

0.000 ±
0.000 

0.280 ±
0.015 

1.389 ±
0.250 

− 0.028 ±
0.016 

UTOL 0.024 ±
0.016 

0.275 ±
0.032 

0.174 ±
0.040 

16.823 ±
0.589 

0.124 ±
0.015 

0.781 ±
0.124 

− 0.088 ±
0.013 

IMUFD 6.681 ±
0.324 

1.937 ±
0.027 

5.269 ±
0.223 

24.347 ±
0.612 

0.928 ±
0.020 

1.449 ±
0.132 

− 0.096 ±
0.008 

KFall 2.819 ±
0.054 

1.464 ±
0.005 

3.267 ±
0.019 

16.329 ±
0.234 

0.791 ±
0.004 

2.332 ±
0.034 

− 0.080 ±
0.003 

MobiAct (Thigh) 2.456 ±
0.103 

1.614 ±
0.008 

2.608 ±
0.024 

19.913 ±
0.373 

0.771 ±
0.008 

2.990 ±
0.145 

− 0.157 ±
0.008 

SisFall 3.766 ±
0.134 

1.587 ±
0.007 

3.766 ±
0.057 

18.588 ±
0.313 

0.788 ±
0.006 

2.374 ±
0.048 

− 0.122 ±
0.004 

tFall (Thigh) 1.974 ±
0.064 

1.485 ±
0.009 

2.488 ±
0.024 

20.416 ±
0.361 

0.705 ±
0.008 

2.527 ±
0.089 

− 0.167 ±
0.007 

TST 2.341 ±
0.246 

1.573 ±
0.017 

3.506 ±
0.108 

15.992 ±
0.828 

0.712 ±
0.015 

3.209 ±
0.197 

− 0.176 ±
0.015 

UMAFall 1.270 ±
0.076 

1.530 ±
0.019 

3.681 ±
0.196 

18.653 ±
0.662 

0.757 ±
0.014 

1.870 ±
0.136 

− 0.180 ±
0.013 

UniMiB (Thigh) 2.344 ±
0.060 

1.464 ±
0.006 

2.452 ±
0.015 

18.268 ±
0.275 

0.697 ±
0.005 

1.984 ±
0.047 

− 0.154 ±
0.006 

UPFall 1.259 ±
0.063 

1.563 ±
0.018 

3.249 ±
0.096 

13.774 ±
0.492 

0.741 ±
0.019 

1.758 ±
0.101 

− 0.137 ±
0.015 

UR 3.233 ±
0.552 

1.859 ±
0.059 

4.558 ±
0.510 

20.206 ±
1.726 

0.914 ±
0.042 

2.628 ±
0.625 

− 0.095 ±
0.044 

Datasets with a significantly different mean with respect to 
FFFStudy 

15 14 14 16 16 14 4 

Datasets with a significantly different mean with respect to 
FARSEEING 

9 9 8 16 5 4 2  
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fallers in the real scenarios. In any case, if these facts have an impact on 
the dynamics of falls, the policy of selecting young volunteers in good 
health for the creation of scripted evaluation datasets should also be 
called into question. In the aforementioned critical analysis provided by 
Stack in [69], the authors remarks a myriad of aspects that are normally 
neglected in the testbed conceived to generate mimicked falls but that 
may strongly affect the human dynamics: the neurological conditions (e. 
g. Parkinson), cognitive impairments or motor disabilities of frequent 
fallers or the use of walking aids. Although in some cases, participants 
are instructed by geriatricians or medical experts, a fall cannot be 
substituted by ‘intentional descents’ in which most postural responses 
and reflexive mechanisms oriented to minimize the damage (grabbing 
an object, arms extensions, limbs’ reactions, modulation of the joints, 
etc.) are omitted. 

