
# STOCA: THE MONITORING PROGRAM IN THE GULF OF CÁDIZ. PHYTOPLANKTON POPULATIONS AND DISTRIBUTION

García-Martínez, M.C<sup>1</sup>; Moya, F<sup>1</sup>; Ballesteros, E.<sup>1</sup>; Vargas-Yáñez, M.<sup>1</sup>; Pérez de Rubín, E<sup>3</sup>; González, C<sup>2</sup>; Sánchez-Leal, R



1Centro Oceanográfico de Málaga (IEO-CSIC) 2 Centro Oceanográfico de Cádiz (IEO-CSIC) 3 Universidad de Cádiz

## **INTRODUCTION**

To understand the functioning of the seas, it is necessary to have enough data of a very diverse type (physical, chemical, biological, atmospheric) and with an appropriate temporal and spatial resolution. Marine dynamics affects the distribution of the different physicochemical-biological variables that determine the trophic characteristics of a particular area. Since 1992, the Spanish Institute of Oceanography (IEO) has funded marine observation projects (López-Jurado, et al., 205; Tel et al., 2016), which pretend to be able to describe in the best possible way the average characteristics of the different areas sampled in addition to trying to detect trends and changes.

The specific monitoring program in the Gulf of Cadiz (Southwest of the Iberian Peninsula), is called STOCA (Oceanographic Time Series of the Gulf of Cadiz) and was initiated in 2009, with a quarterly periodicity (Sánchez-Leal, 2018). During the STOCA cruises, 5 transects are monitored in which CTD-LADCP data and water samples are taken for different chemical and biological variables (Fig.1). Until 2014 the sampling of the different phytoplankton fractions (micro, pico and nanophytoplankton) was not routinely included. In this work, all available phytoplankton information from STOCA, from 2014 to March 2020 is analyzed, (a total of 25 cruises), showing the different products that can be obtained from a monitoring program like STOCA. The phytoplankton communities are determined both by microscopy and flow cytometry depending on the cell size. This is the longest time series of data of the different phytoplankton populations in the area, which allows the description of both spatial and temporal phytoplankton communities, as well as their relationship with oceanographic variables.

Figure 1. Map of Gulf of Cadiz showing the main circulation pattern (in red surface circulation, in blue the depth one) and the stations samples during STOCA cruises

### **Materials and methods**

For the analysis of the phytoplankton communities, samples are obtained using two different metodologies. In the case of pico- and nanophytoplankton samples are taken from platform and slope stations (numbers 3 and 6 respectively in figure 1) and are fixed on board with glutaraldehid and preserved at -80<sup>ª</sup> until its analysis in laboratory by flow citometry (Gasol et al, 1999). Four main groups are detected: Prochlorococcus, Synecochoccus, picoplankton and nanoplankton. For the anlysis of the biggest fraction, the microplankton samples are only taken at stations 3, platform, preserved with lugol-iodine solution and analyzed by inverted microscope using Uthermohl tecnnique (Uterrmohl, 1958). The study by microscope include the taxonomic determination of the communities present in the sample trying to reach the level of species,. When it's not possible, individuals are clasified by the genera.

Once the samples are analyzed the results are grouped in: diatoms, dinoflagellata and small flagelata.

In all cases, both micro- and pico- and nanophytoplankton, mean seasonal values are calculated.

