
Discretization of the Robust Exact Filtering

Differentiator Based on the Matching Approach

J. E. Carvajal-Rubio∗, J. D. Sánchez-Torres†, M. Defoort‡, A. G. Loukianov§ and M. Djemai¶

∗§Department of Electrical Engineering, CINVESTAV, Guadalajara, México
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Abstract—This paper presents a time discretization of the
robust exact filtering differentiator, a sliding mode differentiator
coupled to filter, which provides a suitable approximation of the
derivatives for some noisy signals. This realization rely on the
stabilization of a pseudo linear discrete-time system, it is attained
through the matching approach. As in the original case, the
convergence of the robust exact filtering differentiator depends
on the bound of a higher-order derivative. Nevertheless, this new
realization can be implemented with or without the knowledge
of such constant. It is demonstrated that the system trajectories
converge to a neighborhood of the origin for a free-noise input.
Finally, comparisons between the behavior of the differentiator
with different design parameters are presented.

Index Terms—Discrete-time systems, Online differentiation,
Sliding mode differentiator, Homogeneous systems.

I. INTRODUCTION

Usually, a control law or an observer is designed in

continuous-time, but it is implemented in a digital system.

They are implemented under the assumption that the sampling

time is small enough to preserve its continuous-time property.

However, due to discretization, such properties can be lost

or modified. Different methodologies have been proposed to

obtain adequate realizations which preserve some properties

of the continuous-time systems. Some examples are Euler

method, Exact discretization [1] and implicit discretization [2]

to name a few.

An online robust differentiator is usefull for many

applications, such as control laws based on derivatives of a

signal, estimation of unmeasured states and parameters [3]–

[5] for instance. In [6], a homogeneous differentiator was

proposed. It can estimate the first n derivatives of a signal

with a bounded (n + 1)-th time derivative while presenting

robustness properties to delays and bounded noises. Different

time discretization methodologies have been used with the

objective to preserve its accuracy and robustness properties

[7]–[11]. Recently, a robust exact filtering differentiator was

presented in [12], which improves some properties of the

original differentiator presented in [6].
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The contributions of this paper are to introduce a new

discrete-time differentiator and to study its convergence

property. Although a previous version of this idea was

presented in [13], important details are presented in this

work. The proposed discrete-time differentiator is based on the

methodology presented in [11] and the robust exact filtering

differentiator [12]. This paper is organized as follows. In

Section II, some preliminaries on the differentiation problem

are presented. In Section III, the standard differentiator and

robust exact filtering differentiator [12] are introduced and

compared. In Section IV, our discrete-time realization is

introduced and analyzed. In Section V, in order to show

the performance of the new discrete-time differentiator, two

simulations are presented with different parameters and input

signal. In Section VI, the main results of the paper are

summarized and future work is presented.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Notations and properties

Let x ∈ R. The absolute value of x, denoted by |x|, is

defined as |x| = x if x ≥ 0 and |x| = −x if x < 0. The

set-valued function sign(x) is defined as sign(x) = {1} for

x > 0, sign(x) = {−1} for x < 0, and sign(x) = [−1, 1]
for x = 0. For γ ≥ 0, the signed power γ of x is defined as

⌊x⌉
γ
= |x|

γ
sign(x), particularly, ⌊x⌉

0
= sign(x).

For any matrices C, D ∈ R
n×m and any positive definite

matrix Λ ∈ R
n×n the following inequality holds:

CTD +DTC ≤ CT
ΛC +DT

Λ
−1D, (1)

see [14] for details.

B. Problem statement

The objective of a differentiator is to obtain online the

first n derivatives of a function even if there is noise in the

measurement. f0 (t) represents this function, f0 : R → R.

f0(t) is assumed to be a function at least (n + 1) − th
differentiable and with a n+1 derivative bounded by a known

real number L > 0, i.e., |f
(n+1)
0 (t) | ≤ L. The input of

the differentiator is defined as f(t) = f0(t) + ∆ (t) and

∆(t) corresponds to noise in the input. Additionally, it is also



assumed that ∆(t) is a Lebesgue-measurable bounded noise

with |∆(t)| ≤ δ for a real number δ > 0, which can be

unknown.

To design a differentiator, a space state representation is

used. It allows to compute the derivatives f
(1)
0 (t), f

(2)
0 (t),

· · · , f
(n)
0 (t). The state variables are defined as xi(t) = f

(i)
0 (t)

and x(t) =
[

x0(t) x1(t) x2(t) · · · xn(t)
]T

∈ R
n+1.

