
Distinguished Hamiltonian theorem for
homogeneous symplectic manifolds
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Abstract

A diffeomorphism of a finite-dimensional flat symplectic manifold which is canonoid with
respect to all linear and quadratic Hamiltonians preserves the symplectic structure up to a
factor: so runs the “quadratic Hamiltonian theorem”. Here we show that the same conclusion
holds for much smaller “sufficiency subsets” of quadratic Hamiltonians, and the theorem may
thus be extended to homogeneous infinite-dimensional symplectic manifolds. In this way we
identify the distinguished Hamiltonians for the Kähler manifold of equivalent quantizations of
a Hilbertizable symplectic space.

1 Introduction
Given a symplectic manifold (𝑀,𝜔), a conformal symplectomorphism is a diffeomorphism 𝜙 : 𝑀 →
𝑀 preserving the symplectic structure modulo a factor: 𝜙∗𝜔 = 𝜆𝜔, 𝜆 ∈ ℝ \ {0}. Denote by
DiffCS(𝑀) the group of conformal symplectomorphisms. There has been of late a lot of interest
in DiffCS(𝑀), its subgroup DiffS(𝑀) of symplectomorphisms and other subgroups. One of the
purposes of this letter is to point out that considerable insight into the structure of DiffCS(𝑀) and
its subgroups can be gained by well-worn methods of classical mechanics.

From the outset, we shall be dealing with infinite dimensional manifolds (our examples arise
mainly from field theory). We suppose, to fix ideas, that (𝑀,𝜔) is a separable Riemannian manifold.
The bilinear form 𝜔𝑚 is continuous, strongly nondegenerate on 𝑇𝑚𝑀 for each 𝑚 ∈ 𝑀 . An element
of the Lie algebra of Diff (𝑀) belonging to the Lie subalgebra G of DiffS(𝑀), i.e., a vector field 𝑋

with the property L𝑋𝜔 = 0, is said to be locally Hamiltonian. The Cartan identity tells us that if
𝑋 ∈ G, then the 1-form 𝑖(𝑋)𝜔 is closed; if it is exact, we say that 𝑋 is Hamiltonian. We actually
have the following exact sequence of Lie algebra homomorphisms:

0−→X𝐻 −→G−→𝐻1(𝑀;ℝ) −→ 0, (1.1)

1



where the ideal of Hamiltonian vector fields is denoted X𝐻 . We shall say that 𝑓 smooth is a
Hamiltonian function for 𝑋 𝑓 if 𝑖(𝑋 𝑓 )𝜔 = 𝑑𝑓 .

Now, let 𝑋 ∈ G and 𝜙 ∈ Diff (𝑀) be given and assume that the transformed vector field 𝜙∗𝑋
remains in G. Then 𝜙 is said to be canonoid with respect to 𝑋 . It is easily seen that if 𝜙 belongs to
DiffCS(𝑀) then it is canonoid with respect to any element of G. For finite dimensional manifolds,
the converse is an immediate consequence of Lee Hwa-Chung’s theorem [1]. At any rate, the
following argument extends the validity of this result to strongly symplectic infinite dimensional
manifolds. Note that 𝑋 𝑓 2 = 2 𝑓 𝑋 𝑓 . Assume that 𝛼 is a nonzero closed 2-form on 𝑀 such that for
every function ℎ on 𝑀 , L𝑋ℎ

𝛼 = 0. Then 𝑑𝛼ℎ = 0 where 𝛼ℎ := 𝑖(𝑋ℎ)𝛼. If ℎ = 𝑓 2 we get

0 = L𝑋ℎ
𝛼 = 2 𝑑𝑓 ∧ 𝛼 𝑓 .

