Exploratory assessment of anchovy 27.9a-west using a surplus production model

Alexandra A. Silva, Laura Wise, Fernando Ramos, Margarita Rincón, Susana Garrido, Andres Uriarte, Tobias Mildenberger

WKDLSSLS, 15 September 2022, online

Objective

- Explore surplus production models using SPiCT to assess the anchovy 9a.west component
- several combinations of catch data and survey indices
- Several assumptions (priors): from simple to complex models

WORK IN PROGRESS

TO BE DISCUSSED ON A BENCHMARK

Data

- CATCHES
 - DATA: catch biomass, t, per quarter or semester from the beginning of the first quarter of 1991 to the end of the second quarter of 2021
 - No signs of intense exploitation in the past
 - Seasonal catches; 67% in the second semester

Indices of biomass

SURVEYS

- total biomass, PELACUS+PELAGO 1999 2021
- mean biomass/hour, autumn groundfish
 1991 2018
- groundfish survey in year y correlated with acoustic survey year y+1 (r = 0.91, p<0.001)
- indices corrected to reflect biomass of individuals > 10 cm total length
- standard deviation of groundfish surveys used as weighting factor
- Indices and SD factors standardized to mean 1

- Models start in the middle of the calendar year (July 1st)
- Assessment years go from 1 July of year y to 30 June of year y+1.

	Time of catch observations					Time of survey observations			
Year	C	Juartorly	data	Biannual data		Acoustic su	irvey	Groundfish survey	
		Zuarterry	uata			(spring)		(autumn)	
199	91	1	1990.50	1	1990.5		1990.75	1991.25	
199	91	2	1990.75						
199	91	3	1991.00	2	1991.0				
199	91	4	1991.25						
199	92	1	1991.50	1	1991.5		1991.75	1992.25	
199	92	2	1991.75						
199	92	3	1992.00	2	1992.0				
199	92	4	1992.25						
					•••				
202	21	1	2020.50	1	2020.5		2020.75		
202	21	2	2020.75						
202	21	3	2021.00	2	2021.0				
202	21	4	2021.25						
202	22	1	2021.50	1	2021.5				
202	22	2	2022.00						

Modelling

Catch				n prior				
aggregation		Indices of biomass		n.none		B ₁ /K prior		
Quarter	Х	1 = acoustic spring	Х	Default	Х	BKnone	Х	r prior
		2 = acoustic +						
Semester		groundfish		Schaefer		BK20		r.none
				Fox		BK50		r.Thorson
				<u>n.Thorso</u> n		BK80		

- 4 data sets, 40 models fitted to each data set
- Influence of default priors on alfa and beta tested aposteriori for one "good" model
- CHECKLIST
 - Convergence (initial values, parameter CI)
 - Goodness-of-fit (residuals)
 - Consistency (Mohn's Rho between -0.22 and 0.30)
 - Survey prediction skill (MASE < 1,as low as possible)</p>

RESULTS

- Seven models converged, showed well behaved residuals and acceptable retrospective behaviour (3 by quarter, 4 by semester)
- Two surveys improved fitting compared to one survey
- Informative priors were needed on, at least, two parameters
- The magnitude of B/B_{MSY} or F/F_{MSY} confidence intervals was higher than recommended
- Surveys showed poor predictive skill
- Model 5 was considered a possible candidate:
 - Fox model, Thorson prior on r, prior of 20% on the initial biomass, default alpha and beta priors

Model 5 Plots of residuals Prior-posterior distributions

- Acceptable convergence and goodness of fit
- Data provides little information to estimate r and B₁₉₉₁/K

Model 5

Retrospective analysis 2016-2021

- Overestimation pattern of both B/BMSY and F/FMSY
- Stronger bias for B/BMSY, Mohn's Rho =0.32, slightly above the threshold of 0.30.
- Retrospective analysis of absolute biomass and fishing mortality look reasonable

Model 5 Hindcast cross-validation 2021-2016

- MASE close to 1 for both surveys
- groundfish survey with better prediction skill ? or just fewer number of years

Model 5 Summary plots

- Until 2006, B/BMSY and F/FMSY well below/above one, respectively
- Since mid-2007:
 - B/BMSY fluctuated around 1 (mean=0.96, SD= 0.76)
 - F/FMSY fluctuated between 0.24 and 0.59 (mean=0.37, SD=0.10)
 - On the 1st of July 2021, the end of the assessment period:

F/FMSY = 0.21 (SD=1.10)

B/BMSY = 1.12 (SD=1.10)

Y-axis limits decreased ; 2017 point of groundfish survey not visible

Short-term management scenarios (very preliminar results)

1. currentCatch: Keep the catch of the current year (i.e. the last estimated catch)

2. **currentF**: Keep the F of the current year (F_{2021} =0.21)

3. **Fmsy**: Fish at Fmsy i.e. F=Fmsy= 1.

4. **noF**: No fishing, reduce to 1% of current F.

5. reduceF25: Reduce F by 25%.

6. increaseF25: Increase F by 25%,

7. **msyHockeyStick**: Use ICES MSY hockey-stick advice rule: $B_{trigger} = 0.5$, $B_{lim}=0$, $F/F_{MSY}=1$ 8. **ices**: Use ICES MSY 35th hockey-stick advice rule: $B_{trigger} = 0.5$, $B_{lim}=0.3$, $F/F_{MSY}=1$, fractiles^{C,B,F}=0.35 SPiCT timeline:

 Observations
 Management

 1990.50 - 2021.00
 2021.00 - 2022.00

Management evaluation: 2022.00

Scenarios	Catch, tonnes I	F/Fmsy	
1 Keep current catch	823.8	0.65	0.23
2 Keep current F	775.4	0.66	0.21
3 Fish at Fmsy	2304.8	0.29	1
4 No fishing	0.9	0.83	0
7 MSY hockey-stick rule	2304.8	0.29	1
8 ICES advice rule	701.2	0.68	0.19

 $F_{2021}/F_{MSY} = 0.21$ $B_{2021}/B_{MSY} = 1.21$

Catch 2020: 5462 tonnes

Points for discussion

- Surveys are not truly representative of exploitable biomass; the sensitivity to cutting at a higher length may be examined
- Reasonable to assume PELACUS surveys 1999 2005 as zero or a very small value;
- What to use as survey errors ?: CVs of groundfish surveys ?
 - Model 5 showed the best overall performance although:
 - relative biomass and fishing mortality showed wide confidence intervals
 - B/BMSY had a borderline retrospective pattern, characterized by a tendency to overestimate biomass
 - Surveys showed poor predictive skill
 - F/FMSY was estimated to be slightly above the historical harvest rate level calculated in the ICES assessment

Thank you very much