ON THE POTENTIAL BIASES OF SCIENTIFIC ESTIMATES OF CATCHES OF TROPICAL TUNAS OF PURSE SEINERS THE EU AND OTHER COUNTRIES REPORT TO THE ICCAT AND IOTC

M. Herrera ${ }^{1}$, J.C. Báez ${ }^{2}$

Abstract

SUMMARY This document represents a first attempt to explore potential differences between the catches of tropical tunas estimated using the EU software T3 and those recorded on sale slips completed by the canning factories purchasing fish from vessels registered with OPAGAC in the Atlantic and Indian oceans, over the period 2011-16. The analysis identified potential sources of bias estimates of catch of tropical tunas may be subject to, of different magnitude depending on the ocean, fleet, and size category. The largest bias was recorded in the Indian Ocean. In the Atlantic Ocean the catches of yellowfin and bigeye tunas seem to be also underestimated, with underestimation of both large and small fish. Although the study is preliminary, the results obtained indicate that the system the EU is using to sample purse seine landings and estimate catches may be subject to bias which, if confirmed, could have consequences on the statistics, stock assessments, management advice, and management measures adopted by ICCAT and IOTC

RÉSUMÉ

Ce document constitue une première tentative d'exploration des différences pouvant exister entre les captures de thonidés tropicaux estimées à l'aide du logiciel T3 de l'UE et celles consignées dans les bordereaux de vente complétés par les conserveries achetant du poisson auprès de navires immatriculés auprès de l'OPAGAC dans les océans Atlantique et Indien, au cours de la période 2011-2016. L'analyse a identifié des sources potentielles de biais dans les estimations des prises de thonidés tropicaux, variant selon l'océan, la flottille et la catégorie de taille. Le biais le plus important a été enregistré dans l'océan Indien. Dans l'océan Atlantique, les captures d'albacore et de thon obèse semblent également être sous-estimées, avec une sous-estimation des grands et des petits poissons. Bien que l'étude soit préliminaire, les résultats obtenus indiquent que le système utilisé par l'UE pour échantillonner les débarquements des senneurs et pour estimer les captures pourrait être biaisé, ce qui, si cela est confirmé, pourrait avoir des conséquences sur les statistiques, les évaluations de stocks, l'avis de gestion et les mesures de gestion adoptées par l'ICCAT et la CTOI.

RESUMEN

Este documento representa un primer intento de explorar posibles diferencias entre las capturas de túnidos tropicales estimadas utilizando el software de la UE T3 y las consignadas en talones de venta cumplimentados por las empresas enlatadoras que compran pesca a buques registrados en OPAGAC en el Atlántico y el Índico en el periodo 2011-2016. El análisis identificaba posibles fuentes de sesgo a las que podrían estar sujetas las estimaciones de captura de túnidos tropicales, de diferente magnitud dependiendo del océano, la flota y la categoría de talla. El sesgo más grande se consignó en el océano Índico. En el océano Atlántico, las capturas de rabil y patudo parecer estar también subestimadas, con una subestimación de peces tanto grandes como pequeños. Aunque el estudio es preliminar, los resultados obtenidos indican que el sistema que está utilizando la UE para muestrear los desembarques de los cerqueros y estimar las capturas podrían ser objeto de algún sesgo que, si se confirma, podría tener consecuencias en las estadísticas, las evaluaciones de stock, el asesoramiento en materia de ordenación y las medidas de ordenación adoptadas por ICCAT y la IOTC.

KEYWORDS

Catch composition, Size composition, Tropical tunas, Purse seining

[^0]
1. Introduction

The European purse seine fleet operates in tropical and subtropical waters of the Atlantic, Indian and Pacific oceans (Clermont et al., 2012; Escalle et al., 2017a), in areas under the competence of the four tuna-RFMO that manage stocks of tropical tunas (IATTC, ICCAT, IOTC and WCPFC), which are the target of EU purse seiners. At present all EU purse seiners for tropical tunas are flagged in either France, Italy, or Spain.

The "Institut de recherche pour le développement" (IRD) in France and the "Instituto Español de Oceanografía" (IEO) in Spain are the institutions responsible to produce scientific estimates of catch, effort, and other biological data (e.g. size frequency distribution of the catches) for their respective countries. However, while ICCAT and IOTC fully rely on the data reported by the EU, the IATTC and WCPFC have implemented different arrangements and are not covered here (IATTC 2016; Lawson 2013).

The multi-species nature of tropical tuna surface fisheries gives rise to a series of difficulties at the time of estimating basic catch by species and catch by size statistics. Fonteneau (1976) discussed about the difficulty of some patterns to correctly identify the composition of the retained catch. In the Atlantic and Indian oceans, the IRD and the IEO agreed to harmonize data collection and catch estimation procedures in 1998, with the same sampling and catch estimation procedure adopted for both oceans since that year and catch estimates for previous years adjusted to account for the new procedures (Pallares \& Petit, 1998). The new system used the same sampling protocols and estimating procedures (known as T3) for both oceans, unlike the two systems existing between 1980 and 1997. All systems were based on the correction of catches reported on vessel logbooks using data collected from port sampling.

In addition, EU scientists have assisted non-EU countries having purse seiners to implement the EU sampling and estimation procedures. This includes Seychelles and Mauritius in the Indian Ocean and Belize, Cape Verde, Curaçao, El Salvador, Guatemala, Panama and Senegal in the Atlantic Ocean.

This document presents some preliminary exploratory analysis that compare estimates of landings of tropical tunas obtained using the EU sampling and catch estimation procedures with data obtained from sale slips produced by the canning factories that acquired those fish, in the Areas of Competence of ICCAT and IOTC and for the period 2011-2016. The study is limited to the fleet ascribed to OPAGAC its main purpose being to assess the concordance of estimates of total catch and catch by species and size category produced by EU institutions with the data recorded on the sale slips collected for that period.

The objective is to assess the reliability of scientific estimates of catch produced using EU procedures as compared to sale slips from canning factories and the consequences that any potential bias identified could have on estimates of total catch and catch by species and size category for EU and other fleets; and the potential consequences of any discrepancy over the status of stocks of tropical tunas, and their management.

2. Methods

2.1 European sampling and catch estimation procedures

EU scientists collect the following information from purse seiners in order to produce the statistics required by the flag state/RFMO concerned:

- Logbooks and well plans completed by skippers/chief engineers of tuna purse seiners and handed over at the end of each fishing trip to enumerators and compliance officers;
- Total catches unloaded/transhipped in port reported by the skippers/fishing companies at the end of each unloading operation;
- Data from port sampling, conducted by staff of research institutions in coastal countries with which EU scientists have established cooperative arrangements (mainly "Centre de Recherches Océanologiques" in Abidjan, "Centre de Recherches Océanographiques Dakar Thiaroye" in Dakar, Seychelles Fishing Authority in Victoria, "Unité Statistique Thonière d’Antsiranana" in Diego Suarez, Madagascar);
- Biological samples, collected on an opportunistic manner, intended to provide the information required to convert length samples into weight.