Then necessarily 𝛼 𝑓 = 𝑐 𝑑𝑓 , where 𝑐 must be a nonzero constant, and the conclusion follows.
Some twenty years ago, it was remarked [2] that for the simplest kind of symplectic manifolds,

the property of being canonoid with respect to a subset of G is enough to characterize a conformal
symplectomorphism.
Quadratic Hamiltonian Theorem (Currie and Saletan, 1972). Let us consider ℝ2𝑛 = {𝑞𝑖, 𝑝𝑖}
endowed with the standard symplectic structure 𝜔 := 𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖. A diffeomorphism 𝜙 : ℝ2𝑛 → ℝ2𝑛

is a conformal symplectomorphism if and only if it is canonoid with respect to every Hamiltonian
vector field generated by a linear or quadratic Hamiltonian function in the {𝑞𝑖, 𝑝𝑖} coordinates:

𝜙∗𝜔 = 𝜆𝜔 for some nonzero 𝜆 ∈ ℝ ⇐⇒ 𝜙∗G
1,2 ⊆ G. (1.2)

The set of Hamiltonian functions generating G1,2 is called a sufficiency set. There is no global
meaning for linear or quadratic Hamiltonians in a general symplectic manifold. There have been
several efforts for developing an analogue of the quadratic Hamiltonian theorem in a more intrinsic
context; see [3] and for global considerations [4]. The implausibility of results of this type for
general symplectic manifolds transpires.

Now, one can remark that the sufficiency set found by Currie and Saletan generates the action
of the affine symplectic group on ℝ2𝑛. One conjectures that something similar can be said about
DiffCS(𝑀) if 𝑀 is a homogeneous manifold. This belief is substantiated in what follows. For
reasons that soon will become apparent, we shall only consider manifolds with an almost complex
structure; this is why we employ strong symplectic forms from the beginning.

In our context, the quadratic Hamiltonian theorem transmutes into a fairly general uniqueness
result for invariant symplectic structures. It turns out that unitary invariance of 𝜔 in the linear case
is all that is needed and so we find, as a byproduct, that in the old theorem by Currie and Saletan
there was room for improvement.

In Section 2, the linear case is dealt with as preparation. Then, a general result is proved in
Section 3 and exemplified in full detail on the infinite dimensional Kähler manifold of equivalent
bosonic quantizations of a hilbertizable symplectic space.

2 Sufficiency sets for linear unitarizable symplectics
Lemma 1. Let 𝐻 be a complex Hilbert space with inner product ⟨· | ·⟩ = ℜ⟨· | ·⟩ + 𝑖ℑ⟨· | ·⟩ =: 𝑑 + 𝑖𝑆.
Consider 𝐻 as a symplectic space with the underlying real-linear structure and symplectic form
given by 𝑆. Suppose that a diffeomorphism 𝜙 : 𝐻 → 𝐻 is such that both constant and complex-linear
skewadjoint vector fields are still Hamiltonian for 𝜙∗𝑆. Then 𝜙 is a conformal symplectomorphism.
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Remark. There is no difference between Hamiltonian and locally Hamiltonian vector fields in the
present context.

Proof. First note that a continuous real-linear operator 𝐴 on 𝐻 can be regarded as a vector field, and
linear locally Hamiltonian vector fields corresponding to operators skewadjoint with respect to 𝑆:

𝐴 ∈ G ⇐⇒ L𝐴𝑆(𝑢, 𝑣) = 𝑆(𝐴𝑢, 𝑣) + 𝑆(𝑢, 𝐴𝑣) = 0 for all 𝑢, 𝑣 ∈ 𝐻. (2.1)

In other words, linear elements of G form the Lie algebra sp of the symplectic group Sp(𝐻), with
Lie brackets of vector fields going over to commutators. Naturalness of the Lie derivative:

𝜙∗(L𝑋𝛼) = L𝜙∗𝑋 (𝜙∗𝛼) for all forms 𝛼 (2.2)

gives at once:
L𝜙∗𝑋𝑆 = 0 ⇐⇒ L𝑋 (𝜙∗𝑆) = 0. (2.3)

The hypothesis thus says that L𝑋 (𝜙∗𝑆) = 0 with respect to all constant vector fields; it means that
𝜙∗𝑆 is constant in the original chart, so we can think of it as a bilinear form on 𝐻, just like 𝑆.

