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Abstract. Vehicle trajectories extracted from traffic video sequences
can be helpful for many purposes. In particular, the analysis of detected
anomalous trajectories may enhance drivers’ safety. This work proposes a
methodology to detect anomalous vehicle trajectories by using a vehicle
detection, a vehicle tracking and a processing of the tracking information
steps. Once trajectories are detected, their velocity vectors are estimated
and an anomaly value is computed for each trajectory by comparing its
vector with those from its nearest neighbours. The management of these
anomaly values allows considering which trajectories are suitable to be
potentially anomalous considered. Real and synthetic videos have been
included in the experiments to perform the goodness of the proposal.

Keywords: Anomaly detection - Object tracking - Object detection -
Video surveillance - Deep learning.

1 Introduction

Anomaly detection is an important part of understanding the activities of video
surveillance systems [1]. The use of video in computer vision is an important
and current research topic that includes autonomous surveillance systems. These
systems follow three basic steps: detection of interesting moving objects, tracking
of such objects from frame to frame, and analysis of object tracks to detect
unexpected situations.

For moving object detection, the latter existing state-of-the-art methods are
based on Deep Learning (DL) [2]. This kind of methods have become a powerful
technique for object detection due to it is significantly more robust to occlusion,
complex scenes, and challenging illumination and, on the other hand, because of
the availability of large video data sets and DL frameworks. In fact, the progress
of object detection is usually separated into two historical periods (before and
after the introduction of DL).
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Regarding the object tracking, a single method cannot provide good accu-
racy for different kinds of videos with different situations. The tracking methods
can be divided into three categories based on the use of object representations,
namely, methods establishing point correspondence, methods using primitive
geometric models, and methods using contour evolution. In this work, we have
used a method within the first category, that is because we have found that the
selected method is very appropriate to the characteristics of the analyzed traffic
camera videos and it makes the process of identifying anomalous trajectories
easier.

Therefore, the aim of this work is to detect anomalies in vehicle traffic. A deep
neural network is used to detect vehicles, then a specific method is described in
order to track the vehicles, and finally, a technique to detect anomalous trajec-
tories of vehicles is introduced.

Detection of vehicles that appear in traffic video sequences has been ad-
dressed in the literature in order to carry out different tasks. Moreover, the
trajectories of the vehicles are determined along the way, so it may be necessary
to deal with the tracking of vehicles [3].

Vehicle classification on-road traffic is an important task due to its great
potential in traffic management. Different techniques have been used to classify
vehicles; an example of a traditional proposal can be found in [4], where it uses
a foreground object detection method and a feature extractor to obtain the
most significant features of the detected vehicles into several categories such as
car, motorcycle, truck or van. However, more recent works [5,6] can do that
task by using a neural system based on a Convolutional Neural Network (CNN)
architecture, which is a DL network.

Another interesting task related to vehicle detection consists of deriving traf-
fic information. In [7] YOLOv4 algorithm for vehicle detection is used and then
the lane-by-lane vehicle trajectories using the detected locations of vehicles are
estimated. Based on the estimated vehicle trajectories, the traffic volumes of each
lane-by-lane traveling directions and queue lengths of each lane are estimated
by matching vehicle locations with HD map.

Latest advances in research related to the field of traffic video surveillance
have made possible the study of other relevant problems whose solution arises
from the analysis and detection of vehicles along the road. This is the case of
the detection of pollution levels of transport vehicles problem which has been
addressed in [8,9]. In this works the object detection and classification process
is based on a pre-trained Faster-RCNN model [10]. With that recognition and
vehicle tracking, the system predicts the pollution of the selected area in real-
time. The model which estimates the pollution is based on the frequency of
vehicles and their speed.

The rest of the paper is organized as follows. Section 2 describes in detail
the methodology used to solve our problem. Section 3 shows several experimen-
tal results over several well-known public traffic surveillance sequences. Finally,
Section 4 outlines the conclusions of the paper.



Anomalous trajectory detection 3

2 Methodology

To detect anomalous trajectories in video feeds from traffic cameras, we propose
a system architecture with the following stages:

1. Vehicle detection: a deep neural network is used to detect vehicles in each
image frame of the video.

2. Vehicle tracking: we then keep track of vehicles across multiple frames to get
their frame-by-frame positions.

3. Processing of tracking information: for each vehicle, its tracked frame-by-
frame positions are processed to highlight possible anomalous trajectories.

4. Thresholding: each possible anomalous trajectory is flagged as anomalous if
it surpasses any of several possible thresholds.

