Exploratory assessment of anchovy 27.9a-west using a surplus production model

Alexandra A. Silva, La ura Wise, Femando Ramos, Margarita Rincón, Susa na Ga mido, Andres Uria rte, Tobias Mildenberger

Objective

- Explore surplus production models using SPiCTto assess the a nchovy 9a.west component
- several combinations of catch data and survey indices
- Catches by quarter/semester
- 1 survey (spring a coustic)/2 surveys (spring a coustic ta utumn groundsfish)
- Several assumptions (priors): from simple to complex models
- Shape of the production curve (n)
- Initial depletion ($\mathrm{B}_{1} / \mathrm{K}$)
- Intrinsic growth of the population (r)
- Ratio of observation to processerror (alpha, beta)

Data

- CATCHES
- DATA: catch biomass,t, per quarter or semester from the beginning of the first quarter of 1991 to the end of the second quarter of 2021
- No signs of intense exploitation in the past
- strong seasonal component; 67% of the catches in the second semester

Indic es of biomass

- SURVEYS
- total biomass, PELACUS+PELAGO 19992021
- mean biomass/hour, a utumn groundfish 1991-2018
- groundfish survey in yeary correlated with a coustic survey yeary+1 $(r=0.91$, $p<0.001$)
- indices reflect biomass of individuals > 10 cm total length
- sta ndard deviation of groundfish surveys as weighting factors
- Indices and SD factors stand a rdized to mean 1

- Models start in the middle of the calendaryear (J uly 1st)
- Assessment years go from 1 J uly of yeary to 30 J une of yeary +1 .

Year	Time of catch observations					Time of survey observations	
	Quarterly data		Biannual data			Acoustic survey (spring)	Groundfish survey (autumn)
1991	1	1990.50	1		1990.5	1990.75	1991.25
1991	2	1990.75					
1991	3	1991.00	2		1991.0		
1991	4	1991.25					
1992	1	1991.50	1		1991.5	1991.75	1992.25
1992	2	1991.75					
1992	3	1992.00	2		1992.0		
1992	4	1992.25					
...
2021	1	2020.50	1		2020.5	2020.75	
2021	2	2020.75					
2021	3	2021.00	2		2021.0		
2021	4	2021.25					
2022	1	2021.50	1		2021.5		
2022	2	2022.00					

Modelling

				n prior				
Catch aggregation		Indices of biomass		n.none		$\mathrm{B}_{1} / \mathrm{K}$ prior		
Quarter	X	$\begin{aligned} & 1=\text { a coustic spring } \\ & 2=\text { a coustic }+ \end{aligned}$	X	Default	X	BKnone	X	rprior
Semester		groundfish		Schaefer		BK20		r.none
				Fox		BK50		r.Thorson
				n.Thorson		BK80		

- 4 data sets, 40 models fitted to each data set
- Influence of default priors on alfa and beta tested aposteriori for one "good" model
- CHECKLIST
- Convergence (initial values, parameter CI)
- Goodness-of-fit (residuals)
- Consistency (Mohn's Rho between -0.22 and 0.30)
- Prediction skill (MASE <1,as low as possible)

RESULTS

- Few models converged using quarterly catches and/ora single biomass index
- At least one parameterwith an informative priorwas needed
- Most models did not reach perfect convergence (MSY wasNA)
- F/FMSY confidence limits wider than recommended forlong-lived stocks
- Several possible candidate models
- Model 12: Schaefer, Thorson prior on r, prior on B1/K with slightly better retrospective, hindcast and convergence performance than other candidates

Model 12

Retrospective a nalysis 2016-2021

- Overestimation pattem forboth B/BMSY and F/FMSY
- Stronger bias for F/FMSY, Mohn's Rho still below threshold of 0.30 .
Retro-2 stands out; last survey points are a coustic 2019 and groundfish 2018
- Retrospective analysis of absolute biomass and fishing morta lity look reasonable

Model 12

- MASE scores <1 for both surveys
- groundfish survey with better prediction skill ? or just fewer number of years

Model 12

Plots of residuals
Prior-posterior distributions

Model 12

Sensitivity a na lyses

- Down-weight acoustic 2019 and groundfish 2018: divergence of the second peel of the retrospective a na lysis dec reased substa ntia lly (Mohn's Rho increased ? !)
- Effect of estimating alpha and beta: decrease of 30% on F/FMSY Mohn's Rho

- Identic al summary plots

Model 12

Summary plots

- F/FMSY and B/BMSY very uncerta in
- Gapsin acoustic survey and noisy exploitation rates may help to explain wide F/FMSY CI up to ~ 2010
- F/FMSY varied from 0.05 to 0.19 (mean $=0.11$, sd $=0.04$) from 2008 to 2021
- B/BMSY well below 1 up to ~ 2010 and mostly above 1 since 2015
- B/BMSY varied from 0.10 to 2.1 (mean $=0.89$, sd $=0.62$) from 2008 to 2021

Y-axis limits dec reased; 2017 point of groundfish survey not visible

Points for disc ussion

- Surveys are not truly representative of exploitable biomass
- Autumn ground fish survey: use, at all ?
- PELACUS surveys 1999-2005: can we a ssume estimates a re zero? Influence on F/FMSY in the earlier part of the assessment
- What to use as survey errors ?: CVs of groundfish surveys?
- Downweight groundfish 2018-a coustic 2019 data points? What about 2017 groundfish survey? If yes, how much?
- Absolute stochastic reference points not estimated by most models
- The seasonal F parameter was fixed =1 in bi-a nnual models (needsto be corrected)
- F/FMSY is estimated to be at the level of the lowest HR, well below the average of the historical series; in J une 2021 F/FMSY $=0.06$ (model 12)

Spanish Surveys
Spanish acoustic surveys aimed at sardine have been conducted in Sub-division IXa North and Division VIllc since 1983. Results from hese surveys for the Sub-division IXa North have shown the scarce presence or even the absence of anchovy in this area (Camera al., 1999; C a rera, 1999, 2001). This situation still continues in the most recent years (surveys in the 2003-2007 period, see Porteiro et al., 2005; WD Iglesias et al., 2007). Page 598.

Thank you very much