The sampling procedure is summarized in the following paragraphs. Sampling are stratified by:

- fishing mode, with sets to free-swimming and associated tuna schools treated separately;
- fishing area, with 6 areas in the Atlantic Ocean and 8 in the Indian Ocean;
- time-period, with each year broken by quarter (January-March, April-June, July-September, OctoberDecember).

Thus, a fish tank is selected for sampling only when all the catches stored in it come from sets recorded for the same fishing mode, fishing area, and time-period;

Collection of samples: where large $(\geq 10 \mathrm{~kg})$ and small $(<10 \mathrm{~kg})$ fish are present in a selected tank fish are randomly selected for each category and measured independently. The objective is to take a minimum number of samples per stratum, with each sample consisting of two sub-samples, taken at different times during the unloading of the selected fish tank.

- If a fish tank contains only large specimens ($\geq 10 \mathrm{~kg}$) the sample consists of two sub-samples of 150 specimens each with the pre-dorsal length (length from the tip of the snout to the base of the first dorsal fin) and species of each individual recorded (YFT or BET).
- If a fish tank contains only small fish ($<10 \mathrm{~kg}$) or a mix of large ($\geq 10 \mathrm{~kg}$) and small fish the objective is to monitor 500 small fish (two sub-samples of around 250 specimens each or $300+200$), attempting to measure as many large fish (YFT, BET) as possible from those fish unloaded at the time each sub-sample of small fish is taking place.
- Small fish: the sampling consists on the random selection of small fish as it is unloaded from the tank until the target sampled number is attained with a different approach used for SKJ specimens as compared to YFT and BET:
- Skipjack tuna: the first 30 SKJ identified from the fish taken for sampling are measured in fork length while all SKJ specimens monitored beyond that number are simply counted (with just the total number recorded in the sampling form);
- Small yellowfin and bigeye tunas: the fork length and species of all individuals appearing on the sample is recorded until the target sample number is attained;
- Large fish: All individuals unloaded as small fish are being sampled are classified by species and measured in pre-dorsal length, regardless of their numbers.

The methodology used by EU and other scientists to produce catch, effort and size frequency distributions for purse seiners is known as TTT, or T3. The estimation procedure is summarized in Figure 1.

Thus, the samples from all vessels/fish tanks for a given fishing mode, quarter and T3 statistical area are used to correct the species composition of each and every individual set recorded under the same stratum, regardless of the vessel from which samples come from (i.e. the estimation procedure is not specific to the boat). This procedure involves the following steps:

- Conversion of the numbers of fish sampled for length into weight, for which length (fork or pre-dorsal)weight relationships are used, as adopted by EU scientists;
- Estimation of total weight of skipjack tuna using the weight and number of specimens sampled for length and the total number of SKJ monitored;
- Estimation of total weight sampled for other species by summing up the weights of all fish sampled;
- Raising the weights sampled by T3 size class (total $\geq 10 \mathrm{~kg} \&<10 \mathrm{~kg}$) to the total reported for each sampling unit (fish tank) and breaking the catches of each size class according to the proportions obtained from the sample;
- Adding the total amounts estimated from all sampling units to obtain the final proportions of YFT, BET ($\geq 10 \mathrm{~kg} \&<10 \mathrm{~kg}$) and SKJ ($<10 \mathrm{~kg}$), for each T3 size category.

Once that the final proportions for species composition and size category are obtained for each stratum, those proportions are used to adjust the catches from each individual set following scaling of the catches in logbooks to the totals unloaded, as shown in Figure 1.

Therefore, it is important to bear in mind the following points:

- The EU system relies on the total amounts unloaded reported by vessel skippers or fleet representatives; however, landing data is only used in bulk (i.e. each catch entry in a logbook is scaled by the factor obtained by dividing the total catch of tropical tunas unloaded by the total catch of tropical tunas recorded in the logbook of the trip concerned);
- The EU system relies on the total amounts of tropical tunas in the category $\geq 10 \mathrm{~kg}$ and $<10 \mathrm{~kg}$ recorded in vessel logbooks and well maps;
- The EU system relies on multi-vessel port sampling data to break the catches reported under each of the above size categories by species (i.e. it ignores the catches by species reported in logbooks);

The outcome of this process is that the catches of all EU and associated fleets made inside the same stratum (Size category, Fishing mode, Area, Quarter) end up having exactly the same species and size composition. This is a strong assumption as it smooths away any individual vessel effects, unlike what has been described in other regions, like the Pacific Ocean (Lennert-Cody et al. 2008; Escalle et al. 2017b).

Pallares \& Petit (1998) provide more details about the sampling and catch estimation procedures used by the EU and other countries for their purse seine fleets.

2.2 Data sources and preparation

This study covers the activities of 48 purse seiners registered with OPAGAC over the period 2011-2016, which unloaded around 100,000 tons of tropical tunas per ocean per year over that period.

The following data were compiled for each boat:
T3 Output tables: Output tables from the T3 process for the period of reference were provided by the IEO (OPAGAC purse seiners flagged in Spain, Indian and Atlantic oceans), SFA (OPAGAC purse seiners flagged in Seychelles, Indian Ocean), and Vanessa Rojo (staff from OPAGAC responsible for the statistics of OPAGAC's purse seiners not flagged in Spain). The format of the tables is reproduced in Annex 1. Data are presented in logbook format (i.e. one line per day/fishing activity with effort and catches by time, location species/size category). The table also contains information about the date(s) of unloading of the catches that were taken during each fishing trip. The following information was used from this record (fields recorded in bold red font in Annex 1):

```
ocean: Ocean of activity;
flag: Flag state of the vessel;
vescode: Vessel code as per FIBATO's classification (IEO/IRD Vessel Registry);
year_dbq: Year of unloading;
v_poids_capt_skj: Catch of skipjack tuna in metric tons;
v_poids_capt_yft_cat1: Catch of yellowfin tuna size category 1 (<10kg);
v_poids_capt_yft_cat2: Catch of yellowfin tuna size category 2 (10kg-30kg);
v_poids_capt_yft_cat3: Catch of yellowfin tuna size category 3( }\geq30\textrm{kg})\mathrm{ ;
v_poids_capt_bet_cat1: Catch of bigeye tuna size category 1 (<10kg);
v_poids_capt_bet_cat2: Catch of bigeye tuna size category 2 (10kg-30kg);
v_poids_capt_bet_cat3: Catch of bigeye tuna size category 3 ( }\geq30\textrm{kg})\mathrm{ .
```

Sale slips from canning factories: Sale slips are documents produced by the canning factories of destination of the tuna caught by purse seiners. They reflect the amounts purchased, in weight for each species and commercial category from each landing. They usually include several size categories for each species, depending on the canning factory. The format of the tables provided by the companies of OPAGAC is provided in Annex 2. The following information was used from the records sent (fields recorded in bold red font in Annex 2):

Nombre del buque: Name of the purse seiner;
Fecha de desembarco: Date of unloading;
Descarga completa? (Si/No): All catches unloaded? (Yes/No);
$Y F T>10 \mathrm{~kg}$: Catch yellowfin tuna $\geq 10 \mathrm{~kg}$;
$Y F T<10 \mathrm{~kg}$: Catch yellowfin tuna $<10 \mathrm{~kg}$;
$B E T>10 \mathrm{~kg}$: Catch bigeye tuna $\geq 10 \mathrm{~kg}$;
$B E T<10 \mathrm{~kg}$: Catch bigeye tuna $<10 \mathrm{~kg}$;
$S K J$: Catch skipjack tuna.