Next, each stage is described in detail. The first stage of our proposed system
employs an object detection deep convolutional network to obtain tentative de-
tections of vehicles. The output of the object detection network for an input
image X is a set of detections S where each detection consists of an axis-aligned
bounding box, an object class label, and a confidence level:

§=F(X) (1)

S = {(ai,bi,ci,di,qiyri) | i€ {1,...,N}} (2)

where N is the number of detections, (a;,b;) € R? are the coordinates of the
upper left corner of the i-th detection within the image X, (¢;,d;) € R? are the
coordinates of the lower right corner of the i-th detection within X, ¢; is the
class label of the detection, and r; € R is the confidence level of the detection.

We threshold the detections at a minimum confidence level of 7,,;,, and
disregard the object class after we filter out the non vehicle classes. Therefore a
filtered set of detections is obtained as follows:

S"={(a;,bi, i, di, qisri) €S| 1i > Tin, g €V} (3)

where V' is the set of vehicle classes.

After that, the filtered set S’ is passed on the non-maximal-suppression al-
gorithm in order to obtain a further filtered set of detections S” for the current
video frame which is fed to the next stage.

The second stage is object tracking. We pose the tracking problem as a linear
sum assignment between the detections at frames ¢ + 1 and ¢ contained in the
detection sets S{, ; and S}, where the cost Cj;of matching two detections s;,s; €
S" is the Euclidean distance between the centers p;, p; of their associated
bounding boxes:

ite bi+d i +¢ bj+d;
po= (M) = (U)o

2 2
(4)
Our algorithm works well only in ideal conditions: when object movements
between frames are relatively small, and objects are consistently detected across
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all frames where they appear. The traffic camera videos we analyze mostly fulfill
the former requirement, but even object detectors with very high mAP scores
fail the latter requirement for vehicles with small apparent sizes. To make this
algorithm more robust under these conditions, we forbid assignments (i.e. recog-
nizing bounding boxes from frames ¢ and ¢t + 1 as the same tracked object across
both frames) that break one of these heuristics:

— The difference in size between both bounding boxes is larger than a given
threshold ratio in any of the two dimensions of the axis-aligned bounding
boxes. This avoids false tracking instances between objects of very different
sizes, and incidentally makes the system more robust in noisy conditions,
when the bounding box estimates fluctuate wildly across frames.

— The displacement between the centers of both bounding boxes is larger than
a given threshold. Rather than using an absolute threshold, it is relative
to the size of the minimum dimension of the bounding box at ¢ + 1. This
avoids false tracking instances where an object is detected at frame ¢ but
not at ¢t + 1, and a nearby object detected at ¢t + 1 is erroneously assigned
to it. This is most useful for distant objects with small apparent sizes in the
image, because object detection networks are more prone to fail to detect
small objects. While this heuristic is also useful for objects in the foreground
with large apparent sizes, it has to be fine-tuned, however, because fast
objects on the foreground can show large displacements that are unlikely
for distant objects. To address this issue, we apply two different threshold
values, depending on the size of the bounding box relative to the size of the
image.

When a vehicle detected in frame ¢ is not assigned a detection in frame ¢ + 1,
we do not keep track of it in case we detect it later.

After this stage, we have vehicle trajectories across the camera’s field of
view. We posit that we can detect vehicles performing anomalous maneuvers by
comparing their trajectories with nearby trajectories. To accomplish this in a
simple but effective way, we can measure how different is the velocity of a car
with respect to the velocity of its nearest neighbors.

To describe this in more detail, we will introduce some formal notation. Let
;(t) € R? be the position (the center of the bounding box) of vehicle i at frame
t. If the tracking stage has determined that the same vehicle was in position
w;(t — 1) for the previous frame, we define its velocity vector v;(t) € R? as
follows:

Vi (t) = p; (8) = p (E = 1) ()

Here we subsume the frame rate of the camera as a scale factor. If vehicle
1 is not tracked both at ¢ and ¢ + 1, its velocity is undefined. For each vehicle
i in the current time step with defined velocity v;(t), we consider the set of all
detections of other vehicles with defined velocities in the last F' frames:

Di(t)={j : Iv; ('), i#jt—t' <F} (6)
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Then we select DY (t) C D; (t), the subset of the N nearest detections for
vehicle 7 at time t. Proximity is measured between detections of vehicle ¢ at time
t and each vehicle j at time ¢’ as the Euclidean distance between their respective
positions g, (t) and p;(t').

After selecting the nearest neighbors DY (¢) for each vehicle i, we have to
measure how different its velocity vector v;(t) is with respect to the velocity
vectors of its nearest neighbors v;(¢') € DY (¢). This can be accomplished by
defining the anomaly value A;(t) of vehicle i at frame ¢ as the mean of the moduli
of differences among vector velocities:

A; (t) = mean (||vi (t) = v; ()] = j € DY (1)) (7)

As a measure of anomaly, A;(¢) has some issues. It is somewhat noisy, with
large spikes whenever one-off tracking errors happen. We minimize the impact
of these errors using a median filter:

Al (t) = median (A; (), A; (t — 1), A; (t — 2)) (8)

such that A}(¢) is defined only if the three values A4;(t), A;(t — 1) and A;(¢t — 2)
are defined.