Denote by 𝐽 the operator of multiplication by 𝑖 on 𝐻. This is a linear skewadjoint vector
field, so that L𝐽 (𝜙∗𝑆) = 0 by hypothesis. That is to say, 𝜙∗𝑆(𝑢, 𝐽𝑣) + 𝜙∗𝑆(𝐽𝑢, 𝑣) = 0. Define
ℎ(𝑢, 𝑣) := 𝜙∗𝑆(𝑢, 𝐽𝑣) + 𝑖𝜙∗𝑆(𝑢, 𝑣). This is a (not necessarily positive-definite) hermitian form in
view of (2.1) and our last remark. Moreover, ℎ is invariant under the unitary group U(𝐻), since
L𝑋 (𝜙∗𝑆) = 0 for infinitesimally unitary 𝑋 . Now consider the hermitian operator 𝑂 defined (via
the Riesz theorem) by ⟨· | 𝑂·⟩ = ℎ(·, ·). It commutes with the whole unitary group, so we have
𝑂 = 𝜆 1, i.e., ℎ(·, ·) = 𝜆⟨· | ·⟩ with 𝜆 ∈ ℝ \ {0}. In particular, 𝜙∗𝑆 = 𝜆𝑆 and 𝜙 is a conformal
symplectomorphism. □

There is nothing intrinsic in our particular identification of 𝐽 with 𝑖 1. Given a real vector space
𝑉 with a symplectic form 𝑆, choices of complex Hilbert embeddings are given by the set (which
may be empty in infinite dimensions) of real endomorphisms 𝐽 such that

𝐽2 = −1,
𝑆(𝐽𝑢, 𝐽𝑣) = 𝑆(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉,

𝑆(𝑣, 𝐽𝑣) > 0 for all nonzero 𝑣 ∈ 𝑉.

(2.4)

In other words, 𝐽 is a complex structure, a symplectic operator and is such that the symmetric
bilinear form

𝑑𝐽 (𝑢, 𝑣) := 𝑆(𝑢, 𝐽𝑣) (2.5)

satisfies 𝑑𝐽 (𝑣, 𝑣) > 0 for all nonzero 𝑣. Therefore the hermitian form

⟨𝑢 | 𝑣⟩ := 𝑆(𝑢, 𝐽𝑣) + 𝑖 𝑆(𝑢, 𝑣) = 𝑑𝐽 (𝑢, 𝑣) + 𝑖 𝑑𝐽 (𝐽𝑢, 𝑣) (2.6)

is a positive definite inner product on𝑉 , regarded as a complex vector space by defining (𝛼+ 𝑖𝛽)𝑣 :=
𝛼𝑣 + 𝛽𝐽𝑣. Note that the set of operators satisfying the first two properties in (2.4) is Sp(𝑉) ∩ sp(𝑉).

Given one such 𝐽, the conjugate 𝑔𝐽𝑔−1 by operators 𝑔 ∈ Sp(𝑉) is an operator of the same type;
all of them are conjugate in this way, and the topologies associated to inner products corresponding
to different 𝐽’s are all equivalent (see Section 3). We denote by U𝐽 (𝑉) the subgroup of symplectic
operators commuting with 𝐽; these are conjugates of the elements of a conventional unitary group.
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Corollary 1 (Infinite-dimensional quadratic Hamiltonian theorem). A sufficiency set on a Hilberti-
zable symplectic space is the subset of linear Hamiltonians plus the subset of quadratic (in general
unbounded) Hamiltonians generating the action of any subgroup of the type U𝐽 (𝑉).

Therefore: the straightforward generalization of the Currie–Saletan theorem is a fortiori valid
for a symplectic space whose skewsymmetric form is the imaginary part of an inner product. In
the context – admittedly less general than theirs – of infinite-dimensional Hilbertizable symplectic
spaces, our results improve those in [3] and [5] in several respects. By no means has 𝜙 to be
supposed 𝑆-skew, nor are the new Hamiltonians assumed to be the pullbacks of the original ones
by 𝜙.

In particular:

Corollary 2 (Improved finite-dimensional quadratic Hamiltonian theorem). A sufficiency set on
ℝ2𝑛 with the standard symplectic structure is the subset of linear Hamiltonians plus the subset of
quadratic Hamiltonians generating the action of U(𝑛) or of any one of its conjugate subgroups in
Sp(ℝ2𝑛).

