Exploratory assessment of anchovy 27.9a-west using a surplus production model

Alexandra A. Silva, Laura Wise, Fernando Ramos, Margarita Rincón, Susana Garrido, Andres Uriarte, Tobias Mildenberger

Objective

- Explore surplus production models using SPiCT to assess the anchovy 9a.west component
- several combinations of catch data and survey indices
 - Catches by quarter/semester
 - 1 survey (spring acoustic)/2 surveys (spring acoustic+autumn groundsfish)
- Several assumptions (priors): from simple to complex models
 - Shape of the production curve (n)
 - Initial depletion (B₁/K)
 - Intrinsic growth of the population (r)
 - Ratio of observation to process error (alpha, beta)

Data

- CATCHES
 - DATA: catch biomass, t, per quarter or semester from the beginning of the first quarter of 1991 to the end of the second quarter of 2021
 - No signs of intense exploitation in the past
 - strong seasonal component;
 67% of the catches in the second semester

Indices of biomass

SURVEYS

- total biomass, PELACUS+PELAGO 1999 2021
- mean biomass/hour, autumn groundfish
 1991 2018
- groundfish survey in year y correlated with acoustic survey year y+1 (r = 0.91, p<0.001)
- indices reflect biomass of individuals > 10 cm total length
- standard deviation of groundfish surveys as weighting factors
- Indices and SD factors standardized to mean 1

- Models start in the middle of the calendar year (July 1st)
- Assessment years go from 1 July of year y to 30 June of year y+1.

		Tim	e of catch	observati	ons	Time of survey observations				
Year		Quarterly	data	Biannual data		Acoustic survey		Groundfish survey		
				2.2		(spring)		(autumn)		
	1991	1	1990.50	1	1990.5	19	990.75	1991.25		
	1991	2	1990.75							
	1991	3	1991.00	2	1991.0					
	1991	4	1991.25							
	1992	1	1991.50	1	1991.5	19	991.75	1992.25		
	1992	2	1991.75							
	1992	3	1992.00	2	1992.0					
	1992	4	1992.25							
	2021	1	2020.50	1	2020.5	20	020.75			
	2021	2	2020.75							
	2021	3	2021.00	2	2021.0					
	2021	4	2021.25							
	2022	1	2021.50	1	2021.5					
	2022	2	2022.00							

Modelling

Catch				n prior				
aggregation		Indices of biomass		n.none		B ₁ /K prior		
Quarter	Х	1 = acoustic spring	Х	Default	Х	BKnone	Х	r prior
		2 = acoustic +						
Semester		groundfish		Schaefer		BK20		r.none
				Fox		BK50		r.Thorson
				<u>n.Thorso</u> n		BK80		

- 4 data sets, 40 models fitted to each data set
- Influence of default priors on alfa and beta tested aposteriori for one "good" model
- CHECKLIST
 - Convergence (initial values, parameter CI)
 - Goodness-of-fit (residuals)
 - Consistency (Mohn's Rho between -0.22 and 0.30)
 - Prediction skill (MASE < 1, as low as possible)</p>

RESULTS

- Few models converged using quarterly catches and/or a single biomass index
- At least one parameter with an informative prior was needed
- Most models did not reach perfect convergence (MSY was NA)
- F/FMSY confidence limits wider than recommended for long-lived stocks
- Several possible candidate models
- Model 12: Schaefer, Thorson prior on r, prior on B1/K with slightly better retrospective, hindcast and convergence performance than other candidates

Model 12

Retrospective analysis 2016-2021

- Overestimation pattern for both B/BMSY and F/FMSY
- Stronger bias for F/FMSY, Mohn's Rho still below threshold of 0.30.
 - Retro-2 stands out; last survey points are acoustic 2019 and groundfish 2018
- Retrospective analysis of absolute biomass and fishing mortality look reasonable

Model 12 Hindcast cross-validation 2021-2014

- MASE scores <1 for both surveys</p>
- groundfish survey with better prediction skill ? or just fewer number of years

Model 12 Plots of residuals Prior-posterior distributions

Model 12 Sensitivity analyses

- Down-weight acoustic 2019 and groundfish 2018: divergence of the second peel of the retrospective analysis decreased substantially (Mohn's Rho increased ?!)
- Effect of estimating alpha and beta: decrease of 30% on F/FMSY Mohn's Rho
- Identical summary plots

Model 12 Summary plots

- F/FMSY and B/BMSY very uncertain
- Gaps in acoustic survey and noisy exploitation rates may help to explain wide F/FMSY CI up to ~2010
- F/FMSY varied from 0.05 to 0.19 (mean=0.11,sd=0.04) from 2008 to 2021
- B/BMSY well below 1 up to ~2010 and mostly above 1 since 2015
- B/BMSY varied from 0.10 to 2.1 (mean=0.89, sd=0.62) from 2008 to 2021

Y-axis limits decreased; 2017 point of groundfish survey not visible

Points for discussion

- Surveys are not truly representative of exploitable biomass
- Autumn groundfish survey: use, at all ?
- PELACUS surveys 1999 2005: can we assume estimates are zero ? Influence on F/FMSY in the earlier part of the assessment
- What to use as survey errors ?: CVs of groundfish surveys ?
- Downweight groundfish 2018-acoustic 2019 data points? What about 2017 groundfish survey? If yes, how much?
- Absolute stochastic reference points not estimated by most models
- The seasonal F parameter was fixed =1 in bi-annual models (needs to be corrected)
- F/FMSY is estimated to be at the level of the lowest HR, well below the average of the historical series; in June 2021 F/FMSY=0.06 (model 12)

Spanish Surveys

Spanish acoustic surveys aimed at sardine have been conducted in Sub-division IXa North and Division VIIIc since 1983. Results from these surveys for the Sub-division IXa North have shown the scarce presence or even the absence of anchovy in this area (Carrera et *al.*, 1999; Carrera, 1999, 2001). This situation still continues in the most recent years (surveys in the 2003-2007 period, see Porteiro et *al.*, 2005; WD Iglesias et *al.*, 2007). **Page 598**.

Thank you very much