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ABSTRACT

Future planetary exploration missions are demanding
more and more autonomy since these missions are get-
ting more complex. A clear example is the Mars Sam-
ple Return mission, where the Sample Fetch Rover needs
to collect sample tubes on a remote location, and bring
them back to the base station to be launched to Earth.
This mission requires to extend the autonomous capabil-
ities onboard. First, the Navigation component needs to
be able to detect and locate the sample tubes, and second,
the Guidance and Control ones require to place the rover
close the sample tubes and move the manipulator to pick
them up. These are the main contributions of this paper.
The first issue has been solved by the use of Deep Neural
Networks, which allow to identify the previously trained
sample tubes on images, and the second one has been
solved by extending the path planning algorithm within
the Guidance component. To demonstrate and validate
the proposed methods, two experiments were carried out.
A first field test in the Search and Rescue experimen-
tal terrain at the University of Malaga, and a second lab
test in the Planetary Robotics Lab at the European Space
Agency. Both experiments were carried out using the Ex-
oMars Testing Rover owned by the last institution.

Key words: sample retrieval; Sample Fetch Rover; plan-
etary exploration.

1. INTRODUCTION

Planetary exploration is requiring more and more auton-
omy for rover to increase scientific return and be able to
perform even more complex missions. The main respon-
sible of it is the Guidance, Navigation and Control (GNC)
architecture, which is key, since the remote teleoperation
from Earth entails several difficulties that can be effec-
tively overcome with autonomous onboard decision mak-
ing [1]]. As a part of this architecture, the Guidance com-
ponent is designed to plan a path for the planetary ex-
ploration vehicle, allowing the rover to navigate safely,
avoiding any hazard that could be found along its way.
The Navigation component is in charge of detecting these
obstacles and locating the rover, which would ensure it is

Figure 1: ExoTeR rover during the SFR field test cam-
paign at ESA-ESTEC.

following the right path. To ensure the generated path is
correctly followed, the Control component is responsible
of generating actuator commands according to the rover
location. The importance of the autonomous decision
making depends on the objectives of the exploration mis-
sion. In the case of the future Sample Fetch Rover (SFR)
that belongs to the Mars Sample Return (MSR) mission,
the objective is to collect several soil sample tubes left by
the M2020 Perseverance rover and bringing them back to
the lander in 150 sols [2]]. In order to increase the over-
all navigation speed of the system, it is necessary to per-
form the sample retrieval operation in the most efficient,
hereby efficient, way. Thus, the GNC architecture needs
to be extended to solve two issues: first, an efficient GNC
architecture that allows the rover to reach the sample lo-
cations faster than before, and second, a path and mo-
tion planner to retrieve the sample tubes and store them.
As regards the first issue, authors proposed an efficient
GNC architecture that would be suitable to accomplish
the stated objectives [3]. The design and development of
the second issue is the aim of this contribution.

To accomplish the MSR objectives, the Navigation sub-
system needs to be extended to perform automatic detec-
tion and localization of the sample tubes. For this pur-
pose, the use of deep neural networks (DNNs) is one the
best techniques nowadays. DNNs perform some tasks
better than humans, as it is the case of image classifi-
cation [4]. However, the implementation of DNNs in



space-related projects can pose some challenges. A high
volume of images is needed to train DNNs to accurately
recognise the sample tube. This problem can be solved
with the creation of a synthetic dataset with inmersive
3D simulations of martian scenarios. The knowledge ob-
tained while training from this generic dataset is later
transferred to the DNN to be used in more realistic en-
vironments, such as the field tests. Another challenge
is related to the high computational demands of DNNs.
Therefore, the trained network is adapted and imple-
mented into a hardware-accelerated device, with energy
efficiency in mind [3]]. For the pose estimation stage, tra-
ditional computer vision techniques are developed and in-
tegrated.

Once the sample is detected and its pose estimated, the
rover needs to reach the samples location and retrieve it.
Due to the high accuracy requirement for a successful re-
trieval, the sample is repeatedly detected during the ex-
ecution, to feedback more accurately its pose. Besides,
the continuous sample identification makes it possible to
ignore, for instance, the rover localization errors, which
would lead, otherwise, to a mission failure. This way, the
Guidance subsystem can plan a path to reach the sam-
ples vicinity, and correct it with every new detection if
necessary. Besides, Guidance needs to handle the mobile
manipulation problem, placing the rover base in the best
pose for the retrieval operation and moving the robotic
arm in a correct manner to pick up the sample tube.

