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A set of methods is presented for convenient calculation of the changes in the 

frequency and shape of any mode of undamped vibration of a structure due to changes in the 

parameters of the system. Previously reported methods of similar type did not include the 

possibility of changes in the system that increase the number of degrees of freedom. The 

extension to cases in which degrees of freedom are added is effected by perturbation 

methods. In particular, the methods presented can treat close or multiple frequencies. 

Some sample numerical results are given for separated frequencies and multiple ones. 

1. Introduction 

In structural engineering it is often desirable to be able to predict the consequences 

of modifying the structural system. Such modification may be the result of the inevitable 

difference between the analytical model and the system as actually constructed. Non­

structural components may also contribute to such deviation from the analytical predictions 

of behavior. When the modifications are in the form of additional masses which give rise 

to additional degrees of freedom that happen to have frequencies near the original ones, 

large, destructive motions of the "extra" masses may occur along with some noticeable 

effects on the structure proper. 

In addition to changes in a structure that are not under the designer's direct con­

trol, there are often variations in the system that result from redesign. It is certainly 

an advantage to be able to use the dynamic properties of a design and to modify them simply 

and inexpensively to account for changes introduced in redesign. The extensive calculation 

made in the original design need not then be discarded, but can be modified so that it 

refers to the altered structure. 

2. Seoarated freauencies 

One approach to the improvement of approximate eigenvalues and eigenvectors that can 

be used for any eigenpair independently of the others is essentially an application of the 

Newton-Raphson procedure to the equation 

KX 

where K is the stiffness matrix, M the mass matrix and A the eigenvalue, equal to the 

square of the natural circular frequency. If the values are known for one value of a 
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parameterµ then these may serve as initial approximations for the corresponding quantities 

~ µ ·r-;'~' ::::t:: r l~;f '[~l of 

-x0M I o J l,uj o 
(2) 

where R is the residual K(µ)X
0 

- , 0M(µ)X0 . 

The matrix of the system (2) consists of that of (1) bordered by one row and one 

column. The last equation in the system guarantees that there can be no unlimited drift in 

the change of the eigenvector by specifying that the change in the eigenvector is normal to 

its original direction. It is not difficult to show [1] that the matrix of coefficients 

(2) is nonsingular even if the eigenvalue is exact, provided that the eigenvalue under 

consideration is not multiple. If the procedure is continued by replacing , 0 and x0 by 

quantities including the increments just found, this iterative method is convergent with a 

rate higher than second order. The iterative scheme has the drawback of requiring a new 

triangularization every time that the eigenvalue is changed on the left. A method using 

the modified Newton-Raphson method has been used [2], but it can slow convergence 

considerably. 

The method developed herein uses a perturbation method to extrapolate to a new value 

of the eigenvalue accurately before applying the iteration of (2). This application of a 

perturbation technique is fairly straightforward. With a perturbation technique it is also 

possible to treat cases where the change in the system involves the addition of new degrees 

of freedom as well as changes in the existing mass and stiffness matrices. 

The system of Fig. 1, which may represent the simplest model of a shear frame, Fig. 2, 

can be treated very effectively and straightforwardly by this method, It should, however, 

be emphasized that the procedure is applicable for any connections in the system whatever. 

The perturbation process sets 
• ,<o) + µ,<ll + µ2,<2) + 

x - x<0 l + µx<1 l + lx< 2 l + 

(3a) 

(3b) 

for the eigenvalue and the eigenvector, whereµ is now a parameter that measures the size 

of the added masses and springs, or more generally, of the changes in the mass and stiff­

ness matrices due to the additional elements. Whenµ approaches zero, the components are 

very small compared to masses and stiffnesses of the original system; whenµ is of the 

order 1, they are comparable in size. 

The equations of the sytem (1) including the new coefficients in Kand M that are 

proportional toµ are written down along with the equation that specifies that the total 

change in Xis orthogonal to the X(O) found for the original system, When the equations so 

formed are separated according to powers ofµ, sets of equations of the form (2) are found, 

which always have the same coefficient matrix on the left. 

