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Abstract—This paper proposes explicit and implicit discrete-
time realizations for a class of homogeneous sliding-mode-
based differentiators. The proposed approach relies on the
exact discretization of the continuous differentiator. Also, it is
demonstrated that the proposed implicit discretization always
exists, is non-anticipative and unique. A numerical simulation
shows the better performance of the implicit scheme over the
proposed and the referenced explicit implementations.

Index Terms—Exact Discretization, Implicit Discretization,
Differentiator, Sliding-Mode

I. INTRODUCTION

Sliding-modes are widely used to design and implement
observer [1]–[4] due to their finite-time convergence, accuracy
and robustness properties with respect to uncertainties [5].
One of its main disadvantages is the chattering effect [5]. An
observer-based on sliding-modes is the high-order sliding mode
homogeneous differentiator presented in [6]. It estimates the
first n derivatives of a signal if its (n+ 1) order derivative
has a known bound. Moreover, this differentiator has shown
good robustness properties in the presence of noises, and exact
finite-time convergence in the absence of noises. The structure
of this observer has been implemented in different areas in
[7]–[9].

The controllers and observers are usually discretized to
be implemented in a digital device. There are plenty of
reasons to use those discrete-time approximations, in the
form of the discrete-time algorithms, instead of the direct
application of continuous ones. However, for the case of
high-gain and sliding mode based methods, an inadequate
discretization can lead to numerical chattering [10], [11] i.e.,
spurious oscillations due only to the numerical methods used
in the discretization procedure. In order to avoid the numerical
chattering effect, the design of discrete-time sliding modes
has been analyzed and applied in several works [10]–[15].
Recently, concerning the homogeneous differentiator [6], some
explicit discrete-time observers have been presented [16]–[18].
These schemes have been proposed such that the discrete-time
differentiator preserves the estimation accuracy properties. In
[17], a discrete-time differentiator is shown to be less sensitive

The authors sincerely thank CONACyT for the scholarship provided during
this investigation to the student with No. CVU 555845, and to CINVESTAV
for the provided resources.

to gain overestimation. In [18], a discrete-time system has
been proposed, where nonlinear higher-order terms are used.
Furthermore, it preserves the asymptotic accuracy properties
for sampling and noise known from the continuous-time
algorithms.

Other schemes of discretization rely on the implicit
discretization [19]–[22], which have been shown to guarantee
a smooth stabilization of the discrete sliding surface in the
disturbance-free case, hence avoiding the chattering effects due
to the time discretization.

In this paper, in order to obtain a higher accuracy
performance when a low sampling frequency is used, two
discretization algorithms for the high-order sliding mode
homogeneous differentiator are derived. The first one is
obtained by using the explicit exact discretization [23]. The
second one is based on the implicit discretization, and it is
shown to be able to avoid the chattering effects.

This paper is organized as follows. In Section II, important
notations for the next sections are given. Also, it gives a
summary of the continuous-time differentiator presented in [6].
In Section III, an explicit discrete-time differentiator and an
implicit discrete-time differentiator are presented. It is also
demonstrated that, for the implicit discretization, its well-
posedness (non-anticipative, existence, and uniqueness of the
controller). Section IV shows a comparison of the two discrete-
time differentiators proposed in this work against the explicit
discrete differentiator proposed in [16]. The conclusions are
shown in Section V.

II. PRELIMINARIES

A. Notation

For x ∈ R, the absolute value of x, denoted by |x|, is defined
as |x| = x if x ≥ 0 and |x| = −x if x < 0. The set-valued
function sign(x) is defined as sign(x) = 1 if x > 0, sign(x) =
−1 if x < 0, and sign(x) ∈ [−1, 1] if x = 0. For γ ≥ 0, the
signed power γ of x is defined as bxeγ = |x|γ sign(x). In
particular, if γ = 0 then bxeγ = sign(x).