Therefore, one can obtain the following representation for the

differentiation problem in the state space:

ẋ(t) = Ax(t) + en+1,nf
(n+1)
0 (t)

f(t) = eT1,nx(t) + ∆(t)
(2)

where the canonical vectors ei,j are vectors such that ei,j ∈
R

(j+1)×1, and are composed of zeros and one element 1

at position i, for instance, e1,n =
[

1 0 · · · 0 0
]T

.

Furthermore, A = [0 e1,n e2,n · · · en,n] is a nilpotent

matrix of appropriate dimensions. Notice that the successive

time derivatives of f0 (t) can be obtained through the design

of a state observer.

III. DIFFERENTIATION

A. Standard Differentiator

In order to obtain the first n derivatives of f0 (t), a

continuous-time differentiator was proposed in [6] as:

ż(t) = Az + u (σ0 −∆(t)) (3)

where u (σ0) = [υ0,n (σ0) υ1,n (σ0) · · · υn,n (σ0)]
T

,

υj,n (·) = −λn−jL
j+1
n+1 ⌊·⌉

n−j
n+1 , σj = zj − xj and

z =
[

z0 z1 z2 . . . zn
]T

is the finite-time estimate

of the state vector x using adequate λj > 0 (see [12]).

Sequences of parameters λj are presented in [12] for n ≤ 7,

but they are not unique due to the fact that the sequences can

be built for any λ0 > 1 [6]. For instance, in [15], λj is defined

for 1 ≤ n ≤ 10. Since function ⌊z0 − f (t)⌉
0

is discontinuous

at z0 = f , the solutions of system (3) are understood in

the Filippov sense [16]. Under the above assumptions, the

standard differentiator (3) ensures the following precision

|zj−f
(j)
0 (t) | ≤ µjL

j
n+1 δ

n+1−j
n+1 , µj > 0,

j = 0, 1, · · · , n,
(4)

which corresponds to an asymptotically optimal accuracy [17].

B. Robust Exact Filtering Differentiator

Although differentiator (3) offers good performance when

there exists a Lebesgue-measurable bounded noise ∆(t) such

that |∆(t)| ≤ δ with small average δ, its performance becomes

significantly reduced when δ is large. On the other hand, a

bounded noise is a signal of filtering order 0 and integral

magnitude ǫ0 ≥ 0. Now, it is assumed that ∆(t) is presented

as ∆(t) = ∆0(t) + ∆1(t) + · · · + ∆nf
(t), where ∆j(t) is a

signal of the global filtering order j and integral magnitude

ǫj ≥ 0 with j = 0, 1, · · · , nf . More details can be founded

in [12]. Note that a bounded noise signal satisfies the above

assumption. In [12], a filtering differentiator has been proposed

for such noises, and has the following structure:

ẇjf = −λm+1−jfL
jf

m+1 ⌊w1⌉
m+1−jf

m+1 + wjf+1

ẇnf
= −λn+1L

nf
m+1 ⌊w1⌉

n+1
m+1 + z0 − f (t)

żjd = −λn−jdL
nf+1+jd

m+1 ⌊w1⌉
n−jd
m+1 + zjd+1

żn = −λ0L ⌊w1⌉
0

jf = 1, 2, · · · , nf − 1. jd = 0, 1, 2, · · · , n− 1.

(5)

where m = n + nf , nf ≥ 0, nf is the filtering order and

the parameters λj are selected as in (3). nf is selected greater

than or equal to the highest filtering order of the signals ∆j(t).
Furthermore, it offers the following accuracy:

|zj−f
(j)
0 (t) | ≤ µjLρ

n+1−j , µj > 0, j = 0, 1, 2, · · · , n,

ρ =max

[

(ǫ0
L

)
1

n+1

,
(ǫ1
L

)
1

n+2

, · · · ,
(ǫnf

L

)
1

m+1

]

.
(6)

For a bounded noise, accuracy (6) has the same form as

accuracy (4). The advantage of using the robust exact filtering

differentiator (5) instead of the standard one (3), is that (6) is a

better accuracy than (3). Moreover, the filtering differentiator

(6) rejects unbounded noises with a small local average [12].

As in [11], for a free-noise case (∆(t) = 0), the error system

can be given as a pseudo linear system [18]:

[

ẇ

σ̇

]

= E

[

w

σ

]

− em+1,mf
(n+1)
0 (t),

E =

















−λmL
1

m+1 |w1|
−1

m+1 1 0 · · · 0

−λm−1L
2

m+1 |w1|
−2

m+1 0 1 · · · 0
...

...
... · · ·

...