For instance, identify as usual ℝ2𝑛 in Darboux coordinates to ℂ𝑛 by 𝑧 = 𝑞 + 𝑖𝑝 ↔
(𝑞
𝑝

)
. The

real form of 𝑖 1 is then 𝐽0 =

(
0 −1
1 0

)
and corresponding Hamiltonians are obtained as follows. For

𝐴 ∈ sp(𝑛,ℝ) we have 𝐻𝐴 = 1
2𝑣

𝑡𝐽0𝐴𝑣, because

𝑋𝐴 (𝑣) = 𝐴𝑣
𝜕

𝜕𝑣
and 𝑆 = 𝐽0 𝑑𝑣 ∧ 𝑑𝑣

as a differential form. If 𝐴 ∈ u(𝑛), then 𝐴𝑡𝐽0 + 𝐽0𝐴 = 0 and 𝐴𝑡 + 𝐴 = 0, so that:

𝐴 =

(
𝑀 𝑁

−𝑁 𝑀

)
(2.7)

with 𝑁 symmetric, 𝑀 skewsymmetric and

𝐻𝐴 = 1
2 (𝑞

𝑡𝑁𝑞 + 𝑝𝑡𝑁𝑝 − 𝑞𝑡𝑀𝑝 + 𝑝𝑡𝑀𝑞). (2.8)

It is well known that, in the infinite dimensional case, the proper choice of 𝐽 is a nontrivial, deli-
cate matter, since different choices are not quantum-mechanically equivalent in general. Generally
one chooses 𝐽 in order to unitarize the Hamiltonian dynamics one is interested in. We shall give a
couple of archetypal examples, in order to exemplify what we have in mind.

As a first example, let𝑉 be the space of solutions of the real Klein–Gordon equation in Minkowski
spacetime. To be precise, we have𝑉 = 𝐻1/2 ⊕𝐻−1/2, where 𝐻𝑠 for real 𝑠 denotes the usual Sobolev
spaces, and the strongly symplectic 𝑆 is given by:

𝑆(𝑣1, 𝑣2) := 𝑆

((
𝑓1
𝑔1

)
,

(
𝑓2
𝑔2

))
=

∫
( 𝑓1(𝑥)𝑔2(𝑥) − 𝑓2(𝑥)𝑔1(𝑥)) 𝑑3𝑥. (2.9)

We have the first-order system

𝑑

𝑑𝑡

(
𝑓

𝑔

)
= 𝐴

(
𝑓

𝑔

)
:=

(
0 1

Δ − 𝑚2 0

) (
𝑓

𝑔

)
. (2.10)
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Here the domain of the Hamiltonian vector field 𝐴 is not the whole of𝑉 , but it does not really matter.
The unique complex structure commuting with 𝐴 is the orthogonal part of the polar decomposition
of 𝐴:

𝐽 (𝐴) = 𝐴(−𝐴2)−1/2 =

(
0 (𝑚2 − Δ)−1/2

−(𝑚2 − Δ)1/2 0

)
. (2.11)

This is a bounded operator; second quantization on 𝐻1/2 ⊕ 𝐻−1/2 with the complex Hilbert space
structure given by 𝐽 (𝐴) yields correctly the neutral scalar quantum field.

As another example, consider the loop group 𝐿𝕋 = Map(𝑆1; 𝕋 ). Its component of winding
number zero, modulo the constant maps, can be identified to the vector space 𝑉 of real smooth
functions on 𝑆1 with vanishing constant term in their Fourier expansions. We enlarge 𝑉 so as to
include all the square-summable functions. On 𝑉 there is the strong symplectic form [6]:

𝑆( 𝑓 , 𝑔) :=
1

2𝜋

∫ 2𝜋

0
𝑓 ′(𝜑) 𝑔(𝜑) 𝑑𝜑. (2.12)

The natural complex structure is the one commuting with (the infinitesimal generator of) the
rotations. We obtain it as before:

𝐽

(
𝑑

𝑑𝜑

)
=

𝑑

𝑑𝜑

(
− 𝑑2

𝑑𝜑2

)−1/2
. (2.13)