For the closed non empty convex set [−1, 1] ⊆ R, the
normal cone at s ∈ [−1, 1], denoted as N[−1,1] (s), is defined
as N[−1,1] (−1) = R−, N[−1,1] (1) = R+, and N[−1,1] (s) = 0
for s ∈ (−1, 1). Note that, by using a convex analysis, it follows



N[−1,1] (s) is the inverse of the sign set-valued function. With
y ∈ R, it can be represented as:

x ∈ sign(y)⇔ y ∈ N[−1,1] (x) .

A diagonal matrix with the elements on the main diagonal
equal ri is represented as diag{ri}ni=0. For strictly positive
numbers ri, i = 0, 1, 2, ..., n and λ > 0, the vector of weights
r is defined as r = (r0, r1, ..., rn)

T where the elements
ri are positive. The dilation matrix function is defined as
Λr (λ) = diag{λri}nri=0, where the elements ri correspond to
the element of the vector of weight r. Furthermore ∀x ∈ Rn,
Λr (λ)x = (λr0x0, ..., λ

rnxn)
T .

As in [24] the following definitions is presented. A vector
field g : Rn → Rn is r-homogeneous with degree v ∈ R,
where v ≥ − (min{ri|0 ≤ i ≤ n}), if ∀x ∈ Rn and ∀λ > 0
the following equation is satisfied:

λ−vΛ−1
r (λ) g (Λr (λ)x) = g (x) (1)

.

B. High-order sliding Mode homogeneous differentiator

The objective of a high-order sliding mode differentiator is
to obtain the first n derivatives of a function online. In this
paper, this function is represented as f0 (t), where f0 : R→ R.
It is also assumed that this function is at least (n + 1) − th
differentiable and |f (n+1)

0 (t) | ≤ L for a known real number
L > 0. Furthermore, the input of the differentiator is defined
as f(t) = f0(t) + ∆ (t). It is also assumed that ∆ (t) is a
Lebesgue-measurable bounded noise with |∆(t)| ≤ δ for an
unknown real number δ.

In order to calculate the derivatives f (1)0 (t), f (2)0 (t), · · · ,
f
(n)
0 (t) a state space representation is used. To obtain this

representation, the states variables are defined as xi = f
(i)
0 (t)

and x =
[
x0 x1 x2 · · · xn

]T ∈ Rn+1. Therefore,
we obtain the following representation for the differentiation
problem in the state space:

ẋ = Ax+ en+1f
(n+1)
0 (t); yo = eT1 x (2)

with the canonical vectors e1 =
[

1 0 · · · 0 0
]T

,
en+1 =

[
0 0 · · · 0 1

]T
and A is the following

nilpotent matrix:

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


The representation (2) is interesting in the sense that the

successive time derivatives of f0 (t) can be obtained through
the design of a state observer. Previously in [6], the following

observer has been proposed to estimate the first n derivatives
of f0(t):

ż0 = −λnL
1

n+1 bz0 − f0 (t)e
n

n+1 + z1

ż1 = −λn−1L
2

n+1 bz0 − f0 (t)e
n−1
n+1 + z2

...

żn = −λ0L bz0 − f0 (t)e0

(3)

where z =
[
z0 z1 z2 . . . zn

]T
estimates the state

vector x in finite time for adequate parameters λi > 0.
Moreover, in the presence of noise, the differentiator (3) is
implemented by using f (t) instead of f0 (t).

For observer (3), sequences of parameters λi are presented
in [25] for any n integer such that 0 ≤ n ≤ 7. On the
other hand, the parameters λi are not unique due to the
fact that the sequences are built by using any λ0 > 1 [6].
Different sequences are presented in [26], which are defined
for 1 ≤ n ≤ 10. Defining the estimation errors as σi = zi−xi
for i = 0, 1, . . . , n. The differentiator (3) can be rewritten as:

ż = Az +Bu (σ0) (4)

where B is the ((n+ 1)× (n+ 1)) identity matrix, u (σ0) is
considered as the input vector of the observer and is defined
as follows:

u (σ0) = [Ψ0 (σ0) Ψ1 (σ0) . . . Ψn (σ0)]
T

Ψi (σ0) = −λn−iL
i+1
n+1 bσ0e

n−i
n+1

(5)

with σ0 = z0−f0 (t). The error vector is defined as σ = z−x
and the error dynamics can be represented as the following
system:

σ̇ = Aσ +Bu (σ0)− en+1f
n+1
0 (t) = g(σ)

Notice that the vector field g (σ), with v = −1 and the
vector of weights r = (n+ 1, n, . . . , 2, 1), satisfies Equation
(1). Hence g (x) is r-homogeneous with degree −1.