The landing data collected from the above two sources was aggregated by ocean, boat, flag country (Spain, Seychelles, Other flags), year, and the following species and size categories:

Yellowfin and bigeye tuna weighting 10 kg or more ($\mathrm{AT} \geq 10$); Yellowfin and bigeye tuna weighting less than 10kg (AT<10); Skipjack tuna (SKJ).

2.3 Methods

Data were prepared as indicated in the previous section to be able to compare T3 estimates with sale slips for those species groups and size categories for which the weights recorded on sale slips are considered reliable. This is because each of the three groups used fetches a different price in the market, with the highest price paid for specimens $\mathrm{AT} \geq 10$ and the lowest paid for skipjack tuna. The categories also match those T 3 uses, as presented in

Figure 1.

Once all data was compiled and aggregated as per the above categories, the two records were compared using simple tables and plots and several statistical tests, including:

- Concordance Correlation Coefficient (CCC): Measures the level of agreement between two continuous variables. A value equal to +1 corresponds to perfect agreement between two measurement methods. A value equal to 0 indicates that the two methods are independent to one another. A value of -1 points to a total mismatch between the two methods (Carrasco \& Jover, 2004).
- Intraclass Correlation Coefficient (ICC): The intraclass correlation is commonly used to assess the consistency or reproducibility of quantitative measurements made by different observers measuring the same quantity. Quantifies the concordance between different measurements of a numerical variable. This coefficient estimates the average of the correlations between all possible ordinations of pairs of available observations. The value of ICC ranges from 0 to 1 . Therefore, the maximum possible match corresponds to a value of ICC $=1$. In this case, all observed variability would be explained by the differences between subjects and not by the differences between the measurement methods. On the other hand, the value ICC $=0$ is obtained when the observed concordance is equal to the one that would be expected to occur only by chance (Pita Fernández \& Pértegas Díaz, 2004). According to Pita Fernández \& Pértegas Díaz (2004), concordance is very strong for values over 0.9 , strong for values between $0.71-0.9$, moderately strong for values between 0.51-0.7, weak for values between 0.31-0.5 and poor or inexistent for values <0.31.
- Wilcoxon signed-rank test: A Wilcoxon signed-rank test is a nonparametric test that can be used to determine whether two dependent samples were selected from populations having the same distribution. It assumes that the scale of measurement for x and y has the properties of an equal-interval scale; that the differences between the paired values of x and y have been randomly drawn from the source population; and that the source population from which these differences have been drawn can be reasonably supposed to have a normal distribution. Two data samples are matched if they come from repeated observations of the same subject. Using the Wilcoxon Signed-Rank Test, we can decide whether the corresponding data population distributions are identical without assuming them to follow the normal distribution. The null hypothesis is that the unloadings obtained from sale slips and T3 are from identical populations. The null hypothesis is rejected for p -values less than the .05 significance level.
- Paired t-test: A paired t-test is used to compare two population means where there are two samples in which observations in one sample can be paired with observations in the other sample. As above, the null hypothesis is rejected for p -values less than the .05 significance level.
- Bland and Altman method (B\&A): The Bland and Altman method is a graphical procedure to evaluate the concordance between two measurement systems (Pita Fernández \& Pértegas Díaz, 2004) and quantifies agreement between two quantitative measurements by constructing limits of agreement. These statistical limits are calculated by using the mean and the standard deviation (s) of the differences between two measurements. Bland-Altman plots are extensively used to evaluate two measurements techniques. BlandAltman plots allow identification of any systematic difference between the measurements (i.e., fixed bias) or possible outliers. The mean difference is the estimated bias, and the SD of the differences measures the random fluctuations around this mean. If the mean value of the difference differs significantly from 0 on the basis of a 1 -sample t-test, this indicates the presence of fixed bias. If there is a consistent bias, it can be adjusted for by subtracting the mean difference from the new method (Bland \& Altman, 1986).

3. Results

3.1 Landings by flag group

Table 1 shows the species composition obtained from T3 estimates and sale slips by ocean (Top: Atlantic Ocean; Bottom: Indian Ocean), flag category (Right: Spain; Top left; various flags other than Spain; Bottom left: Seychelles), year (2011-2016, and all combined), and species group (AT ≥ 10 : YFT+BET $\geq 10 \mathrm{~kg}$; AT <10 : YFT+BET <10kg; SKJ).

Spanish fleet: In the Atlantic Ocean, T3 seems to underestimate catches of tunas in the categories $\mathrm{AT} \geq 10 \mathrm{~kg}$ and AT<10kg, while overestimating catches of skipjack tuna, with results that are consistent over the time-period in study. The same applies to the Indian Ocean, although in this case T3 appears to largely underestimate the catches of tunas $\mathrm{AT} \geq 10 \mathrm{~kg}$ (T3: 24%; SSLIP: 31%) and overestimate the catches of skipjack tuna (T3: 50\%; SSLIP: 40\%), throughout the time series.

Other fleets: The same applies to the Atlantic Ocean although the differences between T3 and SSLIP tend the be lower. For the Seychelles fleet in the Indian Ocean estimates are similar than those for Spain, although differences are somewhat higher.

Figure 2 shows the percentage that each species group category made over the total landings recorded for the OPAGAC fleet during 2011-16, by ocean (RFMO area) and flag (Spain, Seychelles, Other flags), as obtained from sale slips (SS) and T3 output tables (T3). The corresponding values are recorded in Table 1 (Line Total).

As noted before (Table 1), the differences between T3 estimates and amounts on sale slips seem to be quite large.
In addition, the box plot charts shown in Figure 3a-d present median values (black horizontal line), 25th and 75th percentiles (box lower and upper margins), whiskers and outliers (as per R default definition) from the landings of tropical tunas available for the OPAGAC fleet, by boat and year (covering 2011-16), with data presented separately for sale slips (SS: orange bars) and T3 estimates (T3: green bars), broken by ocean (AO: Atlantic Ocean; IO: Indian Ocean) and flag group (ESP: Spain; SYC: Seychelles; OTH: Other flags).