Explicitly, if we write:
𝑓 (𝜑) =

∑︁
𝑛≠0

𝑓̂ (𝑛) 𝑒𝑖𝑛𝜑, (2.14)

then
𝐽 𝑓 (𝜑) =

∑︁
𝑛≠0

𝑖 sign(𝑛) 𝑓̂ (𝑛) 𝑒𝑖𝑛𝜑. (2.15)

𝐽 is thus the classical operator giving the conjugate series [7, Chap. 12]; (1− 𝑖𝐽)𝑉 is the polarization
consisting of holomorphic functions with vanishing constant term inside 𝑉ℂ = 𝐿2(𝑆1;ℂ).

We summarize our method in a form suitable for generalization in the next section. On
(𝑉, ⟨· | ·⟩) supporting a unitary irreducible representation of a group 𝐺, there is only one 𝐺-invariant
symplectic structure 𝜔 = ℑ⟨· | ·⟩ compatible with the complex structure. There might be more,
not compatible with 𝐽. This is avoided, as in the case of 𝐺 being the unitary group, if the group
representation contains in its centre the complex structure; under this assumption, 𝐺-invariance
implies 𝐽-compatibility.

3 Sufficiency sets for homogeneous complex manifolds
Theorem 1. Consider a connected Lie group 𝐺 acting transitively on (𝑀,𝜔) by symplectomor-
phisms and let 𝐺𝑚∗ denote the representation of the isotropy subgroup 𝐺𝑚 on 𝑇𝑚𝑀 (given by
restriction of the tangent action of 𝐺) at a point 𝑚 ∈ 𝑀 . Suppose there is an element 𝑗 in the
center of 𝐺𝑚 such that 𝐽𝑚 := 𝐺𝑚∗ 𝑗 is a complex structure on 𝑇𝑚𝑀 . If 𝐺𝑚∗ is irreducible, then
𝜔 is the unique, up to a constant factor, 𝐺-invariant 2-form on 𝑀 . Consequently, if 𝜙 ∈ Diff (𝑀)
is canonoid with respect to the fundamental vector fields of the action, then 𝜙 is a conformal
symplectomorphism.
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Proof. Let us employ 𝐽𝑚 to define an almost complex structure 𝐽 on 𝑀 , invariant under the action
of 𝐺, in the obvious way. This 𝐽 is compatible with 𝜔 by hypothesis. Then there are Hilbert space
structures in 𝑇𝑚′𝑀 given pointwise at any 𝑚′ ∈ 𝑀 by:

⟨𝑢 | 𝑣⟩𝑚′ := 𝜔𝑚′ (𝑢, 𝐽𝑚′𝑣) + 𝑖𝜔𝑚′ (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑇𝑚′𝑀. (3.1)

and the representation 𝐺𝑚′ on 𝑇𝑚′𝑀 is made complex. A Schur-lemma argument identical to the
one employed in Lemma 1 tells us that 𝜔𝑚′ and its nonzero multiples are the only 𝐺𝑚′-invariant
symplectic forms on𝑇𝑚′𝑀 . By homogeneity, every invariant form on 𝑀 is determined by its value at
a point, proving unicity. Taking 𝜔 = 𝜙∗(𝜔), the hypothesis of 𝜙 being canonoid gives 𝐺-invariance
of 𝜔, and, therefore, 𝜔 is a multiple of 𝜔. □

Remark. If 𝑀 is a suitable symmetric space, then one can prove that 𝐽 is integrable and 𝑀 is
actually Kähler [8, Chap. VIII]. The above arguments apply to many classical bounded symmetric
domains – they trivially show, for instance, that the usual area form on 𝑆2 (and metric) are the
unique SO(3)-compatible ones – and their infinite-dimensional generalizations.

We now proceed to examine in detail a very interesting infinite-dimensional Kähler manifold,
related to the linear problem: the manifold of equivalent – in the sense of quantum field theory –
complex structures on a Hilbertizable symplectic space. We explicitly compute the distinguished
Hamiltonians, i.e., those belonging to the sufficiency set.