Another problem is that mimicked falls normally also ignore the 
complex variability of causes that originate actual falls, that is to say, the 
pre-fall phase is not actually simulated in a realistic way. In most cases, 
the volunteers that emulate the falls initiate the movement from a 
completely static position (standing, lying on a bed, or sitting in a chair), 
or just pretend to collapse, slip, trip or stumble (without colliding with 
any real obstacle) while freely walking in a straight line. This strategy 
oversimplifies those situations in which the fall occurs because the 
subject performs more sophisticated movements (e.g. climbing stairs) or 
due to the unexpected interaction with some object. For example, the 
fall circumstances reported by some subjects in the FARSEEING dataset 
include cases in which the subject was hooked into a handrail while in 
other traces the individuals fell while picking an object or opening a 
door. These sudden and unpredictable interactions are not usually 
replicated by any of the synthetic datasets. In addition, as already 
mentioned, in most existing datasets the casuistry of the falls emulated 
in the datasets is extremely limited to a very small number of abstract 
‘unidirectional’ movements and collapses against the ground. In the 
simulations, the direction of the participants while falling follows a 
unique direction (with three basic possibilities: forwards, backwards or 
lateral), which is prefixed by each scheduled experiment. In an actual 
fall, this direction labeling is not so simple, as compensatory movements 
or hitting obstacles can cause significant postural changes during the 
fall. The documentation provided by the authors of FARSEEING dataset 
describes the direction of the recorded falls following that taxonomy 
(forwards, lateral, backwards), although in 10 of the 22 samples this 
direction is documented as ‘unknown’, most likely due to the difficulty 
of cataloguing the irregular movement that the subject experienced 
during the fall. 

Other element that is usually neglected in the production of syn
thetized falls is the use of assistive devices. Some of the fallers in 
FARSEEING dataset were walking with a wheeled walker, which obvi
ously affect the causes, dynamics and compensatory movements of the 
accident. In other case in this dataset, the subject fell while standing up 
out of a wheelchair. However, in none of the existing synthetic datasets, 
the use of walkers (or wheelchairs) is contemplated. 

The exact location where the fall occurs may also impact on the 
recorded mobility patterns. All synthetic datasets are recorded in large, 
clutter-free laboratory environments where any type of obstacle is 
removed and kept away from the experimental subjects. In contrast, real 
falls (especially those suffered in domestic environments) occur in much 
smaller spaces with walls, doors and pieces of furniture that interfere 
with the path of the fall movement itself (either to hit the user or to serve 
as a possible handhold to minimize the damage). In the FARSEEING 
datasets, for example, four falls took place in the toilet, a room where the 
mobility of users can be greatly determined by the layout of the sanitary 
fittings and by the presence of wet and slippery surfaces (on walls, 
floors, etc.). In another fall, the subject held on the wall and then slowly 
fell down backwards on his/her buttocks. 

Table 5 summarizes the number of statistics with significantly 
different mean that each dataset presents with respect to the two re
positories with real-world falls. The table reveals that even those 

datasets that include a greater number of types of falls (e.g. FallAllD, 
which has 38 types) do not improve the ‘resemblance to reality’ when 
compared to those datasets that simulated a reduced typology of falls. 

These results are coherent with the conclusions of other previous 
studies, such as that provided by Hu et al. in [46], where authors 
highlight that the SMV and SMA computed for the acceleration in real 
falls of older adults are much smaller than those calculated for falls 
mimicked by young and healthy individuals. 

Kangas et al. stated in [60] that real-life forward falls, sideway falls 
and backward falls have similar features to those from simulated falls. As 
already commented, authors compared the signals from five real falls of 
older adults and the averaged signals from a set of falls of different types 
simulated by 20 middle-aged volunteer subjects on a soft mattress. 
However, the comparison was mainly grounded on the visual inspection 
of the acceleration magnitude captured at the waist during the falls. 
From this visual analysis, authors conclude that the evolution of the 
acceleration in real and ‘fake’ falls looked similar and showed a pre- 
impact and an impact phase. Bourke et al. also affirmed in [128] that 
the acceleration provoked by real falls (around the impact) do exhibit 
the same ‘contour’ seen from young ‘fake’ fallers. However, the proto
typical pattern of the acceleration magnitude of a fall, consisting of 
sudden decay to zero followed by a single clear peak and a period of 
quietness is not always present in real falls. In [33], Huq et al. offer a 
basic visual analysis of the evolution of the acceleration pattern of four 
real world falls (captured after tracking the mobility of 29 older adults 
with the accelerometer embedded in a smartphone). The visual in
spection confirms the irregular nature of falls as the acceleration peaks 
do not always coincide with the impact against the floor. In other cases, 
falls may provoke multiple peaks. For example, in 9 out of the 22 falls 
collected in the FAARSEING project, fallers declare that they were hit by 
certain object before the collapse [11]. 