The proposed sample retrieval methodology has been val-
idated by means of simulation tests in a representative
virtual environment built on Unreal Engine, a field test
campaign in the Search and Rescue Experimental Terrain
at the University of Malaga, and a lab test in the Plane-
tary Robotics Laboratory at the European Space Agency.
The rover testbed ExoTeR (Exomars Testing Rover) [6]
has been used. As shown in figure[T] it is equipped with a
5 Degrees of Freedom (DoF) manipulator, a gripper and
two stereo cameras, NavCam and LocCam. These cam-
eras are used for localization, mapping and sample detec-
tion. The performed field tests showcased an analogue
SFR mission, where ExoTeR was able to autonomously
detect and locate a sample tube, reaching it and picking it
up with the manipulator. An already ESA developed vi-
sual odometry algorithm was used for the rover localiza-
tion, avoiding the use of GNSS devices, which increases
the representativeness of the tests. The obtained results
show that the proposed autonomous sample detection and
motion planning architecture was able to solve efficiently
the sample retrieval stage of a SFR-like mission.

2. SAMPLE LOCALIZATION

The sample localization procedure has been divided into
two stages: sample identification and pose estimation
(position and orientation). In the sample identification
stage, images from the four sensors of both LocCam and
NavCam were employed to search for the sample tube.
A DNN was implemented to localise the sample tube in
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Figure 2: Pyramid Feature Extractor. On the left, feature
maps of different resolution are extracted. On the right,
bounding boxes are calculated for each feature map and
their outputs are fused into a final bounding box.

the scene, thus obtaining a bounding box of its position
on the image. On the other hand, pose estimation was
performed using the LocCam images once the rover is
prepared to pick up the sample tube. As the rover has
stereo cameras as its disposal, disparity maps were used
to transform the image coordinates provided by both al-
gorithms to real world 3D coordinates, which were fed to
the GNC algorithm.

YOLOv3-tiny architecture, a smaller version of YOLOv3
[7], was the DNN implemented for the sample identifi-
cation. It is based on the Darknet framework, which, in
turn, is heavily influenced by the Pyramid Feature Extrac-
tion (PFE) procedure [8]], as seen in Fig. [2] It extracts the
images characteristics through consecutive convolutional
layers of decreasing dimensions, creating two feature
maps of different level of detail. Additionally, as an out-
put of its outer layers (decoding head), boundings boxes
are precomputed and the final ones are chosen depend-
ing on the predicted probabilities. This type of feature
decoding, along a reduced number of layers, contributes
to a faster and less dense network. This makes easier its
adaptation in hardware-accelerating devices, enhancing
the detection times of resource-constrained CPUs.

Generally, this type of DNNs needs large datasets of im-
ages for an efficient training and a high ratio of success-
ful predictions. Nonetheless, obtaining a large enough
dataset of the sample tube in real conditions is rather
complex. Transfer learning techniques are proposed to
solve this issue [9)]. A dataset was produced with a high
volume of synthetic images. In them, the sample tube
was represented in a wide range of scenarios and illumi-
nation conditions. For this task, a photorealistic simulator
based on Unreal Engine was used. In addition, a second
dataset was generated with real images of the sample tube
in a terrain similar to that of the martian surface. Then,
the YOLOV3-tiny network was first trained with the syn-
thetic dataset to initialise its weights. The first layers of
the pretrained network were later transferred to a second
network trained with real images, keeping frozen the pre-
vious trained layers. Thanks to this procedure, the net-
work is able to learn the sample tube general features of
the synthetic dataset, making the network more robust to
condition changes and increasing the ratio of successful



Figure 3: Diagram of the algorithm used to compute the
sample tube pose. Its input is the bounding box provided
by the YOLOv3-tiny network.

detections.