In order to see clearly what is involved, it is convenient to adopt a real notation and language.
Let us choose and fix 𝐽0, satisfying (2.4), on the symplectic space (𝑉, 𝑆). If 𝐴 ∈ GLℝ(𝑉), we use
the notation 𝐴♯ := (𝐴−1)𝑡 for convenience, where the transpose map is defined with respect to 𝑑𝐽0

defined as in (2.5). If 𝐴 ∈ Endℝ𝑉 , its decomposition into 𝐽0-linear and 𝐽0-antilinear parts is given
by

𝑎(𝐴) := 1
2 (𝐴 − 𝐽0𝐴𝐽0), 𝑏(𝐴) := 1

2 (𝐴 + 𝐽0𝐴𝐽0). (3.2)

For 𝑔 ∈ GLℝ(𝑉), we have 𝑔 ∈ Sp := Sp(𝑉, 𝑆) ⇐⇒ 𝐽0𝑔 = 𝑔♯𝐽0. Then it is readily seen
that 𝑎 is invertible. Now define 𝑇 (𝑔) := 𝑏(𝑔)𝑎(𝑔)−1 for 𝑔 ∈ Sp. [For the next computations, we
abbreviate often 𝑎 := 𝑎(𝑔), 𝑇 := 𝑇 (𝑔).] We can parametrize 𝑔 ∈ Sp by the pair (𝑎, 𝑇). From the
definitions, 𝑔 = (1 + 𝑇)𝑎 and one can prove the following proposition.

Proposition. For 𝑔 ∈ Sp, 𝑇 = 𝑇 (𝑔) is 𝐽0-antilinear and symmetric, and 1−𝑇2 > 0 (i.e., is positive-
definite with respect to 𝑑𝐽0). Also, 𝑎 is 𝐽0-linear and one has 𝑎𝑡 (1 − 𝑇2)𝑎 = 1. Conversely, given a
pair (𝑎, 𝑇) of real endomorphisms of𝑉 satisfying these conditions, the endomorphism 𝑔 := (1+𝑇)𝑎
belongs to Sp. □

We define D(𝑉) := { 𝑋 ∈ Endℝ𝑉 : 𝑋𝐽0 = −𝐽0𝑋, 𝑋
𝑡 = 𝑋, 1− 𝑋2 > 0 }, which we may call the

open Cartan–Siegel disk of (𝑉, 𝑆).
Now, we want to consider the set of all positive symplectic complex structures on 𝑉 . Define

Σ(𝑉) as the orbit of 𝐽0 in sp under the adjoint action of Sp. Computation reveals that this is a Cayley
transform:

𝐽 (𝑔) := 𝑔𝐽0𝑔
−1 = (1 + 𝑇 (𝑔))𝑎(𝑔)𝐽0𝑎(𝑔)−1(1 + 𝑇 (𝑔))−1

= 𝐽0(1 − 𝑇 (𝑔)) (1 + 𝑇 (𝑔))−1. (3.3)

The formula establishes a continuous bijection betweenD(𝑉) andΣ(𝑉). The spaceΣ(𝑉) generalizes
the Lorentz hyperboloid in ℝ3.
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So we have constructed two homogeneous spaces for the symplectic group. On D(𝑉) the
symplectic group acts by linear fractional transformations 𝑇 ↦→ (𝑎𝑇 + 𝑏) (𝑏𝑇 + 𝑎)−1. The stabilizer
of 𝐽0 in Σ(𝑉) and 0 in D(𝑉) is U𝐽0 (𝑉), which is also the Cartan subgroup for the involution
𝑔 ↦→ −𝐽0𝑔𝐽0.