III. MAIN RESULTS

In this section, two new discretization algorithms are
proposed for the homogeneous differentiator (3): the explicit
exact one and the implicit exact one. For the implicit exact
discretization algorithm, the methodology is based on [20].
Until now, for sliding mode controllers, this technique has
been only implemented for first order sliding mode controllers
[19], sliding mode twisting controllers [21] [22] and super-
twisting controllers [20] [22].

A. Explicit Exact Discretization Algorithm

First, signal f0 (t) is measured at the time instants tk = kτ
for k = 0, 1, 2, 3, · · · , where τ is the sampling time and
is assumed to be constant. Let us denote xi (tk) = xi,k,
zi (tk) = zi,k and σi (tk) = σi,k. Furthermore, the vector
of inputs of the observer is considered constant over the time
interval [tk, tk+1) and is defined by using (5) as uk = u (σ0,k).
Under these assumptions, an explicit exact discretization is
performed for system (3) (see [23] for detailed explanations).



As A is a nilpotent matrix, then the following discrete-time
observer is obtained:

zk+1 = Φ (τ) zk +B∗ (τ)uk

uk = [Ψ0 (σ0,k) Ψ1 (σ0, k) · · · Ψn (σ0, k)]
T

Ψi (σ0,k) = −λn−iL
i+1
n+1 bσ0,ke

n−i
n+1

(6)

where Φ (τ) and B∗ (τ) have the following representation:

Φ (τ) =


1 τ τ2

2! · · · τn−1

(n−1)!
τn

n!

0 1 τ · · · τn−2

(n−2)!
τn−1

(n−1)!

...
...

...
. . .

...
...

0 0 0 · · · 1 τ
0 0 0 · · · 0 1



B∗ (τ) =


τ τ2

2!
τ3

3! · · · τn

n!
τn+1

(n+1)!

0 τ τ2

2! · · · τn−1

(n−1)!
τn

n!

...
...

...
. . .

...
...

0 0 0 · · · τ τ2

2!
0 0 0 · · · 0 τ


The discrete-time differentiator (6) has a similar structure

to those proposed in [16]–[18]. The main difference is that in
[16], B∗ (τ) is given as B∗ (τ) = τB and in [17], B∗ (τ)uk
are injection terms obtained by placing the eigenvalues of
the discrete error system. In [18], the explicit discrete-time
differentiator can be in the form of (6) with a different matrix
B∗ (τ).

Since function f
(n+1)
0 (t) can be variable over the time

interval [tk, tk+1), then a discrete-time system of (2) is obtained
by using Taylor series expansion with Lagrange’s remainders
[27], similarly to [17]:

xk+1 = Φ (τ)xk + h (7)

with

h =
[

τn+1

(n+1)!f
(n+1)
0 (ξn) τn

n! f
(n+1)
0 (ξn−1) · · · τf (n+1)

0 (ξ0)
]T

where ξi ∈ (tk, tk+1) and |f (n+1)
0 (ξi) | ≤ L.