−λ1L
m

m+1 |w1|
−m
m+1 0 0 · · · 1

−λ0L|w1|
−1 0 0 · · · 0

















,

(7)

where E ∈ R
(m+1)×(m+1), w =

[

w1 w2 · · · wnf

]T

and σ = [σ0 σ1 · · · σn]
T

. The characteristic equation

of E is P (s) = sm+1 + λmL
1

m+1 |w1|
−1

m+1 sm +

λm−1L
2

m+1 |w1|
−2

m+1 sm−1 + · · · + λ0L|w1|
−1. Its roots can

be calculated by using the equation:

(

|w1|
1

m+1 s
)m+1

+ λmL
1

m+1

(

|w1|
1

m+1 s
)m

+ · · ·+ λ0L = 0.

(8)

Therefore, the m + 1 roots sj of (8) can be calculated from

the following polynomial:

Q(b) = bm+1 + λmL
1

m+1 bm + · · ·+ λ0L. (9)

Then, sj is calculated as sj = |w1|
−1

m+1 bj , where bj
corresponds to the roots of polynomial (9). This result will

be used in Section IV-A.



IV. DISCRETIZATION OF THE CONTINUOUS-TIME SYSTEMS

Let us denote the measurement time as tk and xj,k =

xj (tk), xk = [x0,k, . . . , xn,k]
T

. Then,

xj,k+1 =

n
∑

l=j

τ l−j

(l − j)!
xl,k + hj,k(τ),

j = 0, 1, 2, · · · , n.

is a discrete-time representation of the continuous-time system

(2), where the sampling time is defined as τ = tk+1 − tk.

It is obtained using Taylor series expansion with Lagrange’s

remainders [19], [20]. If f
(n+1)
0 (t) is an absolutely continuous

function, hj,k (τ) is given as:

hj,k(τ) =
τn+1−j

(n+ 1− j)
f
(n+1)
0 (θj),

θj ∈ (tk, tk+1) , j = 0, 1, 2, · · · , n.

For a discontinuous function f
(n+1)
0 (t), hj,k(τ) is presented

as:

hj,k(τ) ∈
τn+1−j

(n+ 1− j)
[−1, 1] ,

j = 0, 1, 2, · · · , n.

A. Time Discretization of the Robust Exact Filtering

Differentiator

For differentiator (7), zj(tk+1) = zj,k+1 is proposed as a

copy of xj,k+1 with a injection term Γj+nf+1,kw1,k:

zj,k+1 =
n
∑

l=j

τ l−j

(l − j)!
zl,k + Γj+nf+1,kw1,k,

j = 0, 1, 2, · · · , n.

(10)

Obviously, hj,k(τ) is omitted because it is not available.

Furthermore, τ is considered constant. Γj+nf+1,k is defined

hereafter. Based on Euler discretization, wj,k+1 is proposed

as:

wj,k+1 = wj,k + τwj+1,k + Γj,kw1,k,

wnf ,k+1 = wnf ,k + τ(z0,k − f(t)) + Γnf ,kw1,k,

j = 1, 2, · · · , nf − 1.

(11)

where Γj,k is defined hereafter. Using equations (10)-(11), the

discrete-time differentiator is summarized as:

[

wk+1

zk+1

]

= Ψ(τ)

[

wk

zk

]

− τenf ,mf(t) + Γkw1,k,(12)

where wk =
[

w1,k w2,k · · · wnf ,k

]T
, zk =

[z0,k z1,k · · · zn,k]
T

, Γk = [Γ1,k Γ1,k · · · Γm+1,k]
T

,

Ψ(τ) is given as:

Ψ(τ) =































1 τ 0 · · · 0 0 0 0 · · · 0
0 1 τ · · · 0 0 0 0 · · · 0
...

...
... · · ·

...
...

...
... · · ·

...

0 0 0 · · · 1 τ 0 0 · · · 0

0 0 0 · · · 0 1 τ τ2

2! · · · τn

n!

0 0 0 · · · 0 0 1 τ · · · τ (n−1)

(n−1)!

...
...

... · · ·
...

...
...

... · · ·
...