The DNN was adapted to a hardware accelerator device.
Specifically, it was implemented into a Google’s Coral
Tensor Processing Unit (TPU) as it has good performance
in terms of power consumption per inferenced image
[1O]. A quantization of the YOLOv3-tiny tensor data
was performed from a 32-bit to a 8-bit fixed-point repre-
sentation. Additionally, some layers and operations were
adapted to similar ones supported by the TPU, for exam-
ple, leaky Rectified Linear Unit (ReLU) were changed by
standard ReL U layers. Although these changes reduced
the network accuracy due to rounding errors, they were
compensated by the transfer learning procedure.

Computer Vision (CV) techniques were employed for the
the pose estimation algorithm. A diagram of all the fol-
lowed operations are depicted in Fig. [3] Starting on top
left, the bounding box of the detected sample tube is in-
troduced as the algorithm input. The sample tube binary
mask is therefore obtained via the combination of a So-
bel filter to detect its edges and a adaptive mean thresh-
old filter. Consecutively, all the images contours and their
centroids are generated. Among them, the contour cho-
sen as that of the sample follows two conditions: its cen-
troid is the nearest to the one detected by the DNN and
it is enclosed by the contour. In addition, a line is cal-
culated which fits all the contour points using the least-
squares algorithm. This is followed by the estimation of
the two points of intersection of the contour with the ap-
proximated line. Finally, these points are translated to
real world coordinates using the LocCam disparity maps
and the pinhole camera model.

3. SAMPLE RETRIEVAL PLANNING AND CON-
TROL

The sample retrieval planning and control subsystem is
divided into two different components, the Path Planner
[11] and the Trajectory Control [12]. The Path Planner is
in charge of the generation of the optimal path to reach
a goal position based on a global map (from drone or or-
bital imagery), while the Trajectory Control uses the con-
servative pure pursuit method, to guarantee that the rover
will follow the generated path within the limits of a pre-
defined corridor.

The functioning of the Path Planner is the following.
Firstly it is necessary to provide a map of the scenario
in form of a Digital Elevation Map (DEM), which is pro-
cessed to differentiate obstacles and safe areas. Hence,
a Cost Map is generated based on the traversable areas
and slopes encountered in the DEM, where all non-safe
areas are dilated in order to ensure the rover will not tra-
verse nor approach them. Clearly, the highest costs in the
Cost Map correspond to obstacles. After obtaining the
Cost Map from the DEM provided, a path is computed:
taking into account the Cost Map, the rover initial po-
sition and the first estimation of the sample position, a
path is generated for the rover to follow. The trajectory is
planned by means of the Fast Marching Method (FMM),
which, given a Cost Map of the scenario, always finds a
smooth, continuous and optimal trajectory. Finally, when
the complete path is obtained, it is shortened by a dis-
tance that depends on the arm kinematic characteristics,
deleting the last waypoints to ensure that the sample is
reachable for the arm.

Each time a new path is computed, it is sent to the Trajec-
tory Control component, which continuously generates,
in function of the current rover pose, the motion com-
mands, i.e. translational and rotational speeds, to let the
rover follow the generated path. The Trajectory Control
library guarantees the rover remains within the limits of
a safety corridor. All the speed commands generated are
sent to the Locomotion Control component, which trans-
lates them into wheel speeds commands. It is important
to remark that the last waypoint heading must leave the
rover facing the sample to ensure that the arm is able to
retrieve it. Hereby, once this waypoint is reached, the Tra-
jectory Control may be forced to command a spot turn, to
get the rover to the desired heading.

The planning and control algorithms need to receive the
goal position from the sample identification subsystem,
which is integrated as follows. SFR is expected to be
equipped with two different cameras, a Navigation Cam-
era (NavCam), placed on the top of a mast, and a Local-
izacion Camera (LocCam), placed on the top of the rover
body. Making most of the cameras, continuous sample
identifications are requested while the rover is following
the planned path, updating the sample position to a most
accurate one. If the sample identification subsystem man-
ages to recognise the sample, a new final sample position
is provided, from which a new path is calculated. Other-
wise, the rover will continue following the previous path,
periodically requesting new detections until the sample
is recognised or the final waypoint is reached. Given its
height, the NavCam has a wider field of view. For this
reason, the first sample identifications are performed by
the NavCam, until the rover is close enough to request
a LocCam detection. Generally, at least three successful
sample identifications are expected.

