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Abstract — Numerical circuit parameter extraction is widely 
used for modeling many kinds of high-frequency structures. In 
particular, parameter extraction can be used to find the optimal 
parameter values of an equivalent circuit model to match as close 
as possible a given target response. This paper presents a novel 
objective function formulation for parameter extraction based on 
the Kullback-Leibler distance. A rigorous graphical and 
numerical comparison of the proposed new formulation against 
classical l-th norm formulations is included. One- and two-
dimensional synthetic examples are used to illustrate the 
advantages of the proposed Kullback-Leibler distance 
formulation. Our results indicate that the proposed new 
formulation yields similar or better-behaved parameter extraction 
objective functions than those obtained from l-th norm 
formulations. 

Index Terms — Chebyshev, entropy, Euclidean, Kullback-
Leibler, Manhattan, parameter extraction, l-th norm, Shannon 
information theory, optimization.

I. INTRODUCTION

The EM response of a high-frequency structure can be locally 

approximated by using numerical parameter extraction (PE) if 

there is available an initial parameterized model that 

approximates the structure performance. PE formulations can 

be used to minimize the error between the approximating model 

response and the target EM response. To measure the error 

between these two responses, formulations with l-th norms are 

widely used. Parameter extraction is also the most critical 

process in several space mapping (SM) optimization algorithms 

[1]-[3]; using better formulations for parameter extraction can 

positively impact on the convergence of SM algorithms that 

require performing PE at each iteration. This paper also aims 

towards addressing that opportunity in a future work.  

To the best of our knowledge, this paper presents for the first 

time a formulation of the objective function for parameter 

extraction exploiting concepts related to Shannon entropy 

theory, more specifically, by using the Kullback-Leibler (K-L) 

distance [4] to represent the error function to be minimized 

during numerical PE. A rigorous graphical and numerical 

comparison between the proposed K-L formulation and 

classical Manhattan, Euclidean, and Chebyshev formulations is 

presented, exploiting one- and two-dimensional synthetic 

examples where it is feasible to plot the PE objective function 

versus the model parameters. The results obtained considering 

these synthetic cases indicate that the proposed formulation 

based on the Kullback-Leibler distance yields similar or better 

behaved PE objective functions than those obtained from l-th 

norm formulations, which might be useful for more robust SM 

algorithms. 

II. CIRCUIT PARAMETER EXTRACTION (PE)

Numerical circuit parameter extraction (PE) can be 

formulated as the following optimization problem: 

��� = arg min� ���(
(��, 
�� (1) 

where vector � ∈ ℜ� contains the model parameters, vector

function 
(��: ℜ� → ℜ�  generates the model responses, and

vector 
� ∈ ℜ� contains the target or desired response. The

scalar parameter extraction objective function, ���: ℜ� → ℜ�,

measures the difference between the model response 
(�� and

the target response 
�. When performing PE, we aim at finding

the optimal model parameters ��� ∈ ℜ� that make the model

response 
(�� as close as possible to the target response 
�.
Ideally, 
(���� = 
�.

As mentioned before, PE is also used as an important sub-

process in several SM optimization algorithms [1]. SM 

techniques employ at least two models for the device to be 

optimized: a highly accurate but computationally expensive 

model, named as fine model, and a fast but insufficiently 

accurate representation, named as coarse model. In the context 

of SM, the target response 
� is usually obtained from the fine

model response 
� at some fine model design parameters ��,
i.e., 
� = 
�(���, and PE is used to find the coarse model

parameters ��  that makes the coarse model response 
�  as

close as possible to the fine model response. Ideally, 
�(����� =

�(���, where ���� is the solution of the corresponding PE

optimization sub-problem, which is normally inexpensive since 


�(��� remains fixed during PE. However, PE can be very

problematic for SM if ��� has multiple local minima [3],[5].

Several formulations for the PE objective function ��� can

be considered. In Section III, the PE objective function ���
using generalized l-th norms is revisited. In Section IV, the 

proposed new formulation based on the Kullback-Leibler 

distance is used to formulate ���.

III. L-TH NORM FORMULATIONS FOR PE

The PE objective function can be formulated as an l-th norm, 

���(�� = ‖�(��‖� (2)

where �(�� ∈ ℜ� is the error of the model response with respect

to the target response,  �(�� = 
(�� − 
�. The most widely

used norms are as follows. 
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A. Manhattan 

The l1 norm formulation, also known as Manhattan, uses 

 ���(
(��, 
�� = ∑ | !(��|�!"�  (3) 

and it emphasizes the average absolute error. 