After a brief comparison of FFFStudy and SisFall datasets, authors in 
[36] have also shown that the acceleration magnitude of real and ‘fake’ 
falls differ in the three basic stages of the accident: the pre-impact, 
impact and post-impact phases. In particular, artificial falls entail a 
more violent impact (a higher value of SMV) while the same variable 
present lower values in the periods before and after the impacts. This 
fact may indicate that volunteers do not simulate properly either the 
abnormal movements caused by the instability before the fall or the 
actions (for example, the possible attempts to get up or settle on the 
ground) after the impact. 

This variability and lack of common mobility pattern is clearly pre
sent in FARSEEING and FFFStudy datasets. To illustrate this behavior, 
Fig. 1 depicts the evolution of the acceleration magnitude in four 

Table 5 
Number of statistical features in each dataset with emulated falls that present a 
significantly different mean with respect to the reference real-world fall 
datasets.  

Dataset FFFStudy FARSEEING 

CMDFALL (Hip) 13 4 
CogentLabs (Thigh) 10 1 
DLR 10 3 
DOFDA 13 7 
Erciyes 10 6 
FallAllD 13 4 
GravityPro (Thigh) 15 15 
UTOL 15 14 
IMUFD 15 11 
KFall 14 5 
MobiAct (Thigh) 13 4 
SisFall 12 4 
tFall (Thigh) 11 8 
TST 10 3 
UMAFall 11 4 
UniMiB (Thigh) 12 10 
UPFall 9 3 
UR 10 6  
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different falls contained in the FFFStudy dataset. Unfortunately, the 
authors of the FFFStudy dataset do not provide details on the circum
stances (typology, previous movements, consequences, final position of 
the subject or possible recovery of the upright position, etc.) of the falls 
included in this repository. However, the graphs in this figure evince the 
high mutability of the dynamics of real falls, which are far from repro
ducing a common and easily identifiable evolution. Thus, some falls 
(such as that in graph (a)) present the typical fall phases presumed by 
the literature but, in other cases, strong secondary acceleration peaks 
(graph (d)) may be easily confused with the impact against the floor, 
while in other falls, a high activity (with strong acceleration variation) 
alternatively precedes (graph (b)) or follows (graph (c)) the impact. This 
changeable nature of the dynamics of real falls contrasts with the 
reduced number of types and rigid execution of the falls emulated to 
generate those ‘synthetic’ repositories that are massively considered in 
the research on FDSs. 

As it refers to the timing and duration of falls, the idea that real falls 
are usually less brusque than simulated ones is not new either, although 
it is normally not considered in the design of evaluation frameworks for 
FDSs. To cope with this problem, authors in [129] introduce in their 
evaluation a new type of simulated fall (fall against a wall). For this 
purpose, during the execution of the movement, the participant contacts 
the wall for support before slipping down slowly to the ground until 

adopting a sitting position. Though, this type of fall patterns is uncom
mon in the available datasets. 

Figs. 2 and 3 respectively illustrate the boxplots of the maximum 
(SMVmax) and minimum acceleration (SMVmin) magnitude values for the 
fall movements of all datasets under examination. In the graphs, the 
central red line in each box indicates the median of the related statistic, 
while the lower and upper limits of the box represent the 25th and 75th 
percentiles of the data distribution. The dotted lines, sometimes known 
as ’whiskers,’ denote a 1.5 IQR (Interquartile Range between the 25th 
and 75th percentiles) interval above and below the box. Outliers are 
defined as data outside these boundaries (box and whiskers) and are 
tagged with red crosses in the figures. The name of the dataset is 
accompanied by the position if the sensor (Th -Thigh- or Hip) when the 
traces were not collected on the waist. The graphs show anomalies in the 
statistics of two datasets (Gravity Project and, above all, UTOL), which 
exhibit -for example- very small acceleration peaks for the fall move
ments. This anomalous behavior could be due to the fact that the 
continuous component of 1 g caused by gravity was removed from the 
acceleration samples before they were recorded. In any case, the cor
responding works that describe these datasets do not report any type of 
pre-processing. On the other hand, the Gravity Project dataset presents a 
very low number of samples (only 45 ADLs and 72 falls) while in the case 
of the UTOL repository the falls were simulated in an unconventional 