By using Equations (6) and (7), the discrete form of the
error system is given as:

σk+1 = Φ (τ)σk +B∗ (τ)uk − h

B. Implicit discretization algorithm

Let us consider the same assumptions that in the previous
subsection. However, here, the law control uses σ0,k+1 instead
of σ0,k. A discretization is performed on system (4) by defining
the control law as:

uk+1 = [Ψ0,k+1 Ψ1,k+1 · · · Ψn,k+1]
T

Ψi,k+1 ∈ −λn−iL
i+1
n+1 bσ0,k+1e

n−i
n+1

In this manner, the following discretizations are obtained:

zk+1 = Φ (τ) zk +B∗ (τ)uk+1

σk+1 = Φ (τ)σk +B∗ (τ)uk+1 − h
(8)

Notice that σ0,k+1 cannot be calculated by using the second
equation of (8) due to the impossibility to measure the states
x1,k, x2,k, · · · , xn,k, vector h and f

(n+1)
0 (ξi). Therefore

these terms are considered as perturbations for the estimation
process of σ0,k+1. In order to implement observer (8), the
intermediate variable σ̃0,k+1 is defined as in [20] and the
following unperturbed equation is proposed:

σ̃0,k+1 = σ0,k + τΨ̃0,k +

n∑
m=1

τm

m!

(
zm,k +

τ

m+ 1
Ψ̃m,k

)
Ψ̃i,k+1 ∈ −λn−iL

i+1
n+1 |σ̃0,k+1|

n−i
n+1 sign(σ̃0,k+1)

(9)

To compute σ̃0,k+1, Equation (9) is rewritten as follows:

σ̃0,k+1 + an bσ̃0,k+1e
n

n+1 + · · ·+ a1 bσ̃0,k+1e
1

n+1 + . . .

+ bk ∈ −a0 sign(σ̃0,k+1)

where bk = −σ0,k −
∑n
m=1

τm

m! zm,k and al =
τn−l+1

(n−l+1)!λlL
n−l+1
n+1 . A new support variable is introduced:

ξk+1 ∈ sign(σ̃0,k+1). Then σ̃0,k+1 and ξk+1 are the solutions
of the generalized equations:

G (σ̃0,k+1) ∈ −a0 sign(σ̃0,k+1)

F (−a0ξk+1) ∈ N[−1,1] (ξk+1)

with G (x) and F (y), for x ∈ R and y ∈ R, defined as:

G (x) = x+ an bxe
n

n+1 + · · ·+ a1 bxe
1

n+1 + bk

F (y) = G−1 (y)

• If y > bk, then F (y) = (r0)
n+1

p (r) = rn+1 + anr
n + · · ·+ a1r + (bk − y) (12)

• If y < bk then F (y) = − (r0)
n+1

p (r) = rn+1 + anr
n + · · ·+ a1r − (bk − y) (13)

• If y = bk then F (y) = 0.
where r0 is the positive root of Equations (12) and (13)
respectively. Notice that (12) and (13) are polynomial
equations without zero coefficients and their signal patterns
have one sign change due to the positive parameters ai and
the conditions given above. One sign change in Equations (12)
and (13) indicates that each equation has only one positive
root due to the Descartes’ rule of signs [28].

Lemma 1: For parameters ai ∈ R+ and bk ∈ R, there is an
unique pair σ̃0,k+1 ∈ R and ξk+1 ∈ [−1, 1] which are solution
of the generalized Equations (10) and (11), given as follows:

• Case 1: bk > a0

ξk+1 = −1, σ̃0,k+1 ∈ R− and is determined by σ̃0,k+1 =
− (r0)

n+1, where r0 is the unique positive root of the
polynomial equation (14) given hereafter.

• Case 2: bk ∈ [−a0, a0]

σ̃0,k,+1 = 0 and ξk+1 = − bk
a0

.
• Case 3: bk < −a0



ξk+1 = 1, σ̃0,k+1 ∈ R+ and is determined by σ̃0,k+1 =
rn+1
0 , where r0 is the positive root of the polynomial equation

(15) given hereafter.
The polynomial equations are the following:

p (r) = rn+1 + anr
n + · · ·+ a1r + (−bk + a0) (14)

p (r) = rn+1 + anr
n + · · ·+ a1r + (bk + a0) (15)

The proof is given in Appendix A. Notice that the positive
root of the polynomial (14), r0 ∈

[
0, (bk − a0)

1
n+1

]
and

r0 ∈
[
0, (−bk − a0)