B. Euclidean 

The l2 norm formulation, also known as Euclidean, uses 

 ���(
(��, 
�� = ∑  !#(���!"�  (4) 

and it emphasizes the mean square error. 

C. Chebyshev 

The infinite norm or Chebyshev formulation uses 

 ���(
(��, 
�� = max! %⋯ | !(��| ⋯ ' (5) 

and it emphasizes the maximum absolute error. 

IV.  KULLBACK-LEIBLER (K-L) FORMULATION FOR PE 

According to Shannon information theory [6], the degree of 

difference between the states of two systems A and B can be 

represented by relative entropy [7]. This difference can be 

measured using the Kullback-Leibler distance [8], [9], which 

can be defined as 

 ( = ∑ )*! ln ,-
.-

+ (1 − *!� ln �1,-
�1.-

23!"�  (6) 

where C is the relative entropy between the systems A and B. 

The i-th states of these systems are represented by Ai and Bi (i 

= 1, 2, … , N).  

Extending (6) to the PE problem, the following alternative 

objective function is proposed: 

 ���(
(��, 
�� = ∑ 45! ln 6-
6-7

+ (1 − 5!� ln �16-
�16-7

8�!"�  (7) 

where 5! is the i-th model response at model parameters x, and 

5!� is the i-th target response. 

V.  PE COMPARISON USING L-TH NORMS AND KULLBACK-

LEIBLER (K-L) FORMULATIONS 

Graphical and numerical comparisons between K-L and l-th 

norm formulations are presented by synthetic examples. The 

following figures of merit to measure the corresponding 

matching errors are used: average absolute relative error (9:;<), 

normalized mean square error (NMSE), and maximum absolute 

relative error (9=:>), defined as 

 9:;< =
?
@‖�AB‖?
C
7CD

 (8) 

 EFGH = ‖�AB‖I
C
7CI

 (9) 

  9=:> = ‖�AB‖D
C
7CD

 (10) 

where ��� is the error vector after PE, ��� = 
(���� − 
�. 

A. One-Dimensional PE Example 

The ideal sixth-order π bandpass symmetrical lumped filter 

shown in Fig. 1 is taken as a coarse model [10].  It uses L1c = 

0.0997 nH, L2c = 17.455 nH, and C2c = 0.058048 pF. To treat it 

as a one-dimensional problem, we use xc = C1c as the only 

coarse model parameter. 

The target response Rt is some fine model response Rf at the 

optimal coarse model design xc
* = 10.1624 pF, using p = 15 

frequency points from 4 to 6 GHz, as shown in Fig. 1. The PE 

objective function plots for the four corresponding formulations 

are in Fig. 2, where the K-L formulation exhibits the best-

behaved objective (unimodal, smoother and with larger 

dynamic range). This is confirmed by the numerical results 

shown in Table I, where i is the number of iterations. 

B. Two-Dimensional PE Example 

The ideal 10:1 two-section impedance transformer shown in 

Fig. 3 is used as a coarse model. Reference impedance is Z0 = 

50 Ω. Load impedance is RL = 500 Ω. The transmission lines 

 

 
Fig. 1. Coarse model of a sixth-order bandpass filter, its optimal 

response (continued blue trace) and a fine model target response 

sampled at p = 15 frequency points from 4 to 6 GHz (circled red trace).
 

 
Fig. 2. PE objective functions for sixth-order bandpass filter in Fig. 2 

varying xc = C1c from 8 to 15 pF. 
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TABLE I.  ONE-DIMENSIONAL EXAMPLE SOLVED BY NUMERICAL PE 

USING THE NELDER-MEAD METHOD 

x(0) Obj. Func. i xPE εavg εmax NMSE 
       

8.5 

Manhattan 33 11.7251 0.0504    0.2447    0.1937 

Euclidean 28 6.4742 0.2873    0.9800    0.9105 

Chebyshev 31 9.2177 0.3342    0.9187    1.0506 

K-L 28 11.8747 0.0523    0.1599    0.1663 
       

10.1624 

Manhattan 30 11.7251 0.0504    0.2447    0.1937 

Euclidean 26 11.8623 0.0522    0.1573    0.1660 

Chebyshev 30 11.8365 0.0520    0.1518    0.1671 

K-L 26 11.8747 0.0523    0.1599    0.1663 
       

14.5 

Manhattan 32 11.7251 0.0504    0.2447    0.1937 

Euclidean 27 11.8623 0.0522    0.1573    0.1660 

Chebyshev 31 11.8365 0.0520    0.1518    0.1671 

K-L 27 11.8747 0.0523    0.1599    0.1663 
       

 



 

characteristic impedances are Z1 = 1.8233Z0 Ω, and Z2 = 

5.4845Z0 Ω, using coefficients for a Chebyshev profile with a 

10:1 transformation ratio and a 0.05 ripple. Model parameters 

are x = [L1  L2]T  (degrees). To test a case with an exact match, 

the target response is the optimal coarse model response from 

0.2 to 1.8 GHz using p = 301 frequency points (see Fig. 3). 