Figure 3a shows that total catches of tropical tunas estimated using T3 and from sale slips are very similar across both oceans and groups of fleets, with only some slight differences recorded in the Indian Ocean. Overall, the difference is 1% or lower and therefore the landing reports that T3 uses seem to be accurate. As for the size categories presented in Figures 3b-d they confirm the differences expressed before for each fleet and ocean.

3.2 Landings by year

Box plots in Figure 4 show total catches of tropical tunas and catches for each species and size group, by ocean and year. In general, there appears to be consistency in the magnitude of the bias recorded for each species group and size class over the time period. However, those differences seem to have been higher since 2014 in the Indian Ocean and 2015 in the Atlantic Ocean, especially regarding the category AT $<10 \mathrm{~kg}$.

3.3 Landings by ownership

Figure 5 presents box plots by ocean and ownership group. In the same way, the magnitude of the bias seems to be consistent for all ownership groups and categories under consideration.

3.4 Statistical tests

Table 2 shows the results of the concordance (CCC and CCI), Wilcoxon signed-rank, paired t- and Bland and Altman tests performed for the above data, with Bland and Altman dispersion and difference plots presented in Figure 6a-d (by species group, ocean and for all flags combined).

Both concordance analysis show a high level of correlation between T3 results and Sale Slips, with moderate-low levels of correlation only obtained for the Seychelles fleet in the Indian Ocean, in particular for the category $\mathrm{AT} \geq 10 \mathrm{~kg}$. Considering that correlation methods tend to be highly sensitive to sample heterogeneity (Giavarina 2015), as it is the case for purse seine landings, these results are only useful to prove that both sampling methods (T3 and sale slips) are measuring the same population rather than proving full concordance between pairs of values. Apart from vessel size, such heterogeneity may be also due to vessels having different targeting practices or fishing grounds (e.g. number of access agreements each vessel has secured to operate the ZEE of coastal states).

On the contrary, the results from paired t-test, Wilcoxon signed-rank test and Bland and Altman method presented in Table 2 and plots (Figure 6a-d; Annex 3) are useful to appreciate how catches estimated using T3 may be biased. Thus, the ρ-values obtained from the two former are only significant (ρ-values higher than 0.05) when the total unloadings for all three tropical tunas combined are compared, being well below significance levels in all other cases. This proves that catches from sale slips and T3 estimates are not identical and that difference cannot be attributed to chance. This is also shown through the deviation from average landing values presented in Table 4 (B\&Ad), and Bland and Altman plots (Figures $\mathbf{6}$ \& 7), where that difference is expressed in absolute terms (mid panel) and as the percentage deviation (right panel) that amounts on sale slips represent when compared to average values from the two records (Bland and Altman method). Thus, the distance between the continuous horizontal black line and the broken horizontal black line shows the absolute systematic error (in \% and absolute).

Both dispersion and Bland and Altman plots for total catches of tropical tunas tend to indicate that estimates of total catches by both systems are very similar and not likely to be subject to error.

On the contrary, the analysis run for each commercial category appears to indicate that T3 estimates may be subject to bias of various magnitudes, depending on the size category, fleet, and ocean under consideration. The largest potential biases relate to the category AT $\geq 10 \mathrm{~kg}$ in the Indian Ocean ($\approx 35 \%$, Figure $\mathbf{6 b}$, bottom) and, to a lesser extent, Atlantic Ocean ($\approx 15 \%$, Figure 6b, top), with T3 grossly underestimating catches under this category. On the contrary, estimates for the category $\mathrm{AT}<10 \mathrm{~kg}$ seem to be subject to higher bias in the Atlantic Ocean $(\approx 25 \%$, Figure 6c, top) than in the Indian Ocean ($\approx 10 \%$, Figure 6c, bottom), with large unloadings prone to bias of higher magnitude than small unloadings (dispersion plot Figure 6c). As for skipjack tuna, it is also subject to a potentially high bias, higher in the Indian Ocean ($>20 \%$) than in the Atlantic Ocean ($<10 \%$).

It is important to note that Figure 6 shows results by ocean and all flags combined while Table 2 and Figure 7 present results by flag, and the magnitude of the bias may vary depending on the flag group. However, there does not seem to be a large deviation between the results presented below and those for each individual fleet (see figures in Annex 3).

4. Discussion

The following points can be drawn from the results presented on Tables 1-2 and Figures 2-4:

- The total combined landings of tropical tunas T3 uses for the OPAGAC fleet (Table 2 \& Figure 3a), are similar to those obtained from sale slips, with no large deviations detected; the deviations recorded are likely to originate from weighing of the fish at unloading, which T 3 uses, and weights recorded in the canning factories of destination; however, the fact that total landings for both T3 and sale slips come from the same source (fishing industry) warrant for the reason of the existing discrepancies to be further investigated and selection of data from the best source used for future estimates;
- T3 appears to underestimate, to a much larger degree in the Indian Ocean, the amount of yellowfin tuna and bigeye tuna of over 10kg unloaded (Tables 1-2, Figures 3b, 5b, 6b); considering that T3 relies on the amounts of large tuna ($\mathrm{AT} \geq 10 \mathrm{~kg}$) reported in vessel logbooks/well maps rather than landing statistics, this points to a potential bias due to a likely underreporting of large fish on logbooks; the fact that the difference is larger in the Indian Ocean, where there seems to be a larger amount of fish of intermediate sizes (between $10-20 \mathrm{~kg}$) tends to confirm that skipper logbooks/well maps do not record accurately the amount of large fish, leading to T 3 underestimating this component; this has also consequences on the amounts that are estimated for other species, and the catch-at-size estimated for both yellowfin tuna and bigeye tuna (i.e. potential significant bias when the selectivity of the purse seine gear is assessed from catch-at-size estimated from T3 samples and catch estimates);
- T3 appears to overestimate the catches of skipjack tuna and underestimate the catches of small yellowfin and bigeye tuna (Tables 1-2, Figures $\mathbf{3 c - d}, \mathbf{5 c - d}, \mathbf{6 c - d}$); as indicated previously, skipjack tuna tends to fetch a lower market price than small yellowfin and bigeye tunas and therefore the amounts of SKJ on sale slips are considered reliable, or at least a good approximation to the highest possible amount unloaded for this species, as some canning factories may record some juvenile YFT and BET as part of the SKJ component in order to purchase the fish at a lower price (never the contrary); thus, the differences between sale slips and T3 estimates point to issues related with sampling protocols and/or poor implementation of sampling in port. However, the accuracy of T3 estimates relies highly on the relationships that are used to convert length measurements into weight for each species and size category (Marsac et al., 2017) and, for this reason, it is necessary to verify that the length-weight equations used for small sizes are appropriate.