1
n+1

]
for Case 3. Therefore, the discrete-

time observer is expressed as follows:

zk+1 = Φ (τ) zk +B∗ (τ)vk+1

vk+1 =
[
Ψ̃0,k+1 Ψ̃1,k+1 · · · Ψ̃n,k+1

]T
Ψ̃i,k+1 = −λn−iL

i+1
n+1 |σ̃0,k+1|

n−i
n+1 ξk+1

(16)

As ξk+1 and σ̃0,k+1 are calculated using only ai, σ0,k
and zi,k, then the differentiator (16) is non-anticipative.
Furthermore, r0 is unique for the case 1 and 3 therefore σ̃0,k+1

and ξk+1 always exist ∀bk ∈ R and a0 6= 0 . In order to
implement observer (16), for each iteration k, the variables
σ̃0,k+1 and ξk+1 are calculated as in Lemma 1. The estimation
error of observer (16) is expressed as follows:

σk+1 = Φ (τ)σk +B∗ (τ)vk+1 − h (17)

An attractive characteristic of this discrete-time system is that
by using the variables εi,k = zi,k+1 − xi,k, for 0 ≤ i ≤ n and
defining εk = [ε0,k ε1,k · · · εn,k ]

T the following equations
are obtained:

εk = (Φ (τ)− I)zk +B∗ (τ)vk+1 + σk

εk = Φ (τ)σk +B∗ (τ)vk+1 + (Φ (τ)− I)xk
(18)

By using Equations (17) and (18), the following implicit
discrete-time error system is obtained:

εk+1 = Φ (τ) εk +B∗ (τ)vk+2 − h

vk+2 =
[
Ψ̃0,k+2 Ψ̃1,k+2 · · · Ψ̃n,k+2

]T
Ψ̃i,k+2 = −λn−iL

i+1
n+1 |ε0,k+1|

n−i
n+1 ξk+2

ξk+2 ∈ sign(ε0,k+1)

(19)

IV. SIMULATION RESULTS

In this section, some simulations are performed for n = 3
using the implicit discrete-time differentiator (16), the explicit
discrete-time differentiator (6) and the nth−order homogeneous
discrete-time differentiator (HDD), which was proposed in
[16]. These simulations were done in MATLAB and the
command roots was used for the implementation of the
implicit differentiator. For (16), zi,k+1 is compared against its
corresponding xi,k, due to the implicit discrete-time system
(19). In contrast to (16) for the differentiators (6) and the HDD,
each zi,k is compared against its corresponding xi,k. For these

simulations, the noise-free input f0(t) = sin (t)− cos (0.5t) is
used. Furthermore, the same parameters L = 2, τ = 0.2 sec,
λ0 = 1.1, λ1 = 3.06, λ2 = 4.16, λ3 = 3 are used for each
differentiator. The above parameters λi are obtained from [25].
Furthermore, the initial condition for each differentiator is
given as z0 = [0, 0, 0, 0]

T .
In Figures 1 2, 3 and 4, the best performance is shown using

the implicit differentiator, followed by the explicit differentiator
and the HDD with similar performances. In order to shown this
in a clearer way, the estimation errors are depicted in Figures
5, 6, 7 and 8.
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Finally, from these simulations, three performance indexes
are considered to compare the differentiators. The first index
is defined as yi = max {|σi,k| ∈ R|10 sec ≤ tk ≤ 20 sec}, for
(16), the terms yi are calculated by replacing σi,k by εi,k.
The second index Yi is the standard deviation of σ0,k+1 or
ε0,k+1, in the time interval 10 sec ≤ tk ≤ 20 sec. The third
index is the arithmetic mean µi for 10 ≤ tk ≤ 20 and σi,k or
εi,k, respectively. These variables are summarized in Table I.
From this table, the proposed implicit differentiator shows the
lowest maximum error, standard deviation and arithmetic mean
for each state. Meanwhile, the proposed explicit differentiator
shows a lower maximum error and standard deviation than the
HDD. On the other hand, the proposed explicit differentiator
shows the highest arithmetic mean.

TABLE I
PERFORMANCE INDEXES FOR 10 sec ≤ tk ≤ 20 sec.

