
Abstract— Enhancing signal integrity (SI) and reliability in 
modern computer platforms heavily depends on the post-silicon 
validation of high-speed input/output (HSIO) links, which implies 
a physical layer (PHY) tuning process where equalization 
techniques are employed. On the other hand, the interaction 
between SI and power delivery networks (PDN) is becoming 
crucial in the computer industry, imposing the need of 
computationally expensive models to also ensure power integrity 
(PI). In this paper, surrogate-based optimization (SBO) methods, 
including space mapping (SM), are applied to efficiently tune 
equalizers in HSIO links using lab measurements on industrial 
post-silicon validation platforms, speeding up the PHY tuning 
process while enhancing eye diagram margins. Two HSIO 
interfaces illustrate the proposed SBO/SM techniques: USB3 Gen 
1 and SATA Gen 3. Additionally, a methodology based on 
parameter extraction is described to develop fast PDN lumped 
models for low-cost SI-PI co-simulation; a dual data rate (DDR) 
memory sub-system illustrates this methodology. Finally, we 
describe a surrogate modeling methodology for efficient PDN 
optimization, comparing several machine learning techniques; a 
PDN voltage regulator with dual power rail remote sensing 
illustrates this last methodology. 

Index Terms— Broyden, DDR, DoE, equalization, Ethernet, 
eye diagram, HSIO, impedance profile, Kriging, parameter 
extraction, PCIe, PDN, PHY, post-silicon validation, power 
integrity, SATA, signal integrity, SI-PI co-simulation, space 
mapping, surrogate, system margining, USB, voltage regulator. 

I. INTRODUCTION

High-speed input/output (HSIO) links in current 
microprocessors are determinant for signal integrity. 
Undesired high-frequency effects, such as jitter, inter-symbol 
interference (ISI), crosstalk, and others [1], can create multiple 
signal integrity (SI) problems in HSIO interfaces, such as 
Peripheral Component Interconnect Express (PCIe), Serial 
Advanced Technology Attachment (SATA), Universal Serial 
Bus (USB), Ethernet, etc., limiting the actual maximum data 
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transfer rates. Given the complexity of such computer 
platforms, improving SI and reliability requires intensive and 
time-consuming post-silicon validation rutines, in which a 
physical layer (PHY) tuning process employing equalization 
techniques are typically used. 

On the other hand, the relationship between SI and power 
delivery networks (PDN) is becoming crucial in the computer 
industry. In particular, SI can be severely deteriorated if the 
transceivers voltage supply is not sufficiently stable, which 
significantly depends on the PDN, while inadequate SI 
performance can deteriorate power integrity (PI), making the 
PDN a key factor in the SI-PI co-design process [2]. 

In this paper, surrogate-based optimization (SBO) methods, 
including Broyden-based input space mapping (SM), are 
applied to efficiently tune receiver (Rx) equalizers (EQ) in 
HSIO links. By using lab measurements on industrial post-
silicon validation platforms, we demonstrate very significant 
acceleration of the PHY tuning process and substantial 
enhancement of the corresponding eye diagram margins. Two 
channel topology interfaces illustrate the proposed SBO/SM 
techniques: USB3 Gen 1 and SATA Gen 3. Additionally, a 
computationally efficient method based on parameter 
extraction (PE) is briefly described to develop fast PDN 
lumped models exploited for low-cost SI-PI co-simulation. 
This methodology is illustrated with a dual data rate (DDR) 
memory sub-system, accelerating current industrial practices. 
Finally, we briefly describe a surrogate modeling methodology 
for efficient and reliable PDN optimization, comparing several 
machine learning techniques: support vector machines, 
generalized regression neural networks, polynomial surrogate 
modeling, and Kriging. A PDN voltage regulator with dual 
power rail remote sensing illustrates this last methodology. 

II. SURROGATE-BASED OPTIMIZATION (SBO) METHODS FOR
POST-SILICON VALIDATION AND PHY TUNING 

A. Eye Diagram Margins and Jitter Tolerance SBO
A holistic formulation to concurrently optimize Rx system

margins and jitter tolerance (JTOL) for a USB3 Gen 1 HSIO 
link is proposed in [3]. This formulation was applied in the 
post-silicon industrial test setup [4] shown in Fig. 1, whose 
block diagram for USB3 [5] is in Fig. 2. 