Tables 3a-b illustrate the potential consequences that the confirmation of the biases identified in this document would have on the catches recorded by ICCAT (Table 3a) and IOTC (Table 3b) for purse seine fleets covered by the EU sampling scheme. For this comparison, nominal catch data from the ICCAT and IOTC databases was downloaded and catches extracted for all purse seine fleets that are covered through the EU sampling scheme and catch estimation procedures (T3), assuming that all fleets are subject to the same bias than the OPAGAC fleet.

As presented in Table 3a, the ICCAT database may record catches of yellowfin tuna and bigeye tuna well below the values that would be expected if the biases identified in this analysis are confirmed. Thus, YFT catches for the period 2011-2016 may have been between 7,000 and 10,000 tons, with recent years showing a higher difference. The difference between reported and corrected catches is also high for the BET, with corrected catches around 3,000 tons higher than recorded catches, over the time-period. As for SKJ, the difference between recorded and corrected catches ranges between 10,000-15,000 tons, with the highest difference recorded in 2016.

Table 3b shows that recorded and corrected catches differ by a greater order of magnitude in the Indian Ocean, including differences between 20,000-30,000 tons for YFT (higher corrected catches); 1,000-4,000 tons for the BET (higher corrected catches): and 20,000-30,000 for the SKJ (lower corrected catches).

In addition to the above, the potential bias identified in the catches and size categories of yellowfin and bigeye tuna would translate into catch-at-size tables showing very different size distributions than the ones currently existing, with a higher amount of specimens of sizes equivalent to weights 10 kg or over, and proportionally less specimens of less than 10 kg . This could have marked consequences on estimates of selectivity for the purse seine gear and stock assessments and advice for these species.

5. Conclusion

This document represents a first attempt to explore potential differences between the catches of tropical tunas estimated using the EU software T3 and those recorded on sale slips completed by the canning factories purchasing fish from 48 vessels registered with OPAGAC in the Atlantic and Indian oceans, over the period 2011-16.

Although the study is preliminary and the available datasets need to be further explored and cross-verified with actual monitoring of fish in processing plants, the results obtained indicate that the system the EU is using to sample purse seine landings and estimate catches may be subject to bias which, if confirmed, could have consequences on the statistics, stock assessments, management advice, and management measures adopted by both organizations.

As the discrepancies are further investigated through the use of sale slip data of higher resolution (by individual trip, destination market, etc.), plant sampling and details from vessel logbooks and T3 output (catches by trip by fishing mode by species and size), it is advisable that the ICCAT and the IOTC consider contemplating alternative scenarios of catch and size frequency distributions in assessing the status of the stocks of tropical tunas, through the incorporation of catch series and catch-at-size matrices adjusted for the biases identified in this study. Considering that the EU adopted the existing sampling scheme in 1998, it is recommended that alternative scenarios contemplate extending the time-series for as long as required.

The results of this study, while preliminary, stress the need for an urgent revision of the sampling and catch estimation protocols the EU has been using since 1998. In conducting this review, the EU should contemplate verifying the validity of T 3 to estimate the catches of individual vessels, in particular in cases where those estimates are used for purposes as quota monitoring. The results of this study and previous work seem to invalidate its use for that purpose.

Acknowledgments

The authors thank the IEO (Pedro Pascual, Francisco Abascal), Vanessa Rojo (OPAGAC IEO Tenerife) and SFA (Vincent Lucas) for providing T3 output tables for the OPAGAC fleet and representatives of the fishing companies ascribed to OPAGAC for providing all data available on sale slips used for this study. We are also thankful to Aitor Forcada (University of Alicante) for providing insight on Concordance Correlation and Bland \& Altman Methods to assess concordance between two measurement methods.

References

Bland, J.M., D.G. Altman, 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327 (8476): 307-10.

Carrasco, J-L., L. Jover, 2004. Métodos estadísticos para evaluar la concordancia. Med. Clin (Barc) 2004; 122(Supp 1):28-34.

Clermont, S., P. Chavance, A. Delgado, H. Murua, J. Ruiz, S. Ciccione, J. Bourjea, 2012. EU purse seine fishery interaction with marine turtles in the Atlantic and Indian Oceans: A 15 years analyses. 8th session of the working party on environment and bycatch, IOTC. 17-19 September 2012, South Africa.

Escalle, L., D. Gaertner, P. Chavance, A. Delgado de Molina, J. Ariz, B. Mérigot, 2017a. Forecasted consequences of simulated FAD moratoria in the Atlantic and Indian Oceans on catches and bycatches. ICES Journal of Marine Science, Volume 74, Issue 3, 1 March 2017, Pages 780-792.

Escalle, L., S. Brouwer, G. Pilling, 2017b. Report from Project 77: Development of potential measures to reduce interactions with bigeye tuna in the purse seine fishery in the western and central Pacific Ocean ('bigeye hotspots analysis'). Submitted at the 13th Regular Session of the Scientific Committee of the Western and Central Pacific Fisheries Commission. WCPFC-SC13-2017/MI-WP-07. https://www.wcpfc.int/file/157226/download?token=bhU_Y4-L

Fonteneau, A., 1976. Note sur les problèmes d'identification du bigeye dans les statistiques de pêche. Col. Doc. Cient. ICCAT, Vol. V(1): 168-171.

Giavarina, D., 2015. Understanding Bland Altman analysis. Biochemia Medica 2015;25(2):141-51.
IATTC, 2018. Tunas, billfishes and other pelagic species in the eastern Pacific Ocean in 2017. Submitted at the 93rd Regular Session of the Inter-American Tropical Tuna Commission. IATTC-93-01. https://www.wcpfc.int/file/215712/download?token=Rq2wuo-A

Lawson, T., 2013. Update on the estimation of the species composition of the catch by purse seiners in the Western and Central Pacific Ocean, with responses to recent independent reviews. Submitted at the 9th Regular Session of the Scientific Committee of the Western and Central Pacific Fisheries Commission. WCPFC-SC9-2013/ ST-WP-03. https://www.wcpfc.int/system/files/ST-WP-03-Spp-Comp-PS-WCPO.pdf

Lennert-Cody, C. E., Roberts, J. J., Stephenson, R. J. 2008. Effects of gear characteristics on the presence of bigeye tuna (Thunnus obesus) in the catches of the purse-seine fishery of the eastern Pacific Ocean. - ICES Journal of Marine Science, 65: 970-978.

Marsac, F., J.C. Báez, L. Floch, A. Fonteneau, 2017. Potential changes affecting species composition and tuna catch at size for purse seine fleets by using the new length-weight relationships for tropical tunas in the Indian Ocean. Submitted to 13th Working Party on Data Collection and Statistics. IOTC-2017-WPDCS13-20.

Pallarés P., Ch. Petit, 1998. Tropical tunas : new sampling and data processing strategy for estimating the composition of catches by species and sizes. Col. Doc. Cient. ICCAT, Vol. XLVIII (2): 230-246 (SCRS/1997/28).

Pianet R., Pallarés P., Petit C., 2000, New sampling and data processing strategy for estimating the composition of catches by species and sizes in the European purse seine tropical tuna fisheries. IOTC-WPDCS/2000/10.