Another difficulty is that A%(t) is not dimensionless, i.e., it depends on frame
rate and distance to the camera, among other considerations. In order to address
this inconvenient, we consider A}(t) as potentially anomalous if its value is equal
or higher than the Py percentile of all anomaly values measured in the last F’
frames.

Finally, we declare that a potentially anomalous A} (t) value is actually anoma-
lous if either of these conditions are met:

— Its value relative the Py percentile is larger than a specific ratio s: A(t) >
S - Pk.

— The vehicle keeps a consistent record of potentially anomalous values for
a large number of consecutive frames. This is somewhat dependent on the
characteristic time and size scales of road vehicles.

3 Experimental Results

In order to evaluate the goodness of the proposed methodology, several experi-
ments have been carried out. The following subsections depict the methods and
the datasets we have employed, and the obtained results.

3.1 Methods

OpenCV is used to process video snippets, while yolov5 is the object detection
network employed for the first stage of our system. Yolov5 is designed to detect
objects in still images, so it is used to detect vehicles in each frame. We config-
ure the network to return only the object detections corresponding to vehicles.
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More specifically, the following COCO classes are included in the vehicle classes
set V: car, motorcycle, bus, and truck. Also, we disregard object class during
non-maximal-suppression since this network occasionally detects truck cabins as
standalone cars, even if they are within the bounding box of the whole truck. All
other configuration parameters are left unmodified, particularly r,;, = 0.25.

SciPy’s implementation is used to solve the linear sum assignment for the
tracking stage. Everything else is implemented in Python. Regarding the pa-
rameters to detect anomalies, we have found that the size of the set D (¢) (the
number of neighbors to check if a trajectory is anomalous) should be small to
avoid a long warm-up time, during which comparisons will include lots of vehi-
cles in wildly different trajectories. We use a number of nearest neighbors N = 5.
Regarding the memory size F', i.e., the number of past frames for which we keep
track of past vehicle detections, we have found results to be better for very large
values. This amounts to not forgetting any vehicle detection for the duration of
each video. With respect to the parameters for trajectory processing, we flag as
potentially anomalous all detections at or above the Py percentile.

3.2 Dataset

Several videos taken from different datasets have been considered in the exper-
iments. These videos allow us to analyze the performance of the system under
different anomaly conditions, such as vehicle in the opposite direction or risky
fast vehicle. Videos without any anomalous vehicle trajectory are also selected.
We used videos from three datasets:

— Two videos from a project [11] which deals with the anomalous trajectory
detection in traffic videos offers several real and synthetic sequences. The
selected sequences are a real video® (noted as Videol) that shows a vehicle
backing onto a busy road and a synthesized video with CARLA [12] (noted
as Video?2) that depicts a car doing counterflow driving.

— Two videos from the Ko-PER Intersection dataset [13]: the sequences seq.
la - SK_4 and seq. 2 - SK_/, both cases depicting an intersection with traffic
lights. The first video presents no anomalies, while the second video shows
a vehicle that waits to turn. In order to test the proposed methodology, we
have considered as a potential anomaly that vehicle.

— Two videos from the 2014 CDNET dataset [14]. The sequences highway and
streetLight with no anomalies exhibit a road in a video taken from a camera
looking at incoming traffic and from the side, respectively.

3.3 Results

From a quantitative point of view, we have selected several well-known measures
in order to test the performance of the proposal. In this work, the spatial accu-
racy (S) has been considered. This measure provides values in the interval [0, 1],

3 Clip from 02:10 to 02:31 in this Youtube video: https://youtu.be/BF3WuB-7iPo
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Table 1. Performance of the system for sequences Videol and Video2 regarding differ-
ent values of parameters s scaling factor and Py percentile. Best results are highlighted
in bold.

lVideol[ ng ‘ Pgs ‘ P95 ‘ Pgo ‘ Pgs ‘ lVideOQ‘ ng ‘ ng ‘ P95 ‘ Pgo ‘ P85 ‘
s =3 ]0.000/0.000{1.000{0.500(0.167| | s =3 |1.000{1.000|0.334 | 0.077 |0.052
s =4 10.000/0.000|1.000{0.500{0.250 s =4 /1.000{1.000(1.000{ 0.200 [0.071
s =15 {0.000{0.000{1.000{0.500{0.250| | s =5 [1.000{1.000|1.000|0.500 |0.143
s =6 (0.000{0.000(1.000{0.500(0.250 s =6 |0.000(1.000{1.000|1.000{0.250