The contour plots for the four corresponding PE objective 

functions are shown in Fig. 4, where the K-L formulation shows 

the best-behaved surface. This is re-confirmed by numerical 

results in Tables II and III, where i is again the number of 

iterations. 

VI.  CONCLUSION 

This paper presented a formulation for parameter extraction 

(PE) in terms of the Kullback-Leibler (K-L) distance and a 

comparison with the classical l-th norm formulations. Our 

results indicate that the K-L distance formulation yields similar 

or better PE performance than the corresponding l-th norm 

formulations. This was confirmed by two findings: 1) smoother 

objective functions were observed; and 2) similar or smaller 

number of iterations were needed to obtain satisfactory 

response matching after numerical optimization. 
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Fig. 3. Ideal 10:1 two-section impedance transformer used as a coarse 

model and its optimal response taken as target, sampled at p = 301

frequency points from 0.2 to 1.8 GHz. 
 

Fig. 4. Normalized PE objective functions for impedance transformer 

in Fig. 3 varying L1 and L2 from 60° to 120°. 

Z2

L2

Z1

L1

RL

500 Ω
50 Ω

|S
1

1
|

TABLE II.  TWO-DIMENSIONAL EXAMPLE SOLVED BY NUMERICAL PE 

USING THE NELDER-MEAD METHOD 

x(0) Obj. Func. i xPE 
    

[70   80]T 

Manhattan 86 [90.0000   90.0000]T 

Euclidean 80 [90.0000   90.0000]T 

Chebyshev 80 [90.0000   90.0000]T 

K-L 75 [90.0000   90.0000]T 
    

[110   80]T 

Manhattan 90 [90.0000   90.0000]T 

Euclidean 77 [90.0000   90.0000]T 

Chebyshev 78 [90.0000   90.0000]T 

K-L 67 [90.0000   90.0000]T 
    

[90   115]T 

Manhattan 84 [90.0000   90.0000]T 

Euclidean 78 [90.0000   90.0000]T 

Chebyshev 76 [90.0000   90.0000]T 

K-L 72 [90.0000   90.0000]T 
    

 

 

TABLE III.  TWO-DIMENSIONAL EXAMPLE SOLVED BY NUMERICAL PE 

USING THE TRUST REGION INTERIOR-REFLECTIVE NEWTON METHOD 

x(0) OF i xPE εavg εmax NMSE 
       

[70  80]T 

M 12 [89.9999  90.0001]T 0.0023×10−7 0.1774×10−7 0.0179×10−7 

E 16 [90.0001  89.9999]T 0.0029×10−7 0.2080×10−7 0.0209×10−7 

C 14 [90.0002  89.9998]T 0.1460×10−7 0.3664×10−7 0.2829×10−7 

K-L 13 [90.0033  89.9968]T 0.0878×10−5 0.5782×10−5 0.1777×10−5 
       

[110  80]T 

M 16 [90.0002  89.9998]T 0.0041×10−7 0.4442×10−7 0.0429×10−7 

E 12 [89.9997  90.0003]T 0.0051×10−7 0.5286×10−7 0.0519×10−7 

C 17 [90.0038  89.9965]T 0.2279×10−5 0.5910×10−5 0.4419×10−5 

K-L 12 [89.9972  90.0029]T 0.0341×10−5 0.4006×10−5 0.0788×10−5 
       

[90  115]T 

M 20 [89.9999  90.0001]T 0.0333×10−7 0.1122×10−7 0.0646×10−7 

E 16 [89.9999  90.0001]T 0.1856×10−8 0.9690×10−8 0.3660×10−8 

C 3 [83.0220  90.1578]T 0.0567 0.1106 0.1047 

K-L 11 [89.9977  90.0023]T 0.0450×10−5 0.2442×10−5 0.0905×10−5 
       

(M: Manhattan; E: Euclidean; C: Chebyshev; K-L: Kullback-Leibler) 
 