Denote by I2 the ideal of Hilbert–Schmidt operators on (𝑉, 𝑑𝐽0). In view of Shale’s theorem [9]
on bosonic quantization, it is natural to consider the restricted sets:

D′(𝑉) := {𝑇 ∈ Σ(𝑉) : 𝑇 ∈ I2 },
Σ′(𝑉) := { 𝐽 ∈ Σ(𝑉) : 𝐽 − 𝐽0 ∈ I2 }. (3.4)

Clearly, 𝑇 (𝑔) ∈ D′(𝑉) ⇐⇒ 𝐽 (𝑔) ∈ Σ′(𝑉). These are the orbits of 0 and 𝐽0, respectively, under
the action of the subgroup Sp′ of restricted linear canonical transformations:

Sp′(𝑉) := { 𝑔 ∈ Sp : 𝑇 (𝑔) ∈ I2 }. (3.5)

It is useful to note that the projections Sp′ → Σ′(𝑉) : 𝑔 ↦→ 𝐽 (𝑔) and Sp′ → D′(𝑉) : 𝑔 ↦→ 𝑇 (𝑔)
have nice global sections. To identify the latter, let 𝑇 ∈ D(𝑉) and define

ℎ𝑇 := (1 + 𝑇) (1 − 𝑇2)−1/2. (3.6)

This is a symplectic operator. It is immediate that 𝑇 (ℎ𝑇 ) = 𝑇 , so 𝑇 ↦→ ℎ𝑇 provides a global
section of the principal bundle Sp(𝑉) → D(𝑉) with fibre U𝐽0 (𝑉). Restriction to D′(𝑉) gives a
global section of Sp′ → D′(𝑉). For Σ′(𝑉), note that ℎ𝑇 𝐽0 = 𝐽0ℎ

♯

𝑇
= 𝐽0ℎ

−1
𝑇

, and so ℎ𝑇 𝐽0ℎ
−1
𝑇

=

𝐽0(1 − 𝑇) (1 + 𝑇)−1 =: 𝐽𝑇 . Therefore the map 𝐽𝑇 ↦→ ℎ𝑇 is a global section of Sp → Σ(𝑉), which
restricts to a global section of Sp′ → Σ′(𝑉).

We may avoid the detour through D(𝑉) by noting that ℎ2
𝑇
= −𝐽𝑇 𝐽0; indeed, ℎ𝑇 is the positive

square root of −𝐽𝑇 𝐽0, so we have established that if 𝐽 ∈ Σ(𝑉), then 𝐽 ↦→ (−𝐽𝐽0)1/2 provides a
global section of the bundle Sp → Σ(𝑉); and finally, there is an “intertwining formula”

(−𝐽𝐽0)1/2𝐽0(−𝐽0𝐽)1/2 = 𝐽 (3.7)

between two positive symplectic complex structures on (𝑉, 𝑆). This shows also that the topologies
associated to any two different complex structures are equivalent. From now on we shall work only
in Σ′(𝑉) and leave the corresponding statements for D′(𝑉) to the reader.

The sets D′(𝑉) and Σ′(𝑉) are Riemannian manifolds: the Lie algebra of Sp′(𝑉) is (p∩ I2) ⊕ k,
where p ⊕ k is the Cartan splitting of sp and the tangent space, at 𝐽0 for example, is a copy of
p ∩ I2; the homogeneity of Σ′(𝑉) shows that we can identify the tangent space 𝑇𝐽Σ

′(𝑉) with
{ 𝑋 ∈ I2 : 𝑋𝐽 = −𝐽𝑋, 𝑆(𝑋𝑢, 𝑣) = −𝑆(𝑢, 𝑋𝑣) }. The Riemannian metric 𝑑 is defined on Σ′(𝑉) by

𝑑𝐽 (𝑋𝐽 , 𝑌𝐽) := Tr[𝑋𝐽𝑌𝐽] for 𝑋𝐽 , 𝑌𝐽 ∈ 𝑇𝐽Σ
′(𝑉). (3.8)

This metric is clearly invariant under the action of Sp′. Write 𝐿𝐽0 := 𝐿 := (1+ 𝐽0)/
√

2 and note that
𝐿 ∈ U𝐽0 (𝑉), 𝐿−1 = (1− 𝐽0)/

√
2 and that 𝐿2 = 𝐽0. Also note that (Ad 𝐿)2 = (Ad 𝐽0) = −1 on the 𝐽0-

antilinear part of Endℝ(𝑉) and in particular on p∩ I2; indeed, 𝐿𝑋𝐿−1 = 𝐿2𝑋 = 𝐽0𝑋 whenever 𝑋 is
𝐽0-antilinear. We see that Ad 𝐿 preserves Σ′(𝑉). Notice, finally, that 𝐿𝐽 := (−𝐽𝐽0)1/2𝐿 (−𝐽0𝐽)1/2 =