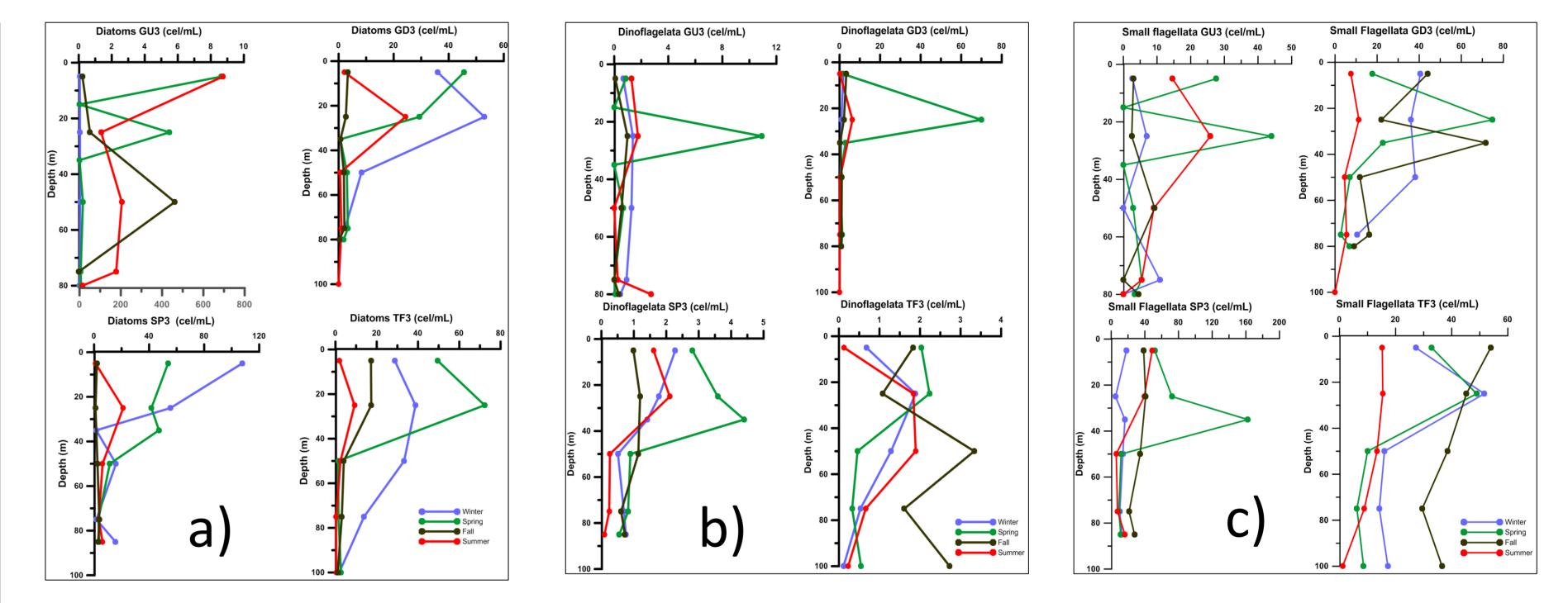



Figure 2. Mean concentration (cel/mL): a) Diatoms, b) Dinoflagelata and c) Small flagelata, for winter (blue), spring (green), fall (brown) and summer (red) at: Guadiana(GU3), Guadalquivir (GD3), Sancti Petri (SP3) and Trafalgar (TF3) platform stations. Notice that in a) the upper axis is for summer and fall, the lower one for winter and summer),

### **RESULTS.**

Table 1. Average abundance expressed in cells per mililitre (cel/mL) along the water column for the station GD3 for the *Prochlorococcus* bacteria. For each season and depth level five columns are presented: seasonal mean value, standard deviation, number of data used and minimum and maximum values recorded along the complete time series