Pita Fernández, S., S. Pértegas Díaz, 2004. La fiabilidad de las mediciones clínicas: el análisis de concordancia para variables numéricas. http://www.fisterra.com/mbe/investiga/conc_numerica/conc_numerica2.pdf

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Table 1. Species composition (percentage) estimated using T3 and obtained from sale slips, for vessel unloadings of the OPAGAC fleet during 2011-2016, by flag group, year and species group, and totals estimated from all unloadings.

	Spain	T3			SSLIP			Other	T3			SSLIP		
		AT>10	SKJ	AT<10	AT>10	SKJ	AT<10		AT>10	SKJ	AT<10	AT>10	SKJ	AT<10
	2011	25	61	15	31	52	18	2011	23	60	17	23	55	22
	2012	21	67	12	24	62	14	2012	26	62	12	27	57	17
	2013	17	74	9	20	69	11	2013	20	69	11	21	63	16
	2014	19	67	13	25	58	18	2014	22	67	11	23	66	11
	2015	20	62	17	23	51	26	2015	19	66	14	21	60	20
	2016	22	63	15	28	53	18	2016	19	66	15	22	56	22
	Total	21	66	14	25	58	18	Total	21	65	13	23	60	18
	Spain	T3			SSLIP			Seychelles	T3			SSLIP		
		AT>10	SKJ	AT<10	AT>10	SKJ	AT<10		AT>10	SKJ	AT<10	AT>10	SKJ	AT<10
	2011	20	53	27	29	44	28	2011	21	51	28	30	41	29
	2012	36	40	25	46	29	25	2012	36	40	24	44	30	26
	2013	na	na	na	na	na	na	2013	15	46	39	28	40	32
	2014	21	51	28	28	41	30	2014	16	55	28	27	45	29
	2015	29	47	24	35	35	30	2015	24	48	27	34	33	33
	2016	18	55	27	24	46	31	2016	12	59	29	20	50	30
	Total	24	50	26	31	40	29	Total	21	51	29	30	40	30

Table 2. Results from the Concordance Correlation Coefficient (CCC) of Lind and Intraclass Correlation Coefficient (ICC) analysis; and deviation from the mean (MT) estimated using Bland and Altman (B\&A) analysis; results include point ($\rho_{-} \mathrm{c} ; \rho_{-} \mathrm{i}$) and lower bound (LB) and upper bound (UB) estimates for each test. Data are presented by Ocean, Flag group (Spain/Other), and for all flags combined (All).

Top left: Total unloadings for the three tropical tuna species combined Top right: Unloadings of Yellowfin tuna and Bigeye tuna of 10 kg and above Bottom left: Unloadings of Yellowfin tuna and Bigeye tuna of under 10kg Bottom right: Unloadings of skipjack tuna (of under 10kg)

Com. Cat. Ocean Flag	Atlantic Ocean			Tropical	Tunas			Yellowfin	Bigeye	$\mathrm{a} \geq 10 \mathrm{~kg}$	($\mathrm{AT} \geq 10$	
				Indian Ocean			Atlantic Ocean			Indian Ocean		
	Spain	Other	All									
CCCp_{c}	0.99	0.97	0.98	0.96	0.94	0.95	0.92	0.93	0.93	0.83	0.62	0.74
CCCLb	0.97	0.95	0.97	0.82	0.86	0.90	0.81	0.90	0.88	0.74	0.44	0.64
$\mathrm{CCC}_{\text {ub }}$	0.99	0.98	0.99	0.99	0.98	0.98	0.97	0.95	0.95	0.89	0.75	0.82
ICC_{i}	0.99	0.97	0.98	0.96	0.94	0.95	0.93	0.93	0.93	0.82	0.56	0.72
ICC $\mathrm{Lb}_{\text {b }}$	0.97	0.95	0.97	0.93	0.88	0.92	0.85	0.89	0.89	0.67	0.24	0.57
ICCub	0.99	0.98	0.99	0.98	0.97	0.97	0.97	0.96	0.95	0.91	0.77	0.82
WSRT ρ	0.24	0.27	0.15	0.15	0.17	0.95	0.00	0.00	0.00	0.00	0.00	0.00
t	-0.7	-1.1	-1.3	0.5	-1.6	-0.8	-4.5	-3.5	-5.3	-8.5	-7.1	-10.7
df	25	67	93	33	26	60	25	67	93	33	26	60
ρ	0.52	0.27	0.20	0.65	0.12	0.40	0.00	0.00	0.00	0.00	0.00	0.00
Cl_{L}	-339	-208	-194	-236	-734	-351	-418	-156	-207	-852	-1219	-953
Cl_{U}	176	60	42	374	87	142	-156	-42	-95	-524	-674	-652
$B \& A_{d}$	82	74	76	-69	323	105	287	99	151	688	946	802
$B \& A_{l b}$	-1193	-1033	-1073	-1819	-1754	-1821	-363	-373	-399	-251	-432	-370
B\&Aub	1357	1180	1225	1682	2400	2031	936	572	701	1628	2324	1975
Com. Cat.	Yellowfin/Bigeye tuna <10kg (AT<10)						Skipjack tuna (SKJ)					
Ocean	Atlantic Ocean			Indian Ocean			Atlantic Ocean			Indian Ocean		
Flag	Spain	Other	All									
CCCp_{c}	0.76	0.63	0.67	0.85	0.88	0.87	0.97	0.94	0.95	0.79	0.81	0.79
CCClb	0.61	0.52	0.59	0.69	0.75	0.78	0.94	0.91	0.93	0.67	0.64	0.71
CCCub	0.86	0.72	0.74	0.93	0.94	0.92	0.98	0.97	0.97	0.87	0.90	0.86
ICCP_{i}	0.75	0.59	0.64	0.85	0.88	0.86	0.97	0.94	0.95	0.77	0.79	0.78
$\mathrm{ICC}_{\text {Lb }}$	0.52	0.42	0.51	0.73	0.76	0.78	0.93	0.91	0.93	0.59	0.60	0.65
ICCub	0.88	0.73	0.75	0.92	0.94	0.92	0.99	0.96	0.97	0.88	0.90	0.86
WSRT ρ	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
t	-4.7	-8.4	-9.7	-3.1	-2.7	-4.2	4.9	5.6	7.4	10.4	6.4	11.7
df	25	67	93	33	26	60	25	67	93	33	26	60
ρ	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cl_{L}	-388	-390	-365	-402	-406	-352	277	220	276	805	579	776
Cl_{U}	-152	-241	-241	-86	-55	-124	673	462	480	1198	1128	1096
$B \& A_{d}$	270	315	303	244	230	238	-475	-341	-378	-1002	-853	-936
$B \& A_{L B}$	-315	-301	-303	-662	-656	-652	-1456	-1340	-1374	-2128	-2241	-2183
$B \& A \cup в$	856	932	909	1151	1116	1128	506	659	619	125	535	311

Table 3a. Catches of tropical tunas recorded in the ICCAT database for purse seine fleets under the European sampling and catch estimation scheme (YFTr, BETr, SKJr); and catches corrected using the results obtained from the present analysis (YFTr, BETr, SKJr). Catches (metric tons) are presented by ocean, species and year.