Table 2. Performance of the system for tested videos. First row shows the ground
truth (GT) which represents the number of anomalous trajectories for each video,
while remaining rows depict the performance of the system for the indicated measure.

lMeasure[ Videol [ Video,?[seq. la - SK_j [seq. 2-SK_ 4 [highway[str@etLight‘

GT 1 1 0 1 0 0
TP 1 1 0 1 0 0
FP 0 0 1 1 1 2
FN 0 0 0 0 0 0

where higher is better, and represents the percentage of hits of the system. True
positives or number of hits (TP), false negatives or misses (FN) and false posi-
tives or false alarms (FP) are also considered in this work. The spatial accuracy
is defined as follows: S = TP/(TP + FN + FP).

First of all, in order to establish the value of parameters P percentile of
all anomaly values and the ratio s used as thresholds, we have tuned differ-
ent configurations. With these possible configurations, the system may be more
demanding or tolerant with the potential anomalies.

The set of values we have tested are k = {85,90,95,98,99} and s = {3,4, 5,6}
with the sequences Videol and Video2. The obtained results are shown in Table
1. Due to both videos present only one anomaly, the configuration with fixed
values s = 4 (or s = 5 or s = 6) and Py5 achieves the best performance. This
way, we have found that a good strategy to flag a vehicle as actually anomalous
is to use either of these heuristics: either its A;(t) value persists as potentially
anomalous for more than a certain number of frames (we have used 60 which
corresponding with approximately 2-3 seconds for the videos we are using), or
it is s = 4 times larger than the Py5 percentile.

Table 2 summarizes the performance of the system. As can be observed, our
proposal perfectly detects the anomalous trajectories which are in the videos.
Additionally, it must be highlighted that there is no false negatives. Nevertheless,
several false positives are detected.

Going deeper, Figure 1 shows the anomaly values A;(t) for detected vehicles
of a selected video plotted by time and a specific frame from that video. It
is interesting to observe how real anomalies are well detected in videos Videol,
Video2 and seq. 2, cam. SK_4. For example, the anomalous trajectory detected in
Videol is predicted as that because the vehicle maintains A;(t) values above the
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Videol 7 Video2

® non-anomalous Aj(t)
potentially anomalous Aj(t)
@® anomalous Ai(t)

—— Pg5 percentile
—— 4 times Pgs percentile

Fig. 1. Anomaly values A;(t) for detected vehicles plotted by time (frame number) in
each tested video.

Pys percentile for a long time. Regarding false positives anomalous trajectories,
they exhibit a low number of frames with an anomalous anomaly value A;(t) and
they are related to tracking errors which can be tackled with better detection
and tracking subsystems. From the analysis of the frames where false positives
appear, we have deduce that they can be categorize in two possible classes: the
first vehicle(s) in a given trajectory is liable to be flagged as anomalous; and,
when an area (usually an intersection) accumulates lots of different overlapping
trajectories, some vehicles will be flagged as anomalous because their trajectories
happen to overlap with very different ones.

The detail of an specific frame showing some vehicles flagged by the system
is reported in Figure 2. Left image shows a vehicle is backing onto a busy road,
center image exhibits a vehicle is driving in opposite direction, and right image
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bounding box from detection stage lines to neighbors
potentially anomalous A;(t) o tracking identifier

mm flagged as anomalous

Fig. 2. Predictions made by the proposal for different videos in an specific instant.
From left to right: Videol (frame 76), Video2 (frame 938) and streetLight (frame 309).

reports a vehicle which is not actually anomalous, but it is the first vehicle to go
through its lane, and it gets compared to vehicles from another lane going in the
opposite direction. The N = 5 nearest neighbors (detections from the current or
past frames) used to compute the anomaly value A;(t) for that tracked vehicle
at time ¢ can be observed for each vehicle.

4 Conclusions

The detection of anomalous vehicle trajectories from traffic video sequences has
been addressed in this work. From an input traffic video, the proposed method-
ology detects the vehicles, tracks them to obtain their trajectory, and then esti-
mates which trajectories can be considered anomalous. Given the fact that we
are measuring how different the velocity vector of each vehicle is with respect
to the velocity vector of the nearest vehicles, we are considering that a vehicle
is anomalous if this difference is very high for a given frame or continuously
high for a given length of time. We find that this strategy may detect anoma-
lous trajectories consisting of vehicles going the wrong way in a traffic lane or
backing next to a busy lane and works especially well when the vehicle is in the
foreground or near the foreground. Experiments with real and synthetic traffic
videos demonstrate that the approach assesses appropriately different anomalous
vehicle behaviours in different scenarios.
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