These equations can be used for any of the "old" modes and any of the "new" modes that 

arise from the addition of degrees of freedom. For an old mode, it is easily shown that 

the value of ,(o) is the eigenvalue for that old mode before the augmentation of the 

system. The X(O) consists of the previous eigenvector for the masses of the old system and 

entries corresponding to the new masses that are obtained from the forced vibration 

response of the added system with the original masses moving in the mode and with the 

frequency of the old mode in question. Obviously this characterization breaks down when 
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such a forced vibration would result in infinite motions, i.e., when tuning occurs. For a 

new mode, a frequency is what would be found if the old masses were fixed. The mode X(O) 

involves no motion of the original masses. There are, of course, as many new modes as 

there are added masses, but they may be studied one at a time. As long as one of the new 

frequencies is not close to any of the old ones, that mode may be handled as above, no 

matter whether others of the new frequencies are tuned or not. 

These results are neither difficult to show nor especially surprising. It might be 

noted, however, that the general theorems on perturbation of eigenvalues as presented in 

the standard treatise [3] do not include cases where the number of degrees of freedom is 

changed by a perturbation. 

3. Close or Multiple Frequencies 

The situation is much more complicated when one or more frequencies of the added 

system are very close to, or coincide with, one or more frequencies of the original system. 

The general problem of multiple frequencies was broached in [1], but in a manner that was 

very difficult to realize numerically. A much more useful method for dealing with multiple 

frequencies was presented in [2] and it is this idea that is now generalized to handle 

additional degrees of freedom by a perturbation process that turns out to be somewhat 

different from that used for the case of separated frequencies. 

To explain the procedure for multiple or close roots, it ls useful to recall the 

variational definition of an eigenvalue and the corresponding eigenvector[~]. In the case 

of the system of Eq. (1), we can find an X and the corresponding, satisfying 

KX = ,MX (1) 

by finding an extremum of XTKX subject to XTMX = 1. Now for multiple or close roots of the 

frequency equation, we must consider the entire subspace of s eigenvectors having equal or 

close eigenvalues. This subspace is spanned by the s orthonormalized vectors Y
1

, 

Y2 , ••• ,Ys' forming then x s matrix Y. We now find the extremum of 

T subject to the conditions of orthonormality YiMYj = 6ij' i,j • 1, 2, ... , s. 

The constrained extremum problem is solved by forming the Lagrangian 
s T s s T 
L Yi KY i - _L . l d 1/ Y. MY j - 6 ij 

1•1 1=1 J•l 
L 

where the D matrix, [dij], is ans x s symmetric matrix made up of the Lagrange multi­

pliers. If the roots are equal, the equation 

6L p 0 (5) 

leads to a D matrix having only diagonal elements all equal to the eigenvalue in question. 

If the roots are quite close to each other, the diagonal elements are close and the off­

diagonal elements of Dare very small compared to the diagonal elements. Moreover, as is 

shown in [2), if the roots are close, the different sets of equations for the improvement 

in the Y vectors and the changes in one column of D do not couple with each other. Sets of 

equations very similar to form 

(6) 
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For the procedure to begin, it is necessary to have the trial Yi's available as a set 

of ort:.nonorma.1 vectors. IL snoula oe empnasized Lha t. for· Lhe uc:1oe uf clu::se t·uuL::s, Lht:: Yi' ::;i 

obtained by successive approximations are not eigenvectors and the diagonal elements of the 

D matrix are not eigenvalues. A second step of the process is needed in order to find the 

s eigenpairs. For this we set 

X = YZ (7) 

where Z is the s-dimensional rotation solving the eigenvalue problem of orders: 

DZ= ZA (8) 

The X's found from (7) and the diagonal A from (8) are the s eigenvectors and corresponding 

eigenvalues of the original problem. 

The iterative procedure similar to the one using Eq. (2) serves to remove any compo­

nents of the Y's outside the s-dimensional subspace of the s close eigenvectors, without 

any tendency to rotate vectors inside that subspace. The final rotation is carried out 

exactly by solving the eigenvalue problem (8). 