Finally, when the rover reaches the last waypoint of the
path, it requests a highly accurate sample recognition, be-
fore starting the retrieval with the robotic arm. The in-
verse kinematic model of the manipulator is used, then,
to obtain a motion plan for the gripper. Firstly it reaches a



point just above the sample, and then smoothly descends
to perform the picking operation.

4. EXPERIMENTAL RESULTS

In order to validate and demonstrate the proposed au-
tonomous sample detection and retrieval architecture for
a real Sample Fetch Rover mission, several tests were
performed with the Exomars Testing Rover (ExoTeR). As
aforementioned, ExoTeR is a triple-bogie, six-wheeled,
full-Ackermann rover, which replicates the locomotion
subsystem of the Exomars Rosalind Franklin Rover, in-
cluding a LocCam, a NavCam and a 5 DoF manipulator,
as can be observed in Figure [T} Two different test cam-
paigns were carried out. On the one hand, the simulation
tests within a tailored martian simulation environment,
which uses Vortex Studio as a physical engine and Unreal
Engine 4 as the visualisation engine. On the other hand,
the experimental validation of the algorithms in real en-
vironments with, first, field tests in a representative out-
door environment in the Search and Rescue experimental
terrain located at the University of Mélaga, and, second,
laboratory tests in the analogue martian testbed located in
the Planetary Robotics Laboratory at ESA-ESTEC.

Starting with the simulation tests, Unreal Engine 4 al-
lowed to test computer vision algorithms, as it was the
case for training the DNN as aforementioned. Second,
the powerful physics engine provided by Vortex Studio
generates highly reliable motions and interactions of the
robotic system with the environment. As can be ob-
served in Figure ] a representative scenario of a SFR
mission was created, consisting of a 9x9 m martian ana-
logue terrain with features like rocks, dust or slopes, in-
cluding a sample tube and the rover ExoTeR equipped
with a 6 DoF manipulator and a two-fingered gripper.
Thus, several sample detection and retrieval tests were
performed within the simulation environmenlﬂ Follow-
ing the software-in-the-loop concept, the simulation tests
validated the proposed algorithms in two main senses: the
sample detection subsystem properly identified and lo-
cated the sample w.r.t. the rover pose, using the NavCam
for long distance detections and the LocCam for close
range ones; and the autonomous navigation subsystem
was capable of properly generate and follow a trajectory
to reach the identified sample, even if the initial com-
manded sample pose included a substantial error w.r.t.
the real one, and without stopping the rover during the
sample detection operations.

Regarding the experimental validation of the algorithms
in real environments, two different scenarios were used,
to verify if the sample identification subsystem is sus-
ceptible to their differences and to test how the whole
system behaves in different situations. For this experi-
mental tests, an electrically powered two-fingered grip-
per was attached to the end effector of the ExoTeR
MAS-E 5 DoF manipulator for the retrieval operations.

Ihttps://youtu.be/sSDGohUTXTw

Figure 4: Mars analogue simulation environment on Un-
real Engine 4, including the model of ExoTeR and the
sample tube.

Note that the 5 DoF manipulator is not able to reach
any commanded Cartesian position and orientation, thus,
a ground-perpendicular gripper orientation was fixed to
maximize the system safety. Additionally, to ensure that
the tests were as representative as possible of a real SFR
mission, a visual odometry algorithm was used for
the rover localization, with an average of 7.5% drift in po-
sition and less than 2° orientation. Nevertheless, as will
be observed later, thanks to the proposed autonomous
sample detection and path planning pipeline, this rover
localization error did not influence the sample retrieval,
since each time the sample tube was identified, the error
was corrected.