9.onllaF)b8.onllaF)a
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Fig. 1. Evolution of the acceleration magnitude during four falls of FFFStudy dataset.  
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and unusual way (by five martial artists performing in parallel) and 
monitored with a extremely low sampling rate (5 Hz). Perhaps due to 
these facts, both databases are not very representative of the datasets 
typically considered by the research on FDSs and have been scarcely 
employed by the related literature on acceleration-based detectors. 

Figs. 2 and 3 confirm the conclusions achieved with the analysis of 

the mean values of the same statistics: when compared with most 
datasets with simulated movements, real falls (in particular those pro
vided by FFFStudy dataset) present a smoother behavior than that of the 
mimicked falls. This is reflected in lower acceleration peaks due to the 
impact against the floor and a less sharp drop of the acceleration 
magnitude during the free-fall periods. 

Fig. 2. Boxplots of the maximum (SMVmax) of the SMV for the falls in all datasets.  

Fig. 3. Boxplots of the minimum (SMVmin) of the SMV for the falls in all datasets.  
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Fig. 2 shows that the emulated falls of certain datasets (such as 
UniMiB, tFall or Mobiact) apparently exhibit lower acceleration peaks 
than real falls. However, as it can be deduced from the boxplots in the 
figure, the measurements in these datasets are visibly restrained by the 
low range of the sensor (±2 g) for each acceleration component. This 
range is unable to properly measure values of the acceleration magni
tude higher than 3.46 g. Thus, those falls involving strong impacts 
against the floor provoke the saturation of the sensor and cannot be 
adequately characterized with the accelerometer. This limitation in the 
sensor range (which is not always taken into account by the related 
literature when benchmarking the detection algorithms) should 
discourage the use of these datasets. 

Fig. 4 (for SMVmax) and Fig. 5 (for SMVmin) also depict the distri
bution of these features although, in this case, for the datasets generated 
in the laboratory, the analyzed samples correspond to the ADLs while for 
FFFStudy and FARSEEING datasets (which do not contain ADLs), the 
boxplots again correspond to those previously calculated from the actual 
falls. The visual comparisons of Figs. 2 and 4 and Figs. 3 and 5 shows that 
the divergences between actual and simulated falls are not more rele
vant or evident than that existing between actual falls and ADLs. Thus, 
the boxplots of both statistics for real and simulated falls do not overlap 
in a more significant way than the boxplots of the same characteristics 
for the real falls and the ADLs of the ‘synthetic’ datasets. 

According to the simple analysis of these two basic statistics (which 
describe the acceleration valleys and peaks caused by the falls) the 
separation between the fake falls and the ADLs of the synthetic datasets 
is much higher than that really present between the real falls and the 
daily life movements. A similar behavior (not shown here) is reported 
for the other statistics. This could explain why, as demonstrated in the 
literature review presented in the introduction, a detector trained or 
designed with emulated falls offers such a poor performance when tested 
in a real scenario of constant monitoring. 

These findings confirm the inadequacy (already suggested by other 
authors) of designing and evaluating algorithms for wearable FDSs with 
simulated falls. In the case of employing simple threshold-oriented 