ICCAT	PS EU+OTHER REPORTED		PS EU+OTHER CORRECTED			
	YFTr	BETr	SKJr	YFTc	BETc	SKJc
2011	54,935	19,724	96,581	61,948	23,073	86,218
2012	57,302	17,463	105,580	64,995	20,548	94,802
2013	48,932	16,395	119,282	56,328	19,579	108,702
2014	55,061	17,059	110,210	62,743	20,166	99,421
2015	65,172	15,382	116,639	74,087	18,139	104,966
2016	79,213	21,351	140,132	89,809	25,112	125,774

Table 3b. Catches of tropical tunas recorded in the IOTC database for purse seine fleets under the European sampling and catch estimation scheme (YFTr, BETr, SKJr); and catches corrected using the results obtained from the present analysis (YFTr, BETr, SKJr). Catches (metric tons) are presented by ocean, species and year.

IOTC	PS EU+SYC REPORTED			PS EU+SYC CORRECTED		
	YFTr	BETr	SKJr	YFTc	BETc	SKJc
2011	98,630	19,302	118,098	121,195	22,875	91,961
2012	108,697	14,132	72,885	126,242	15,830	53,643
2013	116,255	23,159	104,357	138,429	26,597	78,745
2014	114,868	18,264	118,645	139,266	21,356	91,155
2015	122,750	21,729	119,107	147,615	25,203	90,768
2016	125,222	20,100	166,886	156,154	24,175	131,880

Figure 1. Flow chart summarizing the procedure used by EU and Seychelles scientists to estimate catches by species and size for the tuna purse seine fishery in the Atlantic and Indian oceans.

Figure 2. Contribution (percentage) that each species group category made over the total catches unloaded by the OPAGAC fleet during 2011-16, by type of document (Sale Slips (SS) or T3 estimates), RFMO Area and Flag group.

Figure 3a \& Figure 3b. Box plots showing catches unloaded (in metric tons) per boat, ocean (AO: Atlantic Ocean; IO: Indian Ocean) and flag group for the OPAGAC fleet, over the period 2011-16.
a) Total catches of tropical tunas unloaded: shows box plots for total catches of tropical tunas unloaded per boat per year, with box plots presented in pairs including Sale Slips (SS: orange boxes) and T3 estimates (T3: green boxes);
b) Catches of specimens of yellowfin tuna and bigeye tuna weighing 10 kg or more: as above but only for large specimens of YFT \& BET (AT $\geq 10 \mathrm{~kg}$).

Figure 3c \& Figure 3d (cont.). Box plots showing catches unloaded (in metric tons) per boat, ocean (AO: Atlantic Ocean; IO: Indian Ocean) and flag group for the OPAGAC fleet, over the period 2011-16.
c) Catches of specimens of skipjack tuna: as above but only for specimens of SKJ, with all specimens assumed to belong to the category $<10 \mathrm{~kg}$;
d) Catches of specimens of yellowfin tuna and bigeye tuna weighing less than 10 kg : as above but only for small specimens of YFT \& BET (AT<10 kg).

Figure 4. Box plots showing catches unloaded (in metric tons) per boat, ocean (AO: Atlantic Ocean; IO: Indian Ocean) and year for the OPAGAC fleet, over the period 2011-16.
a) Total catches of tropical tunas unloaded: shows box plots for total catches of tropical tunas unloaded per ocean per year, with box plots presented in pairs including Sale Slips (SS: orange boxes) and T3 estimates (T3: green boxes);
b) Catches of specimens of yellowfin tuna and bigeye tuna weighing 10 kg or more: as above but only for large specimens of YFT \& BET (AT $\geq 10 \mathrm{~kg}$);

Figure 4 (cont.). Box plots showing catches unloaded (in metric tons) per boat, ocean (AO: Atlantic Ocean; IO: Indian Ocean) and year for the OPAGAC fleet, over the period 2011-16.
c) Catches of specimens of skipjack tuna: as above but only for specimens of SKJ, with all specimens assumed to belong to the category $<10 \mathrm{~kg}$;
d) Catches of specimens of yellowfin tuna and bigeye tuna weighing less than 10 kg : as above but only for small specimens of YFT \& BET (AT<10 kg).

Figure 5. Box plots showing catches unloaded (in metric tons) per boat, ocean (AO: Atlantic Ocean; IO: Indian Ocean) and ownership for the OPAGAC fleet, over the period 2011-16.
a) Total catches of tropical tunas unloaded: shows box plots for total catches of tropical tunas unloaded per ownership per year, with box plots presented in pairs including Sale Slips (SS: orange boxes) and T3 estimates (T3: green boxes);
b) Catches of specimens of yellowfin tuna and bigeye tuna weighing 10 kg or more: as above but only for large specimens of YFT \& BET (AT $\geq 10 \mathrm{~kg}$);

Figure 5 (cont.). Box plots showing catches unloaded (in metric tons) per boat, ocean (AO: Atlantic Ocean; IO: Indian Ocean) and ownership for the OPAGAC fleet, over the period 2011-16.
c) Catches of specimens of skipjack tuna: as above but only for specimens of SKJ, with all specimens assumed to belong to the category $<10 \mathrm{~kg}$;
d) Catches of specimens of yellowfin tuna and bigeye tuna weighing less than 10 kg : as above but only for small specimens of YFT \& BET (AT<10 kg).

Figure 6a. Dispersion and difference Bland and Altman plots used to compare T3 estimates and unloadings of tropical tunas obtained from sale slips provided by the OPAGAC fleet for the period 2011-16, by RFMO Area.

Left panel: Unloadings estimated using T3 (x axis) versus those obtained from sale slips (y axis), with line of equality.

Mid panel: Plot of differences (metric tons per vessel per year) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (metric tons) are represented through the pink-shaded area and 1.96*se (metric tons) through the broken red lines.

Right panel: Plot of differences (\%) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (\%) are represented through the pinkshaded area and $1.96 *$ se (\%) through the broken red lines.

Figure 6b. Dispersion and difference Bland and Altman plots used to compare T3 estimates and unloadings of yellowfin tuna and bigeye tuna $\geq 10 \mathrm{~kg}$ ($\mathrm{AT} \geq 10 \mathrm{~kg}$) obtained from sale slips provided by the OPAGAC fleet for the period 2011-16, by RFMO Area.

Left panel: Unloadings estimated using T3 (x axis) versus those obtained from sale slips (y axis), with line of equality.