Machine Learning Techniques and Space 
Mapping Approaches to Enhance Signal and 

Power Integrity in High-Speed Links and Power 
Delivery Networks 

José E. Rayas-Sánchez, Francisco E. Rangel-Patiño, Benjamin Mercado-Casillas, Felipe Leal-Romo, 
and José L. Chávez-Hurtado 

This is the author's version of an article that has been published in this conference. Changes were made to this version by the 
publisher prior to publication. The final version is available at http://dx.doi.org/10.1109/LASCAS45839.2020.9068994



 

A BER tester is used to stress the Rx (see Fig. 2). The host 
computer controls the Rx knobs and sends commands to the 
BER tester to vary the jitter amplitude and frequencies. System 
margin validation (SMV) [6] is used to assess how much 
margin is in the design with respect to silicon processes, 
voltage, and temperature, by using an on-die test circuitry, 
while the jitter amplitude is swept at the specification 
frequencies to obtain JTOL results; a pass/fail criterion is 
defined from the specification limits (JTOL mask). 

The Rx knobs settings are used as optimization variables x 
for the objective function U(x) described in [3]. SBO is 
applied by exploiting a Kriging model [7] (see Fig. 2) using 
the Matlab Kriging toolbox DACE [8] and a design of 
experiments (DoE) approach for data sampling. 

The optimal Rx knobs obtained from optimizing the 
Krigging model are validated by actual measurements of both 
the Rx eye diagram margins and jitter tolerance. We found an 
improvement of 175% on eye diagram area as compared to the 
initial knobs setting, and a 34% improvement as compared 
with the traditional (tradeoff) approach, as shown in Fig. 3, 
while the jitter tolerance also improves and is well above the 
JTOL mask, as seen in Fig. 4. The proposed SBO method can 
be completed in a few hours, in contrast to the traditional 
process that requires days for a complete optimization. 

B. PHY Tuning by Space Mapping 
Broyden-based input space mapping (SM), better known as 

aggressive SM (ASM) [9], [10], is used in [11] to optimize the 
receiver (Rx) equalizer settings for a SATA Gen 3 interface 
topology. The fine model is a measurement-based post-silicon 
validation industrial platform, as illustrated in Fig. 5 (within 
the PCH, our SM methodology is applied to a HSIO link 
SATA Gen3), where the fine model responses Rf are the 
measured eye diagram margins. The coarse surrogate model 
developed in [12], based on Kriging, is exploited. 

SATA Rx PHY tuning EQ coefficients are used as 
optimization variables x. Eye width ew and eye height eh are 
 ),,(),,(),,( wlwrw δψxδψxδψx eee +=

 

(1)
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where ewr and ewl are the eye width-right and eye width-left 
measured parameters, respectively, and ehh and ehl are the eye 
height-high and eye height-low parameters, respectively. The 
margining system response depends on the PHY tuning 
settings x (EQ coefficients), the operating conditions ψ 
(voltage and temperature), and the devices δ (silicon skew and 
external devices). 

Since we aim at finding the optimal PHY tuning settings that 
maximize the eye diagram margins area, the objective function 

 
Fig. 1. Industrial test setup for simultaneous system margining and 
JTOL optimization. Taken from [4]. 
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Fig. 3. Eye diagram margins: comparing proposed methodology 
against the initial design and the trade-off approach. Taken from [3]. 
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Fig. 4. JTOL testing results: comparing the proposed methodology 
against the initial design and the trade-off approach. Taken from [3]. 
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Fig. 2. The holistic methodology test setup for USB system 
margining and JTOL optimization. Taken from [5]. 



 

is defined as 
 [ ][ ]),,(),,()( hw δψxδψxx eeu −=  (3) 
keeping ψ and δ fixed during SM optimization. 

After applying ASM [10], we obtained a space-mapped 
solution, xSM, in just 6 iterations (or fine model evaluations), 
making an improvement of 85% on the fine model eye diagram 
margins area as compared to that one with the initial settings 
(xc

(0)), and a 33% improvement as compared to that one with 
the optimal coarse model solution (xc

*), as shown in Fig. 6. 
While the traditional industrial process requires days for a 
complete empirical optimization, the proposed SM method can 
be completed in a few hours. 

III. PDN LUMPED MODELS FOR SI-PI CO-SIMULATION 
A low computational cost optimization method based on 

parameter extraction (PE) to develop efficient PDN lumped 
models that sufficiently approximate more complex and 
detailed PDN distributed models is proposed in [13]. The 
resultant PDN lumped model can be used in an efficient SI-PI 
analysis and co-design. This approach allows identifying the 
PDN quality of a dual data rate (DDR) memory sub-system, 

assessing its impact on SI. 
A simplified block diagram of the distributed PDN model of 

the DDR3 memory sub-system is shown in Fig. 7. Extracting 
the distributed model of most of those blocks requires full-
wave 3D EM solvers, yielding S-parameter files to produce 
SPICE compatible macro-models, creating a very large 
distributed PDN model, whose simulation provides the target 
response Rt for our PE formulation. 