strategies, the selection of the values of the thresholds based on data 
collected on simulations (for example, for the detection of the peak 
caused by impacting the ground) probably leads, in a real scenario, to 
very low sensitivity rates. Similarly, the use of more sophisticated 
techniques, by means of trained machine learning or deep learning 
models, may entail the over-learning of well-defined simulated fall 
signals, with features derived from unrealistic dynamics that cannot be 
extrapolated to the more varied mobility patterns exhibited by real- 
world falls. Moreover, the notable variability in the nature of the falls 
shown by the characterization of the acceleration signals calls into 
question the very fact that all falls can be unambiguously identified from 
the simple examination of the accelerometric measurements. In this 
regard, in some wearable detectors proposed in the literature, it has 
been suggested to analyze the global orientation change of the body as a 
detection criterion (by comparing the direction of the acceleration 
vector components before and after the fall). This evaluation procedure 
is difficult to apply and evaluate with emulated falls since it heavily 
depends on the final posture that the participant decides to adopt after 
the collapse. However, if this criterion is used with real falls, it is not a 
decisive parameter either. To prove this point, Fig. 6 depicts the histo
gram of the rotation angle provoked by the reals falls in the acceleration 
components. The angles in this histogram (which combines the falls 
from both FARSEEING and FFFStudy datasets) are computed between 
the mean acceleration vectors before and after the fall (calculated from 
the first and last five seconds of the 100 s intervals where the falls take 
place). The figure shows that many falls cause a clear modification 
(higher than 40◦) of the orientation of the subject’s body but in a not 
negligible number of cases, this change is not so remarkable. Thus, this 
long-standing variation of the body cannot even be used as a decisive 
condition to determine if a fall has occurred. A similar conclusion is 
achieved by Bourke et al. in [128] after examining FARSEEING datasets. 

With that in mind, Mosquera-López et al. (who authored the 
FFFStudy dataset) have shown that the specificity [36] may improve 
when the detector is inputted not only with acceleration measurements 
but also with contextual information (user localization). In this respect, 

Fig. 4. Boxplots of the maximum (SMVmax) of the SMV of the actual falls (in FFFStudy and FARSEEING datasets) and of the ADLs in the rest of bench
marking datasets. 
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the problem of fall detection under realistic conditions should be 
addressed from a sensor-fusion perspective. We think that the current 
tendency [130131] to design multi-sensor-fusion wearable FDSs, based 
on the coordinated study of several sensors (including variables other 
than inertial signals, such as heart rate) or the hybridization with 
contextual systems are heading in the right direction to make fall de
tectors an effective technology in real application scenarios. 

The performed study is certainly limited by the sample size in the two 
databases that contain inertial measurements of real falls (the only ones 
publicly available to date -to the best of our knowledge-). Besides, the 

results may be also largely determined by the number and medical 
conditions of the subjects employed in these repositories. If new datasets 
generated by long-term monitoring of fall-prone subjects appear in the 
near future, the analysis should be repeated to corroborate the univer
sality of these conclusions with new databases. In addition, the results 
could also be affected by certain operational factors that parameterize 
the testbeds in which the samples were captured, as this procedure 
differs significantly from one dataset to another. Although certain 
studies have revealed that a frequency greater than 15 Hz is sufficient to 
characterize the mobility of falls [132], the sampling frequency (which 

Fig. 5. Boxplots of the minimum (SMVmin) of the SMV of the actual falls (in FFFStudy and FARSEEING datasets) and of the ADLs in the rest of benchmarking datasets.  

Fig. 6. Histogram of the rotation angle provoked in the acceleration by the falls (FFFStudy&FARSEEING datasets).  

E. Casilari and C.A. Silva                                                                                                                                                                                                                     



Measurement 202 (2022) 111843

16

is higher than that value for all the used datasets except one -the 
aforementioned UTOL-) could influence the statistics derived from some 
of the datasets (whose computation has required a re-sampling of the 
measurement series for some repositories). Likewise, an incorrect cali
bration of the sensors or the particular placement and orientation of the 
sensing nodes on the waist (used in each testbed) may introduce some 
bias in the statistics. Future studies should analyze in detail the actual 
importance of these factors. 

In any case, the obtained results suggest that the evaluation pro
cedure commonly followed by the literature should be revised. In this 
regard we suggest a twofold basic mechanism to evaluate fall detection 
algorithms:  

1. Firstly, with independence of the trace used to configure or train the 
classifiers, the detectors should be tested against those available 
datasets that include real falls, as an initial method to assess its ca
pacity to identify actual fall patterns.  