The method is now adapted to a perturbation technique suitable for the study of 

problems in which the small parameter measures the mass and stiffness of the system con­

taining the additional degrees of freedom. The really interesting and more complicated 

case is one in which the new system would have a frequency equal to one of the old ones if 

the large masses were held fixed. As the parameter approaches zero, we should expect equal 

roots, which may separate as the parameter is increased from zero. The considerations that 

seemed so reasonable when the frequencies were well separated now no longer hold. The new 

and old modes will here involve very large motions of the small added masses. The previous 

way of finding the new and old mode shapes fails because the forced vibrations involved 

would give rise to resonance. 

To begin the perturbation analysis, it is first necessary to choose an orthonormal set 

of Y's for use in a system analogous to Eq. (6). If there are two added masses with two 

new frequencies tuned to an old one with mode shape ~1 , the Y may be written as 

[ i' ; :] y (9) 

for an M of the form 

[

-M~ : __ o_] 
0 I 01, a 

I o a1J 

M 
(10) 

it is clear that the orthogonality conditions are satisfied. For normality, we must have 

aµa
2 

= 1, $µb
2 = 1 or, the entries in some of the Y vectors must go as µ- 112 It is con­

venient to introduce the quantity e defined as µ112 
Then the perturbation series for each 

Y and for the entries of Dare of the form 
.!_y(-1) + y(O) + eY(1) + E2Y(2) + • • • (11a) 

(11 b) ~(0) + edi('.) + E2d!2) + 
ij J lJ 

The variational equations and the orthonormality conditions are then written for each Yi. 

These do not couple and each Yik) can be found from equations analogous to (6). To obtain 

the right-hand sides for one perturbation, it is necessary to have the lower-order pertur-

bations for alls of the Yi's. The final rotation can be carried out either by a pertur­

bation calculation or numerically after choosing an e. 
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The fact that the frequency change goes as µ
112 was shown in [5] for a single mass 

attached to a system and is assumed in [6) for the more general case, In both references 

the calculations are carried out by a very different type of perturbation calculation, 

4. Numerical Results 

The computational schemes outlined above may be illustrated for the very simple system 

of Fig. 1, which might be thought of as a model for the frame of Fig. 2. The parameters 

are taken as K
1 

= 2, K
2 

1, M
1 

2, M2 = 1, k1 = k2 = (1/2)µ, m1 = 2µ. Forµ= 0, the two 

frequencies are 0.5 and 2. The added system also has frequency 0.5, so that there is a 

double root of 0.5 atµ - O and a single one of 2. Table 1 presents the frequency approxi­

mations for the separated root for values ofµ equal to 0.001, 0.01, and 0.1. The exact 

results are given along with the second perturbation, The error in the second perturbation 

involves terms inµ to the third and higher powers. 

Table 2 deals with the pair of roots at or near 0.5. Results are given for the first 

two perturbations along with the exact results. The second perturbation has an error going 

as µ312 and higher-order terms. It should be noted that the proper measure of the accuracy 

of an approximation is the relative error in the difference between the approximation and 

the root in question atµ= 0 (0,5 in this case), It is seen that for ~1, the error is 

about 16% forµ m 0,1 in the first perturbation, but only 1.4% in the second perturbation. 
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TABLE 1 

FREQUENCY APPROXIMATIONS FOR THE SEPARATE ROOT 

-
A (0) 

3 
+ µA (1) 

3 + /Ay> Exact 

µ A3 A3 

0 2.6 2.6 

.001 2.000333342 2.000333343 

.01 2.003334259 2.003334261 

. .1 2.033425926 2. 033427207 

TABLE 2 

FREQUENCY APPROXIMATIONS FOR CLOSE ROOTS 

/0) + g;\ (1) A(O) + €A(l) + €2A(2) Exact 

µ Al 1'2 Al ;\2 Al 1'2 

0 0.56 0.56 0.56 0.50 0.50 0.50 

.001 .486307 .513693 .486515 . 513901 . 486514 . 513903 

.01 .458921 .543301 .458782 .545385 .458732 .545434 

.1 .363069 .636931 .383902 . 657764 .382291 . 659282 

Figure 1. The Case Treated in Figure 2. A Structural Frame 
Modeled in Fig, 2. the Numerical Example. 
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