Exploratory assessment of anchovy 27.9a-west using a surplus production model

Alexandra A. Silva, La ura Wise, Femando Ramos, Margarita Rincón, Susa na Ga mido, Andres Uria re, Tobias Mildenberger

Objective

- Explore surplus production models using SPiCTto assess the a nc hovy 9a.west component
- several combinations of catch data and survey indices
- Several assumptions (priors): from simple to complex models

WORK IN PROGRESS

TO BE DISC USSED ON A BENC HMARK

Data

- CATCHES
- DATA: catch biomass,t, per quarter or semester from the beginning of the first quarter of 1991 to the end of the second quarter of 2021
- No signs of intense exploitation in the past
- Seasonal catches; 67% in the second semester

Indic es of biomass

- SURVEYS
- total biomass, PELACUS+PELAGO 19992021
- mean biomass/hour, a utumn groundfish 1991-2018
- groundfish survey in yeary correlated with a coustic survey yeary+1 $(r=0.91$, $p<0.001$)
- indicescorrected to reflect biomass of individuals $>10 \mathrm{~cm}$ total length
- sta ndard deviation of groundfish surveys used as weighting factor
- Indices and SD factors stand a rdized to mean 1

Modelling

- 4 data sets, 40 models fitted to each data set
- Influence of default priors on alfa and beta tested aposteriori for one "good" model
- CHECKLST
- Convergence (initial values, parameter CI)
- Goodness-of-fit (residuals)
- Consistency (Mohn's Rho between -0.22 and 0.30)
- Survey prediction skill (MASE <1,as low as possible)

RESULTS

- Seven models converged, showed well behaved residuals and acceptable retrospective behaviour (3 by quarter, 4 by semester)
- Two surveys improved fitting compared to one survey
- Informative priors were needed on, at least, two parameters
- The magnitude of $\mathrm{B} / \mathrm{B}_{\text {MSY }}$ or $\mathrm{F} / \mathrm{F}_{\text {MSY }}$ confidence intervals was higher than recommended
- Surveys showed poorpredictive skill
- Model 5 wasconsidered a possible candidate:
- Fox model, Thorson prior on r, prior of 20% on the initial biomass, default alpha and beta priors

Model 5

Plots of residuals

Prior-posterior distributions

- Acceptable convergence and goodness of fit
- Data provides little information to estimate rand $\mathrm{B}_{1991} / \mathrm{K}$

Model 5

Retrospéc tive a na lysis 2016-2021

- Overestimation pattem of both B/BMSY and F/FMSY
- Stronger biasfor B/BMSY, Mohn's Rho $=0.32$, slightly above the threshold of 0.30 .
- Retrospective analysis of absolute biomass and fishing morta lity look rea sonable

Model 5

- MASE close to 1 for both surveys
- groundfish survey with better predic tion skill ? or just fewer number of years

Model 5

Summary plots

- Until 2006, B/BMSY and F/FMSY well below/above one, respectively
- Since mid-2007:
- B/BMSY fluctuated around 1 (mean $=0.96, \mathrm{SD}=0.76$)
- F/FMSY fluctuated between 0.24 and 0.59 (mean $=0.37, \mathrm{SD}=0.10$)
- On the 1st of July 2021, the end of the assessment period:

F/FMSY $=0.21$ (SD=1.10)
$\mathrm{B} / \mathrm{BMSY}=1.12(\mathrm{SD}=1.10)$

Y-axis limits dec reased ; 2017 point of ground fish survey not visible

Short-term mana gement scena rios

 (very preliminar results)1. currentCatch: Keep the catch of the current year (i.e. the last estimated catch)
2. currentF: Keep the F of the current year $\left(F_{2021}=0.21\right)$
3. Fmsy: Fish at Fmsy i.e. $F=F m s y=1$.
4. noF: No fishing, reduce to 1% of c urrent F.
5. reduceF25: Reduce F by 25%.
6. increaseF25: Increase F by 25%,
7. msyHockeyStick: Use ICES MSY hockey-stick advice rule: $\mathrm{B}_{\text {trigger }}=0.5, \mathrm{~B}_{\mathrm{lim}}=0, \mathrm{~F} / \mathrm{F}_{\mathrm{MSY}}=1$
8. ices: Use IC ES MSY 35th hockey-stick a dvice rule: $\mathrm{B}_{\text {trigger }}=0.5, \mathrm{~B}_{\text {lim }}=0.3, \mathrm{~F} / \mathrm{F}_{\mathrm{MSY}}=1$, fractiles ${ }^{C, B, F}=0.35$

SPiCT timeline:

Management evaluation: 2022.00

Scenarios	Catch, tonnes B/Bmsy		F/Fmsy
1 Keep current catch	823.8	0.65	0.23
2 Keep current F	775.4	0.66	0.21
3 Fish at Fmsy	2304.8	0.29	1
4 No fishing	0.9	0.83	0
7 MSY hockey-stick rule	2304.8	0.29	1
8 ICES advice rule	701.2	0.68	0.19

$$
\begin{aligned}
& \mathrm{F}_{2021} / \mathrm{F}_{\mathrm{MSY}}=0.21 \\
& \mathrm{~B}_{2021} / \mathrm{B}_{\mathrm{MSY}}=1.21
\end{aligned}
$$

Catch 2020: 5462 tonnes

Points for disc ussion

- Surveys are not truly representative of exploitable biomass; the sensitivity to cutting at a higher length may be examined
- Reasonable to assume PELACUS surveys 1999-2005 as zero or a very small value;
- What to use assurvey errors ?: CVs of groundfish surveys ? Model 5 showed the best overall performance although:
- relative biomass and fishing mortality showed wide confidence intervals
- B/BMSY had a borderline retrospective pattem, characterized by a tendency to overestimate biomass
- Surveys showed poor predictive skill
- F/FMSY was estimated to be slightly above the historical harvest rate level calculated in the ICES assessment

Thank you very much