2. Secondly, the detection algorithms should be implemented on actual 
wearables so that their effectiveness can be tested in real (or realistic) 
conditions through long-term monitoring campaigns with target 
users (e.g. older adults) during their daily routines. If during these 
experiments in real scenarios, the subjects do not experience any 
falls, at least the test will serve to quantify the rate of false alarms 
that the detector generates (an aspect that is as important as the 
sensitivity when determining the actual feasibility of this alerting 
system as a telecare service). 

5. Conclusions 

Due to the logistical and operational difficulties of collecting real 
falls, the literature on wearable fall detection systems evaluate their 
proposals mainly by means of databases generated by volunteers who 
simulate falling on padded surfaces. Aiming at examining the validity of 
this evaluation procedure, this study has presented a detailed compar
ison of the acceleration signals recorded during real falls (available in 
two public databases) with those gathered through emulated falls and 
offered by different repositories which are commonly used by the related 
literature. In particular, 15 statistics or descriptors of the physical ac
tivity have been computed from the triaxial components of the accel
eration measured during the short time interval (2 s) that precedes and 
follows the impact against the ground. 

As previous studies had suggested, the results confirm the great 
divergence between ‘fake’ and real falls, since most of the considered 
descriptors present means with statistically significant differences for all 
the existing datasets. In general, human mobility in actual falls offers a 
less violent and abrupt behavior than that caused by the mimicked ones. 
This fact is reflected in less noticeable values for a group of parameters 
(e.g. the minimum or maximum acceleration magnitude, the average 
acceleration, the signal magnitude area, the energy, or changes in ac
celeration or signal energy) as well as in smaller intervals of the period 
of free fall or of the time between the minimum (final instant of the free 
fall phase) and the maximum (impact) acceleration magnitudes. As a 
matter of fact, for a notable number of features derived from the ac
celeration, many real falls can even exhibit a behavior more similar to 
that of the ADLs existing in the datasets obtained in laboratories than 
that estimated from the simulated falls contained in the same databases. 

The participants recruited for the testbeds created to generate ‘syn
thetic’ datasets normally execute predefined, highly ‘structured’ move
ments that do not respond to the varied and spontaneous imbalances 
that typically cause real life falls. Furthermore, during a simulated fall 
(generally performed on a cushioning element), volunteers tend to 
reduce or eliminate the compensatory movements aimed at minimizing 
the damage of the accident, which obviously alters the realism of the 
simulations. Similarly, the irregularity and unpredictability of the fall 
provokes that the databases with real falls present a greater inter- 
variability than that existing between the ’synthetic’ datasets 

themselves. The typology of the monitored users (age, physical condi
tions, previous pathologies, disabilities, etc.), the variety of the causes 
(slips, stumbles, tripping hazards, etc.) and the location of the accident 
(domestic, outdoors) may also introduce a considerable variability in the 
dynamics of real falls, which is not adequately represented in the re
positories with simulations, which are executed by young and healthy 
volunteers in laboratory conditions and in circumstances very 
abstracted from the contingencies and immediate experience of real- 
world falls. 

These findings largely discredit the evaluation strategy (based on 
datasets generated through programmed movements) massively fol
lowed by the literature. The fact is that clinical tests (documented to 
date) of fall detectors carried out in scenarios of real and continuous 
monitoring of vulnerable people (elderly or patients with certain dis
abilities) unanimously show a clear underperformance of the FDSs with 
respect to the results obtained by detection algorithms that were trained 
and evaluated with datasets generated in the laboratory. Research on 
FDSs should reframe the problem of evaluation, which should be re- 
oriented towards long-term tests in realistic scenarios and with partici
pants recruited from the end users at whom these systems are really 
targeted. Likewise, from the study, it is possible to infer the inconve
nience of basing the fall detection algorithms uniquely on the scrutiny of 
inertial signals (in particular, acceleration), as it is proposed in most 
works on wearable FDSs. As has been shown in recent articles, the 
development of efficient FDSs most surely requires a multi-sensor 
perspective in which the detection algorithm must found its decision 
on the simultaneous and coordinated analysis of a heterogeneous set of 
user’s signals (location, biosignals, etc.). 
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detection using real-world versus simulated data: How far are we from the 
solution? J. Ambient Intell. Smart Environ. 8 (2016) 149–168, https://doi.org/ 
10.3233/AIS-160369. 
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