Mid panel: Plot of differences (metric tons per vessel per year) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (metric tons) are represented through the pink-shaded area and 1.96*se (metric tons) through the broken red lines.

Right panel: Plot of differences (\%) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (\%) are represented through the pinkshaded area and $1.96 *$ se (\%) through the broken red lines.

Figure 6c. Dispersion and difference Bland and Altman plots used to compare T3 estimates and unloadings of yellowfin tuna and bigeye tuna $<10 \mathrm{~kg}$ (AT<10 kg) obtained from sale slips provided by the OPAGAC fleet for the period 2011-16, by RFMO Area.

Left panel: Unloadings estimated using T3 (x axis) versus those obtained from sale slips (y axis), with line of equality.

Mid panel: Plot of differences (metric tons per vessel per year) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (metric tons) are represented through the pink-shaded area and 1.96*se (metric tons) through the broken red lines.

Right panel: Plot of differences (\%) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (\%) are represented through the pinkshaded area and 1.96 *se (\%) through the broken red lines.

Figure 6d. Dispersion and difference Bland and Altman plots used to compare T3 estimates and unloadings of skipjack tuna obtained from sale slips provided by the OPAGAC fleet for the period 2011-16, by RFMO Area.

Left panel: Unloadings estimated using T3 (x axis) versus those obtained from sale slips (y axis), with line of equality.

Mid panel: Plot of differences (metric tons per vessel per year) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (metric tons) are represented through the pink-shaded area and 1.96*se (metric tons) through the broken red lines.

Right panel: Plot of differences (\%) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (\%) are represented through the pinkshaded area and 1.96 *se (\%) through the broken red lines.

Output Table from the T3 Process

Output Table Sale Slips

Nombre del buque
Fecha de desembarco
Fecha inicio Marea
Fecha Fin Marea
Descarga completa? ($\mathrm{Si} / \mathrm{No}$)
Total no descargado (kg)
Total descargado (kg)
YFT $>10 \mathrm{~kg}$
YFT<10kg
BET $>10 \mathrm{~kg}$
BET<10kg
SKJ
ALB
Melva/Bacoreta
Otros

Name of the purse seiner
Date of unloading
Date start of the trip
Date end of the trip
All catches unloaded? (Yes/No
Total catch not unloaded (kg)
Total catch unloaded (kg)
Catch yellowfin tuna $\geq 10 \mathrm{~kg}$
Catch yellowfin tuna $<10 \mathrm{~kg}$
Catch bigeye tuna $\geq 10 \mathrm{~kg}$
Catch bigeye tuna $<10 \mathrm{~kg}$
Catch skipjack tuna
Catch albacore
Catch frigate tuna/Atlantic black skipjack
Catch other species

Bland \& Altman Plots

a

b

C

d

e

f

g

h

T3 MT (boatyear) ===>

SSLIP Mean Unloaded (MT) ===>

SSLIP Mean Unloaded (MT) ===>
i

j

T3 MT (boatyear) ===>
k

SSLIP Mean Unloaded (MT) ===>
1

T3 MT (boatyear) ===>

SSLIP Mean Unloaded (MT) ===>

Tropical Tunas Indian Ocean Spain

SSLIP Mean Unloaded (MT) ===>

SSLIP Mean Unloaded (MT) ===>

Th
m

T3 MT (boatyear) $===>$
n

T3 MT (boatyear) ===>
0
p

T3 MT (boatyear) ===>

T3 MT (boatyear) ===>
,

Skipjack Indian Ocean Spain

SSLIP Mean Unloaded (MT) ===>

Skipjack Indian Ocean Seychelles

SSLIP Mean Unloaded (MT) ===>

SSLIP Mean Unloaded (MT) ===>

YFT \& BET <10kg Indian Ocean Spain

SSLIP Mean Unloaded (MT) ===>

Skipjack Indian Ocean Seychelles

SSLIP Mean Unloaded (MT) ===>

SSLIP Mean Unloaded (MT) ===>

Skipjack Indian Ocean Spain

SSLIP Mean Unloaded (MT) ===>

YFT \& BET < 10kg Indian Ocean Seychelles

Figure 7 (previous pages). Dispersion and difference Bland and Altman plots used to compare T3 estimates and unloadings obtained from sale slips provided by the OPAGAC fleet for the period 2011-16, by species and commercial category group, flag group and RFMO Area.

Left panel: Unloadings estimated using T3 (x axis) versus those obtained from sale slips (y axis), with line of equality.

Mid panel: Plot of differences (metric tons per vessel per year) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (metric tons) are represented through the pink-shaded area and 1.96*se (metric tons) through the broken red lines.

Right panel: Plot of differences (\%) between T3 estimates and sale slip data versus the mean of the two measurements. The bias is represented by the gap between the x axis corresponding to a zero differences, and the parallel broken black line to the x axis. Confidence intervals (\%) are represented through the pinkshaded area and 1.96 *se (\%) through the broken red lines.

ATLANTIC OCEAN:

a. OPAGAC Spain: Total unloadings of tropical tunas
b. OPAGAC Other Flags: Total unloadings of tropical tunas
c. OPAGAC Spain: Unloadings of yellowfin \& bigeye tunas $\geq 10 \mathrm{~kg}$
d. OPAGAC Other Flags: Unloadings of yellowfin \& bigeye tunas $\geq 10 \mathrm{~kg}$
e. OPAGAC Spain: Unloadings of skipjack tuna
f. OPAGAC Other Flags: Unloadings of skipjack tuna
g. OPAGAC Spain: Unloadings of yellowfin \& bigeye tunas $<10 \mathrm{~kg}$
h. OPAGAC Other Flags: Unloadings of yellowfin \& bigeye tunas $<10 \mathrm{~kg}$

INDIAN OCEAN:

i. OPAGAC Spain: Total unloadings of tropical tunas
j. OPAGAC Other Flags: Total unloadings of tropical tunas
k. OPAGAC Spain: Unloadings of yellowfin \& bigeye tunas $\geq 10 \mathrm{~kg}$

1. OPAGAC Other Flags: Unloadings of yellowfin \& bigeye tunas $\geq 10 \mathrm{~kg}$
m. OPAGAC Spain: Unloadings of skipjack tuna
n. OPAGAC Other Flags: Unloadings of skipjack tuna
o. OPAGAC Spain: Unloadings of yellowfin \& bigeye tunas $<10 \mathrm{~kg}$
p. OPAGAC Other Flags: Unloadings of yellowfin \& bigeye tunas $<10 \mathrm{~kg}$

[^0]: ${ }^{1}$ Producers’ Organisation of Large Tuna Freezers (OPAGAC), C/Ayala 54 2A 28001 Madrid, Spain (miguel.herrera@opagac.org)
 ${ }^{2}$ Instituto Español de Oceanografía (IEO), Centro oceanográfico de Canarias, Vía Espaldón, Dársena Pesquera, Parcela 8, 38180 Santa Cruz de Tenerife, Spain