| GD3 station. Prochlorococcus (cel/mL) |      |      |       |      |      |        |       |   |      |       |        |       |   |      |        |       |       |     |      |        |
|---------------------------------------|------|------|-------|------|------|--------|-------|---|------|-------|--------|-------|---|------|--------|-------|-------|-----|------|--------|
|                                       |      | V    | /inte | r    |      | Spring |       |   |      |       | Summer |       |   |      |        | Fall  |       |     |      |        |
| Depth                                 | Mean | \$   | n     | Min. | Max. | Mean   | S     | n | Min. | Max.  | Mean   | S     | n | Min. | Max.   | Mean  | S     | n   | Min. | Max.   |
| 5                                     | 2364 | 1108 | 3     | 1282 | 3887 | 7037   | 10767 | 5 | 0    | 27797 | 22691  | 23295 | 4 | 1410 | 58177  | 31675 | 26665 | 6   | 1838 | 77878  |
| 25                                    | 1879 | 873  | 3     | 804  | 2942 | 18091  | 22637 | 5 | 0    | 52559 | 4809   | 3970  | 4 | 2016 | 11642  | 40679 | 47680 | 6   | 3531 | 139617 |
| 50                                    | 587  | 369  | 3     | 70   | 902  | 7004   | 9805  | 5 | 0    | 25020 | 1409   | 971   | 4 | 0    | 2711   | 16816 | 16900 | 6   | 812  | 43934  |
| 75                                    | 446  | 267  | 3     | 69   | 659  | 735    | 1273  | 4 | 0    | 2940  | 334    | 345   | 4 | 0    | 794    | 12248 | 18007 | 6   | 482  | 51837  |
| 80                                    |      |      |       |      |      | 2249   | 2249  | 2 | 0    | 4497  |        |       |   |      |        |       |       |     |      |        |
| GD6 station. Prochlorococcus (cel/mL) |      |      |       |      |      |        |       |   |      |       |        |       |   |      |        |       |       |     |      |        |
| 5                                     | 2476 | 95   | 2     | 2381 | 2571 | 3452   | 2004  | 3 | 863  | 5746  | 15724  | 6226  | 3 | 9354 | 24173  | 39152 | 20584 | - 5 | 952  | 60011  |
| 25                                    | 4676 | 2603 | 2     | 2073 | 7280 | 3737   | 2481  | 3 | 256  | 5857  | 14467  | 9363  | 3 | 3644 | 26484  | 49484 | 32420 | ) 5 | 1756 | 95549  |
| 50                                    | 3058 | 1831 | 2     | 1227 | 4889 | 5532   | 1790  | 3 | 3742 | 7977  | 51412  | 47791 | 3 | 958  | 115584 | 33163 | 33841 | . 5 | 6159 | 99961  |
| 75                                    | 1837 | 1418 | 2     | 418  | 3255 | 20402  | 13582 | 3 | 8908 | 39477 | 21876  | 26191 | 3 | 343  | 58741  | 13822 | 16272 | . 5 | 2243 | 45551  |
| 100                                   | 1353 | 1353 | 2     | 0    | 2706 | 2250   |       | 1 |      |       | 316    | 261   | 2 | 55   | 576    | 19134 | 32043 | 4   | 0    | 74629  |
| 125                                   |      |      |       |      |      | 2768   | 2723  | 2 | 45   | 5491  |        |       |   |      |        |       |       |     |      |        |
| 200                                   | 339  | 339  | 2     | 0    | 677  | 0      |       | 1 |      |       | 51     | 42    | 2 | 9    | 93     | 4205  | 6843  | 4   | 100  | 16054  |
| 300                                   | 46   | 38   | 2     | 8    | 84   | 1902   | 2676  | 3 | 0    | 5686  | 110    | 95    | 2 | 15   | 205    | 13074 | 25826 | 5 5 | 15   | 64724  |
| 400                                   | 65   |      | 1     |      |      | 1016   | 1016  | 2 | 0    | 2033  | 185    |       | 1 |      |        | 6782  | 10781 | . 4 | 156  | 25450  |
| 450                                   | 125  | 69   | 2     | 56   | 195  | 201    | 162   | 2 | 38   | 363   | 381    | 122   | 2 | 259  | 503    | 132   | 132   | 2   | 0    | 264    |

The main benefit of a monitoring program like STOCA is the determination of mean parameters that allow the description of the at least the seasonal values of certain variables. In the case of biological ones, the time series should be long enough in order to describe the natural variability of these parameters. Once the general picture is stablished, the natural status of a certain area, in this case the Gulf of Cadiz, can be described.

In this work some products obtained from the analysis of 25 STOCA cruises are shown as follows.

Figure 2 shows the seasonal mean concentration at different depths of the groups of microphytoplanton at Guadiana (GU3), Guadalquivir (GD3), Sancti Petri (SP3) and Trafalgar (TF3)platform stations, showing the differences found depending on the transect analyzed.

**Table 1** is a very good example of how the information collected can be presented. The table shows the seasonal concentration of Prochlorococcus (Cel/mL) at at different depths, including the mean value, with its standard deviation, the number of data used for the calculations and the minimum and maxima concentration obtained in all the cruises. This type of table is very useful for the description of climatological values and to set the good environmental status of the area. Any deviation from these values should be studied in order to determine if it is due to natural variability or if it is the consequence of induced changes