The outdoor field tests were carried out at the Search and
Rescue experimental terrain located close to the Indus-
trial Engineering Faculty at the University of Malaga.
This is a huge terrain which is representative w.r.t. the
martian surface conditions, including features like steep
slopes, rocks or different types of soil (rough, rocky,
sandy...). For performance analysis purposes, the ground
truth pose of the rover was obtained by means of a differ-
ential GPS with RTK corrections using a fixed antenna.
For these tests, a new set of the sample tube images on the
experimental terrain were included to the sample identifi-
cation DNN, on top of the pretrained synthetic model, to
consider the particular characteristics of the scenario. It is
important to note that the light conditions affected notice-
ably the behaviour of the sample identification subsys-
tem, since the intense incidental light were occasionally
saturating the cameras, as can be observed in the videos
recorded by the LocCam and NavCam during the testﬂ
This was partly mitigated by the pretrained model, which
contained synthetic images from different day times and
different orientations w.r.t. the Sun position, in order to
consider a wider variety of light conditions. As a result,
the sample identification subsystem was able to recur-
rently and reliably locate the sample with the NavCam,
from approximately 5 m far. Besides, the subsequent
LocCam sample identifications eliminated the localiza-
tion error due to visual odometry, thus, allowing the rover
to precisely retrieve the sample tube with the gripper.

Zhttps://youtu.be/6nDSPnluviE
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Figure 5: Evolution of one of the Planetary Robotics Laboratory tests including the initial state (a), the NavCam sample
identification (b), one of the two consecutive LocCam sample identifications (c) and the final state (d) before the sample
tube retrieval. Although the commanded sample position is slightly different from the real one, as long as the rover
starts following the generated trajectory the estimated sample position keeps improving after each successful sample
identification. Before the retrieval (d), the estimated sample position w.r.t. the rover pose is very accurate, although there
is an error in the rover pose w.r.t. its ground truth pose, due to the drifted rover localization.

Lastly, a final laboratory tests campaign was carried
out at the Martian Analogue Testbed of the Planetary
Robotics Laboratory, at ESA-ESTEC, to verify the be-
haviour of the already trained neural network and also
confirm the robustness of the proposed sample retrieval
planning pipeline. The Martian Analogue Testbed is a
9x9 m terrain that replicates very accurately the martian
soil conditions and features, as can be observed in Figure
[T] Inside the PRL, a set of Vicon markers were placed on
ExoTeR to obtain its ground-truth pose during the tests.
The evolution of one of the lab tests is depicted in Figure
Initially, Figure [5a] the rover is commanded to reach
and retrieve a sample (purple o), including a certain er-
ror from the real sample position (orange circle), starting
from its initial pose (blue dot). Thus, the rover generated
an initial trajectory (dark blue dashed line) to reach the
sample tube vicinity. Nevertheless, once the rover had
covered a few meters of the trajectory, the NavCam iden-
tified the sample tube, Figure[5b, which was located quite
far from what was initially expected, and a new trajec-
tory was generated. Then, a first LocCam identification,
Figure [5c] increased the accuracy of the sample pose es-
timation. Lastly, a second LocCam identification allowed
the rover to finally locate itself in an appropriate pose for
the subsequent sample retrieval operation. Therefore, the
final state, Figure[5d] shows how the relative pose of the
sample w.r.t. the rover was highly accurate in comparison
with the real ones, even though the rover had a certain lo-
calization error due to the use of visual odometry. A pic-
ture of the final sample pose estimation on both LocCam
sensors is depicted on Figlf

5. CONCLUSIONS

The objective of this work was the validation and demon-
stration of an extended GNC architecture for a Sample

Figure 6: Detection box (green rectangle) and pose es-
timation (red arrow) of the laboratory test left and right
LocCam sensors.

Fetch Rover. This extension consisted on the use of the
rover cameras to detect the sample tubes for Navigation,
and the modification of the Guidance component to be
able to reach the sample location and move the manipu-
lator to pick it up.

For this purpose, three experiments were carried out.
The first one in an inmersive simulation environment,
in which obtained images were used to train a DNN to
locate the sample tubes. Moreover, it was used to test
the proposed GNC architecture using the software-in-the-
loop concept. The second experiment was carried out
in an experimental terrain using a real rover, where we
demonstrated the proposed architecture can be used on a
real rover testbed. Finally, another experiment was car-
ried out in a Martian analogue lab facility. The aim of
this experiment was to validate the proposed architecture
in a more Mars-like terrain, and even to be able to carry
out future works. We can conclude the proposed archi-
tecture is suitable to be investigated for further planetary
exploration space missions such as the SFR. As part of
these future works, we propose the optimisation of the
rover motion to pick up the sample tubes using novel kin-
odynamic planning adapted to this use case.
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