The PE objective function is described in [13] and uses 
penalty terms to constrain the optimization variables x, which 
contains the lumped element values to be extracted, keeping 
fixed some of the lumped elements (as pre-assigned 
parameters p). The response of the lumped model is denoted 
by R(x, p). 

The lumped model response at the starting point, R(x(0), p) is 
evaluated and compared with target response Rt, finding that 
the empirical methodology based on S-parameter matrices for 
estimating lumped values is not accurate enough for predicting 
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Fig. 5. An Intel server post-Si validation platform using Broyden-
based input space mapping design optimization. Taken from [11]. 
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Fig. 6. Comparison between the fine model responses at the initial 
Rx EQ coefficients, xc(0), at the optimal coarse model solution, xc*, 
and at the space-mapped solution found, xSM. Taken from [11]. 
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Fig. 7. Block diagram of the distributed PDN of the main power rail of a 
DDR3 memory sub-system. Taken from [13]. 

 
Fig. 8. Lumped model impedance profile at the starting point R(x(0), 
p) vs. target response Rt from the distributed model Taken from [13]. 

 
Fig. 9. Optimized lumped model impedance profile response R(x*, p) 
vs. target response Rt from the distributed model. Taken from [13]. 



 

the PDN behavior, as seen in Fig. 8. The lumped model 
response after PE optimization R(x*, p) and the target response 
Rt are better matched, as shown in Fig. 9. 

The transient simulation in HSPICE1 of the lumped model 
takes only 0.2% of the CPU time used by the distributed 
model, making feasible an SI-PI evaluation, as detailed in [13]. 

IV. PDN SURROGATE-BASED OPTIMIZATION (SBO) 
An SBO methodology for efficient PDN design optimization 

is proposed in [14]. It essentially consists of developing 
several black box metamodels using a frugal number of 
training and testing data within the design region of interest, 
selecting the PDN metamodel with the best generalization 
performance. Training and testing data are obtained from high-
fidelity simulations (fine models). The best PDN metamodel is 
then used as a vehicle for direct and fast PDN optimization, to 
optimally satisfy design specifications expressed in terms of 
voltage and power consumption bounds. 

The following machine learning techniques are compared in 
[14] for developing several PDN metamodels: generalized 
regression neural networks (GRNN), polynomial surrogate 
modeling (PSM), support vector machines (SVM), and 
Kriging. For instance, the main surrogate modeling results of a 
PDN consisting of two power domains sharing a single voltage 
regulator using a dual sensing scheme, intended for 
communications and storage applications [15], are shown in 
Table I. Each metamodel has four outputs:  power 
consumptions (PD1, PD2) and minimum voltages (Vmin1, Vmin2). 
The corresponding PDN fine model was implemented with 
HSPICE. It is seen from Table I that the Kriging surrogate 
model shows the overall best generalization performance, 
selecting it to perform direct optimization to find optimal 
sensing resistors and loading conditions [14]. 

V. CONCLUSIONS 
Surrogate-based optimization (SBO) methods, exploiting 

machine learning techniques and space mapping approaches, 
are briefly reviewed in this paper to enhance signal and power 
integrity in high-speed input-output (HSIO) links and power 
delivery networks (PDN).  Efficient receiver equalization for 
HSIO interfaces is demonstrated, where lab measurements on 
industrial post-silicon validation platforms are used, achieving 
significant improvement in eye diagram margins and important 
speed-up of the PHY tuning process. An efficient method 
based on parameter extraction is used to develop fast PDN 

 
1 HSPICE®, ver. B-2008.09-SP1, Synopsys Inc., Mountain View, CA, 2008. 

lumped models exploited for low-cost SI-PI co-simulation. 
Finally, we briefly described an SBO approach for efficient 
PDN design optimization, comparing several machine learning 
techniques. 
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TABLE I 
SUMMARY OF MAX. RELATIVE TESTING ERRORS (%) USING 
DIFFERENT SURROGATE MODELS FOR TWO POWER DOMAINS 

output erGRNN erPSM erSVM erKriging 
PD1 44.32 10.46 9.45 13.44 
PD2 35.04 3.90 4.63 3.47 

Vmin1 38.70 32.72 25.10 23.40 
Vmin2 50.54 36.15 20.78 19.42 

 