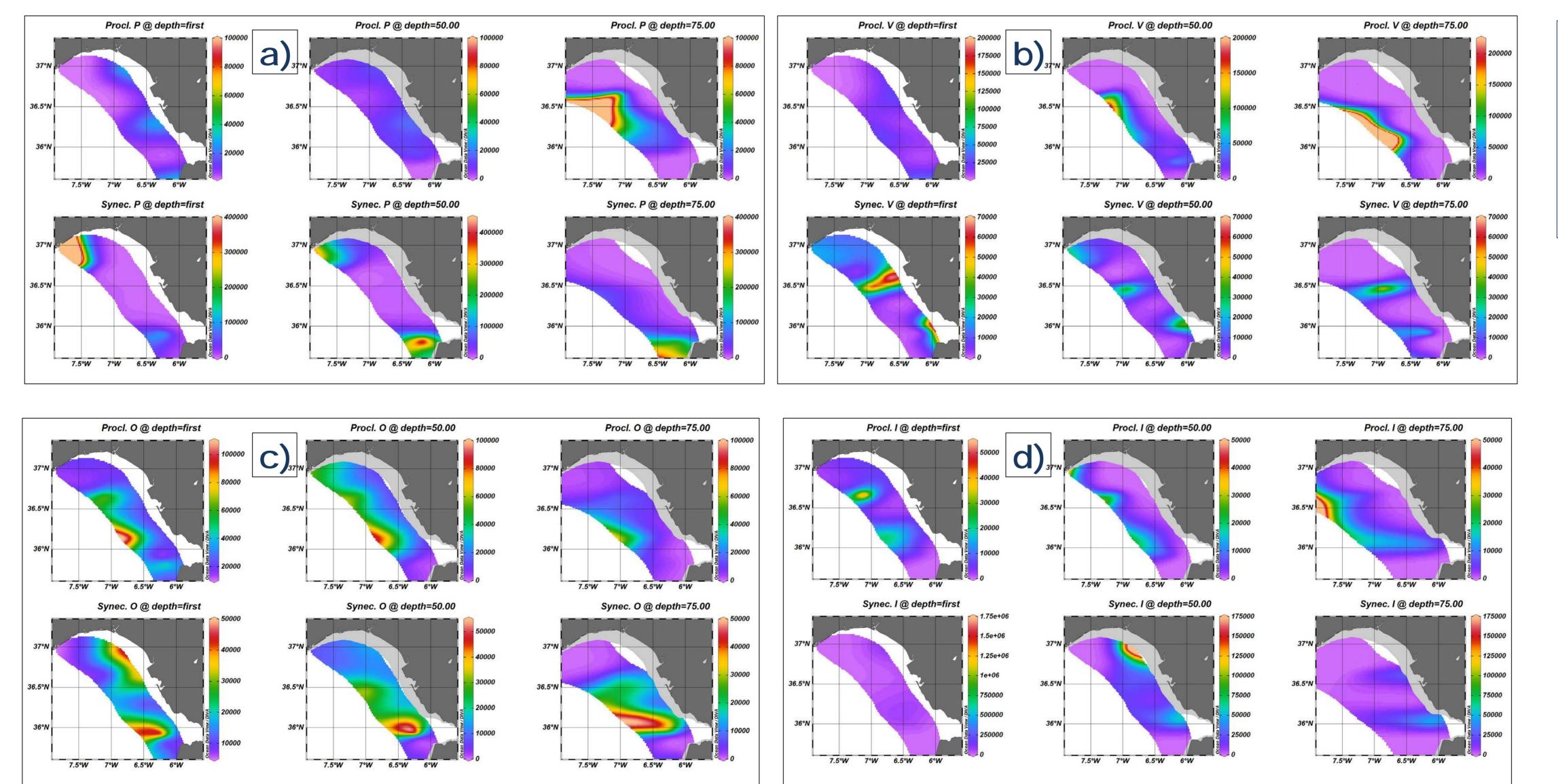



Figure 3. In this figure the spatial distribution of the seasonal mean of the photoautotroph abundance Prochlorococcus bacteria and Synecoccocus at different depths (surface, 50m and 75m) are presented showing the differences in the distribution patterns of these two groups

#### **References.**

Gasol, J.M. 1999. Gasol, J.M. How to Count Picoalgae and Bacteria with the FACScslibur Flow Cytometer. http://www.cmima.csic.es/pub/gasol/Manuals/FACS/C itometry.html

Figure 2. Seasonal spatial distribution of mean synechococcus and prochlorococcus bacteria at different depths: surface, 50m and 75 m. a) Spring b) Summer, c) Autumn and d) Winter. Data of all the stations sampled are included, both platform (stations 3) and slope (stations 6) for the complete period.



López-Jurado, et al., 2015 The RADMED monitoring programme as a tool for MSFD implementation: towards ecosystem-based an approach. https://doi.org/10.5194/os-11-897-2015

Sánchez-Leal, 2018 STOCA: El Sistema de Observación del Océano del Golfo de Cádiz. IX Symposium sobre el Margen Ibérico Atlántico. COIMBRA (PORTUGAL)

Tel et al., 2016. IEOOS: the Spanish Institute of Oceanography Observing System. Ocean Science. 12, pp. 345-353.

Utermöhl, H. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. [On the perfection of quantitative phytoplankton methods]. Int. Ver. Angew. Limnol. Mitt. [Commun. Int. Assoc. Appl. Limnol.] 1958, 9, 1–38