0 0 0 · · · 0 0 0 0 · · · 1































,

with Ψ(τ) ∈ R
(m+1)×(m+1). Note that the first nf rows of

Ψ(τ) only present 1, 0 and τ . Similarly to the continuous-

time system error, the discrete-time error system (12) can be

represented as:

[

wk+1

σk+1

]

=
(

Ψ(τ) + Γke
T
1,m

)

[

wk

σk

]

−

[

0

hk(τ)

]

,(13)

where σk = [σ0,k σ1,k · · · σn,k]
T

, and hk(τ) =

[h0,k(τ) h1,k(τ) · · · hn,k(τ)]
T

. Let dj be the desired

eigenvalues of the discrete-time system. Then the desired

polynomial is given as Pd(r) =

m+1
∏

j=1

(r − dj) and for a matrix

case Pd(Ψ(τ)) =

m+1
∏

j=1

(Ψ(τ)− djI). The desired polynomial

evaluated at Ψ(τ)+Γke
T
1,m is given by Pd(Ψ(τ)+Γke

T
1,m) =

(Ψ(τ) + Γke
T
1,m)m+1 +

m
∑

j=0

αj(Ψ(τ) + Γke
T
1,m)j . Here:

(Ψ(τ) + Γke
T
1,m)0 = I

(Ψ(τ) + Γke
T
1,m)1 = (Ψ(τ) + Γke

T
1,m)

(Ψ(τ) + Γke
T
1,m)2 = Ψ

2(τ) + Γke
T
1,mΨ(τ) + . . .

+Ψ(τ)Γk eT1,m + Γke
T
1,mΓke

T
1,m

...

(Ψ(τ) + Γke
T
1,m)m+1 = Ψ(τ)m+1 + Γke

T
1,mΨ(τ)m + · · · .

Therefore, we obtain the following equation:

Pd(Ψ(τ) + Γke
T
1,m) = Pd(Ψ(τ)) + [∗ · · · ∗ Γk]S.

Due to the Cayley–Hamilton theorem Pd(Ψ(τ)+Γke
T
1,m) = 0

and therefore, Γk can be calculated as:

Γk = −Pd(Ψ(τ))S−1em+1,m, (14)



where

S =















eT1,m
eT1,mΨ(τ)
eT1,mΨ2(τ)

...

eT1,mΨm(τ)















Now, the objective is to select adequate roots dj . In order

to emulate the behavior of the continuous-time system, a

mapping of the continuous-time domain to the discrete-time

domain is used. One can use different approaches, Euler with

dj = 1 + τsj , matching with dj = eτsj and bilinear with

dj =
1+sjτ/2
1−sjτ/2

ones to name a few [21]. As sj = |w1|
−1

m+1 bj ,

Euler and Bilinear approaches have a singularity at w1 = 0.

Hence, the Matching approach is used:

dj = eτsj = eτ |w1|
−1

m+1 bj . (15)

Theorem 1: Let the discrete-time differentiator (12) with

Γk defined as (14), dj defined as (15), |fn+1
0 (t)| ≤ L and

∆(t) = 0. If RE (bj) < 0, then the trajectories of the error

system (13) converge to a neighborhood of the origin and

remain in this neighborhood, which is defined as:
∣

∣

∣

∣

∣

∣

∣

∣

[

wk

σk

]
∣

∣

∣

∣

∣

∣

∣

∣

2

≤ K ||hk (τ)||2 .

K and the proof are presented in Appendix A. Note that

the roots bj can be selected independently of λj and L
from Theorem 1. This allows to implement the differentiator

even if L is unknown. Furthermore, if bj are selected as

b1 = b2 = b3 = · · · = bm+1, Γk presents a less complex

equation than with bj 6= bj+1.

V. RESULTS

In this Section, two simulations are performed. In the first

one, a free-noise case is considered. In the second one, a noisy

input is considered. To implement (13), Γk is calculated offline

and expressed as a function of dj . dj is updated using Equation

(15). Four differentiators are compared, three of them with

multiple bj and one where its roots correspond to the roots

of polynomial (9), where λj is selected as in [12] and L is

as |f0(t)| ≤ L. For the last one, bj will be represented as

bj(L, λ).

A. Simulation I

Here, a free-noise case is considered. The parameters of the

differentiator are set as nf = 2, n = 3, τ = 0.01 sec, λ0 = 1.1,

λ1 = 6.75, λ2 = 20.26, λ3 = 32.24, λ4 = 23.72 and λ5 = 7.

For this simulation, f0(t) = t cos (t/2), then |f (4)(t)| ≤
L = 2 for t ≤ 31.54619 sec, b1(L, λ) = −2.8072 + 2.7583i,
b2(L, λ) = −2.8072−2.7583i, b3(L, λ) = −0.2725+0.3729i,
b4(L, λ) = −0.2725 − 0.3729i, b5(L, λ) = −1.0831 and

b6(L, λ) = −0.6148. For the differentiator with multiple bj ,

the selected roots are bj = −1.5, bj = −2.5, and bj = −5.