(1 + 𝐽)/
√

2.
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The almost complex structure J on Σ′(𝑉) is defined by

J𝐽𝑋𝐽 := 𝐿𝐽𝑋𝐽𝐿
−1
𝐽 = 𝐽𝑋𝐽 for 𝑋𝐽 ∈ 𝑇𝐽Σ

′(𝑉). (3.9)

The invariance of J is clear, as in the proof of Theorem 1. The integrability condition is the
vanishing of the Nijenhuis tensor field:

𝑁 (X,Y) := [X,Y] + J[JX,Y] + J[X, JY] − [JX, JY] (3.10)

where X, Y are vector fields on Σ′(𝑉). It is enough to evaluate at 𝐽0. We get [X𝑋 ,X𝑌 ] (𝐽0) =

X[𝑋,𝑌 ] (𝐽0) = 0, because [𝑋,𝑌 ] commutes with 𝐽0. A straightforward computation shows that
[JX𝑋 ,X𝑌 ] (𝐽0) = 0 and [JX𝑋 , JX𝑌 ] (𝐽0) = 0 also, so that the Nijenhuis tensor field vanishes, and
we conclude that J is integrable.

Note also that

𝑑𝐽 (𝐽𝑋𝐽 , 𝐽𝑌𝐽) = Tr[𝐽𝑋𝐽𝐽𝑌𝐽] = Tr[𝑋𝐽𝑌𝐽] = 𝑑𝐽 (𝑋𝐽 , 𝑌𝐽) (3.11)

since 𝑋𝐽 and 𝐽 anticommute, so the metric is a Hermitian metric on the complex manifold (Σ′(𝑉), J).
The symplectic structure on Σ′(𝑉) is now obvious: set

𝜔𝐽 (𝑋𝐽 , 𝑌𝐽) := 𝑑𝐽 (𝐽𝑋𝐽 , 𝑌𝐽) = Tr[𝐽𝑋𝐽𝑌𝐽] . (3.12)

The invariance of 𝜔 can be immediately read from this formula. We remark that this is in fact
a Kirillov–Kostant–Souriau form, the orbits of the coadjoint action being here isomorphic to the
orbits of the adjoint action, so that 𝑑𝜔 = 0 is automatically satisfied and (Σ′(𝑉), J, 𝑑) is a Kähler
manifold.

Alternatively, Σ′(𝑉) is a Kähler manifold since J is invariant under parallel translation [10].
Indeed, we need only consider parallel translation along the geodesics of Σ′(𝑉) generated by the
fundamental Hamiltonian vector fields, and this is given by the group action of Sp′(𝑉), under which
J is invariant.

According to the discussion in this letter, if a diffeomorphism of Σ′(𝑉) is canonoid with respect
to the fundamental vector fields of Sp′, then it belongs to DiffCS(Σ′(𝑉)). It remains to compute the
set of distinguished Hamiltonians. These are in fact generic (affine) coordinate functions on sp′,
when restricted to the orbit Σ′(𝑉). Given 𝐴 ∈ sp′, the associated fundamental vector field is
X𝐴 (𝐽) = 𝐽𝐴 − 𝐴𝐽, from which

𝜔𝐽 (X𝐴 (𝐽), 𝑌𝐽) = Tr[𝐽 (𝐽𝐴 − 𝐴𝐽)𝑌𝐽] = ⟨𝑑𝐻𝐴 (𝐽), 𝑌𝐽⟩.

The undetermined constant in the definition of 𝐻𝐴 can be employed to obtain

𝐻𝐴 (𝐽) ∝ Tr[(𝐽0 − 𝐽)𝐴],

this “renormalization” helping to make sense of the expression in the infinite-dimensional case.
The result is of course applicable to the family of all symmetric domains generalized by Σ′(𝑉)

(this is the “𝐶 𝐼 noncompact” type in the classification of [8, Chap. X]). The “fermionic” type
“𝐷 𝐼𝐼𝐼 compact” can be developed in a completely parallel way.
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