Maximum Error Implicit Explicit HDD
y0 0.000139 0.023474 0.034911
y1 0.005502 0.163731 0.201379
y2 0.082027 0.667947 0.766403
y3 0.623977 1.383014 1.66018
Standard Deviation
Y0 5.79107×10−5 0.010852 0.016775
Y1 0.002759 0.074249 0.099873
Y2 0.042919 0.294402 0.37107
Y3 0.303047 0.645008 0.743021
Arithmetic Mean
µ0 6.776782×10−6 0.00359 0.000227
µ1 2.5372×10−4 0.034687 0.001264
µ2 0.004209 0.151629 0.016899
µ3 0.035425 0.30986 0.081065

V. CONCLUSION

This paper presented an exact discretization approach for
the high-order sliding mode homogeneous differentiator. This
procedure allows the obtention of two realizations of such
differentiator; namely, explicit and implicit expressions. As
a consequence of this method and an additional analysis,
it follows the main result of this paper. It is an implicit
discretization method as an implementation strategy of that
continuous differentiator. The proposed implicit and exact
discretization for the differentiator shows better accuracy
properties than the proposed exact explicit differentiator and
existing algorithms. Future works will address a demonstration



of convergence for the proposed differentiators in the presence
of measurement noise.
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APPENDIX

• Case 1: bk > a0

In this case, if σ̃k+1 = 0 then the inclusion (10) becomes
bk ∈ −a0 sign(0), but bk > a0 then bk /∈ [−a0, a0]. If
σ̃k+1 ∈ R+ then the left side of the inclusion (10) is rewritten
as:

σ̃0,k+1 + · · ·+ a1 (σ̃0,k+1)
1

n+1 + bk = −a0 (20)

Since bk > a0 and (σ̃0,k+1)
n−i
n+1 > 0, then the left-side of

the above equation is greater than a0, which is a contradiction.
If σ̃0,k+1 ∈ R− the inclusion (10) is rewritten as follows:

σ̃0,k+1 − · · · − a1 (−σ̃0,k+1)
1

n+1 + bk = a0

Using the variable r = (−σ̃0,k+1)
1

n+1 , p (r) = 0 is obtained,
where p (r) is the polynomial (14). It has only one positive
root due to its signal pattern with one sign change and the
coefficients ai > 0 [28]. Notice that r > 0 because as
σ̃0,k+1 ∈ R− and |σ̃0,k+1|

1
n+1 ∈ R+ then |σ̃0,k+1|

1
n+1 =

(−σ̃0,k+1)
1

n+1 = r. Hence, σ̃0,k+1 = − (r0)
n+1, where r0 is

the positive root of Equation (14). As bk > −a0ξk+1 for all
ξk+1 ∈ [−1, 1] then F (−a0ξk+1) = c for some c ∈ R−.
The inclusion (11) becomes ξk+1 ∈ sign(c), accordingly,
ξk+1 = −1.

• Case 3: bk < −a0
As in the above case, a demonstration can be performed,

where in this case ξk+1 = 1 and σ̃0,k+1 = (r0)
n+1, r0 is the

positive root of Equation (15).
• Case 2: bk ∈ [−a0, a0]

In this case− (bk + a0) ≤ 0 and a0−bk ≥ 0. If σ̃0,k+1 ∈ R+

then Equation (20) is obtained. Since (σ̃0,k+1)
n−i
n+1 > 0,

− (a0 + bk) > 0, which is a contradiction. In the same manner,
a contradiction is obtained for σ̃0,k+1 < 0. As σ̃0,k+1 = 0
satisfies the inclusion (10), thereby, σ̃0,k+1 = 0, the following
inclusion is equivalent to (11):

ξk+1 ∈ sign(F (−a0ξk+1)) (21)

when ξk+1 > − bk
a0

or ξk+1 < − bk
a0

contradictions are obtained.
ξk+1 = − bk

a0
is the unique solution for the inclusion (21) for

ξk+1 ∈ [−1, 1], it becomes − bk
a0
∈ sign(0).