The estimation errors are presented in Figures 1a-1d. It can be

seen that the differentiator gives an adequate estimation of the

function and its derivatives. An interesting result is that the

trajectories of the differentiators converge to a neighborhood

with a different settling-time, 1.64 seconds for bj = −1.5,

0.71 seconds for bj = −2.5, 0.31 seconds for bj = −5, and

2.96 seconds for bj(L, λ). The above fact shows that there is

a relation between this settling-time and the roots bj .
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Fig. 1: Estimation Error in Simulation I.

B. Simulation II

The main advantage of differentiator (5) over the standard

differentiator [6] is to present a better accuracy than the

standard one in the presence of noises. Therefore, in this

simulation ∆(t) = cos(10000t) + η(t), η(t) is a normal

distribution with mean 0 parameter and standard deviation 1.

In contrast to simulation I, f0(t) = sin(t)+cos(2t)+sin(3t)+
cos(4t), |f (4)(t)| ≤ L = 320, b1(L, λ) = −6.5408 + 6.4269i,
b2(L, λ) = −6.5408−6.4269i, b3(L, λ) = −0.6348+0.8689i,
b4(L, λ) = −0.6348 − 0.8689i , b5(L, λ) = −2.5235 and

b6(L, λ) = −0.6348 are considered. The multiple poles are

the same as in Simulation I. Furthermore, a lower sampling

time is used to obtain adequate estimations, τ = 0.0001 sec.

The noisy input and f0(t) are presented in Figure 2 whereas

the estimations zj,k of the time derivatives of the noisy signal

are shown in Figures 3-6.
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Fig. 2: Estimation of f0(t).



0 1 2 3 4 5 6 7 8

Time [s]

-10

-5

0

5

f 0
(t

)

f
0
(t)

z
0,k

 for b
j
(L, )

z
0,k

 for b
j
=-1.5

z
0,k

 for b
j
=-2.5

z
0,k

 for b
j
=-5
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Note that cos(10000t) can be represented as a signal of

global filtering j for any integer j ≥ 0. Therefore, accuracy

(6) is better the accuracy (4). As it can be seen in Figure 7-

10, the best estimations come from the differentiators with

bj = −2.5 and bj = (L, λ). Both differentiators present

adequate estimations of function f0(t) and its time derivatives.

It is interesting to see that for multiple real bj , a reduction

of bj increases its sensitivity with respect to noise whereas

an increase of bj reduces its accuracy. Nevertheless, a deeper

analysis is required to explain this behavior. As in the previous

simulation, the trajectories of the differentiators converge to

a neighborhood with different settling-times, 0 seconds for

bj = −1.5, 9.643 seconds for bj = −2.5, 2.321 seconds

for bj = −5, and 7.718 seconds for bj(L, λ). Note that for

bj = −1.5, its initial condition belong to this neighborhood.
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VI. CONCLUSION

A new time discretization of the robust exact filtering

differentiator is presented. It can be implemented with or

without the knowledge of L and λj . It was demonstrated

that, for a free-noise case, and, under some assumptions,

the trajectories of the system converge to a neighborhood

of the origin. Simulation I suggests a relationship between

the settling-time and the roots bj , whereas Simulation II

shows a relation between sensitivity to noise and the values

of bj . Future work will address a theoretical analysis of

the convergence of the trajectories of the error system to a

neighborhood of the origin in the presence of noisy inputs, an

estimation of this neighborhood and the corresponding settling-

time function.

APPENDIX

Let E =
(

Ψ(τ) + Γke
T
1,m

)

. Consider the candidate

Lyapunov function defined as:

Vk =

[

wk

σk

]T

P

[

wk

σk

]

, (16)

where P is a real positive definite matrix defined such that

ETPE − P = −Q,

with Q be a real positive definite matrix and λmin(Q) > 1.

From Equations (13) and (16), one gets

Vk+1 − Vk =

= −

[

wk

σk

]T

Q

[

wk

σk

]

+

[

0

hk(τ)

]T

P

[

0

hk(τ)

]

− 2

[

wk

σk

]T

ETPE

[

0

hk(τ)

]

.

Using inequality (1), the following inequality is obtained:

Vk+1 − Vk ≤ (λmax(E) + λmax (P )) ||hk(τ)||
2
2 − · · ·

− (λmin(Q)− 1)

∣

∣

∣

∣

∣

∣

∣

∣

[

wk

σk

]
∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

Therefore with the condition
∣

∣

∣

∣

∣

∣

∣

∣

[

wk

σk

]∣

∣

∣

∣

∣

∣

∣

∣

2

> K ||hk (τ)||2 ,

K =

√

λmax(E) + λmax(P )

λmin(Q)− 1
,

one obtains Vk+1 − Vk < 0. This concludes the proof. �
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